WO2022134296A1 - 一种高回弹生物可降解聚酯微发泡异型材的制备方法 - Google Patents

一种高回弹生物可降解聚酯微发泡异型材的制备方法 Download PDF

Info

Publication number
WO2022134296A1
WO2022134296A1 PCT/CN2021/077197 CN2021077197W WO2022134296A1 WO 2022134296 A1 WO2022134296 A1 WO 2022134296A1 CN 2021077197 W CN2021077197 W CN 2021077197W WO 2022134296 A1 WO2022134296 A1 WO 2022134296A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbat
foamed
preparation
chain extender
profile
Prior art date
Application number
PCT/CN2021/077197
Other languages
English (en)
French (fr)
Inventor
熊祖江
王有承
刘艺龙
Original Assignee
安踏(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安踏(中国)有限公司 filed Critical 安踏(中国)有限公司
Publication of WO2022134296A1 publication Critical patent/WO2022134296A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2400/00Characterised by the use of unspecified polymers
    • C08J2400/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2400/104Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids

Definitions

  • the invention relates to the technical field of biodegradable polyester materials, in particular to a preparation method of a high-resilience biodegradable polyester micro-foamed profiled material.
  • Polymer flexible foam materials such as polyurethane (PU) foam, ethylene vinyl acetate copolymer (EVA) foam, foamed thermoplastic polyurethane (ETPU) bead materials have been widely used in sports protection, shoe materials and other fields.
  • the molecular chains of PU and EVA foam materials are cross-linked and cannot be melted and recycled; the molecular chains of ETPU beads and their molded body materials are not cross-linked and can be melted and recycled 100%.
  • the above-mentioned materials cannot be degraded in the environment after being thrown into the environment, which is easy to cause the problem of white pollution.
  • domestic and foreign governments have introduced tariff and punishment regulations, which significantly increase the operating costs of enterprises.
  • polyadipate-terephthalate-butylene glycol As a biodegradable polyester, polyadipate-terephthalate-butylene glycol (PBAT) has excellent toughness and good elasticity, and its elongation at break is as high as 1000%.
  • the PBAT foam material has high elasticity and softness, and can be used as a flexible foam material. Its excellent environmental degradation ability can solve the deficiencies of the existing flexible foam materials, so it shows a broad application prospect.
  • the PBAT expanded particles need to be steam-molded to prepare a special-shaped molded body material, and the thermal stability and open porosity of the beads affect the steam molding ability of the PBAT expanded particles. Due to the existence of the bead interface, the molded body has defects, poor mechanical properties, and poor elasticity, which is difficult to meet the application field of high-elasticity foamed materials.
  • the purpose of the present invention is to aim at the deficiencies of the prior art, and to provide a method for preparing a high-resilience biodegradable polyester foamed profiled material.
  • the biodegradable polyester foamed profiled material prepared by the invention is characterized in that it can be shaped Forming, as well as good mechanical properties, high rebound rate.
  • the invention provides a preparation method of a high-resilience biodegradable polyester foamed profile, comprising the following steps:
  • chain extender is one or more of trifunctional epoxy compounds and tetrafunctional epoxy compounds kind
  • the PBAT modified material is made into a PBAT sheet, and then through high-pressure fluid saturation, rapid pressure relief foaming, to obtain a PBAT foam sheet;
  • the melt index of the PBAT resin is 3-10 g/10min; an antioxidant may also be optionally added for mixing.
  • the weight content of the PBAT resin is 95-99%, the weight content of the nucleating agent is 1-5%, the weight content of the chain extender is 0.1-0.5%, and the weight content of the antioxidant is 0.1-0.5%.
  • the weight content is 0.1-0.5%.
  • the melt index of the PBAT modified material is 0.1-1.5 g/10min.
  • the thickness of the PBAT board is 3-15mm, preferably 5-10mm.
  • the high pressure fluid is a high pressure CO 2 fluid or a high pressure N 2 fluid.
  • the pressure of the high-pressure fluid is 10-20MPa
  • the temperature is 80-120°C
  • the saturation time is 30-60min.
  • the temperature of the mold is 150-180°C.
  • the density of the PBAT foamed profile obtained in the step S3 is 0.13-0.30 g/cm 3 .
  • the PBAT foamed profile is a foamed shoe material.
  • a specific multifunctional epoxy chain extender is added to the formula, and a PBAT board is made from the obtained PBAT modified material.
