WO2022134317A1 - 一种抗蚀型醚类聚羧酸减水剂及制备方法 - Google Patents

一种抗蚀型醚类聚羧酸减水剂及制备方法 Download PDF

Info

Publication number
WO2022134317A1
WO2022134317A1 PCT/CN2021/079569 CN2021079569W WO2022134317A1 WO 2022134317 A1 WO2022134317 A1 WO 2022134317A1 CN 2021079569 W CN2021079569 W CN 2021079569W WO 2022134317 A1 WO2022134317 A1 WO 2022134317A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion
ether
parts
polycarboxylate water
unsaturated
Prior art date
Application number
PCT/CN2021/079569
Other languages
English (en)
French (fr)
Inventor
张小芳
柯余良
郭元强
方云辉
史艳娜
Original Assignee
科之杰新材料集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科之杰新材料集团有限公司 filed Critical 科之杰新材料集团有限公司
Publication of WO2022134317A1 publication Critical patent/WO2022134317A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/165Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/60Agents for protection against chemical, physical or biological attack
    • C04B2103/61Corrosion inhibitors

Definitions

  • the invention relates to the technical field of concrete admixtures, in particular to an anti-corrosion ether type polycarboxylate water reducer and a preparation method.
  • Prestressed high-strength concrete pipe piles have the advantages of short construction period, excellent mechanical properties, high cost performance, and less restrictions on construction conditions. It is widely used in bridges, ports, docks and other engineering foundations.
  • inorganic salts such as nitrite, alcohol amines, and migration-type rust inhibitors are mainly used to prevent steel corrosion. It will cause concrete alkali and material reaction and affect the slump. While alcohol amines and migratory rust inhibitors have better effects, their cost is higher, and the later coating of migratory rust inhibitors on the concrete surface makes the construction complicated. Therefore, it is of great significance to develop a polycarboxylate superplasticizer with rust-inhibiting function through molecular structure design, and slowly release rust-inhibiting functional groups during concrete application to achieve the purpose of anti-corrosion of steel bars.
  • the announcement number CN107265909B, published on 28.07.2020, the patent document titled "A composite sodium silicate/trihydroxymethylaminomethane reinforced concrete rust inhibitor and its application” discloses trihydroxymethylamino
  • the two components, methane and sodium silicate play the role of isolation and inhibition respectively to form a double protection for the steel bar.
  • the organic component Tris can be adsorbed on the surface of the steel bar to form an adsorption film, preventing the steel bar from being corroded by chloride ions;
  • the inorganic component sodium silicate can promote the formation of a dense passive film on the surface of the steel bar and prevent further oxidation.
  • the announcement number CN104327221B published on August 25, 2017, the patent document titled "An anti-rust type special polycarboxylate water reducer for hydraulic engineering and its preparation method” discloses the use of methallyl polyoxyethylene Allyl ether, water, acrylic acid and maleyl tetrazolium amine, supplemented by maleyl triethoxysilane propylamine and molecular weight regulator, add initiator to carry out copolymerization reaction; Water rate, better steel corrosion resistance and shrinkage.
  • this method requires two separate preparations of functional monomers to carry out the copolymerization reaction. The operation steps are relatively complicated, and the amount of functional monomers is relatively large, which will lead to higher costs.
  • the obtained product has It is relatively lacking in other special functions such as early strength.
  • the present invention provides a corrosion-resistant ether-based polycarboxylate water-reducing agent, wherein, it is composed of esterified products, unsaturated polyoxygen Vinyl ether, acrylic acid, unsaturated sulfonate and rust inhibitor functional monomer B with double bond, amino group and sulfur bond are prepared by copolymerization;
  • the esterification product is obtained by esterification reaction of rust inhibitor functional monomer A with amino group and hydroxyl group, silane monomer and unsaturated acid.
  • the polymerization inhibitor of the esterification reaction is at least one of 4-hydroxypiperidinol oxygen radical, 4-tert-butyl catechol and methyl hydroquinone;
  • the catalyst is a supported solid acid catalyst , preferably SO 4 2- /SiO 2 -TiO 2 .
  • the temperature of the esterification reaction is 70-130° C., and the time is 3-5 h.
  • the rust inhibitor functional monomer A is trimethylolaminomethane; the silane monomer is N-aminoethyl-3-aminopropyltriethoxysilane.
  • the unsaturated acid is one of acrylic acid and methacrylic acid.
  • the molar ratio of the rust inhibitor functional monomer A, the silane monomer and the unsaturated acid is 1:1:2 to 5, and the amount of the catalyst is unsaturated acid, rust inhibitor functional monomer A, silane
