WO2022134482A1 - 一种宽幅纤维网增强塑料复合管材 - Google Patents

一种宽幅纤维网增强塑料复合管材 Download PDF

Info

Publication number
WO2022134482A1
WO2022134482A1 PCT/CN2021/098089 CN2021098089W WO2022134482A1 WO 2022134482 A1 WO2022134482 A1 WO 2022134482A1 CN 2021098089 W CN2021098089 W CN 2021098089W WO 2022134482 A1 WO2022134482 A1 WO 2022134482A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fiber
socket
section
circumferential
Prior art date
Application number
PCT/CN2021/098089
Other languages
English (en)
French (fr)
Inventor
赵培翔
赵炳仁
王浩
Original Assignee
赵培翔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 赵培翔 filed Critical 赵培翔
Publication of WO2022134482A1 publication Critical patent/WO2022134482A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/121Rigid pipes of plastics with or without reinforcement with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L47/00Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics
    • F16L47/06Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with sleeve or socket formed by or in the pipe end
    • F16L47/08Connecting arrangements or other fittings specially adapted to be made of plastics or to be used with pipes made of plastics with sleeve or socket formed by or in the pipe end with sealing rings arranged between the outer surface of one pipe end and the inner surface of the sleeve or socket, the sealing rings being placed previously in the sleeve or socket
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L57/00Protection of pipes or objects of similar shape against external or internal damage or wear
    • F16L57/02Protection of pipes or objects of similar shape against external or internal damage or wear against cracking or buckling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/123Rigid pipes of plastics with or without reinforcement with four layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment

