WO2022134527A1 - 一种半导体磷化物注入合成系统及控制方法 - Google Patents

一种半导体磷化物注入合成系统及控制方法 Download PDF

Info

Publication number
WO2022134527A1
WO2022134527A1 PCT/CN2021/104407 CN2021104407W WO2022134527A1 WO 2022134527 A1 WO2022134527 A1 WO 2022134527A1 CN 2021104407 W CN2021104407 W CN 2021104407W WO 2022134527 A1 WO2022134527 A1 WO 2022134527A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphorus source
source carrier
pressure
phosphide
thermocouple
Prior art date
Application number
PCT/CN2021/104407
Other languages
English (en)
French (fr)
Inventor
孙聂枫
王书杰
刘惠生
孙同年
Original Assignee
中国电子科技集团公司第十三研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202011543426.3A external-priority patent/CN112708935B/zh
Priority claimed from CN202023142510.2U external-priority patent/CN215028656U/zh
Application filed by 中国电子科技集团公司第十三研究所 filed Critical 中国电子科技集团公司第十三研究所
Priority to JP2022556470A priority Critical patent/JP2024500256A/ja
Priority to US17/797,081 priority patent/US20230049408A1/en
Publication of WO2022134527A1 publication Critical patent/WO2022134527A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • B01J6/005Fusing
    • B01J6/007Fusing in crucibles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/082Other phosphides of boron, aluminium, gallium or indium
    • C01B25/087Other phosphides of boron, aluminium, gallium or indium of gallium or indium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B28/00Production of homogeneous polycrystalline material with defined structure
    • C30B28/04Production of homogeneous polycrystalline material with defined structure from liquids
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/44Gallium phosphide
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention belongs to the technical field of semiconductor phosphide preparation, in particular to a semiconductor phosphide injection synthesis system and a control method.
  • Semiconductor phosphide mainly includes semiconductor materials such as indium phosphide and gallium phosphide.
  • Indium phosphide devices have the characteristics of high frequency, high speed, anti-irradiation and low noise. Its operating frequency reaches 3THz. When the operating frequency of the device is greater than 100GHz, indium phosphide has obvious advantages.
  • InP has become a key semiconductor material in ultra-high frequency, ultra-high-speed devices, and optoelectronic devices. With the development of terahertz, millimeter wave, optical communication, autonomous driving, Internet of Things, and 5G/6G technologies in the future, InP will play a greater role and produce greater social benefits. Since phosphide has a very high saturated vapor pressure at its melting point, it is extremely difficult to prepare.
  • the synthesis methods of phosphide mainly include horizontal diffusion synthesis and injection synthesis.
  • the horizontal diffusion synthesis technology is simple, but the synthesis cycle is long and the material purity is low, so it is difficult to obtain high-quality polycrystalline materials.
  • Phosphide injection synthesis technology is a very excellent method for preparing polycrystals. It has the characteristics of fast synthesis rate and high purity of preparation materials. Its disadvantage is that in order to ensure the utilization rate of phosphorus, the injection synthesis rate is often required to be very low, so it is extremely The phenomenon of explosion of phosphorus source carrier is prone to occur.
  • the technical problem to be solved by the present invention is to provide a semiconductor phosphide injection synthesis system and control method.
  • the system stability can be improved, the entire synthesis system can be quantitatively synthesized, and the phosphorus source can be reduced. Risk of explosion of carrier.
  • the technical scheme adopted by the present invention is: a semiconductor phosphide injection synthesis system, comprising a furnace body, a shielding carrier box arranged above the furnace body by means of a lifting mechanism, a phosphorus source carrier arranged in the shielding bearing box, a phosphorus source carrier arranged in the phosphorus source
  • the injection pipe under the carrier and the crucible arranged at the bottom of the furnace body, the phosphorus source carrier includes the phosphorus source carrier main body, the phosphorus source carrier upper cover, and the heating body base arranged on the inner bottom of the phosphorus source carrier main body.
  • the control method implemented based on the semiconductor phosphide implantation synthesis system includes the following steps:
  • Step 1 Put red phosphorus and high-purity indium into the phosphorus source carrier and the crucible respectively, and then cover the high-purity indium with a boron oxide covering agent; vacuum the furnace body through the vent hole of the furnace body and then fill it with inert gas, complete the preparation work;
  • Step 2 heating the crucible through the main resistance heater, so that the high-purity indium is melted until a melt is formed;
