WO2022134823A1 - 显示面板及其显示装置 - Google Patents

显示面板及其显示装置 Download PDF

Info

Publication number
WO2022134823A1
WO2022134823A1 PCT/CN2021/125980 CN2021125980W WO2022134823A1 WO 2022134823 A1 WO2022134823 A1 WO 2022134823A1 CN 2021125980 W CN2021125980 W CN 2021125980W WO 2022134823 A1 WO2022134823 A1 WO 2022134823A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refractive index
display panel
encapsulation layer
encapsulation
Prior art date
Application number
PCT/CN2021/125980
Other languages
English (en)
French (fr)
Inventor
何宝轲
李端明
郜明浩
张钦
孙泉钦
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/921,213 priority Critical patent/US20230171991A1/en
Publication of WO2022134823A1 publication Critical patent/WO2022134823A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • Embodiments of the present disclosure relate to the field of display technology, and in particular, to a display panel and a display device thereof.
  • OLED display panels have the advantages of self-illumination, high efficiency, bright colors, light and power saving, rollability and wide temperature range, and have been gradually applied to large-area displays, lighting and automotive displays. and other fields.
  • Embodiments of the present disclosure provide a display panel and a display device thereof.
  • the display panel includes: a substrate; an organic light-emitting device on the substrate; a cover layer on the organic light-emitting device; a light extraction layer on the cover layer; an optical function on the light extraction layer layer; and an encapsulation layer on the optically functional layer.
  • the refractive index of the light extraction layer is smaller than the refractive index of the cover layer and smaller than the refractive index of a portion of the encapsulation layer closest to the optical functional layer.
  • the refractive index of the optical functional layer is smaller than the refractive index of the portion of the encapsulation layer closest to the optical functional layer and not equal to the refractive index of the light extraction layer.
  • the refractive index of the optical functional layer is greater than the refractive index of the light extraction layer.
  • the difference between the refractive index of the optical functional layer and the refractive index of the portion of the encapsulation layer closest to the optical functional layer ranges from 0.03 to 0.3.
  • the ratio of the thickness of the optical functional layer to the thickness of the portion of the encapsulation layer closest to the optical functional layer ranges from 0.04 to 0.21.
  • the material of the optical function layer is the same as the material of the portion of the encapsulation layer closest to the optical function layer.
  • the material of the optical function layer includes silicon oxynitride.
  • the oxygen content of the material of the optical function layer is greater than the oxygen content of the material of the part of the encapsulation layer closest to the optical function layer.
  • the material of the optical function layer includes silicon oxide.
  • the refractive index of the optical functional layer is smaller than the refractive index of the light extraction layer.
  • the encapsulation layer includes a first encapsulation layer, a second encapsulation layer, and a third encapsulation layer that are sequentially arranged in a direction away from the substrate.
  • the first encapsulation layer includes the portion of the encapsulation layer closest to the optical functional layer.
  • the refractive index of the second encapsulation layer is smaller than that of the first encapsulation layer and smaller than the refractive index of the third encapsulation layer.
  • the refractive index of the first encapsulation layer is 1.73
  • the refractive index of the second encapsulation layer is 1.54
  • the refractive index of the third encapsulation layer is 1.84.
  • the thickness of the first encapsulation layer is 950 nm
  • the thickness of the second encapsulation layer is 12 ⁇ m
  • the thickness of the third encapsulation layer is 700 nm.
  • the material of the light extraction layer includes an organic polymer material or lithium fluoride.
  • the organic light-emitting device includes an anode, an organic light-emitting layer, and a cathode sequentially disposed along a direction away from the substrate.
  • the display device includes the display panel as described above.
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of an OLED display panel 10 .
  • FIG. 2 shows a schematic cross-sectional structure diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 3 shows a schematic plan structure diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic diagram of a cross-sectional structure of an OLED display panel 10 .
  • the display panel 10 may include: a substrate 100, an OLED device 200 on the substrate 100, a cover layer 300 on the OLED device 200, a light extraction layer 400 on the cover layer 300, and a light extraction layer Encapsulation layer 600 on layer 400 .
  • the OLED device 200 may include an anode 201 , a light-emitting layer 202 and a cathode 203 arranged in sequence along a direction perpendicular to the substrate 100 .
