WO2022134653A1 - 一种高均匀性超细聚酯纤维生产设备及制备方法 - Google Patents
一种高均匀性超细聚酯纤维生产设备及制备方法 Download PDFInfo
- Publication number
- WO2022134653A1 WO2022134653A1 PCT/CN2021/115898 CN2021115898W WO2022134653A1 WO 2022134653 A1 WO2022134653 A1 WO 2022134653A1 CN 2021115898 W CN2021115898 W CN 2021115898W WO 2022134653 A1 WO2022134653 A1 WO 2022134653A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- groove
- shaped
- wire
- semi
- rectangular
- Prior art date
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 84
- 239000000835 fiber Substances 0.000 title claims abstract description 82
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 238000009987 spinning Methods 0.000 claims abstract description 80
- 238000001816 cooling Methods 0.000 claims abstract description 73
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 39
- 239000010935 stainless steel Substances 0.000 claims abstract description 39
- 239000003381 stabilizer Substances 0.000 claims abstract description 37
- 238000007493 shaping process Methods 0.000 claims abstract description 34
- 238000004804 winding Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 21
- 230000007246 mechanism Effects 0.000 claims abstract description 17
- 239000002994 raw material Substances 0.000 claims abstract description 9
- 238000007664 blowing Methods 0.000 claims description 53
- 239000002184 metal Substances 0.000 claims description 18
- 239000010865 sewage Substances 0.000 claims description 17
- 229910052573 porcelain Inorganic materials 0.000 claims description 15
- 238000003780 insertion Methods 0.000 claims description 10
- 238000009835 boiling Methods 0.000 claims description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 8
- 230000006855 networking Effects 0.000 claims description 5
- 238000009827 uniform distribution Methods 0.000 claims description 3
- 230000003313 weakening effect Effects 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims description 2
- 239000007921 spray Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 11
- 239000004744 fabric Substances 0.000 description 8
- 238000007380 fibre production Methods 0.000 description 6
- 239000011148 porous material Substances 0.000 description 6
- 230000008569 process Effects 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000005855 radiation Effects 0.000 description 3
- 229920001410 Microfiber Polymers 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000005034 decoration Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 241001391944 Commicarpus scandens Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010036 direct spinning Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 239000002932 luster Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/04—Guides for slivers, rovings, or yarns; Smoothing dies
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D11/00—Other features of manufacture
- D01D11/04—Fixed guides
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/088—Cooling filaments, threads or the like, leaving the spinnerettes
- D01D5/092—Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/08—Melt spinning methods
- D01D5/096—Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/12—Stretch-spinning methods
- D01D5/16—Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/28—Heating or cooling arrangements for yarns
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H13/00—Other common constructional features, details or accessories
- D01H13/30—Moistening, sizing, oiling, waxing, colouring, or drying yarns or the like as incidental measures during spinning or twisting
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01H—SPINNING OR TWISTING
- D01H5/00—Drafting machines or arrangements ; Threading of roving into drafting machine
- D01H5/18—Drafting machines or arrangements without fallers or like pinned bars
- D01H5/70—Constructional features of drafting elements
- D01H5/74—Rollers or roller bearings
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/08—Interlacing constituent filaments without breakage thereof, e.g. by use of turbulent air streams
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2331/00—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
- D10B2331/04—Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
- Y02P70/62—Manufacturing or production processes characterised by the final manufactured product related technologies for production or treatment of textile or flexible materials or products thereof, including footwear
Definitions
- the invention belongs to the technical field of polyester fibers, and relates to a high-uniformity ultrafine polyester fiber production equipment and a preparation method.
- polyester differential fiber fabrics have good performance and wide range of uses and develop rapidly.
- the growth of total market demand and the demand of downstream textile enterprises for differentiated fine denier and ultra-fine denier fibers will promote the transformation of my country's chemical fiber enterprises. of superior performance.
- Melt direct spinning 5D ⁇ 7D/6F ⁇ 8F superfine polyester fiber fabric has excellent characteristics such as soft and delicate hand, smooth and waxy, soft luster, high density and high thermal insulation performance, and with the development of weaving, printing and dyeing technology, more Potential features are also being increasingly discovered.
- the fiber has many advantages such as lightness, anti-pilling, easy care, high density and breathability, and it is mixed with fibrous metal wires to form metal fibers, which can be bonded and sewn, and can be easily made into different geometric shapes. (such as conductive foam, conductive tape) to shield the radiation source, and can also be sewn into shielding clothing, shielding caps, etc. to protect the staff from the radiation of electromagnetic waves.
- the fabric is thin and does not take up much space, it can be directly put into a pocket or bag when not in use; (3) Easy to wash: The washing method is the same as that of ordinary fabrics, and the shielding performance remains unchanged after repeated washing. In addition, its fabric can also be used in chips of electronic products, such as mobile phone circuit boards.
- 5D ⁇ 7D/6F ⁇ 8F high uniformity superfine polyester fiber because of its extremely fine bus density, small number of holes and spinneret extrusion, less heat from melt, low temperature of spinneret surface, which is not conducive to Spinning, in the prior art, the nascent fibers from the DIO module are cooled by circulating cooling air. Due to the high pressure of the process air, turbulent flow is easily formed between the two bundles of filaments, and the filaments sway greatly, which affects the cooling effect.
- the unevenness rate (CV) and evenness unevenness rate CV are large, and the internal quality of the fiber is unstable. After mixing with metal wire, there will be differences in the knitted fabric, resulting in poor shielding effect. It can only be used for ordinary Radiation protection clothing and building decoration, etc., do not reflect the real shielding effect.
- the purpose of the present invention is to solve the above-mentioned problems existing in the prior art, and to provide a high-uniformity ultrafine polyester fiber production equipment and a preparation method.
- the invention provides a high-uniformity ultra-fine polyester fiber production equipment, which adopts a special spinneret micro-hole arrangement, a ring blowing cooling method, a bundled oiling and guiding device and a yarn stabilizer device, aiming to solve the problem of 5D ⁇ 7D/6F ⁇ 8F microfiber cooling, uneven oiling, poor production stability and difficulty in spinning.
- a production equipment for ultra-fine polyester fibers with high uniformity including a spinning box, a DIO spinning assembly, a ring blowing cooling device, a cluster oiling device, a spinning shaft, a pre-networking device, a drawing heat roller, and a setting heat.
- Roller, main netting device and winding machine, and a wire stabilizer is set between the drawing heat roller and the shaping heat roller;
- the wire stabilizer includes an upper casing, a lower casing, a disc, an L-shaped quick-insertion, a stainless steel pipe, a sewage pipe and a sliding mechanism;
- the upper casing is a semi-cylindrical body I with a rectangular surface facing down
- the lower casing is a rectangular surface
- the half-cylinder II facing upward; the width of the rectangular surface I of the semi-cylinder I and the rectangular surface II of the semi-cylinder II are equal, and the ratio of the lengths is 1:1.6 (the length is to make the upper shell slip It is always in the upper shell during the process);
- the rectangular surface I of the semi-cylindrical body I and the rectangular surface II of the semi-cylindrical body II are arranged opposite and parallel to the horizontal plane, and the left side of the semi-cylindrical body II is fixed on the disk by bolts.
- a through hole is set on the circular surface of the disc, and the L-shaped quick-insertion passes through the through hole and communicates with the stainless steel pipe;
- a limit block is fixed on the right side of the semi-cylinder II, a positioning pin is fixed on the limit block, a groove B is formed on the right side of the semi-cylinder I at the edge of the rectangular surface I, and the positioning pin is matched with the groove B , for fixing the half cylinder I;
- the internal structure of the semi-cylindrical body I is: the interior of the semi-cylindrical body I is provided with a cylindrical through hole for the stainless steel pipe to penetrate and move in the horizontal direction, a rectangular groove communicated with the cylindrical through hole, and an annular groove communicated with the cylindrical through hole. ;
- the rectangular groove is located below the cylindrical through hole, the bottom of the rectangular groove is located on the rectangular surface I, and the bottom of the rectangular groove is provided with n through holes;
- the annular groove is located at one end of the cylindrical through hole close to the disc, used to place the O-shaped
- the ring realizes the sealing of the stainless steel pipe (the sealing at this time is to prevent the air pressure from the stainless steel pipe from escaping from the left end of the stainless steel pipe, thereby saving energy);
- the ratio of the length of the stainless steel tube to the length of the rectangular surface I is 1:1 to 1.12 (when the upper shell slides to the leftmost end, the length is to make the stainless steel tube sealed by the plug); the cylindrical through hole is far from the disc.
- One end is provided with a plug, which is opposite to one end of the stainless steel pipe, and is used for sealing the stainless steel pipe;
- the internal structure of the semi-cylinder II is: in the rectangular surface II of the semi-cylinder II, a certain distance (a certain distance is 15mm) from the edge of the rectangle is recessed inward to form a groove A, and a base is arranged in the groove A; the upper surface of the base is Form n excellent arc grooves evenly distributed, the central axis of the excellent arc groove is parallel to the short side of the rectangular surface II and runs through the upper surface of the base, and the opening width of the excellent arc groove is 1 ⁇ 2mm;
- the edges of the two long sides of II are oppositely provided with n wire guide hooks a and n wire guide hooks b, and the wire rods pass through the wire passage of the wire guide hook a, the center of the excellent arc groove and the wire guide hook in turn.
- the wire path formed by the wire passage of b is a straight line; the two sides on the base and perpendicular to the slotting direction of the superior arc groove keep a certain distance from the inner side wall of the opposite groove A to form a channel H; the compressed air is blown toward When the thread in the excellent arc groove, the thread will vibrate, and the guide wire hook a and the guide wire hook b play the role of stabilizing the thread;
- n wire guide hooks a and the n wire guide hooks b are fixed to the edges of the two long sides of the rectangular surface II by a wire guide hook frame, and the wire guide wire hook frame and the rectangular surface II are fixed by bolts;
- the sliding mechanism includes: a guide rail G (the length of the guide rail is 60% of the long side of the rectangular surface II) set on the two long sides of the rectangular surface II, and a guide rail C (the length of the guide rail is the length of the rectangular surface I) set on the left ends of the two long sides of the rectangular surface I. 30% of the long side of I) and a U-shaped tie rod, half of the two long sides of the U-shaped tie rod are embedded in the guide rail G, and the other half is embedded in the guide rail C, and the left end of the U-shaped tie rod is provided with an outwardly extending stopper to achieve Half cylinder I slides to the right;
- the relative positional relationship between the semi-cylinder I and the semi-cylinder II when the positioning pin is matched with the groove B on the right side of the semi-cylinder I, the n through holes on the bottom plate of the rectangular groove and the n excellent arcs
- the grooves correspond one-to-one and are located directly above the excellent arc grooves;
- Sewage device composed of a sewage pipe and a channel H, the sewage pipe is set in the lower shell and communicated with the channel H;
- a fixed block is fixed at the center of the arc surface of the semi-cylindrical body II, and a positioning hole is arranged on the fixed block, and the lower shell is fixed on the bracket of the shaping heat roller by using a hexagonal screw through the positioning hole.
- the upper shell is pulled in to the right through the U-shaped tie rod, and the stainless steel tube and the plug are disengaged; the groove B on the upper shell cooperates with the limit block and positioning pin on the lower shell to fix the upper half cylinder 1, the compressed air delivered from the compressed air station enters the upper casing through the stainless steel rod, and blows through the through hole on the rectangular surface 1 of the semi-cylindrical body 1 to the thread passing through the excellent arc groove, so that the thread produces Slight twisting and winding further improves the cohesion of the thread, enhances the running stability between the drafting and setting hot rollers, reduces the shaking of the thread, and a small amount of oil dropped during the twisting and winding process of the thread passes through the nozzle.
- the side channel H is discharged from the left sewage pipe.
- the yarn stabilizer also includes a limit mechanism
- the limit mechanism includes: an L-shaped track that rotates 90° counterclockwise and a tie rod;
- the L-shaped track is located on the arc surface of the semi-cylinder I, the left end face of the L-shaped track coincides with the left side of the semi-cylinder I, and the right end face of the L-shaped track coincides with the right side of the semi-cylinder I.
- the left end of the L-shaped track is lower than the right end of the L-shaped track; The distance is 5mm), and the vertical side of the L-shape rotated 90° counterclockwise is inclined;
- One end of the tie rod is located in the L-shaped track, and the other end is fixed on the right side of the semi-cylinder II.
- the wire guide hook a is a snail-shaped wire guide hook; the wire guide hook b is a double arc-shaped wire guide; the value of n is 1 to 48 .
- the snail-shaped guide wire hook is a left-handed snail-shaped guide wire hook and a right-handed snail-shaped guide wire hook;
- the snail-shaped guide wire hook and the right-handed snail-shaped guide wire hook are arranged crosswise. To prevent the thread from jumping out of the guide wire hook, resulting in broken ends.