  • Step 3 use the auxiliary heater to heat the pressure measurement system, observe the solid boron oxide column through the observation window a, record the displayed temperature T1 of the thermocouple a after melting and the scale value L1 on the scale; According to the diameter of the pressure balance tube, calculate The upper remaining space volume V1 of the pressure balance tube, and then according to the gas pressure formula, the value of the pressure P1 of the gas in the pressure balance tube at this time is obtained;
  • Step 4 then the phosphorus source carrier is lowered toward the melt through the lifting mechanism until the injection pipe is close to the bottom of the crucible, and then the thermocouple b also enters the insertion groove;
  • P0 represents the value of the pressure gauge
  • Pe represents the saturated vapor pressure at the melting point
  • the temperature in the phosphorus source carrier is adjusted by adjusting the current of the induction coil in real time, so as to ensure the constant P2 in the phosphorus source carrier, and then realize the constant bubbling rate of the injection pipe;
  • Step 7 After the synthesis is completed, the induction coil and the auxiliary heater are powered off, and the phosphorus source carrier is reset so that the injection tube is separated from the boron oxide covering agent.
  • the beneficial effects of the present invention are as follows: through the induction coil, a plurality of heating elements in the phosphorus source carrier are made to generate heat, and the red phosphorus is heated to make it evenly heated and volatilized and injected into the melt, and at the same time, a pressure is set on the phosphorus source carrier.
  • the temperature measurement balance system combined with the saturated vapor pressure of phosphorus, measures the pressure and temperature inside the synthesis system with a corrosive atmosphere and an induced magnetic field, so that the entire synthesis system can be monitored and controlled; this device is especially suitable for large-capacity synthesis, The uniform heating of the synthesis system and the improved stability can be improved, the whole synthesis system can be quantitatively synthesized, and the explosion danger of the phosphorus source carrier is reduced.
  • Fig. 1 is the structural representation of the present invention
  • Fig. 2 is the structural representation of phosphorus source carrier
  • Figure 3 is a schematic diagram of the structure of the pressure measurement system.
  • a control method of a semiconductor phosphide injection synthesis system comprising a furnace body 21, a shielding carrier box 2 arranged above the furnace body 21 by means of a lifting mechanism 20, and a phosphorus source arranged in the shielding carrier box 2
  • the phosphorus source carrier 11 includes a phosphorus source carrier body 11-2 and a phosphorus source carrier The upper cover 11-1, the heating element base 4 arranged on the inner bottom of the phosphor source carrier main body 11-2, the heating element 12 arranged on the heating element base 4;
  • the induction coil 1 is arranged between the thermal insulation layer 7 and the inner wall of the shielding carrier box 2 .
  • a pressure gauge 23 is also provided outside the furnace body 21 .
  • a pressure measurement system is set on the upper cover 11-1 of the phosphorus source carrier, and the pressure measurement system includes a pressure balance pipe 10-2 welded with the upper cover 11-1 of the phosphorus source carrier, and a pressure balance pipe 10-2 is arranged on the pressure balance pipe 10-2.
  • the upper end of 10-2 is welded, the lower end of the pressure balance pipe 10-2 is provided with an air inlet 10-4 that communicates with the phosphorus source carrier 11, and an observation scale 10-3 is provided on the pressure balance pipe 10-2.
  • An observation window a18 is provided on the upper end surface of the furnace body 21 .
  • thermocouple wire of the thermocouple a8 is connected to the sensor outside the furnace body 21 .
  • the bottom of the phosphorus source carrier main body 11-2 is provided with an insertion slot 11-3 for accommodating a thermocouple b22; Body 21 is connected.
  • a main resistance heater 15 is arranged around the outer wall of the crucible 13 , and an observation window b19 matched with the crucible 13 is arranged in the middle of the furnace body 21 .
  • the control method of the semiconductor phosphide implantation synthesis system includes the following steps:
  • Step 1 put red phosphorus 3 and high-purity indium into the phosphorus source carrier 11 and crucible 13 respectively, and then cover the boron oxide covering agent 14 on the high-purity indium; Fill in inert gas after vacuum to complete the preparation;
  • step 2 the crucible 13 is heated by the main resistance heater 15, so that the high-purity indium is melted until a melt is formed;
  • Step 3 use the auxiliary heater 21 to heat the pressure measuring system 10, observe the solid boron oxide column 17 through the observation window a18, record the display temperature T1 of the thermocouple a8 after melting and the scale value L1 on the scale 10-3; according to the pressure
