WO2022134463A1 - 机器人 - Google Patents

机器人 Download PDF

Info

Publication number
WO2022134463A1
WO2022134463A1 PCT/CN2021/096333 CN2021096333W WO2022134463A1 WO 2022134463 A1 WO2022134463 A1 WO 2022134463A1 CN 2021096333 W CN2021096333 W CN 2021096333W WO 2022134463 A1 WO2022134463 A1 WO 2022134463A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
drive
board
integrated
base
Prior art date
Application number
PCT/CN2021/096333
Other languages
English (en)
French (fr)
Inventor
石金博
俞洪淼
刘虹
沙琪
俞春华
陈理辉
王红
Original Assignee
东莞市李群自动化技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞市李群自动化技术有限公司 filed Critical 东莞市李群自动化技术有限公司
Priority to EP21908474.6A priority Critical patent/EP4269041A1/en
Priority to JP2023539188A priority patent/JP2024500536A/ja
Publication of WO2022134463A1 publication Critical patent/WO2022134463A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0054Cooling means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/14Structural association with mechanical loads, e.g. with hand-held machine tools or fans

Definitions

  • the present application relates to the field of robotics, for example, to a robot.
  • a robot is a cross-cutting technical product that integrates machinery, electrical, electronic information and other fields. Robots can replace humans to perform tasks such as handling, assembly, loading and unloading, palletizing, welding, and spraying.
  • the main components of these robots include at least a mechanical body, a deceleration component, a motor, a driver and a controller.
  • the controllers and drivers of common robots on the market are separate from each other and need to be installed separately. They take up a lot of space and consume a lot of installation accessories.
  • the signal transmission connection is complicated, and in addition, this split design is difficult to meet the needs of narrow spaces.
  • the present application provides a robot, which makes the overall structure of the robot more compact.
  • a robot comprising:
  • a robotic arm movably mounted on the base;
  • an integrated drive and control board arranged on the base, and configured to control the movement of the robotic arm
  • the integrated drive and control board includes a control module, a drive module and a base plate, and the control module and the drive module are arranged on the base plate,
  • the control module is electrically connected to the driving module.
  • the number of the integrated drive and control boards is two or more, and all the integrated drive and control boards are spaced apart and distributed in layers and connected in series in series.
  • the board controls at least one arm body of the robotic arm.
  • one of the integrated driving and control boards controls one arm of the robotic arm.
  • the number of the integrated driving and control boards is equal to the number of the arm bodies of the mechanical arm.
  • any one of the integrated drive and control boards can be used as the main control board, and any one of the integrated drive and control boards is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals;
  • all of the integrated drive and control boards are connected to the cloud controller, and the cloud controller is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals.
  • the robot further includes a connection seat, and the connection seat includes two or more first cascading sockets for the two or more drive-control integrated boards to be plugged into, and all the first cascading sockets are spaced apart from each other. Distributed and cascaded in turn.
  • the robot further includes a driving mechanism, the driving mechanism is mounted on the base or the mechanical arm, the driving mechanism is electrically connected with the driving and control integrated board, and the driving mechanism is configured to drive the Robotic arm movement.
  • an accommodating cavity is provided in the base, and the driving mechanism is installed in the accommodating cavity.
  • the drive mechanism includes a drive motor and a deceleration assembly, the drive motor is mounted on the base or the mechanical arm, the deceleration assembly is mounted on the drive motor, and the output of the drive motor The end is drivingly connected with the deceleration assembly.
  • the driving mechanism further includes a flange, the flange is mounted on the base or the mechanical arm, and the driving motor and the deceleration assembly are mounted on the flange.
  • the driving mechanism is a driving device made of piezoelectric ceramics.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed on the base.
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure adopts liquid cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the integrated drive and control board, and the first heat dissipation fan is configured to accelerate the heat dissipation of the integrated drive control board to the All areas in the base are dissipated to the outside through the wall of the base.
  • the heat dissipation structure includes a second heat dissipation fan, a heat dissipation hole is provided on the base, the second heat dissipation fan is opposite to the heat dissipation hole, and the second heat dissipation fan is arranged to The heat in the seat is discharged to the outside of the base.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the wall of the base.
  • the cooling fins are arranged on the outer side and/or the inner side of the wall of the base.
  • the integrated drive and control board is disposed close to the wall with the heat sink.
  • the integrated drive and control board further includes a first communication module disposed on the base plate, and the first communication module is electrically connected to the control module and/or the drive module.
  • the first communication module is configured to be connected to the network.
  • the first communication module adopts wired or wireless connection to the network.
  • control module includes a first control part and a second control part, the first control part and the first communication module are arranged on the first surface of the substrate, the second control part and The driving module is arranged on the second surface of the substrate.
  • the integrated drive and control board further includes a first communication module disposed on the base plate, the first communication module is electrically connected to the control module, and different integrated drive and control boards pass through the different communication modules.
  • the robot further includes a connection board spaced from the integrated drive and control board and arranged in layers, and the connection board is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals, so
  • the connection board includes a third control part and an installation board, the third control part is arranged on the installation board, the two or more drive and control integrated boards are connected in series in sequence, and the third control part is connected to at least one drive.
  • the control board is electrically connected.
  • connection board further includes a second communication module, the second communication module is arranged on the installation board, and the third control part is electrically connected to the second communication module and the at least one driver. control board.
  • the second communication module is configured to be connected to the network.
  • the second communication module adopts wired or wireless connection to the network.
  • the robot further includes a connection seat, and the connection seat includes two or more first cascading sockets for the insertion of the two or more integrated drive and control boards, and a second connection for the insertion of the connection boards.
  • the connection seat includes two or more first cascading sockets for the insertion of the two or more integrated drive and control boards, and a second connection for the insertion of the connection boards.
  • the cascade sockets all the first cascade sockets are distributed along a row and connected in cascade in sequence, and the second cascade sockets are electrically connected with at least one of the first cascade sockets.
  • an accommodating cavity is provided in the base, and the integrated drive and control board is set in the accommodating cavity;
  • the integrated board is arranged in the control box.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm.
  • a robot comprising:
  • a robotic arm movably mounted on the base;
  • control box arranged at intervals from the base
  • the integrated drive and control board is arranged in the control box and configured to control the movement of the robotic arm.
  • the integrated drive and control board includes a control module, a drive module and a base plate, and the control module and the drive module are arranged on the base plate , the control module is electrically connected to the drive module.
  • the number of the integrated drive and control boards is two or more
  • the mechanical arm includes a plurality of arm bodies, all the integrated drive and control boards are spaced apart and distributed in layers and connected in cascade in sequence, each drive and control integrated The board controls at least one arm body of the robotic arm.
  • one of the integrated driving and control boards controls one arm of the robotic arm.
  • the number of the integrated driving and control boards is equal to the number of the arm bodies of the mechanical arm.
  • any integrated drive and control board can be used as the main control board, and any one integrated drive and control board is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals;
  • the integrated drive and control boards are all connected to the cloud controller, and the cloud controller is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals.
  • the robot further includes a connection seat, and the connection seat includes two or more first cascading sockets for the insertion of the two or more drive-control integrated boards, and all the first cascading sockets are distributed at intervals. and connected in series.
  • the robot further includes a driving mechanism installed on the base or the mechanical arm, the driving mechanism is electrically connected to the integrated driving and control board, and the driving mechanism is configured to drive the mechanical arm to move.
  • an accommodating cavity is provided in the base, and the driving mechanism is installed in the accommodating cavity.
  • the drive mechanism includes a drive motor and a deceleration assembly
  • the drive motor is mounted on the base or the robotic arm
  • the deceleration assembly is mounted on the drive motor
  • the output end of the drive motor Drive connected with the reduction assembly.
  • the driving mechanism further includes a flange, the flange is mounted on the base or the mechanical arm, and the driving motor and the deceleration assembly are mounted on the flange.
  • the driving mechanism is a driving device made of piezoelectric ceramics.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed in the control box.
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure adopts liquid cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the drive and control integrated board, and the first heat dissipation fan is configured to accelerate the heat dissipation of the drive and control integrated board to all parts.
  • the entire area in the control box is dissipated, and heat is dissipated to the outside through the outer wall of the control box.
  • the heat dissipation structure includes a second heat dissipation fan
  • the control box is provided with a heat dissipation hole
  • the second heat dissipation fan is opposite to the heat dissipation hole
  • the second heat dissipation fan is arranged to connect the control box to the control box.
  • the heat inside is discharged to the outside of the control box.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the outer wall of the control box.
  • cooling fins are arranged on the outer side and/or the inner side of the outer wall of the control box.
  • the integrated drive and control board is disposed close to the outer wall with the heat sink.
  • the integrated drive and control board further includes a first communication module disposed on the base plate, and the first communication module is electrically connected to the control module.
  • the first communication module is configured to be connected to the network.
  • the first communication module adopts wired or wireless connection to the network.
  • control module includes a first control part and a second control part, the first control part and the first communication module are arranged on the first surface of the substrate, the second control part and the The driving module is arranged on the second surface of the substrate.
  • the integrated drive and control board further includes a first communication module disposed on the base plate, the first communication module is electrically connected to the control module and/or the drive module, and the different integrated drive and control boards are connected to each other.
  • the signals are connected through the first communication modules of the different drive-control integrated boards.
  • the robot further includes a connection board spaced from the integrated drive and control board and arranged in layers, the connection board is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals.
  • the connection board includes a third control part and an installation board, the third control part is arranged on the installation board, the two or more driving and control integrated boards are connected in series in sequence, and the third control part is connected with at least one driving control board.
  • the one-piece board is electrically connected.
  • connection board further includes a second communication module, the second communication module is arranged on the mounting plate, and the third control part is electrically connected to the second communication module and the at least one drive controller. All-in-one board.
  • the second communication module is configured to be connected to a network.
  • the second communication module adopts wired or wireless connection to the network.
  • the robot further includes a connection seat, the connection seat includes two or more first cascading sockets for the two or more drive-control integrated boards to be plugged in, and a second socket for the connection board to be plugged in. Cascading sockets, all the first cascading sockets are spaced along a row and connected in cascade in sequence, and the second cascading sockets are electrically connected to at least one of the first cascading sockets.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm.
  • a robot comprising:
  • a robotic arm movably mounted on the base;
  • the integrated drive and control board includes a drive board and a control board, the drive board and the control board are arranged on the base, the drive board and the control board are electrically connected, and the integrated drive and control board is arranged as a control board. the motion of the robotic arm.
  • the number of the integrated drive and control boards is more than two
  • the robotic arm includes a plurality of arm bodies, and all the integrated drive and control boards are stacked and connected in series, and each integrated drive and control board controls at least one arm body of the robotic arm.
  • one of the integrated driving and control boards controls one arm of the robotic arm.
  • the number of the integrated driving and control boards is equal to the number of the arm bodies of the mechanical arm.
  • any integrated drive and control board can be used as the main control board, and any one integrated drive and control board is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals;
  • the integrated drive and control boards are all connected to the cloud controller, and the cloud controller is configured to control the signals of all the integrated drive and control boards and to connect with external equipment signals.
  • the driver board and the control board are connected in a daisy chain.
  • the robot further includes a driving mechanism, the driving mechanism is installed on the base or the mechanical arm, the driving mechanism is electrically connected with the driving and control integrated board, and the driving mechanism is configured to drive the mechanical arm movement.
  • an accommodating cavity is provided in the base, and the driving mechanism is installed in the accommodating cavity.
  • the drive mechanism includes a drive motor and a deceleration assembly
  • the drive motor is mounted on the base or the robotic arm
  • the deceleration assembly is mounted on the drive motor