Definitions

  • the invention relates to the technical field of fiber-reinforced plastic pipes, in particular to a wide-width fiber mesh-reinforced plastic composite pipe.
  • Fiber-reinforced plastic composite pipe refers to a plastic composite pipe with a fiber-reinforced layer inside. It has the advantages of high compressive strength, light weight, and convenient transportation. Therefore, it has become a major product of thermoplastic fiber-reinforced plastic pipes in my country.
  • the inner reinforcement layer is generally formed by glass fiber winding.
  • the glass fiber is a narrow-width thermoplastic unidirectional glass fiber reinforced tape with a width of no more than 600 mm, and then the continuous spiral winding is used. form a reinforcement layer.
  • this traditional production method is only suitable for the production of fiber-reinforced plastic pipes with small diameters (the diameter of the pipes is generally 20-630 mm), and if the production of large-diameter fiber-reinforced plastic pipes (with the inner diameter of the inner pipe is 1000-630 mm) 6000mm), this single-piece spiral forward and reverse winding method has low efficiency and high energy consumption, and cannot produce large-diameter fiber-reinforced plastic pipes with sealing ring grooves at one time.
  • the glass fiber is formed by the radial spiral winding process, the pipe only bears the internal radial pressure, and the pressure pipe made has weak axial tensile force and is prone to breakage and other phenomena.
  • the technical problem to be solved by the present invention is to overcome the defect that the fiber reinforced plastic composite pipe in the prior art is weak in axial strength and is prone to breakage, thereby providing a sealing ring groove formed at one time and having a certain axial direction.
  • the present invention provides a wide-width fiber mesh reinforced plastic composite pipe, including: a pipe body, the pipe body includes: a middle section, a socket section and a socket section, the socket section and the middle section from the inside From the outside, it includes: an inner lining layer, a fiber mesh reinforcement layer and an outer protective layer; the fiber mesh reinforcement layer includes: an axial fiber layer and a circumferential fiber layer arranged in layers, and the fibers of the axial fiber layer are The axial direction of the pipe body is parallel to the continuous fibers running through both ends of the pipe body; the circumferential fibers of each layer are continuous fibers that are orthogonal to the axial fibers of each layer, and the axial fiber layer and the circumferential fiber layer are in the middle section and the socket segment to form a multi-layer thermoplastic fiber mesh reinforcement layer;
  • the socket section sequentially includes: an inner lining layer, a socket middle layer, a second circumferential fiber layer and an outer protective layer from the inside to the outside;
  • the socket middle layer includes: stacked axial fiber layers and plastic layers layer, a multi-layer axial fiber layer and a plastic layer form a socket intermediate layer without circumferential fibers;
  • the fibers of the second circumferential fiber layer are thermoplastic continuous fibers that are continuously thermally fused and wound around the outer wall of the intermediate layer of the socket in the circumferential direction.
  • the axial fiber layer and the circumferential fiber layer of each layer of the network structure are closely attached together, and the gaps between the fibers are melted into one by plastic.
  • the present invention provides a second type of wide-width fiber mesh reinforced plastic composite pipe.
  • the socket section and the middle section are formed between the outer protective layer and the fiber mesh.
  • a second circumferential fiber layer is also provided between the reinforcing layers; the socket section and the middle section sequentially include: an inner lining layer, a fiber mesh reinforcing layer, a second circumferential fiber layer and an outer protective layer from inside to outside.
  • the present invention provides a third wide-width fiber web reinforced plastic composite pipe.
  • the middle section On the basis of the first wide fiber web reinforced plastic composite pipe, the middle section, on the outer layer of the fiber web reinforced layer, spirals along the circumference.
  • the spiral vertical rib is wound with a solid structure, the spiral vertical rib is a thermoplastic continuous fiber material, and the outer layer of the spiral vertical rib is compounded with the outer protective layer.
  • the invention provides a fourth wide-width fiber mesh reinforced plastic composite pipe.
  • the middle section is spirally wound around the circumference on the outer wall of the outer protective layer.
  • the inner wall of the socket section is provided with a sealing ring groove, and the sealing ring groove is formed by winding the middle layer of the socket at one time; the inner diameter of the socket section is slightly larger than the outer diameter of the socket section; the sealing The ring groove is suitable for placing a sealing ring, the inner diameter of the sealing ring is slightly smaller than the outer diameter of the socket section, and the outer diameter of the sealing ring is slightly larger than the inner diameter of the sealing ring groove of the socket section.
  • the pipe body has a plurality of pieces, and the socket sections and the socket sections of the plurality of pipe bodies are connected in sequence by socket and socket sealing.
  • the wide-width fiber web reinforced plastic composite pipe provided by the present invention the axial fiber layer provided in the fiber web reinforcement layer is parallel to the axial direction of the pipe body, and the axial fiber layer is used to make the composite pipe have a certain axial direction. strength, thereby improving the problem of pipe breakage.
  • the circumferential fiber layer arranged in the fiber web reinforcement layer is arranged in parallel with the circumferential direction of the pipe, and the circumferential fiber layer is used to bear the radial internal pressure of the pipe, and the axial direction
  • the fibers of the fiber layer and the circumferential fiber layer are closely attached together in a mesh shape, and the plastics at the gaps of the mesh fibers are fused together to form a multi-layer mesh lamination fusion composite into a thermoplastic fiber mesh reinforcement layer.
  • the wide-width fiber web reinforced plastic composite pipe provided by the present invention adopts the fiber web reinforcement layer as the main pressure-bearing material, the width of the fiber web reinforcement layer is equal to the length of the pipe, the wide width thermoplastic fiber web reinforcement layer is prefabricated in advance, and then It is continuously thermally wound and composited at zero angle in the circumferential direction, and its winding efficiency is high, which can be suitable for the production of large-diameter thermoplastic wide-width fiber mesh reinforced plastic composite pipes.
  • the wide-width fiber mesh reinforced plastic composite pipe provided by the present invention has a socket section and a socket section respectively at both ends of the pipe body, and the inner diameter of the socket section varies greatly in different circumferential directions.