  • the addition of the chain extender described in the present invention can induce the formation of a micro-crosslinked structure in the polymer melt, which can significantly improve the melt strength of the polymer (improve the foaming behavior of PBAT, and improve the secondary properties of the PBAT foamed material). secondary setting ability), which improves the properties of the foam material, such as elasticity, without affecting the degradability of the polymer.
  • the preparation method of the present invention is simple in process, can prepare foamed profiled materials with complex shapes, biodegradability and high performance, and can be applied to fields such as sports protection, foamed shoe materials, buffer packaging and the like.
  • the invention provides a preparation method of a high-resilience biodegradable polyester foamed profile, comprising the following steps:
  • chain extender is one or more of trifunctional epoxy compounds and tetrafunctional epoxy compounds kind
  • the PBAT modified material is made into a PBAT sheet, and then through high-pressure fluid saturation, rapid pressure relief foaming, to obtain a PBAT foam sheet;
  • the biodegradable polyester foamed profile with low density, good mechanical properties, high resilience and low compression set can be prepared, which is beneficial to the application in the field of high elastic foaming materials.
  • the PBAT, the nucleating agent, the chain extender, and the antioxidant are first dried and premixed, and then continuously extruded through twin-screw strands and cut into pellets to prepare a low-melting index biodegradable polymer. Ester particle modifier.
  • PBAT is the abbreviation of polyadipate-terephthalate-butylene glycol ester, which is a biodegradable polyester.
  • melt index abbreviated as melt index
  • the nucleating agent can be selected from talc, calcium carbonate, montmorillonite, etc., preferably talc.
  • the chain extender is a multifunctional epoxy compound, specifically one or more of a trifunctional epoxy compound and a tetrafunctional epoxy compound, that is, the oxygen-containing compound of the multifunctional epoxy chain extender
  • the number of functional groups is 3 or 4.
  • This chain extender can induce the formation of a micro-crosslinked structure in the polymer melt of the present invention, which can significantly improve the melt strength of the polymer (improve the foaming behavior of PBAT, improve the foaming behavior of PBAT). The secondary setting ability of the material), without affecting the degradability of the polymer.
  • the dosage can be 0.1-0.5%, which improves the expansion ratio of the foamed material, reduces the density of the foamed material, and improves the properties of the foamed material such as elasticity.
  • the present invention can also optionally add antioxidants to mix raw materials.
  • the antioxidant is an antioxidant, and AT-10 (tetra[beta-(3,5-di-tert-butyl-4-hydroxyphenyl) propionic acid] pentaerythritol ester), AT-3114 (trifunctional Hindered phenol type) one or both.
  • the weight content of the PBAT resin is 95-99%, preferably 95-98%
  • the weight content of the nucleating agent is 1-5%, preferably 3-4.8%
  • the chain extender The weight content of the antioxidant is 0.1-0.5%
  • the weight content of the antioxidant is 0.1-0.5%.
  • 95-99% of PBAT particles, 1-5% of nucleating agent, 0.1-0.5% of epoxy chain extender, 0.1-0.5% of antioxidant can be mixed, and the twin-screw cutting granules to obtain modified PBAT granules.
  • the embodiments of the present invention have no special restrictions on the above-mentioned processes such as drying, mixing, extrusion and pelletizing;
  • the melt index of the obtained PBAT modified material is preferably 0.1-1.5g/10min, more preferably 0.1-1.2g/10min, so
  • the stated melt index is a parameter that characterizes the melt strength.
  • the PBAT modified material is injected or molded to prepare a PBAT sheet.
  • a conventional injection molding or molding process can be adopted; the thickness of the PBAT sheet is preferably 3mm-15mm, more preferably 5-10mm.
  • the prepared PBAT sheet is put into a high-pressure fluid for foaming, that is, the high-pressure fluid is saturated, the solubility is balanced, and the pressure is released and expanded rapidly to obtain a PBAT foamed sheet.
  • the high-pressure fluid used for foaming is preferably a high-pressure CO 2 fluid or a high-pressure N 2 fluid.
  • the pressure of the high-pressure fluid is preferably 10MPa-20MPa, more preferably 12-18MPa; the temperature is preferably 80-120°C, more preferably 100-115°C, and the saturation time can be 30min- 60min.
