TW201242135A - Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display - Google Patents

Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display Download PDF

Info

Publication number
TW201242135A
TW201242135A TW100111909A TW100111909A TW201242135A TW 201242135 A TW201242135 A TW 201242135A TW 100111909 A TW100111909 A TW 100111909A TW 100111909 A TW100111909 A TW 100111909A TW 201242135 A TW201242135 A TW 201242135A
Authority
TW
Taiwan
Prior art keywords
layer
film
polarizing film
linear polarizing
organic electroluminescent
Prior art date
Application number
TW100111909A
Other languages
Chinese (zh)
Inventor
Wen-Jeng Lan
Ho-Shing Wu
Chang-Lin Lee
Original Assignee
Univ Yuan Ze
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Yuan Ze filed Critical Univ Yuan Ze
Priority to TW100111909A priority Critical patent/TW201242135A/en
Publication of TW201242135A publication Critical patent/TW201242135A/en

Links

Abstract

A flexible substrate of an organic electroluminescent display and a flexible high contrast, true color organic electroluminescent display are disclosed. The base material is a flexible substrate. The base material can be grown thereon with the active or passive type organic electroluminescent display structure, wherein the flexible substrate can use therein an iodine-based or dye-based linear polarizing film and a phase plate. The linear polarizing film can be used to polarize and absorb the external interference light source, while the phase plate is used to reflect through the phase transformation and through the cathode metal layer of the organic electroluminescent element the light from the polarized external interference light source through the linearly polarizing film into the direction which is able to be absorbed by the linear polarizing film, thereby achieving the effect of eliminating the interference light source of the external environment and further enhancing the contrast ratio and the color saturation of the organic light-emitting display.

Description

201242135 六、發明說明: 【發明所屬之技術領域】 -種有機電激發細示ϋ之可撓性基板及制前述基板 所製作之可撓式高對比全彩有機電激發光顯示器。 【先前技術】 。目前具有重量輕與高效率特性的顯示器,例如液晶顯示 已被廣泛的發展中。然而,液晶顯示器仍然有許多的問 題,例如視角不夠廣、應答時間不夠快而使其無 速的動畫中以及需要背光板以致更耗電等等。' 現今已有一種新的平面顯示器技術可以解決上述之問 題,此種新的平面顯示器即是近年來所發展的有機電激發光 顯示器。有機電激發光顯示器係一種利用有機發光材料自發 光的特性來達到顯示效果的顯示元件。其主要是由一對電極 以及一發光層所構成,其中此發光層中含有發光材料。當電 流通過透明陽極及金屬陰極間,以使電子和電洞在發光材料 内結合而產生激子時,便可以使發光材料產生放光機制。 有機電激發光元件包括有機發光二極體元件(OLed)以及 高分子發光二極體元件(PLED)。此二種元件主要的差別僅在 發光層材質的應用不同。有機發光二極體元件之發光層所使 用之材料係為具有發光特性之小分子有機物。而高分子發光 二極體元件之發光層所使用之材料係為具有發光特性的高分 子材料。 第一圖所示為一有機發光二極體面板的基本結構。一 0L ED元件300結構包括一玻璃基板310 ’玻璃基板310上方為 一由金屬組合物所形成之陰極電極層(cathode) 320,例如由 3 201242135201242135 VI. Description of the Invention: [Technical Field of the Invention] A flexible substrate for organic electroluminescence excitation and a flexible high contrast full color organic electroluminescent display produced by the substrate. [Prior Art]. Currently, displays having light weight and high efficiency characteristics, such as liquid crystal displays, have been widely developed. However, liquid crystal displays still have many problems, such as insufficient viewing angles, fast response times that make them speedless animations, and the need for backlights to consume more power. A new flat panel display technology has been developed to solve the above problems. This new flat panel display is an organic electroluminescent display that has been developed in recent years. The organic electroluminescent display is a display element that utilizes the characteristics of the spontaneous light of the organic light-emitting material to achieve a display effect. It is mainly composed of a pair of electrodes and a light-emitting layer, wherein the light-emitting layer contains a light-emitting material. When a current is passed between the transparent anode and the metal cathode to cause excitons to combine electrons and holes in the luminescent material, the luminescent material can be made to emit light. The organic electroluminescent device includes an organic light emitting diode element (OLed) and a polymer light emitting diode element (PLED). The main difference between the two components is only different in the application of the luminescent layer material. The material used for the light-emitting layer of the organic light-emitting diode element is a small molecule organic substance having luminescent properties. The material used for the light-emitting layer of the polymer light-emitting diode element is a high molecular material having luminescent properties. The first figure shows the basic structure of an organic light emitting diode panel. The structure of a 0L ED device 300 includes a glass substrate 310. Above the glass substrate 310 is a cathode electrode 320 formed of a metal composition, for example, by 3 201242135

Ag、A卜Mg等金屬或合金所組成之電極,陰極電極層32〇上 具有一有機材料層330,該有機材料層33〇包括有一電洞傳 輸層(HTL)、-發光層㈤以及-電子傳輸層(ETL),有機材 料層330上方形成一透明且具導電性質的透明導電層,比如 銦錫氧化物(ιτο)所構成的正極電極層(anode)340,正極電極 層340之上方再以玻璃基板31〇覆蓋。此一由上下玻璃基板 310包覆所構成之部分,即為一 〇LED元件3〇〇。當電極通入 適當的電壓時,注入正極的電洞與來自陰極的電荷會在發光 層產生相互結合(recombination) ’此時電子的狀態位置將由 激態的高驗酬縣的低能階,而其能量差異將分別以光 或熱量的方式釋放’其巾可見光_分即可被_作為〇LED 的自發光。此外,基於此材料能階差原理,我們可以選擇適 s的材料做為發光層或是在發光層中摻雜染料以得到我們所 需要的發光顏色,以達到彩色的效果,目前〇LED元件已可做 到高亮度、高效率之紅、藍、綠三原色光,以及白光。 第二圖為傳統0LED元件受外來干擾光源影響之示意圖。 如第二圖所示,當外來干擾光源4〇〇入射〇1^D元件3〇〇時, 入射光會與0LED元件300底部之陰極電極層32〇產生反射, 而此反射光會與0LED自發光500發生交錯及重疊現象,而造 成0LE:D自發光500產生散亂並降低0LED自發光5〇〇之方向 性,導致0LED在對比與色彩飽和度的表現上失去原有水準, 特別是在戶外,入射光強烈的環境下。因此為維持〇LED之亮 度及彩度’必須使用較大的能量來使0LED產生更多的電子及 電洞,以獲得較大亮度。 雖然0UED元件目前的技術已應用於平面顯示器產業,但由於 其自身_聽_互_,使得QLED元健^無法被廣泛 201242135 =騎加GLED之亮度而使用較大之縣來驅動時,An electrode composed of a metal or an alloy such as Ag, A, Mg, or the like, the cathode electrode layer 32 has an organic material layer 330, and the organic material layer 33 includes a hole transport layer (HTL), a light-emitting layer (5), and an electron. A transparent conductive layer having a transparent and conductive property, such as a positive electrode layer 340 composed of indium tin oxide (ITO), is formed over the organic material layer 330, and the positive electrode layer 340 is over the transfer layer (ETL). The glass substrate 31 is covered. This portion, which is covered by the upper and lower glass substrates 310, is an LED element 3A. When the electrode is applied with an appropriate voltage, the hole injected into the positive electrode and the charge from the cathode will recombine in the luminescent layer. At this time, the state position of the electron will be the low energy level of the high-reward county of the excited state. The difference in energy will be released by light or heat, respectively, and the visible light of the towel can be used as the self-illumination of the LED. In addition, based on the energy level difference principle of this material, we can choose the appropriate material as the light-emitting layer or doping the dye in the light-emitting layer to get the color of the light we need to achieve the color effect. At present, the LED component has been High-brightness, high-efficiency red, blue, and green primary colors, as well as white light. The second figure is a schematic diagram of the effect of the conventional OLED component on the external interference light source. As shown in the second figure, when the external interference light source 4 is incident on the 〇〇1D component 3〇〇, the incident light will be reflected from the cathode electrode layer 32〇 at the bottom of the OLED element 300, and the reflected light will be combined with the 0LED self. The illuminating 500 is staggered and overlapped, which causes the 0LE:D self-illumination 500 to scatter and reduce the directionality of the 0LED self-illumination 5,, resulting in the loss of the original level of the 0LED in contrast and color saturation performance, especially in Outdoor, in a strong environment of incident light. Therefore, in order to maintain the brightness and saturation of the LEDs, it is necessary to use a larger amount of energy to cause the OLEDs to generate more electrons and holes for greater brightness. Although the current technology of 0UED components has been applied to the flat panel display industry, due to its own _ listening _ mutual _, QLED yuan Jian ^ can not be widely used 201242135 = riding plus GLED brightness and using a larger county to drive,

