WO2022133669A1 - 显示面板及其制作方法和显示装置 - Google Patents

显示面板及其制作方法和显示装置 Download PDF

Info

Publication number
WO2022133669A1
WO2022133669A1 PCT/CN2020/138072 CN2020138072W WO2022133669A1 WO 2022133669 A1 WO2022133669 A1 WO 2022133669A1 CN 2020138072 W CN2020138072 W CN 2020138072W WO 2022133669 A1 WO2022133669 A1 WO 2022133669A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
light
layer
cathode
emitting
Prior art date
Application number
PCT/CN2020/138072
Other languages
English (en)
French (fr)
Inventor
刘柯志
黎倩
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to GB2309759.5A priority Critical patent/GB2617493A/en
Priority to PCT/CN2020/138072 priority patent/WO2022133669A1/zh
Priority to CN202080003497.6A priority patent/CN115053359B/zh
Priority to US18/038,896 priority patent/US20230422578A1/en
Publication of WO2022133669A1 publication Critical patent/WO2022133669A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80522Cathodes combined with auxiliary electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8052Cathodes
    • H10K59/80521Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • H10K59/8051Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel, a manufacturing method thereof, and a display device.
  • Organic light-emitting display devices have the advantages of high contrast, high color gamut, wide field of view, and low power consumption, so they are widely used in all aspects of production and life in modern society.
  • the object behind, and the feature of displaying picture information when displayed, has been widely used in smart home, vehicle applications, military and other industries, and has more and more extensive application prospects.
  • the current transparent organic light-emitting displays still have problems such as low transmittance.
  • the current organic light-emitting display panels mostly use the entire cathode, that is to say, a plurality of light-emitting units share one cathode.
  • this setting method is not conducive to improving the light transmittance of the display panel, and the use of patterned cathodes means that each The cathodes of each light-emitting unit are arranged at intervals, which in turn will cause the entire display panel to be overloaded.
  • the inventors have found that the use of patterned anodes, light-emitting layers and cathodes and connecting the cathodes to metal layers or conductive layers (such as source-drain electrode layers) in the backplane circuit through openings during the formation of the cathodes can greatly reduce the cost of the entire panel.
  • an object of the present disclosure is to provide a display panel, which has a patterned anode, a light-emitting layer and a cathode, and the entire panel has a low load and good display effect.
  • a display panel includes: a base substrate; a backplane circuit layer, the backplane circuit layer is provided on one side of the base substrate; a plurality of light-emitting units arranged at intervals, the light-emitting units are provided On the side of the backplane circuit layer away from the base substrate, wherein, in the direction away from the backplane circuit layer, the light-emitting unit includes an anode, a light-emitting layer and a cathode arranged in sequence, and different The cathodes between the light-emitting units are arranged at intervals, and the light-emitting layers between the different light-emitting units are arranged at intervals; an auxiliary cathode, the auxiliary cathode is located between the base substrate and the cathode, and is connected to the The cathodes are electrically connected.
  • the anode, the light-emitting layer and the cathode in the display panel are all patterned structures, and if the display panel is a flexible display panel, it is helpful to improve the toughness of the display panel, thereby helping to realize any curling of the entire panel;
  • the cathodes in different light-emitting units are arranged at intervals, and the light-emitting layers between different light-emitting units are arranged at intervals, that is, the display panel includes a plurality of patterned cathodes and a plurality of patterned light-emitting layers, which can effectively improve the
  • the light transmittance of the display panel is conducive to the realization of the design of the transparent display; due to the patterning of the cathode layer, the load of the entire display panel will be heavier, and the electrical connection between the cathode and the auxiliary cathode can greatly reduce the load of the display panel and improve the display. quality.
  • the auxiliary cathode is a part of the source-drain electrode layer.
  • the orthographic projection of the anode on the base substrate and the orthographic projection of the auxiliary cathode on the base substrate are both located inside the orthographic projection of the cathode on the base substrate.
  • the light-emitting unit further includes a hole injection layer, a hole transport layer, an electron transport layer, and an electron injection layer, and the hole injection layer is disposed between the anode and the light-emitting layer,
  • the hole transport layer is disposed between the hole injection layer and the light-emitting layer
  • the electron transport layer is disposed between the light-emitting layer and the cathode
  • the electron injection layer is disposed between the electrons
  • the hole injection layers in different light-emitting units are arranged at intervals
  • the hole transport layers are arranged at intervals
  • the electron transport layers are arranged at intervals
  • the electron injection layers are arranged at intervals.
  • the light-emitting unit includes a plurality of sub-light-emitting units, each of the sub-light-emitting units includes a sub-cathode, a sub-anode, and a sub-light-emitting layer disposed between the sub-cathode and the sub-anode, where In the same light-emitting unit, the sub-anodes in different sub-light-emitting units are arranged at intervals, the sub-light-emitting layers are arranged at intervals, and the sub-cathodes are arranged in contact to form the cathode.
  • the sub-light-emitting unit further includes a sub-hole injection layer, a sub-hole transport layer, a sub-electron transport layer, and a sub-electron injection layer, wherein the sub-hole injection layer is disposed on the sub-hole injection layer.
  • the sub-hole transport layer is disposed between the sub-hole injection layer and the sub-emission layer
  • the sub-electron transport layer is disposed between the sub-emission layer and the sub-emission layer.
  • the sub-electron injection layer is disposed between the sub-electron transport layer and the sub-cathode, and is different from the sub-hole injection layers in the sub-light-emitting units, and the sub-electron injection layers are disposed at intervals.
  • the hole transport layers are arranged at intervals, the sub-electron transport layers are arranged at intervals, and the sub-electron injection layers are arranged at intervals.
  • the sub-light-emitting unit further includes a sub-hole injection layer, a sub-hole transport layer, a sub-electron transport layer, and a sub-electron injection layer, wherein the sub-hole injection layer is disposed on the sub-hole injection layer.
  • the sub-hole transport layer is disposed between the sub-hole injection layer and the sub-emission layer
  • the sub-electron transport layer is disposed between the sub-emission layer and the sub-emission layer.
  • the sub-electron injection layer is disposed between the sub-electron transport layer and the sub-cathode, and in the same light-emitting unit, the sub-holes in different sub-light-emitting units are injected Layer contact arrangement, different from the contact arrangement of the sub-hole transport layer in the sub-light-emitting unit, different from the contact arrangement of the sub-electron injection layer in the sub-light-emitting unit, different from the sub-light-emitting unit in the sub-light-emitting unit. Electron transport layer contact setup.
  • the distance between the sub-anode electrodes in two adjacent sub-light-emitting units is 5-15 micrometers.
  • the display panel further includes a bridge bridge for connecting the cathodes in the adjacent light-emitting units, and the bridge bridge and the cathode are disposed in the same layer.
  • the bridging bridge is in the shape of a long strip, and its width is 50-70 microns.
  • the orthographic projection of the auxiliary cathode on the base substrate is located inside the orthographic projection of the bridging bridge on the base substrate.
  • the backplane circuit layer includes: an active layer disposed on one side of the base substrate; a gate insulating layer disposed on the active layer layer away from the base substrate; gate, the gate is arranged on the side of the gate insulating layer away from the active layer; interlayer dielectric layer, the interlayer dielectric layer is arranged on the The gate is away from the side of the base substrate, and covers the surface of the gate insulating layer that is not covered by the gate; the source-drain electrode layer, the source-drain electrode layer is arranged on the interlayer dielectric layer away from the one side of the base substrate, and is electrically connected to the active layer through through holes; a flat layer, the flat layer is arranged on the side of the source and drain electrode layers away from the base substrate, and is covered and uncovered.
  • the surface of the interlayer dielectric layer covered by the source-drain electrode layer, wherein the material of the flat layer is transparent polyimide.
  • a plurality of the light-emitting units arranged at intervals are arranged in an array, wherein, in the plurality of the light-emitting units in the same row, the distance between two adjacent light-emitting units is the The width of the light-emitting unit in the row direction; in a plurality of the light-emitting units in the same column, the spacing between two adjacent light-emitting units is the width of the light-emitting unit in the column direction.
  • a method for fabricating a display panel includes: providing a base substrate; fabricating a backplane circuit layer on one side of the base substrate; and on a side of the backplane circuit layer away from the base substrate forming a plurality of light-emitting units arranged at intervals, wherein the forming step of the light-emitting units includes: forming an anode on a side of the backplane circuit layer away from the base substrate, and forming an anode on the side of the backplane circuit layer away from the backplane circuit layer A light-emitting layer is formed on one side of the light-emitting layer, a cathode is formed on the side of the light-emitting layer away from the anode, and the cathodes between different light-emitting units are arranged at intervals, and the light-emitting units between different light-emitting units The layers are space
  • the anode, the light-emitting layer and the cathode in the display panel are all patterned structures, and if the display panel is a flexible display panel, it is helpful to improve the toughness of the display panel, thereby helping to realize any curling of the entire panel;
  • the cathodes in different light-emitting units are arranged at intervals, that is, the display panel includes a plurality of patterned cathodes and a plurality of patterned light-emitting layers, thereby effectively improving the light transmittance of the display panel, which is conducive to the realization of a transparent display design; due to the patterning of the cathode layer, the load of the entire display panel will be heavier, and by electrically connecting the auxiliary cathode and the cathode, the load of the display panel can be greatly reduced and the display quality can be improved; in addition, the above manufacturing method is simple and easy to implement. , which is convenient for industrial production.
  • the step of forming the light emitting unit includes: forming a plurality of spaced sub-anodes on a side of the backplane circuit layer away from the base substrate, where the sub-anodes are far away from the backside A plurality of sub-light-emitting layers arranged at intervals are formed on one side of the board circuit layer, and a plurality of sub-cathodes are formed on the side of the sub-light-emitting layer away from the sub-anode, and the plurality of sub-cathodes are arranged in contact to form the cathode.
  • the anode and the light-emitting layer are formed by evaporation using a patterned mask, and the cathode and the connection line are simultaneously formed by evaporation using a patterned mask.
  • the method for fabricating a display panel further includes the step of forming a bridge, and the bridge and the cathode are fabricated in the same step for connecting the cathodes in the adjacent light-emitting units .
  • the present disclosure provides a display device.
  • a display device includes a display panel, and the display panel is the aforementioned display panel or a display panel fabricated by the aforementioned method. Therefore, the display device has a good display effect and a low load.
  • the display device has all the features and advantages of the display panel described above, which will not be repeated here.