  • the amount of the polymerization inhibitor is 0.5% to 2% of the total mass of the monomer, and the amount of the polymerization inhibitor is 0.5% to 2.5% of the total mass of the unsaturated acid, the rust inhibitor functional monomer A and the silane monomer.
  • the rust-inhibiting functional monomer B is allyl thiourea; in the present invention, by introducing allyl thiourea to participate in the copolymerization reaction, the lone pair of electrons with S in the molecule of the polycarboxylate superplasticizer can interact with Fe.
  • the empty track forms a complex adsorption film, which isolates harmful substances from contacting the steel bar, thereby further improving the corrosion resistance effect.
  • the unsaturated polyoxyethylene ether is methallyl alcohol polyoxyethylene ether, allyl polyoxyethylene polyoxypropylene ether, methallyl polyoxyethylene polyoxypropylene with molecular weight of 3000-5000 One of ether or allyl alcohol polyoxyethylene ether.
  • the unsaturated sulfonate is one of sodium methacrylate sulfonate and sodium 3-allyloxy-2-hydroxy-1-propane sulfonate.
  • the copolymerization reaction also includes an oxidizing agent, a reducing agent and a chain transfer agent, the amount of the oxidizing agent is 1%-3% of the total mass of the unsaturated polyoxyethylene ether, and the amount of the reducing agent is the unsaturated polyoxyethylene ether. 0.5%-2% of the total mass, and the amount of the chain transfer agent is 0.5%-2.5% of the total mass of the unsaturated polyoxyethylene ether.
  • the oxidant is ammonium persulfate, potassium persulfate, sodium persulfate or hydrogen peroxide.
  • the reducing agent is 2-hydroxy-2-sulfinylacetic acid, 2-hydroxy-2-sulfinylacetic acid disodium salt, 2-hydroxy-2-sulfonic acid or 2-hydroxy- 2-Sulfoacetic acid disodium salt.
  • the copolymerization reaction chain transfer agent is mercaptoacetic acid, mercaptoethanol, 3-mercaptopropionic acid, isooctyl 3-mercaptopropionate, and trisodium phosphate.
  • the mass ratio of the esterification product, unsaturated polyoxyethylene ether, acrylic acid, unsaturated sulfonate, and rust inhibitor functional monomer B is 2 ⁇ 5:100:5 ⁇ 10:2 ⁇ 4:0.5 ⁇ 2.
  • the present invention also provides a preparation method of a corrosion-resistant ether type polycarboxylate water reducer, wherein
  • the anti-corrosion ether type polycarboxylate water reducing agent is prepared by copolymerizing the esterified product, unsaturated polyoxyethylene ether, acrylic acid, unsaturated sulfonate and rust inhibitor functional monomer B.
  • the temperature of the copolymerization reaction is normal temperature.
  • the pH of the corrosion-resistant ether-based polycarboxylate water-reducing agent is 6-7.
  • the anti-corrosion ether type polycarboxylate water reducing agent provided by the present invention has the following technical principles and beneficial effects:
  • the anti-corrosion ether type polycarboxylate water reducing agent provided by the present invention utilizes the rust-inhibiting functional monomer A of amino and hydroxyl groups, silane monomer and unsaturated esterification to obtain an esterified product to participate in the next step copolymerization reaction,
  • the polycarboxylate superplasticizer molecules have silane groups, amino groups, and hydroxyl groups.
  • the nitrogen atoms and hydroxyl groups in the amino groups can improve the adsorption capacity with the steel surface and inhibit the electrochemical reaction process on the steel surface.
  • the amino group can combine H+ on the surface of the cathode, reducing the Cathodic reaction rate, enhance the corrosion inhibition effect of steel.
  • silane monomers can be firmly combined in the concrete surface and cavity, preventing harmful ions from penetrating into the concrete, and the polycarboxylate water reducer with silane monomers is effective for pipes under steam curing and autoclaving conditions.
  • the improvement of pile concrete strength has an important contribution.
  • the process of the present invention is simple in operation, mild in reaction conditions, easy to produce on a large scale, and at the same time overcomes the existing water reducing agent and rust inhibitor to obtain a rust-inhibiting water reducing agent by compounding, but the two properties affect each other and are superimposed. The effect is not ideal.
  • the present invention also provides a preparation method of an anti-corrosion ether type polycarboxylate water reducer, specifically:
  • esterified products by weight, add 106.6 parts of methacrylic acid, 50 parts of trimethylolaminomethane, and 109 parts of N-aminoethyl-3-aminopropyltriethoxysilane to the first Mix in the reaction vessel, add 2.65 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 and 2.65 parts of 4-hydroxypiperidinol oxygen radical under the condition of vacuuming, and adjust the reaction temperature to 90 ° C, the reaction 4h, the esterification product is obtained;