  • the cover layer 300 may be configured to block oxygen and moisture from entering the display panel 10 from the outside. Additionally, the capping layer 300 may also be configured to improve the extraction efficiency of light emitted by the light emitting layer 202 .
  • the light extraction layer 400 may be configured to improve the extraction efficiency of light emitted from the OLED device 200 . Additionally, the light extraction layer 400 may be configured to protect the cover layer 300 and the OLED device 200 from damage.
  • the anode 201 , the light-emitting layer 202 and the cathode 203 constitute the microcavity 101 .
  • the microcavity 101 can cause the light emitted from the light emitting layer 102 to be amplified by being repeatedly reflected and re-reflected between the anode 201 and the cathode 203 to cause constructive interference, thereby increasing the intensity and purity of the light.
  • the directionality of the light is also enhanced accordingly. This results in different intensities of light in different directions, and therefore, under different angles (especially, under a large viewing angle), the display panel has obvious color shift phenomenon.
  • the selection of materials and parameters of electrode layers and organic light-emitting layers of OLED devices involves various key design considerations, and thus, it is difficult to eliminate color shift by adjusting the structure of OLED devices.
  • the inventor found after in-depth research that, in addition to the color shift caused by the microcavity 101 formed by the electrode layer of the OLED device, the stack of transparent materials located on the cathode 203 of the OLED device also contributes to the color shift. significant impact.
  • a Distributed Bragg Reflector DBR, Distributed Bragg Reflector
  • the distributed Bragg reflector may be composed of alternately arranged high-refractive index layers and low-refractive index layers.
  • the Bragg reflector 102 and the cathode 203 can also form an additional microcavity 103 . Similar to the above-mentioned microcavity 101 , the light undergoes multiple reflections in the microcavity 103 , and finally, under the action of interference superposition, the intensity of the outgoing light is increased, and the directivity of the light is enhanced, thereby further enhancing the color shift. In addition, the existence of the microcavities 101 and 103 will also reduce the light extraction efficiency of the display panel.
  • embodiments of the present disclosure provide a display panel capable of reducing microcavity effects, thereby improving color shift and increasing light extraction efficiency.
  • FIG. 2 shows a schematic cross-sectional structure diagram of a display panel according to an embodiment of the present disclosure.
  • the display panel 20 may include: a substrate 100; an organic light emitting device 200 on the substrate 100; a cover layer 300 on the organic light emitting device 200; a light extraction layer 400 on the cover layer 300; the optical functional layer 500 on the layer 400 ; and the encapsulation layer 600 on the optical functional layer 500 .
  • the refractive index of the light extraction layer 400 may be smaller than that of the cover layer 300 and smaller than that of the portion 601 of the encapsulation layer 600 closest to the optical functional layer 500 .
  • the refractive index of the optical functional layer 500 may be smaller than the refractive index of the portion 601 of the encapsulation layer 600 closest to the optical functional layer 500 and not equal to the refractive index of the light extraction layer 400 .
  • the multiple film layers located on the cathode 203 cannot form a distributed Bragg reflector, and further, a microcavity cannot be formed between the cathode and the dielectric stack on the cathode, thereby reducing this problem. Contribution of the media stack to color shift.
  • the number of times of light reflection back and forth between the cathode 203 and the dielectric stack above the cathode 203 is reduced, and the effect of interference stacking is reduced, thereby eliminating or weakening the microcavity effect .
  • the color shift and light extraction efficiency of the display panel 20 are improved, and the display effect is improved.
  • the refractive index of the optical functional layer 500 may be set to be smaller than that of the encapsulation layer 600 closest to the optical
  • the refractive index of the portion 601 of the functional layer 500 is not equal to the refractive index of the light extraction layer 400 .
  • the refractive index of the optical functional layer 500 may be greater than that of the light extraction layer 400 .
  • the refractive index of the optical functional layer 500 may be smaller than that of the light extraction layer 400 .
  • the refractive index difference of the optical functional layer 500 and the refractive index difference of the portion 601 of the encapsulation layer 600 closest to the optical functional layer 500 may range from 0.03 to 0.33.