  • the diameter of the balance tube 10-2 is calculated, the volume V1 of the remaining space in the upper part of the pressure balance tube 10-2 is calculated, and then according to the gas pressure formula, the value of the pressure P1 of the gas in the pressure balance tube 10-2 is obtained at this time;
  • Step 4 then the phosphorus source carrier 11 is lowered toward the melt through the lifting mechanism 20 until the injection pipe 6 is close to the bottom of the crucible, and the thermocouple b23 also enters the insertion groove 11-3 at this time;
  • P0 represents the numerical value of the pressure gauge 23, and Pe represents the saturated vapor pressure at the melting point;
  • the temperature in the phosphorus source carrier 11 is adjusted by adjusting the current of the induction coil 1 in real time, so as to ensure the constant P2 in the phosphorus source carrier 11, and then realize the constant bubbling rate of the injection pipe 6;
  • Step 7 After the synthesis is completed, the induction line 1 and the auxiliary heater 21 are powered off, and the phosphorus source carrier 11 is reset so that the implant 6 is separated from the boron oxide covering agent 14 .
  • thermocouple a8 and the pressure-measuring sealing cap 10-1 are welded together, and at the same time, the two thermocouple wires are not in contact.
  • the pressure balance pipe 10-2 and the phosphorus source carrier upper cover 11-1 are welded together.
  • the solid boron oxide column 17 is placed in the pressure equalization tube 10-2. Then, the pressure measuring sealing cap 10-1 with the thermocouple a8 and the pressure equalizing tube 10-2 are welded together, during the welding process.
  • the heating element 12 is then mounted on the heating element base 4 inside the phosphor source carrier main body 11-2. Then, the red phosphorus 3 is loaded into the phosphorus source carrier main body 11-2 according to the required synthetic quality, and the phosphorus source carrier upper cover 11-1 and the phosphorus source carrier main body 11-2 are welded together.
  • the induction coil 1 into the shielding carrier box 2 .
  • the outer wall of the phosphorus source carrier 11 is wrapped with the insulating layer 7 , and then the phosphorus source carrier 11 wrapped with the insulating layer 7 is put into the induction coil 1 .
  • thermocouple wire of thermocouple a8 Connects the thermocouple wire of thermocouple a8 to the sensor outside the furnace body 21 .
  • An observation window a18 and an observation window b19 are attached to the furnace body 21 .
  • high-purity indium and boron oxide covering agent 14 into crucible 13, evacuate the system to 10-5 Pa, and fill with inert gas.
  • the crucible 13 is heated by the main resistance heater 15 , so that the high-purity indium and the boron oxide covering agent 14 are melted, and the high-purity indium forms a melt 16 .
  • auxiliary heater 21 Use the auxiliary heater 21 to heat the pressure measuring system, observe through the observation window a18 until the solid boron oxide column 17 melts, and after the thermocouple a8 is stabilized, record the temperature T1 at this time, and the scale value L1 on the scale 10-3 .
  • the volume V1 at this time is calculated based on the diameter of the pressure balance pipe 10-2. At this time, the internal and external pressures are balanced, and the system pressure is P1.
  • the phosphorus source carrier 11 is lowered toward the melt 16 by the lifting mechanism 20, and the thermocouple b23 is inserted into the thermocouple hole 11-3 until the injection pipe 6 is close to the position 3-5mm above the bottom of the crucible.
  • the induction coil 1 is fed with an alternating current, and the bubbling of the injection pipe 6 is observed through the observation window a19.
  • observe the scale value L2 on the scale 10-3 record the temperature T2 at this time, and obtain the volume V2 at this time.
  • the temperature of the phosphorus source carrier 11 is adjusted by the thermocouple b22, so as to obtain the required bubbling rate and obtain the pressure difference ?P value at this moment.
  • the pressure inside the phosphorus source carrier 11 is tested by the pressure measuring system 10 . Since the liquid boron oxide column 9 has poor thermal conductivity, the temperature feedback is insensitive. The temperature control system cannot feedback control the power of the induction coil 1 through the thermocouple 8 . The power of the induction coil 1 is fed back through the thermocouple b22, and then the temperature in the phosphorus source carrier 11 is adjusted to adjust the value of the pressure P2, and then the required bubbling rate is obtained, and the optimal pressure difference ⁇ P value at this moment is obtained.
  • the pressure inside the phosphorus source carrier 11 will decrease.
  • the power of the induction coil 1 is feedback-controlled by the temperature control system and the thermocouple b22 to keep the pressure P2 in the phosphorus source carrier 11 constant.
  • the current of the induction coil 1 and the auxiliary heater 21 drops to 0A.
  • the phosphorus source carrier 11 is lifted up by the lifting mechanism 20 , so that the injection tube 6 is released from the boron oxide coating agent 14 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Abstract