  • FIG. 1 is a schematic structural diagram of a display panel in an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a display panel in another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a display panel in yet another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display panel in yet another embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a display panel in yet another embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of a partial structure of a display panel in yet another embodiment of the present disclosure.
  • FIG. 7 is a schematic plan view of a partial structure of a display panel in another embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view of a part of a structure in a display panel according to still another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a part of a structure in a display panel according to still another embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of the arrangement of light-emitting units in yet another embodiment of the present disclosure.
  • the present disclosure provides a display panel.
  • the display panel 1000 includes: a base substrate 1100 ; a backplane circuit layer 100 , a backplane circuit layer 100 is arranged on one side of the base substrate 1100; a plurality of light-emitting units 200 are arranged at intervals, and the light-emitting units 200 are arranged on the side of the backplane circuit layer 100 away from the base substrate 1100, wherein, in the direction away from the backplane circuit layer 100
  • the light-emitting unit 200 includes an anode 210, a light-emitting layer 220 and a cathode 230 arranged in sequence, and the cathodes 230 between different light-emitting units 200 are arranged at intervals, and the light-emitting layers 220 between different light-emitting units 200
  • the auxiliary cathode 500 is electrically connected to the cathode 230 through the connecting wire 300 . Therefore, the anode, the light-emitting layer and the cathode in the display panel are all patterned structures, and if the display panel is a flexible display panel, it is helpful to improve the toughness of the display panel, thereby helping to realize any curling of the entire panel; Moreover, in the display panel, the cathodes in different light-emitting units are arranged at intervals, and the light-emitting layers in different light-emitting units are arranged at intervals, that is, the display panel includes a plurality of patterned cathodes and a plurality of patterned light-emitting layers, which can effectively improve the display panel.
  • the light transmittance of the cathode is high, which is conducive to the realization of the design of the transparent display; due to the patterning of the cathode layer, the load of the entire display panel will be heavy, and the electrical connection between the cathode and the auxiliary cathode can greatly reduce the load of the display panel and improve the display. quality.
  • the auxiliary cathode can be any conductive layer or metal layer between the base substrate and the cathode. After the auxiliary cathode and the cathode are electrically connected, it is beneficial to reduce the load of the display panel.
  • the auxiliary cathode 500 is a part of the source-drain electrode layer. At this time, the auxiliary cathode 500 and the cathode 230 are electrically connected through the connecting wire 300 , and the cathode does not need to be further connected with the VSS signal at this time.
  • the line is electrically connected, that is to say, the cathode is electrically connected to the auxiliary cathode (a part of the source-drain electrode layer) through the connecting line 300, which can replace the electrical connection between the cathode and the VSS signal line, so as to ensure the effective function of the cathode, thereby ensuring the light-emitting unit. Glows normally.
  • the source-drain electrode layer includes multiple traces such as source electrode, drain electrode, data line (Vd), power signal line or other signals, the auxiliary cathode is a part of the source-drain electrode layer.
  • drain, data line (Vd), power signal line or other signal lines and other structures those skilled in the art can flexibly choose according to the actual situation, as long as the effect of its electrical connection can be effectively achieved without affecting each The work and arrangement of the wiring can be done.
  • FIGS. 1 to 5 it is only an example that the cathode 230 is electrically connected to the source electrode 161 in the source-drain electrode layer 160 through the connecting line 300 ; in FIG. 6 , only Take the example that the cathode 230 is electrically connected to a certain signal line in the source-drain electrode layer 160 through the connecting line 300 .
  • the orthographic projection of the anode on the base substrate and the orthographic projection of the auxiliary cathode on the base substrate are both located inside the orthographic projection of the cathode on the base substrate, which is beneficial to
  • the arrangement of the overlapping holes for electrical connection between the auxiliary cathode and the cathode helps to improve the overall performance of the display panel.
  • the backplane circuit layer 100 includes: The source layer 120, the active layer 120 is arranged on one side of the base substrate 1100; the gate insulating layer 130, the gate insulating layer 130 is arranged on the side of the active layer 120 away from the base substrate 1100; the gate 140, the gate 140 is arranged On the side of the gate insulating layer 130 away from the active layer 120; the interlayer dielectric layer 150, the interlayer dielectric layer 150 is arranged on the side of the gate 140 away from the base substrate 1100, and covers the gate insulation not covered by the gate 140
  • the surface of the layer 130; the source-drain electrode layer 160 (including the source electrode 161 and the drain electrode 162), the source-drain electrode layer 160 is disposed on the side of the interlayer dielectric layer 150 away from the base substrate 1100, and
  • the layer 120 is electrically connected; the flat layer 170 is disposed on the side of the source-drain electrode layer 160 away from the base substrate 1100 and covers the surface of the interlayer dielectric layer 150 not covered by the source-drain electrode layer 160, wherein the flat layer
  • the material of the layer 170 is transparent polyimide.
  • both the base substrate 1100 and the flat layer 170 are made of transparent polyimide (CPI), which can greatly improve the light transmittance of the display panel, thereby helping to realize the design of the transparent display panel.
  • CPI transparent polyimide
  • the backplane circuit layer may also include other conventional structures in addition to the above structures, such as a buffer layer disposed between the active layer and the base substrate, a buffer layer disposed between the buffer layer and the base substrate The structure of the barrier layer and the storage capacitor will not be repeated here.
  • the light emitting unit may further include a hole injection layer 240, a hole transport layer 250, an electron transport layer 260, an electron injection layer 270, and the hole injection layer 240 is provided Between the anode 210 and the light emitting layer 220, the hole transport layer 250 is provided between the hole injection layer 240 and the light emitting layer 220, the electron transport layer 260 is provided between the light emitting layer 220 and the cathode 230, and the electron injection layer 270 is provided on Between the electron transport layer 260 and the cathode 230 , the hole injection layers 240 in different light emitting units 200 are arranged at intervals, the hole transport layers 250 are arranged at intervals, the electron transport layers 260 are arranged at intervals, and the electron injection layers 270 are arranged at intervals. Therefore, it is beneficial to improve the usability of the light-emitting unit.
  • the light-emitting unit 200 includes a plurality of sub-light-emitting units 201 (only one light-emitting unit 200 is used in FIGS. 1 to 4 , and one light-emitting unit 200 includes three sub-light-emitting units 201 as an example) , each sub-light-emitting unit 201 includes a sub-cathode 231, a sub-anode 211 and a sub-light-emitting layer 221 disposed between the sub-cathode and the sub-anode.
  • the sub-anode 211 in different sub-light-emitting units 201 are arranged at intervals,
  • the sub-light-emitting layers 221 are arranged at intervals, and the sub-cathodes 231 are arranged in contact to form a cathode, that is, a plurality of sub-cathodes 231 in different sub-light-emitting units 201 together constitute a cathode.
  • the sub-anode and sub-light-emitting layer in the same light-emitting unit are independent structures, but the sub-cathodes are in contact with each other, forming a whole-layer cathode structure, covering the sub-light-emitting layers in multiple sub-light-emitting units.
  • each light-emitting unit includes three sub-light-emitting units 201, and the three sub-light-emitting units 201 are respectively a red sub-light-emitting unit, a green sub-light-emitting unit, and a blue sub-light-emitting unit.
  • the sub-light-emitting unit 201 may further include a sub-hole injection layer 241 , a sub-hole transport layer 251 , a sub-electron transport layer 261 , and a sub-electron injection layer 271 , wherein, The sub-hole injection layer 241 is arranged between the sub-anode 211 and the sub-light-emitting layer 221 , the sub-hole transport layer 251 is arranged between the sub-hole injection layer 241 and the sub-light-emitting layer 221 , and the sub-electron transport layer 261 is arranged between the sub-light-emitting layer 221 Between the sub-cathode 231 and the sub-electron injection layer 271 is provided between the sub-electron transport layer 261 and the sub-cathode 231 . Wherein, the sub-hole injection layer 241, the sub-hole transport layer 251, the sub-electron transport layer 26
  • the sub-hole injection layers 241 in different sub-light-emitting units 201 are arranged at intervals, the sub-hole transport layers 251 are arranged at intervals, the sub-electron transport layers 261 are arranged at intervals, and the sub-electron injection layers 271 are arranged at intervals . Therefore, the sub-hole injection layer 241 , the sub-hole transport layer 251 , the sub-electron transport layer 261 and the sub-electron injection layer 271 in different sub-light-emitting units 201 are all arranged at intervals, which can further improve the flexibility and bending of the display panel properties, and help to independently control the light-emitting conditions of different sub-light-emitting units. In some embodiments, the maximum curling angle of the display panel can reach 360°.
  • the sub-hole injection layers 241 in different sub-light-emitting units 201 are arranged in contact
  • the sub-hole transport layers 251 in different sub-light-emitting units 201 are arranged in contact
  • the sub-hole transport layers 251 in different sub-light-emitting units 201 are arranged in contact with each other.
  • the sub-electron transport layers 261 are arranged in contact with each other
  • the sub-electron injection layers 271 in different sub-light-emitting units 201 are arranged in contact with each other.
  • the display panel can also realize the display function, and since the hole injection layer 240 , the hole transport layer 250 , the electron transport layer 260 , and the electron injection layer 270 between different light-emitting units are all arranged at intervals, the above-mentioned FIG.
  • the structure can still effectively improve the flexibility and bendability of the display panel.
  • the display panel further includes a pixel definition layer 400 .
  • the pixel definition layer 400 is disposed on the side of the flat layer 170 away from the base substrate 1100 , and the pixel definition layer 400 defines a plurality of openings.
  • the light emitting unit 201 is provided in the opening.
  • the connecting wire and the cathode have an integrated structure, that is, the connecting wire and the cathode are completed through the same manufacturing process step, so that the process flow can be simplified and the process time can be shortened.
  • the materials for forming the cathode and the connecting wires include but are not limited to conductive oxides or metal materials such as IZO, Al, and Mg.
  • the material for forming the anode includes but not limited to ITO/Ag/ITO
  • the material for forming the active layer includes but not limited to IGZO, ZnON, ITZO and low temperature polysilicon
  • the material for forming the gate includes but not limited to aluminum
  • metal materials such as molybdenum, chromium, copper and titanium
  • the materials forming the source and drain electrode layers include but not limited to metal materials such as aluminum, molybdenum, chromium, copper and titanium
  • the materials forming the gate insulating layer and the interlayer dielectric layer include but not limited to Limited to insulating materials such as silicon nitride, silicon oxide, and silicon oxynitride.