- a kind of production equipment of the above-mentioned high uniformity ultrafine polyester fiber a circular spinneret is provided in the DIO spinning assembly, and the spinneret micro-hole (spinning hole) of the circular spinneret is located on the circular surface.
- the spinneret micro-hole (spinning hole) of the circular spinneret is located on the circular surface.
- There are grooves in the diameter direction the spinneret microholes on both sides of the groove are symmetrically distributed with respect to the groove, and the spinneret microholes on each side are arranged in an isosceles triangle; compared with the prior art, the spinneret microholes are arranged in a circle.
- the cooling uniformity of the strands is good, and the temperature of the board surface has little influence.
- the number of spinneret pores on each side is 6, and the number of spinneret pores distributed on the isosceles triangle is equal.
- the ring blowing cooling device comprises a ring blowing box and a ring blowing filter element corresponding to the spinneret one-to-one;
- the ring blowing box is divided into a first area and a second area by a partition perpendicular to the running direction of the tow, and the first area and the second area are independently connected with two cooling air inlet pipes; the weak cooling area I and the cooling area II are The air pressure of the cooling air is independently controlled by the air pressure in the cooling air inlet duct;
- the area corresponding to the first area in the ring blowing filter element is the weak cooling area I, and the area corresponding to the second area in the ring blowing filter element is the cooling area II;
- the center of the ring blowing filter element is provided with a hollow rectangular plate parallel to the running direction of the tow, Several holes are arranged on the side of the hollow rectangular plate facing the tow to reduce the mutual interference of the cooling air between the two tows in the ring blowing filter element;
- One side of the hollow rectangular plate corresponding to the thickness direction is arranged in the groove on the circular spinneret.
- the plate surface of the spinneret can be prevented from being affected by the ring blowing, the temperature of the plate surface is reduced, and abnormalities such as injection heads and dripping wires occur, and the mutual interference of the cooling air between the two bundles of wires in the filter element is weakened, and the wires are in the filter element. Stable operation in the filter element, uniform cooling, little difference in structure and performance between fibers.
- the height ratio of the first area and the second area is 1:2.5 ⁇ 3.0; the ratio of the thickness of the hollow rectangular plate to the width of the widest width of the groove It is 1:1.3 ⁇ 1.5.
- the cluster oiling device is a spiral full-contact microporous oiling device
- the spiral full-contact microporous oiling device includes sequentially connected oil pipes, quick plugs, metal connecting rods and spiral porcelain parts; the metal connecting rod is installed on the oil frame of the spinning position; the metal connecting rod is provided with a first hollow channel, and the spiral A second hollow channel is arranged in the porcelain piece structure, and the second hollow channel is communicated with the first hollow channel; the spiral part of the spiral porcelain piece structure forms a wire passage, and the side of the spiral part close to the wire passage forms a slope, and the slope is There are several layers of annular oil collecting grooves and oil outlet holes on the surface. The oil collecting grooves are located above the oil collecting grooves, and the oil collecting grooves are distributed around the wire passage; the oil outlet holes are connected with the second hollow channel; the oil collecting groove has a corrugated annular structure .
- the length of the metal connecting rod is 3-4 cm
- the diameter of the first hollow channel is 3-5 mm
- the diameter of the second hollow channel is 3-5 mm
- the diameter of the oil outlet hole is 0.3-0.5mm
- the several layers of annular oil collecting grooves are 10-15 layers of annular oil collecting grooves
- the difference between the wave crest and the wave trough of the corrugated shape is 0.003-0.05mm
- the diameter of the wire passage is 1-2mm.
- a method for preparing high-uniformity ultra-fine polyester fibers by using the above-mentioned production equipment for high-uniformity ultra-fine polyester fibers using polyester melt as the spinning raw material, spinning through the spinning box, DIO spinning in turn Assemblies, ring blowing cooling devices, cluster oiling devices, spinning shafts, pre-internets, drawing hot rolls, yarn stabilizers, sizing hot rolls, main webs and winders to produce ultra-fine polyester with high uniformity fiber;
- the pressure in the stabilizer is 0.2 to 0.4 bar.
- the spinning process parameters are: the wind pressure of weak cooling zone I is 5-10Pa, and the wind pressure of cooling zone II is 15-20Pa.
- the spinning process parameters further include: the diameter of the micropore of the spinneret is 0.16-0.19mm, the length is 0.5-0.6mm; the extrusion temperature is 286 ⁇ 292°C; the speed of the drawing hot roller is 1200 ⁇ 1500m/min; the temperature of the drawing hot roller is 82 ⁇ 88°C; the speed of the setting hot roller is 3900 ⁇ 4200m/min; The speed is 3800 ⁇ 4100m/min.
- the indicators of the high-uniformity ultra-fine polyester fiber are: the linear density is 5.5-7.6 dtex, and the linear density unevenness (CV) ⁇ 0.6 %, breaking strength ⁇ 4.1cN/dtex, breaking strength unevenness (CV) ⁇ 2.0%, breaking elongation rate 25.5 ⁇ 33.5%, breaking elongation unevenness (CV) ⁇ 5.0%, evenness rate (CV) ⁇ 0.82%, the shrinkage rate in boiling water is 7.7-9.3%, and the oiling rate is 1.0-1.18%.
- the principle of the present invention is:
- the superfine fiber prepared by the invention has low bus density, low drafting tension of the thread, and relatively large distance between the drafting and shaping hot rollers, and the thread is easily disturbed by external air flow between the drafting and shaping thermal rollers, and the swaying is relatively large.
- the comb-shaped filament separator only plays the role of filament separation, and cannot stabilize the filaments.
- the filaments sway greatly and cannot be distinguished.
- the filament stabilizer of the present invention can further improve the cohesion of the filaments.
- the stability of the operation between the drafting and setting hot rolls is enhanced, the slack of the strands is reduced, the spooling operation is convenient, and the obtained ultrafine fibers have good evenness, uneven elongation at break (CV) and uneven breaking strength.
- the rate (CV) is small, and the production is stable and the product quality is high.
- the present invention is provided with upper and lower regions in the ring blowing box, a filter element is arranged in the ring blowing box, a rectifying plate is added to the filter element, and the filter element is arranged into two upper and lower regions, respectively corresponding to the two regions in the bellows.
- the invention adopts the sub-area cooling method, adding a stainless steel rectifying plate to the filter element and cooling in two independent areas.
- the mutual interference is small, the filaments run stably in the filter element, and the cooling is uniform.
- the oiling and guiding wire device of the present invention adopts the method of integrating the oiling and guiding wire in a bundle to oil and moisten the wire rod, and at the same time, the oiling device of the spiral structure is adopted to reduce the friction times between the wire rod and the wire guide porcelain.
- the design of multi-layer oil collecting tank can reduce the uneven oiling caused by the difference between the spinning tension on both sides of the tow, greatly improve the oiling uniformity and tension stability, and improve the product quality, reducing production costs.
- the spinneret micropores on the spinneret plate are arranged in an isosceles triangle, and the cooling uniformity is good;
- a high-uniformity ultra-fine polyester fiber production equipment of the present invention is provided with a rectifier plate in the center of the ring blowing filter element, and the top of the rectifier plate is embedded in the groove of the central axis of the spinneret, which can prevent the surface of the spinneret from being affected by the ring. Due to the influence of air blowing, the temperature of the board surface decreases, and abnormality such as injection head and dripping wire occurs, which weakens the mutual interference of the cooling air between the two bundles of wires in the filter element, and the wire rod runs stably in the filter element and cools evenly;
- a high-uniformity ultra-fine polyester fiber production equipment of the present invention combines two devices of guide wire and oiling into one, full-contact spiral 360° oiling, reduces or even eliminates static electricity, reduces spinning
- the fluctuation of winding tension greatly improves the uniformity of oiling and the stability of tension, improves product quality and reduces production costs
- the preparation method of a high-uniformity ultra-fine polyester fiber of the present invention has a simple preparation process, and the obtained high-uniformity ultra-fine polyester fiber has a good electromagnetic shielding effect after being mixed with metal wires.
- a yarn stabilizer device is used between the drawing and shaping hot rollers, and the compressed air in the stainless steel tube is blown to the yarn through the through hole,
- the thread is slightly twisted and entangled, which further improves the cohesion of the thread, enhances the running stability between the drafting and setting hot rollers, reduces the shaking of the thread, and is heated evenly on the two hot rollers, and the drawing and setting effect is good.
- High uniformity ultrafine polyester fibers were obtained.
- Fig. 1 is the structural representation of the wire stabilizer device of the present invention
- Fig. 2 is the structural schematic diagram of the silk stabilizer of the present invention when spun out
- Fig. 3 is the structure schematic diagram of the silk stabilizer of the present invention in production
- Fig. 4 is the structural representation of the wire guide hook a of the present invention.
- Fig. 5 is the structural representation of the wire guide hook b of the present invention.
- Fig. 6 is the structural schematic diagram of the U-shaped tie rod of the present invention
- Fig. 7 is the structural schematic diagram of the spinning rod of the present invention
- FIG. 8 is a schematic diagram of an excellent arc groove and a base of the present invention.
- FIG. 9 is a schematic structural diagram of the ring blowing device of the present invention.
- FIG. 10 is a schematic diagram of the overall structure of the cluster oiling device of the present invention.
- FIG. 11 is a schematic structural diagram of a spiral porcelain piece in the cluster oiling device of the present invention.
- FIG. 12 is a schematic diagram of the distribution structure of the spinneret holes on the spinneret plate of the present invention
- FIG. 13 is a schematic diagram of the overall structure of the filament separator in the prior art of the present invention.
- Fig. 14 is the partial enlarged structural schematic diagram of the filament separator in the prior art of the present invention.
- a production equipment for ultra-fine polyester fibers with high uniformity including a spinning box, a DIO spinning assembly, a ring blowing cooling device, a cluster oiling device, a spinning shaft, a pre-networking device, a drawing heat roller, and a setting heat.
- Roller, main netting device and winding machine, and a wire stabilizer is set between the drawing heat roller and the shaping heat roller;
- the wire stabilizer includes an upper casing, a lower casing, a disc 3, an L-shaped quick-insertion 5, a stainless steel pipe 4, a sewage pipe 14, a sliding mechanism and a limit mechanism;
- the upper shell is a semi-cylinder I1 with the rectangular surface I facing down, and the lower shell is a semi-cylinder II 2 with the rectangular surface II facing up; the rectangular surface I of the semi-cylindrical body I1 and the rectangular surface II of the semi-cylindrical body II 2
- the widths are equal, and the ratio of lengths is 1:1.6; the rectangular surface I of the semi-cylinder I 1 and the rectangular surface II of the semi-cylinder II 2 are arranged opposite and parallel to the horizontal plane, and the left side of the semi-cylinder II 2 passes through the bolt be fixed on the circular surface of the disc 3, and the circular surface faces the left side of the semi-cylindrical body I1;
- a through hole is set on the circular surface of the disc 3, and the L-shaped quick-insertion 5 passes through the through hole and communicates with the stainless steel pipe 4;
- a limit block 10 is fixed on the right side of the semi-cylinder II 2
- a positioning pin 11 is fixed on the limit block 10
- a groove B20 is formed on the right side of the semi-cylinder II 1 at the edge of the rectangular surface I, and the positioning pin 11 is matched with groove B20;
- the interior of the semi-cylindrical body I1 is provided with: a cylindrical through hole 17 for the stainless steel tube 4 to penetrate and move in the horizontal direction, a rectangular groove 19 and an annular groove 18 communicating with the cylindrical through hole; the rectangular groove 19 is located in the cylindrical through hole.
- the bottom of the rectangular groove 19 is located on the rectangular surface I
- the bottom of the rectangular groove 19 (that is, the rectangular surface I) is provided with n through holes 21, and the annular groove 18 is located at one end of the cylindrical through hole 17 close to the disk 3, for Place an O-ring to seal the stainless steel tube 4;
- the ratio of the length of the stainless steel tube 4 to the length of the rectangular surface 1 is 1:1 to 1.12; the end of the cylindrical through hole 17 away from the disc 3 is provided with a plug, and the plug is opposite to one end of the stainless steel tube 4 and is used for the stainless steel tube 4. the seal;
- a certain distance (a certain distance is 15mm) from the edge of the rectangular surface II is recessed inward to form a groove A, and a base 6 is arranged in the groove A; the upper surface of the base 6 forms a uniform distribution n excellent arc grooves 7 (as shown in Figure 8), the central axis of the excellent arc groove 7 is parallel to the short side of the rectangular surface II and runs through the upper surface of the base 6, the opening of the excellent arc groove 7
- the width is 1 to 2 mm; n wire guide hooks a8 and n wire guide hooks b9 are arranged oppositely at the edges of the two long sides of the rectangular surface II, and the wire rods pass through the wire passage of the wire guide hook a8 in turn, and the excellent arc-shaped
- the wire path formed by the center of the groove 7 and the wire passage of the wire guide hook b9 is a straight line; the two sides on the base 6 and perpendicular to the slotting direction of the superior arc groove are
- a certain distance forms a channel H;
- the n wire guide hooks a8 and n wire guide hooks b9 are fixed with the edge of the two long sides of the rectangular surface II by a wire guide frame, and the wire guide frame and the rectangular surface II are fixed by bolts;
- the wire guide hook a8 is a snail-shaped wire guide hook;
- the wire guide hook b is a double arc wire guide.