If = *命降低’或是在戶外光強朗場所使用時,會 降低0LED之亮度對比等缺點。 會 【發明内容】 要目的在於提供一種有機電激發光顯示器之 ㈣’其係至少包含一線性偏光膜、兩線性偏光膜保 ^-表面保護駭—相位差板,該兩線性偏細保護層 係为別貼附於該線性偏光膜之上、下表面上而該表面 膜係形成於其中-線性偏絲保護層之上,而該相位差板則 ^於另-雜偏細髓層社,其巾鱗性偏光膜係由 7-峨化物或雙色性染料之至少其中之—的—塑膠材料而 製成’而和該表面保護膜相鄰之線性偏光膜倾層定義為一 第二線性偏細保護層’而無她差她鄰之線性偏光膜 保濩層定義為第一二線性偏光膜保護層。 本發明的另一目的在於提供應用前述基板所製作之高對 比全彩有魏激發絲示II ’包含有H基板該基板 係至少包含有-線性偏光膜、兩線性偏光膜保護層、—表面 保護膜及-她差板,其巾該兩紐偏光麟 附於該線性偏先膜之上、下表面上,而該表面保護二= 於其中-雜偏光麟護層上,而該相位差_貼合於另一 線性偏光麟護層上,其巾和該表面保制相鄰之線性偏光 膜保護層定義為-第-線性偏光膜保護層,轉該相位差板 相鄰之線性偏細保護層定義為第—二線性偏光膜保護層; 在該相位差板之上形成一阻水阻氣層。 在該阻水阻氣層之上沉積一透明電極層;在該透明電極 201242135 層的之上沉積一金屬導電層,並以微影蝕刻、網印技術或雷 射劃線技術定義出一外部金屬導電層圖案;沉積一畫素定義 絕緣層於該透明電極層之上,並以微影钮刻、網印技術或雷 射劃線技術定義出一晝素定義絕緣層圖案,其中該畫素定義 絕緣層圖案與該外部金屬冑電層圖案之間須相距有一間隔; 在該晝素定義絕緣層圖案之上沉積—陰極隔離層,並以微影 蝕刻、網印技術或雷射劃線技術將該陰極隔離層定義出一陰 極隔離層圖f ’該陰極祕層圖案具有複數傭極隔離部, 相鄰兩陰極隔離部之間具有―間隔區;相鄰兩陰極隔離部之 間各沉積有-個錢發光元件結構;在每—财機發光元件 結構及該等陰極隔轉之上沉積至少—陰極金制;以及在 該畫素定義絕緣層_之上形成—元件保護層,並且該元件 保護層包覆了該至少一陰極金屬層。 -因此本發明可解決胃馳術之缺失,並提升有機發光顯 示器之對比度和色彩飽和度。 【實施方式】 以下配合®式及元件槪縣_之實施方式做更詳細 的說明,俾錢習該項涵者在研讀本後麟以實施。 參閱第三叶-圖’本發明之可撓式高對比全彩有機 ^激發光顯示器的製作方法示意圖,錢提供一可挽性 該可撓吐基板1係至少由-線性偏光膜11、兩 ^生偏光膜保護層13及15、一表面保護膜17及一相位 差板19組成,如第三圖所示。 該兩線H偏細保制丨3及丨5係分靠附於該線性 201242135 之上、下表面上,其中該相位差板19設置於 :、’、⑨偏光膜保護層13上’將與該相位ϋ板19相 鄰之線性偏細保護奴義為第―紐偏舰保護層, 而該表面保顧17則貼合於另—線性偏細保護層15 上’將與該表面保護膜17_之線性偏細保護層定義 為第二線性偏光膜保護層。 該線性偏光膜11係由一塑膠材料製作而成,且該線 性偏光膜11係為-縣線性偏光膜或—染料祕性偏光 膜之至少其中之―’該_或該染料系之線性偏光膜係 指的是可摻雜碘或雙色性染料之塑膠材料,該塑膠材料 包含一聚乙烯(ΡΕ)、聚碳酸酯(pC)、聚對笨二甲酸乙 二酯(PET)、聚丙烯(pp)或聚乙烯醇(PVA)的至少其 中之一,該線性偏光膜保護層13及15可為三醋酸纖維 素材料(Triacetyl Cellulose,TAC)。 其中該染料系偏光膜的製作是將雙色性染料 (Dichromic Dye)擴散滲入該線性偏光膜11,經加熱及延 伸變長後,使其具有偏光的作用,這是因滲入該線性偏 光膜11中之染料分子會吸收平行於延伸方向的光線,而 僅讓垂直於延伸方向的光線通過後,因此具有將非線性 極化光轉為線性極化光的功能。而由於該線性偏光膜11 在經過延伸之後,其機械性質會降低,變得容易碎裂, 因此該線性偏光膜11膜兩側通常會貼合該線性偏光膜保 護層13及15,進而防止該線性偏光膜11回縮。 該表面保護膜17用以防止線性偏光膜保護層13被刮 傷,其中該表面保護膜17可以是一塑膠材料膜或一氧化 201242135 物’該塑騎料_藉貼财式貼合於其巾 膜保護層13上,該塑膠材料膜之材質包含一聚乙烯 (PE)、聚碳_⑽、聚對苯二甲酸乙二醋(ρΕτ)、聚 丙稀(ΡΡ)、聚乙烯醇⑽)或其他適當的塑膠材料, 而該氧化物航毅於該雜偏光卿騎13之上該 氧化物包含二氧忉()、_切(SiQxNy)、纽 碎(SiN3)或氧化紹(Al2〇3)等的至少盆中之一。 該相位差板19用來轉換外來干擾光源的相位,該相 位差板19貼合於線性賊贿護層15 ±,該相位差板 19可以t卿膜’該塑賴之材質可以是一聚乙稀 (PE)、1碳酸醋(p〇、聚對苯二甲酸乙二醋(pm)、聚 丙稀=P)、聚乙歸醇⑽)或其他適當的塑膠材料。 接著,在該相位差板19上形成一阻水阻氣層2,其 中該阻水阻氣層2係化學氣相沉積一物理氣相 沉積技術或化學氣相沉積技術與物理氣相沉積技術交互 應用而形成在該相位差板19上,如第四圖所示。該阻水 阻氣層2為包括堆疊的至少一基本組絕層,亦即該阻水 阻氣層2可為單-的基本組絕層或二基本組絕層以上之 的複合堆疊層,該至少一基本組絕層包含二氧化矽 (Si〇2)、富石夕之氮氧化矽(Si〇xNy)、氮化梦(SiN3)、氧 化銘(A1203)、聚對二曱苯基(parylene)及紫外線固化 膠(UV glue)的至少其中之一。 接著,該阻水阻氣層2上沉積一透明電極層3,該透 月電極層3係包含氧化銦錫(ιτο)、銦鋅氧化物(ιζο)、 銦鎢錫氧化物(iwo)、氧化鋁鋅(AZ0)、氧化銀(AG〇)、 或其他適當的透明導電金屬氧化物材料,及包含聚乙炔 201242135 (poly-acetylene)、聚噻吩(P〇iythiophene)、聚苯胺 (polyaniline)、polypyrrole (聚比咯)、聚(3, 4_伸乙 一氧基嗟吩)(PEDOT)或其他適當的透明導電高分子材 料。 接著,在該透明電極層3之上沉積一金屬導電層,該 金屬導電層包含鉻、銦、銀、铭、銅、金、鎳、鶴,及 由鉻、鉬、銀、鋁、銅、金、鎳及鎢的至少其中之一所 構之合金的至少其中之一,並以微影蝕刻、網印技術或 雷射劃線技術定義出一外部金屬導電層圖案4,如第六圖 戶斤示。 接著,沉積一畫素定義絕緣層於該透明電極層3之 上’該畫素定義絕緣層包含聚亞醯胺(PI)、光阻材料 (photoresist)、環氧樹脂或壓克力樹脂或其他適當的 高分子材料、二氧化矽(Si〇2)、富矽之氮氧化矽(Si〇xNy)、 氮化矽(SiN〇及氧化鋁(Ah〇3)等的至少其中之一,並以 微影蝕刻、網印技術或雷射劃線技術定義出一畫素定義 絕緣層圖案5’如第七圖所示,其中該晝素定義絕緣層圖 案5與該外部金屬導電層圖案4之間須相距有一間隔。 接著’在該畫素定義絕緣層圖案5之上沉積一陰極隔 離層’該陰極隔離層包含聚亞醯胺(PI)、光阻材料、環 氧樹脂或壓克力樹脂或其他適當的高分子材料,或是二 氧化石夕(Si〇2)、富矽之氮氧化石夕(Si〇xNy)、氮化石夕(測3) 及氧化鋁(AhO3)等的至少其中之一,並以微影钱刻或 雷射劃線技術將該陰極隔離層定義出一陰極隔離層圖案 6,如第八圖所示,該陰極隔離層圖案6具有複數個陰極 隔離部61,相鄰兩陰極隔離部6ι之間相距有一間隔。 201242135 接著’相鄰兩陰極隔離部61之間各沉積有一個有機 發光兀件結構7,如第九圖所示,該有機發光元件結構7 由下至上係至少包含有之一電洞注入層(Hole InjectionIf = * life is reduced, or when used outdoors, it will reduce the brightness contrast of 0LED. SUMMARY OF THE INVENTION It is an object of the present invention to provide an organic electroluminescent display (4) comprising at least one linear polarizing film, two linear polarizing films, a surface protective layer, and a phase difference plate, the two linear protective layer The surface film is formed on the upper surface and the lower surface of the linear polarizing film, and the surface film is formed on the linear polarizing layer protective layer, and the phase difference plate is formed on the other side. The scaly polarizing film is made of a plastic material of at least one of a 7-telluride or a dichroic dye, and the linear polarizing film adjacent to the surface protective film is defined as a second linear fine layer. The protective layer 'without her poor linear polarizing film is defined as the first bilinear polarizing film protective layer. Another object of the present invention is to provide a high-contrast full-color Wei-excited filament II produced by applying the above substrate, comprising an H substrate, the substrate comprising at least a linear polarizing film, two linear polarizing film protective layers, and surface protection. Membrane and her poor plate, the two polarized light of the towel attached to the upper and lower surfaces of the linear partial film, and the surface protection 2 = in the --polar polarized layer, and the phase difference Cooperating with another linear polarizing layer, the protective layer of the linear polarizing film adjacent to the surface and the surface is defined as a --linear polarizing film protective layer, and the linear differential protective layer adjacent to the phase difference plate It is defined as a first-two linear polarizing film protective layer; a water-blocking gas barrier layer is formed on the phase difference plate. Depositing a transparent electrode layer on the water blocking gas barrier layer; depositing a metal conductive layer on the transparent electrode 201242135 layer, and defining an external metal by microlithography etching, screen printing technology or laser scribing technology a conductive layer pattern; depositing a pixel defining an insulating layer on the transparent electrode layer, and defining a halogen-defined insulating layer pattern by a lithography button, screen printing technique or laser scribing technique, wherein the pixel definition An insulating layer pattern and the outer metal germanium layer pattern are spaced apart from each other; a cathode-cathode insulating layer is deposited over the germane-defined insulating layer pattern and is lithographically etched, screen printed or laser-marked The cathode isolating layer defines a cathode isolation layer. The cathode layer pattern has a plurality of gate isolation portions, and a spacer region is disposed between adjacent cathode isolation portions; and between the two cathode isolation portions are deposited with each other - a structure of a light-emitting element; depositing at least a cathode metal on each of the structure of the light-emitting element and the cathode separation; and forming an element protection layer on the pixel-defined insulating layer _ A protective layer coated member of the at least one metal cathode layer. - Therefore, the present invention can solve the lack of gastric motility and enhance the contrast and color saturation of the organic light-emitting display. [Embodiment] The following is a more detailed explanation of the implementation method of the type and component 槪县_, and the cultivator of this item is implemented after studying the