  • the distance D between the sub-anode electrodes 211 in two adjacent sub-light-emitting units 201 is 5-15 micrometers, such as 5 micrometers, 7 micrometers , 9 microns, 10 microns, 11 microns, 13 microns or 15 microns. Therefore, when the connection line 300 realizes the electrical connection between the cathode and the auxiliary cathode through the gap between the sub-light-emitting units 201 , the size of the above-mentioned distance can satisfy the design of the lap hole and realize effective electrical connection.
  • the connecting wire 300 is arranged in the lap hole.
  • the technician can choose flexibly according to the actual situation, as long as the position of the overlap hole does not affect the arrangement of each wiring in the display panel, and the cathode and the auxiliary cathode can be electrically connected.
  • cathodes 230 of different light-emitting units are arranged at intervals, and the cathodes 230 in each light-emitting unit cover the light-emitting layer 220 , that is, the cathodes 230 cover a plurality of sub-light-emitting layers in a plurality of sub-light-emitting units, wherein 6 and 7, the lap hole 800 (or the connection line 300) (the connection line 300 realizes the electrical connection between the auxiliary cathode and the cathode through the lap hole 800) is located outside the light-emitting layer 220, and the auxiliary The orthographic projection of the cathode 500 on the base substrate is located inside the orthographic projection of the cathode 230 on the base substrate.
  • the display panel further includes a bridge 700, the bridge 700 is used to connect the cathodes 230 in the adjacent light-emitting units 200, and the bridge and the cathode are arranged in the same layer, thus, it is beneficial to reduce the display panel load.
  • the bridge 700 is used to connect the cathodes 230 in the adjacent light-emitting units 200, and the bridge and the cathode are arranged in the same layer, thus, it is beneficial to reduce the display panel load.
  • adjacent cathodes 230 in a plurality of light-emitting units in the same row (or the same column) are electrically connected by bridges 700 , and the bridges 700 and the cathodes 230 are electrically connected. Same layer settings.
  • one cathode 230 in the light-emitting unit of each row (or each column) is electrically connected through the bridge 700, and can be further electrically connected to the VSS signal line.
  • the electrical connection between the cathode and the VSS signal line can play a role in preventing and repairing, that is, if one or more auxiliary cathodes and the cathode are electrically connected to failure, since the cathode and the VSS signal line have been electrically connected, the effectiveness of the cathode can still be effectively guaranteed at this time. function to prevent its corresponding light-emitting unit from failing to emit light normally.
  • the orthographic projection of the bonding hole 800 (the connection wire is electrically connected to the cathode through the bonding hole 800 ) on the base substrate is located at the orthographic projection of the bonding bridge 700 on the base substrate. Therefore, it is helpful to set the position of the overlapping hole, and the setting of the overlapping hole will not affect the wiring arrangement in the display panel, and is beneficial to improve the use performance of the display panel.
  • the width S of the bridging bridge 700 is 50-70 microns, such as 50 microns, 55 microns, 60 microns, 65 microns, 70 microns, and the width of the bridging bridges is set in the above-mentioned Within the width range, it can ensure that the light transmittance of the display panel will not be greatly negatively affected, and at the same time, the load of the display panel will be smaller; if the width of the bridge is narrow, the load of the display panel will be relatively excessive. Heavy; if the width of the bridge is too wide, the light transmittance of the display panel will be relatively low, which is not conducive to the design of the transparent display.
  • the orthographic projection of the auxiliary cathode (not shown in the figure) on the base substrate is located inside the orthographic projection of the bridging bridge on the base substrate.
  • 8 is a plan view, the auxiliary cathode and the cathode are not arranged in the same layer.
  • the auxiliary cathode can be connected to multiple cathodes through bridging, including but not limited to forming a via hole to connect the auxiliary cathode through the lap The bridge is connected to the cathode. Thereby, it is advantageous to reduce the load of the display panel.
  • the display panel when the display panel is used for a transparent display, in order to further improve the light transmittance of the display panel, the pixel density (PPI) of the display panel is reduced compared with the conventional display panel, that is, for a display of a certain size
  • the panel increases the size between two adjacent light emitting units 200 .
  • the gap between two adjacent light-emitting units is not provided with a light-emitting unit, nor a pixel circuit.
  • the present disclosure provides a method for manufacturing a display panel, the method for manufacturing a display panel comprising:
  • S100 Provide the base substrate 1100.
  • a base substrate 1100 is provided, wherein the material of the base substrate can be transparent polyimide, so that the light transmittance of the display panel can be improved.
  • manufacturing the backplane circuit layer 100 includes: forming an active layer 120, the active layer 120 is formed on one side of the base substrate 1100; forming a gate insulating layer 130, the gate insulating layer 130 is formed on the active layer The side of the layer 120 away from the base substrate 1100; the gate 140 is formed, and the gate 140 is formed on the side of the gate insulating layer 130 away from the active layer 120; the interlayer dielectric layer 150 is formed, and the interlayer dielectric layer 150 is formed on the gate 140 is away from the side of the base substrate 1100 and covers the surface of the gate insulating layer 130 that is not covered by the gate electrode 140; the source-drain electrode layer 160 (including the source electrode 161 and the drain electrode 162) is formed, and the source-drain electrode layer 160 is formed on the The interlayer dielectric layer 150 is on the side away from the base substrate 1100 and is electrically connected to the active layer 120 through the through hole 10; a flat layer 170 is formed, and the flat layer 170 is formed on
  • the steps of forming the light-emitting unit include: forming the anode 210 on the side of the backplane circuit layer 100 away from the base substrate 1100 , forming the light-emitting layer 220 on the side of the anode 210 away from the backplane circuit layer 100 , and forming the light-emitting layer 220 on the side of the anode 210 away from the anode
  • a cathode 230 is formed on one side of the LED, and the cathodes 230 between different light-emitting units 200 are arranged at intervals. Refer to FIG. 1 to FIG. 5 for schematic structural diagrams of the obtained display panel.
  • the light-emitting unit includes a plurality of sub-light-emitting units 201 arranged at intervals (in FIG. 1 to FIG. 4 , one light-emitting unit 200 is used, and one light-emitting unit 200 includes three sub-light-emitting units 201 ). example).
  • the step of forming the light-emitting unit includes: forming a plurality of spaced sub-anodes 211 on the side of the backplane circuit layer 100 away from the base substrate 1100 , and forming a plurality of spacers on the side of the sub-anode 211 away from the backplane circuit layer 100
  • the arranged sub-light-emitting layer 221 forms a plurality of sub-cathodes 231 on the side of the sub-light-emitting layer 221 away from the sub-anode 211, and the plurality of sub-cathodes 231 are arranged in contact to form the cathode 230, that is, the sub-anode and the sub-anode in the same light-emitting unit.
  • the light-emitting layer is an independent structure, but the sub-cathodes are in contact with each other, forming a whole-layer cathode structure, covering the sub-light-emitting layers in the plurality of sub-light-emitting units.
  • the anode and the light-emitting layer are formed by evaporation using a patterned mask, wherein the specific shape of the pattern of the mask plate is not required, and those skilled in the art can use the sub-light-emitting unit according to the effective light-emitting
  • the shape of the region can be selected flexibly, for example, it can be in the shape of a quadrangle, a circle, an ellipse, a hexagon, a pentagon or an irregular figure.
  • auxiliary cathode 500 is located between the base substrate 1100 and the cathode 230 and is electrically connected to the cathode 230 .
  • the auxiliary cathode can be any conductive layer or metal layer between the base substrate and the cathode. After the auxiliary cathode and the cathode are electrically connected, it is beneficial to reduce the load of the display panel. In some specific embodiments, the auxiliary cathode is electrically connected to the cathode through a connecting wire.
  • the auxiliary cathode is electrically connected to the cathode 230 and the source stage 161 in the source-drain electrode layer through the connecting wire 300 .
  • the cathode 230 and the connecting wire 300 are formed simultaneously by vapor deposition using a patterned mask, that is, the cathode and the connecting wire are fabricated through the same process step, thereby simplifying the process flow and shortening the process time.
  • the source-drain electrode layer includes multiple traces such as source, drain, data line (Vd), power signal line or other signals
  • Vd data line
  • power signal line or other signals when the cathode 230 is electrically connected to the source-drain electrode layer 160 through the connecting line 300, Those skilled in the art can flexibly select any one of the wirings according to the actual situation, as long as the effect of electrical connection can be effectively achieved without affecting the work and arrangement of each wiring.
  • FIGS. 1 to 5 only the cathode 230 is electrically connected to the source electrode 161 in the source-drain electrode layer 160 through the connecting wire 300 as an example; in FIG. example.
  • the method for fabricating a display panel further includes the step of forming a bridge 700.
  • the bridge 700 and the cathode 230 are fabricated in the same step, and are used to connect the cathodes 230 in the adjacent light-emitting units 200 and overlap.
  • the bridge and the cathode are arranged in the same layer, thereby helping to reduce the load of the display panel.
  • auxiliary cathode is a part of the source-drain electrode layer
  • one cathode 230 in the light-emitting unit of each row (or each column) is electrically connected through the bridging bridge 700 , and can be further connected with The VSS signal lines are electrically connected. Therefore, the electrical connection between the cathode and the VSS signal line can play a role in preventing and repairing, that is, if one or more auxiliary cathodes and the cathode are electrically connected to fail, since the cathode and the VSS signal line have been electrically connected, the current can still be effective. The effective function of the cathode is ensured, so as to prevent the corresponding light-emitting unit from failing to emit light normally.
  • the above-mentioned method for fabricating a display panel can be used to fabricate the aforementioned display panel, wherein in the process of fabricating the display panel, structures such as a base substrate, a backplane circuit layer, an anode, a light-emitting layer, a cathode, etc.
  • structures such as a base substrate, a backplane circuit layer, an anode, a light-emitting layer, a cathode, etc.
  • the present disclosure provides a display device.
  • a display device includes a display panel, and the display panel is the aforementioned display panel or a display panel fabricated by the aforementioned method. Therefore, the display device has good display effect, lower load and better curling effect.
  • the display device has all the features and advantages of the display panel described above, which will not be repeated here.
  • the display device in addition to the aforementioned display panel, the display device also has the necessary structures and components for conventional display devices. Taking a mobile phone as an example, in addition to the aforementioned display panel, it also includes a battery rear panel. Cover, middle frame, touch panel, audio module, motherboard and other necessary structures and components.
  • references to the terms “one embodiment,” “some embodiments,” “some specific embodiments,” or “other specific embodiments”, etc. refer to the specific features described in connection with the embodiment or example.
  • structures, materials, or features are included in at least one embodiment or example of the present disclosure.
  • schematic representations of the above terms are not necessarily directed to the same embodiment or example.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
  • those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