- the snail-shaped guide wire hooks are left-handed snail-shaped guide wire hooks and right-handed snail-shaped guide wire hooks; and the number is n/2, respectively, and the left-handed snail-shaped guide wire hooks and the right-handed snail-shaped guide wire hooks are set crosswise; The value ranges from 1 to 48;
- the sliding mechanism includes: the guide rail G12 (the length of the guide rail is 60% of the long side of the rectangular surface II), the guide rail G12 (the length of the guide rail is 60% of the long side of the rectangular surface II), the guide rail C (the length of the guide rail is the length of the rectangular surface 30% of the long side of I) and the U-shaped tie rod 13 (as shown in Figure 6), half of the two long sides of the U-shaped tie rod 13 are embedded in the guide rail G12, and the other half is embedded in the guide rail C, and the left end of the U-shaped tie rod 13 is embedded in the guide rail G12. There is a stopper extending outward to realize the rightward sliding of the semi-cylinder I1;
- the n through holes 21 on the inner bottom plate of the rectangular groove 19 correspond to the n excellent arc grooves 7 one-to-one and are respectively located in the optimal Just above the arc groove 7;
- Sewage device composed of a sewage pipe 14 and a channel H, the sewage pipe 14 is arranged in the lower casing and communicated with the channel H;
- An arc-shaped fixing block 15 is fixed at the center of the arc-shaped surface of the semi-cylindrical body II.
- a positioning hole is set on the arc-shaped fixing block 15.
- the hexagonal screw 16 is used to pass through the positioning hole to fix the lower shell on the bottom bracket of the shaping heat roller. ;
- the limit mechanism includes: an L-shaped track 22 rotated 90° counterclockwise and a tie rod 23 (as shown in Figure 7); the L-shaped track 22 is located on the arc surface of the semi-cylinder I1, and the left end of the L-shaped track 22 The surface coincides with the left side of the semi-cylindrical body I1, and the right end surface of the L-shaped track 22 coincides with the right side of the semi-cylinder body I1.
- the left end of the L-shaped track 22 is lower than The right end of the L-shaped track 22; the horizontal side of the L-shape rotated 90° counterclockwise is parallel to the long side of the rectangular surface I, and a certain distance (a certain distance is 5mm) is maintained with the long side, and the L-shaped counterclockwise rotation 90°
- the vertical side of the shape is inclined; one end of the tie rod 23 is located in the L-shaped track 22, and the other end is fixed on the right side of the semi-cylindrical body II2.
- a circular spinneret 39 is provided in the DIO spinning assembly, and a groove 41 (as shown in FIG. 12 ) is provided in the diameter direction of the circular surface where the spinneret microholes 40 (spinning holes) of the circular spinneret 39 are located.
- the spinneret pores 40 on both sides of the groove 41 are symmetrically distributed with respect to the groove 41 , and the spinneret pores 40 on each side are arranged in an isosceles triangle.
- the number of spinning micro-holes 40 on each side is 6, and the number of spinning micro-holes 40 distributed on the isosceles triangle is equal.
- the ring blowing cooling device includes a ring blowing box and a ring blowing filter element corresponding to the spinneret 39 one-to-one; the ring blowing box is divided into a first area 28 and a second The second area 29, the first area 28 and the second area 29 are respectively independently connected to two cooling air inlet pipes; the area corresponding to the first area 28 in the ring blowing filter element 24 is the weak cooling area I 26, The area corresponding to the second area 29 is the cooling area II 27; the center of the ring blowing filter element 24 is provided with a hollow rectangular plate 25 parallel to the running direction of the tow, and the side of the hollow rectangular plate 25 facing the tow is provided with several holes for weakening the ring Mutual interference of cooling air between two bundles of filaments in the blowing filter element; one side of the hollow rectangular plate 25 corresponding to the thickness direction is set in the groove 41 on the circular spinneret 39 .
- the hollow rectangular plate in the filter element is welded in the filter element, and the hollow rectangular plate in production is embedded in the middle groove of the spinneret, and does not need to be fixed;
- the height ratio of the first area 28 and the second area 29 is 1:2.5 ⁇ 3.0 ;
- the ratio of the thickness of the hollow rectangular plate 25 to the widest width of the groove is 1:1.3 to 1.5.
- the cluster oiling device is a spiral full-contact microporous oiling device;
- the spiral full-contact microporous oiling device includes a serially connected oil pipe 30, a quick plug 31, a metal connecting rod 32 and a spiral porcelain structure 36;
- the metal connecting rod 32 A first hollow channel 33 is arranged inside, a second hollow channel 34 is arranged in the spiral porcelain piece structure 36, and the second hollow channel 34 is communicated with the first hollow channel 33;
- the spiral part of the spiral porcelain piece structure 36 forms a wire passage, and
- the side of the spiral part close to the wire passage is a slope, and there are several layers of annular oil collecting grooves 38 and oil outlet holes 37 on the slope.
- the oil outlet holes 37 are located above the oil collecting groove 38, and the oil collecting grooves 38 surround the wire Channel distribution; the oil outlet hole 37 communicates with the second hollow channel 34; the oil collecting groove 38 has a corrugated annular structure.
- the length of the metal connecting rod 32 is 3-4 cm, the diameter of the first hollow channel 33 is 3-5 mm, the diameter of the second hollow channel 34 is 3-5 mm, the diameter of the oil outlet hole 37 is 0.3-0.5 mm, several layers of annular
- the oil collecting tank is an annular oil collecting tank with 10-15 layers, and the drop value of the corrugated crest and the wave trough is 0.003-0.05mm, and the diameter of the wire passage is 1-2mm.
- a production equipment for ultra-fine polyester fibers with high uniformity including a spinning box, a DIO spinning assembly, a ring blowing cooling device, a cluster oiling device, a spinning shaft, a pre-networking device, a drawing heat roller, and a setting heat.
- Roller, main netting device and winding machine, and a wire stabilizer is set between the drawing heat roller and the shaping heat roller;
- the wire stabilizer includes an upper casing, a lower casing, a disc 3, an L-shaped quick-insertion 5, a stainless steel pipe 4, a sewage pipe 14, a sliding mechanism and a limit mechanism;
- the upper shell is a semi-cylinder I 1 with the rectangular surface I facing down, and the lower shell is a semi-cylinder II 2 with the rectangular surface II facing up; the rectangular surface I of the semi-cylindrical body I 1 and the rectangular surface of the semi-cylinder II 2
- the widths of II are equal, and the ratio of lengths is 1:1.6; the rectangular surface I of the semi-cylinder I 1 and the rectangular surface II of the semi-cylinder II 2 are opposite to each other and are parallel to the horizontal plane, and the left side of the semi-cylinder II 2 passes through
- the bolt is fixed on the circular surface of the disc 3, and the circular surface faces the left side of the semi-cylindrical body I1;
- a through hole is set on the circular surface of the disc 3, and the L-shaped quick-insertion 5 passes through the through hole and communicates with the stainless steel pipe 4;
- a limit block 10 is fixed on the right side of the semi-cylinder II 2
- a positioning pin 11 is fixed on the limit block 10
- a groove B20 is formed on the right side of the semi-cylinder II 1 at the edge of the rectangular surface I, and the positioning pin 11 is matched with groove B20;
- the interior of the semi-cylindrical body I1 is provided with: a cylindrical through hole 17 for the stainless steel tube 4 to penetrate and move in the horizontal direction, a rectangular groove 19 and an annular groove 18 communicating with the cylindrical through hole; the rectangular groove 19 is located in the cylindrical through hole.
- the bottom of the rectangular groove 19 is located on the rectangular surface I
- the bottom of the rectangular groove 19 (that is, the rectangular surface I) is provided with 24 through holes 21, and the annular groove 18 is located at one end of the cylindrical through hole 17 close to the disk 3, for Place an O-ring to seal the stainless steel tube 4;
- the ratio of the length of the stainless steel tube 4 to the length of the rectangular surface 1 is 1:1.12; one end of the cylindrical through hole 17 away from the disc 3 is provided with a plug, and the plug is opposite to one end of the stainless steel tube 4, and is used for the sealing of the stainless steel tube 4. ;
- a certain distance (a certain distance is 15mm) from the edge of the rectangular surface II is recessed inward to form a groove A, and a base 6 is arranged in the groove A; the upper surface of the base 6 forms a uniform distribution 24 excellent arc-shaped grooves 7 (as shown in Figure 8), the central axis of the excellent arc-shaped groove 7 is parallel to the short side of the rectangular surface II and runs through the upper surface of the base 6, the opening of the excellent arc-shaped groove 7
- the width is 1mm; 24 wire guide hooks a8 and 24 wire guide wire hooks b9 are oppositely arranged at the edges of the two long sides of the rectangular surface II, and the wire rods pass through the wire passage and the excellent arc groove of the wire guide wire hook a8 in turn.
- the wire path formed by the center of 7 and the wire passage of the wire guide hook b9 is a straight line; the two sides on the base 6 and perpendicular to the slotting direction of the superior arc groove keep a certain distance from the inner side wall of the opposite groove A.
- the channel H is formed; the 24 wire guide hooks a8 and 24 wire guide hooks b9 are fixed to the edges of the two long sides of the rectangular surface II with a wire guide frame, and the wire guide frame and the rectangular surface II are fixed by bolts; as shown in the figure As shown in 4 to 5, the wire guide hook a8 is a snail-shaped wire guide hook; the wire guide hook b is a double arc wire guide.
- the snail-shaped guide wire hooks are left-handed snail-shaped guide wire hooks and right-handed snail-shaped wire guide wire hooks; and the number is 12 respectively, and the left-handed snail-shaped wire guide wire hooks and the right-handed snail-shaped wire guide wire hooks are crossed.
- the sliding mechanism includes: the guide rail G12 (the length of the guide rail is 60% of the long side of the rectangular surface II), the guide rail G12 (the length of the guide rail is 60% of the long side of the rectangular surface II), the guide rail C (the length of the guide rail is the length of the rectangular surface 30% of the long side of I) and the U-shaped tie rod 13 (as shown in Figure 6), half of the two long sides of the U-shaped tie rod 13 are embedded in the guide rail G12, and the other half is embedded in the guide rail C, and the left end of the U-shaped tie rod 13 is embedded in the guide rail G12. There is a stopper extending outward to realize the rightward sliding of the semi-cylinder I1;
- the 24 through holes 21 on the inner bottom plate of the rectangular groove 19 correspond to the 24 excellent arc grooves 7 in one-to-one correspondence and are located in the optimal Just above the arc groove 7;
- Sewage device composed of a sewage pipe 14 and a channel H, the sewage pipe 14 is arranged in the lower casing and communicated with the channel H;
- An arc-shaped fixing block 15 is fixed at the center of the arc-shaped surface of the semi-cylindrical body II.
- a positioning hole is set on the arc-shaped fixing block 15.
- the hexagonal screw 16 is used to pass through the positioning hole to fix the lower shell on the bottom bracket of the shaping heat roller. .
- the limit mechanism includes: an L-shaped track 22 rotated 90° counterclockwise and a tie rod 23 (as shown in Figure 7); the L-shaped track 22 is located on the arc surface of the semi-cylinder I1, and the left end of the L-shaped track 22 The surface coincides with the left side of the semi-cylindrical body I1, and the right end surface of the L-shaped track 22 coincides with the right side of the semi-cylinder body I1.
- the left end of the L-shaped track 22 is lower than The right end of the L-shaped track 22; the horizontal side of the L-shape rotated 90° counterclockwise is parallel to the long side of the rectangular surface I, and a certain distance (a certain distance is 5mm) is maintained with the long side, and the L-shaped counterclockwise rotation 90°
- the vertical side of the shape is inclined; one end of the tie rod 23 is located in the L-shaped track 22, and the other end is fixed on the right side of the semi-cylindrical body II2.
- a circular spinneret 39 is provided in the DIO spinning assembly, and a groove 41 (as shown in FIG. 12 ) is provided in the diameter direction of the circular surface where the spinneret microholes 40 (spinning holes) of the circular spinneret 39 are located.
- the spinneret pores 40 on both sides of the groove 41 are symmetrically distributed with respect to the groove 41 , and the spinneret pores 40 on each side are arranged in an isosceles triangle.
- the number of spinning micro-holes 40 on each side is 6, and the number of spinning micro-holes 40 distributed on the isosceles triangle is equal.