  • the plastic layer is used instead of the circumferential fiber layer to be arranged between the axial fiber layers.
  • the socket section is hot-melt wound, the plastic layer can be deformed with the mold of the socket section and lose the bondage of the circumferential fibers.
  • the variable diameter forming socket section creates conditions. Together with the socket section, the middle section and the middle layer of the socket section, the composite winding completes the expansion and contraction of the fiber mesh reinforcement layer and the socket section in different circumferential directions, and the sealing ring groove is produced at one time.
  • each layer of axial fibers runs through both ends of the pipe, ensuring the consistency of the axial strength of the entire composite pipe.
  • the defect of insufficient internal pressure of the middle layer of the socket section is supplemented by the second circumferential fiber layer, so that the three sections of the wide-width fiber mesh reinforced plastic composite pipe can bear the same internal liquid pressure.
  • FIG. 1 is a front view with a partial cross-sectional structure of Example 1 of the wide-width fiber mesh reinforced plastic composite pipe of the present invention.
  • FIG. 2 is an enlarged view of a partial cross-sectional area in FIG. 1 .
  • FIG. 3 is an enlarged view of the area A in FIG. 2 .
  • FIG. 4 is an enlarged view of area B in FIG. 2 .
  • FIG. 5 is an enlarged view of region C in FIG. 2 .
  • Example 6 is a front view with a partial cross-sectional structure of Example 2 of the wide-width fiber mesh reinforced plastic composite pipe of the present invention.
  • FIG. 7 is an enlarged view of the partial cross-sectional area of FIG. 6 .
  • Example 8 is a front view with a partial cross-sectional structure of Example 3 of the wide-width fiber mesh reinforced plastic composite pipe of the present invention.
  • FIG. 9 is an enlarged view of the partial cross-sectional area of FIG. 8 .
  • Example 10 is a front view with a partial cross-sectional structure of Example 4 of the wide-width fiber web reinforced plastic composite pipe of the present invention.
  • FIG. 11 is an enlarged view of the partially sectional area in FIG. 10 .
  • Fig. 12 is a front view with a partial cross-sectional structure of Example 5 of the wide-width fiber web-reinforced plastic composite pipe of the present invention.
  • FIG. 13 is an enlarged view of the partially sectional area in FIG. 12 .
  • FIG. 14 is a front view of an embodiment of the wide-width fiber mesh reinforced plastic composite pipe of the present invention after the socket and socket sealing connection is performed.
  • FIG. 15 is an enlarged view of the area D in FIG. 14 .
  • Pipe body 100. Pipe body; 1. Middle section; 2. Socket section; 3. Socket section; 4. Spiral rib; 5. Inner lining layer; 6. Fiber mesh reinforcement layer; 7. Outer protective layer; 8. Axial direction Fiber layer; 9. Circumferential fiber layer; 10. Plastic layer; 11. Second circumferential fiber layer; 12. Sealing ring groove; 13. Socket middle layer; 14. Sealing ring.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • thermoplastic glass fiber tape (or sheet).
  • the width specification of thermoplastic glass fiber tape is generally between 500 mm and 1000 mm, which we call narrow width.
  • Thermoplastic fiberglass tape The width of the commonly used thermoplastic glass fiber tape is about 600 mm, and the thickness of the manufactured thermoplastic glass fiber tape is between 0.15 mm and 0.4 mm according to the diameter of the glass fiber.
  • This sheet is used in the manufacture of fiber reinforced plastic pipes, and the width is cut into narrower (generally 50-160 mm) thermoplastic glass fiber tapes for use.
  • thermoplastic fiberglass tape has continuous glass fibers evenly distributed in parallel in the length direction.
  • the angle between the continuous glass fiber and the longitudinal direction of the longitudinal tape is zero degrees.
  • thermoplastic fiberglass tape zero-degree glass fiber tape which only bears longitudinal tension , does not bear lateral tension, mainly used in the manufacture of spirally wound polyethylene reinforced pressure pipes.
  • the inventor proposed a wide-width fiber web reinforced plastic laminated composite sheet containing longitudinal and transverse continuous fibers, and changed the spiral winding method of the unidirectional thermoplastic glass fiber sheet on the inner tube.
  • the wide-width fiber mesh reinforced plastic laminated composite sheet is continuously hot-melted and wound into the fiber mesh reinforcement layer of the pipe, so that the efficiency of segmented production of the large-diameter fiber reinforced plastic pipe with a sealing ring groove is increased by more than 10 times. Reduce energy consumption several times.
  • the side part of the above-mentioned wide-width fiber web reinforcement layer only contains axial continuous fibers and does not contain circumferential continuous fibers, and can produce fiber-reinforced plastic pipes with variable diameter socket sections, which are then wound on the outer wall of the middle layer of the socket section.
  • a layer of circumferential fibers realizes the same internal pressure of the pipe as the middle and spigot sections of the socket section, thereby making it possible to quickly produce large-diameter fiber-reinforced plastic pipes in sections.
  • this embodiment provides a specific implementation of a wide-width fiber mesh reinforced plastic composite pipe, including: a pipe body 100 , the inner layer and the outer layer of the pipe body 100 are flat and smooth structures.
  • the pipe body 100 includes: a socket section 2, a middle section 1 and a socket section 3, the inner diameter of the socket section 2 is slightly larger than the outer diameter of the socket section 3, and the socket section 2 is used for another pipe.
  • the spigot section 3 is inserted, so that the two sections of pipes are connected by socket and socket.
  • the socket section 3 and the middle section 1 of the pipe body 100 sequentially include from inside to outside: an inner lining layer 5 , a fiber mesh reinforcement layer 6 and outer protective layer 7;
  • the fiber mesh reinforcement layer 6 includes: an axial fiber layer 8 and a circumferential fiber layer 9 arranged in layers, and the fibers of the axial fiber layer 8 are in the axial direction with the pipe body 100 Continuous fibers parallel to and running through both ends of the pipe body 100 ;
  • the fibers of the circumferential fiber layer 9 are continuous fibers that are continuously wound around the circumferential direction of the fiber web reinforcement layer 6 .
  • the axial fiber layer 8 and the circumferential fiber layer 9 of the fiber web reinforcement layer 6 are sequentially stacked to form a multi-layer network structure, and the axis of each layer of the network structure The fiber layer 8 and the circumferential fiber layer 9 are melted together by plastic.
  • the axial fiber layer 8 provided in the fiber mesh reinforcement layer 6 is parallel to the axial direction of the pipe body 100, and the axial fiber layer 8 is used to bear the axial direction of the pipe material. Therefore, the composite pipe can have a certain axial strength, and to a certain extent, the problem of easy fracture of the pipe can be improved.