显示面板(1000)及其制作方法和显示装置。显示面板(1000)包括:衬底基板(1100);背板电路层(100),背板电路层(100)设置在衬底基板(1100)的一侧;多个间隔设置的发光单元(200),发光单元(200)设置在背板电路层(100)远离衬底基板(1100)的一侧,其中,在远离背板电路层(100)的方向上,发光单元(200)包括依次设置的阳极(210)、发光层(220)和阴极(230),且不同的发光单元(200)之间的阴极(230)间隔设置,不同的发光单元(200)之间的发光层(220)间隔设置;辅助阴极(500),辅助阴极(500)位于衬底基板(1100)与阴极(230)之间,且与阴极(230)电连接。

Description

显示面板及其制作方法和显示装置 技术领域
本公开涉及显示技术领域,具体的,涉及显示面板及其制作方法和显示装置。
背景技术
有机发光显示器件具有高对比度,高色域,视野范围广,功耗低等优点,因而被广泛应用于现代社会生产生活的方方面面,其中,透明有机发光显示器件具有在未显示的时候能够观察到后面的物体,而显示时能够显示画面信息这一特点,已经被广泛应用于智能家居,车载应用,军工等行业,并且具有越来越广泛的应用前景。但是,目前透明有机发光显示器仍存在透光率低等难题。
然而,目前关于显示面板的研究仍有待深入。
发明内容
本公开是基于发明人对以下事实和问题的发现和认识做出的:
目前的有机发光显示面板多采用整面的阴极,即是说多个发光单元共用一个阴极,发明人发现,这种设置方法不利于提高显示面板的透光率,而采用图形化的阴极即每个发光单元的阴极之间间隔设置,又会导致整个显示面板的负载过重。发明人发现,采用图形化的阳极、发光层以及阴极并且在形成阴极时通过开孔将阴极与背板电路中的金属层或导电层(如源漏电极层)相连接,可以大大降低整个面板的负载,并且可以显著提高面板的显示效果,同时保证显示面板较高的透光率。为此,本公开的一个目的在于提出一种显示面板,该显示面板具有图形化的阳极、发光层以及阴极,并且整个面板负载较低,具有良好的显示效果。
在本公开的一个方面,本公开提供了一种显示面板。根据本公开的实施例,显示面板包括:衬底基板;背板电路层,所述背板电路层设置在所述衬底基板的一侧;多个间隔设置的发光单元,所述发光单元设置在所述背板电路层远离所述衬底基板的一侧,其中,在远离所述背板电路层的方向上,所述发光单元包括依次设置的阳极、发光层和阴极,且不同的所述发光单元之间的所述阴极间隔设置,不同的所述发光单元之间的所述发光层间隔设置;辅助阴极,所述辅助阴极位于所述衬底基板与所述阴极之间,且与所述阴极电连接。由此,显示面板中的阳极、发光层以及阴极均为图形化的结构,若该显示面板为柔性显示面板时,有助于提高显示面板的韧性,进而有助于实现整个面板的任意卷曲;而且,显示 面板中,不同发光单元中的阴极间隔设置,不同的发光单元之间的发光层间隔设置,即显示面板包括多个图案化的阴极和多个图案化的发光层,进而可以有效提高显示面板的透光率,有利于实现透明显示器的设计;由于阴极层的图案化,会使得整个显示面板的负载较重,而电连接阴极与辅助阴极,可以大大降低显示面板的负载,提升显示质量。
根据本公开的实施例,所述辅助阴极为源漏电极层中的一部分。
根据本公开的实施例,所述阳极在所述衬底基板的正投影和所述辅助阴极在所述衬底基板的正投影均位于所述阴极在所述衬底基板的正投影的内部。
根据本公开的实施例,所述发光单元还包括空穴注入层、空穴传输层、电子传输层、电子注入层,所述空穴注入层设置在所述阳极和所述发光层之间,所述空穴传输层设置在所述空穴注入层和所述发光层之间,所述电子传输层设置在所述发光层和所述阴极之间,所述电子注入层设置在所述电子传输层和所述阴极之间,不同所述发光单元中的所述空穴注入层间隔设置,所述空穴传输层间隔设置,所述电子传输层间隔设置,所述电子注入层间隔设置。
根据本公开的实施例,所述发光单元包括多个子发光单元,每个所述子发光单元包括子阴极、子阳极和设置在所述子阴极和所述子阳极之间的子发光层,在同一个所述发光单元中,不同所述子发光单元中的所述子阳极间隔设置,所述子发光层间隔设置,所述子阴极接触设置,构成所述阴极。
根据本公开的实施例,所述子发光单元还包括子空穴注入层、子空穴传输层、子电子传输层、子电子注入层,其中,所述子空穴注入层设置在所述子阳极和所述子发光层之间,所述子空穴传输层设置在所述子空穴注入层和所述子发光层之间,所述子电子传输层设置在所述子发光层和所述子阴极之间,所述子电子注入层设置在所述子电子传输层和所述子阴极之间,且不同所述子发光单元中的所述子空穴注入层间隔设置,所述子空穴传输层间隔设置,所述子电子传输层间隔设置,所述子电子注入层间隔设置。
根据本公开的实施例,所述子发光单元还包括子空穴注入层、子空穴传输层、子电子传输层、子电子注入层,其中,所述子空穴注入层设置在所述子阳极和所述子发光层之间,所述子空穴传输层设置在所述子空穴注入层和所述子发光层之间,所述子电子传输层设置在所述子发光层和所述子阴极之间,所述子电子注入层设置在所述子电子传输层和所述子阴极之间,且同一所述发光单元中,不同所述子发光单元中的所述子空穴注入层接触设置,不同所述子发光单元中的所述子空穴传输层接触设置,不同所述子发光单元中的所述子电子注入层接触设置,不同所述子发光单元中的所述子电子传输层接触设置。
根据本公开的实施例,在同一个所述发光单元中,相邻两个所述子发光单元中的所述子阳极之间的间距为5~15微米。
根据本公开的实施例,显示面板还包括搭接桥,所述搭接桥用于连接相邻所述发光单元中的所述阴极,且所述搭接桥与所述阴极同层设置。
根据本公开的实施例,所述搭接桥为长条形,其宽度为50~70微米。
根据本公开的实施例,所述辅助阴极在所述衬底基板的正投影位于所述搭接桥在所述衬底基板的正投影的内部。
根据本公开的实施例,所述背板电路层包括:有源层,所述有源层设置在所述衬底基板的一侧;栅绝缘层,所述栅绝缘层设置在所述有源层远离所述衬底基板的一侧;栅极,所述栅极设置在所述栅绝缘层远离所述有源层的一侧;层间介质层,所述层间介质层设置在所述栅极远离所述衬底基板的一侧,且覆盖未被所述栅极覆盖的所述栅绝缘层的表面;源漏电极层,所述源漏电极层设置在所述层间介质层远离所述衬底基板的一侧,且通过通孔与有源层电连接;平坦层,所述平坦层设置在所述源漏电极层远离所述衬底基板的一侧,且覆盖未被所述源漏电极层覆盖的所述层间介质层的表面,其中,所述平坦层的材质为透明的聚酰亚胺。
根据本公开的实施例,多个间隔设置的所述发光单元呈阵列排布,其中,在同一行的多个所述发光单元中,相邻两个所述发光单元之间的间距为所述发光单元在所述行方向上的宽度;在同一列的多个所述发光单元中,相邻两个所述发光单元之间的间距为所述发光单元在所述列方向上的宽度。
在本公开的另一个方面,本公开提供了一种制作显示面板的方法。根据本公开的实施例,制作显示面板的方法包括:提供衬底基板;在所述衬底基板的一侧制作背板电路层;在所述背板电路层远离所述衬底基板的一侧形成多个间隔设置的发光单元,其中,所述发光单元的形成步骤包括:在所述背板电路层远离所述衬底基板的一侧形成阳极,在所述阳极远离所述背板电路层的一侧形成发光层,在所述发光层远离所述阳极的一侧形成阴极,且不同的所述发光单元之间的所述阴极间隔设置,不同的所述发光单元之间的所述发光层间隔设置;以及形成辅助阴极,所述辅助阴极位于所述衬底基板与所述阴极之间,且与所述阴极电连接。由此,显示面板中的阳极、发光层以及阴极均为图形化的结构,若该显示面板为柔性显示面板时,有助于提高显示面板的韧性,进而有助于实现整个面板的任意卷曲;而且,显示面板中,不同发光单元中的阴极间隔设置,即显示面板包括多个图案化的阴极和多个图案化的发光层,进而可以有效提高显示面板的透光率,有利于实现透明显示器的设计;由于阴极层的图案化,会使得整个显示面板的负载较重,而通过电连接辅助阴极和阴极,可以大大降低显示面板的负载,提升显示质量;再者,上述制作方法简单易实施,便于工业化生产。
根据本公开的实施例,形成所述发光单元的步骤包括:在所述背板电路层远离所述衬底 基板的一侧形成多个间隔设置的子阳极,在所述子阳极远离所述背板电路层的一侧形成多个间隔设置的子发光层,在所述子发光层远离所述子阳极的一侧形成多个子阴极,多个所述子阴极接触设置,构成所述阴极。
根据本公开的实施例,所述阳极和所述发光层是采用图形化的掩膜通过蒸镀形成的,所述阴极和所述连接线是采用图形化的掩膜通过蒸镀同时形成的。
根据本公开的实施例,制作显示面板的方法还包括形成搭接桥的步骤,所述搭接桥与所述阴极通过同一步骤制作完成,用于连接相邻所述发光单元中的所述阴极。
在本公开的又一个方面,本公开提供了一种显示装置。根据本公开的实施例,显示装置包括显示面板,所述显示面板是前面所述的显示面板或者利用前面所述的方法制作的显示面板。由此,该显示装置具有良好的显示效果,并且具有较低的负载。本领域技术人员理解,该显示装置具有前面所述的显示面板的全部特征以及优点,在此不再一一赘述。