  • the obtained PBAT foamed sheet has a density of 0.10-0.25 g/cm 3 , a cell size of 10 ⁇ m-100 ⁇ m, and a uniform cell size distribution.
  • the PBAT foamed sheet After the PBAT foamed sheet is obtained, in the embodiment of the present invention, it is put into a preheated mold, and subjected to mold pressurization (refer to conventional EVA secondary molding process), heat treatment, and mold cooling to obtain a PBAT foamed profile.
  • mold pressurization refer to conventional EVA secondary molding process
  • heat treatment heat treatment
  • mold cooling to obtain a PBAT foamed profile.
  • the mould adopted can be shoe material mould etc., and described PBAT foaming profile material is foaming shoe material.
  • the temperature of the mold is preferably 150-180° C.; the cooling method is water cooling.
  • the PBAT foamed profile obtained in the embodiment of the present invention is a biodegradable polyester foamed profile with a relatively low density, and the density may be 0.13-0.30 g/cm 3 .
  • the PBAT foamed profile can be degraded by compost, and the weight can be reduced by more than 50% within 30 days.
  • the foamed profile material is a special-shaped foam material with high rebound rate, low compression set and excellent mechanical properties. Applications.
  • the density of the PBAT foam sheet is 0.18g/cm 3
  • the density of the PBAT foam profile is 0.21g/cm 3
  • the hardness of the PBAT foam profile is 48 Shore C
  • the rebound rate is 58%
  • the compression set is 48%
  • the tensile strength is 3.5MPa
  • the compost weight is reduced by 55% in 30 days.
  • the test results show that the density of the PBAT foam board is 0.20g/cm 3 , the density of the PBAT foam profile is 0.28g/cm 3 , the hardness of the PBAT foam profile is 47 Shore C, the rebound rate is 46%, and the compression rate is 46%.
  • the permanent deformation was 72%, the tensile strength was 3.2MPa, and the compost weight was reduced by 65% at 30 days.
  • PBAT particles (melt index is 3.5g/10min), 4.2wt% talc nucleating agent, 0.5wt% trifunctional epoxy chain extender ADR4400, 0.3wt% antioxidant AT-10,
  • the modified PBAT particles with a melt index of 0.2 g/10min are obtained by twin-screw dicing; the modified PBAT particles are injection-molded to obtain a PBAT sheet with a thickness of 5 mm; the PBAT sheet is placed under a pressure of 20 MPa and a temperature of 110° C.
  • the CO 2 fluid was saturated for 60min, through rapid pressure relief, foamed to obtain a PBAT foamed plate; the PBAT foamed plate was put into a shoe material mold with a temperature of 170 degrees, molded for 3min, and the PBAT foamed shoe was obtained through rapid cooling material.
  • the density of the PBAT foam board is 0.12g/cm 3
  • the density of the PBAT foam profile is 0.15g/cm 3
  • the hardness of the PBAT foam profile is 42 Shore C
  • the rebound rate is 55%
  • the compression set was 50%
  • the tensile strength was 2.0MPa
  • the compost weight decreased by 51% in 30 days.
  • PBAT particles (melt index 3.5g/10min), 4.2wt% talc nucleating agent, 0.5wt% trifunctional epoxy chain extender ADR4400, 0.3wt% antioxidant AT-314,
  • the modified PBAT particles with a melt index of 0.2 g/10min are obtained by twin-screw dicing; the modified PBAT particles are injection-molded to obtain a PBAT sheet with a thickness of 5 mm; the PBAT sheet is placed under a pressure of 18 MPa and a temperature of 115° C.
  • the N2 fluid is saturated for 60min, through rapid pressure relief, foaming to obtain a PBAT foam board; this PBAT foam board is put into a shoe material mold with a temperature of 160 degrees, molded for 3min, and rapidly cooled to obtain PBAT foam shoes material.
  • the density of the PBAT foam board is 0.15g/cm 3
  • the density of the PBAT foam profile is 0.19g/cm 3
  • the hardness of the PBAT foam profile is 45 Shore C
  • the rebound rate is 57%
  • the compression set is 56%
  • the tensile strength is 2.6MPa
  • the compost weight is reduced by 50% in 30 days.
  • Test methods include:
  • Density g/cm 3 , GB/T 533-2008; Hardness: Shore C, HG/T 2489-2007; Resilience: %, GB/T 1681-2009; Compression Set: %, HG/T 2876- 2009; Tensile strength: MPa, GB/T 528-2009; Biodegradation rate test: GB/T 19277.1-2011.
  • the present invention mainly adds a specific multi-functional epoxy chain extender to the formula, and makes a PBAT sheet through the obtained PBAT modified material, and obtains rebound through high-pressure fluid foaming and heat setting.
  • the preparation method of the invention has a simple process, can prepare a complex-shaped, biodegradable, high-performance foamed profiled material, and can be applied to the fields of sports protection, foamed shoe materials, buffer packaging and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