  • esterification product by weight, add 71.06 parts of methacrylic acid, 50 parts of trimethylolaminomethane, and 109 parts of N-aminoethyl-3-aminopropyltriethoxysilane to the first Mix in the reaction vessel, add 1.15 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 and 1.15 parts of 4-tert-butylcatechol, and adjust the reaction temperature to 110° C. for 5 hours. That is, the esterification product is obtained;
  • esterification product by weight, add 148.7 parts of acrylic acid, 50 parts of trimethylolaminomethane, 109 parts of N-aminoethyl-3-aminopropyltriethoxysilane to the first reaction vessel Mixing in medium, under the condition of vacuuming, add 6.15 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 , 7.69 parts of methyl hydroquinone, and adjust the reaction temperature to 130 ° C and react for 3 hours to obtain the ester chemical product;
  • the present invention also provides the following comparative examples:
  • esterification products by weight, add 106.6 parts of methacrylic acid and 109 parts of N-aminoethyl-3-aminopropyltriethoxysilane to the first reaction vessel and mix, under vacuum conditions 2.65 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 and 2.65 parts of 4-hydroxypiperidinol oxygen radical were added, and the reaction temperature was adjusted to 90°C, and the reaction was carried out for 4 h to obtain an esterified product;
  • esterified products in parts by weight, 106.6 parts of methacrylic acid, 50 parts of 2-amino-2-methyl-1-propanol, 109 parts of N-aminoethyl-3-aminopropyltris Ethoxysilane was added to the first reaction vessel and mixed, and under the condition of vacuuming, 2.65 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 , 2.65 parts of 4-hydroxypiperidinol oxygen radical, and Adjust the reaction temperature to 90°C and react for 4h to obtain the esterified product;
  • esterification product by weight, add 106.6 parts of methacrylic acid, 50 parts of trimethylolaminomethane, and 109 parts of ⁇ -aminopropyl triethoxysilane to the first reaction vessel and mix them in the first reaction vessel. Under the condition of vacuuming, add 2.65 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 , 2.65 parts of 4-hydroxypiperidinol oxygen radical, and adjust the reaction temperature to 90 ° C and react for 4 h to obtain esterification product;
  • esterified products by weight, add 106.6 parts of methacrylic acid, 50 parts of trimethylolaminomethane, and 109 parts of N-aminoethyl-3-aminopropyltriethoxysilane to the first Mix in the reaction vessel, add 2.65 parts of supported solid acid catalyst SO 4 2- /SiO 2 -TiO 2 and 2.65 parts of 4-hydroxypiperidinol oxygen radical under the condition of vacuuming, and adjust the reaction temperature to 90 ° C, the reaction 4h, the esterification product is obtained;
  • the second dripping device 7.5 parts of acrylic acid, 3 parts of sodium methacrylate sulfonate and 20 parts of water are mixed evenly in the third dripping device; the first dripping device, The materials in the second dripping device and the third dripping device were respectively added dropwise to the materials in the third dripping device, the second dripping device and the first dripping device in 1.5h, and the constant temperature reaction was performed for 0.5h;
  • esterification product by weight, 106.6 parts of methacrylic acid and 50 parts of tris(hydroxymethylaminomethane) were added to the first reaction vessel and mixed, and under vacuum condition, 2.65 parts of supported solid acid catalysts were added SO 4 2- /SiO 2 -TiO 2 , 2.65 parts of 4-hydroxypiperidinol oxygen radical, and adjusting the reaction temperature to 90° C., and reacting for 4 hours to obtain an esterified product;
  • the anti-corrosion ether polycarboxylate water-reducing agent synthesized in Example 1-3 is compared with the pipe pile concrete in Comparative Example 1-6, and Conch PO52.5R cement is used.
  • the dosage of the water-reducing agent in Example 1-2 is:
  • the cementitious material is 0.15% (solid content)
  • the water reducing agent dosage in Comparative Examples 3-6 is 0.2% (solid content)
  • the admixture dosage in Comparative Examples 1-2 refers to the specific compound formula.
  • the performance of the pipe pile is tested according to GB13476-2009 "Pre-tensioned Prestressed Concrete Pipe Pile", according to GB 8076-2008 "Concrete Admixture", its slump, expansion, etc.
  • the concrete mix ratio is: cement 308kg/m 3 , mineral powder 44kg/m 3 , ground sand 88kg/m 3 , coarse sand 384kg/m 3 , fine sand 384kg/m 3 , large stone 345kg/m 3 , small stone 805kg /m 3 , the initial slump was controlled at 190 ⁇ 10mm, and the concrete test results are shown in Table 1.
  • the corrosion-resistant ether-based polycarboxylate water-reducing agent provided by the present invention not only has better rust-inhibiting function, good workability, but also improves the steam curing and autoclave strength of the pipe pile concrete;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