book. Referring to the third leaf-figure, the schematic diagram of the manufacturing method of the flexible high contrast full color organic electroluminescent display of the present invention provides a levisability. The flexible ejection substrate 1 is at least composed of a linear polarizing film 11 and two The polarizing film protective layers 13 and 15 , a surface protective film 17 and a phase difference plate 19 are formed as shown in the third figure. The two-line H-preserved 丨3 and 丨5 series are attached to the upper surface and the lower surface of the linear 201242135, wherein the phase difference plate 19 is disposed on:, ', 9 polarizing film protective layer 13' will be The linear thinning protection adjacent to the phase raft 19 is a ninth-counter ship protective layer, and the surface care 17 is attached to the other-linear fine protective layer 15 to be combined with the surface protective film 17 The linearly thin protective layer of _ is defined as a second linear polarizing film protective layer. The linear polarizing film 11 is made of a plastic material, and the linear polarizing film 11 is at least one of - a linear polarizing film or a dye sensitive polarizing film - the linear polarizing film of the dye system Refers to a plastic material that can be doped with iodine or a dichroic dye, which comprises a polyethylene (ΡΕ), polycarbonate (pC), polyethylene terephthalate (PET), polypropylene (pp Or at least one of polyvinyl alcohol (PVA), the linear polarizing film protective layers 13 and 15 may be a Triacetyl Cellulose (TAC) material. The dye-based polarizing film is formed by diffusing a dichroic dye (Dichromic Dye) into the linear polarizing film 11, and after being heated and extended, it has a polarizing effect because it penetrates into the linear polarizing film 11. The dye molecules absorb light parallel to the direction of extension, and only pass light perpendicular to the direction of extension, thus having the function of converting nonlinearly polarized light into linearly polarized light. Since the linear polarizing film 11 is mechanically degraded after being stretched and becomes easily broken, the linear polarizing film 11 is generally adhered to the linear polarizing film protective layers 13 and 15 on both sides of the film, thereby preventing the linear polarizing film 11 from being stretched. The linear polarizing film 11 is retracted. The surface protection film 17 is used to prevent the linear polarizing film protective layer 13 from being scratched. The surface protective film 17 may be a plastic material film or a oxidized 201242135 object. The plastic riding material is attached to the towel. On the film protective layer 13, the material of the plastic material film comprises a polyethylene (PE), polycarbon_(10), polyethylene terephthalate (ρΕτ), polypropylene (ΡΡ), polyvinyl alcohol (10)) or the like. Appropriate plastic material, and the oxide is on the heteropolar light riding 13 above. The oxide contains dioxin (), _cut (SiQxNy), nucleus (SiN3) or oxidized (Al2〇3). At least one of the pots. The phase difference plate 19 is used to convert the phase of the external interference light source, and the phase difference plate 19 is attached to the linear thief bribe layer 15 ±, and the phase difference plate 19 can be a film of the plastic film. Lean (PE), 1 carbonated vinegar (p〇, polyethylene terephthalate (pm), polypropylene = P), polyethyl alcohol (10)) or other suitable plastic materials. Next, a water-blocking gas barrier layer 2 is formed on the phase difference plate 19, wherein the water-blocking gas barrier layer 2 is a chemical vapor deposition-physical vapor deposition technique or a chemical vapor deposition technique and a physical vapor deposition technique The application is formed on the phase difference plate 19 as shown in the fourth figure. The water-blocking gas barrier layer 2 is at least one basic group of layers including a stack, that is, the water-blocking gas barrier layer 2 may be a single-group basic layer or a composite layer of two basic groups or more. At least one basic set of layers comprising cerium oxide (Si〇2), cerium oxynitride (Si〇xNy), nitriding dream (SiN3), oxidized (A1203), poly(p-phenylene) (parylene) And at least one of UV glue. Next, a transparent electrode layer 3 is deposited on the water-blocking gas barrier layer 2, and the vapor-permeable electrode layer 3 comprises indium tin oxide (ITO), indium zinc oxide (ITO), indium tungsten tin oxide (iwo), and oxidation. Aluminum zinc (AZ0), silver oxide (AG〇), or other suitable transparent conductive metal oxide materials, and comprising polyacetylene 201242135 (poly-acetylene), polythiophene (P〇iythiophene), polyaniline (polyaniline), polypyrrole (polypyrrole), poly(3,4-extended ethyleneoxyphene) (PEDOT) or other suitable transparent conductive polymer material. Next, a metal conductive layer is deposited on the transparent electrode layer 3, the metal conductive layer comprises chromium, indium, silver, Ming, copper, gold, nickel, crane, and from chromium, molybdenum, silver, aluminum, copper, gold At least one of the alloys of at least one of nickel and tungsten, and defining an outer metal conductive layer pattern 4 by microlithography, screen printing or laser scribing techniques, such as the sixth figure Show. Next, a pixel-defined insulating layer is deposited on the transparent electrode layer 3. The pixel-defined insulating layer comprises polyamine (PI), photoresist, epoxy or acrylic resin or other a suitable polymer material, cerium oxide (Si〇2), cerium-rich cerium oxynitride (Si〇xNy), tantalum nitride (SiN〇 and alumina (Ah〇3), etc., and A lithography etching, screen printing technique or laser scribing technique defines a pixel-defined insulating layer pattern 5' as shown in the seventh figure, wherein the pixel defines the insulating layer pattern 5 and the external metal conductive layer pattern 4 There must be a space apart. Then 'deposit a cathode isolation layer on the pixel-defined insulating layer pattern 5'. The cathode isolation layer comprises polyiminamide (PI), photoresist, epoxy or acrylic resin or Other suitable polymer materials, or at least one of SiO2 (Si〇2), Niobium Oxide (Si〇xNy), Nitride Xi (3), and A(OhO3) First, the cathode isolation layer is defined by a lithography or laser scribing technique. 6, as shown in the eighth figure, the cathode isolating layer pattern 6 has a plurality of cathode isolating portions 61, and the adjacent two cathode isolating portions 6i are spaced apart from each other. 201242135 Next, the deposition between the adjacent two cathode isolating portions 61 There is an organic light-emitting element structure 7, as shown in the ninth figure, the organic light-emitting element structure 7 includes at least one hole injection layer from bottom to top (Hole Injection