- the ring blowing cooling device includes a ring blowing box and a ring blowing filter element corresponding to the spinneret 39 one-to-one; the ring blowing box is divided into a first area 28 and a second The second area 29, the first area 28 and the second area 29 are respectively independently connected to two cooling air inlet pipes; the area corresponding to the first area 28 in the ring blowing filter element 24 is the weak cooling area I 26, The area corresponding to the second area 29 is the cooling area II 27; the center of the ring blowing filter element 24 is provided with a hollow rectangular plate 25 parallel to the running direction of the tow, and the side of the hollow rectangular plate 25 facing the tow is provided with several holes for weakening the ring Mutual interference of cooling air between two bundles of filaments in the blowing filter element; one side of the hollow rectangular plate 25 corresponding to the thickness direction is set in the groove 41 on the circular spinneret 39 .
- the height ratio of the first region 28 and the second region 29 is 1:2.5; the ratio
- the cluster oiling device is a spiral full-contact microporous oiling device;
- the spiral full-contact microporous oiling device includes an oil pipe 30, a quick plug 31, a metal connecting rod 32 and a spiral porcelain piece structure connected in sequence 36 (as shown in Figure 11);
- a first hollow channel 33 is arranged in the metal connecting rod 32,
- a second hollow channel 34 is arranged in the spiral porcelain structure 36, and the second hollow channel 34 is communicated with the first hollow channel 33;
- the spiral The helical part of the porcelain structure 36 forms a wire passage, and the side of the helical part close to the wire passage forms a slope, and there are several layers of annular oil collecting grooves 38 and oil outlet holes 37 on the slope.
- the oil collecting groove 38 is distributed around the wire passage; the oil outlet hole 37 is communicated with the second hollow channel 34; the oil collecting groove 38 has a corrugated annular structure.
- the length of the metal connecting rod 32 is 3cm, the diameter of the first hollow channel 33 is 4mm, the diameter of the second hollow channel 34 is 4mm, the diameter of the oil outlet hole 37 is 0.4mm, and the several layers of annular oil collecting grooves are 12 layers of annular oil collecting grooves.
- the drop value of the corrugated peak and trough is 0.02mm
- the aperture of the wire passage is 1.5mm.
- the method of using the production equipment in Example 1 to prepare ultra-fine polyester fibers with high uniformity uses polyester melt as the spinning raw material, and successively passes through the spinning box, the DIO spinning assembly, the ring blowing cooling device, and the bundled upper Oil device, spinning shaft, pre-netting device, drawing hot roll, yarn stabilizer, shaping hot roll, main netting device and winding machine to produce high uniformity ultra-fine polyester fiber;
- the spinning process parameters are: the wind pressure of the weak cooling zone I is 5Pa, the wind pressure of the cooling zone II is 15Pa, the speed of the drawing hot roller is 1200m/min; the temperature of the drawing hot roller is 82 °C; is 3900m/min; the temperature of the shaping hot roll is 110°C; the winding speed is 3800m/min, and the pressure in the yarn stabilizer is 0.2bar;
- the indicators of the obtained high uniformity ultrafine polyester fiber are: linear density of 5.5dtex, linear density unevenness of 0.2%, breaking strength of 4.2cN/dtex, breaking strength unevenness of 1.9%, elongation at break
- the rate is 29.8%
- the non-uniformity rate of elongation at break is 3.5%
- the rate of unevenness is 0.68%
- the shrinkage rate in boiling water is 9%
- the oiling rate is 1.18%.
- the method of using the production equipment in Example 1 to prepare ultra-fine polyester fibers with high uniformity uses polyester melt as the spinning raw material, and successively passes through the spinning box, the DIO spinning assembly, the ring blowing cooling device, and the bundled upper Oil device, spinning shaft, pre-netting device, drawing hot roll, yarn stabilizer, shaping hot roll, main netting device and winding machine to produce high uniformity ultra-fine polyester fiber;
- the spinning process parameters are: the wind pressure of the weak cooling zone I is 6Pa, the wind pressure of the cooling zone II is 16Pa, the speed of the drawing hot roller is 1260m/min; the temperature of the drawing hot roller is 84 °C; is 3945m/min; the temperature of the shaping hot roll is 112°C; the winding speed is 3850m/min, and the pressure in the yarn stabilizer is 0.2bar;
- the indexes of the obtained ultra-fine polyester fiber with high uniformity are: the linear density is 6dtex, the linear density unevenness is 0.05%, the breaking strength is 4.35cN/dtex, the breaking strength unevenness is 1.85%, and the elongation at break is 1.85%. It is 30%, the elongation at break uneven rate is 4.1%, the evenness rate is 0.72%, the boiling water shrinkage rate is 9.1%, and the oiling rate is 1.18%.
- the method of using the production equipment in Example 1 to prepare ultra-fine polyester fibers with high uniformity uses polyester melt as the spinning raw material, and successively passes through the spinning box, the DIO spinning assembly, the ring blowing cooling device, and the bundled upper Oil device, spinning shaft, pre-netting device, drawing hot roll, yarn stabilizer, shaping hot roll, main netting device and winding machine to produce high uniformity ultra-fine polyester fiber;
- the spinning process parameters are: the wind pressure of the weak cooling zone I is 7Pa, the wind pressure of the cooling zone II is 17Pa, the speed of the drawing hot roller is 1300m/min; the temperature of the drawing hot roller is 86 °C; is 4050m/min; the temperature of the shaping hot roller is 115°C; the winding speed is 3950m/min, and the pressure in the stabilizer is 0.28bar;
- the indexes of the obtained ultra-fine polyester fiber with high uniformity are: the linear density is 6.6dtex, the linear density unevenness is 0.1%, the breaking strength is 4.46cN/dtex, the breaking strength unevenness is 1.98%, and the breaking elongation is The rate is 30.6%, the unevenness rate of elongation at break is 4.3%, the unevenness rate of evenness is 0.81%, the shrinkage rate in boiling water is 9.1%, and the oiling rate is 1.16%.
