WO2022131618A1 - 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법 - Google Patents

충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법 Download PDF

Info

Publication number
WO2022131618A1
WO2022131618A1 PCT/KR2021/017872 KR2021017872W WO2022131618A1 WO 2022131618 A1 WO2022131618 A1 WO 2022131618A1 KR 2021017872 W KR2021017872 W KR 2021017872W WO 2022131618 A1 WO2022131618 A1 WO 2022131618A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
content
steel
less
scale layer
Prior art date
Application number
PCT/KR2021/017872
Other languages
English (en)
French (fr)
Inventor
조재영
강상덕
김경태
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP21906923.4A priority Critical patent/EP4265762A1/en
Priority to JP2023535596A priority patent/JP2023554331A/ja
Priority to US18/267,674 priority patent/US20240052451A1/en
Priority to CN202180084766.0A priority patent/CN116635552A/zh
Publication of WO2022131618A1 publication Critical patent/WO2022131618A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/04Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing
    • B21B45/08Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for de-scaling, e.g. by brushing hydraulically
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel material for a vibration damper used to secure the seismic resistance of a structure from an earthquake, and a method for manufacturing the same.
  • the seismic design which has been mainly used in Korea in the past, was mainly used in the case of an earthquake, by lowering the yield ratio of steel used for structures of columns or beams to delay the time of structural destruction.
  • the seismic design using such a steel material with a resistance to yield ratio has a problem in that it is not possible to reuse the steel used in the structure, and the structure itself must be reconstructed due to the lack of stability.
  • a vibration damper is used as a device for absorbing such seismic energy, and in the case of a steel material for a vibration damping damper, it has the characteristic of an extreme resistance yield point. By lowering the yield point of structural materials of existing columns or beams, the steel for vibration damper absorbs vibration energy from earthquakes by causing yielding in the event of an earthquake. do.
  • the conventional steel for vibration damper uses ultra-low carbon steel to have a coarse ferrite structure, and thus exhibits continuous yield behavior in which the yield point phenomenon does not occur during a tensile test. For this reason, while absorbing the plastic deformation energy generated by the earthquake, work hardening occurs rapidly, and the yield strength is increased so that there is a problem that needs to be improved as a steel material for a vibration damper for absorbing earthquake energy.
  • Patent Document 1 Patent Publication No. 2008-0088605
  • One aspect of the present invention is
  • the base steel sheet is in wt%, C: 0.005 to 0.02%, Si: 0.05 to 0.2%, Mn: 0.1 to 0.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.05%, N: 0.005% or less, Nb: 0.02 to 0.06%, Ti: 48/14 ⁇ [N] to 0.05%, the remainder including Fe and other unavoidable impurities,
  • the base steel sheet has a microstructure, and contains 95% or more of ferrite as an area fraction,
  • the total content of FeO and Fe 2 SiO 4 in the scale layer is 2 to 5% by weight, providing a steel sheet for a vibration damper.
  • the base steel sheet is in wt%, C: 0.005 to 0.02%, Si: 0.05 to 0.2%, Mn: 0.1 to 0.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.05%, N: Reheating the steel slab containing less than 0.005%, Nb: 0.02 ⁇ 0.06%, Ti: 48/14 ⁇ [N] ⁇ 0.05%, the balance Fe and other unavoidable impurities at 1050 ⁇ 1250 °C;
  • It provides a method of manufacturing a steel sheet for a vibration damper comprising a.
  • a steel sheet that can be suitably used for a vibration damping damper used to secure the earthquake resistance of a structure from an earthquake, and a method for manufacturing the same.
  • FIG. 1 shows a photograph taken with an optical microscope of the microstructure inside a steel plate according to an aspect of the present invention.
  • FIG. 2 is a graph showing changes in yield strength and tensile strength according to ferrite grain size in the steel material according to the present invention
  • 3 is a graph showing the change in yield strength according to the hot rolling end temperature in the present invention.
  • FIG. 4 is a photograph showing the shape in which the scale layer is dropped due to poor adhesion of the scale layer as showing the adhesion of the scale layer formed on the surface of the steel sheet after the rolling is finished in the present invention.
  • FIG. 5 is a photograph showing the cross section of the scale layer formed on the surface of the steel sheet after the rolling is finished in the present invention, in the scale layer formed on the upper layer of the steel sheet, FeO + Fe 2 SiO 4 Optical photograph showing the distribution to be.
  • the present inventors developed a steel sheet for a damping damper that has low yield strength, excellent low-temperature impact toughness, and at the same time exhibits a yield point phenomenon. We have come to perfect the technology that can suppress the increase in strength.
  • a steel sheet for a vibration damping damper includes a steel sheet; and a scale layer formed on at least one surface of the base steel sheet.
  • the base steel sheet in weight%, C: 0.005 to 0.02%, Si: 0.05 to 0.2%, Mn: 0.1 to 0.5%, P: 0.02% or less, S: 0.01% or less, Al: 0.005 to 0.05% %, N: 0.005% or less, Nb: 0.02 to 0.06%, Ti: 48/14 ⁇ [N] to 0.05%, the balance contains Fe and other unavoidable impurities.