一种半导体磷化物注入合成系统及控制方法,属于半导体磷化物的制备技术领域,包括炉体、借助升降机构设置在炉体上方的屏蔽承载箱、设置在屏蔽承载箱内的磷源承载器、设置在磷源承载器下方的注入管以及配套设置在炉体内底部的坩埚。磷源承载器包括磷源承载器主体和磷源承载器上盖、设置在磷源承载器主体内底部的发热体基座、设置在发热体基座上的发热体;在磷源承载器外壁包裹保温层,在保温层和屏蔽承载箱内壁之间设置感应线圈。通过对装置和方法本身进行改进,可提高系统的稳定性,可使得整个合成系统进行定量合成,降低了磷源承载器爆炸的危险。

Description

一种半导体磷化物注入合成系统及控制方法 技术领域
本发明属于半导体磷化物的制备技术领域,具体涉及一种半导体磷化物注入合成系统及控制方法。
背景技术
半导体磷化物,主要包含磷化铟、磷化镓等半导体材料。磷化铟其器件具有高频、高速、抗辐照、低噪声特点,其工作频率达到3THz、当器件的工作频率大于100GHz时,磷化铟优势明显。InP已成为超高频、超高速器件、光电子器件中的关键半导体材料。随着未来太赫兹、毫米波、光通讯、自动驾驶、物联网、5G/6G技术的发展,InP将会发挥更大的作用,将产生更大的社会效益。由于磷化物在其熔点处具有非常高的饱和蒸汽压,因此制备难度极大。
磷化物的合成方法主要包括水平扩散合成及注入合成。通常水平扩散合成技术简单,但是合成周期长,材料纯度低,难以获得高品质的多晶材料。磷化物注入合成技术是一种非常优异的制备多晶的方法,其具有合成速率快,制备材料纯度高的特点,其缺点是为保证磷的利用率,注入合成速率往往要求很低,因此极易出现磷源承载器爆炸的现象。当合成量变大以后,磷源承载器内的红磷质量增大,难以实现红磷的均匀受热,系统的热响应能力差,并导致系统的温度的控制能力差,因此增加了磷源承载器爆炸的危险。而多晶材料是制备单晶材料的基础,因此迫切需要一种合成纯度高、合成效率和磷的利用率高的注入合成装置。
发明内容
本发明要解决的技术问题是提供一种半导体磷化物注入合成系统及控制方法,通过对装置和方法本身进行改进,可提高的系统稳定性,可使得整个合成系统进行定量合成,降低了磷源承载器爆炸的危险。
本发明采用的技术方案是:一种半导体磷化物注入合成系统,包括炉体、借助升降机构设置在炉体上方的屏蔽承载箱、设置在屏蔽承载箱内的磷源承载器、设置在磷源承载器下方的注入管以及配套设置在炉体内底部的坩埚,所述磷源承载器包括磷源承载器主体和磷源承载器上盖、设置在磷源承载器主体内底部的发热体基座、设置在发热体基座上的发热体;在磷源承载器外壁包裹保温层,在保温层和屏蔽承载箱内壁之间设置感应线圈。
基于半导体磷化物注入合成系统来实现的控制方法,包括以下步骤:
步骤一,将红磷和高纯铟分别装入磷源承载器和坩埚内,再将氧化硼覆盖剂覆盖在高纯铟上 面;通过炉体的通气口将炉体抽真空后再充入惰性气体,完成准备工作;
步骤二,通过主电阻加热器给坩埚加热,使得高纯铟熔化直至形成熔体;
步骤三,利用辅助加热器给测压系统加热,通过观察窗a观察固体氧化硼柱,记录熔化后热电偶a的显示温度T1和刻度尺上的刻度值L1;根据压力平衡管的直径,计算压力平衡管的上部剩余空间体积V1,再根据气体压强公式,得到此时压力平衡管内气体的压强P1的值;
步骤四,然后通过升降机构将磷源承载器向熔体方向下降,直至注入管靠近坩埚底部位置处,这时热电偶b也进入插入槽内;
步骤五,感应线圈通电,通过观察窗a观察注入管的冒泡情况,记录开始冒泡时热电偶a的显示温度T2和刻度尺上的刻度值L2;根据压力平衡管的直径,计算压力平衡管的上部剩余空间体积V2,再根据公式P1V1/T1=P2V2/T2,得到此时压力平衡管内气体的压强P2的值;