- the method of using the production equipment in Example 1 to prepare ultra-fine polyester fibers with high uniformity uses polyester melt as the spinning raw material, and successively passes through the spinning box, the DIO spinning assembly, the ring blowing cooling device, and the bundled upper Oil device, spinning shaft, pre-netting device, drawing hot roll, yarn stabilizer, shaping hot roll, main netting device and winding machine to produce high uniformity ultra-fine polyester fiber;
- the spinning process parameters are: the wind pressure of the weak cooling zone I is 8Pa, the wind pressure of the cooling zone II is 20Pa, the speed of the drawing hot roller is 1450m/min; the temperature of the drawing hot roller is 87°C; is 4150m/min; the temperature of the shaping hot roll is 117°C; the winding speed is 4050m/min, and the pressure in the stabilizer is 0.38bar;
- the indexes of the obtained ultra-fine polyester fiber with high uniformity are: the linear density is 7.3dtex, the linear density unevenness is 0.28%, the breaking strength is 4.72cN/dtex, the breaking strength unevenness is 1.7%, and the breaking elongation is The rate is 31.1%, the elongation at break rate is 3.95%, the evenness rate is 0.75%, the shrinkage rate in boiling water is 9.2%, and the oiling rate is 1.16%.
- the method of using the production equipment in Example 1 to prepare ultra-fine polyester fibers with high uniformity uses polyester melt as the spinning raw material, and sequentially passes through the spinning box, the DIO spinning assembly, the ring blowing cooling device, and the clustering Oil device, spinning shaft, pre-netting device, drawing hot roll, yarn stabilizer, shaping hot roll, main netting device and winding machine to produce high uniformity ultra-fine polyester fiber;
- the spinning process parameters are: the wind pressure of the weak cooling zone I is 10Pa, the wind pressure of the cooling zone II is 18Pa, the speed of the drawing hot roller is 1500m/min; the temperature of the drawing hot roller is 88°C; is 4200m/min; the temperature of the shaping hot roll is 118°C; the winding speed is 4100m/min, and the pressure in the yarn stabilizer is 0.4bar;
- the indexes of the obtained ultra-fine polyester fiber with high uniformity are: the linear density is 7.6dtex, the linear density unevenness is 0.3%, the breaking strength is 4.68cN/dtex, the breaking strength unevenness is 1.75%, and the elongation at break is 1.75%.
- the rate is 32.5%, the elongation at break unevenness is 4.65%, the evenness rate is 0.81%, the boiling water shrinkage rate is 8.6%, and the oiling rate is 1.2%.
- the method of using the production equipment in Example 1 to prepare ultra-fine polyester fibers with high uniformity uses polyester melt as the spinning raw material, and sequentially passes through the spinning box, the DIO spinning assembly, the ring blowing cooling device, and the clustering Oil device, spinning shaft, pre-netting device, drawing hot roll, yarn stabilizer, shaping hot roll, main netting device and winding machine to produce high uniformity ultra-fine polyester fiber;
- the spinning process parameters are: the wind pressure of the weak cooling zone I is 5Pa, the wind pressure of the cooling zone II is 20Pa, the speed of the drawing hot roller is 1400m/min; the temperature of the drawing hot roller is 85°C; is 4100m/min; the temperature of the shaping hot roll is 116°C; the winding speed is 4000m/min, and the pressure in the stabilizer is 0.35bar;
- the indexes of the obtained ultra-fine polyester fiber with high uniformity are: the linear density is 7dtex, the linear density unevenness is 0.21%, the breaking strength is 4.55cN/dtex, the breaking strength unevenness is 1.59%, and the elongation at break is 1.59%. It was 33.1%, the elongation at break was 4.02%, the evenness was 0.66%, the boiling water shrinkage was 8.5%, and the oiling rate was 1.1%.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
一种高均匀性超细聚酯纤维的生产设备及其制备方法,该生产设备包括纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、定型热辊、主网络器和卷绕机,在牵伸热辊和定型热辊之间设置稳丝器,稳丝器包括上壳体、下壳体、圆盘(3)、L型快插(5)、不锈钢管(4)、排污管(14)和滑移机构;该方法是:以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维,且设置稳丝器中压力为0.2~0.4bar;该方法在两热辊上受热均匀,牵伸定型效果好,制得高均匀性超细聚酯纤维。
Description
本发明属于聚酯纤维技术领域,涉及一种高均匀性超细聚酯纤维生产设备及制备方法。
随着我国国民经济的发展,衣着、装饰、产业用化纤需求日益增加,聚酯差别化纤维织物具有良好的性能及广泛地用途而快速发展。市场总需求的增长及下游纺织企业对差别化细旦、超细旦纤维的需求将促进我国化纤企业的转型,细旦化及线密度的降低赋予了超细纤维及其纺织品超越常规甚至天然纤维的优越性能。熔体直纺5D~7D/6F~8F超细聚酯纤维织物具有手感柔软细腻、滑糯、光泽柔和、高密度高保温性能等优良特性,并且随着织造、印染技术的发展,其更多潜在的特性也正在被日益发掘。该纤维具有轻柔、抗起球、易打理、高密透气等诸多优势,将其与拉成纤维状的金属丝混编织成金属纤维,可以进行粘接、缝制,易于制成不同的几何形状(如导电泡棉、导电胶带)对辐射源进行屏蔽,而且还可以缝制成屏蔽服、屏蔽帽等使工作人员免受电磁波的辐射,目前正在引起人们的密切注视,现已被列为新材料行列。其特点主要有:(1)屏蔽效率高,使用范围广;(2)具有优良的服用性能:织物轻薄、质地坚牢、穿着舒服、并有良好的吸湿散湿性。由于织物单薄不占多少空间,不用时可直接装入口袋中或者包中;(3)洗涤方便:洗涤方法和普通织物相同,经反复洗涤后,屏蔽性能不变。另外其织物还可以用在电子产品的芯片中,如手机电路板上。
5D~7D/6F~8F高均匀性超细聚酯纤维,由于其总线密度极细,孔数和喷丝孔挤出量少,熔体带出热量少,喷丝板面温度低,不利于纺丝,在现有技术中环吹冷却风冷却自DIO组件下来的初生纤维,因工艺风压力大,在两束丝之间易形成湍流,丝条晃动大,相互影响冷却效果,若风量调小整束丝晃动,光圈不稳定,油嘴温度高,容易飘丝断头,条干值也大;如图13~14所示,在现有技术中卷绕牵伸定型热辊中间仅有一分丝瓷片43,丝条42在牵伸定型时,在分丝器处晃动严重,丝条42易跳出分丝瓷片43,进入另一丝道中,两束丝并在一起,在热辊上受热不均匀,稳定性差。所以现有的喷丝孔设计、冷却环吹风、上油装置及卷绕方式很难生产出该产品,即使生产出超细聚酯纤维,也因断裂强度不匀率(CV)、断裂伸长不匀率(CV)和条干不匀率CV大,纤维内部质量不稳定,与金属丝混编后,则会在针织后的织物上产生差异,造成屏蔽效果差,只能用于普通的防辐射服装和建筑物装饰等,没有体现出真正的屏蔽效果。
发明内容
本发明的目的是解决现有技术中存在的上述问题,提供一种高均匀性超细聚酯纤维生产设备及制备方法。本发明提供的一种高均匀性超细聚酯纤维生产设备,采用一种特殊的喷丝微孔排列方式、环吹风冷却方法、集束上油导丝装置和稳丝器装置,旨在解决5D~7D/6F~8F超细纤维冷却、上油不均、生产稳定性差及生头困难等问题。
为达到上述目的,本发明采用的方案如下:
一种高均匀性超细聚酯纤维的生产设备,包括纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、定型热辊、主网络器和卷绕机,在牵伸热辊和定型热辊之间设置稳丝器;
稳丝器包括上壳体、下壳体、圆盘、L型快插、不锈钢管、排污管和滑移机构;上壳体为矩形面朝下的半圆柱体I,下壳体为矩形面朝上的半圆柱体II;半圆柱体I的矩形面I和半圆柱体II的矩形面II的宽度相等,且长度之比为1:1.6(该长度是为了使上壳体在滑移的过程中始终处于上壳体之中);半圆柱体I的矩形面I和半圆柱体II的矩形面II相对设置且都平行于水平面,半圆柱体II的左侧通过螺栓固定在圆盘的圆面上,且该圆面面对半圆柱体I的左侧;
圆盘的圆面上设一个通孔,L型快插穿过该通孔与不锈钢管连通;
半圆柱体II的右侧面固定设置限位块,限位块上固定定位销,半圆柱体I的右侧面上在矩形面I的边缘处形成凹槽B,定位销与凹槽B配合,用于对半圆柱体I的固定;
半圆柱体I内部结构为:半圆柱体I内部设:供不锈钢管穿入且沿水平方向运动的圆柱形通孔、与圆柱形通孔连通的矩形槽、与圆柱形通孔连通的环形槽;矩形槽位于圆柱形通孔的下方,矩形槽的底位于矩形面I上,矩形槽的底上设n个通孔;环形槽位于圆柱形通孔靠近圆盘的一端,用于放置O型圈实现对不锈钢管的密封(此时的密封是防止不锈钢管中出来的气压从不锈钢管的左端逸出,从而节约能源);
不锈钢管的长度与矩形面I的长度比为1:1~1.12(当上壳体滑移至最左端时,该长度是为了使不锈钢管被堵头密封);圆柱形通孔远离圆盘的一端设堵头,堵头与不锈钢管的一端相对,用于不锈钢管的密封;
半圆柱体II内部结构为:在半圆柱体II的矩形面II内,距离矩形边缘一定距离(一定距离为15mm)处向内凹陷 形成凹槽A,凹槽A内设置底座;底座的上表面形成均匀分布的n个优弧形凹槽,优弧形凹槽的中心轴与矩形面II的短边平行且贯穿底座的上表面,优弧形凹槽的开口宽度为1~2mm;矩形面II的两个长边的边缘处相对设置n个导丝钩a和n个导丝钩b,丝条依次穿过导丝钩a的过丝通道、优弧形凹槽的中心和导丝钩b的过丝通道形成的丝路路径呈直线;在底座上且垂直于优弧形凹槽的开槽方向的两侧面与其相对的凹槽A内侧壁保持一定距离形成通道H;压缩空气吹向优弧形凹槽内的丝条时,丝条会产生震荡,导丝钩a和导丝钩b起到稳定丝条作用;
n个导丝钩a和n个导丝钩b与矩形面II的两个长边的边缘处采用导丝钩架固定,导丝钩架与矩形面II采用螺栓固定;
滑移机构包括:矩形面II的两长边各设的导轨G(导轨长度为矩形面II长边的60%)、矩形面I的两长边左端各设的导轨C(导轨长度为矩形面I长边的30%)和U型拉杆,U型拉杆的两长边的一半嵌在导轨G内,另一半嵌在导轨C内,U型拉杆的左端设有向外延伸的挡块,实现半圆柱体I向右滑动;
半圆柱体I和半圆柱体II的相对位置关系:当定位销与半圆柱体I的右侧面上的凹槽B配合时,矩形槽内底板上的n个通孔与n个优弧形凹槽一一对应且分别位于优弧形凹槽的正上方;
排污装置:由排污管和通道H构成,排污管设在下壳体内并与通道H连通;
半圆柱体II的弧形面的中心处固定固定块,固定块上设置定位孔,采用六角螺丝钉穿过定位孔将下壳体固定在定型热辊的支架上。固定块两边各设有一定位孔,稳丝器通过定位孔及六角螺丝钉固定在定型热辊底座的支架上。