  • the output end of the drive motor Drive connected with the reduction assembly.
  • the driving mechanism further includes a flange, the flange is mounted on the base or the mechanical arm, and the driving motor and the deceleration assembly are mounted on the flange.
  • the driving mechanism is a driving device made of piezoelectric ceramics.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed on the base.
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure adopts liquid cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the drive and control integrated board, and the first heat dissipation fan is configured to accelerate the heat dissipation of the drive and control integrated board to all parts.
  • the entire area of the base is dissipated, and heat is dissipated to the outside through the wall of the base.
  • the heat dissipation structure includes a second heat dissipation fan, a heat dissipation hole is provided on the base, the second heat dissipation fan is opposite to the heat dissipation hole, and the second heat dissipation fan is arranged to connect the base to the base. The heat inside is discharged to the outside of the base.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the wall of the base.
  • the cooling fins are arranged on the outer side and/or the inner side of the wall of the base.
  • the integrated drive and control board is disposed close to the wall with the heat sink.
  • the integrated drive and control board further includes a communication board, and the communication board is electrically connected to the control board.
  • the communication board is configured to be connected to the network.
  • the communication board adopts wired or wireless connection to the network.
  • the integrated drive and control board further includes a communication board, the communication board is electrically connected to the control board, and different integrated drive and control boards are signal-connected through the communication boards of the different integrated drive and control boards.
  • the robot further includes a connection board that is arranged in layers with the integrated drive and control board, the connection board is configured to control the signals of all the integrated drive and control boards and to be signal-connected with external equipment, the connection board It includes a control part and an installation board, the control part is arranged on the installation board, the two or more integrated drive and control boards are connected in series in series, and the control part is electrically connected to at least one integrated drive and control board.
  • connection board further includes a communication module, the communication module is arranged on the mounting plate, and the control part is electrically connected to the communication module and the integrated drive and control board.
  • the communication module is configured to be connected to a network.
  • the communication module adopts wired or wireless connection to the network.
  • an accommodating cavity is provided in the base, and the integrated drive and control board is set in the accommodating cavity;
  • the integrated board is arranged in the control box.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the mechanical arm.
  • Fig. 1 is the first structural schematic diagram of the robot according to the embodiment
  • FIG. 2 is a schematic structural diagram of the integrated drive and control board according to the embodiment
  • FIG. 3 is a schematic structural diagram of two or more integrated drive and control boards according to the embodiment.
  • FIG. 5 is another schematic structural diagram of the integrated drive and control board according to the embodiment.
  • FIG. 6 is a schematic structural diagram of the integrated driving and control board and the connecting board according to the embodiment.
  • FIG. 7 is a schematic diagram of a second structure of the robot according to the embodiment.
  • FIG. 8 is another structural schematic diagram of the integrated drive and control board according to the embodiment.
  • FIG. 9 is a third structural schematic diagram of the robot according to the embodiment.
  • FIG. 10 is a schematic diagram of a fourth structure of the robot according to the embodiment.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • a robot as shown in Figure 1 and Figure 2 (Figure 1 is only a Selective Compliance Assembly Robot Arm, SCARA) robot, in fact, the technology is not limited to the shape structure shown in Figure 1 or models of robots, not limited to the category of SCARA robots, but also other types of robots, such as two-axis robots, three-axis robots, four-axis robots, five-axis robots, six-axis robots, multi-axis robots and Delta robots, and suitable for two-axis robots, three-axis robots, four-axis robots, five-axis robots, six-axis robots, multi-axis robots and Delta robots of various shapes, structures and models), the robot includes a base 1, a robotic arm 2 and The integrated drive and control board 3, the mechanical arm 2 is movably installed on the base 1, the integrated drive and control board 3 is arranged on the base 1, and the integrated drive and control board 3 is set to control the movement of the mechanical arm 2.
  • SCARA Selective Compliance Assembly Robot Arm
  • the integrated drive and control board 3 includes a control module 31, The driving module 32 and the substrate 33 , the control module 31 and the driving module 32 are arranged on the substrate 33 , and the control module 31 is electrically connected to the driving module 32 .
  • the control module 31 and the driving module 32 By arranging the control module 31 and the driving module 32 on the same substrate 33, the overall structure of the control module 31 and the driving module 32 can be made more compact, and the required installation space is smaller, thereby making the overall structure of the robot more compact.
  • the number of integrated drive and control boards 3 is two or more, all integrated drive and control boards 3 are spaced apart, distributed in layers, and connected in cascade in sequence, and each integrated drive and control board 3 controls at least one arm body 21 of the robotic arm 2 .
  • a drive and control integrated board 3 controls an arm body 21 of the robotic arm 2 .
  • the number of the integrated drive and control boards 3 is equal to the number of the arm bodies 21 of the robot arm 2 .
  • any one of the integrated drive and control boards 3 can be used as the main control board, and any one of the integrated drive and control boards 3 is configured to control the signals of all the integrated drive and control boards 3 and be signal-connected to external devices.
  • the control system of the robot can be made more flexible, avoiding the failure of the robot as a whole due to the damage of the main control board.
  • the other integrated drive and control board 3 only needs to be used as the main control board. , the overall control of the robot can be realized.
  • the robot further includes a connection seat 4 , and the connection seat 4 includes two or more first cascade sockets 41 for the insertion of two or more drive-control integrated boards 3 , and all the first cascade sockets 41 . 41 are distributed at intervals and connected in cascade.
  • the connecting base 4 By arranging the connecting base 4 with the first cascade socket 41, on the one hand, the installation reliability of the integrated drive and control board 3 can be improved, and on the other hand, the rapid disassembly and assembly of the integrated drive and control board and the connecting base 4 can be facilitated, thereby improving the performance of different drives.
  • the robot further includes a driving mechanism 5 installed on the base 1 , the driving mechanism 5 is electrically connected with the driving and control integrated board 3 , and the driving mechanism 5 is configured to drive the mechanical arm 2 to move.
  • the base 1 is provided with an accommodating cavity, and the driving mechanism 5 is installed in the accommodating cavity. Disposing the driving mechanism 5 in the accommodating cavity can make the connection between the driving mechanism 5 and the integrated driving and control board 3 simpler and more reliable.
  • the drive mechanism 5 includes a drive motor 51 and a deceleration assembly 52 .
  • the drive motor 51 is installed on the base 1
  • the deceleration assembly 52 is installed in the drive motor 51
  • the output end of the drive motor 51 is connected to the deceleration assembly 52 in a driving manner.
  • the drive motor 51 of the drive mechanism 5 is connected to the drive module 32 of the drive-control integrated board 3 , the control module 31 sends a control signal to the drive module 32 , and the drive module 32 outputs the drive signal to the drive motor 51 according to the control signal to drive the motor. 51 drives the deceleration component according to the driving signal and then drives the mechanical arm to move.
  • the driving mechanism 5 further includes a flange 53 , the flange 53 is mounted on the base 1 , and the driving motor 51 and the deceleration assembly 52 are mounted on the flange 53 .
  • the flange 53 is not necessary, and in some cases, the flange 53 may not be provided.
  • the base 1 is provided with an opening
  • the flange 53 is arranged at the opening of the base 1 and is arranged on the base 1
  • the deceleration assembly 52 is arranged on the driving motor 51 through the flange 53 .
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed on the base 1 .
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the integrated drive and control board 3 , and the first heat dissipation fan is set to accelerate the heat dissipation of the integrated drive control board 3 to all areas in the base 1 , and pass through the base 1 .
  • the wall dissipates heat to the outside.
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the heat dissipation structure includes a second heat dissipation fan, the base 1 is provided with a heat dissipation hole, the second heat dissipation fan is opposite to the heat dissipation hole, and the second heat dissipation fan is arranged to discharge the heat in the base 1 to the outside of the base 1 .
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the first cooling fan and the second cooling fan are not necessarily provided at the same time, and in some cases, only one of the first cooling fan and the second cooling fan may be provided separately.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the wall of the base 1 .
  • the cooling fins are arranged on the outer side and/or the inner side of the wall of the base 1 , and the integrated drive and control board 3 is arranged close to the wall with cooling fins. This design can provide the heat dissipation effect of the integrated drive and control board 3 .
  • the integrated drive and control board 3 further includes a first communication module 34 disposed on the base plate 33 , and the first communication module 34 is electrically connected to the control module 31 .
  • the first communication module 34 is configured to be connected to the network.
  • the first communication module 34 uses wired or wireless connection to the network.
  • control module 31 includes a first control part 311 and a second control part 312, the first control part 311 and the first communication module 34 are provided on the first surface of the substrate 33, and the second control part 312 and the driving module 32 are provided. on the second surface of the substrate 33 .
  • the first control part 311 is electrically connected to the second control part 312
  • the first control part 311 and/or the second control part 312 are electrically connected to the driving module 32 .
  • the base 1 is provided with a accommodating cavity, and the integrated drive and control board 3 is provided in the accommodating cavity.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm 2 .
  • a control function board or a drive function board can be arranged on the mechanical arm 2, so that the movement of the mechanical arm 2 is controlled by the driving and control integrated board 3 and the control function board or the driving function board.
  • one arm body 21 of the robotic arm 2 is provided with a drive function board, the drive function board is connected to the control module 31 of the integrated drive and control board 3, the drive function board and the control module 31 control the movement of at least one arm body 21, and the control module 31 and the drive module 32 to control the movement of other arm bodies 21, or a control function board is provided on one arm body 21 of the mechanical arm 2, the control function board is electrically connected with the drive module 32 of the drive and control integrated board 3, and the control function board and the drive module 32 Control the movement of all the arm bodies 21, and the control module 31 and the drive module 32 can also control the movement of all the arm bodies 21, or, a control function board and a drive function board are provided on one arm body 21 of the robotic arm 2, or the robotic arm 2
  • One arm body 21 is provided with a control function board
  • the other arm body 21 is provided with a drive function board
  • the control function board and the drive function board are electrically connected
  • the control function board and the drive function board control the movement of at least one arm body 21, and
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • All integrated drive and control boards are set to be connected to the cloud controller, and the cloud controller is set to control the signals of all integrated drive control boards and connect with external equipment signals. That is, the integrated drive and control boards in this embodiment do not need to be used as the main control board, but the cloud controller is used as the main control center of the robot to realize the overall control of the robot.
  • the driving mechanism is not installed in the accommodating cavity.
  • the driving mechanism in this embodiment is installed on the mechanical arm. This design can make full use of the space in the height direction, so that the robot can be distributed in the vertical direction and avoid the driving mechanism occupying the base. space, which in turn enables the base to be designed smaller, enabling the robot to be applied to scenarios with smaller horizontal areas.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the driving mechanism is not installed in the accommodating cavity, but is installed on the outside of the wall of the base, so that the driving mechanism can dissipate heat and maintain.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the driving mechanism is not a motor structure, and the driving mechanism is a driving device made of piezoelectric ceramics, and the mechanical arm is driven to move by the piezoelectric ceramic driving device.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the heat dissipation structure of this embodiment adopts liquid cooling for heat dissipation.
  • a liquid flow channel and a liquid flow pump can be set up, and the liquid flow channel can exchange heat with the drive-control integrated board, and the cooling liquid is driven to circulate in the liquid flow channel by the liquid flow pump, thereby taking away the heat of the drive-control integrated board to reduce the drive and control integrated board. Control the temperature of the integrated board, so that the operation of the integrated drive and control board is more stable.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • the robot also includes a connecting board 6 spaced from the integrated driving and control board 3 and arranged in layers.
  • the connecting board 6 is configured to control the signals of all the integrated driving and control boards 3 and connect with external equipment signals.
  • the connecting board 6 includes The third control part 61 and the mounting board 62 , the third control part 61 is arranged on the mounting board 62 , the plurality of integrated driving and control boards 3 are connected in series in series, and the third control part 61 is electrically connected to at least one integrated driving and control board 3 .
  • the connection board 6 further includes a second communication module 63 , the second communication module 63 is arranged on the mounting plate 62 , and the third control part 61 is electrically connected to the second communication module 63 and at least one integrated drive and control board 3 .
  • the second communication module 63 is configured to be connected to the network, and the second communication module 63 uses wired or wireless connection to the network.