提供了一种抗蚀型醚类聚羧酸减水剂及制备方法,由酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐以及具有双键、氨基和硫键的阻锈功能单体B通过共聚反应制得;酯化产物为具有氨基和羟基的阻锈功能单体A、硅烷单体与不饱和酸通过酯化反应制得。聚羧酸减水剂分子中带有硅烷基、氨基、羟基,氨基中氮原子以及羟基能够提高与钢筋表面吸附能力,抑制钢筋表面电化学反应过程,同时氨基能在阴极表面结合H +,降低阴极反应速率,增强钢筋的缓蚀效果。

Description

一种抗蚀型醚类聚羧酸减水剂及制备方法 技术领域
本发明涉及混凝土外加剂技术领域,特别涉及一种抗蚀型醚类聚羧酸减水剂及制备方法。
背景技术
近年来,随着我国经济持续快速发展,我国的基础设施建设力度以及规模也不断加大,混凝土构件的应用也越来越多。预应力高强混凝土管桩具有施工周期短、力学性能优异、性价比高、施工条件限制少等优点,较好地解决了打入式预制实心桩、钻孔灌注桩、振动沉管灌注桩等传统桩基础的弊病,广泛应用于桥梁、港口、码头等工程基础。
对于海工建筑和盐碱地区建筑,其周围含有大量的氯离子和硫酸根离子,易对钢筋混凝土产生腐蚀效应,破坏钢筋表面的钝化膜,引发钢筋锈蚀和膨胀,导致混凝土开裂,降低工程实际寿命。
目前主要使用添加阻锈剂亚硝酸盐等无机盐、醇胺类以及迁移型阻锈剂来防止钢筋锈蚀,然而无机盐阻锈剂的缺点是氯离子浓度大到一定程度时会加速钢筋锈蚀,会引起混凝土碱及料反应而影响坍落度。而醇胺类和迁移型阻锈剂虽然效果较好,但成本较高,而且迁移型阻锈剂后期涂覆在混凝土表面又使得施工复杂。因此,通过分子结构设计开发一种具有阻锈功能的聚羧酸减水剂,在混凝土应用过程中缓慢释放阻锈功能基团来达到钢筋抗锈蚀的目的,具有重要的意义。
如公告号CN107265909B,公开日2020年07年28日,名称为《一种复合型硅酸钠/三羟甲基氨基甲烷钢筋混凝土阻锈剂及其应用》的专利文件公 开了三羟甲基氨基甲烷和硅酸钠两种组分,分别发挥着隔离和抑制的作用对钢筋形成双重保护,其中有机组分三羟甲基氨基甲烷能够吸附在钢筋表面形成吸附膜,阻止钢筋被氯离子腐蚀;以及无机组分硅酸钠能够促进钢筋表面形成致密的钝化膜,阻止进一步氧化。
如公告号CN104327221B,公开日2017年08月25日,名称为《一种抗锈蚀型水工专用聚羧酸减水剂及其制备方法》的专利文件公开了以甲基烯丙基聚氧乙烯丙烯基醚、水、丙烯酸以及马来酰四氮唑胺,辅以马来酰三乙氧基硅烷丙基胺以及分子量调节剂,加入引发剂进行共聚反应;该减水剂具有较高的减水率,较好的钢筋抗锈蚀能力及收缩率。但该方法需要2次单独制备功能单体才进行共聚反应,操作步骤相对复杂,功能单体用量较大,会导致成本较高,而且所得产品除减水和保坍性能、阻锈功能外,在早强等其它特殊功能上相对欠缺。
发明内容
为解决背景技术中提到的海工和盐碱地建筑的钢筋容易被腐蚀的问题,本发明提供了一种抗蚀型醚类聚羧酸减水剂,其中,由酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐以及具有双键、氨基和硫键的阻锈功能单体B通过共聚反应制得;
所述酯化产物为具有氨基和羟基的阻锈功能单体A、硅烷单体与不饱和酸通过酯化反应制得。
进一步地,所述酯化反应的阻聚剂为4-羟基哌啶醇氧自由基、4-叔丁基邻苯二酚、甲基对苯二酚中的至少一种;催化剂为负载型固体酸催化剂,优选为SO 4 2-/SiO 2-TiO 2
进一步地,所述酯化反应的温度为70~130℃,时间为3~5h。
进一步地,所述阻锈功能单体A为三羟甲基氨基甲烷;所述硅烷单体为N-氨乙基-3-氨丙基三乙氧基硅烷。
进一步地,所述不饱和酸为丙烯酸、甲基丙烯酸中的一种。
进一步地,所述阻锈功能单体A、硅烷单体和不饱和酸的摩尔比为1:1:2~5,所述催化剂为的用量为不饱和酸和阻锈功能单体A、硅烷单体总质量的0.5%~2%,所述阻聚剂的用量为不饱和酸和阻锈功能单体A、硅烷单体总质量的0.5%~2.5%。
进一步地,所述阻锈功能单体B为烯丙基硫脲;本发明通过引入烯丙基硫脲参与共聚反应,使得聚羧酸减水剂分子中带有S的孤对电子能够与Fe空轨道形成配合物吸附膜,隔离有害物质与钢筋接触,从而进一步提高抗蚀效果。
进一步地,所述不饱和聚氧乙烯醚为分子量为3000-5000的甲基烯丙醇聚氧乙烯醚、烯丙基聚氧乙烯聚氧丙烯醚、甲基烯丙基聚氧乙烯聚氧丙烯醚或烯丙醇聚氧乙烯醚中的一种。
进一步地,所述不饱和磺酸盐为甲基丙烯磺酸钠、3-烯丙氧基-2-羟基-1-丙烷磺酸钠中的一种。
进一步地,所述共聚反应还包括氧化剂、还原剂和链转移剂,所述氧化剂用量为不饱和聚氧乙烯醚总质量的1%-3%,所述还原剂用量为不饱和聚氧乙烯醚总质量的0.5%-2%,所述链转移剂用量为不饱和聚氧乙烯醚总质量的0.5%-2.5%。
进一步地,所述氧化剂为过硫酸铵、过硫酸钾、过硫酸钠或过氧化氢。
进一步地,所述还原剂为2-羟基-2-亚磺酸基乙酸、2-羟基-2-亚磺酸基乙酸二钠盐、2-羟基-2-磺酸基乙酸或2-羟基-2-磺酸基乙酸二钠盐。
进一步地,所述共聚反应链转移剂为巯基乙酸、巯基乙醇、3-巯基丙酸、 3-巯基丙酸异辛酯、磷酸三钠。
进一步地,所述酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐、阻锈功能单体B的质量比为2~5:100:5~10:2~4:0.5~2。
本发明还提供一种抗蚀型醚类聚羧酸减水剂的制备方法,其中
将酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐和阻锈功能单体B进行共聚反应制得抗蚀型醚类聚羧酸减水剂。
进一步地,所述共聚反应温度为常温。
进一步地,所述抗蚀型醚类聚羧酸减水剂的pH为6~7。
本发明提供的抗蚀型醚类聚羧酸减水剂,与现有的技术相比,具有以下技术原理和有益效果:
1、本发明提供的抗蚀型醚类聚羧酸减水剂,利用氨基和羟基的阻锈功能单体A、硅烷单体与不饱和酸酯化制得酯化产物参与下一步共聚反应,使聚羧酸减水剂分子中带有硅烷基、氨基、羟基,氨基中氮原子以及羟基能够提高与钢筋表面吸附能力,抑制钢筋表面电化学反应过程,同时氨基能在阴极表面结合H+,降低阴极反应速率,增强钢筋的缓蚀效果。
2、硅烷单体的引入可牢固结合在混凝土表面和空穴中,防止有害离子渗透进入混凝土中,而且带有硅烷基单体的聚羧酸减水剂对蒸养和蒸压条件下的管桩混凝土强度提高具有重要的贡献。
3、本发明工艺操作简单,反应条件温和,易于规模化生产,同时克服了现有的减水剂和阻锈剂通过复配方式获得阻锈型减水剂,但两种性能相互影响,叠加效果并不理想的问题。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明还提供一种抗蚀型醚类聚羧酸减水剂的制备方法,具体为:
(1)将不饱和酸、阻锈功能单体A、硅烷单体加入反应容器中混合,在抽真空条件下,加入催化剂、阻聚剂,并调节温度70~130℃,反应3~5h,即得到酯化产物;
(2)将酯化产物、不饱和聚氧乙烯醚加入反应容器中混合,再分别滴加引发剂溶液,链转移剂溶液,丙烯酸、不饱和磺酸盐和阻锈功能单体B混合溶液,在常温下进行反应1.5~2h,反应结束后,保温一段时间,加入32%液碱调节pH至6~7,即得到抗蚀型醚类聚羧酸减水剂。
本发明还提供如下所示实施例:
实施例1
(1)酯化产物制备:按重量份计,将106.6份甲基丙烯酸、50份三羟甲基氨基甲烷、109份N-氨乙基-3-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入2.65份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,2.65份4-羟基哌啶醇氧自由基,并调节反应温度90℃,反应4h,即得到酯化产物;
(2)共聚反应:按重量份计,先将3.5份步骤(1)制得的酯化产物、100份分子量4000的烯丙基聚氧乙烯聚氧丙烯醚和112份水,加入第二反应容器中搅拌均匀,2份过硫酸铵与20份水混合均匀于第一滴加装置中;1份2-羟基-2-亚磺酸基乙酸、1.2份巯基乙酸与20份水混合均匀于第二滴加装置中;7.5份丙烯酸、3份甲基丙烯磺酸钠、1份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、 第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
实施例2
(1)酯化产物制备:按重量份计,将71.06份甲基丙烯酸、50份三羟甲基氨基甲烷、109份N-氨乙基-3-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入1.15份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,1.15份4-叔丁基邻苯二酚,并调节反应温度110℃,反应5h,即得到酯化产物;
(2)共聚反应:按重量份计,先将2份步骤(1)制得的酯化产物、100份分子量4000的甲基烯丙基聚氧乙烯聚氧丙烯醚和111份水,加入第二反应容器中搅拌均匀,1份过硫酸钾与20份水混合均匀于第一滴加装置中;0.5份2-羟基-2-亚磺酸基乙酸二钠盐、2.5份巯基乙醇与20份水混合均匀于第二滴加装置中;10份丙烯酸、2份3-烯丙氧基-2-羟基-1-丙烷磺酸钠、0.5份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
实施例3
(1)酯化产物制备:按重量份计,将148.7份丙烯酸、50份三羟甲基氨基甲烷、109份N-氨乙基-3-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入6.15份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,7.69份 甲基对苯二酚,并调节反应温度130℃,反应3h,即得到酯化产物;
(2)共聚反应:按重量份计,先将5份步骤(1)制得的酯化产物、100份分子量4000的甲基烯丙醇聚氧乙烯醚和112份水,加入第二反应容器中搅拌均匀,3份过硫酸钠与20份水混合均匀于第一滴加装置中;2份2-羟基-2-磺酸基乙酸、0.5份3-巯基丙酸与20份水混合均匀于第二滴加装置中;5份丙烯酸、4份甲基丙烯磺酸钠、2份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
本发明还提供如下对比例:
对比例1
选择市售Point-GS型桩杆混凝土高性能增强剂与苏博特
Figure PCTCN2021079569-appb-000001
钢筋混凝土阻锈剂,用量分别为胶凝材料的0.2%和5%复配进行混凝土验证。
对比例2
(1)酯化产物制备:按重量份计,将106.6份甲基丙烯酸、109份N-氨乙基-3-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入2.65份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,2.65份4-羟基哌啶醇氧自由基,并调节反应温度90℃,反应4h,即得到酯化产物;
(2)共聚反应:按重量份计,先将3.5份步骤(1)制得的酯化产物、100份分子量4000的烯丙基聚氧乙烯聚氧丙烯醚和112份水,加入第二反应容器中搅拌均匀,2份过硫酸铵与20份水混合均匀于第一滴加装置中;1份2-羟基-2-亚磺酸基乙酸、1.2份巯基乙酸与20份水混合均匀于第二滴加装置 中;7.5份丙烯酸、3份甲基丙烯磺酸钠、1份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
(4)选择对比例2中的减水剂与三羟甲基氨基甲烷,用量分别为胶凝材料的0.2%和1.2%复配进行混凝土验证。
对比例3