生头时:上壳体左推至左侧面贴近圆盘,不锈钢管右端与上壳体右端的堵头接触,此时,不锈钢管中的压缩空气不能进入上壳体中的通道内,生头拉杆的左端随上圆柱体左推时沿轨道运动至上壳体的右端,并锁住上半圆柱体,丝条自牵伸辊出来后,经生头拉杆上方依次经过导丝钩a、优弧形凹槽、导丝钩b,进入定型热辊。
生产时:上壳体通过U型拉杆向右拉进,不锈钢管和堵头脱离;上壳体上的凹槽B与下壳体上的限位块及定位销配合,固定住上半圆柱体I,自压空站输送过来的压缩空气经过不锈钢杆进入上壳体中,并通过半圆柱体I的矩形面I上的通孔吹向经过优弧形凹槽的丝条,使丝条产生轻微的绞络和缠绕,进一步提高丝条的抱合性,在牵伸定型热辊间运行稳定性增强,减少丝条晃动,丝条在绞络和缠绕过程中掉落的少量油剂通过喷嘴两侧通道H由左侧排污管排出。
作为优选的技术方案:
如上所述的一种高均匀性超细聚酯纤维的生产设备,稳丝器还包括限位机构;
限位机构包括:一个逆时针旋转90°的L形轨道和生头拉杆;
L形轨道位于半圆柱体I的弧面上,L形轨道的左端面与半圆柱体I的左侧面重合,L形轨道的右端面与半圆柱体I的右侧面重合,在垂直于矩形面I的方向上,L形轨道的左端低于L形轨道的右端;逆时针旋转90°的L形的横边与矩形面I的长边平行,且与该长边保持一定距离(一定距离为5mm),逆时针旋转90°的L形的竖边为倾斜状;
生头拉杆一端位于L形轨道内,另一端固定在半圆柱体II的右侧面上。
如上所述的一种高均匀性超细聚酯纤维的生产设备,导丝钩a为蜗牛状导丝钩;导丝钩b为双圆弧形导丝器;n的取值为1~48。
如上所述的一种高均匀性超细聚酯纤维的生产设备,蜗牛状导丝钩为左手向蜗牛状导丝钩和右手向蜗牛状导丝钩;且数量分别为n/2,左手向蜗牛状导丝钩和右手向蜗牛状导丝钩交叉设置。防止丝条跳出导丝钩,造成断头。
如上所述的一种高均匀性超细聚酯纤维的生产设备,DIO纺丝组件中内设圆形喷丝板,圆形喷丝板的喷丝微孔(出丝孔)所在圆面的直径方向上设凹槽,凹槽两侧的喷丝微孔关于凹槽对称分布,且每侧的喷丝微孔都呈等腰三角形排布;相对于现有技术中喷丝微孔呈圆形排布的情况,丝条冷却均匀性好,板面温度影响较小。
如上所述的一种高均匀性超细聚酯纤维的生产设备,每侧的喷丝微孔数量为6个,分布在等腰三角形上的喷丝微孔的数量相等。
如上所述的一种高均匀性超细聚酯纤维的生产设备,环吹风冷却装置包括环吹风箱及其中与喷丝板一一对应的环吹滤芯;
环吹风箱由垂直于丝束运行方向的隔板分隔为第一区域和第二区域,第一区域和第二区域分别独立连接两根冷却风进风管;弱冷却区I和冷却区II内的风压受冷却风进风管中的风压独立控制;
环吹滤芯中与第一区域对应的区域为弱冷却区I,环吹滤芯中第二区域对应的区域为冷却区II;环吹滤芯中心设有一块平行于丝束运行方向的中空矩形板,中空矩形板面向丝束的侧面都设若干孔,用于减弱环吹滤芯内两束丝之间冷却风的相互干扰;
中空矩形板的对应厚度方向的一边设置于圆形喷丝板上的凹槽内。相对于现有技术,可防止喷丝板板面受环吹风 影响,板面温度降低,出现注头、滴丝等异常,减弱了滤芯内两束丝之间冷却风的相互干扰,丝条在滤芯内运行稳定,均匀冷却,纤维间结构和性能差别小。
如上所述的一种高均匀性超细聚酯纤维的生产设备,第一区域和第二区域的高度比为1:2.5~3.0;中空矩形板的厚度与凹槽的最宽度的宽度的比例为1:1.3~1.5。
如上所述的一种高均匀性超细聚酯纤维的生产设备,集束上油装置为螺旋全接触式微孔上油装置;
螺旋全接触式微孔上油装置包括顺序连接的油管、快插、金属连接杆和螺旋瓷件结构;金属连接杆安装在纺位油架上;金属连接杆内设有第一中空通道,螺旋瓷件结构内设有第二中空通道,第二中空通道与第一中空通道连通;螺旋瓷件结构的螺旋部分形成过丝通道,且螺旋部分的靠近过丝通道的一侧成坡面,坡面上设有若干层环形集油槽和出油孔,出油孔位于集油槽的上方,且集油槽都围绕过丝通道分布;出油孔与第二中空通道连通;集油槽呈波纹状环形结构。
如上所述的一种高均匀性超细聚酯纤维的生产设备,金属连接杆的长度为3~4cm,第一中空通道的直径为3~5mm,第二中空通道的直径为3~5mm,出油孔的孔径为0.3~0.5mm,若干层环形集油槽为10~15层环形集油槽,且波纹状的波峰和波谷落差值为0.003~0.05mm,过丝通道的孔径为1~2mm。
采用如上所述的一种高均匀性超细聚酯纤维的生产设备制备高均匀性超细聚酯纤维的方法,以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
稳丝器中压力为0.2~0.4bar。
具体过程可以描述为:
(1)将聚酯熔体经计量泵计量后,由熔体管道均匀地分配到DIO组件中并从喷丝板上的喷丝孔中挤出形成初生纤维;
(2)冷却成形,从喷丝孔中挤出的初生纤维经过环吹风冷却装置冷却成形;
(3)集束上油,冷却成形后的纤维丝束经上油装置上油给湿;
(4)卷绕成型,纤维上油后,经甬道至预网络器进一步使丝条上油均匀后,进入牵伸热辊,经稳丝器时,自压空站输送过来的压缩空气通过快插进入不锈钢杆内,由不锈钢杆进入稳丝器半圆柱I内的通孔内,再通过通孔内的矩形槽内底板上的n个通孔吹向经过优弧形凹槽的丝条,使丝条产生轻微的绞络和缠绕后进入定型热辊牵伸定型,再经网络器缠绕,经过卷绕机卷绕成丝饼。
如上所述的一种高均匀性超细聚酯纤维的制备方法,纺丝工艺参数为:弱冷却区I的风压为5~10Pa,冷却区II的风压为15~20Pa。
如上所述的一种高均匀性超细聚酯纤维的制备方法,纺丝工艺参数还包括:喷丝板的微孔直径为0.16~0.19mm,长度为0.5~0.6mm;挤出温度为286~292℃;牵伸热辊速度为1200~1500m/min;牵伸热辊温度为82~88℃;定型热辊速度为3900~4200m/min;定型热辊温度为110~118℃;卷绕速度为3800~4100m/min。
如上所述的一种高均匀性超细聚酯纤维的制备方法,高均匀性超细聚酯纤维的指标为:所述线密度为5.5~7.6dtex,线密度不匀率(CV)≤0.6%,断裂强度≥4.1cN/dtex,断裂强度不匀率(CV)≤2.0%,断裂伸长率为25.5~33.5%,断裂伸长不匀率(CV)≤5.0%,条干不匀率(CV)≤0.82%,沸水收缩率为7.7~9.3%,上油率为1.0~1.18%。
本发明的原理是:
本发明制得超细纤维总线密度低,丝条牵伸张力小,且牵伸和定型热辊间距比较大,丝条在牵伸和定型热辊之间易受外界气流的干扰,晃动比较大,现有技术中梳状分丝器,只是起分丝作用,无法稳定丝条,且生头作业时,丝条晃动大,无法分清丝条,本发明的稳丝器,可以进一步提高丝条的抱合性,在牵伸定型热辊间运行稳定性增强,减少丝条晃动,生头操作方便,制得的超细纤维条干均匀性好,断裂伸长不匀率(CV)和断裂强度不匀率(CV)小,且生产稳定,产品品质高。
另外,本发明在环吹风箱内设有上下两个区域,环吹风箱内设有滤芯,滤芯中增加了一块整流板,滤芯设置为上下两个区域,分别对应于风箱内的两个区域。由于5D~7D/6F~8F纤维总线密度极细,单丝线密度粗,现有技术中自喷丝板喷出的初生纤维经环吹滤芯冷却时,需设置比较高的风压,才能冷却丝条,但由于总孔数少,冷却风极易穿过丝条,影响滤芯内的另一束丝,丝条晃动大,极易造成初生纤维冷却不均。本发明采用分区域冷却方法,在滤芯中加入一不锈钢整流板,且分两独立区域冷却,滤芯内的两束丝冷却时,相互干扰小,丝条在滤芯内运行稳定,冷却均匀。
而且,本发明中上油导丝装置,采用集束上油和导丝集于一体的方法对丝条上油给湿,同时采用螺旋结构的上油 装置,减少丝条与导丝瓷件摩擦次数,且采用多层集油槽的设计,可以减小丝束两侧因纺丝张力之间差异性所产生的上油不匀,极大的提高了上油均匀性及张力稳定性,提高了产品品质,降低了生产成本。
(1)本发明的一种高均匀性超细聚酯纤维生产设备,喷丝板上的喷丝微孔呈等腰三角形排布,冷却均匀性好;
(2)本发明的一种高均匀性超细聚酯纤维生产设备,在环吹滤芯中心设置整流板,整流板顶部嵌入喷丝板中心轴线凹槽内,可防止喷丝板板面受环吹风影响,板面温度降低,出现注头、滴丝等异常,减弱了滤芯内两束丝之间冷却风的相互干扰,丝条在滤芯内运行稳定,均匀冷却;
(3)本发明的一种高均匀性超细聚酯纤维生产设备,将导丝、上油两个装置合二为一,全接触螺旋360°上油,减少甚至消除静电,减小纺丝卷绕张力波动,极大提高上油均匀性及张力稳定性,提高产品品质,降低生产成本;
(4)本发明的一种高均匀性超细聚酯纤维的制备方法,制备流程简单,制得的高均匀性超细聚酯纤维同金属丝混编后,具有良好的电磁屏蔽效果,线密度不匀率(CV)小,条干和染色均匀性好;
(5)本发明的一种高均匀性超细聚酯纤维的制备方法,在牵伸定型热辊之间使用一种稳丝器装置,利用不锈钢管内的压缩空气通过通孔吹向丝条,使丝条产生轻微的绞络和缠绕,进一步提高丝条的抱合性,在牵伸定型热辊间运行稳定性增强,减少丝条晃动,在两热辊上受热均匀,牵伸定型效果好,制得高均匀性超细聚酯纤维。
图1为本发明的稳丝器装置的结构示意图;
图2为本发明的稳丝器在生头时的结构示意图;
图3为本发明的稳丝器在生产中的结构示意图
图4为本发明的导丝钩a的结构示意图;
图5为本发明的导丝钩b的结构示意图;
图6为本发明的U型拉杆的结构示意图
图7为本发明的生头拉杆的结构示意图
图8为本发明的优弧形凹槽和底座示意图;
图9为本发明的环吹风装置结构示意图;
图10为本发明的集束上油装置的整体结构示意图;
图11为本发明的集束上油装置中的螺旋瓷件的结构示意图;
图12为本发明的喷丝板上的喷丝孔的分布结构示意图
图13为本发明的现有技术中的分丝器的整体结构示意图;
图14为本发明的现有技术中的分丝器的局部放大结构示意图;
其中,1-半圆柱体I,2-半圆柱体II,3-圆盘,4-不锈钢管,5-L型快插,6-优弧形凹槽底座,7-优弧形凹槽,8-导丝钩a,9-导丝钩b,10-限位块,11-定位销,12-导轨G,13-U形拉杆,14-排污管,15-弧形固定块,16-内六角螺钉,17-通孔,18-环形槽,19-矩形槽,20-凹槽B,21-通孔,22-L型导轨,23-生头拉杆,24-环吹滤芯,25-矩形多孔板,26-弱冷却区I,27-冷却区II,28-第一区域,29-第二区域,30-油管,31-快插,32-金属连接杆,33-第一中空通道,34-第二中空通道,35-过丝通道,36-螺旋瓷件结构,37-出油孔,38-集油槽,39-喷丝板,40-喷丝微孔,41-凹槽,42-丝条,43-分丝瓷片。
下面结合具体实施方式,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
一种高均匀性超细聚酯纤维的生产设备,包括纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、定型热辊、主网络器和卷绕机,在牵伸热辊和定型热辊之间设置稳丝器;
如图1~3所示,稳丝器包括上壳体、下壳体、圆盘3、L型快插5、不锈钢管4、排污管14、滑移机构和限位机构;
上壳体为矩形面I朝下的半圆柱体I1,下壳体为矩形面II朝上的半圆柱体II 2;半圆柱体I 1的矩形面I和半圆柱体II 2的矩形面II的宽度相等,且长度之比为1:1.6;半圆柱体I 1的矩形面I和半圆柱体II 2的矩形面II相对设置且都平行于水平面,半圆柱体II 2的左侧通过螺栓固定在圆盘3的圆面上,且该圆面面对半圆柱体I 1的左侧;
圆盘3的圆面上设一个通孔,L型快插5穿过该通孔与不锈钢管4连通;
半圆柱体II 2的右侧面固定设置限位块10,限位块10上固定定位销11,半圆柱体I 1的右侧面上在矩形面I的边缘处形成凹槽B20,定位销11与凹槽B20配合;
半圆柱体I 1内部设:供不锈钢管4穿入且沿水平方向运动的圆柱形通孔17、与圆柱形通孔连通的矩形槽19和环形槽18;矩形槽19位于圆柱形通孔的下方,矩形槽19的底位于矩形面I上,矩形槽19的底(即矩形面I)上设n个通孔21,环形槽18位于圆柱形通孔17靠近圆盘3的一端,用于放置O型圈实现对不锈钢管4的密封;
不锈钢管4的长度与矩形面I的长度之比为1:1~1.12;圆柱形通孔17远离圆盘3的一端设堵头,堵头与不锈钢管4的一端相对,用于不锈钢管4的密封;
在半圆柱体II 2的矩形面II内,距离矩形面II边缘一定距离(一定距离为15mm)处向内凹陷形成凹槽A,凹槽A内设置底座6;底座6的上表面形成均匀分布的n个优弧形凹槽7(如图8所示),优弧形凹槽7的中心轴与矩形面II的短边平行且贯穿底座6的上表面,优弧形凹槽7的开口宽度为1~2mm;矩形面II的两个长边的边缘处相对设置n个导丝钩a8和n个导丝钩b9,丝条依次穿过导丝钩a8的过丝通道、优弧形凹槽7的中心和导丝钩b9的过丝通道形成的丝路路径呈直线;在底座6上且垂直于优弧形凹槽的开槽方向的两侧面与其相对的凹槽A内侧壁保持一定距离形成通道H;n个导丝钩a8和n个导丝钩b9与矩形面II的两个长边的边缘处采用导丝钩架固定,导丝钩架与矩形面II采用螺栓固定;如图4~5所示,导丝钩a8为蜗牛状导丝钩;导丝钩b为双圆弧形导丝器。蜗牛状导丝钩为左手向蜗牛状导丝钩和右手向蜗牛状导丝钩;且数量分别为n/2,左手向蜗牛状导丝钩和右手向蜗牛状导丝钩交叉设置;n的取值为1~48;
滑移机构包括:矩形面II的两长边各设的导轨G12(导轨长度为矩形面II长边的60%)、矩形面I的两长边左端各设的导轨C(导轨长度为矩形面I长边的30%)和U型拉杆13(如图6所示),U型拉杆13的两长边的一半嵌在导轨G12内,另一半嵌在导轨C内,U型拉杆13的左端设有向外延伸的挡块,实现半圆柱体I 1向右滑动;
当定位销11与半圆柱体I 1的右侧面上的凹槽B20配合时,矩形槽19内底板上的n个通孔21与n个优弧形凹槽7一一对应且分别位于优弧形凹槽7的正上方;
排污装置:由排污管14和通道H构成,排污管14设在下壳体并与通道H连通;
半圆柱体II的弧形面的中心处固定有弧形固定块15,弧形固定块15上设置定位孔,采用六角螺丝钉16穿过定位孔将下壳体固定在定型热辊的底部支架上;
限位机构包括:一个逆时针旋转90°的L形轨道22和生头拉杆23(如图7所示);L形轨道22位于半圆柱体I 1的弧面上,L形轨道22的左端面与半圆柱体I 1的左侧面重合,L形轨道22的右端面与半圆柱体I 1的右侧面重合,在垂直于矩形面I的方向上,L形轨道22的左端低于L形轨道22的右端;逆时针旋转90°的L形的横边与矩形面I的长边平行,且与该长边的保持一定距离(一定距离为5mm),逆时针旋转90°的L形的竖边为倾斜状;生头拉杆23一端位于L形轨道22内,另一端固定在半圆柱体II 2的右侧面上。
DIO纺丝组件中内设圆形喷丝板39,圆形喷丝板39的喷丝微孔40(出丝孔)所在圆面的直径方向上设凹槽41(如图12所示),凹槽41两侧的喷丝微孔40关于凹槽41对称分布,且每侧的喷丝微孔40都呈等腰三角形排布。每侧的喷丝微孔40数量为6个,分布在等腰三角形上的喷丝微孔40的数量相等。
如图9所示,环吹风冷却装置包括环吹风箱及其中与喷丝板39一一对应的环吹滤芯;环吹风箱由垂直于丝束运行方向的隔板分隔为第一区域28和第二区域29,第一区域28和第二区域29分别独立连接两根冷却风进风管;环吹滤芯24中与第一区域28对应的区域为弱冷却区I 26,环吹滤芯24中第二区域29对应的区域为冷却区II 27;环吹滤芯24中心设有一块平行于丝束运行方向的中空矩形板25,中空矩形板25面向丝束的侧面都设若干孔,用于减弱环吹滤芯内两束丝之间冷却风的相互干扰;中空矩形板25的对应厚度方向的一边设置于圆形喷丝板39上的凹槽41内。(滤芯中的中空矩形板焊接在滤芯中,生产中中空矩形板嵌在喷丝板中间凹槽内,不需要固定);第一区域28和第二区域29的高度比为1:2.5~3.0;中空矩形板25的厚度与凹槽的最宽的宽度的比例为1:1.3~1.5。