附图说明
图1是本公开一个实施例中显示面板的结构示意图;
图2是本公开另一个实施例中显示面板的结构示意图;
图3是本公开又一个实施例中显示面板的结构示意图;
图4是本公开又一个实施例中显示面板的结构示意图;
图5是本公开又一个实施例中显示面板的结构示意图;
图6是本公开又一个实施例中显示面板中部分结构的示意图;
图7是本公开又一个实施例中显示面板中部分结构的平面示意图;
图8是本公开又一个实施例中显示面板中部分结构的平面示意图;
图9是本公开又一个实施例中显示面板中部分结构的结构示意图;
图10为本公开又一个实施例中发光单元的排列示意图。
发明详细描述
下面详细描述本公开的实施例。下面描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
在本公开的一个方面,本公开提供了一种显示面板。根据本公开的实施例,参照图1至图5(其中,图1至图5仅示出了一个发光单元),显示面板1000包括:衬底基板1100;背板电路层100,背板电路层100设置在衬底基板1100的一侧;多个间隔设置的发光单元 200,发光单元200设置在背板电路层100远离衬底基板1100的一侧,其中,在远离背板电路层100的方向上,发光单元200包括依次设置的阳极210、发光层220和阴极230,且不同的发光单元200之间的阴极230间隔设置,不同的发光单元200之间的发光层220间隔设置;辅助阴极500,辅助阴极500位于衬底基板1100与阴极230之间,且与阴极230电连接。在一些具体实施例中,辅助阴极500通过连接线300与阴极230电连接。由此,显示面板中的阳极、发光层以及阴极均为图形化的结构,若该显示面板为柔性显示面板时,有助于提高显示面板的韧性,进而有助于实现整个面板的任意卷曲;而且,显示面板中,不同发光单元中的阴极间隔设置,不同发光单元中的发光层间隔设置,即显示面板包括多个图案化的阴极和多个图案化的发光层,进而可以有效提高显示面板的透光率,有利于实现透明显示器的设计;由于阴极层的图案化,会使得整个显示面板的负载较重,而阴极与辅助阴极的电连接设置,可以大大降低显示面板的负载,提升显示质量。
需要说明的是,辅助阴极可以是衬底基板与阴极之间的任意导电层或金属层,当辅助阴极与阴极形成电连接后,有利于降低显示面板的负载。在一些实施例中,参照图1至图5,辅助阴极500为源漏电极层中的一部分,此时,辅助阴极500与阴极230通过连接线300实现电连接,此时阴极无需进一步与VSS信号线电连接,即是说,阴极通过连接线300与辅助阴极(源漏电极层的一部分)电连接,可以取代阴极与VSS信号线的电连接,以保证阴极的有效功能,进而保证发光单元的正常发光。需要说明的是,由于源漏电极层包括源极、漏极、数据线(Vd)、电源信号线或其他信号等多条走线,所以辅助阴极为源漏电极层中的一部分是指源极、漏极、数据线(Vd)、电源信号线或其他信号等多条走线的任一结构,本领域技术人员可以根据实际情况灵活选择,只要可以有效实现其电连接的效果且不影响各个走线的工作和排布即可,在图1至图5中,仅仅是以阴极230通过连接线300与源漏电极层160中的源极161电连接为例;在图6中,仅仅是以阴极230通过连接线300与源漏电极层160中的某一条信号线电连接为例。
根据本公开的实施例,参照图1至图5,阳极在衬底基板的正投影和辅助阴极在衬底基板的正投影均位于阴极在衬底基板的正投影的内部,由此,有利于辅助阴极与阴极电连接的搭接孔的设置,有助于提高显示面板的整体性能。
根据本公开的实施例,背板电路层的具体结构没有特殊要求,本领域技术人员可以根据实际情况灵活选择,在一些实施例中,参照图1至图5,背板电路层100包括:有源层120,有源层120设置在衬底基板1100的一侧;栅绝缘层130,栅绝缘层130设置在有源层120远离衬底基板1100的一侧;栅极140,栅极140设置在栅绝缘层130远离有源层120的一侧;层间介质层150,层间介质层150设置在栅极140远离衬底基板1100的一侧,且覆盖未被栅极140覆盖的栅绝缘层130的表面;源漏电极层160(包括源极161和漏极162), 源漏电极层160设置在层间介质层150远离衬底基板1100的一侧,且通过通孔10与有源层120电连接;平坦层170,平坦层170设置在源漏电极层160远离衬底基板1100的一侧,且覆盖未被源漏电极层160覆盖的层间介质层150的表面,其中,平坦层170的材质为透明的聚酰亚胺。其中,衬底基板1100和平坦层170均选择透明的聚酰亚胺(CPI),可以大大提高显示面板的透光率,进而有助于实现透明显示面板的设计。
当然,本领域技术人员可以理解,背板电路层除了上述结构还可以包括其他常规结构,比如设置在有源层和衬底基板之间的缓冲层、设置在缓冲层和和衬底基板之间的阻挡层以及存储电容的结构,在此不再过多的赘述。
根据本公开的实施例,参照图1图、3和图4,发光单元还可以包括空穴注入层240、空穴传输层250、电子传输层260、电子注入层270,空穴注入层240设置在阳极210和发光层220之间,空穴传输层250设置在空穴注入层240和发光层220之间,电子传输层260设置在发光层220和阴极230之间,电子注入层270设置在电子传输层260和阴极230之间,不同发光单元200中的空穴注入层240间隔设置,空穴传输层250间隔设置,电子传输层260间隔设置,电子注入层270间隔设置。由此,有利于提高发光单元的使用性能。
根据本公开的实施例,参照图1至图4,发光单元200包括多个子发光单元201(图1至图4中仅以一个发光单元200,一个发光单元200包括三个子发光单元201为例),每个子发光单元201包括子阴极231、子阳极211和设置在子阴极和子阳极之间的子发光层221,在同一个发光单元200中,不同子发光单元201中的子阳极211间隔设置,子发光层221间隔设置,子阴极231接触设置构成阴极,即不同子发光单元201中的多个子阴极231共同构成阴极。也即是说,同一个发光单元中的子阳极和子发光层为独立的结构,但是子阴极彼此接触,为整层的阴极结构,覆盖多个子发光单元中的子发光层。
根据本公开的实施例,每个发光单元中包括子发光单元的数量没有特殊要求,本领域技术人员可以根据实际情况灵活设计。在一些实施例中,每个发光单元中包括3个子发光单元201,3个子发光单元201分别为红色子发光单元、绿色子发光单元和蓝色子发光单元。
根据本公开的一些实施例,参照图4和图5,子发光单元201还可以包括子空穴注入层241、子空穴传输层251、子电子传输层261、子电子注入层271,其中,子空穴注入层241设置在子阳极211和子发光层221之间,子空穴传输层251设置在子空穴注入层241和子发光层221之间,子电子传输层261设置在子发光层221和子阴极231之间,子电子注入层271设置在子电子传输层261和子阴极231之间。其中,子空穴注入层241、子空穴传输层251、子电子传输层261、子电子注入层271可以满足以下情况之一:
在一些实施例中,参照图4,不同子发光单元201中的子空穴注入层241间隔设置,子空穴传输层251间隔设置,子电子传输层261间隔设置,子电子注入层271间隔设置。由 此,不同子发光单元201中的子空穴注入层241、子空穴传输层251、子电子传输层261以及子电子注入层271均间隔设置,可以进一步的提高显示面板的柔韧性和弯曲性,且有助于独立控制不同子发光单元的发光情况。在一些实施例中,显示面板的最大卷曲角度可达360°。
在另一些实施例中,参照图5,不同子发光单元201中的子空穴注入层241接触设置,不同子发光单元201中的子空穴传输层251接触设置,不同子发光单元201中的子电子传输层261接触设置,不同子发光单元201中的子电子注入层271接触设置。由此,显示面板也可实现显示功能,且由于不同发光单元之间的空穴注入层240、空穴传输层250、电子传输层260、电子注入层270均间隔设置,所以上述图5中的结构依然可以有效提高显示面板的柔韧性和弯曲性。
进一步的,如图1至图5所示,显示面板还包括像素界定层400,像素界定层400设置在平坦层170远离衬底基板1100的一侧,像素界定层400限定出多个开口,子发光单元201设置在开口中。
根据本公开的实施例,连接线和阴极为一体结构,即连接线与阴极通过同一制作工艺步骤完成的,如此,可以简化工艺流程,缩短工艺时长。其中,形成阴极和连接线的材料包括但不限于IZO、Al、Mg等导电氧化物或金属材料。
根据本公开的实施例,形成阳极的材料包括但不限于ITO/Ag/ITO,形成有源层的材料包括但不限于IGZO、ZnON、ITZO以及低温多晶硅,形成栅极的材料包括但不限于铝、钼、铬、铜和钛等金属材料,形成源漏电极层的材料包括但不限于铝、钼、铬、铜和钛等金属材料,形成栅绝缘层和层间介质层的材料包括但不限于氮化硅、氧化硅和氮氧化硅等绝缘材料。