  • the C content is an element that causes solid solution strengthening and is fixed to dislocations in a free state to increase yield strength and lower elongation. Therefore, in order to be used appropriately as a steel material for a vibration damper, the C content needs to be controlled to be 0.005% or more, and if the C content exceeds 0.02%, there is a risk of exceeding the strength suitable for use as a vibration damper. Therefore, in the present invention, the C content is controlled to 0.005 to 0.02%. However, more preferably, the lower limit of the C content may be 0.011%, or the upper limit of the C content may be 0.018%.
  • Si is an element that causes solid solution strengthening, and is an element that increases yield strength and lowers elongation.
  • the Si content is controlled to 0.05% or more in terms of securing the adhesion of the secondary scale, and the Si content is controlled to 0.2% or less in terms of securing low yield strength.
  • the lower limit of the Si content may be 0.07%, or the upper limit of the Si content may be 0.15%.
  • Mn is an element that causes solid solution strengthening like Si, and is an element that increases yield strength and lowers elongation. Therefore, in the present invention, in order to be suitably used as a steel for vibration damper, the Mn content is controlled to 0.1% or more in terms of securing adequate strength, and the upper limit is controlled to 0.5% or less to avoid excessive solid solution strengthening effect. However, more preferably, the lower limit of the Mn content may be 0.18%, and the upper limit of the Mn content may be 0.35%.
  • the P content can be controlled to 0.02% or less, and more preferably to be controlled to 0.013% or less.
  • the lower limit of the P content may be 0.0005%, except for 0% in consideration of unavoidable mixing, and more preferably, the lower limit of the P content.
  • the S content can be controlled to 0.01% or less, and more preferably to 0.004% or less.
  • the lower limit of the S content may be 0.0005% or more, more preferably, 0% is excluded in consideration of unavoidable mixing.
  • Al is an element that can inexpensively deoxidize molten steel, and controls the upper limit of the Al content to 0.05% in terms of securing impact toughness while sufficiently lowering the yield strength.
  • the upper limit of the Al content may be controlled to 0.035%
  • the lower limit of the Al content may be controlled to 0.005% in terms of securing the minimum deoxidation performance.
  • the lower limit of the Al content may be 0.01%
  • the upper limit of the Al content may be 0.035%.
  • N is an element that causes solid solution strengthening and is fixed to dislocations in a free state to increase yield strength and lower elongation. Therefore, since the lower the N content is, the better, the N content is controlled to 0.005% or less in terms of securing low yield strength.
  • the lower limit of the N content may be excluded from 0% in consideration of unavoidable mixing, and more preferably, the lower limit of the N content may be 0.001%.
  • Nb is an important element in the manufacture of TMCP steel, and is an element that precipitates in the form of NbC or NbCN.
  • Nb dissolved during reheating to a high temperature suppresses recrystallization of austenite, thereby exhibiting the effect of refining the structure.
  • Nb in an amount of 0.06% or less.
  • the lower limit of the Nb content may be 0.03%, and the upper limit of the Nb content may be 0.05%.
  • Ti is an element serving to prevent N from adhering to dislocations by precipitation in the form of TiN. Therefore, in order to fix N in the steel in an appropriate range, 48/14 ⁇ [N]% or more of Ti should be added in consideration of the added N content (wt%) (here, [N] is N in the steel sheet) means the weight% content of). On the other hand, when Ti is excessively added, the precipitates become coarse and there is a risk of deterioration of impact toughness. Therefore, Ti is controlled to 0.05% or less in terms of securing impact toughness. However, more preferably, the lower limit of the Ti content may be 0.02%, and the upper limit of the Ti content may be 0.045%.
  • the base steel sheet satisfies the following relational formula (1).
  • [C] represents the average weight % content of C in the base steel sheet
  • [Nb] represents the average weight % content of Nb in the base steel sheet
  • [A] is the following relation It represents a value defined by 2.
  • the value of Free C expressed as [C]-12/93 ⁇ [Nb]-12/48 ⁇ [A] in the above-described relation 1 can be controlled in the range of 0.001 to 0.01%. . If the above-mentioned Free C value is less than 0.001%, it may become difficult to develop the yield point phenomenon, and if it exceeds 0.01%, there is a risk of exceeding the appropriate strength that can be suitably used as a vibration damper. That is, in the present invention, by satisfying the above relational expression 1, it is possible to obtain a steel sheet in which excessive work hardening does not occur when an earthquake occurs by encouraging the expression of the upper yield point.
  • a steel sheet for a vibration damping damper excellent in low-temperature impact toughness having a yield strength in the range of 205 to 245 MPa, a tensile strength of 300 MPa or more, and a Sharpie impact transition temperature of -20 ° C or less.
  • the remaining component is Fe.
  • unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, this cannot be excluded. Since these impurities are known to those skilled in the art, all contents thereof are not mentioned herein.
  • the base steel sheet is a microstructure, and contains ferrite as an area fraction, 95% or more (more preferably 99% or more), and the balance is 5% or less (including 0%) of pearlite, etc. may include other awards of Or, most preferably, the base steel sheet has a single ferrite structure (that is, the base steel sheet has a microstructure, including ferrite as an area fraction, 100%). By satisfying this, it is possible to effectively absorb energy in case of an earthquake and serve as an earthquake damper.
  • the average grain size of the ferrite in the base steel sheet, may be in the range of 20-50 ⁇ m, more preferably 30-50 ⁇ m.
  • the average grain size of the ferrite is less than 20 ⁇ m, a problem of exceeding the target yield strength for use as a vibration damper may occur, and if it exceeds 50 ⁇ m, dislocation due to the coarse ferrite grain size can move easily, which may cause a problem of exhibiting continuous yielding behavior.
  • the above-mentioned average grain diameter of ferrite grains means the average value of the values obtained by measuring the equivalent circle diameter of the grains based on the cut surface in the thickness direction (ie, the direction perpendicular to the rolling direction) of the steel material, specifically, the When it is assumed that spherical particles drawn with the longest length penetrating the inside as the particle diameter, this is the average value of the measured particle diameters.
  • a scale layer may be formed on at least one surface of the base steel sheet.
  • the scale layer is a layer made of FeO, Fe 2 SiO 4 , Fe 2 O 3 , Fe 3 O 4 , oxides of other alloying elements, etc. depending on conditions in the manufacturing process of the steel sheet. can mean
  • the total content of FeO and Fe 2 SiO 4 may be 2 to 5% by weight.
  • the total content of FeO and Fe 2 SiO 4 is less than 2% by weight relative to the total content of the scale layer, the adhesion of the scale layer is deteriorated, and there is a risk that the scale may be irregularly peeled off the surface.
  • the total content of FeO and Fe 2 SiO 4 with respect to the total content of the scale layer exceeds 5%, there may be a problem in that the yield strength exceeds 245 MPa.
  • the lower limit of the total content of FeO and Fe 2 SiO 4 relative to the total content of the scale layer may be 2.28%, or FeO and Fe 2 SiO 4 relative to the total content of the scale layer.
  • the upper limit of the total content may be 4%.
  • the content of FeO in the scale layer may be 0.5 to 2% by weight, and/or the content of Fe 2 SiO 4 in the scale layer is 1 to 4.5% by weight can be Alternatively, in terms of maximizing the above-described effect, the lower limit of the content of FeO in the scale layer may be 0.79%, or the upper limit of the content of FeO in the scale layer may be 1.5%. Alternatively, in terms of maximizing the above-described effect, the lower limit of the content of Fe 2 SiO 4 in the scale layer may be 1.18%, or the upper limit of the content of Fe 2 SiO 4 in the scale layer may be 3.5%.
  • the ratio (W1/W2) of the content (W1) of Fe 2 SiO 4 and the content (W2) of FeO in the scale layer may be 1 to 9.
  • the ratio of W1/W2 is less than 1.0, there may be a problem that the ratio of Fe 2 SiO 4 is insufficient and the adhesive strength of the scale is weakened, and if the ratio of W1/W2 is more than 9, the steel sheet Red scale problems may occur on the surface.
  • the lower limit of the ratio W1/W2 may be 1.06, or the upper limit of the ratio W1/W2 may be 4.
  • the average thickness of the scale layer may be 10 ⁇ 100 ⁇ m. If the average thickness of the scale layer is less than 10 ⁇ m, a problem of weakening the adhesiveness of the scale may occur, and if it exceeds 100 ⁇ m, a problem in processing may occur. Meanwhile, in terms of further improving the above-described effect, the lower limit of the average thickness of the scale layer may be 31 ⁇ m, or the upper limit of the average thickness of the scale layer may be 45 ⁇ m.
  • the method for manufacturing a steel material for a vibration damper according to an aspect of the present invention may include reheating a steel slab satisfying the above-described composition, and the reheating may be performed in a temperature range of 1050 to 1250°C. At this time, the heating temperature of the steel slab is controlled to 1050° C. or higher in order to sufficiently dissolve the carbonitride of Ti and/or Nb formed during casting.
  • the heating temperature of the steel slab is controlled to 1050° C. or higher in order to sufficiently dissolve the carbonitride of Ti and/or Nb formed during casting.
  • austenite coarsening there is a risk of austenite coarsening, and excessive time is required for the surface temperature after rough rolling to reach the surface layer cooling start temperature. it is preferable
  • the oxide generated in the heating furnace may penetrate the surface of the steel slab to deteriorate the adhesion of the finally formed scale layer. Therefore, in order to improve the surface quality through ensuring good adhesion of the scale layer, after the reheating step and before the rough rolling step, it is possible to perform a scale removal treatment by providing high-pressure water at a pressure of 150 to 200 bar to the surface of the steel slab.