  • the connection board 6 can be used as the main control board of the robot to perform overall control of all the integrated drive and control boards 3, that is, it is not necessary to use any one integrated drive and control board 3 as the main control board. Through the second communication module 63, the remote interaction between the third control part 61 and external devices can be realized.
  • the robot further includes a connection base 4, and the connection base 4 includes two or more first cascading sockets 41 for the insertion of two or more drive-control integrated boards 3 and a second cascading socket for the connection board 6 to plug in. 42. All the first cascading sockets 41 are spaced along a column and are connected in cascade in sequence, and the second cascading sockets 42 are electrically connected to at least one first cascading socket 41 .
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • a control box is installed on the outside of the wall 21 of the base 1 , and the integrated drive and control board 3 is arranged in the control box.
  • this design can make the control system composed of the integrated drive and control board 3 and other devices as a whole, and the disassembly and assembly are more convenient.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • a robot as shown in Figure 7 (Figure 7 is only a SCARA robot, in fact, this technology is not limited to the robot of the shape structure or model shown in Figure 1, nor is it limited to the category of SCARA robots, it can also be Other types of robots, such as two-axis robots, three-axis robots, four-axis robots, five-axis robots, six-axis robots, multi-axis robots and delta robots, are suitable for two-axis robots and three-axis robots of various shapes, structures and models , four-axis robot, five-axis robot, six-axis robot, multi-axis robot and Delta robot), the robot includes a base 1, a robotic arm 2, a control box 7 and a drive and control integrated board 3, and the robotic arm 2 is movably installed on the base The base 1; the control box 7 and the base 1 are arranged at intervals; the driving and control integrated board 3 is arranged in the control box 7, and the driving and control integrated board 3 is arranged to control the movement of the mechanical arm
  • the integrated drive and control board 3 includes a control module 31 , a drive module 32 and a base plate 33 , the control module 31 and the drive module 32 are disposed on the base plate 33 , and the control module 31 is electrically connected to the drive module 32 .
  • the separate design of the control box 7 and the base 1 enables the control box 7 to be installed at a position away from the base 1 , which facilitates the use of the base 1 in a narrow space.
  • the number of integrated drive and control boards 3 is two or more, all integrated drive and control boards 3 are spaced apart, distributed in layers, and connected in cascade in sequence, and each integrated drive and control board 3 controls at least one arm body 21 of the robotic arm 2 .
  • an integrated drive and control board 3 controls an arm body 21 of the robotic arm 2 .
  • the number of the integrated drive and control boards 3 is equal to the number of the arm bodies 21 of the robot arm 2 .
  • any one of the integrated drive and control boards 3 can be used as the main control board, and any one of the integrated drive and control boards 3 is configured to control the signals of all the integrated drive and control boards 3 and be signal-connected to external devices.
  • the robot further includes a connection seat 4 , and the connection seat 4 includes two or more first cascade sockets 41 for the insertion of two or more drive-control integrated boards 3 , and all the first cascade sockets 41 . 41 are distributed at intervals and connected in cascade.
  • the robot further includes a driving mechanism 5 , which is installed on the base 1 or the mechanical arm 2 , the driving mechanism 5 is electrically connected to the integrated driving and control board 3 , and the driving mechanism 5 is configured to drive the mechanical arm. 2 sports.
  • the base 1 is provided with an accommodating cavity, and the driving mechanism 5 is installed in the accommodating cavity.
  • the drive mechanism 5 includes a drive motor 51 and a deceleration assembly 52 , the drive motor 51 is installed on the base 1 or the mechanical arm 2 , the deceleration assembly 52 is installed in the drive motor 51 , and the output end of the drive motor 51 is driven with the deceleration assembly 52 . connect.
  • the drive motor 51 of the drive mechanism 5 is connected to the drive module 32 of the drive-control integrated board 3 , the control module 31 sends a control signal to the drive module 32 , and the drive module 32 outputs the drive signal to the drive motor 51 according to the control signal to drive the motor. 51 drives the deceleration component according to the driving signal and then drives the mechanical arm to move.
  • the driving mechanism 5 further includes a flange 53 , the flange 53 is mounted on the base 1 or the mechanical arm 2 , and the driving motor 51 and the deceleration assembly 52 are mounted on the flange 53 .
  • the base 1 is provided with an opening
  • the flange 53 is arranged at the opening of the base 1 and is arranged on the base 1
  • the deceleration assembly 52 is arranged on the driving motor 51 through the flange 53 .
  • the driving mechanism 5 may not use a motor structure, and the driving mechanism 5 may use a driving device made of piezoelectric ceramics.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed in the control box 7 .
  • the heat dissipation structure adopts air cooling for heat dissipation. In other embodiments, the heat dissipation structure may also adopt liquid cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the integrated drive and control board 3, and the first heat dissipation fan is set to accelerate the heat dissipation of the integrated drive control board 3 to the All areas in the control box 7 are dissipated to the outside through the outer wall of the control box.
  • the heat dissipation structure also includes a second heat dissipation fan, the control box 7 is provided with heat dissipation holes, the second heat dissipation fan is opposite to the heat dissipation holes, and the second heat dissipation fan is arranged to discharge the heat in the control box 7 to the outside of the control box 7 .
  • the first cooling fan and the second cooling fan are not necessarily provided at the same time, and in some cases, only one of the first cooling fan and the second cooling fan may be provided separately.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are arranged on the outer wall of the control box 7 .
  • the radiating fins are arranged on the outer side and/or the inner side of the outer wall of the control box 7 , and the drive-control integrated board 3 is arranged close to the outer wall with radiating fins.
  • the integrated drive and control board 3 further includes a first communication module 34 disposed on the base plate 33 , and the first communication module 34 is electrically connected to the control module 31 .
  • the first communication module 34 is configured to be connected to the network.
  • the first communication module 34 uses wired or wireless connection to the network.
  • control module 31 includes a first control part 311 and a second control part 312, the first control part 311 and the first communication module 34 are provided on the first surface of the substrate 33, and the second control part 312 and the driving module 32 are provided. on the second surface of the substrate 33 .
  • the first control part 311 is electrically connected to the second control part 312
  • the first control part 311 and/or the second control part 312 are electrically connected to the driving module 32 .
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm 2 .
  • a control function board or a drive function board can be arranged on the mechanical arm 2, so that the movement of the mechanical arm 2 is controlled by the driving and control integrated board 3 and the control function board or the driving function board.
  • one arm body 21 of the robotic arm 2 is provided with a drive function board, the drive function board is connected to the control module 31 of the integrated drive and control board 3, the drive function board and the control module 31 control the movement of at least one arm body 21, and the control module 31 and the drive module 32 to control the movement of other arm bodies 21, or a control function board is provided on one arm body 21 of the mechanical arm 2, the control function board is electrically connected with the drive module 32 of the drive and control integrated board 3, and the control function board and the drive module 32 Control the movement of all the arm bodies 21, and the control module 31 and the drive module 32 can also control the movement of all the arm bodies 21, or, a control function board and a drive function board are provided on one arm body 21 of the robotic arm 2, or the robotic arm 2
  • One arm body 21 is provided with a control function board
  • the other arm body 21 is provided with a drive function board
  • the control function board and the drive function board are electrically connected
  • the control function board and the drive function board control the movement of at least one arm body 21, and
  • the robot also includes a connecting board 6 spaced from the integrated driving and control board 3 and arranged in layers.
  • the connecting board 6 is configured to control the signals of all the integrated driving and control boards 3 and connect with external equipment signals.
  • the connecting board 6 includes The third control part 61 and the mounting board 62 , the third control part 61 is arranged on the mounting board 62 , the plurality of integrated driving and control boards 3 are connected in series in series, and the third control part 61 is electrically connected to at least one integrated driving and control board 3 .
  • the connection board 6 further includes a second communication module 63 , the second communication module 63 is arranged on the mounting plate 62 , and the third control part 61 is electrically connected to the second communication module 63 and at least one integrated drive and control board 3 .
  • the second communication module 63 is configured to be connected to the network.
  • the second communication module 63 uses wired or wireless connection to the network.
  • the connecting board 6 is used as the main control board to perform overall control on all the integrated drive and control boards 3, that is, it is not necessary to use any one integrated drive and control board 3 as the main control board. Through the second communication module 63, the remote interaction between the third control part 61 and external devices can be realized.
  • the robot further includes a connection base 4, and the connection base 4 includes two or more first cascading sockets 41 for the insertion of two or more drive-control integrated boards 3 and a second cascading socket for the connection board 6 to plug in. 42. All the first cascading sockets 41 are spaced along a column and are connected in cascade in sequence, and the second cascading sockets 42 are electrically connected to at least one first cascading socket 41 .
  • All integrated drive and control boards are set to be connected to the cloud controller, and the cloud controller is set to control the signals of all integrated drive control boards and connect with external equipment signals. That is, the integrated drive and control boards in this embodiment do not need to be used as the main control board, but the cloud controller is used as the main control center of the robot to realize the overall control of the robot.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • a robot as shown in Figure 1 and Figure 8 (Figure 1 is only a SCARA robot, in fact, this technology is not limited to the shape structure or type of robot shown in Figure 1, nor is it limited to the category of SCARA robots, It can also be other types of robots, such as two-axis robots, three-axis robots, four-axis robots, five-axis robots, six-axis robots, multi-axis robots and Delta robots, and is suitable for two-axis robots of various shapes, structures and models, Three-axis robot, four-axis robot, five-axis robot, six-axis robot, multi-axis robot and Delta robot), the robot includes a base 1, a mechanical arm 2 and an integrated drive and control board 3, and the mechanical arm 2 is movably installed on the base 1; the integrated drive and control board 3 includes a drive board 36 and a control board 35, the drive board 36 and the control board 35 are arranged on the base 1, the drive board 36 and the control board 35 are electrically connected, and the integrated drive and control
  • control board 35 and the driving board 36 are connected in a daisy fashion.
  • the number of integrated drive and control boards 3 is two or more, all of the integrated drive and control boards 3 are stacked and connected in series, and each integrated drive and control board 3 controls at least one arm body 21 of the robotic arm 2 .
  • an integrated drive and control board 3 controls an arm body 21 of the robotic arm 2 .
  • the number of the integrated drive and control boards 3 is equal to the number of the arm bodies 21 of the robot arm 2 .
  • any one of the integrated drive and control boards 3 can be used as the main control board, and any one of the integrated drive and control boards 3 is configured to control the signals of all the integrated drive and control boards 3 and be signal-connected to external devices.
  • the robot further includes a driving mechanism 5 , which is installed on the base 1 or the mechanical arm 2 , the driving mechanism 5 is electrically connected to the integrated driving and control board 3 , and is configured to drive the mechanical arm 2 to move.
  • a driving mechanism 5 which is installed on the base 1 or the mechanical arm 2 , the driving mechanism 5 is electrically connected to the integrated driving and control board 3 , and is configured to drive the mechanical arm 2 to move.
  • the base 1 is provided with an accommodating cavity, and the driving mechanism 5 is installed in the accommodating cavity.
  • the drive mechanism 5 includes a drive motor 51 and a deceleration assembly 52 , the drive motor 51 is installed on the base 1 or the mechanical arm 2 , the deceleration assembly 52 is installed in the drive motor 51 , and the output end of the drive motor 51 is driven with the deceleration assembly 52 . connect.
  • the drive motor 51 of the drive mechanism 5 is connected to the drive module 32 of the drive-control integrated board 3 , the control module 31 sends a control signal to the drive module 32 , and the drive module 32 outputs the drive signal to the drive motor 51 according to the control signal to drive the motor. 51 drives the deceleration component according to the driving signal and then drives the mechanical arm to move.
  • the driving mechanism 5 further includes a flange 53 , the flange 53 is mounted on the base 1 or the mechanical arm 2 , and the driving motor 51 and the deceleration assembly 52 are mounted on the flange 53 .
  • the base 1 is provided with an opening
  • the flange 53 is arranged at the opening of the base 1 and is arranged on the base 1
  • the deceleration assembly 52 is arranged on the driving motor 51 through the flange 53 .
  • the driving mechanism 5 may not be a motor structure, and the driving mechanism 5 adopts a driving device made of piezoelectric ceramics.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed on the base 1 .
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure may also adopt liquid cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the integrated drive and control board 3, and the first heat dissipation fan is set to accelerate the heat dissipation of the integrated drive control board 3 to the
  • the entire area of the base 1 is dissipated to the outside through the wall of the base 1 .
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the heat dissipation structure includes a second heat dissipation fan, the base 1 is provided with a heat dissipation hole, the second heat dissipation fan is opposite to the heat dissipation hole, and the second heat dissipation fan is arranged to discharge the heat in the base 1 to the outside of the base 1 .
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the first cooling fan and the second cooling fan are not necessarily provided at the same time, and in some cases, only one of the first cooling fan and the second cooling fan may be provided separately.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the wall of the base 1 .