  • the wide-width fiber-mesh reinforced plastic composite pipe provided in this embodiment adopts the fiber-mesh reinforced layer as the main pressure-bearing material, adopts the pre-fabricated wide-width fiber-mesh reinforced plastic laminated composite sheet, and then continuously heats it at zero angle in the circumferential direction. It has high winding efficiency and can be used for rapid production of large-diameter thermoplastic wide-width fiber mesh reinforced plastic composite pipes.
  • the axial fiber layer 8 extends to the end of the socket section 2 , and the circumferential fiber layer 9 does not extend to the end of the socket section 2, the circumferential fiber layer 9 stops when the inner diameter of the pipe body 100 begins to decrease to the socket section 2, and then passes through the plastic layer 10 in the socket section 2 Instead of the circumferential fiber layers 9 , are arranged between the axial fiber layers 8 .
  • the socket section 2 sequentially includes: an inner lining layer 5 , a socket middle layer 13 , a second circumferential fiber layer 11 and an outer protective layer 7 from the inside to the outside;
  • the socket The intermediate layer 13 includes: the axial fiber layer 8 and the plastic layer 10 arranged in layers, and the multi-layer axial fiber layer 8 and the plastic layer 10 form a socket intermediate layer 13 without circumferential fibers;
  • the fibers of 11 are thermoplastic continuous fibers continuously wound around the outer wall of the socket intermediate layer 13 in the circumferential direction.
  • the plastic layer 10 is used to replace the circumferential fiber layer 9 and is arranged in the axial direction. Between the fiber layers 8, the axial strength of the socket section 2 is further improved, and the firmness of the joint of the pipe is improved.
  • the arrangement of the second circumferential fiber layer 11 can supplement the strength against the radial pressure inside the pipe which is lost due to the replacement of the circumferential fiber layer 9 by the plastic layer 10 , thereby improving the radial pressure resistance inside the pipe of the socket section 2 Strength of.
  • a sealing ring groove 12 is provided on the inner side wall of the socket section 2 , and the sealing ring groove 12 is used to install the sealing ring 14 , so that the two pipes can be connected in a socket and socket sealing manner.
  • the structure of the socket section 2 is formed by one-time continuous hot-melt winding of the inner plastic layer of the socket and the intermediate layer 13 of the socket, so it has a high bearing strength, and the intermediate layer 13 of the socket includes multiple layers of axial fiber layers. 8.
  • Plastic layers 10 are spaced between the multi-layer axial fiber layers 8, and there are no circumferential fibers in the socket intermediate layer 13.
  • the outer layer of the socket intermediate layer 13 is wound with a second circumferential fiber layer 11 in the circumferential direction, and the second circumferential fiber layer 11 has a portion extending to the fiber mesh reinforcement layer 6 covering the pipe body 100 . , so as to make a smooth transition between the socket section 2 and the pipe body 100 .
  • the inner lining layer 5 and the outer protective layer 7 and the plastic between the fibers are polyolefin materials such as polyethylene and polypropylene.
  • the axial fiber layer 8, the circumferential fiber layer 9 and the second circumferential fiber layer 11 can be made of thermoplastic glass fiber, or basalt fiber, carbon fiber, Inorganic fiber materials such as metal fibers.
  • the socket section and the socket section of the two pipe bodies 100 can be connected in sequence by socket and socket sealing, so as to pass through the plurality of pipe bodies 100 It forms the whole pipe, and its length can be adjusted according to actual needs.
  • a sealing ring 14 is provided in the sealing ring groove 12 of the socket section of the first pipe body 100 , and the two pipe bodies 100 are connected by the sealing ring 14 .
  • the socket section and the socket section are sealed socket and socket connections.
  • this embodiment provides another specific implementation of the wide-width fiber mesh reinforced plastic composite pipe.
  • the wide-width fiber mesh reinforced plastic composite pipe of this embodiment is also wound with multiple second circumferential fiber layers 11 on the outer layer of the fiber mesh reinforcement layer 6 of the pipe body 100 .
  • the outer protective layer 7 is arranged outside the circumferential fiber layer 11 ; the internal compressive strength of the pipe can be further increased by the second circumferential fiber layer 11 .
  • the outer layer of the fiber mesh reinforcement layer 6 of the pipe body 100 is integrated by continuing to wind in the direction of the socket section 3. Both are wound with multiple layers of second circumferential fiber layers 11 ; through the arrangement of the second circumferential fiber layers 11 , the internal thickness of the pipe body 100 can be increased while the thickness of the fiber mesh reinforcement layer 6 in the pipe body Compressive strength.
  • this embodiment provides a third specific implementation of the wide-width fiber mesh reinforced plastic composite pipe.
  • the outer layer of the fiber mesh reinforcement layer 6 in the middle section 1 of the pipe body 100 is spirally wound with a solid structure helical vertical rib 4 along the circumference,
  • the spiral vertical rib 4 is made of thermoplastic continuous fiber material, and the outer layer of the solid structure of the spiral vertical rib 4 is wrapped by an outer protective layer 7 .
  • the arrangement of the spiral rib 4 can be used to improve the internal pressure resistance of the pipe and the effect of improving the rigidity of the pipe ring.
  • this embodiment provides a fourth specific implementation of the wide-width fiber mesh reinforced plastic composite pipe.
  • the difference is that in the wide-width fiber mesh reinforced plastic composite pipe of the present embodiment, on the outer protective layer 7 of the middle section 1 of the pipe body 100, a layer of spiral vertical ribs 4 is spirally wound along the circumference.
  • 4 is a hollow structure, mainly using plastic materials.
  • the hollow cavity of the spiral vertical rib 4 can be in the shape of a circle, an ellipse, a square, a trapezoid, or the like.
  • the arrangement of the spiral vertical bars 4 of the hollow structure improves the ring stiffness of the pipe material, so that the pipe material can increase the resistance to external pressure after the buried construction.
  • this embodiment provides a fifth specific implementation of the wide-width fiber mesh reinforced plastic composite pipe.
  • the outer protective layer 7 of the middle section 1 of the pipe body 100 is spirally wound with multiple layers of spiral ribs 4 along the circumference.
  • 4 is a hollow structure, mainly using plastic materials.
  • the hollow cavity of the spiral vertical rib 4 can be in the shape of a circle, an ellipse, a square, a trapezoid, or the like.
  • the arrangement of the spiral vertical bars 4 of the multi-layer hollow structure further improves the ring stiffness of the pipe material, so that the pipe material can further increase the resistance to external pressure after the buried construction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Laminated Bodies (AREA)