步骤六,根据压力差公式ΔP=P2-P0,保持ΔP在0.05-0.1Pe之间,从而来控制注入管的冒泡速率;
上述P0代表压力表的数值,Pe代表熔点处饱和蒸汽压;
注入管冒泡速率的控制方法:
根据热电偶b的显示温度反馈,通过实时调节感应线圈的电流大小来调节磷源承载器内温度,从而保证磷源承载器内P2恒定,进而实现注入管冒泡速率的恒定;
步骤七,合成完毕后,感应线圈和辅助加热器断电,磷源承载器复位使得注入管脱离氧化硼覆盖剂。
采用本发明产生的有益效果:通过感应线圈使得磷源承载器中多块发热体来发热,给红磷加热,使其受热均匀并挥发注入到熔体中,同时该磷源承载器上设置压力测温平衡系统,结合磷的饱和蒸汽压,来测量具有腐蚀性气氛和感应磁场下的合成系统内部的压力及温度,使得整个合成系统可监测、可控;该装置尤其适用于大容量合成,可提高合成系统受热均匀,提高的稳定性,可使得整个合成系统进行定量合成,降低了磷源承载器爆炸的危险。
附图说明
图1是本发明的结构示意图;
图2是磷源承载器的结构示意图;
图3是测压系统的结构示意图。
具体实施方式
参看附图1-3,一种半导体磷化物注入合成系统的控制方法,包括炉体21、借助升降机构20设置在炉体21上方的屏蔽承载箱2、设置在屏蔽承载箱2内的磷源承载器11、设 置在磷源承载器11下方的注入管6以及配套设置在炉体21内底部的坩埚13,所述磷源承载器11包括磷源承载器主体11-2和磷源承载器上盖11-1、设置在磷源承载器主体11-2内底部的发热体基座4、设置在发热体基座4上的发热体12;在磷源承载器11外壁包裹保温层7,在保温层7和屏蔽承载箱2内壁之间设置感应线圈1。在炉体21外侧还设置有压力表23。
所述磷源承载器上盖11-1上设置测压系统,所述测压系统包括与磷源承载器上盖11-1焊接的压力平衡管10-2、设置在压力平衡管10-2内的固体氧化硼柱17、带有热电偶a8的测压密封帽10-1以及设置在压力平衡管10-2外壁的辅助加热器21;所述测压密封帽10-1与压力平衡管10-2上端焊接,所述压力平衡管10-2下端设置有与磷源承载器11连通的进气孔10-4,在压力平衡管10-2上设置有观察刻度尺10-3,在炉体21上端面设置有观察窗a18。
所述热电偶a8的热偶丝与炉体21外侧的传感器相连。
所述磷源承载器主体11-2底部设置有容纳热电偶b22的插入槽11-3;所述热电偶b22呈“』”型,其上端设置在插入槽11-3内、左侧与炉体21连接。
所述坩埚13外壁环绕设置主电阻加热器15,在炉体21中部设置有与坩埚13配合的观察窗b19。
所述半导体磷化物注入合成系统的控制方法,包括以下步骤:
步骤一,将红磷3和高纯铟分别装入磷源承载器11和坩埚13内,再将氧化硼覆盖剂14覆盖在高纯铟上面;通过炉体21的通气口将炉体21抽真空后再充入惰性气体,完成准备工作;
步骤二,通过主电阻加热器15给坩埚13加热,使得高纯铟熔化直至形成熔体;
步骤三,利用辅助加热器21给测压系统10加热,通过观察窗a18观察固体氧化硼柱17,记录熔化后热电偶a8的显示温度T1和刻度尺10-3上的刻度值L1;根据压力平衡管10-2的直径,计算压力平衡管10-2的上部剩余空间体积V1,再根据气体压强公式,得到此时压力平衡管10-2内气体的压强P1的值;
步骤四,然后通过升降机构20将磷源承载器11向熔体方向下降,直至注入管6靠近坩埚底部位置处,这时热电偶b23也进入插入槽11-3内;