  • the reheated steel slab may further include a step of performing rough rolling to adjust the shape of the slab before the finish rolling step to be described later, and the temperature of such rough rolling is determined by the recrystallization of austenite.
  • the stopping temperature (Tnr) can be controlled to +50°C or more. The effect of destroying structural structures such as dentrite formed during casting by rough rolling can be obtained, and also the effect of reducing the size of austenite can be obtained.
  • the rough rolling may be performed in the range of 999 ⁇ 1155 °C.
  • the oxide formed on the surface of the rough-rolled bar may penetrate and affect the adhesion of the finally generated scale layer. Therefore, in the present invention, in order to improve the surface quality through securing good adhesion of the scale layer, after the rough rolling step and before the hot rolling step, high-pressure water at a pressure of 150 to bar pressure is selectively provided to the surface of the rough-rolled bar to remove the scale treatment can be performed, and the pressure of the high-pressure water in the second descaling step can be controlled in a range of 1 to 1.2 times that of the high-pressure water pressure in the first descaling step, more preferably from 1.02 to It can be controlled in a range of 1.2 times.
  • It includes the step of hot rolling the above-mentioned rough-rolled bar in a temperature range of Tnr or higher, and may be cooled by air cooling after hot rolling.
  • the hot rolling may be performed in a temperature range of 922 ⁇ 962 °C.
  • slab reheating-rough rolling-hot rolling was performed under the conditions shown in Table 3 below to prepare steel.
  • high-pressure water of 150 bar pressure was provided to the surface of the slab to perform the primary descaling treatment
  • high-pressure water of 180 bar pressure was provided on the surface of the rough-rolled bar
  • the steel sheet was manufactured under the conditions described in Table 3, the steel sheet thus obtained was polished-etched, and then observed with an optical microscope to confirm that the base steel sheet had a ferrite single-phase structure.
  • the average thickness of the scale layer was measured by photographing with an optical microscope so that the scale layer was observed, and it is shown in Table 4 below.
  • the content of FeO and Fe 2 SiO 4 in the scale layer was measured using a scanning electron microscope and EDS, and is shown in Table 4 below.
  • the average particle diameter of the ferrite grains was measured using the line measurement method, the point at which yielding occurred using a tensile tester was used as the yield strength, and the strength at the time of necking was used as the tensile strength.
  • the Sharpie impact transition temperature was measured by measuring the shock absorption energy using a Sharpie impact tester, indicating the temperature at which fracture transitions from ductile to brittle.
  • the peeling area of the scale layer was measured and evaluated according to the following criteria.
  • the peeling area of the scale layer is 20% or less
  • Example 1-1 you 212 307 -45 ⁇ Example 1-2 you 219 313 -50 ⁇ Reference Example 1 radish 265 357 -35 ⁇ Example 2-1 you 214 308 -38 ⁇ Example 2-2 you 224 317 -37 ⁇ Reference Example 2 radish 275 365 -40 ⁇ Example 3-1 you 211 306 -37 ⁇ Example 3-2 you 202 300 -41 ⁇ Reference example 3 radish 275 369 -28 ⁇
  • Example 4-1 you 219 313 -37 ⁇
  • Example 4-2 you 214 308 -51 ⁇ Reference Example 4 radish 296 354 -41 ⁇ Comparative Example 1 radish 203 306 -26 ⁇ Comparative Example 2 you 255 345 -21 ⁇ Comparative Example 3 you 263 352 -25 ⁇ Comparative Example 4 you 196 305 -8 ⁇ Comparative Example 1 radish 203 306 -26 ⁇ Comparative Example 2 you 255 345 -21 ⁇ Comparative Example 3 you
  • Example 1-1 a photograph obtained by photographing the microstructure using an optical microscope is shown in FIG.
  • FIG. 1 it was confirmed that the microstructure of the steel sheet was a single ferrite structure, and the average grain size of ferrite was in the range of 20-50 ⁇ m.
  • Example 1-1 after manufacturing so that the cross section in the thickness direction to be observed so that the scale layer is observed, a photograph taken with an optical microscope is shown in FIG. 5 . Through this, it was confirmed that FeO+Fe 2 SiO 4 was included in the scale layer formed on the base steel sheet.
  • Comparative Example 1 the C content was less than the lower limit prescribed in the present invention, and the value of Free C was insufficient, which resulted in continuous yielding, and the yield strength was less than 205 MPa.
  • Comparative Example 3 was a case in which Si was excessively added, and the yield strength exceeded 245 MPa.
  • Comparative Example 4 satisfies all the manufacturing conditions of the present invention, but the Ti content exceeds the upper limit prescribed in the present invention, and the Sharpie impact transition temperature exceeds -20°C due to the generation of coarse precipitates.