Abstract

一种宽幅纤维网增强塑料复合管材,包括管材本体(100),管材本体(100)具有中间段(1)、承口段(2)和插口段(3),中间段(1)和插口段(3)由内至外依次包括内衬层(5)、纤维网增强层(6)和外保护层(7);纤维网增强层(6)包括叠层设置的轴向纤维层(8)和周向纤维层(9),轴向纤维层(8)的纤维为与管材本体的轴向平行、并纵贯管材本体的两端的连续纤维;周向纤维层(9)的纤维为围绕管材本体的圆周方向连续缠绕的连续纤维。该宽幅纤维网增强塑料复合管材,在纤维网增强层中设置有轴向纤维层和周向纤维层,使复合管材具有一定的轴向强度,并能承受管材的径向内压。

Description

一种宽幅纤维网增强塑料复合管材 技术领域
本发明涉及纤维增强塑料管材技术领域,具体涉及一种宽幅纤维网增强塑料复合管材。
背景技术
纤维增强塑料复合管是指在内部设有纤维增强层的塑料复合管,其具有耐压强度高、重量轻、运输方便等优点,因此已成为我国热塑性纤维增强塑料管材的一大主要产品。
现有的热塑性纤维增强聚乙烯管材,其内部增强层一般采用玻璃纤维缠绕成型,具体的,玻璃纤维是采用宽度不超过600毫米的窄幅热塑性单向玻纤增强带,然后采用连续螺旋缠绕的方式形成增强层。
然而,传统的这种生产方式,只适用于生产小管径的纤维增强塑料管材(管材直径一般在20-630毫米),而如果要生产大口径的纤维增强塑料管材(内管内径为1000-6000mm),这种单片螺旋正反缠绕方式效率低,而且耗能大,无法一次性生产出带密封圈槽的大口径纤维增强塑料管材。另外,由于玻璃纤维采用的是径向螺旋缠绕工艺成型,管材只是承受内部的径向压力,制成的压力管材轴向抗拉力弱,容易出现断裂等现象。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的纤维增强塑料复合管材在轴向强度方面较弱,容易出现断裂的缺陷,从而提供一种一次形成密封圈槽并具有一定的轴向强度的宽幅纤维网增强塑料复合管材。
为了解决上述技术问题,本发明提供一种宽幅纤维网增强塑料复合管材,包括:管材本体,所述管材本体包括:中间段、承口段和插口段,所述插口段及中间段由内至外依次包括:内衬层、纤维网增强层和外保护层;所述纤维网增强层包括:叠层设置的轴向纤维层和周向纤维层,所述轴向纤维层的纤维为与管材本体的轴向平行、并纵贯管材本体的两端的连续纤维;所述每层周向纤维为与每层轴向纤维正交的连续纤维,轴向纤维层与周向纤维层在中间段和插口段形成多层热塑性纤维网增强层;
所述承口段由内至外依次包括:内衬层、承口中间层、第二周向纤维层和外保护层;所述承口中间层包括:叠层设置的轴向纤维层和塑料层,多层轴向纤维层与塑料层组成 无周向纤维的承口中间层;
所述第二周向纤维层的纤维为围绕承口中间层的外壁圆周方向连续热熔缠绕的热塑性连续纤维。
可选地,每一层网状结构的所述轴向纤维层和所述周向纤维层紧密贴合在一起,纤维之间的空隙通过塑料熔融为一体。
本发明提供第二种宽幅纤维网增强塑料复合管材,在第一种宽幅纤维网增强塑料复合管材的基础上,所述插口段及中间段,在所述外保护层与所述纤维网增强层之间,还设有第二周向纤维层;所述插口段及中间段由内至外依次包括:内衬层、纤维网增强层、第二周向纤维层和外保护层。
本发明提供第三种宽幅纤维网增强塑料复合管材,在第一种宽幅纤维网增强塑料复合管材的基础上,所述中间段,在所述纤维网增强层的外层,沿圆周螺旋缠绕有实心结构的螺旋立筋,所述螺旋立筋为热塑性连续纤维材料,所述螺旋立筋的外层复合有所述外保护层。
本发明提供第四种宽幅纤维网增强塑料复合管材,在第一种宽幅纤维网增强塑料复合管材的基础上,所述中间段,在所述外保护层的外壁上,沿圆周螺旋缠绕有一层或多层空心结构的螺旋立筋,所述螺旋立筋的横截面为圆形、椭圆形、方形或梯形结构。
可选地,所述承口段的内壁上设有密封圈槽,所述密封圈槽通过所述承口中间层一次缠绕成型;所述承口段内径略大于插口段外径;所述密封圈槽内适于放置密封圈,所述密封圈的内径略小于所述插口段的外径,所述密封圈的外径略大于所述承口段的密封圈槽的内径。
可选地,所述管材本体具有多根,多根所述管材本体的承口段和插口段依次承插密封连接。
本发明技术方案,具有如下优点:
1.本发明提供的宽幅纤维网增强塑料复合管材,在纤维网增强层中设置的轴向纤维层与管材本体的轴向平行,通过轴向纤维层用于使复合管材具有一定的轴向强度,从而改善管材断裂的问题。本发明提供的宽幅纤维网增强塑料复合管材,在纤维网增强层中设置的周向纤维层与管材的圆周方向平行排列,通过周向纤维层用于承受管材的径向内压,轴向纤维层与周向纤维层的纤维呈网状紧密贴合在一起,网状纤维空隙处的塑料熔合在一起,形成多层网状叠层熔融复合成热塑性纤维网增强层。
2.本发明提供的宽幅纤维网增强塑料复合管材,采用纤维网增强层作为主要的承压材料,纤维网增强层的宽度等于管材的长度,宽幅热塑性纤维网增强层采用提前预制, 然后在圆周方向零角度连续热态缠绕复合成型,其缠绕效率较高,可适用于生产大口径热塑性宽幅纤维网增强塑料复合管材。
3.本发明提供的宽幅纤维网增强塑料复合管材,在管材本体的两端分别具有承口段和插口段,承口段的内径在不同的圆周方向变化较大,在承口段上的纤维网增强层中,采用塑料层替代周向纤维层设置在轴向纤维层之间,热熔缠绕承口段时塑料层可以随承口段的模具变形,而失去周向纤维的束缚,为变径成型承口段创造了条件,连同插口段、中间段和承口段中间层一次复合缠绕完成纤维网增强层及承口段不同圆周方向的扩径和缩径,一次制造出密封圈槽,而每层轴向纤维贯穿管材两端,保证了整根复合管材的轴向强度的一致性。通过第二周向纤维层补足承口段中间层承受内部压力不足的缺陷,从而使宽幅纤维网增强塑料复合管材的三段达到承受同样内部液体压力的目的。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的宽幅纤维网增强塑料复合管材的实施例1的具有局部剖视结构的主视图。
图2为图1中局部剖视区域的放大图。
图3为图2中A区域的放大图。
图4为图2中B区域的放大图。
图5为图2中C区域的放大图。
图6为本发明的宽幅纤维网增强塑料复合管材的实施例2的具有局部剖视结构的主视图。
图7为图6中局部剖视区域的放大图。
图8为本发明的宽幅纤维网增强塑料复合管材的实施例3的具有局部剖视结构的主视图。
图9为图8中局部剖视区域的放大图。
图10为本发明的宽幅纤维网增强塑料复合管材的实施例4的具有局部剖视结构的主视图。
图11图10中局部剖视区域的放大图。
图12为本发明的宽幅纤维网增强塑料复合管材的实施例5的具有局部剖视结构的 主视图。
图13图12中局部剖视区域的放大图。
图14为本发明的宽幅纤维网增强塑料复合管材的一种实施方式在进行承插密封连接后的主视图。
图15为图14中D区域的放大图。
附图标记说明:
100、管材本体;1、中间段;2、承口段;3、插口段;4、螺旋立筋;5、内衬层;6、纤维网增强层;7、外保护层;8、轴向纤维层;9、周向纤维层;10、塑料层;11、第二周向纤维层;12、密封圈槽;13、承口中间层;14、密封圈。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
此外,下面所描述的本发明不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
目前,国内外生产的热塑性连续玻璃纤维增强聚乙烯片材,称为热塑性玻纤带(或片),热塑性玻纤带的宽度规格一般在500毫米至1000毫米之间,我们称之为窄幅热塑性玻纤带。常用规格的热塑性玻纤带宽度为600毫米左右,根据玻璃纤维直径的不同,所制造的热塑性玻纤带厚度在0.15毫米至0.4毫米之间。这种片材用于纤维增强塑料管材的制造,宽度要裁切成更窄(一般是50-160毫米)的热塑性玻纤带来使用。