Layer ’ HIL)、一電洞傳輸層(jj〇ie Transfer Layer, HTL)、—有機發光層(Emission Layer,EL)及一電子注 入層(Electron Transfer Layer,ETL)。 接著在每一個有機發光元件結構7及該等陰極隔離 部61之上沉積至少一陰極金屬層8,如第十圖所示,該 至少一陰極金屬層8包含鉻、鉬、銀、銘、銅、金、錄、 約、MgAg ’及由絡、钥、銀、铭、銅、金、錄、約及啦八忌 的至少其中之一所構之合金的至少其中之一。 最後’利用一化學氣相沉積技術、一物理氣相沉積技 術或交互利用化學氣相沉積技術與物理氣相沉積技術在 該晝素定義絕緣層圖案5之上形成一元件保護層9,該元 件保護層9並包覆了該陰極隔離層圖案6、該有機發光元 件結構7及該至少一陰極金屬層8,如第_一圖所示。該 元件保護層9為包括堆疊的至少一基本保護層,亦即該 元件保護層9可為單一的基本保護層或二基本保護層以 上之的複合堆疊層,該至少一基本保護層包含二氧化 矽、富矽之氮氧化矽、氮化矽(SiN3)、氧化鋁及聚對二甲 苯基(parylene)等的至少其中之一。 當外來干擾光源入射可撓性基板丨時,一部分入射光源 會被線性偏光膜11吸收,並使剩餘之入射光源形成具同方向 之極化光。當極化光在通過相位差板19時,相位差板19會 轉換此極化光之相位’並使其相位轉換成為可被線性偏光膜 11吸收之方向,當極化光經由陰極隔離層圖案8反射並再通 201242135 過相位差板19時’發生二次相位轉換,此時經過反射後的極 化光又被轉換回可被線性偏光膜u吸收之方向,使極化光在 最後通過線性偏光膜11時幾乎被完全吸收’藉此來達到濾除 外來干擾光源的效果。 參閱第十二圖,本發明之可撓式高對比全彩有機電激發 光顯示器的第一實施例示意圖。可撓性基板i中可進一步設 置有一用以降低光反射率且提高光穿透率之光學膜丨⑼,該 光學膜100係配置於該表面保護膜丨7與第二線性偏光膜保護 層之間,該光學膜1〇〇包含一抗反射膜(Anti_Reflecti〇n,AR) 或一抗炫光膜(Anti-Glare, AG)的至少其中之一。 參閱第十三圖,本發明之可撓式高對比全彩有機電激發 光顯示器的第二實施例示意圖。可撓性基板1中還可進一步 设置有一增亮膜200,該增亮膜2〇〇係配置於該相位差板19 與第一線性偏光膜保護層之間,其中利用該增亮膜2〇〇折射 與光線内部全反射之特性,尤其能夠將内部散射的光集中在 正向±35度的範圍内輸出,提高中心視角的輝度,使光線作 最有效率的利用與回收,從使輝度、對比及色彩飽和度可再 進一步提升。 參閱第十四〜十五圖,本發明之可撓式高對比全彩有機電 激發光顯示器的另一製造方法示意圖,其實施步驟係與第三〜 十圖相同,下述之製造步驟係接續第八圖之後,接著,於該 畫素定義絕緣圖案5上形成有一吸氣層10,且吸氣層1〇包 覆該陰極隔離層圖案6、該有機發光元件結構7及該至少一 陰極金屬層8,如第十四圖所示,其中該吸氣層1〇用以吸收 濕虱,以避免該陰極金屬層8接觸到渗入於内之濕氣,其中 該吸氣層10之材質包含第 201242135 或第IΙΑ金屬之氧化物,比如約鋇 他適當材質。 祕頻誠:舞或其 與^後’利用—化學氣相沉積、—物理氣相沉積技術或化 技術無理氣相沉積技術交互_以於該吸氣層 10之上軸-元件偏w 9,如第十 層9的特㈣_,邮刪。 屬保。蔓 參閱第十六圖’本發明之可撓式基板麵敎動式有機 電,光顯示器的示意圖。其中提供本發明之可撓性基板 j該可撓絲板丨之上可軸絲式有機發電激發光顯示 :。構,比如在阻水阻氣層2之上可形成薄膜電晶體結構2〇、 透月電極30白色發光材料4G及紅、藍及綠三色波光片 50及陰極60等,其中可撓性基板1可遽除外來干擾光源, 並提升有機發_示H之對比度和色彩飽和度 ,上述的主動 式有機發電激發光顯示結構係類似習知技術之主動式有機發 電激發光顯示結構’其功能與特點在此不予贊述。 以上所述者僅為用以解釋本發明之較佳實施例 *並非企 圖據以對本發明餘何形式上之關,是以,凡有在相同之 發明精神下所作有關本發明之任何修飾更,皆仍應包括 在本發明意圖保護之範疇。 201242135 【圖式簡單說明】 第一圖為習知技術之有機發光二極體元件基本結構之示 意圖。 第二圖為習知技術之有機發光二極體元件受外來干擾光 源影響之示意圖。 第三圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第四圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第五圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第六圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第七圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第八圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第九圖為本發明之可撓式高對比全彩有機電激發光顯示 器的製作方法示意圖。 第十圖為本發明之可撓式高對比全彩械f激發光顯示 器的製作方法示意圖。 第^圖為本發明之可赋高對比全彩有機電激發光顯 示器的製作方法示意圖。 第^一圖為本發明之可撓式高對比全彩有機電激發光顯 示器的第一實施例示意圖。 第十-圖為本發明之可撓式高對比絲有機電激發光顯 13 201242135 示器的第二實施例示意圖。 第十四圖為本發明之可撓式高對比全彩有機電激發光顯 示器的另一製造方法示意圖。 第十五圖為本發明之可撓式高對比全彩有機電激發光顯 示器的另一製造方法示意圖。 第十六圖為本發明之可撓式基板應用於主動式有機電激發光 顯示器的示意圖。 14 201242135 【主要元件符號說明】 1可撓性基板 11線性偏光膜 13、15線性偏光膜保護層 17表面保護膜 19相位差板 2 阻水阻氣層 3透明電極層 4外部金屬導電層圖案 5畫素定義絕緣層圖案 6陰極隔離層圖案 61陰極隔離部 7有機發光元件結構 8陰極金屬層 9元件保護層 10吸氣層 100光學膜 200增亮膜 300 OLE1D 元件 310玻璃基板 320陰極電極層 330有機材料層 340正極電極層 400外來干擾光源 500 OLED自發光 15 201242135 20薄膜電晶體結構 30透明電極 40白色發光材料 50濾光片 60陰極 16Layer ’ HIL), a jj〇ie Transfer Layer (HTL), an Emission Layer (EL), and an Electron Transfer Layer (ETL). Next, at least one cathode metal layer 8 is deposited on each of the organic light emitting device structures 7 and the cathode isolating portions 61. As shown in the tenth figure, the at least one cathode metal layer 8 comprises chromium, molybdenum, silver, inscription, copper. , gold, record, about, MgAg' and at least one of the alloys consisting of at least one of the network, the key, the silver, the Ming, the copper, the gold, the record, the about, and the eight. Finally, a component protective layer 9 is formed on the halogen-defined insulating layer pattern 5 by a chemical vapor deposition technique, a physical vapor deposition technique or an alternating chemical vapor deposition technique and a physical vapor deposition technique. The protective layer 9 covers the cathode isolation layer pattern 6, the organic light emitting element structure 7, and the at least one cathode metal layer 8, as shown in FIG. The component protective layer 9 is at least one basic protective layer including a stack, that is, the component protective layer 9 may be a single basic protective layer or a composite stacked layer of two basic protective layers, and the at least one basic protective layer includes a dioxide At least one of cerium, cerium oxynitride, cerium nitride (SiN3), aluminum oxide, and parylene. When the external interference light source enters the flexible substrate ,, a part of the incident light source is absorbed by the linear polarizing film 11 and the remaining incident light sources form polarized light having the same direction. When the polarized light passes through the phase difference plate 19, the phase difference plate 19 converts the phase of the polarized light and converts its phase into a direction that can be absorbed by the linear polarizing film 11, when the polarized light passes through the cathode isolation layer pattern. 8 reflection and re-passing 201242135 When the phase difference plate 19 is crossed, 'secondary phase conversion occurs. At this time, the reflected polarized light is converted back to the direction that can be absorbed by the linear polarizing film u, so that the polarized light passes through the linear at the end. When the polarizing film 11 is almost completely absorbed, the effect of the filter is excluded to interfere with the light source. Referring to Fig. 12, a schematic view of a first embodiment of a flexible high contrast full color organic electroluminescent display of the present invention is shown. An optical film 丨 (9) for reducing light reflectivity and improving light transmittance may be further disposed in the flexible substrate i, and the optical film 100 is disposed on the surface protective film 丨7 and the second linear polarizing film protective layer. The optical film 1 includes at least one of an anti-reflection film (Anti_Reflecti〇n, AR) or an anti-glare film (Anti-Glare, AG). Referring to Figure 13, a schematic view of a second embodiment of a flexible high contrast full color organic electroluminescent display of the present invention is shown. Further, a brightness enhancement film 200 is further disposed in the flexible substrate 1 , and the brightness enhancement film 2 is disposed between the phase difference plate 19 and the first linear polarizing film protection layer, wherein the brightness enhancement film 2 is utilized. 