  • Comparative Example 5 the Si content prescribed in the present invention was insufficient, so that the yield strength was less than 205 MPa, and the total content of FeO and Fe 2 SiO 4 in the scale layer was less than 2% by weight, confirming that the surface properties were inferior did In particular, the peeling state of the scale layer for Comparative Example 5 is shown in FIG.
  • the hot rolling end temperature is less than Tnr.
  • dislocations were introduced by rolling in the ferrite region, showing continuous yielding behavior, and all yield strengths exceeding 245 MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은 지진으로부터 구조물의 내진성을 확보하기 위해 사용되는 제진 댐퍼용 강재 및 이의 제조방법에 관한 것으로서, 보다 상세하게는 충격 인성이 우수한 제진 댐퍼용 강재 및 이의 제조방법에 관한 것이다.

Description

충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법
본 발명은 지진으로부터 구조물의 내진성을 확보하기 위해 사용되는 제진 댐퍼용 강재 및 이의 제조방법에 관한 것이다.
종래에 국내에서 주로 사용되던 내진 설계는 지진 시, 기둥이나 보의 구조물에 사용되는 강재의 항복비를 낮춰서 구조물의 파괴에 이르는 시점을 늦추는 기술이 주로 사용되었다. 하지만, 이러한 저항복비 강재를 사용한 내진 설계는 구조물에 사용되는 강재의 재사용이 불가능할 뿐만 아니라, 구조물 자체도 안정성 확보의 부재로 재건축을 해야만 하는 문제가 있었다.
근래에는 내진 설계 기술이 발전하여 제진 또는 면진 구조의 실용화가 진행되고 있는데, 특히 지진에 의한 구조물에 가해지는 에너지를 특정 부위에 흡수시켜 내진 성능을 확보하는 기술이 다양하게 개발되고 있다. 이러한 지진 에너지를 흡수하는 장치로서 제진 댐퍼가 사용되고 있고, 제진 댐퍼용 강재의 경우에는 극저항복점의 특성을 갖는다. 제진 댐퍼용 강재는 기존의 기둥이나 보의 구조재보다 항복점을 낮춤으로써, 지진 시에 먼저 항복을 일으켜서 지진에 의한 진동에너지를 흡수하고, 다른 구조재는 탄성의 범위로 유지하게 함으로써 구조물의 변형을 억제하게 된다.
하지만 종래의 제진 댐퍼용 강재는 극저탄소강을 활용하여 조대한 페라이트 조직을 갖게 함으로써, 인장시험 시 항복점 현상이 발현되지 않는 연속 항복거동을 나타낸다. 이로 인해, 지진에 의해서 발생되는 소성 변형 에너지를 흡수하면서, 가공경화가 급속히 일어나고, 항복강도의 상승이 커서 지진 에너지 흡수용 제진 댐퍼용 강재로서는 개선되어야 하는 문제가 있다.
그러나, 지금까지 이러한 고급의 수요를 충족할 수 있는 수준의 기술은 개발되지 않은 실정이다.
(특허문헌 1) 특허 공개공보 제2008-0088605호
본 발명의 일 측면에 따르면, 낮은 항복강도를 가지고, 지진으로부터 구조물의 내진성 확보를 위해 사용 가능한 제진 댐퍼용 강판 및 이의 제조방법을 제공하고자 한다.
혹은, 본 발명의 또 다른 일 측면에 따르면, 낮은 항복강도를 가짐과 동시에, 저온 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법을 제공하고자 한다.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.
본 발명의 일 측면은,
소지강판; 및
상기 소지강판의 적어도 일면에 형성된 스케일층;을 포함하고,
상기 소지강판은 중량%로, C: 0.005~0.02%, Si: 0.05~0.2%, Mn: 0.1~0.5%, P: 0.02% 이하, S: 0.01% 이하, Al: 0.005~0.05%, N: 0.005% 이하, Nb: 0.02~0.06%, Ti: 48/14×[N]~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
상기 소지강판은 미세조직으로서, 페라이트를 면적분율로 95% 이상 포함하고,
상기 스케일층에서 FeO 및 Fe2SiO4의 합계 함량은 2~5중량%인, 제진 댐퍼용 강판을 제공한다.
또한, 본 발명의 또 다른 일 측면은,
상기 소지강판은 중량%로, C: 0.005~0.02%, Si: 0.05~0.2%, Mn: 0.1~0.5%, P: 0.02% 이하, S: 0.01% 이하, Al: 0.005~0.05%, N: 0.005% 이하, Nb: 0.02~0.06%, Ti: 48/14×[N]~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃에서 재가열하는 단계;
상기 재가열된 강 슬라브를 Tnr+50℃ 이상의 온도에서 조압연하여, 조압연된 바를 얻는 단계; 및
상기 조압연된 바를 Tnr 이상에서 열간압연하여, 열연 강판을 얻는 단계;
를 포함하는, 제진 댐퍼용 강판의 제조방법을 제공한다.