根据本公开的实施例,参照图3至图5,在同一个发光单元中,相邻两个子发光单元201中的子阳极211之间的间距D为5~15微米,比如5微米、7微米、9微米、10微米、11微米、13微米或15微米。由此,当连接线300通过子发光单元201之间的间隙实现阴极与辅助阴极电连接时,上述间距的尺寸可以满足搭接孔的设计,实现有效的电连接。
其中,阴极230通过连接线300与衬底基板1100和阴极230之间的辅助阴极500电连接的搭接孔(连接线300设置在该搭接孔中)的具体设置位置没有特殊要求,本领域技术人员可以根据实际情况灵活选择即可,只要搭接孔的位置不影响显示面板中各个走线的排布,并实现阴极与辅助阴极电连接即可。
根据本公开的实施例,参照图6和7,不同发光单元的阴极230间隔设置,每个发光单元中的阴极230覆盖发光层220,即阴极230覆盖多个子发光单元中多个子发光层,其中,在图6和7的结构中,搭接孔800(或者说连接线300)(连接线300是通过搭接孔800实 现辅助阴极与阴极的电连接的)位于发光层220的外部,且辅助阴极500在衬底基板上的正投影位于阴极230在衬底基板上的正投影的内部。
参照图7和图8,显示面板还包括搭接桥700,搭接桥700用于连接相邻发光单元200中的阴极230,且搭接桥与阴极同层设置,由此,有利于降低显示面板的负载。根据本公开的一些具体实施例,参照图7或图8,同一行(或同一列)的多个发光单元中相邻的阴极230通过搭接桥700电连接,且搭接桥700与阴极230同层设置。
进一步的,当辅助阴极为源漏电极层的一部分时,每一行(或每一列)的发光单元中的一个阴极230通过搭接桥700电连接,还可以进一步的与VSS信号线电连接,上述阴极与VSS信号线的电连接可以起到预防修复的作用,即若某一个或多个辅助阴极与阴极电连接失效,由于阴极与VSS信号线已经电连接,此时依然可以有效保证阴极的有效功能,以避免其对应的发光单元不能正常发光。
进一步的,如图8所示,搭接孔800(连接线是通过搭接孔800实现与阴极的电连接的)在衬底基板的正投影位于搭接桥700在衬底基板的正投影的内部,由此,有助于搭接孔位置的设置,且搭接孔的设置不会影响显示面板中走线的排布,且有利于提高显示面板的使用性能。
根据本公开的实施例,参照图9,搭接桥700的宽度S为50~70微米,例如可以为50微米、55微米、60微米、65微米、70微米,搭接桥的宽度设置在上述宽度范围内,既可以保证不会对显示面板的透光率造成较大的负面影响,同时使得显示面板的负载较小;若搭接桥的宽度偏窄,则会使得显示面板的负载相对过重;若搭接桥的宽度偏宽,则会导致显示面板的透光率相对偏低,不利于透明显示器的设计。
根据本公开的实施例,参照图8,辅助阴极(图中未示出)在衬底基板的正投影位于搭接桥在衬底基板的正投影的内部。图8为平面结构图,辅助阴极和阴极并非同层设置,本领域技术人员可以理解,辅助阴极可以通过搭接桥与多个阴极进行连接,包括但不限于通过形成过孔将辅助阴极通过搭接桥与阴极连接起来。由此,有利于降低显示面板的负载。
根据本公开的实施例,该显示面板用于透明显示器时,为了更进一步的提高显示面板的透光率,相比常规显示面板,降低显示面板的像素密度(PPI),即对一定尺寸的显示面板,增大相邻两个发光单元200之间的尺寸。在一些实施例中,在同一行的多个发光单元中,相邻两个发光单元之间的间距d2为发光单元在该行方向上的宽度d1(即d2=d1);在同一列的多个发光单元中,相邻两个发光单元之间的间距d4为发光单元在该列方向上的宽度d3(即d4=d3),如图10所示。当然本领域技术人员可以理解,相邻两个发光单元之间的间隙不设置发光单元,也不会设置像素电路。
在本公开的另一个方面,本公开提供了一种制作显示面板的方法,制作显示面板的方法 包括:
S100:提供衬底基板1100。
提供衬底基板1100,其中,衬底基板的材质可以为透明的聚酰亚胺,由此可以提高显示面板的透光率。
S200:在衬底基板1100的一侧制作背板电路层100。
其中,在一些实施例中,制作背板电路层100包括:形成有源层120,有源层120形成在衬底基板1100的一侧;形成栅绝缘层130,栅绝缘层130形成在有源层120远离衬底基板1100的一侧;形成栅极140,栅极140形成在栅绝缘层130远离有源层120的一侧;形成层间介质层150,层间介质层150形成在栅极140远离衬底基板1100的一侧,且覆盖未被栅极140覆盖的栅绝缘层130的表面;形成源漏电极层160(包括源极161和漏极162),源漏电极层160形成在层间介质层150远离衬底基板1100的一侧,且通过通孔10与有源层120电连接;形成平坦层170,平坦层170形成在源漏电极层160远离衬底基板1100的一侧,且覆盖未被源漏电极层160覆盖的层间介质层150的表面,其中,平坦层170的材质为透明的聚酰亚胺,得到的显示面板的结构示意图可参照图1至图5。其中,衬底基板1100和平坦层170均选择透明的聚酰亚胺,可以大大提高显示面板的透光率,进而有助于实现透明显示面板的设计。
S300:在背板电路层100远离衬底基板1100的一侧形成多个间隔设置的发光单元200。
其中,发光单元的形成步骤包括:在背板电路层100远离衬底基板1100的一侧形成阳极210,在阳极210远离背板电路层100的一侧形成发光层220,在发光层220远离阳极的一侧形成阴极230,且不同的发光单元200之间的阴极230间隔设置,得到的显示面板的结构示意图参照图1至图5。
根据本公开的实施例,参照图1至图4,发光单元包括多个间隔设置的子发光单元201(图1至图4中均以一个发光单元200,一个发光单元200包括三个子发光单元201为例)。其中,形成发光单元的步骤包括:在背板电路层100远离衬底基板1100的一侧形成多个间隔设置的子阳极211,在子阳极211远离背板电路层100的一侧形成多个间隔设置的子发光层221,在子发光层221远离子阳极211的一侧形成多个子阴极231,多个子阴极231接触设置,构成阴极230,也即是说,同一个发光单元中的子阳极和子发光层为独立的结构,但是子阴极彼此接触,为整层的阴极结构,覆盖多个子发光单元中的子发光层。
根据本公开的实施例,阳极和发光层是采用图形化的掩膜通过蒸镀形成的,其中,掩膜板的图形的具体形状没有特殊要求,本领域技术人员可以根据子发光单元的有效发光区域的形状(或者说像素界定层限定出的开口的形状)等实际情况灵活选择,比如可以为四边形、圆形、椭圆形、六边形、五边形或不规则图形的形状。
S400:形成辅助阴极500,辅助阴极500位于衬底基板1100与阴极230之间,且与阴极230电连接。需要说明的是,辅助阴极可以是衬底基板与阴极之间的任意导电层或金属层,当辅助阴极与阴极形成电连接后,有利于降低显示面板的负载。在一些具体实施例中,辅助阴极通过连接线与阴极电连接。其中,图1至图5仅以源漏电极层160中的一部分作为辅助阴极为例,辅助阴极通过连接线300电连接阴极230与源漏电极层中的源级161。进一步的,阴极230和连接线300是采用图形化的掩膜通过蒸镀同时形成的,即阴极与连接线通过同一工艺步骤制作得到,进而可以简化工艺流程,缩短工艺时长。
其中,由于源漏电极层包括源极、漏极、数据线(Vd)、电源信号线或其他信号等多条走线,所以当阴极230通过连接线300与源漏电极层160电连接时,本领域技术人员可以根据实际情况灵活选择任一条走线,只要可以有效实现其电连接的效果且不影响各个走线的工作和排布即可,在图1至图5中,仅仅是以阴极230通过连接线300与源漏电极层160中的源极161电连接为例;在图6中,仅仅是以阴极230通过连接线300与源漏电极层160中的某一条信号线电连接为例。
进一步的,阴极230通过连接线300与辅助阴极电连接的搭接孔的具体设置位置没有特殊要求,本领域技术人员可以根据实际情况灵活选择即可,只要搭接孔的位置不影响显示面板中各个走线的排布,并实现阴极与辅助阴极的电连接即可。
根据本公开的实施例,制作显示面板的方法还包括形成搭接桥700的步骤,搭接桥700与阴极230通过同一步骤制作完成,用于连接相邻发光单元200中的阴极230,且搭接桥与阴极同层设置,由此,有利于降低显示面板的负载。
进一步的,当辅助阴极为源漏电极层的一部分时,参照图7或图8,每一行(或每一列)的发光单元中的一个阴极230通过搭接桥700电连接,还可以进一步的与VSS信号线电连接。由此,上述阴极与VSS信号线的电连接可以起到预防修复的作用,即若某一个或多个辅助阴极与阴极电连接失效,由于阴极与VSS信号线已经电连接,此时依然可以有效保证阴极的有效功能,以避免其对应的发光单元不能正常发光。
根据本公开的实施例,上述制作显示面板的方法可以用于制作前面所述的显示面板,其中在制作显示面板的过程中对衬底基板、背板电路层、阳极、发光层、阴极等结构的设置要求与前面所述的显示面板中对各层结构的要求一致,在此不再过多的阐述。