  • the ratio of the thickness of the optical functional layer 500 to the thickness of the portion 601 of the encapsulation layer 600 closest to the optical functional layer 500 may range from 0.04 to 0.21.
  • the refractive index of the optical functional layer 500 may range from 1.4 to 1.7.
  • the refractive index of the optical functional layer 500 may be 1.52.
  • the thickness of the optical functional layer 500 may range from 40 to 200 nm. As an example, the thickness of the optical functional layer 500 is 50 nm.
  • the material of the optical function layer 500 may include silicon oxynitride or silicon oxide.
  • the material of the optical functional layer 500 may be the same as the material of the portion 601 of the encapsulation layer 600 closest to the optical functional layer 500 .
  • the material of the optical function layer 500 may include silicon oxynitride.
  • the oxygen content in the material of the optical functional layer 500 is greater than the oxygen content in the material of the portion 601 of the encapsulation layer 600 closest to the optical functional layer 500 .
  • the refractive indices of different film layers can be adjusted by adjusting different ratios of components included in the materials. Generally, the higher the oxygen content in the material, the lower the refractive index of the corresponding film.
  • the refractive index of the capping layer 300 is greater than the refractive index of the cathode 203 .
  • the cover layer 300 may be configured to block oxygen and moisture from entering the display panel 10 from the outside.
  • the cover layer 300 may include a material satisfying the above-mentioned functions.
  • the material of the capping layer 300 may include silicon nitride.
  • the refractive index of the light extraction layer 400 may be 1.35.
  • the material of the light extraction layer 400 may include an organic polymer material.
  • the organic polymer material may include triarylamines, cyclic ureas, acyl structures, dibenzothiophenes, dibenzofurans, carbazoles, and the like.
  • the material of the light extraction layer 400 may further include lithium fluoride.
  • the encapsulation layer 600 may include a first encapsulation layer 601 , a second encapsulation layer 602 , and a third encapsulation layer 603 sequentially disposed in a direction away from the substrate.
  • the first encapsulation layer 601 here corresponds to the portion 601 of the encapsulation layer 600 described above that is closest to the optical functional layer 500 .
  • the refractive index of the second encapsulation layer 602 may be smaller than that of the first encapsulation layer 601 and smaller than that of the third encapsulation layer 603 .
  • the refractive index of the first encapsulation layer 601 may be 1.73
  • the refractive index of the second encapsulation layer 502 may be 1.54
  • the refractive index of the third encapsulation layer 603 may be 1.84.
  • the thickness of the first encapsulation layer 601 may be 950 nm
  • the thickness of the second encapsulation layer 602 may be 12 ⁇ m
  • the thickness of the third encapsulation layer 603 may be 700 nm.
  • the material of the first encapsulation layer 601 may include silicon oxynitride
  • the material of the second encapsulation layer 602 may include organic ink
  • the material of the third encapsulation layer 603 may include silicon nitride.
  • the organic light emitting device 200 may include an anode 201 , an organic light emitting layer 202 and a cathode 203 which are sequentially arranged in a direction away from the substrate 100 .
  • a hole injection layer and a hole transport layer may be provided between the organic light emitting layer 202 and the anode 201
  • an electron transport layer and an electron transport layer may be provided between the organic light emitting layer 202 and the cathode 203 .
  • injection layer may be provided between the organic light emitting layer 202 and the cathode 203 .
  • the organic light-emitting layer 202 may be a single-layer structure having one light-emitting layer as a light-emitting layer that emits red light, blue light, green light, or the like.
  • the organic light-emitting layer 202 may have a multilayer structure in which two or more light-emitting layers are disposed.
  • a display device capable of reducing color shift is also provided.
  • FIG. 3 shows a schematic plan structure diagram of a display device according to an embodiment of the present disclosure.
  • the display apparatus 1 may include a display panel 20 .
  • the display panel 20 For the description of the display panel 20, reference may be made to the above description, and details are not repeated here.
  • the display device 1 may be, for example, an OLED display device.
  • the display device 1 may be, for example, a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a navigator, a wearable device, an e-book reader, or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开涉及一种显示面板及其显示装置。该显示面板包括:基板;位于基板上的有机发光器件;位于有机发光器件上的覆盖层;位于覆盖层上的光提取层;位于光提取层上的光学功能层;以及位于光学功能层上的封装层。光提取层的折射率小于覆盖层的折射率且小于封装层中最靠近光学功能层的部分的折射率。光学功能层的折射率小于封装层中最靠近光学功能层的部分的折射率且不等于光提取层的折射率。