〇〇Reflection and the characteristics of total internal reflection of light, especially the internal scattered light can be concentrated in the range of ±35 degrees in the positive direction, improve the brightness of the central viewing angle, and make the most efficient use and recovery of light. , contrast and color saturation can be further improved. Referring to Figures 14 to 15, a schematic diagram of another manufacturing method of the flexible high contrast full color organic electroluminescent display of the present invention is carried out in the same manner as in the third to tenth drawings, and the following manufacturing steps are continued. After the eighth figure, a getter layer 10 is formed on the pixel-defined insulating pattern 5, and the getter layer 1 covers the cathode isolating layer pattern 6, the organic light-emitting device structure 7, and the at least one cathode metal. The layer 8 is as shown in FIG. 14 , wherein the gettering layer 1 is configured to absorb the wet enthalpy to prevent the cathode metal layer 8 from contacting the moisture that penetrates therein, wherein the material of the gettering layer 10 includes 201242135 or the oxide of the first metal, such as about the appropriate material. Secret frequency: dance or its interaction with the 'after-use-chemical vapor deposition, physical vapor deposition technology or chemical technology irrational vapor deposition technology _ on the getter layer 10 axis-component bias w 9, For example, the special (four) _ of the tenth layer 9 is deleted by post. Guaranteed. Referring to Fig. 16 is a schematic view of a flexible substrate surface tilting organic electro-optical display of the present invention. Wherein the flexible substrate of the present invention is provided. The axially-type organic power generation excitation light display can be displayed on the flexible wire plate. For example, a thin film transistor structure 2, a moon-transparent electrode 30 white light-emitting material 4G, and red, blue, and green color-wave plates 50 and a cathode 60 may be formed on the water-blocking gas barrier layer 2, wherein the flexible substrate 1 can be used to interfere with the light source, and enhance the contrast and color saturation of the organic light-emitting H display. The active organic power-excitation light-display structure described above is an active organic power-excited light display structure similar to the prior art. Features are not mentioned here. The above description is only for the purpose of explaining the preferred embodiments of the present invention, and is not intended to be in any form of the present invention, so that any modifications relating to the present invention are made in the spirit of the same invention. They should all be included in the scope of the invention as intended. 201242135 [Simplified description of the drawings] The first figure shows the basic structure of the organic light-emitting diode elements of the prior art. The second figure is a schematic diagram of the conventional organic light-emitting diode element affected by external interference light sources. The third figure is a schematic diagram of a manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. The fourth figure is a schematic diagram of the manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. The fifth figure is a schematic diagram of a manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. Fig. 6 is a schematic view showing the manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. The seventh figure is a schematic diagram of a manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. The eighth figure is a schematic diagram of the manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. The ninth figure is a schematic view showing the manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. The tenth figure is a schematic view showing the manufacturing method of the flexible high contrast full color mechanical f excitation light display of the present invention. The figure is a schematic diagram of the manufacturing method of the high contrast full color organic electroluminescence display of the present invention. Fig. 1 is a schematic view showing the first embodiment of the flexible high contrast full color organic electroluminescence display of the present invention. The tenth-figure is a flexible high contrast silk organic electroluminescence display of the present invention. 13 201242135 A schematic diagram of a second embodiment of the display. Fig. 14 is a view showing another manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. Fig. 15 is a view showing another manufacturing method of the flexible high contrast full color organic electroluminescence display of the present invention. Figure 16 is a schematic view showing the application of the flexible substrate of the present invention to an active organic electroluminescent display. 14 201242135 [Description of main components] 1 Flexible substrate 11 Linear polarizing film 13, 15 Linear polarizing film protective layer 17 Surface protective film 19 Phase difference plate 2 Water blocking gas barrier layer 3 Transparent electrode layer 4 External metal conductive layer pattern 5 Pixel definition insulating layer pattern 6 cathode isolation layer pattern 61 cathode isolation portion 7 organic light emitting element structure 8 cathode metal layer 9 element protective layer 10 gettering layer 100 optical film 200 brightness enhancing film 300 OLE1D element 310 glass substrate 320 cathode electrode layer 330 Organic material layer 340 Positive electrode layer 400 External interference light source 500 OLED self-luminous 15 201242135 20 Thin film transistor structure 30 Transparent electrode 40 White luminescent material 50 Filter 60 Cathode 16