  • the cooling fins are arranged on the outer side and/or the inner side of the wall 21 of the base 1 , and the integrated drive and control board 3 is arranged close to the wall with cooling fins.
  • the integrated drive and control board 3 further includes a communication board, and the communication board is electrically connected to the control board 35 .
  • the communication board is set up to connect to the network.
  • the communication board uses wired or wireless connection to the network.
  • a accommodating cavity is provided in the base 1, and the integrated drive and control board 3 is set in the accommodating cavity; or, a control box 7 is installed on the outside of the wall of the base 1, and the integrated drive and control board 3 is set in the control box. within 7.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm 2 .
  • a control function board or a drive function board can be arranged on the mechanical arm 2, so that the movement of the mechanical arm 2 is controlled by the driving and control integrated board 3 and the control function board or the driving function board.
  • one arm body 21 of the robotic arm 2 is provided with a drive function board
  • the drive function board is connected to the control board 35 of the integrated drive and control board 3
  • the drive function board and the control board 35 control the movement of at least one arm body 21, and the control board 35 and the drive board 36 to control the movement of other arm bodies 21, or a control function board is provided on one arm body 21 of the mechanical arm 2
  • the control function board is electrically connected to the drive board 36 of the drive and control integrated board 3
  • the control function board and the drive board 36 Control the movement of all the arms 21, and the control board 35 and the driving board 36 can also control the movement of all the arms 21.
  • a control function board and a driving function board are provided on one arm 21 of the robotic arm 2, or the robotic arm 2
  • One arm body 21 is provided with a control function board
  • the other arm body 21 is provided with a drive function board
  • the control function board and the drive function board are electrically connected
  • the control function board and the drive function board control the movement of at least one arm body 21, and
  • the control board 35 and the driving board 36 can control other arm bodies 21 to move.
  • the robot also includes a connection board stacked with the integrated drive and control board.
  • the connection board is configured to control the signals of all integrated drive and control boards and to connect with external equipment signals.
  • the connection board includes a control part and an installation board, and the control part is arranged on the installation board. , a plurality of drive and control integrated boards are connected in cascade in sequence, and the control part is electrically connected with at least one drive and control integrated board.
  • the connection board also includes a communication module, the communication module is arranged on the installation board, and the control part is electrically connected with the communication module and the integrated drive and control board.
  • the communication module is set up to connect to the network.
  • the communication module adopts wired or wireless connection to the network.
  • the connecting board is used as the main control board to perform overall control on all the integrated drive and control boards, that is, it is not necessary to use any one integrated drive and control board as the main control board.
  • All integrated drive and control boards are set to be connected to the cloud controller, and the cloud controller is set to control the signals of all integrated drive control boards and connect with external equipment signals. That is, the integrated drive and control board in this embodiment does not need to be used as the main control board, but the cloud controller is used as the main control center of the robot to realize the overall control of the robot.
  • the robot includes a base 1, a mechanical arm 2 and an integrated drive and control board 3, the robotic arm 2 is movably installed on the base 1, and the integrated drive and control board 3 is set on the base 1.
  • the integrated drive and control board 3 is configured to control the movement of the robotic arm 2.
  • the integrated drive and control board 3 includes a control module 31, a drive module 32 and a base plate 33.
  • the control module 31 and the drive module 32 are arranged on the base plate 33, and the control module 31 is electrically connected drive module 32 .
  • the number of integrated drive and control boards 3 is two or more, all integrated drive and control boards 3 are spaced apart, distributed in layers, and connected in cascade in sequence, and each integrated drive and control board 3 controls at least one arm body 21 of the robotic arm 2 .
  • a drive and control integrated board 3 controls an arm body 21 of the robotic arm 2 .
  • the number of the integrated drive and control boards 3 is equal to the number of the arm bodies 21 of the robot arm 2 .
  • any one of the integrated drive and control boards 3 can be used as the main control board, and any one of the integrated drive and control boards 3 is configured to control the signals of all the integrated drive and control boards 3 and be signal-connected to external devices.
  • the control system of the robot can be made more flexible, avoiding the failure of the robot as a whole due to the damage of the main control board.
  • the other integrated drive and control board 3 only needs to be used as the main control board. , the overall control of the robot can be realized.
  • the robot further includes a connection seat 4 , and the connection seat 4 includes two or more first cascade sockets 41 for the insertion of two or more drive-control integrated boards 3 , and all the first cascade sockets 41 . 41 are distributed at intervals and connected in cascade.
  • the connecting base 4 By arranging the connecting base 4 with the first cascade socket 41, on the one hand, the installation reliability of the integrated drive and control board 3 can be improved, and on the other hand, the quick disassembly and assembly of the integrated drive and control board and the connecting base 4 can be facilitated, thereby improving the performance of different drive control systems.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed on the base 1 .
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the integrated drive and control board 3 , and the first heat dissipation fan is set to accelerate the heat dissipation of the integrated drive control board 3 to all areas in the base 1 , and pass through the base 1 .
  • the wall dissipates heat to the outside.
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the heat dissipation structure includes a second heat dissipation fan, the base 1 is provided with heat dissipation holes, the second heat dissipation fan is aligned with the heat dissipation holes, and the second fan is arranged to discharge the heat in the base 1 to the outside of the base 1 .
  • the first cooling fan and the second cooling fan are not necessarily provided at the same time, and in some cases, only one of the first cooling fan and the second cooling fan may be provided separately.
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the wall of the base 1 .
  • the heat sink is arranged on the outside and/or inside of the wall 21 of the base 1 , and the integrated drive and control board 3 is disposed close to the wall with the heat sink. This design can provide the heat dissipation effect of the integrated drive and control board 3 .
  • the integrated drive and control board 3 further includes a first communication module 34 disposed on the base plate 33 , and the first communication module 34 is electrically connected to the control module 31 .
  • the first communication module 34 is configured to be connected to the network.
  • the first communication module 34 uses wired or wireless connection to the network.
  • control module 31 includes a first control part 311 and a second control part 312, the first control part 311 and the first communication module 34 are provided on the first surface of the substrate 33, and the second control part 312 and the driving module 32 are provided. on the second surface of the substrate 33 .
  • the first control part 311 is electrically connected to the second control part 312
  • the first control part 311 and/or the second control part 312 are electrically connected to the driving module 32 .
  • the base 1 is provided with a accommodating cavity, and the integrated drive and control board 3 is provided in the accommodating cavity.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm 2 .
  • a control function board or a drive function board can be arranged on the mechanical arm 2, so that the movement of the mechanical arm 2 is controlled by the driving and control integrated board 3 and the control function board or the driving function board.
  • one arm body 21 of the robotic arm 2 is provided with a drive function board, the drive function board is connected to the control module 31 of the integrated drive and control board 3, the drive function board and the control module 31 control the movement of at least one arm body 21, and the control module 31 and the drive module 32 to control the movement of other arm bodies 21, or a control function board is provided on one arm body 21 of the mechanical arm 2, the control function board is electrically connected with the drive module 32 of the drive and control integrated board 3, and the control function board and the drive module 32 Control the movement of all the arm bodies 21, and the control module 31 and the drive module 32 can also control the movement of all the arm bodies 21, or, a control function board and a drive function board are provided on one arm body 21 of the robotic arm 2, or the robotic arm 2
  • One arm body 21 is provided with a control function board
  • the other arm body 21 is provided with a drive function board
  • the control function board and the drive function board are electrically connected
  • the control function board and the drive function board control the movement of at least one arm body 21, and
  • the robot includes a base 1, a mechanical arm 2 and an integrated drive and control board 3, the robotic arm 2 is movably installed on the base 1, and the integrated drive and control board 3 is set on the base 1.
  • the integrated drive and control board 3 is configured to control the movement of the robotic arm 2.
  • the integrated drive and control board 3 includes a control module 31, a drive module 32 and a base plate 33.
  • the control module 31 and the drive module 32 are arranged on the base plate 33, and the control module 31 is electrically connected drive module 32 .
  • the number of integrated drive and control boards 3 is two or more, all integrated drive and control boards 3 are spaced apart, distributed in layers, and connected in cascade in sequence, and each integrated drive and control board 3 controls at least one arm body 21 of the robotic arm 2 . Further, an integrated drive and control board 3 controls an arm body 21 of the robotic arm 2 .
  • the number of the integrated drive and control boards 3 is equal to the number of the arm bodies 21 of the robot arm 2 .
  • any one of the integrated drive and control boards 3 can be used as the main control board, and any one of the integrated drive and control boards 3 is configured to control the signals of all the integrated drive and control boards 3 and be signal-connected to external devices.
  • the control system of the robot can be made more flexible, avoiding the failure of the robot as a whole due to the damage of the main control board.
  • the other integrated drive and control board 3 only needs to be used as the main control board. , the overall control of the robot can be realized.
  • the robot further includes a connection base 4
  • the connection base 4 includes more than two first cascade sockets 41 for plugging at least two integrated drive and control boards 3 , all the first cascade sockets 41 . 41 are distributed at intervals and connected in cascade.
  • the robot further includes a heat dissipation structure, and the heat dissipation structure is disposed on the base 1 .
  • the heat dissipation structure adopts air cooling for heat dissipation.
  • the heat dissipation structure includes a first heat dissipation fan, the first heat dissipation fan is opposite to the integrated drive and control board 3 , and the first heat dissipation fan is set to accelerate the heat dissipation of the integrated drive control board 3 to all areas in the base 1 , and pass through the base 1 .
  • the wall dissipates heat to the outside.
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the heat dissipation structure includes a second heat dissipation fan, the base 1 is provided with heat dissipation holes, the second heat dissipation fan is aligned with the heat dissipation holes, and the second fan is arranged to discharge the heat in the base 1 to the outside of the base 1 .
  • the base 1 is provided with an accommodating cavity, and both the drive and control integrated board 3 and the heat dissipation structure are arranged in the accommodating cavity.
  • the first cooling fan and the second cooling fan are not necessarily provided at the same time, and in some cases, only one of the first cooling fan and the second cooling fan may be provided separately.
  • the heat dissipation structure includes heat dissipation fins, and the heat dissipation fins are disposed on the wall of the base 1 .
  • the cooling fins are arranged on the outer and/or inner side of the wall 21 of the base 1 , and the integrated driving and control board 3 is arranged close to the wall with the cooling fins. This design can provide the cooling effect of the integrated driving and control board 3 .
  • the integrated drive and control board 3 further includes a first communication module 34 disposed on the base plate 33 , and the first communication module 34 is electrically connected to the control module 31 .
  • the first communication module 34 is configured to be connected to the network.
  • the first communication module 34 uses wired or wireless connection to the network.
  • control module 31 includes a first control part 311 and a second control part 312, the first control part 311 and the first communication module 34 are provided on the first surface of the substrate 33, and the second control part 312 and the driving module 32 are provided. on the second surface of the substrate 33 .
  • the first control part 311 is electrically connected to the second control part 312
  • the first control part 311 and/or the second control part 312 are electrically connected to the driving module 32 .
  • the base 1 is provided with a accommodating cavity, and the integrated drive and control board 3 is provided in the accommodating cavity.
  • the robot further includes a control function board or a drive function board, and the control function board or the drive function board is disposed on the robotic arm 2 .
  • a control function board or a drive function board can be arranged on the mechanical arm 2, so that the movement of the mechanical arm 2 is controlled by the driving and control integrated board 3 and the control function board or the driving function board.
  • one arm body 21 of the robotic arm 2 is provided with a drive function board, the drive function board is connected to the control module 31 of the integrated drive and control board 3, the drive function board and the control module 31 control the movement of at least one arm body 21, and the control module 31 and the drive module 32 to control the movement of other arm bodies 21, or a control function board is provided on one arm body 21 of the mechanical arm 2, the control function board is electrically connected with the drive module 32 of the drive and control integrated board 3, and the control function board and the drive module 32 Control the movement of all the arm bodies 21, and the control module 31 and the drive module 32 can also control the movement of all the arm bodies 21, or, a control function board and a drive function board are provided on one arm body 21 of the robotic arm 2, or the robotic arm 2
  • One arm body 21 is provided with a control function board
  • the other arm body 21 is provided with a drive function board
  • the control function board and the drive function board are electrically connected
  • the control function board and the drive function board control the movement of at least one arm body 21, and