高回弹生物可降解聚酯发泡异型材的制备方法,包括以下步骤:S1、将PBAT树脂、成核剂和扩链剂混合后,挤出切粒,得到PBAT改性料;所述扩链剂为三官能团环氧化合物和四官能团环氧化合物中的一种或多种;S2、将所述PBAT改性料制成PBAT板材,然后经高压流体饱和、快速泄压发泡,得到PBAT发泡板材;S3、将所述PBAT发泡板材经模具热处理,得到PBAT发泡异型材。该制备方法过程简单,可制备形状复杂的、可生物降解的、高性能的发泡异型材材料,可以应用于运动防护、发泡鞋材、缓冲包装等领域。

Description

一种高回弹生物可降解聚酯微发泡异型材的制备方法
本申请要求于2020年12月25日提交中国专利局、申请号为202011560138.9、发明名称为“一种高回弹生物可降解聚酯微发泡异型材的制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及生物可降解聚酯材料技术领域,具体地说,涉及一种高回弹生物可降解聚酯微发泡异型材的制备方法。
背景技术
聚合物软质发泡材料如聚氨酯(PU)泡沫、乙烯醋酸乙烯共聚物(EVA)泡沫、发泡热塑性聚氨酯(ETPU)珠粒材料,已经广泛应用于运动防护、鞋材等多个领域。PU和EVA泡沫材料分子链交联,不能熔融回收;ETPU珠粒及其成型体材料分子链非交联,可以100%熔融回收。不过,上述材料在使用后抛弃到环境中均不能环境降解,易引起白色污染问题。为了规范泡沫包装材料的回收,国内外政府纷纷出台关税和惩处法规,这显著增加了企业的经营成本。
作为一种生物可降解聚酯,聚己二酸-对苯二甲酸-丁二醇酯(PBAT)具有优异的韧性和较好的弹性,它的断裂伸长率高达1000%。PBAT发泡材料具有较高的弹性和软性,可以作为柔性发泡材料来使用,其优异的环境降解能力可以解决现有柔性泡沫材料的不足,因此表现出广阔的应用前景。
目前,现有技术中PBAT发泡粒子需要通过水蒸气成型来制备异型的成型体材料,珠粒的热稳定性、开孔率影响PBAT发泡粒子的水蒸气成型能力。由于珠粒界面的存在,其成型体存在缺陷以及存在力学性能较差的问题,并且弹性较差,难以满足高弹性发泡材料的应用领域。
发明内容
本发明的目的是针对现有技术的不足,而提供一种高回弹生物可降解聚酯发泡异型材的制备方法,本发明制备的生物可降解聚酯发泡异型材的特点是可以异型成型,以及力学性能好、回弹率高等。
本发明提供一种高回弹生物可降解聚酯发泡异型材的制备方法,包括以下步骤:
S1、将PBAT树脂、成核剂和扩链剂混合后,挤出切粒,得到PBAT改性料;所述扩链剂为三官能团环氧化合物和四官能团环氧化合物中的一种或多种;
S2、将所述PBAT改性料制成PBAT板材,然后经高压流体饱和、快速泄压发泡,得到PBAT发泡板材;
S3、将所述PBAT发泡板材经模具热处理,得到PBAT发泡异型材。
优选地,所述PBAT树脂的熔融指数为3~10g/10min;还可选地加入抗氧剂进行混合。
优选地,所述步骤S1中,所述PBAT树脂的重量含量为95-99%,成核剂的重量含量为1-5%,扩链剂的重量含量为0.1-0.5%,抗氧剂的重量含量为0.1-0.5%。
优选地,所述步骤S1中,所述PBAT改性料的熔融指数为0.1-1.5g/10min。
优选地,所述步骤S2中,所述PBAT板材的厚度为3-15mm,优选为5-10mm。
优选地,所述步骤S2中,所述高压流体为高压CO 2流体或高压N 2流体。
优选地,所述步骤S2中,所述高压流体饱和时高压流体的压力为10-20MPa,温度为80-120℃,饱和时间为30-60min。
优选地,所述步骤S3中,所述模具的温度为150-180℃。
优选地,所述步骤S3得到的PBAT发泡异型材的密度为0.13-0.30g/cm 3
优选地,所述PBAT发泡异型材为发泡鞋材。
与现有技术相比,本发明主要通过在配方中添加特定的多官能团环氧类扩链剂,并通过得到的PBAT改性料制成PBAT板材,经过高压流体发泡、热定型,得到回弹率高、力学性能优异的异型发泡材料。本发明中所述扩链剂的加入,可以在聚合物熔体中诱导形成微交联结构,既可以显著提升聚合物的熔体强度(改善PBAT的发泡行为,改善PBAT发泡材料的二次定型能力),改善了发泡材料弹性等性能,又不影响聚合物的可降解性。本发明的制备方法过程简单,可制备形状复杂的、可生物降解的、高性能的发泡异型材材料,可以应 用于运动防护、发泡鞋材、缓冲包装等领域。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种高回弹生物可降解聚酯发泡异型材的制备方法,包括以下步骤:
S1、将PBAT树脂、成核剂和扩链剂混合后,挤出切粒,得到PBAT改性料;所述扩链剂为三官能团环氧化合物和四官能团环氧化合物中的一种或多种;
S2、将所述PBAT改性料制成PBAT板材,然后经高压流体饱和、快速泄压发泡,得到PBAT发泡板材;
S3、将所述PBAT发泡板材经模具热处理,得到PBAT发泡异型材。
通过本发明的方法,能够制备得到密度低、力学性能好、回弹率高、压缩永久形变低的生物可降解聚酯发泡异型材,利于在高弹性发泡材料领域中的应用。
为了实现上述目的,本发明实施例首先将PBAT、成核剂、扩链剂、抗氧化剂经干燥、预混合,通过双螺杆连续挤出拉条切粒,制备得到低熔指的生物可降解聚酯颗粒改性料。
PBAT是聚己二酸-对苯二甲酸-丁二醇酯的简称,其是一种生物可降解聚酯。在上述的生物可降解聚酯发泡异型材的制备方法中,所述的PBAT树脂的熔融指数(简称熔指)可为3~10g/10min(190℃,2.16kg)。所述成核剂可选自滑石粉、碳酸钙、蒙脱土等,优选为滑石粉。
在本发明中,所述扩链剂为多官能团环氧化合物,具体为三官能团环氧化合物和四官能团环氧化合物中的一种或多种,即该多官能团环氧扩链剂的含氧官能团数为3或者4,这种扩链剂在本发明聚合物熔体中可以诱导形成微交联结构,既可以显著提升聚合物的熔体强度(改善PBAT的发泡行为,改善PBAT 发泡材料的二次定型能力),又不影响聚合物的可降解能力。本发明实施例通过在配方中添加上述扩链剂,用量可为0.1-0.5%,提高了发泡材料的膨胀倍率,降低了发泡材料的密度,改善了发泡材料弹性等性能。
此外,本发明还可选地加入抗氧剂进行原料混合。所述的抗氧剂即抗氧化剂,可以采用AT-10(四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯)、AT-3114(三官能团的受阻酚型)中的一种或两种。
在本发明的上述步骤中,所述PBAT树脂的重量含量为95-99%、优选为95-98%,成核剂的重量含量为1-5%、优选为3-4.8%,扩链剂的重量含量为0.1-0.5%,抗氧剂的重量含量为0.1-0.5%。具体地,按照质量百分数,可将95-99%PBAT颗粒,1-5%的成核剂,0.1-0.5%的环氧扩链剂,0.1-0.5%的抗氧剂混合,经双螺杆切粒得到改性PBAT颗粒。
本发明实施例对上述干燥、混合和挤出切粒等工艺没有特殊限制;所得到的PBAT改性料的熔融指数优选为0.1-1.5g/10min,更优选为0.1-1.2g/10min,所述的熔融指数是熔体强度的表征参数。
得到改性PBAT颗粒后,本发明实施例将该PBAT改性料经注塑或者模压,制备得到PBAT板材。本发明实施例可采用常规的注塑或者模压工艺;所述PBAT板材的厚度优选为3mm-15mm,更优选为5-10mm。
本发明实施例将制成的PBAT板材放入高压流体中进行发泡,即高压流体饱和、溶解度平衡、快速泄压膨胀,得到PBAT发泡板材。
在上述的生物可降解聚酯发泡异型材的制备方法中,用于发泡的高压流体优选为高压CO 2流体或高压N 2流体。本发明实施例所述高压流体饱和时,高压流体的压力优选为10MPa-20MPa,更优选为12-18MPa;温度优选为80-120℃,更优选为100-115℃,饱和时间可为30min-60min。所得的PBAT发泡板材的密度可为0.10-0.25g/cm 3,泡孔尺寸为10μm-100μm,泡孔尺寸分布均匀。
得到PBAT发泡板材后,本发明实施例将其放入预热的模具中,经模具加压(参见常规的EVA二次模压工艺)、热处理、模具冷却,得到PBAT发泡异型材。
其中,所采用的模具可为鞋材模具等,所述PBAT发泡异型材即为发泡鞋 材。在上述的生物可降解聚酯发泡异型材的制备方法中,所述模具的温度优选为150-180℃;冷却方式为水冷。
本发明实施例得到的PBAT发泡异型材是生物可降解聚酯发泡异型材,具有较低的密度,密度可为0.13-0.30g/cm 3。所述的PBAT发泡异型材可以发生堆肥降解,30天内重量减少50%以上。并且,该发泡异型材材料是回弹率高、压缩永久形变低、力学性能优异的异型发泡材料,可以应用于运动防护、发泡鞋材、缓冲包装等领域,尤其利于在鞋材中的应用。
为了进一步理解本申请,下面结合实施例对本申请提供的高回弹生物可降解聚酯发泡异型材的制备方法进行具体地描述。
实施例1:
将95wt%的PBAT颗粒(熔融指数为3.5g/10min),4.5wt%的滑石粉成核剂,0.2wt%的3官能团环氧(扩链剂ADR4400),0.3wt%的抗氧化剂AT-10混合,经双螺杆切粒得到熔指为1.0g/10min的改性PBAT颗粒;将所述改性PBAT颗粒注塑,得到厚度为5mm的PBAT板材;将该PBAT板材放入压力为15MPa、温度为105℃的CO 2流体中饱和60min,经快速泄压(泄压速率约为15MPa/s,以下实施例相同),发泡得到PBAT发泡板材;将该PBAT发泡板材放入温度为160度的鞋材模具中,模压3min,经水冷快速冷却得到PBAT发泡鞋材,发泡鞋材的厚度为20mm(以下实施例相同)。
测试结果如表1所示:PBAT发泡板材的密度为0.18g/cm 3,PBAT发泡异型材的密度为0.21g/cm 3,PBAT发泡异型材的硬度为48邵C,反弹率为58%,压缩永久形变为48%,拉伸强度为3.5MPa,30天堆肥重量减少55%。
对比例1:
将95wt%的PBAT颗粒(熔融指数为3.5g/10min),4.7wt%的滑石粉成核剂,0.3wt%的抗氧化剂AT-10混合,经双螺杆切粒得到熔指为5.0g/10min的PBAT颗粒;将PBAT颗粒注塑,得到厚度为5mm的PBAT板材;将PBAT板材放入压力为15MPa、温度为105℃的CO 2流体中饱和60min,经快速泄压(泄压速率约为15MPa/s),发泡得到PBAT发泡板材;将PBAT发泡板材放 入温度为160度的鞋材模具中,模压3min,经快速冷却得到PBAT发泡鞋材。
测试结果表明:PBAT发泡板的密度为0.20g/cm 3,PBAT发泡异型材的密度为0.28g/cm 3,PBAT发泡异型材的硬度为47邵C,反弹率为46%,压缩永久形变为72%,拉伸强度为3.2MPa,30天堆肥重量减少65%。
实施例2:
将95wt%的PBAT颗粒(熔融指数为3.5g/10min),4.2wt%的滑石粉成核剂,0.5wt%的3官能团环氧扩链剂ADR4400,0.3wt%的抗氧化剂AT-10混合,经双螺杆切粒得到熔指为0.2g/10min的改性PBAT颗粒;将所述改性PBAT颗粒注塑,得到厚度为5mm的PBAT板材;将该PBAT板材放入压力为20MPa、温度为110℃的CO 2流体中饱和60min,经快速泄压,发泡得到PBAT发泡板材;将该PBAT发泡板材放入温度为170度的鞋材模具中,模压3min,经快速冷却得到PBAT发泡鞋材。
测试结果如表1所示:PBAT发泡板的密度为0.12g/cm 3,PBAT发泡异型材的密度为0.15g/cm 3,PBAT发泡异型材的硬度为42邵C,反弹率为55%,压缩永久形变为50%,拉伸强度为2.0MPa,30天堆肥重量减少51%。
实施例3:
将95wt%的PBAT颗粒(熔融指数为3.5g/10min),4.2wt%的滑石粉成核剂,0.5wt%的3官能团环氧扩链剂ADR4400,0.3wt%的抗氧化剂AT-314混合,经双螺杆切粒得到熔指为0.2g/10min的改性PBAT颗粒;将所述改性PBAT颗粒注塑,得到厚度为5mm的PBAT板材;将该PBAT板材放入压力为18MPa、温度为115℃的N 2流体中饱和60min,经快速泄压,发泡得到PBAT发泡板材;将该PBAT发泡板材放入温度为160度的鞋材模具中,模压3min,经快速冷却得到PBAT发泡鞋材。
测试结果如表1所示:PBAT发泡板的密度为0.15g/cm 3,PBAT发泡异型材的密度为0.19g/cm 3,PBAT发泡异型材的硬度为45邵C,反弹率为57%,压缩永久形变为56%,拉伸强度为2.6MPa,30天堆肥重量减少50%。
以上实施例材料的性能如下表:
表1实施例材料的性能对比
Figure PCTCN2021077197-appb-000001
测试方法包括:
密度:g/cm 3,GB/T 533-2008;硬度:邵C,HG/T 2489-2007;回弹率:%,GB/T 1681-2009;压缩永久形变:%,HG/T 2876-2009;拉伸强度:MPa,GB/T 528-2009;生物降解率测试:GB/T 19277.1-2011。
由以上实施例可知,本发明主要通过在配方中添加特定的多官能团环氧类扩链剂,并通过得到的PBAT改性料制成PBAT板材,经过高压流体发泡、热定型,得到回弹率高、力学性能优异的异型发泡材料。本发明的制备方法过程简单,可制备形状复杂的、可生物降解的、高性能的发泡异型材材料,可以应用于运动防护、发泡鞋材、缓冲包装等领域。
以上所述仅是本发明的优选实施方式,应当指出,对于使本技术领域的专业技术人员,在不脱离本发明技术原理的前提下,是能够实现对这些实施例的多种修改的,而这些修改也应视为本发明应该保护的范围。