Description

显示面板及其显示装置
相关申请的交叉引用
本申请要求于2020年12月25日递交的中国专利申请第202011566483.3号优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及显示技术领域,具体地,涉及一种显示面板及其显示装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板具有自发光、高效率、色彩鲜艳、轻薄省电、可卷曲以及使用温度范围宽等优点,已经逐步应用于大面积显示、照明以及车载显示等领域。
发明内容
本公开的实施例提供了一种显示面板及其显示装置。
本公开的一方面提供了一种显示面板。所述显示面板包括:基板;位于所述基板上的有机发光器件;位于所述有机发光器件上的覆盖层;位于所述覆盖层上的光提取层;位于所述光提取层上的光学功能层;以及位于所述光学功能层上的封装层。所述光提取层的折射率小于所述覆盖层的折射率且小于所述封装层中最靠近所述光学功能层的部分的折射率。所述光学功能层的折射率小于所述封装层中最靠近所述光学功能层的所述部分的折射率且不等于所述光提取层的折射率。
在本公开的实施例中,所述光学功能层的折射率大于所述光提取层的折射率。
在本公开的实施例中,所述光学功能层的折射率与所述封装层中最靠 近所述光学功能层的所述部分的折射率差的范围为0.03-0.3。
在本公开的实施例中,所述光学功能层的厚度与所述封装层中最靠近所述光学功能层的所述部分的厚度的比率范围为0.04-0.21。
在本公开的实施例中,所述光学功能层的材料与所述封装层中最靠近所述光学功能层的所述部分的材料相同。
在本公开的实施例中,所述光学功能层的材料包括氮氧化硅。其中,所述光学功能层的材料中的氧含量大于所述封装层中最靠近所述光学功能层的所述部分的材料的氧含量。
在本公开的实施例中,所述光学功能层的材料包括氧化硅。
在本公开的实施例中,所述光学功能层的折射率小于所述光提取层的折射率。
在本公开的实施例中,所述封装层包括沿背离所述基板的方向依次设置的第一封装层、第二封装层和第三封装层。所述第一封装层包括所述封装层中最靠近所述光学功能层的所述部分。
在本公开的实施例中,所述第二封装层的折射率小于所述第一封装层的折射率且小于所述第三封装层的折射率。
在本公开的实施例中,所述第一封装层的折射率为1.73,所述第二封装层的折射率为1.54,以及所述第三封装层的折射率为1.84。
在本公开的实施例中,第一封装层的厚度为950nm,所述第二封装层的厚度为12μm,以及所述第三封装层的厚度为700nm。
在本公开的实施例中,所述光提取层的材料包括有机高分子材料或氟化锂。
在本公开的实施例中,所述有机发光器件包括沿背离所述基板的方向依次设置的阳极、有机发光层和阴极。
本公开的一方面提供了一种显示装置。所述显示装置包括如上所述的显示面板。
适应性的进一步的方面和范围从本文中提供的描述变得明显。应当理 解,本申请的各个方面可以单独或者与一个或多个其他方面组合实施。还应当理解,本文中的描述和特定实施例旨在仅说明的目的并不旨在限制本申请的范围。
附图说明
本文中描述的附图用于仅对所选择的实施例的说明的目的,并不是所有可能的实施方式,并且不旨在限制本申请的范围,其中:
图1示出了一种OLED显示面板10的横截面结构示意图。
图2示出了根据本公开的实施例的显示面板的横截面结构示意图。
图3示出了根据本公开的实施例的显示装置的平面结构示意图。
贯穿这些附图的各个视图,相应的参考编号指示相应的部件或特征。
具体实施方式
首先,需要说明的是,除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。相似地,措辞“包含”和“包括”将解释为包含在内而不是独占性地。同样地,术语“包括”和“或”应当解释为包括在内的,除非本文中另有说明。在本文中使用术语“实例”之处,特别是当其位于一组术语之后时,所述“实例”仅仅是示例性的和阐述性的,且不应当被认为是独占性的或广泛性的。
另外,还需要说明的是,当介绍本申请的元素及其实施例时,冠词“一”、“一个”、“该”和“所述”旨在表示存在一个或者多个要素;除非另有说明,“多个”的含义是两个或两个以上;用语“包含”、“包括”、“含有”和“具有”旨在包括性的并且表示可以存在除所列要素之外的另外的要素;术语“第一”、“第二”、“第三”等仅用于描述的目的,而不能理解为指示或暗示相对重要性及形成顺序。
其次,在附图中,为了清楚起见夸大了各层的厚度及区域。应当理解 的是,当提到层、区域、或组件在别的部分“上”时,指其直接位于别的部分上,或者也可能有别的组件介于其间。相反,当某个组件被提到“直接”位于别的组件上时,指并无别的组件介于其间。