步骤五,感应线圈1通电,通过观察窗a19观察注入管6的冒泡情况,记录开始冒泡时热电偶a8的显示温度T2和刻度尺10-3上的刻度值L2;根据压力平衡管10-2的直径,计算压力平衡管10-2的上部剩余空间体积V2,再根据公式P1V1/T1=P2V2/T2,得到此时压力平衡管10-2内气体的压强P2的值;
步骤六,根据压力差公式ΔP=P2-P0,保持ΔP在0.05-0.1Pe之间,从而来控制注入管6的冒泡速率;
上述P0代表压力表23的数值,Pe代表熔点处饱和蒸汽压;
注入管6冒泡速率控制方法:
根据热电偶b22的显示温度反馈,通过实时调节感应线圈1的电流大小来调节磷源承载器11内温度,从而保证磷源承载器11内P2恒定,进而实现注入管6冒泡速率的恒定;
步骤七,合成完毕后,感应线1和辅助加热器21断电,磷源承载器11复位使得注入6脱离氧化硼覆盖剂14。
具体实施时,将热电偶a8与测压密封帽10-1熔接在一起,同时使得两个热电偶丝不接触。将压力平衡管10-2与磷源承载器上盖11-1焊接在一起。将固体氧化硼柱17放入压力平衡管10-2内。然后将带有热电偶a8的测压密封帽10-1与压力平衡管10-2焊接在一起,焊接过程中。
然后将发热体12装入磷源承载器主体11-2内部的发热体基座4上。然后将红磷3按所需的合成质量装入磷源承载器主体11-2内部,并将磷源承载器上盖11-1与磷源承载器主体11-2焊接在一起。
然后将感应线圈1放入屏蔽承载箱2内。同时磷源承载器11外壁包裹保温层7,然后将包裹有保温层7的磷源承载器11放入感应线圈1内。
将热电偶a8的热偶丝与炉体21外侧的传感器相连。炉体21上安装观察窗a18和观察窗b19。
将高纯铟及氧化硼覆盖剂14放入坩埚13内,给系统抽真空至10 -5Pa,充入惰性气体。通过主电阻加热器15给坩埚13加热,使得高纯铟及氧化硼覆盖剂14熔化,高纯铟形成熔体16。
利用辅助加热器21给测压系统加热,通过观察窗a18观察直至固体氧化硼柱17熔化,待热电偶a8稳定以后,记录下此时的温度T1,及刻度尺10-3上的刻度值L1。根据压力平衡管10-2的直径计算此时的体积V1。此时内外压力平衡,系统压力为P1。
然后通过升降机构20将磷源承载器11的向熔体16方向下降,将热电偶b23插入测温热偶孔11-3中,直至注入管6靠近坩埚底部以上3-5mm的位置处。
给感应线圈1通入交流电的电流,通过观察窗a19观察注入管6的冒泡情况。同时观察刻度尺10-3上的刻度值L2,记录此时的温度T2,获得此时的体积V2。获得此刻磷源承载器内的压力P2。根据克拉伯龙方程P1V1/T1=P2V2/T2,获得P2值。通过压力差ΔP=P2-P0来调节冒泡速率,P0为压力表23的数值。
通过热电偶b22调节磷源承载器11的温度,进而获得所需要的冒泡速率,获得此刻 的压力差ΔP值。通过测压系统10测试磷源承载器11内部的压力。由于液态氧化硼柱9导热性差,因此温度反馈不灵敏。控温系统不能通过热电偶8来反馈控制感应线圈1的功率。通过热电偶b22来反馈感应线圈1的功率,进而调节磷源承载器11内的温度,实现调节压力P2的数值,然后获得所需要的冒泡速率,获得此刻的最优压力差ΔP值。随着磷源承载器11内部磷元素的变少,磷源承载器11内部的压力会降低。通过控温系统、热电偶b22来反馈控制感应线圈1的功率,保持磷源承载器11内压力P2的恒定。
待合成完毕后,感应线圈1和辅助加热器21的电流降至0A。通过升降机构20将磷源承载器11提起,使得注入管6脱离氧化硼覆盖剂14。
拆炉后,给系统放气至1个大气压,将磷源承载器上盖11-1切割下来,清洗磷源承载器主体11-2,以备下次使用。同时将测压密封帽10-1切割掉,保留热电偶a8,以备下次使用。