(1)酯化产物制备:按重量份计,将106.6份甲基丙烯酸、50份2-氨基-2-甲基-1-丙醇、109份N-氨乙基-3-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入2.65份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,2.65份4-羟基哌啶醇氧自由基,并调节反应温度90℃,反应4h,即得到酯化产物;
(2)共聚反应:按重量份计,先将3.5份步骤(1)制得的酯化产物、100份分子量4000的烯丙基聚氧乙烯聚氧丙烯醚和112份水,加入第二反应容器中搅拌均匀,2份过硫酸铵与20份水混合均匀于第一滴加装置中;1份2-羟基-2-亚磺酸基乙酸、1.2份巯基乙酸与20份水混合均匀于第二滴加装置中;7.5份丙烯酸、3份甲基丙烯磺酸钠、1份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
对比例4
(1)酯化产物制备:按重量份计,将106.6份甲基丙烯酸、50份三羟甲基氨基甲烷、109份γ-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入2.65份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,2.65份4-羟基哌啶醇氧自由基,并调节反应温度90℃,反应4h,即得到酯化产物;
(2)共聚反应:按重量份计,先将3.5份步骤(1)制得的酯化产物、100份分子量4000的烯丙基聚氧乙烯聚氧丙烯醚和112份水,加入第二反应容器中搅拌均匀,2份过硫酸铵与20份水混合均匀于第一滴加装置中;1份2-羟基-2-亚磺酸基乙酸、1.2份巯基乙酸与20份水混合均匀于第二滴加装置中;7.5份丙烯酸、3份甲基丙烯磺酸钠、1份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
对比例5
(1)酯化产物制备:按重量份计,将106.6份甲基丙烯酸、50份三羟甲基氨基甲烷、109份N-氨乙基-3-氨丙基三乙氧基硅烷加入第一反应容器中混合,在抽真空条件下,加入2.65份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,2.65份4-羟基哌啶醇氧自由基,并调节反应温度90℃,反应4h,即得到酯化产物;
(2)共聚反应:按重量份计,先将3.5份步骤(1)制得的酯化产物、100份分子量4000的烯丙基聚氧乙烯聚氧丙烯醚和109份水,加入第二反应容器中搅拌均匀,2份过硫酸铵与20份水混合均匀于第一滴加装置中;1份2-羟基-2-亚磺酸基乙酸、1.2份巯基乙酸与20份水混合均匀于第二滴加装置 中;7.5份丙烯酸、3份甲基丙烯磺酸钠与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
对比例6
(1)酯化产物制备:按重量份计,将106.6份甲基丙烯酸、50份三羟甲基氨基甲烷加入第一反应容器中混合,在抽真空条件下,加入2.65份负载型固体酸催化剂SO 4 2-/SiO 2-TiO 2,2.65份4-羟基哌啶醇氧自由基,并调节反应温度90℃,反应4h,即得到酯化产物;
(2)共聚反应:按重量份计,先将3.5份步骤(1)制得的酯化产物、2份3-(甲基丙烯酰氧)丙基三甲氧基硅烷,100份分子量4000的烯丙基聚氧乙烯聚氧丙烯醚和114份水,加入第二反应容器中搅拌均匀,2份过硫酸铵与20份水混合均匀于第一滴加装置中;1份2-羟基-2-亚磺酸基乙酸、1.2份巯基乙酸与20份水混合均匀于第二滴加装置中;7.5份丙烯酸、3份甲基丙烯磺酸钠、1份烯丙基硫脲与20份水混合均匀于第三滴加装置中;常温下向第二反应容器中依次开始滴加第一滴加装置、第二滴加装置和第三滴加装置中的物料,于1.5h分别滴加完第三滴加装置、第二滴加装置、第一滴加装置中的物料,恒温反应0.5h;
(3)加入重量份为12份32%质量浓度的氢氧化钠,即得到浓度为40%的所述抗蚀型醚类聚羧酸减水剂。
将实施例1-3合成得到的抗蚀型醚类聚羧酸减水剂与对比例1-6用管桩混凝土对比,采用海螺PO52.5R水泥,实施例1-2减水剂掺量为胶凝材料 0.15%(折固份),对比例3-6减水剂掺量为胶凝材料0.2%(折固份),对比例1-2外加剂掺量参照具体复配配方。管桩性能按GB13476-2009《先张法预应力混凝土管桩》进行测试,根据GB 8076-2008《混凝土外加剂》,测其坍落度、扩展度等,按GB/T31296-2014《混凝土防腐阻锈剂》对混凝土性能进行检测。混凝土配合比为:水泥308kg/m 3、矿粉44kg/m 3、磨细砂88kg/m 3、粗砂384kg/m 3、细砂384kg/m 3、大石头345kg/m 3、小石头805kg/m 3,初始坍落度控制在190±10mm,混凝土测试结果如表1所示。
表1管桩混凝土性能数据
Figure PCTCN2021079569-appb-000002
从表1的测试结果可以看出,实施例的性能均优于对比例,结合实施例和对比例1的结果可以看出,相比于采用的现有的减水剂复配阻锈剂的方式,本发明提供的抗蚀型醚类聚羧酸减水剂,不仅具有更优的阻锈功能,良好的和易性,还提高了管桩混凝土的蒸养和蒸压强度;
结合对比例2可以得出,由于阻锈功能单体A通过酯化反应后直接参与共聚制得的聚羧酸减水剂在阻锈功能、减水性能方面均优于直接将阻锈功能单体A与减水剂复配制得的阻锈型减水剂;
结合对比例3和对比例4可以得出,采用本发明提供的阻锈功能单体A 和硅烷单体,相比于现有其他类型的阻锈功能单体和硅烷单体具有较好的缓蚀性能和减水性能;
结合对比例5可以得出,阻锈功能单体B的加入使其制得的聚羧酸减水剂提高管桩的抗蚀效果。
结合对比例6可以得出,相较于直接将含双键的不饱和硅烷单体参与共聚制得的减水剂,本发明通过将硅烷单体先进行酯化制备含有硅烷键的酯化产物再共聚,可以使得硅烷单体牢固结合在混凝土表面和空穴,防止有害离子渗入,同时提高抗蚀性和蒸养和蒸压条件下管桩混凝土强度。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (13)