本公开中描绘的流程图仅仅是一个例子。在不脱离本公开精神的情况下,可以存在该流程图或其中描述的步骤的很多变型。例如,所述步骤可以以不同的顺序进行,或者可以添加、删除或者修改步骤。这些变型都被认为是所要求保护的方面的一部分。
现将参照附图更全面地描述示例性的实施例。
目前,随着OLED显示技术的应用越来越广泛,对OLED显示面板的要求越来越高,其中色偏是决定显示效果的重要指标。显示领域内的技术人员一直致力于研究抑制色偏的技术手段。
研究表明,OLED显示面板的色偏与OLED器件中的电极层引起的微腔效应有关。图1示出了一种OLED显示面板10的横截面结构示意图。如图1所示,该显示面板10可以包括:基板100、位于基板100上的OLED器件200、位于OLED器件200上的覆盖层300、位于覆盖层300上的光提取层400、以及位于光提取层400上的封装层600。该OLED器件200可以包括沿垂直于基板100的方向依次设置的阳极201、发光层202和阴极203。覆盖层300可以被配置为阻挡氧气和湿气从外部进入到显示面板10中。附加地,覆盖层300还可以被配置为提高对发光层202发射的光的提取效率。光提取层400可以被配置为提高从OLED器件200发出的光的取出效率。附加地,光提取层400可以被配置为保护覆盖层300和OLED器件200,以防止其受到破坏。
对于该显示面板,阳极201、发光层202和阴极203构成微腔101。该微腔101可以使得从发光层102发射的光通过在阳极201与阴极203之间被重复反射和再反射以导致相长干涉而被放大,由此使得光的强度和纯度增大。然而,光的方向性也会相应增强。这导致在不同的方向上的光的强度不同,因此,在不同的角度下(特别地,大视角下),显示面板具有明 显的色偏现象。然而,OLED器件的电极层和有机发光层的材料和参数选择涉及各种关键设计考虑,因此,难以通过调整OLED器件结构来消除色偏。
对于这一技术挑战,发明人在深入研究后发现,除了OLED器件的电极层构成的微腔101会引起色偏之外,位于OLED器件的阴极203之上的透明材料的叠层同样对色偏存在重要影响。例如,覆盖层300、光提取层400和封装层600如果形成高低交替的折射率配置,则会构成分布式布拉格反射器(DBR,Distributed Bragg Reflector)102。这里,应理解,分布式布拉格反射器可以由交替设置的高折射率层和低折射率层构成。当光经过这些不同折射率的膜层时,由于各层反射回来的光因相位角的改变而进行干涉,然后互相结合在一起,得到强烈的反射光。布拉格反射器102与阴极203同样可以形成附加微腔103。与上述微腔101类似,光在微腔103内经过多次反射,最终在干涉叠加的作用下使出射光的强度增大,并且使该光的方向性增强,由此进一步增强色偏。另外,微腔101和103的存在还会使得显示面板的出光效率降低。
为了应对上述问题,本公开的实施例提供了一种显示面板,能够降低微腔效应,从而改善色偏并增加出光效率。
图2示出了根据本公开的实施例的显示面板的横截面结构示意图。如图2所示,显示面板20可以包括:基板100;位于基板100上的有机发光器件200;位于有机发光器件200上的覆盖层300;位于覆盖层300上的光提取层400;位于光提取层400上的光学功能层500;以及位于光学功能层500上的封装层600。在本公开的实施例中,光提取层400的折射率可以小于覆盖层300的折射率且小于封装层600中最靠近光学功能层500的部分601的折射率。
在本公开的实施例中,光学功能层500的折射率可以小于封装层600中最靠近光学功能层500的部分601的折射率且不等于光提取层400的折射率。通过在光提取层400与封装层600之间插入光学功能层500,从而 破坏先前由覆盖层300、光提取层400和封装层600形成的高低交替的折射率配置。也就是,通过设置光学功能层500使得位于阴极203之上的多个膜层无法形成分布式布拉格反射器进而,无法在阴极与阴极之上的介质叠层之间形成微腔,由此减少该介质叠层对色偏的贡献。
根据本公开的实施例,在设置光学功能层500之后,光在阴极203与阴极203之上的介质叠层之间来回反射的次数减少,干涉叠加的作用变小,从而消除或减弱微腔效应。由此,改善显示面板20的色偏以及出光效率,提升显示效果。
根据本公开的实施例,为了使覆盖层300、光提取层400和封装层600不再满足高低交替的折射率配置,光学功能层500的折射率可以被设置为小于封装层600中最靠近光学功能层500的部分601的折射率且不等于光提取层400的折射率。