Claims (10)

  1. 一种高回弹生物可降解聚酯发泡异型材的制备方法,包括以下步骤:
    S1、将PBAT树脂、成核剂和扩链剂混合后,挤出切粒,得到PBAT改性料;所述扩链剂为三官能团环氧化合物和四官能团环氧化合物中的一种或多种;
    S2、将所述PBAT改性料制成PBAT板材,然后经高压流体饱和、快速泄压发泡,得到PBAT发泡板材;
    S3、将所述PBAT发泡板材经模具热处理,得到PBAT发泡异型材。
  2. 根据权利要求1所述的制备方法,其特征在于,所述PBAT树脂的熔融指数为3~10g/10min;还可选地加入抗氧剂进行混合。
  3. 根据权利要求2所述的制备方法,其特征在于,所述步骤S1中,所述PBAT树脂的重量含量为95-99%,成核剂的重量含量为1-5%,扩链剂的重量含量为0.1-0.5%,抗氧剂的重量含量为0.1-0.5%。
  4. 根据权利要求1所述的制备方法,其特征在于,所述步骤S1中,所述PBAT改性料的熔融指数为0.1-1.5g/10min。
  5. 根据权利要求1所述的制备方法,其特征在于,所述步骤S2中,所述PBAT板材的厚度为3-15mm,优选为5-10mm。
  6. 根据权利要求1所述的制备方法,其特征在于,所述步骤S2中,所述高压流体为高压CO 2流体或高压N 2流体。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤S2中,所述高压流体饱和时高压流体的压力为10-20MPa,温度为80-120℃,饱和时间为30-60min。
  8. 根据权利要求1所述的制备方法,其特征在于,所述步骤S3中,所述模具的温度为150-180℃。
  9. 根据权利要求1-8任一项所述的制备方法,其特征在于,所述步骤S3得到的PBAT发泡异型材的密度为0.13-0.30g/cm 3
  10. 根据权利要求9所述的制备方法,其特征在于,所述PBAT发泡异型材为发泡鞋材。
PCT/CN2021/077197 2020-12-25 2021-02-22 一种高回弹生物可降解聚酯微发泡异型材的制备方法 WO2022134296A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011560138.9A CN112708163A (zh) 2020-12-25 2020-12-25 一种高回弹生物可降解聚酯微发泡异型材的制备方法
CN202011560138.9 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022134296A1 true WO2022134296A1 (zh) 2022-06-30

Family

ID=75546319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/077197 WO2022134296A1 (zh) 2020-12-25 2021-02-22 一种高回弹生物可降解聚酯微发泡异型材的制备方法

Country Status (2)

Country Link
CN (1) CN112708163A (zh)
WO (1) WO2022134296A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113549305A (zh) * 2021-06-04 2021-10-26 浙江工业大学 一种全生物降解改性pbat发泡板材及其制备方法、应用
CN115505161B (zh) * 2021-06-23 2024-01-19 华润化学材料科技股份有限公司 尼龙模压发泡材料及其制备方法
CN113354928B (zh) * 2021-06-29 2022-02-15 浙江中邦塑胶股份有限公司 一种用于制作降解膜的生物塑料及制备方法
CN113717504A (zh) * 2021-09-08 2021-11-30 北京化工大学常州先进材料研究院 一种相分离制备pbat/pp复合发泡材料的方法
CN113831698B (zh) * 2021-10-15 2022-11-22 陕西科技大学 一种全生物降解pbat/pcl/nr复合发泡材料及其制备方法
CN114316343B (zh) * 2021-12-29 2023-09-05 安踏(中国)有限公司 一种尼龙发泡鞋底的制备方法
CN115678083B (zh) * 2022-11-17 2023-09-19 苏州和塑美科技有限公司 一种倍率可调的pbat高回弹片材的制备方法及其产品