在本公开的又一个方面,本公开提供了一种显示装置。根据本公开的实施例,显示装置包括显示面板,所述显示面板是前面所述的显示面板或者利用前面所述的方法制作的显示面板。由此,该显示装置具有良好的显示效果,并且具有较低的负载以及较佳的卷曲效果。本领域技术人员理解,该显示装置具有前面所述的显示面板的全部特征以及优点,在此不再一一赘述。
根据本公开的实施例,上述显示装置的具体种类没有特殊的要求,本领域技术人员可以根据实际需求灵活选择,比如可以为手机、iPad、笔记本等显示装置。
本领域技术人员可以理解,该显示装置除了前面所述显示面板之外,还具有常规显示装置所必备的结构和部件,以手机为例,除了前面所述显示面板之外,还包括电池后盖、中框、触控面板、音频模组、主板等必备的结构和部件。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“一些具体实施例”或“另一些具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种显示面板,其特征在于,包括:
    衬底基板;
    背板电路层,所述背板电路层设置在所述衬底基板的一侧;
    多个间隔设置的发光单元,所述发光单元设置在所述背板电路层远离所述衬底基板的一侧,其中,在远离所述背板电路层的方向上,所述发光单元包括依次设置的阳极、发光层和阴极,且不同的所述发光单元之间的所述阴极间隔设置,不同的所述发光单元之间的所述发光层间隔设置;
    辅助阴极,所述辅助阴极位于所述衬底基板与所述阴极之间,且与所述阴极电连接。
  2. 根据权利要求1所述的显示面板,其特征在于,所述辅助阴极为源漏电极层中的一部分。
  3. 根据权利要求1所述的显示面板,其特征在于,所述阳极在所述衬底基板的正投影和所述辅助阴极在所述衬底基板的正投影均位于所述阴极在所述衬底基板的正投影的内部。
  4. 根据权利要求1所述的显示面板,其特征在于,所述发光单元还包括空穴注入层、空穴传输层、电子传输层、电子注入层,所述空穴注入层设置在所述阳极和所述发光层之间,所述空穴传输层设置在所述空穴注入层和所述发光层之间,所述电子传输层设置在所述发光层和所述阴极之间,所述电子注入层设置在所述电子传输层和所述阴极之间,不同所述发光单元中的所述空穴注入层间隔设置,所述空穴传输层间隔设置,所述电子传输层间隔设置,所述电子注入层间隔设置。
  5. 根据权利要求1所述的显示面板,其特征在于,所述发光单元包括多个子发光单元,每个所述子发光单元包括子阴极、子阳极和设置在所述子阴极和所述子阳极之间的子发光层,在同一个所述发光单元中,不同所述子发光单元中的所述子阳极间隔设置,所述子发光层间隔设置,所述子阴极接触设置,构成所述阴极。
  6. 根据权利要求5所述的显示面板,其特征在于,所述子发光单元还包括子空穴注入层、子空穴传输层、子电子传输层、子电子注入层,其中,所述子空穴注入层设置在所述子阳极和所述子发光层之间,所述子空穴传输层设置在所述子空穴注入层和所述子发光层之间,所述子电子传输层设置在所述子发光层和所述子阴极之间,所述子电子注入层设置在所述子电子传输层和所述子阴极之间,且不同所述子发光单元中的所述子空穴注入层间隔设置,所述子空穴传输层间隔设置,所述子电子传输层间隔设置,所述子电子注入层间隔设置。
  7. 根据权利要求5所述的显示面板,其特征在于,所述子发光单元还包括子空穴注入层、子空穴传输层、子电子传输层、子电子注入层,其中,所述子空穴注入层设置在所述子阳极和所述子发光层之间,所述子空穴传输层设置在所述子空穴注入层和所述子发光层之间,所述子电子传输层设置在所述子发光层和所述子阴极之间,所述子电子注入层设置在所述子电子传输层和所述子阴极之间,且同一所述发光单元中,不同所述子发光单元中的所述子空穴注入层接触设置,不同所述子发光单元中的所述子空穴传输层接触设置,不同所述子发光单元中的所述子电子注入层接触设置,不同所述子发光单元中的所述子电子传输层接触设置。
  8. 根据权利要求5所述的显示面板,其特征在于,在同一个所述发光单元中,相邻两个所述子发光单元中的所述子阳极之间的间距为5~15微米。
  9. 根据权利要求1所述的显示面板,其特征在于,还包括搭接桥,所述搭接桥用于连接相邻所述发光单元中的所述阴极,且所述搭接桥与所述阴极同层设置。
  10. 根据权利要求9所述的显示面板,其特征在于,所述搭接桥为长条形,其宽度为50~70微米。
  11. 根据权利要求10所述的显示面板,其特征在于,所述辅助阴极在所述衬底基板的正投影位于所述搭接桥在所述衬底基板的正投影的内部。
  12. 根据权利要求1~11中任一项所述的显示面板,其特征在于,所述背板电路层包括:
    有源层,所述有源层设置在所述衬底基板的一侧;
    栅绝缘层,所述栅绝缘层设置在所述有源层远离所述衬底基板的一侧;
    栅极,所述栅极设置在所述栅绝缘层远离所述有源层的一侧;
    层间介质层,所述层间介质层设置在所述栅极远离所述衬底基板的一侧,且覆盖未被所述栅极覆盖的所述栅绝缘层的表面;
    源漏电极层,所述源漏电极层设置在所述层间介质层远离所述衬底基板的一侧,且通过通孔与有源层电连接;
    平坦层,所述平坦层设置在所述源漏电极层远离所述衬底基板的一侧,且覆盖未被所述源漏电极层覆盖的所述层间介质层的表面,其中,所述平坦层的材质为透明的聚酰亚胺。
  13. 根据权利要求1~11中任一项所述的显示面板,其特征在于,多个间隔设置的所述发光单元呈阵列排布,其中,在同一行的多个所述发光单元中,相邻两个所述发光单元之间的间距为所述发光单元在所述行方向上的宽度;在同一列的多个所述发光单元中,相邻两个所述发光单元之间的间距为所述发光单元在所述列方向上的宽度。
  14. 一种制作显示面板的方法,其特征在于,包括:
    提供衬底基板;
    在所述衬底基板的一侧制作背板电路层;
    在所述背板电路层远离所述衬底基板的一侧形成多个间隔设置的发光单元,其中,所述发光单元的形成步骤包括:在所述背板电路层远离所述衬底基板的一侧形成阳极,在所述阳极远离所述背板电路层的一侧形成发光层,在所述发光层远离所述阳极的一侧形成阴极,且不同的所述发光单元之间的所述阴极间隔设置,不同的所述发光单元之间的所述发光层间隔设置;以及
    形成辅助阴极,所述辅助阴极位于所述衬底基板与所述阴极之间,且与所述阴极电连接。
  15. 根据权利要求14所述的方法,其特征在于,形成所述发光单元的步骤包括:
    在所述背板电路层远离所述衬底基板的一侧形成多个间隔设置的子阳极,在所述子阳极远离所述背板电路层的一侧形成多个间隔设置的子发光层,在所述子发光层远离所述子阳极的一侧形成多个子阴极,多个所述子阴极接触设置,构成所述阴极。
  16. 根据权利要求14或15所述的方法,其特征在于,所述阳极和所述发光层是采用图形化的掩膜通过蒸镀形成的,
    所述阴极和所述连接线是采用图形化的掩膜通过蒸镀同时形成的。
  17. 根据权利要求14或15所述的方法,其特征在于,还包括形成搭接桥的步骤,所述搭接桥与所述阴极通过同一步骤制作完成,用于连接相邻所述发光单元中的所述阴极。
  18. 一种显示装置,其特征在于,包括显示面板,所述显示面板是权利要求1~13中任一项所述的显示面板或者利用权利要求14~17中任一项所述的方法制作的显示面板。
PCT/CN2020/138072 2020-12-21 2020-12-21 显示面板及其制作方法和显示装置 WO2022133669A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2309759.5A GB2617493A (en) 2020-12-21 2020-12-21 Display panel and method for manufacturing same, and display device
PCT/CN2020/138072 WO2022133669A1 (zh) 2020-12-21 2020-12-21 显示面板及其制作方法和显示装置
CN202080003497.6A CN115053359B (zh) 2020-12-21 2020-12-21 显示面板及其制作方法和显示装置
US18/038,896 US20230422578A1 (en) 2020-12-21 2020-12-21 Display panels and methods of manufacturing the same, and display apparatuses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138072 WO2022133669A1 (zh) 2020-12-21 2020-12-21 显示面板及其制作方法和显示装置