作为示例,光学功能层500的折射率可以大于光提取层400的折射率。作为另一示例,光学功能层500的折射率可以小于光提取层400的折射率。
下面描述光学功能层500的折射率大于光提取层400的折射率的实施例。
在本公开的示例性实施例中,光学功能层500的折射率与封装层600中最靠近光学功能层500的部分601的折射率差的范围可以为0.03-0.33。
在本公开的示例性实施例中,光学功能层500的厚度与封装层600中最靠近光学功能层500的部分601的厚度的比率范围可以为0.04-0.21。
在本公开的示例性实施例中,光学功能层500的折射率范围可以为1.4-1.7。作为示例,光学功能层500的折射率可以为1.52。
在本公开的示例性实施例中,光学功能层500的厚度范围可以为40-200nm。作为示例,光学功能层500的厚度为50nm。
在本公开的示例性实施例中,光学功能层500的材料可以包括氮氧化硅或氧化硅。
在本公开的示例性实施例中,光学功能层500的材料可以与封装层600 中最靠近光学功能层500的部分601的材料相同。例如,光学功能层500的材料可以包括氮氧化硅。在这种情况下,光学功能层500的材料中的氧含量大于封装层600中最靠近光学功能层500的部分601的材料中的氧含量。
可以理解,例如,当不同膜层的材料均包括氮氧化硅时,可以通过对材料包括的成分的不同比例进行调整,从而调整不同膜层的折射率。一般地,将材料中的氧含量调高,对应的膜层的折射率会变低。
接下来描述光学功能层500的折射率小于光提取层400的折射率的实施例。
在本公开的示例性实施例中,覆盖层300的折射率大于阴极203的折射率。
在本公开的示例性实施例中,如上所述,覆盖层300可以被配置为阻挡氧气和湿气从外部进入到显示面板10中。由此,覆盖层300可以包括满足上述功能的材料。例如,覆盖层300的材料可以包括氮化硅。
在本公开的示例性实施例中,光提取层400的折射率可以为1.35。
在本公开的示例性实施例中,光提取层400的材料可以包括有机高分子材料。作为示例,有机高分子材料可以包括三芳胺类、环状脲类、酰结构类、二苯并噻吩类、二苯并呋喃类、咔唑类等。
在本公开的示例性实施例中,光提取层400的的材料还可以包括氟化锂。
在本公开的示例性实施例中,封装层600可以包括沿背离基板的方向依次设置的第一封装层601、第二封装层602和第三封装层603。应注意,这里的第一封装层601对应于上述封装层600中最靠近光学功能层500的部分601。
在本公开的示例性实施例中,第二封装层602的折射率可以小于第一封装层601的折射率且小于第三封装层603的折射率。
在本公开的示例性实施例中,第一封装层601的折射率可以为1.73, 第二封装层502的折射率可以为1.54,以及第三封装层603的折射率可以为1.84。
在本公开的示例性实施例中,第一封装层601的厚度可以为950nm,第二封装层602的厚度可以为12μm,以及第三封装层603的厚度可以为700nm。
在本公开的示例性实施例中,第一封装层601的材料可以包括氮氧化硅,第二封装层602的材料可以包括有机墨水,以及第三封装层603的材料可以包括氮化硅。
在本公开的示例性实施例中,有机发光器件200可以包括沿背离基板100的方向依次设置的阳极201、有机发光层202和阴极203。
在本公开的示例性实施例中,可在有机发光层202与阳极201之间设置空穴注入层和空穴传输层,并且可在有机发光层202与阴极203之间设置电子传输层和电子注入层。然而,本公开的内容不限于此。此外,有机发光层202可以是具有作为发射红色光、蓝色光、绿色光或类似颜色光的发光层的一个发光层的单层结构。或者,有机发光层202可具有其中设置有两个或更多个发光层的多层结构。
在本公开的实施例中,还提供了一种显示装置,能够减弱色偏。
图3示出了根据本公开的实施例的显示装置的平面结构示意图。如图3所示,显示装置1可以包括显示面板20。关于显示面板20的描述,可以参考上文描述的,在此不再赘述。
在本公开的示例性实施例中,显示装置1可以例如为OLED显示装置。作为其他示例,该显示装置1可以是例如移动电话、平板电脑、电视机、显示器、笔记本电脑、导航仪、可穿戴式设备、电子书阅读器等。
以上为了说明和描述的目的提供了实施例的前述描述。其并不旨在是穷举的或者限制本申请。特定实施例的各个元件或特征通常不限于特定的实施例,但是,在合适的情况下,这些元件和特征是可互换的并且可用在所选择的实施例中,即使没有具体示出或描述。同样也可以以许多方式来 改变。这种改变不能被认为脱离了本申请,并且所有这些修改都包含在本申请的范围内。