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manipulator (AREA)

Abstract

公开一种机器人,包括基座(1)、机械臂(2)和驱控一体板(3),机械臂(2)活动安装于基座(1),驱控一体板(3)设置于基座(1),驱控一体板(3)设置为控制机械臂(2)运动,驱控一体板(3)包括控制模块(31)、驱动模块(32)和基板(33),控制模块(31)和驱动模块(32)设置于基板(33)上,控制模块(31)电连接驱动模块(32)。

Description

机器人
本申请要求在2020年12月25日提交中国专利局、申请号为202011563379.9的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及机器人技术领域,例如涉及一种机器人。
背景技术
机器人是一种集机械、电气、电子信息等领域的交叉性技术产品。机器人可以代替人类执行搬运、装配、上下料、码垛、焊接、喷涂等工作。这些机器人的主要组成至少包括机械本体、减速组件、电机、驱动器和控制器,市场上常见机器人的控制器和驱动器是相互分立的,需要分别安装,占用的空间大,耗用安装辅料多,且信号传输连接复杂,此外,这种分体设计难以满足窄小空间使用需求。
基于上述现状,有必要设计一种新的机器人。
发明内容
本申请提供一种机器人,使机器人的整体结构更加紧凑。
提供一种机器人,包括:
基座;
机械臂,活动安装于所述基座;
驱控一体板,设置于所述基座,设置为控制所述机械臂运动,所述驱控一体板包括控制模块、驱动模块和基板,所述控制模块和驱动模块设置于所述基板上,所述控制模块电连接所述驱动模块。
作为可选方案,所述驱控一体板的数量为两个以上,全部所述驱控一体板间隔且层叠分布并依次级联连接,所述机械臂包括多个臂体,每个驱控一体板控制所述机械臂的至少一个臂体。
作为可选方案,一个所述驱控一体板控制所述机械臂的一个臂体。
可选的,所述驱控一体板的数量与所述机械臂的臂体的数量相等。
作为可选方案,任意一个驱控一体板能够作为主控板,所述任意一个驱控一体板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接;
或者,全部所述驱控一体板均与云端控制器连接,云端控制器设置为控制全部所述驱控一体板的信号并与外部的设备信号连接。
作为可选方案,所述机器人还包括连接座,所述连接座上包括供所述两个以上驱控一体板插接的两个以上第一级联插口,全部所述第一级联插口间隔分布且依次级联连接。
作为可选方案,所述机器人还包括驱动机构,所述驱动机构安装于所述基座或者机械臂,所述驱动机构与所述驱控一体板电连接,所述驱动机构设置为带动所述机械臂运动。
作为可选方案,所述基座内设置有容置腔,所述驱动机构安装于所述容置腔内。
作为可选方案,所述驱动机构包括驱动电机和减速组件,所述驱动电机安装于所述基座或所述机械臂,所述减速组件安装于所述驱动电机,且所述驱动电机的输出端与所述减速组件传动连接。
作为可选方案,所述驱动机构还包括法兰,所述法兰安装于所述基座或机械臂,所述驱动电机和所述减速组件安装于所述法兰上。
作为可选方案,所述驱动机构是采用压电陶瓷制成的驱动器件。
作为可选方案,所述机器人还包括散热结构,所述散热结构设置于所述基座。
作为可选方案,所述散热结构采用风冷散热。
作为另一种可选方案,所述散热结构采用液冷散热。
作为可选方案,所述散热结构包括第一散热风扇,所述第一散热风扇与所述驱控一体板相对,所述第一散热风扇设置为加速将所述驱控一体板的热量扩散至所述基座内的全部区域,并通过所述基座的壁体向外部散热。
作为可选方案,所述散热结构包括第二散热风扇,所述基座上设置有散热孔,所述第二散热风扇与所述散热孔相对,所述第二散热风扇设置为将所述基座内的热量排放至所述基座的外部。
作为可选方案,所述散热结构包括散热片,所述散热片设置于所述基座的壁体。
可选的,所述散热片设置于所述基座的壁体的外侧和/或内侧。
作为可选方案,所述驱控一体板靠近具有所述散热片的所述壁体设置。
作为可选方案,所述驱控一体板还包括设于所述基板上的第一通讯模块, 所述第一通讯模块电连接所述控制模块和/或驱动模块。
作为可选方案,所述第一通讯模块设置为与网络连接。
作为可选方案,所述第一通讯模块采用有线或无线连接网络。
作为可选方案,所述控制模块包括第一控制部分和第二控制部分,所述第一控制部分和所述第一通讯模块设于所述基板的第一面,所述第二控制部分和所述驱动模块设于所述基板的第二面。
作为可选方案,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块,不同的驱控一体板之间通过所述不同的驱控一体板的第一通讯模块信号连接。
作为可选方案,所述机器人还包括与所述驱控一体板间隔且层叠布置的连接板,所述连接板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接,所述连接板包括第三控制部分和安装板,所述第三控制部分设于所述安装板上,所述两个以上驱控一体板依次级联连接,所述第三控制部分与至少一个驱控一体板电连接。
作为可选方案,所述连接板还包括第二通讯模块,所述第二通讯模块设于所述安装板上,所述第三控制部分电连接所述第二通讯模块和所述至少一个驱控一体板。
作为可选方案,所述第二通讯模块设置为与网络连接。
作为可选方案,所述第二通讯模块采用有线或无线连接网络。
作为可选方案,所述机器人还包括连接座,所述连接座包括供所述两个以上驱控一体板插接的两个以上第一级联插口和一个供所述连接板插接的第二级联插口,全部所述第一级联插口沿一列间隔分布且依次级联连接,所述第二级联插口与至少一个所述第一级联插口电连接。
作为可选方案,所述基座内设置有容置腔,所述驱控一体板设置于所述容置腔内;或者,所述基座的壁体外侧安装有控制箱,所述驱控一体板设置于所述控制箱内。
作为可选方案,该机器人还包括控制功能板或驱动功能板,所述控制功能板或所述驱动功能板设置于所述机械臂。
提供一种机器人,包括:
基座;
机械臂,活动安装于所述基座;
控制箱,与所述基座间隔设置;
驱控一体板,设置于所述控制箱内,设置为控制所述机械臂运动,所述驱控一体板包括控制模块、驱动模块和基板,所述控制模块和驱动模块设置于所述基板上,所述控制模块电连接所述驱动模块。
作为可选方案,所述驱控一体板的数量为两个以上,所述机械臂包括多个臂体,全部所述驱控一体板间隔且层叠分布并依次级联连接,每个驱控一体板控制所述机械臂的至少一个臂体。
可选的,一个所述驱控一体板控制所述机械臂的一个臂体。可选的,所述驱控一体板的数量与所述机械臂的臂体的数量相等。
作为可选方案,任意一个驱控一体板能够作为主控板,所述任意一个驱控一体板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接;或者,全部所述驱控一体板均与云端控制器连接,云端控制器设置为控制全部所述驱控一体板的信号并与外部的设备信号连接。
可选的,所述机器人还包括连接座,所述连接座上包括供所述两个以上驱控一体板插接的两个以上第一级联插口,全部所述第一级联插口间隔分布且依次级联连接。
可选的,所述机器人还包括驱动机构,安装于所述基座或者机械臂,所述驱动机构与所述驱控一体板电连接,所述驱动机构设置为带动所述机械臂运动。
可选的,所述基座内设置有容置腔,所述驱动机构安装于所述容置腔内。
可选的,所述驱动机构包括驱动电机和减速组件,所述驱动电机安装于所述基座或所述机械臂,所述减速组件安装于所述驱动电机,且所述驱动电机的输出端与所述减速组件传动连接。
可选的,所述驱动机构还包括法兰,所述法兰安装于所述基座或机械臂,所述驱动电机和所述减速组件安装于所述法兰上。
可选的,所述驱动机构是采用压电陶瓷制成的驱动器件。
作为可选方案,所述机器人还包括散热结构,所述散热结构设置于所述控制箱。
可选的,所述散热结构采用风冷散热。
作为另一种可选方案,所述散热结构采用液冷散热。
可选的,所述散热结构包括第一散热风扇,所述第一散热风扇与所述驱控一体板相对,所述第一散热风扇设置为加速将所述驱控一体板的热量扩散至所述控制箱内的全部区域,并通过所述控制箱的外壁向外部散热。
可选的,所述散热结构包括第二散热风扇,所述控制箱上设置有散热孔,所述第二散热风扇与所述散热孔相对,所述第二散热风扇设置为将所述控制箱内的热量排放至所述控制箱的外部。
可选的,所述散热结构包括散热片,所述散热片设置于所述控制箱的外壁。
可选的,所述散热片设置于所述控制箱的外壁的外侧和/或内侧。
可选的,所述驱控一体板靠近具有所述散热片的所述外壁设置。
作为可选方案,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块。
作为可选方案,所述第一通讯模块设置为与网络连接。
作为可选方案,所述第一通讯模块采用有线或无线连接网络。
可选的,所述控制模块包括第一控制部分和第二控制部分,所述第一控制部分和所述第一通讯模块设于所述基板的第一面,所述第二控制部分和所述驱动模块设于所述基板的第二面。
作为可选方案,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块和/或驱动模块,不同的驱控一体板之间通过所述不同的驱控一体板的第一通讯模块信号连接。
可选的,所述机器人还包括与所述驱控一体板间隔且层叠布置的连接板,所述连接板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接,所述连接板包括第三控制部分和安装板,所述第三控制部分设于所述安装板上,所述两个以上驱控一体板依次级联连接,所述第三控制部分与至少一个驱控一体板电连接。
可选的,所述连接板还包括第二通讯模块,所述第二通讯模块设于所述安装板上,所述第三控制部分电连接所述第二通讯模块和所述至少一个驱控一体板。
可选的,所述第二通讯模块设置为与网络连接。
可选的,所述第二通讯模块采用有线或无线连接网络。
可选的,所述机器人还包括连接座,所述连接座包括供所述两个以上驱控一体板插接的两个以上第一级联插口和一个供所述连接板插接的第二级联插口,全部所述第一级联插口沿一列间隔分布且依次级联连接,所述第二级联插口与至少一个所述第一级联插口电连接。
作为可选方案,该机器人还包括控制功能板或驱动功能板,所述控制功能板或所述驱动功能板设置于所述机械臂。
提供一种机器人,包括:
基座;
机械臂,活动安装于所述基座;
驱控一体板,包括驱动板和控制板,所述驱动板和所述控制板设置于所述基座,所述驱动板和所述控制板电连接,所述驱控一体板设置为控制所述机械臂运动。
作为可选方案,所述驱控一体板的数量为两个以上,所述机械臂包括多个臂体,全部所述驱控一体板层叠分布并依次级联连接,每个驱控一体板控制所述机械臂的至少一个臂体。
可选的,一个所述驱控一体板控制所述机械臂的一个臂体。可选的,所述驱控一体板的数量与所述机械臂的臂体的数量相等。
作为可选方案,任意一个驱控一体板能够作为主控板,所述任意一个驱控一体板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接;或者,全部所述驱控一体板均与云端控制器连接,云端控制器设置为控制全部所述驱控一体板的信号并与外部的设备信号连接。
作为可选方案,所述驱动板与所述控制板采用菊花式连接。
可选的,所述机器人还包括驱动机构,所述驱动机构安装于所述基座或者机械臂,所述驱动机构与所述驱控一体板电连接,所述驱动机构设置为带动所述机械臂运动。
可选的,所述基座内设置有容置腔,所述驱动机构安装于所述容置腔内。
可选的,所述驱动机构包括驱动电机和减速组件,所述驱动电机安装于所述基座或所述机械臂,所述减速组件安装于所述驱动电机,且所述驱动电机的输出端与所述减速组件传动连接。
可选的,所述驱动机构还包括法兰,所述法兰安装于所述基座或机械臂,所述驱动电机和所述减速组件安装于所述法兰上。
可选的,所述驱动机构是采用压电陶瓷制成的驱动器件。
作为可选方案,所述机器人还包括散热结构,所述散热结构设置于所述基座。
可选的,所述散热结构采用风冷散热。
作为另一种可选的方案,所述散热结构采用液冷散热。
可选的,所述散热结构包括第一散热风扇,所述第一散热风扇与所述驱控 一体板相对,所述第一散热风扇设置为加速将所述驱控一体板的热量扩散至所述基座的全部区域,并通过所述基座的壁体向外部散热。
可选的,所述散热结构包括第二散热风扇,所述基座上设置有散热孔,所述第二散热风扇与所述散热孔相对,所述第二散热风扇设置为将所述基座内的热量排放至所述基座的外部。
可选的,所述散热结构包括散热片,所述散热片设置于所述基座的壁体。
可选的,所述散热片设置于所述基座的壁体的外侧和/或内侧。
可选的,所述驱控一体板靠近具有所述散热片的所述壁体设置。
作为可选方案,所述驱控一体板还包括通讯板,所述通讯板电连接所述控制板。
作为可选方案,所述通讯板设置为与网络连接。
作为可选方案,所述通讯板采用有线或无线连接网络。
作为可选方案,所述驱控一体板还包括通讯板,所述通讯板电连接所述控制板,不同的驱控一体板之间通过所述不同的驱控一体板的通讯板信号连接。
可选的,所述机器人还包括与所述驱控一体板层叠布置的连接板,所述连接板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接,所述连接板包括控制部分和安装板,所述控制部分设于所述安装板上,所述两个以上驱控一体板依次级联连接,所述控制部分与至少一个驱控一体板电连接。
可选的,所述连接板还包括通讯模块,所述通讯模块设于所述安装板上,所述控制部分电连接所述通讯模块和所述驱控一体板。
可选的,所述通讯模块设置为与网络连接。
可选的,所述通讯模块采用有线或无线连接网络。
作为可选方案,所述基座内设置有容置腔,所述驱控一体板设置于所述容置腔内;或者,所述基座的壁体外侧安装有控制箱,所述驱控一体板设置于所述控制箱内。
作为可选方案,该机器人还包括控制功能板或驱动功能板,所述控制功能板或所述驱动功能板设置于所述机械臂。
附图说明
下面根据附图和实施例对本申请进行说明。
图1为实施例所述的机器人的第一种结构示意图;
图2为实施例所述的驱控一体板的一种结构示意图;
图3为实施例所述的两个以上驱控一体板的结构示意图;
图4为实施例所述的基座与驱动机构的结构示意图;
图5为实施例所述的驱控一体板的另一种结构示意图;
图6为实施例所述的驱控一体板与连接板的结构示意图;
图7为实施例所述的机器人的第二种结构示意图;
图8为实施例所述的驱控一体板的又一种结构示意图
图9为实施例所述的机器人的第三种结构示意图;
图10为实施例所述的机器人的第四种结构示意图。
图1至图10中:
1、基座;
2、机械臂;21、臂体;
3、驱控一体板;31、控制模块;311、第一控制部分;312、第二控制部分;32、驱动模块;33、基板;34、第一通讯模块;35、控制板;36、驱动板;
4、连接座;41、第一级联插口;42、第二级联插口;
5、驱动机构;51、驱动电机;52、减速组件;53、法兰;
6、连接板;61、第三控制部分;62、安装板;63、第二通讯模块;
7、控制箱。
具体实施方式