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241830A (zh) * 2011-04-28 2011-11-16 中国科学院宁波材料技术与工程研究所 一种生物降解聚合物发泡片材制品的制备方法
US20160237209A1 (en) * 2013-10-25 2016-08-18 Lotte Fine Chemical Co., Ltd. Biodegradable polyester resin compound and foamed article obtained therefrom
CN106476298A (zh) * 2016-12-02 2017-03-08 贵州理工学院 发泡片材挤出机及该机制备的pbat发泡片材
CN106967280A (zh) * 2017-04-21 2017-07-21 桑德(天津)再生资源投资控股有限公司 一种高倍率全生物降解发泡材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101565509B (zh) * 2009-05-21 2012-12-26 上海交通大学 改性pbat发泡材料的制备方法
CN106751611A (zh) * 2016-12-08 2017-05-31 吉林中粮生化有限公司 一种高熔体强度聚乳酸发泡专用树脂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102241830A (zh) * 2011-04-28 2011-11-16 中国科学院宁波材料技术与工程研究所 一种生物降解聚合物发泡片材制品的制备方法
US20160237209A1 (en) * 2013-10-25 2016-08-18 Lotte Fine Chemical Co., Ltd. Biodegradable polyester resin compound and foamed article obtained therefrom
CN106476298A (zh) * 2016-12-02 2017-03-08 贵州理工学院 发泡片材挤出机及该机制备的pbat发泡片材
CN106967280A (zh) * 2017-04-21 2017-07-21 桑德(天津)再生资源投资控股有限公司 一种高倍率全生物降解发泡材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SONG JINGSI;WANG XIANZENG;ZHOU HONGFU;WANG XIANGDONG;ZHANG YUXIA: "Study on Chain Extension and Microcellular Foaming Behaviors of Poly(butyleneadipate-co-terephthlate)", CHINA PLASTICS, vol. 32, no. 11, 26 November 2018 (2018-11-26), pages 42 - 48, XP055945771, ISSN: 1001-9278, DOI: 10.19491/j.issn.1001-9278.2018.11.007 *

Also Published As

Publication number Publication date
CN112708163A (zh) 2021-04-27

Similar Documents

Publication Publication Date Title
WO2022134296A1 (zh) 一种高回弹生物可降解聚酯微发泡异型材的制备方法
CN101358007B (zh) 有机粒子刚性增韧的超高分子量聚乙烯合金的制备方法
WO2020125577A1 (zh) 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法
CN112812515A (zh) 一种可降解发泡材料及其制备方法
CN102775652A (zh) 一种热塑性弹性体微孔发泡材料及其制备方法
CN103275397A (zh) 一种改性微孔发泡聚丙烯材料及其制备方法
CN113372605B (zh) 一种核壳结构的可发性聚乳酸复合微粒、发泡珠粒及其成型制件的制备方法
CN110903627A (zh) 一种热塑性弹性体共混物超临界发泡材料及其制备方法
CN114316343A (zh) 一种尼龙发泡鞋底的制备方法
CN110591309A (zh) 一种可生物降解的发泡塑料复合材料及其制备方法与应用
CN116444974B (zh) 耐高温二氧化碳基合金及其发泡材料和制备方法
CN102408629A (zh) 一种基于新型助剂体系的聚丙烯发泡材料的制备方法
CN114874594B (zh) 一种高回弹吸波发泡材料及其制备方法
CN113512275A (zh) 一种高熔体强度的可堆肥降解材料及制备方法
CN111704755A (zh) 一种具有气泡内壁壳橡胶发泡材料的制备方法
CN114806134B (zh) 热塑/热固聚合物共混泡沫材料及其制备方法
CN102443237A (zh) 一种环保型高发泡用高熔体强度聚丙烯材料的制备方法
CN112341687B (zh) 一种高回弹、抗冲击型聚烯烃泡沫材料及其制备工艺
CN109836551A (zh) 一种聚氨酯运动防护泡沫衬垫组合物及其制备方法
CN107141627A (zh) 一种用于儿童玩乐桌椅的发泡材料及其制备方法
CN113527802A (zh) 一种eva橡塑组合物、制备方法及用作发泡制品的应用
CN113637302A (zh) 一种改性生物降解聚乳酸发泡粒子及其制备工艺
CN114685842B (zh) 一种导电聚丁烯发泡材料及其制备方法
CN110256734A (zh) 降解交联聚乙烯及其制备方法
CN112795062A (zh) 一种耐磨橡胶发泡运动鞋材及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21908310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21908310

Country of ref document: EP

Kind code of ref document: A1