Claims (15)

  1. 一种显示面板,包括:
    基板;
    位于所述基板上的有机发光器件;
    位于所述有机发光器件上的覆盖层;
    位于所述覆盖层上的光提取层;
    位于所述光提取层上的光学功能层;以及
    位于所述光学功能层上的封装层,
    其中,所述光提取层的折射率小于所述覆盖层的折射率且小于所述封装层中最靠近所述光学功能层的部分的折射率,
    所述光学功能层的折射率小于所述封装层中最靠近所述光学功能层的所述部分的折射率且不等于所述光提取层的折射率。
  2. 根据权利要求1所述的显示面板,其中,所述光学功能层的折射率大于所述光提取层的折射率。
  3. 根据权利要求2所述的显示面板,其中,所述光学功能层的折射率与所述封装层中最靠近所述光学功能层的所述部分的折射率差的范围为0.03-0.33。
  4. 根据权利要求3所述的显示面板,其中,所述光学功能层的厚度与所述封装层中最靠近所述光学功能层的所述部分的厚度的比率范围为0.04-0.21。
  5. 根据权利要求1所述的显示面板,其中,所述光学功能层的材料与所述封装层中最靠近所述光学功能层的所述部分的材料相同。
  6. 根据权利要求5所述的显示面板,其中,所述光学功能层的材料包括氮氧化硅,
    其中,所述光学功能层的材料中的氧含量大于所述封装层中最靠近所述光学功能层的所述部分的材料的氧含量。
  7. 根据权利要求4所述的显示面板,其中,所述光学功能层的材料包括氧化硅。
  8. 根据权利要求1所述的显示面板,其中,所述光学功能层的折射率小于所述光提取层的折射率。
  9. 根据权利要求1或2所述的显示面板,其中,所述封装层包括沿背离所述基板的方向依次设置的第一封装层、第二封装层和第三封装层,
    其中,所述第一封装层包括所述封装层中最靠近所述光学功能层的所述部分。
  10. 根据权利要求9所述的显示面板,其中,所述第二封装层的折射率小于所述第一封装层的折射率且小于所述第三封装层的折射率。
  11. 根据权利要求9所述的显示面板,其中,所述第一封装层的折射率为1.73,所述第二封装层的折射率为1.54,以及所述第三封装层的折射率为1.84。
  12. 根据权利要求9所述的显示面板,其中,第一封装层的厚度为950nm,所述第二封装层的厚度为12μm,以及所述第三封装层的厚度为700nm。
  13. 根据权利要求1或2所述的显示面板,其中,所述光提取层的材料包括有机高分子材料或氟化锂。
  14. 根据权利要求1或2所述的显示面板,其中,所述有机发光器件包括沿背离所述基板的方向依次设置的阳极、有机发光层和阴极。
  15. 一种显示装置,包括根据权利要求1-14中任一项所述的显示面板。
PCT/CN2021/125980 2020-12-25 2021-10-25 显示面板及其显示装置 WO2022134823A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/921,213 US20230171991A1 (en) 2020-12-25 2021-10-25 Display panel and display device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011566483.3A CN114695779A (zh) 2020-12-25 2020-12-25 显示面板及其显示装置
CN202011566483.3 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022134823A1 true WO2022134823A1 (zh) 2022-06-30