下面将结合附图对本申请实施例的技术方案进行描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不 是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下面结合附图并通过具体实施方式来说明本申请的技术方案。
实施例一:
一种机器人,如图1和图2所示(图1仅仅是一种选择顺应性装配机器手臂(Selective Compliance Assembly Robot Arm,SCARA)机器人,实际上本技术不局限于图1所示的形状结构或型号的机器人,也不局限于SCARA机器人这个类别,还可以是其它类别的机器人,例如二轴机器人、三轴机器人、四轴机器人、五轴机器人、六轴机器人、多轴机器人和Delta机器人,且适用于多种形状结构和型号的二轴机器人、三轴机器人、四轴机器人、五轴机器人、六轴机器人、多轴机器人和Delta机器人),所述机器人包括基座1、机械臂2和驱控一体板3,机械臂2活动安装于基座1,驱控一体板3设置于基座1,驱控一体板3设置为控制机械臂2运动,驱控一体板3包括控制模块31、驱动模块32和基板33,控制模块31和驱动模块32设置于基板33上,控制模块31电连接驱动模块32。通过将控制模块31与驱动模块32设置于同一块基板33上,能够使控制模块31与驱动模块32的整体结构更加紧凑,需要的安装空间更小,进而使机器人的整体结构更加紧凑。
可选的,驱控一体板3的数量为两个以上,全部驱控一体板3间隔且层叠分布并依次级联连接,每个驱控一体板3控制机械臂2的至少一个臂体21。一个驱控一体板3控制机械臂2的一个臂体21。驱控一体板3的数量与机械臂2的臂体21的数量相等。
可选的,任意一个驱控一体板3能够作为主控板,所述任意一个驱控一体板3设置为控制全部驱控一体板3的信号并与外部的设备信号连接。通过上述设计,能够使机器人的控制系统更加灵活,避免因主控板损坏而导致机器人整体无法工作,当一个驱控一体板3损坏时,只需使用另一个驱控一体板3作为主控板,即可实现对机器人的整体控制。
可选的,如图3所示,机器人还包括连接座4,连接座4上包括供两个以上驱控一体板3插接的两个以上第一级联插口41,全部第一级联插口41间隔分布且依次级联连接。通过设置具有第一级联插口41的连接座4,一方面能够提高驱控一体板3的安装可靠性,另一方面能够方便驱控一体板与连接座4的快速拆装,进而提高不同驱控一体板3组合使用的便捷性和灵活性。
可选的,如图4所示,机器人还包括驱动机构5,驱动机构5安装于基座1,驱动机构5与驱控一体板3电连接,驱动机构5设置为带动机械臂2运动。基座1内设置有容置腔,驱动机构5安装于容置腔内。将驱动机构5设置于容置腔内,能够使驱动机构5与驱控一体板3之间的连接更加简单和可靠。
可选的,驱动机构5包括驱动电机51和减速组件52,驱动电机51安装于基座1,减速组件52安装于驱动电机51,且驱动电机51的输出端与减速组件52传动连接。
可选的,驱动机构5的驱动电机51与驱控一体板3的驱动模块32连接,控制模块31发送控制信号至驱动模块32,驱动模块32根据控制信号输出驱动信号至驱动电机51,驱动电机51根据驱动信号驱动减速组件进而带动机械臂运动。
驱动机构5还包括法兰53,法兰53安装于基座1,驱动电机51和减速组件52安装于法兰53上。法兰53不是必要的,在一些情况下,可不设置法兰53。
可选的,基座1上设置有开孔,法兰53设于基座1的开孔处,并设于基座1,减速组件52通过法兰53设于驱动电机51上。
可选的,机器人还包括散热结构,散热结构设置于基座1。
可选的,散热结构采用风冷散热。
散热结构包括第一散热风扇,第一散热风扇与驱控一体板3相对,第一散热风扇设置为加速将驱控一体板3的热量扩散至基座1内的全部区域,并通过基座1的壁体向外部散热。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
散热结构包括第二散热风扇,基座1上设置有散热孔,第二散热风扇与散热孔相对,第二散热风扇设置为将基座1内的热量排放至基座1的外部。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
第一散热风扇与第二散热风扇并不一定同时设置,在一些情况下,也可以仅仅单独设置第一散热风扇和第二散热风扇中的一者。
可选的,散热结构包括散热片,散热片设置于基座1的壁体。散热片设置于基座1的壁体的外侧和/或内侧,驱控一体板3靠近具有散热片的壁体设置。这种设计能够提供驱控一体板3的散热效果。
可选的,如图5所示,驱控一体板3还包括设于基板33上的第一通讯模块34,第一通讯模块34电连接控制模块31。第一通讯模块34设置为与网络连接。第一通讯模块34采用有线或无线连接网络。当驱控一体板3的数量为两个以上 时,不同的驱控一体板3之间通过不同的驱控一体板3的第一通讯模块34信号连接。
可选的,控制模块31包括第一控制部分311和第二控制部分312,第一控制部分311和第一通讯模块34设于基板33的第一面,第二控制部分312和驱动模块32设于基板33的第二面。
可选的,第一控制部分311与第二控制部分312电连接,第一控制部分311和/或第二控制部分312电连接驱动模块32。
可选的,基座1内设置有容置腔,驱控一体板3设置于容置腔内。
可选的,该机器人还包括控制功能板或驱动功能板,控制功能板或驱动功能板设置于机械臂2。通过上述方式,可将独立的控制功能板或驱动功能板设置于机械臂2上,从而通过驱控一体板3以及控制功能板或驱动功能板控制机械臂2运动。例如,机械臂2的一个臂体21上设置有驱动功能板,驱动功能板与驱控一体板3的控制模块31连接,驱动功能板和控制模块31控制至少一个臂体21运动,控制模块31和驱动模块32控制其他臂体21运动,或者机械臂2的一个臂体21上设置有控制功能板,控制功能板和驱控一体板3的驱动模块32电连接,控制功能板和驱动模块32控制全部臂体21运动,且控制模块31和驱动模块32也可控制全部臂体21运动,又或者,机械臂2的一个臂体21上设置有控制功能板和驱动功能板,或机械臂2的一个臂体21上设置有控制功能板,另一个臂体21上设置有驱动功能板,控制功能板和驱动功能板电连接,控制功能板和驱动功能板控制至少一个臂体21运动,且控制模块31和驱动模块32可控制其他臂体21运动。
实施例二:
本实施例与实施例一的区别在于:
全部驱控一体板均设置为与云端控制器连接,云端控制器设置为控制全部驱控一体板的信号并与外部的设备信号连接。即本实施例的驱控一体板均无需作为主控板,而是采用云端控制器作为机器人的主控中心,实现对机器人的整体控制。
实施例三:
本实施例与实施例一的区别在于:
驱动机构并非安装于容置腔内,本实施例的驱动机构安装于机械臂上,这 种设计能够充分利用高度方向上的空间,使机器人沿竖直方向分散布局,避免驱动机构占用基座的空间,进而使基座能够设计得更小,使机器人能够应用于水平面积更小的场景。
实施例四:
本实施例与实施例一的区别在于:
驱动机构并非安装于容置腔内,而是将驱动机构安装在基座的壁体外侧,以便驱动机构进行散热和维护。
实施例五:
本实施例与实施例一的区别在于:
驱动机构并非采用电机结构,驱动机构为采用压电陶瓷制成的驱动器件,通过该压电陶瓷驱动器件带动机械臂运动。
实施例六:
本实施例与实施例一的区别在于:
本实施例的散热结构采用液冷散热。可以设置液流通道和液流泵,且液流通道能够与驱控一体板换热,通过液流泵驱动冷却液在液流通道内循环,进而将驱控一体板的热量带走,以降低驱控一体板的温度,使驱控一体板工作更加稳定。
实施例七:
本实施例与实施例一的区别在于:
机器人还包括与驱控一体板3间隔且层叠布置的连接板6,连接板6设置为控制全部驱控一体板3的信号并与外部的设备信号连接,如图6所示,连接板6包括第三控制部分61和安装板62,第三控制部分61设于安装板62上,多个驱控一体板3依次级联连接,第三控制部分61与至少一个驱控一体板3电连接。连接板6还包括第二通讯模块63,第二通讯模块63设于安装板62上,第三控制部分61电连接第二通讯模块63和至少一个驱控一体板3。第二通讯模块63设置为与网络连接,第二通讯模块63采用有线或无线连接网络。该连接板6能够作为机器人的主控板,对全部驱控一体板3进行整体控制,即无需使用任意 一个驱控一体板3作为主控板。通过第二通讯模块63,能够实现第三控制部分61与外部的设备的远程交互。
可选的,机器人还包括连接座4,连接座4包括供两个以上驱控一体板3插接的两个以上第一级联插口41和一个供连接板6插接的第二级联插口42,全部第一级联插口41沿一列间隔分布且依次级联连接,第二级联插口42与至少一个第一级联插口41电连接。
实施例八:
本实施例与实施例一的区别在于:
基座1的壁体21外侧安装有控制箱,驱控一体板3设置于控制箱内。这种设计相较于将驱控一体板3设置于基座1的容置腔内的方案,能够使由驱控一体板3等器件单独组成的控制系统作为一个整体,拆装更加方便。
实施例九:
一种机器人,如图7所示(图7仅仅是一种SCARA机器人,实际上本技术不局限于图1所示的形状结构或型号的机器人,也不局限于SCARA机器人这个类别,还可以是其它类别的机器人,例如二轴机器人、三轴机器人、四轴机器人、五轴机器人、六轴机器人、多轴机器人和Delta机器人,且适用于多种形状结构和型号的二轴机器人、三轴机器人、四轴机器人、五轴机器人、六轴机器人、多轴机器人和Delta机器人),所述机器人包括基座1、机械臂2、控制箱7和驱控一体板3,机械臂2活动安装于基座1;控制箱7与基座1间隔设置;驱控一体板3设置于控制箱7内,驱控一体板3设置为控制机械臂2运动。如图2所示,驱控一体板3包括控制模块31、驱动模块32和基板33,控制模块31和驱动模块32设置于基板33上,控制模块31电连接驱动模块32。这种控制箱7与基座1分体的设计,能够使控制箱7安装于远离基座1的位置,方便基座1应用于狭小的空间。
可选的,驱控一体板3的数量为两个以上,全部驱控一体板3间隔且层叠分布并依次级联连接,每个驱控一体板3控制机械臂2的至少一个臂体21。
可选的,一个驱控一体板3控制机械臂2的一个臂体21。驱控一体板3的数量与机械臂2的臂体21的数量相等。
可选的,任意一个驱控一体板3能够作为主控板,所述任意一个驱控一体板3设置为控制全部驱控一体板3的信号并与外部的设备信号连接。
可选的,如图3所示,机器人还包括连接座4,连接座4上包括供两个以上驱控一体板3插接的两个以上第一级联插口41,全部第一级联插口41间隔分布且依次级联连接。
可选的,如图4所示,机器人还包括驱动机构5,驱动机构5安装于基座1或者机械臂2,驱动机构5与驱控一体板3电连接,驱动机构5设置为带动机械臂2运动。
可选的,基座1内设置有容置腔,驱动机构5安装于容置腔内。
可选的,驱动机构5包括驱动电机51和减速组件52,驱动电机51安装于基座1或机械臂2,减速组件52安装于驱动电机51,且驱动电机51的输出端与减速组件52传动连接。
可选的,驱动机构5的驱动电机51与驱控一体板3的驱动模块32连接,控制模块31发送控制信号至驱动模块32,驱动模块32根据控制信号输出驱动信号至驱动电机51,驱动电机51根据驱动信号驱动减速组件进而带动机械臂运动。
可选的,驱动机构5还包括法兰53,法兰53安装于基座1或机械臂2,驱动电机51和减速组件52安装于法兰53上。
可选的,基座1上设置有开孔,法兰53设于基座1的开孔处,并设于基座1,减速组件52通过法兰53设于驱动电机51上。
可选的,驱动机构5也可以不使用电机结构,驱动机构5使用由压电陶瓷制成的驱动器件。
于本实施例中,机器人还包括散热结构,散热结构设置于控制箱7。散热结构采用风冷散热。于其它实施例中,散热结构也可以采用液冷散热。
在采用风冷散热的情况下,可选的,散热结构包括第一散热风扇,第一散热风扇与驱控一体板3相对,第一散热风扇设置为加速将驱控一体板3的热量扩散至控制箱7内的全部区域,并通过控制箱的外壁向外部散热。散热结构还包括第二散热风扇,控制箱7上设置有散热孔,第二散热风扇与散热孔相对,第二散热风扇设置为将控制箱7内的热量排放至控制箱7的外部。第一散热风扇与第二散热风扇并不一定同时设置,在一些情况下,也可以仅仅单独设置第一散热风扇和第二散热风扇中的一者。
可选的,散热结构包括散热片,散热片设置于控制箱7的外壁。散热片设置于控制箱7的外壁的外侧和/或内侧,驱控一体板3靠近具有散热片的外壁设置。
可选的,如图5所示,驱控一体板3还包括设于基板33上的第一通讯模块34,第一通讯模块34电连接控制模块31。第一通讯模块34设置为与网络连接。第一通讯模块34采用有线或无线连接网络。当驱控一体板3的数量为两个以上时,不同的驱控一体板3之间通过不同的驱控一体板3的第一通讯模块34信号连接。
可选的,控制模块31包括第一控制部分311和第二控制部分312,第一控制部分311和第一通讯模块34设于基板33的第一面,第二控制部分312和驱动模块32设于基板33的第二面。
可选的,第一控制部分311与第二控制部分312电连接,第一控制部分311和/或第二控制部分312电连接驱动模块32。
可选的,该机器人还包括控制功能板或驱动功能板,控制功能板或驱动功能板设置于机械臂2。通过上述方式,可将独立的控制功能板或驱动功能板设置于机械臂2上,从而通过驱控一体板3以及控制功能板或驱动功能板控制机械臂2运动。例如,机械臂2的一个臂体21上设置有驱动功能板,驱动功能板与驱控一体板3的控制模块31连接,驱动功能板和控制模块31控制至少一个臂体21运动,控制模块31和驱动模块32控制其他臂体21运动,或者机械臂2的一个臂体21上设置有控制功能板,控制功能板和驱控一体板3的驱动模块32电连接,控制功能板和驱动模块32控制全部臂体21运动,且控制模块31和驱动模块32也可控制全部臂体21运动,又或者,机械臂2的一个臂体21上设置有控制功能板和驱动功能板,或机械臂2的一个臂体21上设置有控制功能板,另一个臂体21上设置有驱动功能板,控制功能板和驱动功能板电连接,控制功能板和驱动功能板控制至少一个臂体21运动,且控制模块31和驱动模块32可控制其他臂体21运动。
实施例十:
本实施例与实施例九的区别在于:
机器人还包括与驱控一体板3间隔且层叠布置的连接板6,连接板6设置为控制全部驱控一体板3的信号并与外部的设备信号连接,如图6所示,连接板6包括第三控制部分61和安装板62,第三控制部分61设于安装板62上,多个驱控一体板3依次级联连接,第三控制部分61与至少一个驱控一体板3电连接。连接板6还包括第二通讯模块63,第二通讯模块63设于安装板62上,第三控制部分61电连接第二通讯模块63和至少一个驱控一体板3。第二通讯模块63设置为与网络连接。第二通讯模块63采用有线或无线连接网络。本实施例通过 连接板6作为主控板,对全部驱控一体板3进行整体控制,即无需使用任意一个驱控一体板3作为主控板。通过第二通讯模块63,能够实现第三控制部分61与外部的设备的远程交互。
可选的,机器人还包括连接座4,连接座4包括供两个以上驱控一体板3插接的两个以上第一级联插口41和一个供连接板6插接的第二级联插口42,全部第一级联插口41沿一列间隔分布且依次级联连接,第二级联插口42与至少一个第一级联插口41电连接。
实施例十一:
本实施例与实施例九的区别在于:
全部驱控一体板均设置为与云端控制器连接,云端控制器设置为控制全部驱控一体板的信号并与外部的设备信号连接。即本实施例的驱控一体板均无需作为主控板,而是采用云端控制器作为机器人的主控中心,实现对机器人的整体控制。
实施例十二:
一种机器人,如图1和图8所示(图1仅仅是一种SCARA机器人,实际上本技术不局限于图1所示的形状结构或型号的机器人,也不局限于SCARA机器人这个类别,还可以是其它类别的机器人,例如二轴机器人、三轴机器人、四轴机器人、五轴机器人、六轴机器人、多轴机器人和Delta机器人,且适用于多种形状结构和型号的二轴机器人、三轴机器人、四轴机器人、五轴机器人、六轴机器人、多轴机器人和Delta机器人),所述机器人包括基座1、机械臂2和驱控一体板3,机械臂2活动安装于基座1;驱控一体板3包括驱动板36和控制板35,驱动板36和控制板35设置于基座1,驱动板36和控制板35电连接,驱控一体板3设置为控制机械臂2运动。将控制板35与驱动板36设计为一体式结构,能够使驱动板36与控制板35的整体结构更加紧凑,需要的安装空间更小,进而使机器人的整体结构更加紧凑。可选的,驱动板36与控制板35采用菊花式连接。
可选的,驱控一体板3的数量为两个以上,全部驱控一体板3层叠分布并依次级联连接,每个驱控一体板3控制机械臂2的至少一个臂体21。
可选的,一个驱控一体板3控制机械臂2的一个臂体21。驱控一体板3的数量与机械臂2的臂体21的数量相等。
可选的,任意一个驱控一体板3能够作为主控板,所述任意一个驱控一体板3设置为控制全部驱控一体板3的信号并与外部的设备信号连接。
可选的,机器人还包括驱动机构5,驱动机构5安装于基座1或者机械臂2,驱动机构5与驱控一体板3电连接,驱动机构5设置为带动机械臂2运动。
可选的,基座1内设置有容置腔,驱动机构5安装于容置腔内。
可选的,驱动机构5包括驱动电机51和减速组件52,驱动电机51安装于基座1或机械臂2,减速组件52安装于驱动电机51,且驱动电机51的输出端与减速组件52传动连接。
可选的,驱动机构5的驱动电机51与驱控一体板3的驱动模块32连接,控制模块31发送控制信号至驱动模块32,驱动模块32根据控制信号输出驱动信号至驱动电机51,驱动电机51根据驱动信号驱动减速组件进而带动机械臂运动。
可选的,驱动机构5还包括法兰53,法兰53安装于基座1或机械臂2,驱动电机51和减速组件52安装于法兰53上。
可选的,基座1上设置有开孔,法兰53设于基座1的开孔处,并设于基座1,减速组件52通过法兰53设于驱动电机51上。可选的,在一些实施例中,驱动机构5可以不是电机结构,驱动机构5采用压电陶瓷制成的驱动器件。
可选的,机器人还包括散热结构,散热结构设置于基座1。散热结构采用风冷散热。在一些实施例中,散热结构也可以采用液冷散热。
在采用风冷散热的情况下,可选的,散热结构包括第一散热风扇,第一散热风扇与驱控一体板3相对,第一散热风扇设置为加速将驱控一体板3的热量扩散至基座1的全部区域,并通过基座1的壁体向外部散热。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
散热结构包括第二散热风扇,基座1上设置有散热孔,第二散热风扇与散热孔相对,第二散热风扇设置为将基座1内的热量排放至基座1的外部。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
第一散热风扇与第二散热风扇并不一定同时设置,在一些情况下,也可以仅仅单独设置第一散热风扇和第二散热风扇中的一者。
可选的,散热结构包括散热片,散热片设置于基座1的壁体。散热片设置于基座1的壁体21的外侧和/或内侧,驱控一体板3靠近具有散热片的壁体设置。
可选的,驱控一体板3还包括通讯板,通讯板电连接控制板35。通讯板设置为与网络连接。通讯板采用有线或无线连接网络。当驱控一体板3的数量为 两个以上时,不同的驱控一体板3之间通过不同的驱控一体板3的通讯板信号连接。
可选的,基座1内设置有容置腔,驱控一体板3设置于容置腔内;或者,基座1的壁体外侧安装有控制箱7,驱控一体板3设置于控制箱7内。
可选的,该机器人还包括控制功能板或驱动功能板,控制功能板或驱动功能板设置于机械臂2。通过上述方式,可将独立的控制功能板或驱动功能板设置于机械臂2上,从而通过驱控一体板3以及控制功能板或驱动功能板控制机械臂2运动。例如,机械臂2的一个臂体21上设置有驱动功能板,驱动功能板与驱控一体板3的控制板35连接,驱动功能板和控制板35控制至少一个臂体21运动,控制板35和驱动板36控制其他臂体21运动,或者机械臂2的一个臂体21上设置有控制功能板,控制功能板和驱控一体板3的驱动板36电连接,控制功能板和驱动板36控制全部臂体21运动,且控制板35和驱动板36也可控制全部臂体21运动,又或者,机械臂2的一个臂体21上设置有控制功能板和驱动功能板,或机械臂2的一个臂体21上设置有控制功能板,另一个臂体21上设置有驱动功能板,控制功能板和驱动功能板电连接,控制功能板和驱动功能板控制至少一个臂体21运动,且控制板35和驱动板36可控制其他臂体21运动。
实施例十三:
本实施例与实施例十二的区别在于:
机器人还包括与驱控一体板层叠布置的连接板,连接板设置为控制全部驱控一体板的信号并与外部的设备信号连接,连接板包括控制部分和安装板,控制部分设于安装板上,多个驱控一体板依次级联连接,控制部分与至少一个驱控一体板电连接。连接板还包括通讯模块,通讯模块设于安装板上,控制部分电连接通讯模块和驱控一体板。通讯模块设置为与网络连接。通讯模块采用有线或无线连接网络。本实施例通过连接板作为主控板,对全部驱控一体板进行整体控制,即无需使用任意一个驱控一体板作为主控板。
实施例十四:
本实施例与实施例十二的区别在于:
全部驱控一体板均设置为与云端控制器连接,云端控制器设置为控制全部驱控一体板的信号并与外部的设备信号连接。即本实施例的驱控一体板均无需作为主控板,而是采用云端控制器作为机器人的主控中心,实现对机器人的整 体控制。
实施例十五:
一种机器人,如图9和图2所示,所述机器人包括基座1、机械臂2和驱控一体板3,机械臂2活动安装于基座1,驱控一体板3设置于基座1,驱控一体板3设置为控制机械臂2运动,驱控一体板3包括控制模块31、驱动模块32和基板33,控制模块31和驱动模块32设置于基板33上,控制模块31电连接驱动模块32。通过将控制模块31与驱动模块32设置于同一块基板33上,能够使控制模块31与驱动模块32的整体结构更加紧凑,需要的安装空间更小,进而使机器人的整体结构更加紧凑。
可选的,驱控一体板3的数量为两个以上,全部驱控一体板3间隔且层叠分布并依次级联连接,每个驱控一体板3控制机械臂2的至少一个臂体21。一个驱控一体板3控制机械臂2的一个臂体21。驱控一体板3的数量与机械臂2的臂体21的数量相等。
可选的,任意一个驱控一体板3能够作为主控板,所述任意一个驱控一体板3设置为控制全部驱控一体板3的信号并与外部的设备信号连接。通过上述设计,能够使机器人的控制系统更加灵活,避免因主控板损坏而导致机器人整体无法工作,当一个驱控一体板3损坏时,只需使用另一个驱控一体板3作为主控板,即可实现对机器人的整体控制。
可选的,如图3所示,机器人还包括连接座4,连接座4上包括供两个以上驱控一体板3插接的两个以上第一级联插口41,全部第一级联插口41间隔分布且依次级联连接。通过设置具有第一级联插口41的连接座4,一方面能够提高驱控一体板3的安装可靠性,另一方面能够方便驱控一体与连接座4的快速拆装,进而提高不同驱控一体板3组合使用的便捷性和灵活性。
可选的,机器人还包括散热结构,散热结构设置于基座1。
可选的,散热结构采用风冷散热。
散热结构包括第一散热风扇,第一散热风扇与驱控一体板3相对,第一散热风扇设置为加速将驱控一体板3的热量扩散至基座1内的全部区域,并通过基座1的壁体向外部散热。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
散热结构包括第二散热风扇,基座1上设置有散热孔,第二散热风扇对准散热孔,第二风扇设置为将基座1内的热量排放至基座1的外部。
第一散热风扇与第二散热风扇并不一定同时设置,在一些情况下,也可以仅仅单独设置第一散热风扇和第二散热风扇中的一者。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
可选的,散热结构包括散热片,散热片设置于基座1的壁体。散热片设置于基座1的壁体21的外侧和/或内侧,驱控一体板3靠近具有散热片的壁体设置,这种设计能够提供驱控一体板3的散热效果。
可选的,如图5所示,驱控一体板3还包括设于基板33上的第一通讯模块34,第一通讯模块34电连接控制模块31。第一通讯模块34设置为与网络连接。第一通讯模块34采用有线或无线连接网络。当驱控一体板3的数量为两个以上时,不同的驱控一体板3之间通过不同的驱控一体板3的第一通讯模块34信号连接。
可选的,控制模块31包括第一控制部分311和第二控制部分312,第一控制部分311和第一通讯模块34设于基板33的第一面,第二控制部分312和驱动模块32设于基板33的第二面。
可选的,第一控制部分311与第二控制部分312电连接,第一控制部分311和/或第二控制部分312电连接驱动模块32。
可选的,基座1内设置有容置腔,驱控一体板3设置于容置腔内。
可选的,该机器人还包括控制功能板或驱动功能板,控制功能板或驱动功能板设置于机械臂2。通过上述方式,可将独立的控制功能板或驱动功能板设置于机械臂2上,从而通过驱控一体板3以及控制功能板或驱动功能板控制机械臂2运动。例如,机械臂2的一个臂体21上设置有驱动功能板,驱动功能板与驱控一体板3的控制模块31连接,驱动功能板和控制模块31控制至少一个臂体21运动,控制模块31和驱动模块32控制其他臂体21运动,或者机械臂2的一个臂体21上设置有控制功能板,控制功能板和驱控一体板3的驱动模块32电连接,控制功能板和驱动模块32控制全部臂体21运动,且控制模块31和驱动模块32也可控制全部臂体21运动,又或者,机械臂2的一个臂体21上设置有控制功能板和驱动功能板,或机械臂2的一个臂体21上设置有控制功能板,另一个臂体21上设置有驱动功能板,控制功能板和驱动功能板电连接,控制功能板和驱动功能板控制至少一个臂体21运动,且控制模块31和驱动模块32可控制其他臂体21运动。
实施例十六:
一种机器人,如图10和图2所示,所述机器人包括基座1、机械臂2和驱 控一体板3,机械臂2活动安装于基座1,驱控一体板3设置于基座1,驱控一体板3设置为控制机械臂2运动,驱控一体板3包括控制模块31、驱动模块32和基板33,控制模块31和驱动模块32设置于基板33上,控制模块31电连接驱动模块32。通过将控制模块31与驱动模块32设置于同一块基板33上,能够使控制模块31与驱动模块32的整体结构更加紧凑,需要的安装空间更小,进而使机器人的整体结构更加紧凑。
可选的,驱控一体板3的数量为两个以上,全部驱控一体板3间隔且层叠分布并依次级联连接,每个驱控一体板3控制机械臂2的至少一个臂体21。进一步地,一个驱控一体板3控制机械臂2的一个臂体21。驱控一体板3的数量与机械臂2的臂体21的数量相等。
可选的,任意一个驱控一体板3能够作为主控板,所述任意一个驱控一体板3设置为控制全部驱控一体板3的信号并与外部的设备信号连接。通过上述设计,能够使机器人的控制系统更加灵活,避免因主控板损坏而导致机器人整体无法工作,当一个驱控一体板3损坏时,只需使用另一个驱控一体板3作为主控板,即可实现对机器人的整体控制。
可选的,如图3所示,机器人还包括连接座4,连接座4上包括供至少两个驱控一体板3插接的两个以上第一级联插口41,全部第一级联插口41间隔分布且依次级联连接。通过设置具有第一级联插口41的连接座4,一方面能够提高驱控一体板3的安装可靠性,另一方面能够方便驱控一体与连接座4的快速拆装,进而提高不同驱控一体板3组合使用的便捷性和灵活性。
可选的,机器人还包括散热结构,散热结构设置于基座1。
可选的,散热结构采用风冷散热。
散热结构包括第一散热风扇,第一散热风扇与驱控一体板3相对,第一散热风扇设置为加速将驱控一体板3的热量扩散至基座1内的全部区域,并通过基座1的壁体向外部散热。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
散热结构包括第二散热风扇,基座1上设置有散热孔,第二散热风扇对准散热孔,第二风扇设置为将基座1内的热量排放至基座1的外部。可选的,基座1设置有容置腔,驱控一体板3和散热结构均设置在容置腔中。
第一散热风扇与第二散热风扇并不一定同时设置,在一些情况下,也可以仅仅单独设置第一散热风扇和第二散热风扇中的一者。
可选的,散热结构包括散热片,散热片设置于基座1的壁体。散热片设置于基座1的壁体21的外侧和/或内侧,驱控一体板3靠近具有散热片的壁体设置, 这种设计能够提供驱控一体板3的散热效果。
可选的,如图5所示,驱控一体板3还包括设于基板33上的第一通讯模块34,第一通讯模块34电连接控制模块31。第一通讯模块34设置为与网络连接。第一通讯模块34采用有线或无线连接网络。当驱控一体板3的数量为两个以上时,不同的驱控一体板3之间通过不同的驱控一体板3的第一通讯模块34信号连接。
可选的,控制模块31包括第一控制部分311和第二控制部分312,第一控制部分311和第一通讯模块34设于基板33的第一面,第二控制部分312和驱动模块32设于基板33的第二面。
可选的,第一控制部分311与第二控制部分312电连接,第一控制部分311和/或第二控制部分312电连接驱动模块32。
可选的,基座1内设置有容置腔,驱控一体板3设置于容置腔内。
可选的,该机器人还包括控制功能板或驱动功能板,控制功能板或驱动功能板设置于机械臂2。通过上述方式,可将独立的控制功能板或驱动功能板设置于机械臂2上,从而通过驱控一体板3以及控制功能板或驱动功能板控制机械臂2运动。例如,机械臂2的一个臂体21上设置有驱动功能板,驱动功能板与驱控一体板3的控制模块31连接,驱动功能板和控制模块31控制至少一个臂体21运动,控制模块31和驱动模块32控制其他臂体21运动,或者机械臂2的一个臂体21上设置有控制功能板,控制功能板和驱控一体板3的驱动模块32电连接,控制功能板和驱动模块32控制全部臂体21运动,且控制模块31和驱动模块32也可控制全部臂体21运动,又或者,机械臂2的一个臂体21上设置有控制功能板和驱动功能板,或机械臂2的一个臂体21上设置有控制功能板,另一个臂体21上设置有驱动功能板,控制功能板和驱动功能板电连接,控制功能板和驱动功能板控制至少一个臂体21运动,且控制模块31和驱动模块32可控制其他臂体21运动。
于本文的描述中,需要理解的是,术语“上”、“下”、“左”“右”、等方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述和简化操作,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”,仅仅用于在描述上加以区分,并没有特殊的含义。
在本说明书的描述中,参考术语“一实施例”、“示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是 相同的实施例或示例。