본 발명의 일 측면에 따르면, 지진으로부터 구조물의 내진성을 확보하기 위해 사용되는 제진 댐퍼용으로 적합하게 사용될 수 있는 강판 및 이의 제조방법을 제공할 수 있다.
혹은, 본 발명의 또 다른 일 측면에 따르면, 항복 강도가 작고, 저온 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법을 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 일 측면에 따른 강판 내부의 미세조직을 광학 현미경으로 촬영한 사진을 나타낸 것이다.
도 2는 본 발명에 따른 강재에 있어서, 페라이트 결정립 크기에 따른 항복강도 및 인장강도의 변화를 나타낸 그래프이다
도 3은 본 발명에 있어서, 열간압연 종료 온도에 따른 항복강도의 변화를 나타낸 그래프이다.
도 4는 본 발명에 있어서, 압연 종료 후 소지강판의 표면에 형성되는 스케일층의 밀착성을 나타내는 것으로서, 스케일층의 밀착성이 열위하여 탈락된 형상을 나타낸 사진이다.
도 5는 본 발명에 있어서, 압연 종료 후 소지강판의 표면에 형성되는 스케일층의 단면을 나타내는 사진으로서, 소지강판의 상층에 형성되는 스케일층 중에, FeO+Fe2SiO4의 분포를 나타낸 광학사진이다.
이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있고, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.
지진으로부터 구조물의 내진성을 확보하기 위해 사용되는 강재로서, 종래에는 순철에 가까운 성분을 사용하되, 910~960℃의 범위에서 추가의 열처리를 실시하는 기술이 알려져 있었다. 그러나, 이러한 기술은 마무리 압연 후 900℃ 이상의 고온에서 추가의 열처리를 실시할 필요가 있으므로, Si가 미첨가된 극저항복점 강재의 경우에 과도한 스케일이 발생하여 불량을 일으키거나, 조대한 Nb 또는 Ti 석출물이 형성되어 충격인성의 열화가 발생하는 문제가 있었다. 또한, 900℃ 이상의 고온에서의 추가의 열처리 공정이 수반되므로 제조비용의 상승을 초래하는 문제도 있었다.
혹은, 종래의 제진 댐퍼용 강재로서, 극저탄소강을 활용하여 조대한 페라이트 조직을 갖도록 제어하는 기술이 있었으나, 이러한 기술은 인장시험 시 항복점 현상이 발현되지 않는 연속 항복거동을 나타낸다. 이로 인해, 지진에 의해서 발생되는 소성변형 에너지를 흡수하면서 가공경화가 급속히 일어나고, 이에 따른 항복강도의 상승이 커서 지진 에너지 흡수용 제진 댐퍼용 강판으로서는 개선되어야 하는 문제가 있었다.
이에, 본 발명자들은 예의 검토한 결과, 낮은 항복강도를 가지고, 저온 충격 인성이 우수함과 동시에, 항복점 현상을 나타내는 제진 댐퍼용 강판을 개발함으로써, 지진 발생 시 소성변형에 의한 급격한 가공 경화를 낮춤으로써 항복강도의 상승을 억제할 수 있는 기술을 완성하기에 이르렀다.
구체적으로, 본 발명의 일 측면에 따른 제진 댐퍼용 강판은, 소지강판; 및 상기 소지강판의 적어도 일면에 형성된 스케일층;을 포함한다.
이 때, 상기 소지강판은, 중량%로, C: 0.005~0.02%, Si: 0.05~0.2%, Mn: 0.1~0.5%, P: 0.02% 이하, S: 0.01% 이하, Al: 0.005~0.05%, N: 0.005% 이하, Nb: 0.02~0.06%, Ti: 48/14×[N]~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함한다.
이하, 본 발명의 주요한 특징 중 하나인 소지강판의 조성을 구성하는 각 합금 성분을 첨가하는 이유와 이들의 적절한 함량 범위에 대하여 우선 설명한다.
C: 0.005~0.02%
C는 고용 강화를 일으키고, 자유로운 상태에서는 전위에 고착되어 항복강도를 높이고 연신율을 낮추는 원소이다. 따라서, 제진 댐퍼용 강재로서 적합하게 사용하기 위해서는 C 함량이 0.005% 이상으로 제어할 필요가 있고, C 함량이 0.02%를 초과하면 제진 댐퍼의 용도로 사용하기에 적절한 강도를 초과할 위험이 있다. 따라서, 본 발명에서는 C 함량을 0.005~0.02%로 제어한다. 다만, 보다 바람직하게 상기 C 함량의 하한은 0.011%일 수 있고, 혹은 상기 C 함량의 상한은 0.018%일 수 있다.