集束上油装置为螺旋全接触式微孔上油装置;螺旋全接触式微孔上油装置包括顺序连接的油管30、快插31、金属连接杆32和螺旋瓷件结构36;金属连接杆32内设有第一中空通道33,螺旋瓷件结构36内设有第二中空通道34,第二中空通道34与第一中空通道33连通;螺旋瓷件结构36的螺旋部分形成过丝通道,且螺旋部分的靠近过丝通道的一侧成坡面,坡面上设有若干层环形集油槽38和出油孔37,出油孔37位于集油槽38的上方,且集油槽38都围绕过丝通道分布;出油孔37与第二中空通道34连通;集油槽38呈波纹状环形结构。金属连接杆32的长度为3~4cm,第一中空通道33的直径为3~5mm,第二中空通道34的直径为3~5mm,出油孔37的孔径为0.3~0.5mm,若干层环形集油 槽为10~15层环形集油槽,且波纹状的波峰和波谷落差值为0.003~0.05mm,过丝通道的孔径为1~2mm。
实施例1
一种高均匀性超细聚酯纤维的生产设备,包括纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、定型热辊、主网络器和卷绕机,在牵伸热辊和定型热辊之间设置稳丝器;
如图1~3所示,稳丝器包括上壳体、下壳体、圆盘3、L型快插5、不锈钢管4、排污管14、滑移机构和限位机构;
上壳体为矩形面I朝下的半圆柱体I 1,下壳体为矩形面II朝上的半圆柱体II 2;半圆柱体I 1的矩形面I和半圆柱体II 2的矩形面II的宽度相等,且长度之比为1:1.6;半圆柱体I 1的矩形面I和半圆柱体II 2的矩形面II相对设置且都平行于水平面,半圆柱体II 2的左侧通过螺栓固定在圆盘3的圆面上,且该圆面面对半圆柱体I 1的左侧;
圆盘3的圆面上设一个通孔,L型快插5穿过该通孔与不锈钢管4连通;
半圆柱体II 2的右侧面固定设置限位块10,限位块10上固定定位销11,半圆柱体I 1的右侧面上在矩形面I的边缘处形成凹槽B20,定位销11与凹槽B20配合;
半圆柱体I 1内部设:供不锈钢管4穿入且沿水平方向运动的圆柱形通孔17、与圆柱形通孔连通的矩形槽19和环形槽18;矩形槽19位于圆柱形通孔的下方,矩形槽19的底位于矩形面I上,矩形槽19的底(即矩形面I)上设24个通孔21,环形槽18位于圆柱形通孔17靠近圆盘3的一端,用于放置O型圈实现对不锈钢管4的密封;
不锈钢管4的长度与矩形面I的长度之比为1:1.12;圆柱形通孔17远离圆盘3的一端设堵头,堵头与不锈钢管4的一端相对,用于不锈钢管4的密封;
在半圆柱体II 2的矩形面II内,距离矩形面II边缘一定距离(一定距离为15mm)处向内凹陷形成凹槽A,凹槽A内设置底座6;底座6的上表面形成均匀分布的24个优弧形凹槽7(如图8所示),优弧形凹槽7的中心轴与矩形面II的短边平行且贯穿底座6的上表面,优弧形凹槽7的开口宽度为1mm;矩形面II的两个长边的边缘处相对设置24个导丝钩a8和24个导丝钩b9,丝条依次穿过导丝钩a8的过丝通道、优弧形凹槽7的中心和导丝钩b9的过丝通道形成的丝路路径呈直线;在底座6上且垂直于优弧形凹槽的开槽方向的两侧面与其相对的凹槽A内侧壁保持一定距离形成通道H;24个导丝钩a8和24个导丝钩b9与矩形面II的两个长边的边缘处采用导丝钩架固定,导丝钩架与矩形面II采用螺栓固定;如图4~5所示,导丝钩a8为蜗牛状导丝钩;导丝钩b为双圆弧形导丝器。蜗牛状导丝钩为左手向蜗牛状导丝钩和右手向蜗牛状导丝钩;且数量分别为12,左手向蜗牛状导丝钩和右手向蜗牛状导丝钩交叉设置。
滑移机构包括:矩形面II的两长边各设的导轨G12(导轨长度为矩形面II长边的60%)、矩形面I的两长边左端各设的导轨C(导轨长度为矩形面I长边的30%)和U型拉杆13(如图6所示),U型拉杆13的两长边的一半嵌在导轨G12内,另一半嵌在导轨C内,U型拉杆13的左端设有向外延伸的挡块,实现半圆柱体I 1向右滑动;
当定位销11与半圆柱体I 1的右侧面上的凹槽B20配合时,矩形槽19内底板上的24个通孔21与24个优弧形凹槽7一一对应且分别位于优弧形凹槽7的正上方;
排污装置:由排污管14和通道H构成,排污管14设在下壳体并与通道H连通;
半圆柱体II的弧形面的中心处固定有弧形固定块15,弧形固定块15上设置定位孔,采用六角螺丝钉16穿过定位孔将下壳体固定在定型热辊的底部支架上。
限位机构包括:一个逆时针旋转90°的L形轨道22和生头拉杆23(如图7所示);L形轨道22位于半圆柱体I 1的弧面上,L形轨道22的左端面与半圆柱体I 1的左侧面重合,L形轨道22的右端面与半圆柱体I 1的右侧面重合,在垂直于矩形面I的方向上,L形轨道22的左端低于L形轨道22的右端;逆时针旋转90°的L形的横边与矩形面I的长边平行,且与该长边的保持一定距离(一定距离为5mm),逆时针旋转90°的L形的竖边为倾斜状;生头拉杆23一端位于L形轨道22内,另一端固定在半圆柱体II 2的右侧面上。
DIO纺丝组件中内设圆形喷丝板39,圆形喷丝板39的喷丝微孔40(出丝孔)所在圆面的直径方向上设凹槽41(如图12所示),凹槽41两侧的喷丝微孔40关于凹槽41对称分布,且每侧的喷丝微孔40都呈等腰三角形排布。每侧的喷丝微孔40数量为6个,分布在等腰三角形上的喷丝微孔40的数量相等。
如图9所示,环吹风冷却装置包括环吹风箱及其中与喷丝板39一一对应的环吹滤芯;环吹风箱由垂直于丝束运行方向的隔板分隔为第一区域28和第二区域29,第一区域28和第二区域29分别独立连接两根冷却风进风管;环吹滤芯24中与第一区域28对应的区域为弱冷却区I 26,环吹滤芯24中第二区域29对应的区域为冷却区II 27;环吹滤芯24中心设有一块平行于丝束运行方向的中空矩形板25,中空矩形板25面向丝束的侧面都设若干孔,用于减弱环吹滤芯内两束丝之间冷却风的相互干扰;中空矩形板25的对应厚度方向的一边设置于圆形喷丝板39上的凹槽41内。第一区域28和第二区域29的高度比为1:2.5;中空矩形板25的厚度与凹槽的最宽的宽度的比例为1:1.3。
如图10所示,集束上油装置为螺旋全接触式微孔上油装置;螺旋全接触式微孔上油装置包括顺序连接的油管30、快插31、金属连接杆32和螺旋瓷件结构36(如图11所示);金属连接杆32内设有第一中空通道33,螺旋瓷件结构36内设有第二中空通道34,第二中空通道34与第一中空通道33连通;螺旋瓷件结构36的螺旋部分形成过丝通道,且螺旋部分的靠近过丝通道的一侧成坡面,坡面上设有若干层环形集油槽38和出油孔37,出油孔37位于集油槽38的上方,且集油槽38都围绕过丝通道分布;出油孔37与第二中空通道34连通;集油槽38呈波纹状环形结构。金属连接杆32的长度为3cm,第一中空通道33的直径为4mm,第二中空通道34的直径为4mm,出油孔37的孔径为0.4mm,若干层环形集油槽为12层环形集油槽,且波纹状的波峰和波谷落差值为0.02mm,过丝通道的孔径为1.5mm。
实施例2
采用实施例1中的生产设备制备高均匀性超细聚酯纤维的方法,是以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
其中,纺丝工艺参数为:弱冷却区I的风压为5Pa,冷却区II的风压为15Pa,牵伸热辊速度为1200m/min;牵伸热辊温度为82℃;定型热辊速度为3900m/min;定型热辊温度为110℃;卷绕速度为3800m/min,稳丝器中压力为0.2bar;
制得的高均匀性超细聚酯纤维的指标为:线密度为5.5dtex,线密度不匀率为0.2%,断裂强度为4.2cN/dtex,断裂强度不匀率为1.9%,断裂伸长率为29.8%,断裂伸长不匀率为3.5%,条干不匀率为0.68%,沸水收缩率为9%,上油率为1.18%。
实施例3
采用实施例1中的生产设备制备高均匀性超细聚酯纤维的方法,是以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
其中,纺丝工艺参数为:弱冷却区I的风压为6Pa,冷却区II的风压为16Pa,牵伸热辊速度为1260m/min;牵伸热辊温度为84℃;定型热辊速度为3945m/min;定型热辊温度为112℃;卷绕速度为3850m/min,稳丝器中压力为0.2bar;
制得的高均匀性超细聚酯纤维的指标为:线密度为6dtex,线密度不匀率为0.05%,断裂强度为4.35cN/dtex,断裂强度不匀率为1.85%,断裂伸长率为30%,断裂伸长不匀率为4.1%,条干不匀率为0.72%,沸水收缩率为9.1%,上油率为1.18%。
实施例4
采用实施例1中的生产设备制备高均匀性超细聚酯纤维的方法,是以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
其中,纺丝工艺参数为:弱冷却区I的风压为7Pa,冷却区II的风压为17Pa,牵伸热辊速度为1300m/min;牵伸热辊温度为86℃;定型热辊速度为4050m/min;定型热辊温度为115℃;卷绕速度为3950m/min,稳丝器中压力为0.28bar;
制得的高均匀性超细聚酯纤维的指标为:线密度为6.6dtex,线密度不匀率为0.1%,断裂强度为4.46cN/dtex,断裂强度不匀率为1.98%,断裂伸长率为30.6%,断裂伸长不匀率为4.3%,条干不匀率为0.81%,沸水收缩率为9.1%,上油率为1.16%。
实施例5
采用实施例1中的生产设备制备高均匀性超细聚酯纤维的方法,是以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
其中,纺丝工艺参数为:弱冷却区I的风压为8Pa,冷却区II的风压为20Pa,牵伸热辊速度为1450m/min;牵伸热辊温度为87℃;定型热辊速度为4150m/min;定型热辊温度为117℃;卷绕速度为4050m/min,稳丝器中压力为0.38bar;
制得的高均匀性超细聚酯纤维的指标为:线密度为7.3dtex,线密度不匀率为0.28%,断裂强度为4.72cN/dtex,断裂强度不匀率为1.7%,断裂伸长率为31.1%,断裂伸长不匀率为3.95%,条干不匀率为0.75%,沸水收缩率为9.2%,上油率为1.16%。
实施例6
采用实施例1中的生产设备制备高均匀性超细聚酯纤维的方法,是以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
其中,纺丝工艺参数为:弱冷却区I的风压为10Pa,冷却区II的风压为18Pa,牵伸热辊速度为1500m/min;牵伸热辊温度为88℃;定型热辊速度为4200m/min;定型热辊温度为118℃;卷绕速度为4100m/min,稳丝器中压力为0.4bar;
制得的高均匀性超细聚酯纤维的指标为:线密度为7.6dtex,线密度不匀率为0.3%,断裂强度为4.68cN/dtex,断裂强度不匀率为1.75%,断裂伸长率为32.5%,断裂伸长不匀率为4.65%,条干不匀率为0.81%,沸水收缩率为8.6%,上油率为1.2%。
实施例7
采用实施例1中的生产设备制备高均匀性超细聚酯纤维的方法,是以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;
其中,纺丝工艺参数为:弱冷却区I的风压为5Pa,冷却区II的风压为20Pa,牵伸热辊速度为1400m/min;牵伸热辊温度为85℃;定型热辊速度为4100m/min;定型热辊温度为116℃;卷绕速度为4000m/min,稳丝器中压力为0.35bar;
制得的高均匀性超细聚酯纤维的指标为:线密度为7dtex,线密度不匀率为0.21%,断裂强度为4.55cN/dtex,断裂强度不匀率为1.59%,断裂伸长率为33.1%,断裂伸长不匀率为4.02%,条干不匀率为0.66%,沸水收缩率为8.5%,上油率为1.1%。
Claims (14)
- 一种高均匀性超细聚酯纤维的生产设备,包括纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、定型热辊、主网络器和卷绕机,其特征是:在牵伸热辊和定型热辊之间设置稳丝器;稳丝器包括上壳体、下壳体、圆盘(3)、L型快插(5)、不锈钢管(4)、排污管(14)和滑移机构;上壳体为矩形面I朝下的半圆柱体I(1),下壳体为矩形面II朝上的半圆柱体II(2);半圆柱体I(1)的矩形面I和半圆柱体II(2)的矩形面II的宽度相等;半圆柱体I(1)的矩形面I和半圆柱体II(2)的矩形面II相对设置且都平行于水平面,半圆柱体II(2)的左侧通过螺栓固定在圆盘(3)的圆面上,且该圆面面对半圆柱体I(1)的左侧;圆盘(3)的圆面上设一个通孔,L型快插(5)穿过该通孔与不锈钢管(4)连通;半圆柱体II(2)的右侧面固定设置限位块(10),限位块(10)上固定定位销(11),半圆柱体I(1)的右侧面上在矩形面I的边缘处形成凹槽B(20),定位销(11)与凹槽B(20)配合;半圆柱体I(1)内部设:供不锈钢管(4)穿入且沿水平方向运动的圆柱形通孔(17)、与圆柱形通孔连通的矩形槽(19)和环形槽(18);矩形槽位于圆柱形通孔的下方,矩形槽的底位于矩形面I上,矩形槽的底上设n个通孔(21),环形槽(18)位于圆柱形通孔(17)靠近圆盘的一端,用于放置O型圈实现对不锈钢管(4)的密封;不锈钢管(4)的长度与矩形面I的长度比为1:1~1.12;圆柱形通孔(17)远离圆盘(3)的一端设堵头;在半圆柱体II(2)的矩形面II内,距离矩形面II边缘一定距离处向内凹陷形成凹槽A,凹槽A内设置底座(6);底座(6)的上表面形成均匀分布的n个优弧形凹槽(7),优弧形凹槽的中心轴与矩形面II的短边平行且贯穿底座(6)的上表面;矩形面II的两个长边的边缘处相对设置n个导丝钩a(8)和n个导丝钩b(9),丝条依次穿过导丝钩a的过丝通道、优弧形凹槽的中心和导丝钩b的过丝通道形成的丝路路径呈直线;在底座(6)上且垂直于优弧形凹槽的开槽方向的两侧面与其相对的凹槽A内侧壁保持一定距离形成通道H;n个导丝钩a和n个导丝钩b与矩形面II的两个长边的边缘处采用导丝钩架固定,导丝钩架与矩形面II采用螺栓固定;滑移机构包括:矩形面II的两长边各设的导轨G(12)、矩形面I的两长边左端各设的导轨C和U型拉杆(13),U型拉杆(13)的两长边的一半嵌在导轨G(12)内,另一半嵌在导轨C内,U型拉杆(13)的左端设有向外延伸的挡块,实现半圆柱体I(1)向右滑动;当定位销(11)与半圆柱体I(1)的右侧面上的凹槽B配合时,矩形槽(19)内底板上的n个通孔(21)与n个优弧形凹槽(7)一一对应且分别位于优弧形凹槽的正上方;排污装置:由排污管(14)和通道H构成,排污管(14)设在下壳体内并与通道H连通;半圆柱体II的弧形面的中心处固定有弧形固定块(15),弧形固定块(15)上设置定位孔,采用六角螺丝钉(16)穿过定位孔将下壳体固定在定型热辊的底部支架上。
- 根据权利要求1所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,稳丝器还包括限位机构;限位机构包括:一个逆时针旋转90°的L形轨道(22)和生头拉杆(23);L形轨道(22)位于半圆柱体I(1)的弧面上,L形轨道(22)的左端面与半圆柱体I(1)的左侧面重合,L形轨道(22)的右端面与半圆柱体I(1)的右侧面重合,在垂直于矩形面I的方向上,L形轨道(22)的左端低于L形轨道(22)的右端;逆时针旋转90°的L形的横边与矩形面I的长边平行,且与该长边保持一定距离,逆时针旋转90°的L形的竖边为倾斜状;生头拉杆(23)一端位于L形轨道(22)内,另一端固定在半圆柱体II(2)的右侧面上。
- 根据权利要求1所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,导丝钩a为蜗牛状导丝钩(9);导丝钩b为双圆弧形导丝器(8),优弧形凹槽的开口宽度为1~2mm;半圆柱体I(1)的矩形面I和半圆柱体II(2)的矩形面II的长度之比为1:1.6;n的取值为1~48。