Claims (48)

  1. 一种机器人,包括:
    基座;
    机械臂,活动安装于所述基座;
    驱控一体板,设置于所述基座,设置为控制所述机械臂运动,所述驱控一体板包括控制模块、驱动模块和基板,所述控制模块和驱动模块设置于所述基板上,所述控制模块电连接所述驱动模块。
  2. 根据权利要求1所述的一种机器人,其中,所述驱控一体板的数量为至少两个,所述机械臂包括多个臂体,全部所述驱控一体板间隔且层叠分布并依次级联连接,每个驱控一体板控制所述机械臂的至少一个臂体。
  3. 根据权利要求2所述的一种机器人,其中,一个所述驱控一体板控制所述机械臂的一个臂体。
  4. 根据权利要求2所述的一种机器人,其中,任意一个驱控一体板能够作为主控板,所述任意一个驱控一体板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接;
    或者,全部所述驱控一体板均设置为与云端控制器连接,所述云端控制器设置为控制全部所述驱控一体板的信号并与外部的设备信号连接。
  5. 根据权利要求2所述的一种机器人,还包括:连接座,所述连接座上包括供所述至少两个驱控一体板插接的至少两个第一级联插口,全部所述第一级联插口间隔分布且依次级联连接。
  6. 根据权利要求1所述的一种机器人,还包括:驱动机构,所述驱动机构安装于所述基座或者机械臂,所述驱动机构与所述驱控一体板电连接,所述驱动机构设置为根据所述驱控一体板输出的驱动信号带动所述机械臂运动。
  7. 根据权利要求6所述的一种机器人,其中,所述基座内设置有容置腔,所述驱动机构安装于所述容置腔内。
  8. 根据权利要求6所述的一种机器人,其中,所述驱动机构包括驱动电机和减速组件,所述驱动电机安装于所述基座或所述机械臂,所述减速组件安装于所述驱动电机,且所述驱动电机的输出端与所述减速组件传动连接。
  9. 根据权利要求8所述的一种机器人,其中,所述驱动机构还包括法兰,所述法兰安装于所述基座或机械臂,所述驱动电机和所述减速组件安装于所述法兰上。
  10. 根据权利要求6所述的一种机器人,其中,所述驱动机构是采用压电陶瓷制成的驱动器件。
  11. 根据权利要求1所述的一种机器人,还包括:散热结构,所述散热结构设置于所述基座。
  12. 根据权利要求11所述的一种机器人,其中,所述散热结构采用风冷散热。
  13. 根据权利要求12所述的一种机器人,其中,所述散热结构包括第一散热风扇,所述第一散热风扇与所述驱控一体板相对,所述第一散热风扇设置为加速将所述驱控一体板的热量扩散至所述基座内的全部区域,并通过所述基座的壁体向外部散热。
  14. 根据权利要求12所述的一种机器人,其中,所述散热结构包括第二散热风扇,所述基座上设置有散热孔,所述第二散热风扇与所述散热孔相对,所述第二散热风扇设置为将所述基座内的热量排放至所述基座的外部。
  15. 根据权利要求12所述的一种机器人,其中,所述散热结构包括散热片,所述散热片设置于所述基座的壁体。
  16. 根据权利要求15所述的一种机器人,其中,所述驱控一体板靠近具有所述散热片的所述壁体设置。
  17. 根据权利要求1所述的一种机器人,其中,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块。
  18. 根据权利要求17所述的一种机器人,其中,所述第一通讯模块设置为与网络连接。
  19. 根据权利要求18所述的一种机器人,其中,所述第一通讯模块采用有线或无线连接网络。
  20. 根据权利要求19所述的一种机器人,其中,所述控制模块包括第一控制部分和第二控制部分,所述第一控制部分和所述第一通讯模块设于所述基板的第一面,所述第二控制部分和所述驱动模块设于所述基板的第二面。
  21. 根据权利要求2所述的一种机器人,其中,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块,不同的驱控一体板之间通过所述不同的驱控一体板的第一通讯模块信号连接。
  22. 根据权利要求2所述的一种机器人,还包括:与所述至少两个驱控一体板间隔且层叠布置的连接板,所述连接板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接,所述连接板包括第三控制部分和安装板,所述第三控制部分设于所述安装板上,所述至少两个驱控一体板依次级联连接,所述第三控制部分与至少一个驱控一体板电连接。
  23. 根据权利要求22所述的一种机器人,其中,所述连接板还包括第二通讯模块,所述第二通讯模块设于所述安装板上,所述第三控制部分电连接所述第二通讯模块和所述至少一个驱控一体板。
  24. 根据权利要求23所述的一种机器人,其中,所述第二通讯模块设置为与网络连接。
  25. 根据权利要求23所述的一种机器人,其中,所述第二通讯模块采用有线或无线连接网络。
  26. 根据权利要求22所述的一种机器人,还包括:连接座,所述连接座包括供所述至少两个驱控一体板插接的至少两个第一级联插口和一个供所述连接板插接的第二级联插口,全部所述第一级联插口沿一列间隔分布且依次级联连接,所述第二级联插口与至少一个所述第一级联插口电连接。
  27. 根据权利要求1所述的一种机器人,其中,所述基座内设置有容置腔,所述驱控一体板设置于所述容置腔内;
    或者,所述基座的壁体外侧安装有控制箱,所述驱控一体板设置于所述控制箱内。
  28. 根据权利要求1所述的一种机器人,还包括控制功能板或驱动功能板,所述控制功能板或所述驱动功能板设置于所述机械臂。
  29. 一种机器人,包括:
    基座;
    机械臂,活动安装于所述基座;
    控制箱,与所述基座间隔设置;
    驱控一体板,设置于所述控制箱内,设置为控制所述机械臂运动,所述驱控一体板包括控制模块、驱动模块和基板,所述控制模块和驱动模块设置于所述基板上,所述控制模块电连接所述驱动模块。
  30. 根据权利要求29所述的一种机器人,其中,所述驱控一体板的数量为至少两个,所述机械臂包括多个臂体,全部所述驱控一体板间隔且层叠分布并依次级联连接,每个驱控一体板控制所述机械臂的至少一个臂体。
  31. 根据权利要求30所述的一种机器人,其中,任意一个驱控一体板能够作为主控板,所述任意一个驱控一体板设置为控制全部所述驱控一体板的信号并与外部的设备信号连接;
    或者,全部所述驱控一体板均设置为与云端控制器连接,所述云端控制器设置为控制全部所述驱控一体板的信号并与外部的设备信号连接。
  32. 根据权利要求29所述的一种机器人,还包括:散热结构,所述散热结构设置于所述控制箱。
  33. 根据权利要求29所述的一种机器人,其中,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块。
  34. 根据权利要求33所述的一种机器人,其中,所述第一通讯模块设置为与网络连接。
  35. 根据权利要求34所述的一种机器人,其中,所述第一通讯模块采用有线或无线连接网络。
  36. 根据权利要求30所述的一种机器人,其中,所述驱控一体板还包括设于所述基板上的第一通讯模块,所述第一通讯模块电连接所述控制模块,不同的驱控一体板之间通过所述不同的驱控一体板的第一通讯模块信号连接。
  37. 根据权利要求29所述的一种机器人,还包括:控制功能板或驱动功能板,所述控制功能板或所述驱动功能板设置于所述机械臂。
  38. 一种机器人,包括:
    基座;
    机械臂,活动安装于所述基座;
    驱控一体板,包括驱动板和控制板,所述驱动板和所述控制板设置于所述基座,所述驱动板和所述控制板电连接,所述驱控一体板设置为控制所述机械臂运动。
  39. 根据权利要求38所述的一种机器人,其中,所述驱控一体板的数量为至少两个,所述机械臂包括多个臂体,全部所述驱控一体板层叠分布并依次级联连接,每个驱控一体板控制所述机械臂的至少一个臂体。
  40. 根据权利要求39所述的一种机器人,其中,任意一个驱控一体板能够作为主控板,所述任意一个控制全部所述驱控一体板的信号并与外部的设备信号连接;
    或者,全部所述驱控一体板均设置为与云端控制器连接,所述云端控制器设置为控制全部所述驱控一体板的信号并与外部的设备信号连接。
  41. 根据权利要求38所述的一种机器人,其中,所述驱动板与所述控制板采用菊花式连接。
  42. 根据权利要求38所述的一种机器人,还包括:散热结构,所述散热结构设置于所述基座。
  43. 根据权利要求38所述的一种机器人,其中,所述驱控一体板还包括通讯板,所述通讯板电连接所述控制板。
  44. 根据权利要求43所述的一种机器人,其中,所述通讯板设置为与网络连接。
  45. 根据权利要求44所述的一种机器人,其中,所述通讯板采用有线或无线连接网络。
  46. 根据权利要求39所述的一种机器人,其中,所述驱控一体板还包括通讯板,所述通讯板电连接所述控制板和所述驱动板中的至少之一,不同的驱控一体板之间通过所述不同的驱控一体板的通讯板信号连接。
  47. 根据权利要求38所述的一种机器人,其中,所述基座内设置有容置腔,所述驱控一体板设置于所述容置腔内;
    或者,所述基座的壁体外侧安装有控制箱,所述驱控一体板设置于所述控制箱内。
  48. 根据权利要求38所述的一种机器人,还包括:控制功能板或驱动功能板,所述控制功能板或所述驱动功能板设置于所述机械臂。
PCT/CN2021/096333 2020-12-25 2021-05-27 机器人 WO2022134463A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21908474.6A EP4269041A1 (en) 2020-12-25 2021-05-27 Robot
JP2023539188A JP2024500536A (ja) 2020-12-25 2021-05-27 ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011563379.9A CN112621725A (zh) 2020-12-25 2020-12-25 一种机器人
CN202011563379.9 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022134463A1 true WO2022134463A1 (zh) 2022-06-30

Family

ID=75325451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096333 WO2022134463A1 (zh) 2020-12-25 2021-05-27 机器人

Country Status (4)

Country Link
EP (1) EP4269041A1 (zh)
JP (1) JP2024500536A (zh)
CN (1) CN112621725A (zh)
WO (1) WO2022134463A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112533461A (zh) * 2020-12-25 2021-03-19 东莞市李群自动化技术有限公司 驱控一体板、控制系统和机器人
CN114750129A (zh) * 2020-12-25 2022-07-15 东莞市李群自动化技术有限公司 一种机器人
CN112621725A (zh) * 2020-12-25 2021-04-09 东莞市李群自动化技术有限公司 一种机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912496B4 (de) * 1998-03-19 2010-08-05 Hitachi Koki Co., Ltd. Zentrifugenbetriebssystem mit automatischer Zentrifuge und Fließband
EP1525957B1 (de) * 2003-10-23 2017-01-25 Stäubli Faverges Roboter vom Scara-Typ
CN208323375U (zh) * 2018-05-31 2019-01-04 深圳中科腾翔科技有限公司 一种双臂机器人
CN210589287U (zh) * 2019-09-12 2020-05-22 东莞市李群自动化技术有限公司 倒装机器人
CN112621725A (zh) * 2020-12-25 2021-04-09 东莞市李群自动化技术有限公司 一种机器人

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19912496B4 (de) * 1998-03-19 2010-08-05 Hitachi Koki Co., Ltd. Zentrifugenbetriebssystem mit automatischer Zentrifuge und Fließband
EP1525957B1 (de) * 2003-10-23 2017-01-25 Stäubli Faverges Roboter vom Scara-Typ
CN208323375U (zh) * 2018-05-31 2019-01-04 深圳中科腾翔科技有限公司 一种双臂机器人
CN210589287U (zh) * 2019-09-12 2020-05-22 东莞市李群自动化技术有限公司 倒装机器人
CN112621725A (zh) * 2020-12-25 2021-04-09 东莞市李群自动化技术有限公司 一种机器人

Also Published As

Publication number Publication date
CN112621725A (zh) 2021-04-09
JP2024500536A (ja) 2024-01-09
EP4269041A1 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
WO2022134463A1 (zh) 机器人
EP1793289A1 (en) Robot control device and robot system
US9751218B2 (en) Robot
US11396105B2 (en) Sensor module for a robot
US11090803B2 (en) Horizontal articulated robot
CN210589287U (zh) 倒装机器人
US20200051846A1 (en) Transfer system and transfer method
WO2022134462A1 (zh) 机器人
US8899124B2 (en) Industrial robot
WO2022134461A1 (zh) 驱控一体板、控制系统和机器人
JP2012206239A (ja) ロボットコントローラー
CN214352434U (zh) 一种机器人
WO2021144969A1 (ja) 2軸一体型モジュール及び多関節ロボットアーム装置
JP4670611B2 (ja) ロボット制御装置
CN214352435U (zh) 一种机器人
CN214446375U (zh) 一种机器人
CN214352458U (zh) 一种机器人
CN216000573U (zh) 一种机器人
US20140193258A1 (en) Swing fan structure
WO2020062574A1 (zh) 连接器、动力系统及无人机
TWM647582U (zh) 晶圓搬運裝置
CN214046493U (zh) 驱控一体板、控制系统和机器人
JPH09300273A (ja) 産業用ロボット
JP7006169B2 (ja) ロボット
CN220368623U (zh) 伺服驱动器和伺服系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908474

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539188

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021908474

Country of ref document: EP

Effective date: 20230725