Si: 0.05~0.2%
Si는 C와 마찬가지로 고용강화를 일으키는 원소로서, 항복강도를 높이고 연신율을 낮추는 원소로서, 제진 댐퍼용 강재로서 적합하게 사용하기 위해서는 Si 함량이 낮을수록 좋다. 다만, Si이 적당량 첨가되지 않으면 압연 시 발생하는 2차 스케일의 밀착성이 열악하여서, 생산 시 강판의 표면에 스케일이 박혀서 표면 불량을 발생시킬 가능성이 높아진다. 따라서, 본 발명에서는 2차 스케일의 밀착성 확보 측면에서 Si 함량을 0.05% 이상으로 제어하고, 낮은 항복강도를 확보하는 측면에서 Si 함량을 0.2% 이하로 제어한다. 다만, 보다 바람직하게 상기 Si 함량의 하한은 0.07%일 수 있고, 혹은 Si 함량의 상한은 0.15%일 수 있다.
Mn: 0.1~0.5%
Mn은 Si와 마찬가지로 고용 강화를 일으키는 원소로서, 항복강도를 높이고 연신율을 낮추는 원소이다. 따라서, 제진 댐퍼용 강재로서 적합하게 사용하기 위하여 본 발명에서는 적절한 강도 확보 측면에서 Mn 함량을 0.1% 이상으로 제어하고, 과도한 고용강화 효과를 피하기 위하여 상한은 0.5% 이하로 제어한다. 다만, 보다 바람직하게 상기 Mn 함량의 하한은 0.18%일 수 있고, 상기 Mn 함량의 상한은 0.35%일 수 있다.
P: 0.02% 이하(0%는 제외)
P는 강도 향상 및 내식성에 유리한 원소이지만, 충격 인성을 크게 저해할 수 있으므로, P 함량은 가능한 한 낮게 유지하는 것이 바람직하다. 따라서, 본 발명에서는 P 함량을 0.02% 이하로 제어하고, 보다 바람직하게는 0.013% 이하로 제어할 수 있다. 또한, 상기 P 함량의 하한은 불가피하게 혼입되는 경우를 감안하여 0%를 제외하고, 보다 바람직하게 상기 P 함량의 하한은 0.0005%일 수 있다.
S: 0.01% 이하(0%는 제외)
S는 MnS 등을 형성하여 충격 인성을 크게 저해하는 원소이므로, 가능한 한 그 함량을 낮게 유지하는 것이 바람직하다. 따라서, 본 발명에서는 S 함량을 0.01% 이하로 제어하고, 보다 바람직하게는 0.004% 이하로 제어할 수 있다. 또한, 상기 S 함량의 하한은 불가피하게 혼입되는 경우를 고려하여 0%는 제외하고, 보다 바람직하게 상기 S 함량의 하한은 0.0005% 이상일 수 있다.
Al: 0.005~0.05%
Al은 용강을 저렴하게 탈산할 수 있는 원소로서, 항복강도를 충분히 낮추면서도 충격 인성을 확보하는 측면에서 Al 함량의 상한을 0.05%로 제어한다. 혹은, 보다 바람직하게는 Al 함량의 상한을 0.035%로 제어할 수 있고, 최소한의 탈산 성능 확보하는 측면에서 Al 함량의 하한을 0.005%로 제어할 수 있다. 다만, 보다 바람직하게 상기 Al 함량의 하한은 0.01%일 수 있고, 상기 Al 함량의 상한은 0.035%일 수 있다.
N: 0.005% 이하(0%는 제외)
N은 고용 강화를 일으키고 자유로운 상태에서는 전위에 고착되어 항복강도를 높이고 연신율을 낮추는 원소이다. 따라서, N 함량은 낮으면 낮을수록 좋으므로, 낮은 항복강도의 확보 측면에서 N 함량을 0.005% 이하로 제어한다. 다만, 상기 N 함량의 하한은 불가피하게 혼입되는 경우를 고려하여 0%는 제외할 수 있고, 보다 바람직하게 상기 N 함량의 하한은 0.001%일 수 있다.
Nb: 0.02~0.06%
Nb는 TMCP강의 제조에 있어서 중요한 원소로서, NbC 또는 NbCN의 형태로 석출시키는 원소이다. 또한, 고온으로 재가열 시에 고용된 Nb은 오스테나이트의 재결정을 억제하여 조직이 미세화되는 효과를 나타낸다.
한편, 적절한 변형 유기 석출물을 도입하기 위해서는 0.02% 이상 첨가하는 것이 바람직하다. 또한, 석출물의 조대화로 인하여 충격인성이 열화되는 것을 방지하기 위하여 Nb를 0.06% 이하로 첨가하는 것이 바람직하다. 다만, 보다 바람직하게는 상기 Nb 함량의 하한은 0.03%일 수 있고, 상기 Nb 함량의 상한은 0.05%일 수 있다.
Ti: 48/14×[N]~0.05%
Ti는 TiN 형태로 석출함으로써, N이 전위에 고착하는 것을 방지하는 역할을 하는 원소이다. 따라서, 강 중의 N을 적정 범위로 고착시키기 위해서는, 첨가한 N 함량(중량%)을 고려하여, Ti를 48/14×[N]% 이상 첨가해야 한다(여기서, [N]은 소지강판 내 N의 중량% 함량을 의미한다). 한편, Ti이 과도하게 첨가되는 경우에는 석출물이 조대화되어 충격 인성이 열화될 우려가 있으므로, 충격 인성의 확보 측면에서 Ti를 0.05% 이하로 제어한다. 다만, 보다 바람직하게 상기 Ti 함량의 하한은 0.02%일 수 있고, 상기 Ti 함량의 상한은 0.045%일 수 있다.