上述热塑性玻纤带,在长度方向均匀平行分布有连续玻璃纤维,连续玻纤与纵向带长度方向的角度为零度,我们称这种单向热塑性玻纤带叫零度玻纤带,只承受纵向拉力,不承受横向拉力,主要应用在螺旋正反向缠绕聚乙烯增强压力管材的制造。
发明人经过研究,提出了含有纵向和横向连续纤维的一种宽幅纤维网增强塑料叠层复合片材,并改变了单向热塑性玻纤片材在内管上的螺旋缠绕方式,采用整片宽幅纤维网增强塑料叠层复合片材零度连续热熔缠绕制造成管材的纤维网增强层,使分段生产一次完成带密封圈槽的承口大口径纤维增强塑料管材效率提高10倍以上,降低耗能数倍。
上述宽幅纤维网增强层的侧边部分只含轴向连续纤维不含周向连续纤维,可以生产变径承口段的纤维增强塑料管材,后经在承口段中间层的外壁上缠绕复合一层周向纤维,实现承口段与中间段和插口段同样的管道内部压力,进而使得分段制造大口径纤维增强塑料管材的快速生产成为可能。
实施例1
如图1所示,本实施例提供一种宽幅纤维网增强塑料复合管材具体实施方式,包括:管材本体100,所述管材本体100的内层和外层为平整光滑结构。所述管材本体100包括:承口段2、中间段1和插口段3,所述承口段2的内径略大于所述插口段3的外径,该承口段2用于另一管材的插口段3进行插入,从而将两段管材进行承插连接。
如图2、图3所示,所述管材本体100的插口段3和中间段1的结构相同,所述插口段3及中间段1由内至外依次包括:内衬层5、纤维网增强层6和外保护层7;所述纤维网增强层6包括:叠层设置的轴向纤维层8和周向纤维层9,所述轴向纤维层8的纤维为与管材本体100的轴向平行、并纵贯管材本体100的两端的连续纤维;所述周向纤维层9的纤维为围绕纤维网增强层6的圆周方向连续缠绕的连续纤维。作为一种优选实施方式,所述纤维网增强层6的轴向纤维层8和周向纤维层9通过依次叠层设置成多层网状结构,每一层所述网状结构的所述轴向纤维层8和所述周向纤维层9之间通过塑料熔融为一体。
本实施例提供的宽幅纤维网增强塑料复合管材,在纤维网增强层6中设置的轴向纤维层8与管材本体100的轴向平行,通过轴向纤维层8用于承受管材的轴向强度,从而可使复合管材具有一定的轴向强度,在一定程度上可改善管材容易出现断裂的问题。
本实施例提供的宽幅纤维网增强塑料复合管材,采用纤维网增强层作为主要的承压材料,采用提前预制的宽幅纤维网增强塑料叠层复合片材,然后在圆周方向零角度连续热态缠绕复合成型,其缠绕效率高,可适用于快速生产大口径热塑性宽幅纤维网增强塑料复合管材。
如图2-图5所示,所述管材本体100上的纤维网增强层6中,所述轴向纤维层8延伸至所述承口段2的端部,并且,所述周向纤维层9不延伸至所述承口段2的端部,所述周向纤维层9在当管材本体100的内径开始变径至承口段2时进行截止,然后在承口段2通过塑料层10代替周向纤维层9设置在所述轴向纤维层8之间。
如图2-图5所示,所述承口段2由内至外依次包括:内衬层5、承口中间层13、第二周向纤维层11和外保护层7;所述承口中间层13包括:叠层设置的轴向纤维层8和塑料层10,多层轴向纤维层8与塑料层10组成无周向纤维的承口中间层13;所述第二周向纤维层11的纤维为围绕承口中间层13的外壁圆周方向连续缠绕的热塑性连续纤维。
如图2-图5所示,本实施例提供的宽幅纤维网增强塑料复合管材,在承口段2上的纤维网增强层中,采用塑料层10替代周向纤维层9设置在轴向纤维层8之间,从而进一步的提高了承口段2的轴向强度,提高管材的接口处的牢固性。所述第二周向纤维层11的设置,可补充由于通过塑料层10替代周向纤维层9而失去的抗管材内部径向压力的强度,从而提高承口段2的管材内部抗径向压力的强度。
如图2、图5所示,在承口段2的内侧壁上设置有密封圈槽12,所述密封圈槽12用于安装密封圈14,从而使两根管材能够实现承插密封连接。承口段2的结构为通过承口内塑料层和承口中间层13的一次性连续热熔缠绕成型,因此具有较高的承压强度,所述承口中间层13包括多层轴向纤维层8,在多层轴向纤维层8之间间隔设置有塑料层10,并且,在承口中间层13中无周向纤维。所述承口中间层13的外层沿周向缠绕有第二周向纤维层11,所述第二周向纤维层11具有部分延伸至覆盖在所述管材本体100的纤维网增强层6上,从而使承口段2与管材本体100之间平滑过渡。
本实施例提供的宽幅纤维网增强塑料复合管材中,所述内衬层5和外保护层7及纤维之间的塑料采用聚乙烯、聚丙烯等聚烯烃类材料。
本实施例提供的宽幅纤维网增强塑料复合管材中,所述轴向纤维层8、周向纤维层9和第二周向纤维层11可采用热塑性玻璃纤维,也可以采用玄武岩纤维、碳纤维、金属纤维等无机物纤维材料。
如图14、图15所示,本实施例提供的宽幅纤维网增强塑料复合管材,可依次将两个管材本体100承口段和插口段进行承插密封连接,从而通过多个管材本体100构成整根管道,并且其长度可根据实际需要进行调节。具体的,在将两根管材本体100进行承插连接时,在第一根管材本体100的承口段的密封圈槽12内设有密封圈14,通过该密封圈14使两根管材本体100的承口段和插口段密封承插连接。
实施例2
如图6、图7所示,本实施例提供另一种宽幅纤维网增强塑料复合管材的具体实施方式,本实施例的宽幅纤维网增强塑料复合管材的结构与实施例1大体相同,不同之处在于:本实施例的宽幅纤维网增强塑料复合管材,在所述管材本体100的纤维网增强层6的外层,还缠绕有多层第二周向纤维层11,在第二周向纤维层11外再设置所述外保护层7;通过第二周向纤维层11可进一步的增加管材的抗内压强度。
具体的,在所述承口段2的外壁上缠绕所述第二周向纤维层11完毕后,通过继续朝向插口段3方向继续缠绕,使管材本体100的纤维网增强层6的外层整体均缠绕有多层第二周向纤维层11;通过第二周向纤维层11的设置,可在减小管材本体100内的纤维网增强层6的厚度的情况下,提高管材本体100的内压承压强度。
实施例3
如图8、图9所示,本实施例提供第三种宽幅纤维网增强塑料复合管材的具体实施方式,本实施例的宽幅纤维网增强塑料复合管材具体结构与实施例1大体相同,不同之处在于:本实施例的宽幅纤维网增强塑料复合管材,所述管材本体100的中间段1的纤维网增强层6的外层,沿圆周螺旋缠绕有实心结构的螺旋立筋4,所述螺旋立筋4为热塑性连续纤维材料,实心结构的所述螺旋立筋4的外层通过外保护层7包裹。螺旋立筋4的设置,可以用于提高管材抗内压及提高管材环刚度的作用。
实施例4
如图10、图11所示,本实施例提供第四种宽幅纤维网增强塑料复合管材的具体实施方式,本实施例的宽幅纤维网增强塑料复合管材具体结构与实施例1大体相同,不同之处在于:本实施例的宽幅纤维网增强塑料复合管材,所述管材本体100的中间段1的外保护层7上,沿圆周螺旋缠绕有一层螺旋立筋4,所述螺旋立筋4为空心结构,主要采用塑料材料。螺旋立筋4的空心腔体可以为圆形、椭圆形、方形、梯形等结构。空心结构的螺旋立筋4的设置,提高了管材的环刚度,使得管材在进行暗埋施工后,增加抗外压能力。
实施例5
如图12、图13所示,本实施例提供第五种宽幅纤维网增强塑料复合管材的具体实施方式,本实施例的宽幅纤维网增强塑料复合管材具体结构与实施例4大体相同,不同之处在于:本实施例的宽幅纤维网增强塑料复合管材,所述管材本体100的中间段1的外保护层7上沿圆周螺旋缠绕有多层螺旋立筋4,所述螺旋立筋4为空心结构,主要采用塑料材料。螺旋立筋4的空心腔体可以为圆形、椭圆形、方形、梯形等结构。多层空 心结构的螺旋立筋4的设置,进一步提高了管材的环刚度,使得管材在进行暗埋施工后,进一步增加抗外压能力。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (7)