Family

ID=82130138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125980 WO2022134823A1 (zh) 2020-12-25 2021-10-25 显示面板及其显示装置

Country Status (3)

Country Link
US (1) US20230171991A1 (zh)
CN (1) CN114695779A (zh)
WO (1) WO2022134823A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220097789A (ko) * 2020-12-31 2022-07-08 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107170775A (zh) * 2017-04-12 2017-09-15 上海天马有机发光显示技术有限公司 采用薄膜封装的显示装置
CN107546333A (zh) * 2016-06-28 2018-01-05 乐金显示有限公司 有机发光显示装置
US20190157358A1 (en) * 2017-11-21 2019-05-23 Japan Display Inc. Organic electroluminescence display device
CN110504382A (zh) * 2019-08-26 2019-11-26 昆山国显光电有限公司 一种显示面板和显示装置
CN111710798A (zh) * 2020-06-23 2020-09-25 京东方科技集团股份有限公司 有机发光二极管器件、其制备方法及阵列基板
CN215008276U (zh) * 2020-12-25 2021-12-03 京东方科技集团股份有限公司 显示面板及其显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107546333A (zh) * 2016-06-28 2018-01-05 乐金显示有限公司 有机发光显示装置
CN107170775A (zh) * 2017-04-12 2017-09-15 上海天马有机发光显示技术有限公司 采用薄膜封装的显示装置
US20190157358A1 (en) * 2017-11-21 2019-05-23 Japan Display Inc. Organic electroluminescence display device
CN110504382A (zh) * 2019-08-26 2019-11-26 昆山国显光电有限公司 一种显示面板和显示装置
CN111710798A (zh) * 2020-06-23 2020-09-25 京东方科技集团股份有限公司 有机发光二极管器件、其制备方法及阵列基板
CN215008276U (zh) * 2020-12-25 2021-12-03 京东方科技集团股份有限公司 显示面板及其显示装置

Also Published As

Publication number Publication date
CN114695779A (zh) 2022-07-01
US20230171991A1 (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US10418577B2 (en) White organic light emitting device
US11024694B2 (en) Display unit and electronic apparatus
US11968754B2 (en) Display unit, method of manufacturing the same, and electronic apparatus
WO2019218973A1 (zh) 显示面板及其制作方法、显示装置
US7872412B2 (en) Organic light emitting display device and electronic device
TWI596748B (zh) 顯示裝置
US8227978B2 (en) White organic light emitting device and color display apparatus employing the same
US10205126B2 (en) Light emission device including light extraction plane and a plurality of reflection interfaces, display apparatus including the light emission device, and illumination apparatus including the light emission device
US8033675B2 (en) Light emitting device and electronic device
US7898164B2 (en) Organic light emitting device comprising microcavity portions containing films with different optical lengths
WO2022134823A1 (zh) 显示面板及其显示装置
WO2021249309A1 (zh) 显示基板、显示装置
CN215008276U (zh) 显示面板及其显示装置
WO2022109763A1 (zh) 显示基板及其制备方法、显示装置
CN113838997A (zh) 显示基板和显示装置
JP7495401B2 (ja) 複数個の青色放射層を有するマルチモーダルマイクロキャビティoled
JP2007311277A (ja) 有機el素子
WO2023230793A1 (zh) 显示基板及其制作方法、显示装置
TW201242135A (en) Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/10/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21908824

Country of ref document: EP

Kind code of ref document: A1