  1. 一种抗蚀型醚类聚羧酸减水剂,其特征在于,由酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐以及具有双键、氨基和硫键的阻锈功能单体B通过共聚反应制得;
    所述酯化产物为具有氨基和羟基的阻锈功能单体A、硅烷单体与不饱和酸通过酯化反应制得。
  2. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述阻锈功能单体A为三羟甲基氨基甲烷。
  3. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述硅烷单体为N-氨乙基-3-氨丙基三乙氧基硅烷。
  4. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述不饱和酸为丙烯酸、甲基丙烯酸中的一种。
  5. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述阻锈功能单体A、硅烷单体和不饱和酸的摩尔比为1:1:2~5。
  6. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述酯化反应的阻聚剂为4-羟基哌啶醇氧自由基、4-叔丁基邻苯二酚、甲基对苯二酚中的至少一种;催化剂为负载型固体酸催化剂。
  7. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述阻锈功能单体B为烯丙基硫脲。
  8. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述不饱和聚氧乙烯醚为分子量为3000-5000的甲基烯丙醇聚氧乙烯醚、烯丙基聚氧乙烯聚氧丙烯醚、甲基烯丙基聚氧乙烯聚氧丙烯醚或烯丙醇聚氧乙烯醚中的一种。
  9. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述不饱和磺酸盐为甲基丙烯磺酸钠、3-烯丙氧基-2-羟基-1-丙烷磺酸钠中的一 种。
  10. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述共聚反应的链转移剂为巯基乙酸、巯基乙醇、3-巯基丙酸、3-巯基丙酸异辛酯、磷酸三钠;
    所述共聚反应的引发剂包括氧化剂和还原剂,所述氧化剂为过硫酸铵、过硫酸钾、过硫酸钠或过氧化氢;所述还原剂为2-羟基-2-亚磺酸基乙酸、2-羟基-2-亚磺酸基乙酸二钠盐、2-羟基-2-磺酸基乙酸或2-羟基-2-磺酸基乙酸二钠盐。
  11. 根据权利要求10所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述氧化剂用量为不饱和聚氧乙烯醚总质量的1%-3%,所述还原剂用量为不饱和聚氧乙烯醚总质量的0.5%-2%,所述链转移剂用量为不饱和聚氧乙烯醚总质量的0.5%-2.5%。
  12. 根据权利要求1所述的抗蚀型醚类聚羧酸减水剂,其特征在于:所述酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐、阻锈功能单体B的质量比为2~5:100:5~10:2~4:0.5~2。
  13. 一种根据权利要求1-12任一项所述的抗蚀型醚类聚羧酸减水剂的制备方法,其特征在于:
    将酯化产物、不饱和聚氧乙烯醚、丙烯酸、不饱和磺酸盐和阻锈功能单体B进行共聚反应制得抗蚀型醚类聚羧酸减水剂。
PCT/CN2021/079569 2020-12-22 2021-03-08 一种抗蚀型醚类聚羧酸减水剂及制备方法 WO2022134317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011534949.1 2020-12-22
CN202011534949.1A CN112708072B (zh) 2020-12-22 2020-12-22 一种抗蚀型醚类聚羧酸减水剂及制备方法