Claims (6)

  1. 一种半导体磷化物注入合成系统,包括炉体(21)、借助升降机构(20)设置在炉体(21)上方的屏蔽承载箱(2)、设置在屏蔽承载箱(2)内的磷源承载器(11)、设置在磷源承载器(11)下方的注入管(6)以及配套设置在炉体(21)内底部的坩埚(13),其特征在于:所述磷源承载器(11)包括磷源承载器主体(11-2)和磷源承载器上盖(11-1)、设置在磷源承载器主体(11-2)内底部的发热体基座(4)、设置在发热体基座(4)上的发热体(12);在磷源承载器(11)外壁包裹保温层(7),在保温层(7)和屏蔽承载箱(2)内壁之间设置感应线圈(1)。
  2. 根据权利要求1所述的半导体磷化物注入合成系统,其特征在于:所述磷源承载器上盖(11-1)上设置测压系统,所述测压系统包括与磷源承载器上盖(11-1)焊接的压力平衡管(10-2)、设置在压力平衡管(10-2)内的固体氧化硼柱(17)、带有热电偶a(8)的测压密封帽(10-1)以及设置在压力平衡管(10-2)外壁的辅助加热器(21);所述测压密封帽(10-1)与压力平衡管(10-2)上端焊接,所述压力平衡管(10-2)下端设置有与磷源承载器(11)连通的进气孔(10-4),在压力平衡管(10-2)上设置有观察刻度尺(10-3),在炉体(21)上端面设置有观察窗a(18)。
  3. 根据权利要求2所述的半导体磷化物注入合成系统,其特征在于:所述热电偶a(8)的热偶丝与炉体(21)外侧的传感器相连。
  4. 根据权利要求1所述的半导体磷化物注入合成系统,其特征在于:所述磷源承载器主体(11-2)底部设置有容纳热电偶b(22)的插入槽(11-3);所述热电偶b(22)呈“』”型,其上端设置在插入槽(11-3)内、左侧与炉体(21)连接。
  5. 根据权利要求1所述的半导体磷化物注入合成系统,其特征在于:所述坩埚(13)外壁环绕设置主电阻加热器(15),在炉体(21)中部设置有与坩埚(13)配合的观察窗b(19)。
  6. 一种半导体磷化物注入合成系统的控制方法,基于半导体磷化物注入合成系统来实现,其特征在于所述控制方法包括以下步骤:
    步骤一,将红磷(3)和高纯铟分别装入磷源承载器(11)和坩埚(13)内,再将氧化硼覆盖剂(14)覆盖在高纯铟上面;通过炉体(21)的通气口将炉体(21)抽真空后再充入惰性气体,完成准备工作;
    步骤二,通过主电阻加热器(15)给坩埚(13)加热,使得高纯铟熔化直至形成熔体;
    步骤三,利用辅助加热器(21)给测压系统(10)加热,通过观察窗a(18)观察固体氧化硼柱(17),记录熔化后热电偶a(8)的显示温度T1和刻度尺(10-3)上的刻度值L1;根据压力平衡管(10-2)的直径,计算压力平衡管(10-2)的上部剩余空间体积V1,再根据气 体压强公式,得到此时压力平衡管(10-2)内气体的压强P1的值;
    步骤四,然后通过升降机构(20)将磷源承载器(11)向熔体方向下降,直至注入管(6)靠近坩埚底部位置处,这时热电偶b(23)也进入插入槽(11-3)内;
    步骤五,感应线圈(1)通电,通过观察窗a(19)观察注入管(6)的冒泡情况,记录开始冒泡时热电偶a(8)的显示温度T2和刻度尺(10-3)上的刻度值L2;根据压力平衡管(10-2)的直径,计算压力平衡管(10-2)的上部剩余空间体积V2,再根据公式P1V1/T1=P2V2/T2,得到此时压力平衡管(10-2)内气体的压强P2的值;
    步骤六,根据压力差公式ΔP=P2-P0,保持ΔP在0.05-0.1Pe之间,从而来控制注入管(6)的冒泡速率;
    上述P0代表压力表(23)的数值,Pe代表熔点处饱和蒸汽压;
    注入管(6)冒泡速率控制方法:
    根据热电偶b(22)的显示温度反馈,通过实时调节感应线圈(1)的电流大小来调节磷源承载器(11)内温度,从而保证磷源承载器(11)内P2恒定,进而实现注入管(6)冒泡速率的恒定;
    步骤七,合成完毕后,感应线圈(1)和辅助加热器(21)断电,磷源承载器(11)复位使得注入管(6)脱离氧化硼覆盖剂(14)。
PCT/CN2021/104407 2020-12-23 2021-07-05 一种半导体磷化物注入合成系统及控制方法 WO2022134527A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022556470A JP2024500256A (ja) 2020-12-23 2021-07-05 半導体リン化物注入合成システム及び制御方法
US17/797,081 US20230049408A1 (en) 2020-12-23 2021-07-05 Semiconductor Phosphide Injection Synthesis System and Control Method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011543426.3 2020-12-23
CN202011543426.3A CN112708935B (zh) 2020-12-23 2020-12-23 一种半导体磷化物注入合成系统的控制方法
CN202023142510.2U CN215028656U (zh) 2020-12-23 2020-12-23 一种半导体磷化物注入合成系统
CN202023142510.2 2020-12-23