  1. 一种宽幅纤维网增强塑料复合管材,其特征在于,包括:管材本体(100),所述管材本体(100)包括:中间段(1)、承口段(2)和插口段(3),所述插口段(3)及中间段(1)由内至外依次包括:内衬层(5)、纤维网增强层(6)和外保护层(7);所述纤维网增强层(6)包括:叠层设置的轴向纤维层(8)和周向纤维层(9),所述轴向纤维层(8)的纤维为与管材本体(100)的轴向平行、并纵贯管材本体(100)的两端的连续纤维;所述周向纤维层(9)的纤维为与每层轴向纤维正交的连续纤维;轴向纤维层(8)与周向纤维层(9)在中间段(1)和插口段(3)形成多层热塑性纤维网增强层(6);
    所述承口段(2)由内至外依次包括:内衬层(5)、承口中间层(13)、第二周向纤维层(11)和外保护层(7);所述承口中间层(13)包括:叠层设置的轴向纤维层(8)和塑料层(10),多层轴向纤维层(8)与塑料层(10)组成无周向纤维的承口中间层(13);
    所述第二周向纤维层(11)的纤维为围绕承口中间层(13)的外壁圆周方向连续缠绕的热塑性连续纤维。
  2. 根据权利要求1所述的宽幅纤维网增强塑料复合管材,其特征在于,每一层网状结构的所述轴向纤维层(8)和所述周向纤维层(9)紧密贴合在一起,纤维之间的空隙通过塑料熔融为一体。
  3. 一种宽幅纤维网增强塑料复合管材,其特征在于,在权利要求1的基础上,所述插口段(3)及中间段(1),在所述外保护层(7)与所述纤维网增强层(6)之间,还设有第二周向纤维层(11);所述插口段(3)及中间段(1)由内至外依次包括:内衬层(5)、纤维网增强层(6)、第二周向纤维层(11)和外保护层(7)。
  4. 一种宽幅纤维网增强塑料复合管材,其特征在于,在权利要求1的基础上,所述中间段(1),在所述纤维网增强层(6)的外层,沿圆周螺旋缠绕有实心结构的螺旋立筋(4),所述螺旋立筋(4)为热塑性纤维材料,所述螺旋立筋(4)的外层复合有所述外保护层(7)。
  5. 一种宽幅纤维网增强塑料复合管材,其特征在于,在权利要求1的基础上,所述中间段(1),在所述外保护层(7)的外壁上,沿圆周螺旋缠绕有一层或多层空心结构的螺旋立筋(4),所述螺旋立筋(4)的横截面为圆形、椭圆形、方形或梯形结构。
  6. 根据权利要求1-5中任一项所述的宽幅纤维网增强塑料复合管材,其特征在于,所述承口段(2)的内壁上设有密封圈槽(12),所述密封圈槽(12)通过所述承口中间 层(13)一次缠绕成型;承口段(2)的内径略大于插口段(3)外径,所述密封圈槽(12)内适于放置密封圈(14),所述密封圈(14)的内径略小于所述插口段(3)的外径,所述密封圈(14)的外径略大于所述承口段(2)的密封圈槽(12)的内径。
  7. 根据权利要求1-5中任一项所述的宽幅纤维网增强塑料复合管材,其特征在于,所述管材本体(100)具有多根,多根所述管材本体(100)的承口段(2)和插口段(3)依次承插密封连接。
PCT/CN2021/098089 2020-12-21 2021-06-03 一种宽幅纤维网增强塑料复合管材 WO2022134482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011518243.6 2020-12-21
CN202011518243.6A CN112628479B (zh) 2020-12-21 2020-12-21 一种宽幅纤维网增强塑料复合管材