Publications (1)

Publication Number Publication Date
WO2022133669A1 true WO2022133669A1 (zh) 2022-06-30

Family

ID=82156941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138072 WO2022133669A1 (zh) 2020-12-21 2020-12-21 显示面板及其制作方法和显示装置

Country Status (4)

Country Link
US (1) US20230422578A1 (zh)
CN (1) CN115053359B (zh)
GB (1) GB2617493A (zh)
WO (1) WO2022133669A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030006697A1 (en) * 2001-07-09 2003-01-09 Weaver Michael S. Method for patterning devices
CN106486606A (zh) * 2015-08-31 2017-03-08 乐金显示有限公司 有机发光显示装置及其制造方法
CN107369698A (zh) * 2016-05-12 2017-11-21 乐金显示有限公司 连接结构的制造方法及使用该连接结构的有机发光二极管显示装置
US20170338438A1 (en) * 2016-05-23 2017-11-23 Lg Display Co., Ltd. Organic Light Emitting Display Device
CN109524441A (zh) * 2018-11-22 2019-03-26 京东方科技集团股份有限公司 Oled显示基板、显示面板
CN109962171A (zh) * 2017-12-11 2019-07-02 乐金显示有限公司 电致发光显示装置
CN110739338A (zh) * 2019-10-24 2020-01-31 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板
CN110911585A (zh) * 2019-11-29 2020-03-24 京东方科技集团股份有限公司 一种显示基板、其制作方法及显示装置
CN111199993A (zh) * 2018-11-16 2020-05-26 乐金显示有限公司 可拉伸显示装置
CN111596783A (zh) * 2019-02-20 2020-08-28 三星显示有限公司 显示设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030006697A1 (en) * 2001-07-09 2003-01-09 Weaver Michael S. Method for patterning devices
CN106486606A (zh) * 2015-08-31 2017-03-08 乐金显示有限公司 有机发光显示装置及其制造方法
CN107369698A (zh) * 2016-05-12 2017-11-21 乐金显示有限公司 连接结构的制造方法及使用该连接结构的有机发光二极管显示装置
US20170338438A1 (en) * 2016-05-23 2017-11-23 Lg Display Co., Ltd. Organic Light Emitting Display Device
CN109962171A (zh) * 2017-12-11 2019-07-02 乐金显示有限公司 电致发光显示装置
CN111199993A (zh) * 2018-11-16 2020-05-26 乐金显示有限公司 可拉伸显示装置
CN109524441A (zh) * 2018-11-22 2019-03-26 京东方科技集团股份有限公司 Oled显示基板、显示面板
CN111596783A (zh) * 2019-02-20 2020-08-28 三星显示有限公司 显示设备
CN110739338A (zh) * 2019-10-24 2020-01-31 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示面板
CN110911585A (zh) * 2019-11-29 2020-03-24 京东方科技集团股份有限公司 一种显示基板、其制作方法及显示装置

Also Published As

Publication number Publication date
US20230422578A1 (en) 2023-12-28
GB2617493A (en) 2023-10-11
GB202309759D0 (en) 2023-08-09
CN115053359B (zh) 2024-02-09
CN115053359A (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
US10276641B2 (en) Display panel and display device
WO2018119926A1 (zh) Oled显示单元及其制作方法
CN113920943B (zh) 显示装置及其制作方法
JP2009015344A (ja) 有機電界発光素子とその製造方法
WO2022088959A9 (zh) 显示面板及其制作方法和显示装置
CN112331708B (zh) 显示面板
WO2021051729A1 (zh) 有机发光二极管显示面板及有机发光二极管显示装置
WO2020258906A1 (zh) 一种显示面板和显示装置
US6541910B2 (en) Organic el display
CN110931541A (zh) 显示面板和显示装置
CN113053309B (zh) 显示面板和显示装置
WO2022052226A1 (zh) 一种显示面板及显示装置
WO2021237725A9 (zh) 显示基板和显示装置
WO2019120168A1 (zh) 基板及其制作方法、电子装置
CN114830220A (zh) 显示面板及显示装置
CN215266306U (zh) 显示面板及显示装置
WO2022133669A1 (zh) 显示面板及其制作方法和显示装置
WO2020198915A1 (zh) 显示面板及显示装置
WO2023159388A1 (zh) 显示基板、显示面板及显示装置
WO2022041022A1 (zh) 显示基板及显示装置
WO2021190239A1 (zh) 用于oled显示装置的引线布置结构和显示装置
WO2020258903A1 (zh) 一种显示面板及显示装置
WO2022262047A1 (zh) 触控显示面板
CN115148155B (zh) 显示面板和显示装置
US20240107844A1 (en) Display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966250

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18038896

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202309759

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20201221

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.10.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20966250

Country of ref document: EP

Kind code of ref document: A1