Claims (1)

201242135 七、申請專利範圍: 機!=光顯示器之可撓喻,其係至少包含-線 m 光難制、—表面保龍及—相位差 板丄該兩線性偏光膜保護層係分別貼附於該線性偏光膜之上、 之卜,該表祕雜伽成於其巾—雜偏細保護層 “目位差板舰合於另—雜偏細賴層之上,其 中該線性偏光難由摻雜—破化物或雙色性純之至少其中 料而製成’而和該表面保護膜相鄰之線性偏光 —線性偏光膜保護層,而與該相位差板相 鄰之線性偏歧賴較義為第—二雜絲聽護層。 請專利細第1項所述之有機電激發絲示器之可 撓性基板,射該線性偏光膜之塑膠材料包含聚乙稀、聚碳酸 醋、聚對苯二甲酸乙H丙烯及聚乙烯醇的至少其中之一。 3.依射請專利範圍第丨項所述之有機電激發光顯示器之可 撓性基板,其中該兩線性偏_保護層係為三醋 料。 4.依據”專概撕述之錢電激發光顯示器之可 撓性基板,其中該表面賴膜可以是—歸材料膜或一氧化 物’該塑膠材料膜之材質包含聚乙稀、聚碳酸自旨、聚對苯二甲 酸乙二酯、聚丙稀及聚乙烯醇的至少其中之―,該氧化物包含 二氧化破、氮氧财、氮切咖3)及氧化料的至少其中之 5·依據中請專利麵第丨項所述之有麵激發絲示器之可 撓性基板’其巾該她差板可以是—娜膜,該轉膜之材質 可以是聚乙烯、聚碳咖、聚對苯二曱酸乙二自旨、聚丙稀及聚 乙稀醇等的至少其中之一。 17 201242135 6. 依據申請專利範圍第丨項所述之有機電激發光顯示器之可挽性 基板’其中該表面保護膜與該第二線性偏光膜保護層之間進一步 配置有-絲膜,該絲膜包含—抗反射膜及—抗炫細的至少 其中之一。 7. 依據申請專利範圍第丨項所述之有機電激發細示器之可 撓性基板’其中該相位差板與第一線性偏光膜保護層之間進一 步配置至少一增亮膜。 8. -種可撓式高對比全彩有機電激發光顯示器的製作方法, 包含有: 提供-基板,該基㈣至少包含有—線性偏細、兩線性偏光 膜保護層、-表面保護膜及一相位差板,其中該兩線性偏光膜 保護層係分別貼附於該線性偏光膜之上、下表面上,而該表面 保護膜係形成於其中-線性偏光膜保護層上,而該相位差板則 貼合於另-線性偏光膜保護層上,其中和該表面保護膜相鄰之 線性偏光麟護層定義為n性偏光酶護層而與該相 位差板相鄰之雜偏絲賴層定義為第—二雜偏^膜 護層; ' 在該相位差板之上形成一阻水阻氣層; 在該阻水阻氣層之上沉積一透明電極層; 在該透明電極層的之上沉積-金屬導電層,並以微影侧、網 印技術或雷射劃線技術定義出一外部金屬導電層圖案. 沉積-畫奴義絕緣層於該透明電極層之上,細微影侧、 網印技術或雷射劃線技術定義出一畫素定義絕緣層圖案,其中 該畫素定義絕緣層圖案與該外部金屬導電層圖案之間須相距 有一間隔; /、 在該畫素定義絕緣案之上沉積—陰極隔離層,並以微影飯 201242135 刻、網印技術或雷射劃線技術將該陰極隔離層定義出一陰極 =層圖案’該陰極隔離層圖案具有複數個陰極隔離部^ 陰極隔離部之間具有一間隔區; 相,兩陰極隔離部之間各沉财—個有機發光祕結構; 在每-個有機發光元件結構及該等陰極隔離部之上沉積至少 一陰極金屬層;以及 在,晝素定義絕緣制案之上形成—元件倾層,並且該元件 保護層包覆了該至少一陰極金屬層。 9. 依據申請專纖_ 8項所述之可撓式高對比全彩有機電 激發光顯器的製作方法,其中該阻水阻氣層為包括堆疊的至 少一基本組絕層,該至少一基本組絕層包含二氧化矽、富矽之 氮氧化碎、氮切(SiN3)、氧德、料二?苯基(parylene) 及紫外線固化膠(UV glue)的至少其中之一。 10. 依據申請專利範圍第8項所述之可撓式高對比全彩有機 電激發光顯*器的製作方法,其中該透明電極層係包含氧化銦 錫、銦鋅氧化物、銦鎢錫氧化物、氧化鋁鋅、氧化銀、聚乙炔、 聚嗔吩、聚苯胺及聚比咯及聚(3, 4_伸乙二氧基噻吩)(PED0T) 等的至少其中之一。 11. 依據申請專利範圍第8項所述之可撓式高對比全彩有機 電激發光顯示器的製作方法,其中該金屬導電層包含鉻、鉬、 銀、鋁、銅、金、鎳、鎢,及由鉻、鉬、銀、鋁、銅、金、鎳 及鎢的至少其中之一所構之合金的至少其中之一。 12. 依據申請專利範圍第8項所述之可撓式高對比全彩有機 電激發光顯示器的製作方法,其中該畫素定義絕緣層包含聚亞 酿胺、光阻材料、環氧樹脂、壓克力樹脂、二氧化石夕、富矽之 氮氧化碎、氮化石夕及氧化紹的至少其中之一。 201242135 ^激項所述之可撓式高對比全彩有機 、、,、°的製作方法,其中該陰極隔離層包含聚亞醯 ^、先阻材料、環氧樹脂 '壓克力樹脂、二氧化石夕、富石夕之氮 化石夕、氮化石夕(SiN3)及氧化鋁的至少其中之一。 =·依據t請翻細第8項所述之可撓式高義全彩有機 電激發光顯示H的製作方法,其中該有機發光元件結構由下至 上係至少包含有之—電洞注人層、—t_輸層、—有機發 層及一電子注入層。 15·依據申請專利範圍帛8項所述之可撓式高對比全彩有機 電激發光顯不器的製作方法,其中該至少一陰極金屬層包含 鉻鉬、銀、鋁、銅、金、鎳、鈣、MgAg,及由鉻、鉬、銀、 鋁、銅、金、鎳、鈣及MgAg的至少其中之一所構之合金的至 少其中之一。 16.依據申請專利範圍第8項所述之可撓式高對比全彩有機 電激發光顯示器的製作方法,其中該元件保護層為包括堆疊的 至少一基本保護層,該至少一基本保護層包含二氧化矽、富矽 之氮氧化矽、氮化矽、氧化鋁及聚對二曱苯基的至少其中之一。 17·依據申請專利範圍第8項所述之可撓式高對比全彩有機 電激發光顯示器的製作方法,其中該晝素定義絕緣層圖案與該 疋件保護層之間可再形成有一吸氣層’亦即該吸氣層係沉積於 該晝素定義絕緣層圖案之上,且該吸氣層包覆了該至少一陰極 金屬層’該元件保護層則形成於該吸氣層之上。 18.依據申請專利範圍第8項所述之可撓式高對比全彩有機 電激發光顯示器的製作方法,其中該吸氣層之材質包含第ΠΑ 族之金屬或第IΙΑ族之金屬氧化物。201242135 VII. Patent application scope: Machine!=The flexible display of light display, which contains at least - line m light difficult, - surface Baolong and - phase difference plate, the two linear polarizing film protective layer are respectively attached to Above the linear polarizing film, the surface is mixed with the towel-heterogeneous protective layer, and the head of the plate is combined with the other layer, wherein the linear polarization is difficult to be mixed. a linear-polarized-linear polarizing film protective layer formed of at least one of the hetero--decomposing material or the two-color pure material, and the linear biasing film adjacent to the phase difference plate is equivalent to The second-filament hearing layer. The flexible substrate of the organic electro-acoustic wire device described in the first item of the patent, the plastic material of the linear polarizing film comprising polyethylene, polycarbonate, poly-p-benzene A flexible substrate of an organic electroluminescent display according to the above aspect of the invention, wherein the two linear bias-protective layers are three Vinegar. 4. According to the "Specially Teared Money" a flexible substrate, wherein the surface film may be a film of a material or a film of a material comprising a polyethylene film, a polyethylene carbonate, a polyethylene terephthalate, a polypropylene, and a polyethylene. At least one of the alcohols, the oxide comprising at least 5 of the oxidized, nitrous oxide, nitrogen, and oxidized materials, according to the above-mentioned patented surface-excited silk display device The flexible substrate 'the towel may be a film, the material of the film may be polyethylene, polycarbo, polyethylene terephthalate, polypropylene and polyethylene. At least one of them. The present invention is further provided with a silk film, wherein the wire is further disposed between the surface protective film and the second linear polarizing film protective layer, wherein the wire is further disposed between the surface protective film and the second linear polarizing film protective layer. The film comprises at least one of an antireflective film and an antiglare. 7. The flexible substrate of the organic electro-excitation device according to the invention of claim 2, wherein at least one brightness enhancement film is further disposed between the phase difference plate and the first linear polarizing film protective layer. 