Publications (1)

Publication Number Publication Date
WO2022134527A1 true WO2022134527A1 (zh) 2022-06-30

Family

ID=82157341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104407 WO2022134527A1 (zh) 2020-12-23 2021-07-05 一种半导体磷化物注入合成系统及控制方法

Country Status (3)

Country Link
US (1) US20230049408A1 (zh)
JP (1) JP2024500256A (zh)
WO (1) WO2022134527A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117205838B (zh) * 2023-11-07 2024-01-23 通威微电子有限公司 碳化硅粉料合成装置及碳化硅粉料

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173140A1 (en) * 2003-03-05 2004-09-09 Liu Xiao Gordon Apparatus and method for balanced pressure growth of Group III-V monocrystalline semiconductor compounds
CN101660207A (zh) * 2008-08-26 2010-03-03 北京有色金属研究总院 一种磷化镓多晶合成方法
CN107747125A (zh) * 2017-09-20 2018-03-02 广东先导先进材料股份有限公司 磷化铟多晶合成的压力控制装置及方法
CN108358180A (zh) * 2017-12-08 2018-08-03 中国电子科技集团公司第十三研究所 利用承载气体进行磷化物原位注入合成的方法
CN112708935A (zh) * 2020-12-23 2021-04-27 中国电子科技集团公司第十三研究所 一种半导体磷化物注入合成系统的控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040173140A1 (en) * 2003-03-05 2004-09-09 Liu Xiao Gordon Apparatus and method for balanced pressure growth of Group III-V monocrystalline semiconductor compounds
CN101660207A (zh) * 2008-08-26 2010-03-03 北京有色金属研究总院 一种磷化镓多晶合成方法
CN107747125A (zh) * 2017-09-20 2018-03-02 广东先导先进材料股份有限公司 磷化铟多晶合成的压力控制装置及方法
CN108358180A (zh) * 2017-12-08 2018-08-03 中国电子科技集团公司第十三研究所 利用承载气体进行磷化物原位注入合成的方法
CN112708935A (zh) * 2020-12-23 2021-04-27 中国电子科技集团公司第十三研究所 一种半导体磷化物注入合成系统的控制方法

Also Published As

Publication number Publication date
US20230049408A1 (en) 2023-02-16
JP2024500256A (ja) 2024-01-09

Similar Documents

Publication Publication Date Title
CN112708935B (zh) 一种半导体磷化物注入合成系统的控制方法
EP1867759B1 (en) Manufacturing equipment for polysilicon ingot
WO2022134527A1 (zh) 一种半导体磷化物注入合成系统及控制方法
WO2019109367A1 (zh) 一种水平注入合成后旋转连续vgf晶体生长的装置及方法
KR20070118945A (ko) 다결정 실리콘 잉곳 제조장치
CN108277534A (zh) 一种石墨电阻加热SiC晶体生长炉
CN113638048B (zh) 一种vgf法生长磷化铟单晶的方法
CN103849928A (zh) 一种多片式导模法蓝宝石晶片生长工艺
CN106435714A (zh) 一种多晶硅溶液液面距定位方法
CN208151525U (zh) 一种石墨电阻加热SiC晶体生长炉
US8216371B2 (en) Single crystal manufacturing apparatus and method
CN103435043B (zh) 电子束熔炼与长晶技术耦合制备多晶硅的装置及工艺方法
US10557213B2 (en) Crystal growing systems and methods including a transparent crucible
CN104250852A (zh) 蓝宝石晶体生长装置及生长方法
CN215028656U (zh) 一种半导体磷化物注入合成系统
CN103726105A (zh) 钛宝石晶体生长装置及其生长方法
CN206385288U (zh) 一种碳纤维可控激光式超高温石墨化装置
US20040173140A1 (en) Apparatus and method for balanced pressure growth of Group III-V monocrystalline semiconductor compounds
WO2023279652A1 (zh) 磁场下浸入式磷化物合成及连续生长装置和方法
JP2017222537A (ja) るつぼ並びに単結晶の育成装置及び育成方法
CN206109595U (zh) 一种提高直拉单晶硅轴向电阻率均匀性的装置
JP2011178626A (ja) 窒化物結晶製造方法および窒化物結晶製造装置
CN210341126U (zh) 大直径高效n型单晶硅的磁控拉晶装置
JP6299088B2 (ja) 光ファイバの製造方法および製造装置
CN108486647A (zh) 提拉法CeAlO3晶体生长装置及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022556470

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908532

Country of ref document: EP

Kind code of ref document: A1