Publications (1)

Publication Number Publication Date
WO2022134482A1 true WO2022134482A1 (zh) 2022-06-30

Family

ID=75320240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098089 WO2022134482A1 (zh) 2020-12-21 2021-06-03 一种宽幅纤维网增强塑料复合管材

Country Status (2)

Country Link
CN (1) CN112628479B (zh)
WO (1) WO2022134482A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112628479B (zh) * 2020-12-21 2023-06-13 赵培翔 一种宽幅纤维网增强塑料复合管材
CN114719091A (zh) * 2022-03-23 2022-07-08 山西生意兴隆科技有限公司 纤维网格带增强复合管及制造方法
CN115972554B (zh) * 2023-02-23 2023-11-24 山东中水管道工程有限公司 一种宽幅纤维网增强塑料复合管材生产线
CN116001251B (zh) * 2023-03-24 2023-06-30 山东中水管道工程有限公司 一种宽幅纤维网增强塑料复合管材生产方法及生产线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297883A (ja) * 1999-04-14 2000-10-24 Sekisui Chem Co Ltd 複合管
CN201925670U (zh) * 2010-12-03 2011-08-10 奉玉贞 一种玻璃钢耐磨管
CN202082504U (zh) * 2011-04-19 2011-12-21 合肥华宇橡塑设备有限公司 纤维增强热塑性塑料管材
CN204647594U (zh) * 2015-02-16 2015-09-16 浙江双林塑料机械有限公司 连续纤维增强管及连续纤维增强管连接结构
JP2019074211A (ja) * 2017-10-12 2019-05-16 積水化学工業株式会社 複合管
CN208900864U (zh) * 2018-08-23 2019-05-24 淮安华盟机械科技有限公司 一种塑料内外壁纤维编织缠绕拉挤管道
CN112628479A (zh) * 2020-12-21 2021-04-09 赵培翔 一种宽幅纤维网增强塑料复合管材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001512814A (ja) * 1997-07-22 2001-08-28 エクソンモービル リサーチ アンド エンジニアリング カンパニー 流体格納用の高ウィーピング強度ポリマー−ガラスリボン複合積層体
US6042152A (en) * 1997-10-01 2000-03-28 Technical Products Group, Inc. Interface system between composite tubing and end fittings
JP4168691B2 (ja) * 2002-07-30 2008-10-22 東海ゴム工業株式会社 蛇腹金属管付ホース
JP5549247B2 (ja) * 2010-02-02 2014-07-16 横浜ゴム株式会社 水素充填用ホースとホース金具のアッセンブリ品の製造方法
CN102235555B (zh) * 2011-04-18 2013-07-31 李长城 一种连续纤维增强塑料复合管道的方法及其生产的管道
CN203571240U (zh) * 2013-07-19 2014-04-30 河南联塑实业有限公司 一种增强热塑性管材
US9470350B2 (en) * 2013-07-23 2016-10-18 Spencer Composites Corporation Metal-to-composite interfaces
CN205048007U (zh) * 2015-08-31 2016-02-24 浙江双林机械股份有限公司 一种连续纤维方管加强筋大口径压力管道
CN108131504A (zh) * 2018-02-09 2018-06-08 安徽华奇管业有限公司 一种超强抗压的带有承插式接口的竹蔑螺旋复合管
CN108407345B (zh) * 2018-03-28 2024-09-10 安徽省生宸源材料科技实业发展股份有限公司 螺纹钢筋增强聚丙烯波纹管及其制造方法
CN209557874U (zh) * 2018-12-18 2019-10-29 嘉善嘉诚混凝土制管有限公司 一种承插式玻璃纤维增强塑料夹砂管
CN211738287U (zh) * 2019-07-10 2020-10-23 内蒙古希沐节水灌溉设备有限公司 一种复合pe管

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000297883A (ja) * 1999-04-14 2000-10-24 Sekisui Chem Co Ltd 複合管
CN201925670U (zh) * 2010-12-03 2011-08-10 奉玉贞 一种玻璃钢耐磨管
CN202082504U (zh) * 2011-04-19 2011-12-21 合肥华宇橡塑设备有限公司 纤维增强热塑性塑料管材
CN204647594U (zh) * 2015-02-16 2015-09-16 浙江双林塑料机械有限公司 连续纤维增强管及连续纤维增强管连接结构
JP2019074211A (ja) * 2017-10-12 2019-05-16 積水化学工業株式会社 複合管
CN208900864U (zh) * 2018-08-23 2019-05-24 淮安华盟机械科技有限公司 一种塑料内外壁纤维编织缠绕拉挤管道
CN112628479A (zh) * 2020-12-21 2021-04-09 赵培翔 一种宽幅纤维网增强塑料复合管材

Also Published As

Publication number Publication date
CN112628479B (zh) 2023-06-13
CN112628479A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022134482A1 (zh) 一种宽幅纤维网增强塑料复合管材
CN109140059B (zh) 中空壁管材及其制造方法
CN106090464B (zh) 一种塑料加筋缠绕波纹管
CN107191693B (zh) 螺旋双峰结构波纹管及其制造方法
BR112014022772B1 (pt) tubulação de múltiplas camadas de material polimérico e dispositivo e método para fabricação da tubulação de múltiplas camadas
CN112549694B (zh) 一种宽幅纤维网增强塑料叠层复合片材
WO2011060695A1 (zh) 用于螺旋波纹形塑钢缠绕管的钢带增强复合带材
CN208348701U (zh) 一种pp高筋增强聚乙烯缠绕管
CN206130337U (zh) 一种塑料加筋缠绕波纹管
CN210800288U (zh) 一种中空壁中空立筋缠绕管
CN208348699U (zh) 一种中空型pp高筋增强聚乙烯缠绕管
CN216479368U (zh) 一种宽幅纤维网增强塑料复合管材
CN216545122U (zh) 一种宽幅纤维网增强塑料叠层复合片材
CN214368299U (zh) 钢塑复合给水管道
CN213332842U (zh) 一种纤塑增强复合缠绕管的承口结构
CA2424659C (en) Tubular conduit or container for transporting or storing cryogenic media and method for producing the same
CN207034431U (zh) Hdpe中空壁加筋管
CN111660616A (zh) 一种高强度热塑性管材及其制造方法
CN109016582A (zh) Frpe多肋增强双层双抗管成型工艺
CN110242802A (zh) 一种双高筋结构壁管
JP2005016580A (ja) 合成樹脂管
CN221004127U (zh) 一种反向缠绕结构壁管
CN219866706U (zh) 中空壁加筋缠绕波纹管
CN211315383U (zh) 一种多腔型双高筋增强结构壁管
CN208348700U (zh) 一种嵌钢型pp高筋增强聚乙烯缠绕管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908490

Country of ref document: EP

Kind code of ref document: A1