8. A method for manufacturing a flexible high contrast full color organic electroluminescent display, comprising: providing a substrate, wherein the base (4) comprises at least a linearly thinned, two linear polarizing film protective layer, a surface protective film, and a phase difference plate, wherein the two linear polarizing film protective layers are respectively attached on the upper surface and the lower surface of the linear polarizing film, and the surface protective film is formed on the linear polarizing film protective layer, and the phase difference is The plate is attached to the protective layer of the other linear polarizing film, wherein the linear polarizing layer adjacent to the surface protective film is defined as a n-polarizing enzyme protective layer and the mixed polarizing layer adjacent to the phase difference plate Defined as a first-two impurity-biasing film sheath; 'forming a water-blocking gas barrier layer on the phase difference plate; depositing a transparent electrode layer on the water-blocking gas barrier layer; Depositing a metal conductive layer and defining an outer metal conductive layer pattern by lithography side, screen printing technique or laser scribing technique. Deposition-painting the insulating layer on the transparent electrode layer, fine shadow side, Screen printing technology or laser marking technology definition a pixel defining an insulating layer pattern, wherein the pixel defining insulating layer pattern and the outer metal conductive layer pattern are spaced apart from each other; /, depositing a cathode isolation layer over the pixel defining insulating case, and The lithographic rice 201242135 engraving, screen printing technique or laser scribing technique defines the cathode isolation layer as a cathode=layer pattern. The cathode isolation layer pattern has a plurality of cathode isolation portions. The cathode isolation portion has a spacer region therebetween; a phase between the two cathode isolation portions, an organic light-emitting structure; depositing at least one cathode metal layer on each of the organic light-emitting device structures and the cathode isolation portions; and Formed on top of the component layer, and the component protective layer covers the at least one cathode metal layer. 9. The method for manufacturing a flexible high-contrast full-color organic electro-optic illuminator according to the application of the special fiber _8, wherein the water-blocking gas barrier layer comprises at least one basic group of layers, at least one The basic group of the inner layer contains cerium oxide, cerium-rich nitrogen oxidized slag, nitrogen cut (SiN3), oxygen, material two? At least one of parylene and UV glue. 10. The method according to claim 8, wherein the transparent electrode layer comprises indium tin oxide, indium zinc oxide, indium tungsten tin oxide. At least one of aluminum oxide, aluminum zinc oxide, silver oxide, polyacetylene, polybenzazole, polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene) (PED0T). 11. The method of manufacturing a flexible high contrast full color organic electroluminescent display according to claim 8, wherein the metal conductive layer comprises chromium, molybdenum, silver, aluminum, copper, gold, nickel, tungsten. And at least one of an alloy composed of at least one of chromium, molybdenum, silver, aluminum, copper, gold, nickel, and tungsten. 12. The method for manufacturing a flexible high contrast full color organic electroluminescent display according to claim 8 , wherein the pixel defining insulating layer comprises poly stilbene, photoresist, epoxy resin, pressure At least one of gram resin, cerium dioxide, cerium oxynitride, nitriding, and oxidizing. 201242135 ^ The method for producing a flexible high-contrast full-color organic,,, and °, wherein the cathode isolating layer comprises polyarylene, first-resistance material, epoxy resin, acrylic resin, and dioxide At least one of Shi Xi, Fu Shi Xi, Nitrix, SiN3 and Alumina. =· According to t, please refine the flexible high-color full-color organic electroluminescence display H described in item 8, wherein the organic light-emitting element structure includes at least a hole-injecting layer from bottom to top, —t_transmission layer, organic layer and an electron injection layer. 15. The method according to claim 8, wherein the at least one cathode metal layer comprises chromium molybdenum, silver, aluminum, copper, gold, nickel. And calcium, MgAg, and at least one of an alloy composed of at least one of chromium, molybdenum, silver, aluminum, copper, gold, nickel, calcium, and MgAg. The method for manufacturing a flexible high-contrast full-color organic electroluminescent display according to claim 8, wherein the component protective layer is at least one basic protective layer including a stack, and the at least one basic protective layer comprises At least one of cerium oxide, cerium-rich cerium oxyhydroxide, cerium nitride, aluminum oxide, and poly(p-nonylphenyl). The method for manufacturing a flexible high-contrast full-color organic electroluminescent display according to claim 8, wherein the halogen-defined insulating layer pattern and the element protective layer are further formed with an inhalation The layer 'is that the gettering layer is deposited on the halogen-defining insulating layer pattern, and the gettering layer covers the at least one cathode metal layer'. The element protective layer is formed on the gettering layer. 18. The method of fabricating a flexible high contrast full color organic electroluminescent display according to claim 8 wherein the material of the getter layer comprises a metal of the lanthanum or a metal oxide of the group I.
TW100111909A 2011-04-06 2011-04-06 Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display TW201242135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100111909A TW201242135A (en) 2011-04-06 2011-04-06 Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100111909A TW201242135A (en) 2011-04-06 2011-04-06 Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display