- 根据权利要求3所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,蜗牛状导丝钩(9)为左手向蜗牛状导丝钩和右手向蜗牛状导丝钩;且数量分别为n/2,左手向蜗牛状导丝钩和右手向蜗牛状导丝钩交叉设置。
- 根据权利要求1所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,DIO纺丝组件中内设圆形喷丝板(39),圆形喷丝板(39)的喷丝微孔(40)所在圆面的直径方向上设凹槽(41),凹槽(41)两侧的喷丝微孔(40)关于凹槽(41)对称分布,且每侧的喷丝微孔(40)都呈等腰三角形排布。
- 根据权利要求5所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,每侧的喷丝微孔(40)数量为6个,分布在等腰三角形上的喷丝微孔(40)的数量相等。
- 根据权利要求1所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,环吹风冷却装置包括环吹风箱及其中与喷丝板(39)一一对应的环吹滤芯;环吹风箱由垂直于丝束运行方向的隔板分隔为第一区域(28)和第二区域(29),第一区域(28)和第二区域(29)分别独立连接两根冷却风进风管;环吹滤芯(24)中与第一区域(28)对应的区域为弱冷却区I(26),环吹滤芯(24)中第二区域(29)对应的区域为冷却区II(27);环吹滤芯(24)中心设有一块平行于丝束运行方向的中空矩形板(25),中空矩形板(25)面向丝束的侧面都设若干孔,用于减弱环吹滤芯内两束丝之间冷却风的相互干扰;中空矩形板(25)的对应厚度方向的一边设置于圆形喷丝板(39)上的凹槽(41)内。
- 根据权利要求7所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,第一区域(28)和第二区域(29)的高度比为1:2.5~3.0;中空矩形板(25)的厚度与凹槽的最宽的宽度的比例为1:1.3~1.5。
- 根据权利要求1所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,集束上油装置为螺旋全接触式微孔上油装置;螺旋全接触式微孔上油装置包括顺序连接的油管(30)、快插(31)、金属连接杆(32)和螺旋瓷件结构(36);金属连接杆(32)内设有第一中空通道(33),螺旋瓷件结构(36)内设有第二中空通道(34),第二中空通道(34)与第一中空通道(33)连通;螺旋瓷件结构(36)的螺旋部分形成过丝通道,且螺旋部分的靠近过丝通道的一侧成坡面,坡面上设有若干层环形集油槽(38)和出油孔(37),出油孔位于集油槽(38)的上方,且集油槽(38)都围绕过丝通道分布;出油孔(37)与第二中空通道(34)连通;集油槽(38)呈波纹状环形结构。
- 根据权利要求9所述的一种高均匀性超细聚酯纤维的生产设备,其特征在于,金属连接杆(32)的长度为3~4cm,第一中空通道(33)的直径为3~5mm,第二中空通道(34)的直径为3~5mm,出油孔(37)的孔径为0.3~0.5mm,若干层环形集油槽为10~15层环形集油槽,且波纹状的波峰和波谷落差值为0.003~0.05mm,过丝通道的孔径为1~2mm。
- 采用如权利要求1~10中任一项所述的一种高均匀性超细聚酯纤维的生产设备制备高均匀性超细聚酯纤维的方法,其特征是:以聚酯熔体为纺丝原料,依次经过纺丝箱体、DIO纺丝组件、环吹风冷却装置、集束上油装置、纺丝甬道、预网络器、牵伸热辊、稳丝器、定型热辊、主网络器和卷绕机,制得高均匀性超细聚酯纤维;稳丝器中压力为0.2~0.4bar。
- 根据权利要求11所述的一种高均匀性超细聚酯纤维的制备方法,其特征在于,纺丝工艺参数为:弱冷却区I的风压为5~10Pa,冷却区II的风压为15~20Pa。
- 根据权利要求12所述的一种高均匀性超细聚酯纤维的制备方法,其特征在于,纺丝工艺参数还包括:牵伸热辊速度为1200~1500m/min;牵伸热辊温度为82~88℃;定型热辊速度为3900~4200m/min;定型热辊温度为110~118℃;卷绕速度为3800~4100m/min。
- 根据权利要求11所述的一种高均匀性超细聚酯纤维的制备方法,其特征在于,高均匀性超细聚酯纤维的指标为:线密度为5.5~7.6dtex,线密度不匀率为≤0.6%,断裂强度≥4.1cN/dtex,断裂强度不匀率≤2%,断裂伸长率为25.5~33.5%,断裂伸长不匀率≤5.0%,条干不匀率≤0.82%,沸水收缩率为7.7~9.3%,上油率为1.0~1.18%。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227022770A KR102532807B1 (ko) | 2020-12-22 | 2021-09-01 | 고균일성 초극세 폴리에스테르 섬유 생산 설비 및 이의 제조 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011528110.7A CN112695391B (zh) | 2020-12-22 | 2020-12-22 | 一种高均匀性超细聚酯纤维生产设备及制备方法 |
CN202011528110.7 | 2020-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022134653A1 true WO2022134653A1 (zh) | 2022-06-30 |
Family
ID=75510561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/115898 WO2022134653A1 (zh) | 2020-12-22 | 2021-09-01 | 一种高均匀性超细聚酯纤维生产设备及制备方法 |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102532807B1 (zh) |
CN (1) | CN112695391B (zh) |
WO (1) | WO2022134653A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116516533A (zh) * | 2023-07-04 | 2023-08-01 | 山东森荣新材料股份有限公司 | 一种丝线加捻热定型一体机及其使用方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112695391B (zh) * | 2020-12-22 | 2021-09-07 | 江苏德力化纤有限公司 | 一种高均匀性超细聚酯纤维生产设备及制备方法 |
CN116180289A (zh) * | 2023-01-06 | 2023-05-30 | 苏州市卡尔精密陶瓷有限公司 | 一种锦纶fdy主网络器 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4087267A (en) * | 1976-10-22 | 1978-05-02 | Saint-Gobain Industries | Controls for use in fiberization systems embodying means for suppression of pollution |
CN201313959Y (zh) * | 2008-11-29 | 2009-09-23 | 湖南中泰特种装备有限责任公司 | 纺丝成形辅助设备 |
CN101724923A (zh) * | 2009-11-16 | 2010-06-09 | 江苏盛虹化纤有限公司 | 超细涤纶全牵伸丝及其生产加工工艺 |
CN204171493U (zh) * | 2014-08-21 | 2015-02-25 | 北京迪蒙卡特机床有限公司 | 一种电极丝稳丝装置 |
CN208341945U (zh) * | 2018-06-27 | 2019-01-08 | 北京东兴润滑剂有限公司 | 四柱型稳丝器 |
CN112695391A (zh) * | 2020-12-22 | 2021-04-23 | 江苏德力化纤有限公司 | 一种高均匀性超细聚酯纤维生产设备及制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH448370A (de) * | 1965-01-19 | 1967-12-15 | Allied Chem | Verfahren zum Schmelzspinnen von Polycaproamid und Spinnturm zur Durchführung des Verfahrens |
KR200207534Y1 (ko) | 2000-07-18 | 2000-12-15 | 다이나제트주식회사 | 수평으로 실을 뽑는 금형 |
KR100513849B1 (ko) * | 2003-12-11 | 2005-09-09 | 최영호 | 냉각 필터 및 이를 구비한 화학 섬유사 제조 장치 |
-
2020
- 2020-12-22 CN CN202011528110.7A patent/CN112695391B/zh active Active
-
2021
- 2021-09-01 KR KR1020227022770A patent/KR102532807B1/ko active IP Right Grant
- 2021-09-01 WO PCT/CN2021/115898 patent/WO2022134653A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4087267A (en) * | 1976-10-22 | 1978-05-02 | Saint-Gobain Industries | Controls for use in fiberization systems embodying means for suppression of pollution |
CN201313959Y (zh) * | 2008-11-29 | 2009-09-23 | 湖南中泰特种装备有限责任公司 | 纺丝成形辅助设备 |
CN101724923A (zh) * | 2009-11-16 | 2010-06-09 | 江苏盛虹化纤有限公司 | 超细涤纶全牵伸丝及其生产加工工艺 |
CN204171493U (zh) * | 2014-08-21 | 2015-02-25 | 北京迪蒙卡特机床有限公司 | 一种电极丝稳丝装置 |
CN208341945U (zh) * | 2018-06-27 | 2019-01-08 | 北京东兴润滑剂有限公司 | 四柱型稳丝器 |
CN112695391A (zh) * | 2020-12-22 | 2021-04-23 | 江苏德力化纤有限公司 | 一种高均匀性超细聚酯纤维生产设备及制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116516533A (zh) * | 2023-07-04 | 2023-08-01 | 山东森荣新材料股份有限公司 | 一种丝线加捻热定型一体机及其使用方法 |
CN116516533B (zh) * | 2023-07-04 | 2023-08-22 | 山东森荣新材料股份有限公司 | 一种丝线加捻热定型一体机及其使用方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102532807B1 (ko) | 2023-05-16 |
KR20220107285A (ko) | 2022-08-02 |
CN112695391A (zh) | 2021-04-23 |
CN112695391B (zh) | 2021-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022134653A1 (zh) | 一种高均匀性超细聚酯纤维生产设备及制备方法 | |
JP4630193B2 (ja) | 炭素繊維前駆体繊維束の製造方法及び製造装置 | |
CN103437018B (zh) | 一种超仿真蚕丝型锦氨空气包覆丝的生产工艺 | |
CN100357505C (zh) | 高强低伸型特粗旦丙纶丝及其生产方法 | |
CN101328619B (zh) | 一种大有光“一”形聚酯长丝的制造方法 | |
WO2023116210A1 (zh) | 一种poy/fdy涤涤复合丝的制备方法 | |
CN104480556A (zh) | 一种高速纺潜在卷缩涤纶长丝的生产工艺 | |
CN107075743A (zh) | 聚苯硫醚单丝及其制造方法、以及卷装体 | |
CN113089114A (zh) | 一种提高粗旦多孔异形长丝pet-poy内在质量均匀性的工艺方法 | |
WO2021238099A1 (zh) | 一种复合纺丝设备及复合纺丝工艺 | |
CN117488419B (zh) | 一种低孔高匀微细聚酯纤维的制备装置及制备方法 | |
CN112458554B (zh) | 一种低线密度聚酯纤维的生产设备及制备方法 | |
CN116497472A (zh) | 一种再生全消光超细旦聚酯纤维的制备工艺 | |
CN115652450B (zh) | 一种仿毛聚酯纤维及其制备方法和加工设备 | |
CN208701268U (zh) | 一种高品质12头纺细旦高强低缩型涤纶工业丝的生产系统 | |
WO2018090369A1 (zh) | 一种聚合物纤维负压熔融纺丝成形方法 | |
CN116288761B (zh) | 一种闪光中空涤纶长丝及其生产设备和制备方法 | |
Zhang et al. | Tailored process for spinning fine denier bio-based polyamide 56 fibers | |
JPS6215321A (ja) | ポリエステル異断面混繊糸の製造方法 | |
CN112813512B (zh) | 一种双w形异形中空涤纶fdy纤维及其制备方法 | |
CN218404702U (zh) | 上浆干燥一体化装置 | |
CN113502558B (zh) | 一种聚苯硫醚长丝制备的辅助装置及制备方法 | |
CN221440973U (zh) | 一种用于长丝加工用的加捻装置 | |
CN115559062B (zh) | 一种新型纺粘生产线在线功能添加装置 | |
CN111926398B (zh) | 一种超弹阻燃粗旦多孔pet-dty的工艺方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 20227022770 Country of ref document: KR Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21908656 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21908656 Country of ref document: EP Kind code of ref document: A1 |