Publications (1)

Publication Number Publication Date
WO2022134317A1 true WO2022134317A1 (zh) 2022-06-30

Family

ID=75543595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/079569 WO2022134317A1 (zh) 2020-12-22 2021-03-08 一种抗蚀型醚类聚羧酸减水剂及制备方法

Country Status (3)

Country Link
CN (1) CN112708072B (zh)
WO (1) WO2022134317A1 (zh)
ZA (1) ZA202101994B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115784668B (zh) * 2022-11-30 2023-06-20 江苏乐尔环境科技股份有限公司 一种垃圾焚烧飞灰的稳定化处理方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127606A1 (en) * 2002-08-14 2004-07-01 Construction Research & Technology Gmbh Hydraulic cementitious composition with improved bleeding resistance
CN101244907A (zh) * 2007-02-13 2008-08-20 上海申立建材有限公司 聚羧酸系混凝土高效减水剂及其合成方法
CN104558434A (zh) * 2014-12-16 2015-04-29 上海台界化工有限公司 含硅聚羧酸减水剂、其制备方法及用途
CN104945572A (zh) * 2015-05-25 2015-09-30 江苏奥莱特新材料有限公司 一种低引气增强型固体聚羧酸系减水剂及其制备方法
CN105131202A (zh) * 2015-07-21 2015-12-09 常熟理工学院 有机硅及糖类共改性聚羧酸减水剂及其制备方法
CN108034027A (zh) * 2017-12-29 2018-05-15 马清浩 一种梳形聚羧酸减水剂及其制备方法
CN109485806A (zh) * 2018-10-29 2019-03-19 广东科之杰新材料有限公司 一种酯类超缓释型聚羧酸保坍剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017406A (en) * 1975-05-01 1977-04-12 Exxon Research And Engineering Company Carboxylate half esters of 1-aza-3,7-dioxabicyclo[3.3.0] oct-5-yl methyl alcohols, their preparation and use as additives for oleaginous compositions
US6908955B2 (en) * 1999-07-09 2005-06-21 Construction Research & Technology Gmbh Oligomeric dispersant
CN101759833A (zh) * 2010-01-22 2010-06-30 肖尾俭 一种阻锈功能优良的聚羧酸减水剂及其制备方法
CN104341325B (zh) * 2014-10-11 2017-05-10 江苏科技大学 一种不饱和酯及其制备方法
CN105153377B (zh) * 2015-06-01 2018-07-06 江苏科技大学 一种功能型聚羧酸混凝土减水剂及合成方法
CN107265909B (zh) * 2017-05-19 2020-07-28 华南理工大学 一种复合型硅酸钠/三羟甲基氨基甲烷钢筋混凝土阻锈剂及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040127606A1 (en) * 2002-08-14 2004-07-01 Construction Research & Technology Gmbh Hydraulic cementitious composition with improved bleeding resistance
CN101244907A (zh) * 2007-02-13 2008-08-20 上海申立建材有限公司 聚羧酸系混凝土高效减水剂及其合成方法
CN104558434A (zh) * 2014-12-16 2015-04-29 上海台界化工有限公司 含硅聚羧酸减水剂、其制备方法及用途
CN104945572A (zh) * 2015-05-25 2015-09-30 江苏奥莱特新材料有限公司 一种低引气增强型固体聚羧酸系减水剂及其制备方法
CN105131202A (zh) * 2015-07-21 2015-12-09 常熟理工学院 有机硅及糖类共改性聚羧酸减水剂及其制备方法
CN108034027A (zh) * 2017-12-29 2018-05-15 马清浩 一种梳形聚羧酸减水剂及其制备方法
CN109485806A (zh) * 2018-10-29 2019-03-19 广东科之杰新材料有限公司 一种酯类超缓释型聚羧酸保坍剂及其制备方法

Also Published As

Publication number Publication date
CN112708072B (zh) 2021-11-23
ZA202101994B (en) 2021-04-28
CN112708072A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
JP4608699B2 (ja) 高流動性かつ高強度のコンクリートのための多目的セメント分散性ポリマー
JP5766113B2 (ja) セメント系組成物の加工性保持のためのコポリマー混合系
CN109021181A (zh) 一种兼具降粘和保坍功能的聚羧酸系减水剂及其制备方法
JP2002003256A (ja) 高流動性で、高強度でかつ自己緊結性コンクリートのためのセメント分散性ポリマー
CN104628967B (zh) 一种早强型聚羧酸减水剂及其制备方法
WO2019233215A1 (zh) 一种高减水低敏感聚羧酸减水剂及其制备方法
CN112708070B (zh) 一种具有阻锈功能的醚类聚羧酸减水剂及其制备方法
JP6158793B2 (ja) アルカリ活性化バインダーのための分散剤としての櫛形ポリマー
CN112708071B (zh) 一种抗蚀型酯类聚羧酸减水剂及其制备方法
EP2238088A2 (fr) Adjuvant pour liant hydraulique
CN105801773B (zh) 一种梳型聚合物、其制备方法以及作为减水剂的用途
CN108623745A (zh) 一种含磷聚羧酸减水剂及其制备方法
CN107954627B (zh) 一种复合型混凝土缓凝剂及其制备方法
CN106082795A (zh) 氧化石墨烯增强预应力孔道灌浆材料及其制备方法
CN107235650A (zh) 一种水性纳米复合型早强外加剂及其制备方法
WO2022134317A1 (zh) 一种抗蚀型醚类聚羧酸减水剂及制备方法
CN109679035B (zh) 防腐阻锈型聚羧酸系减水剂及其制备方法
CN108975746B (zh) 一种含有硅烷氧基的聚羧酸减水剂的合成方法
CN112708069B (zh) 一种具有阻锈功能的酯类聚羧酸减水剂及其制备方法
CN108997151A (zh) 一种含醇胺基团的不饱和酯的制备方法及所得产品和应用
CN109626860B (zh) 一种嵌段降粘型混凝土外加剂的制备方法
CN104327221B (zh) 一种抗锈蚀型水工专用聚羧酸减水剂及其制备方法
CN112480333B (zh) 一种综合型聚羧酸减水剂及其制备方法与应用
CN113248663B (zh) 早强功能单体、早强型的聚羧酸减水剂及其制备方法
CN110862544B (zh) 硫铝酸盐水泥用复合吸附型固体减水剂的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908331

Country of ref document: EP

Kind code of ref document: A1