Publications (1)

Publication Number Publication Date
TW201242135A true TW201242135A (en) 2012-10-16

Family

ID=47600242

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100111909A TW201242135A (en) 2011-04-06 2011-04-06 Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display

Country Status (1)

Country Link
TW (1) TW201242135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312315B2 (en) 2013-12-02 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312315B2 (en) 2013-12-02 2019-06-04 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10355067B2 (en) 2013-12-02 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
TWI668894B (en) * 2013-12-02 2019-08-11 日商半導體能源研究所股份有限公司 Display device and method for manufacturing the same
US10763322B2 (en) 2013-12-02 2020-09-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10854697B2 (en) 2013-12-02 2020-12-01 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10872947B2 (en) 2013-12-02 2020-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US10879331B2 (en) 2013-12-02 2020-12-29 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11004925B2 (en) 2013-12-02 2021-05-11 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
US11672148B2 (en) 2013-12-02 2023-06-06 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US7947973B2 (en) Organic light-emitting device
KR100846593B1 (en) Organic light emitting device therewith
JP4694541B2 (en) Polarizer and flat panel display having the same
KR102084715B1 (en) Organic light emitting diode display panel
US10361401B2 (en) Organic electroluminescent display device and display apparatus
TWI596748B (en) Display device
KR100852115B1 (en) Organic light emitting display device
KR102174652B1 (en) Light-emitting device, display apparatus, and illumination apparatus
CN102956671B (en) display and electronic system
JP2007536697A (en) Flexible electroluminescence device
CN107852787A (en) Display device
TW201208172A (en) Organic light emitting diode display
CN103887322A (en) Organic light emitting display apparatus and manufacturing method thereof
JP2008525965A (en) Stress-free flat display element
JP2013137931A (en) Light-emitting element, method of manufacturing the same, display device, and electronic apparatus
TW201218374A (en) Organic light-emitting diode display device
US8610149B2 (en) Organic light emitting diode display
JPH11329745A (en) Luminescent element and laminated display element
WO2024046290A1 (en) Light-emitting device, display panel, and preparation method therefor
WO2022134823A1 (en) Display panel and display device thereof
TW201242135A (en) Flexible substrate of organic electroluminescent display and preparation method of flexible high contrast, true color organic electroluminescent display
US20110069000A1 (en) System for displaying images
Mikami et al. 60.4 L: Late‐News paper: High efficiency 200‐lm/W green light emitting organic devices prepared on High‐Index of refraction substrate
Zhang et al. The Feasibility of Using Cu as Reflective Anode in Top-Emitting Organic Light-Emitting Diodes
KR100565742B1 (en) Organic Electroluminescence Device