한편, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 소지강판은 하기 관계식 1을 충족한다.
[관계식 1]
0.001 ≤ [C]-12/93×[Nb]-12/48×[A] ≤ 0.01
(상기 관계식 1에 있어서, 상기 [C]은 상기 소지강판 내 C의 평균 중량% 함량을 나타내고, 상기 [Nb]은 상기 소지강판 내 Nb의 평균 중량% 함량을 나타내며, 상기 [A]는 하기 관계식 2로 정의되는 값을 나타낸다.)
[관계식 2]
[A] = [Ti]-48/12×[N]
(상기 관계식 2에 있어서, 상기 [Ti]은 상기 소지강판 내 Ti의 평균 중량% 함량을 나타내고, 상기 [N]은 상기 소지강판 내 N의 평균 중량% 함량을 나타낸다.)
본 발명의 일 측면에 따르면, 전술한 관계식 1에서 [C]-12/93×[Nb]-12/48×[A]로 표현되는 Free C의 값이 0.001~0.01% 범위로 제어할 수 있다. 전술한 Free C 값이 0.001% 미만이면 항복점 현상을 발현하기 어려워질 수 있고, 0.01%를 초과하면 제진 댐퍼의 용도로서 적합하게 사용 가능한 적정 강도를 초과할 위험이 있다. 즉, 본 발명에 있어서, 상기 관계식 1을 충족함으로써, 상부 항복점 발현을 조장하여 지진 발생 시 과도한 가공 경화가 발생되지 않는 강판을 얻을 수 있게 된다.
따라서, 본 발명에 의하면, 항복강도가 205~245MPa 범위이고, 인장강도가 300MPa 이상이고, 샤피 충격 천이 온도가 -20℃ 이하인 저온 충격 인성이 우수한 제진 댐퍼용 강판을 제공할 수 있다.
본 발명에 있어서, 나머지 성분은 Fe이다. 다만, 통상의 제조과정에서 원료 또는 주위 환경으로부터 의도되지 않은 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수 없다. 이러한 불순물들은 통상의 기술자라면 누구라도 알 수 있는 것이므로 그 모든 내용을 본 명세서에서 언급하지는 않는다.
본 발명의 일 측면에 따르면, 상기 소지강판은 미세조직으로서, 페라이트를 면적분율로, 95% 이상(보다 바람직하게는 99% 이상) 포함하고, 잔부는 5% 이하(0% 포함)의 펄라이트 등의 기타상을 포함할 수 있다. 혹은, 가장 바람직하게 상기 소지강판은 페라이트 단일 조직을 가진다(즉, 소지강판은 미세조직으로서, 페라이트를 면적분율로, 100% 포함). 이를 충족함으로써, 지진 발생 시 효과적을 에너지를 흡수하여 지진 댐퍼로서의 역할을 수행할 수 있다.
또한, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 상기 소지강판에 있어서, 상기 페라이트의 결정립 평균 입경은 20~50㎛ 범위일 수 있고, 보다 바람직하게는 30~50㎛일 수 있다. 상기 소지 강판에 있어서, 상기 페라이트의 결정립 평균 입경이 20㎛ 미만이면, 제진 댐퍼의 용도로서 목표로 하는 항복강도를 초과하는 문제가 생길 수 있고, 50㎛를 초과하면 조대한 페라이트 결정립 크기로 인하여 전위가 용이하게 움질일 수 있게 되어, 연속 항복 거동을 나타내는 문제가 생길 수 있다.
전술한 페라이트결정립 평균 입경은, 강재의 두께방향(즉, 압연방향에 수직인 방향)으로의 절단면을 기준으로, 결정립에 대한 원 상당 직경을 측정한 값들의 평균값을 의미하고, 구체적으로는 결정립의 내부를 관통하는 가장 긴 길이를 입경으로 하여 그려지는 구형의 입자를 가정했을 때, 상기 입경을 측정한 값들의 평균값이다.
한편, 본 발명에 의하면 상기 소지강판의 적어도 일면에 스케일층이 형성될 수 있다. 이 때, 특별히 이를 한정하는 것은 아니나, 상기 스케일층은 강판의 제조 과정에 있어서 조건에 따라 FeO, Fe2SiO4, Fe2O3, Fe3O4, 기타 합금 원소의 산화물 등으로 이루어지는 층을 의미할 수 있다.
본 발명의 일 측면에 따르면, 상기 스케일층에 있어서, FeO 및 Fe2SiO4의 합계 함량은 2~5중량%일 수 있다. 상기 스케일층의 전체 함량 대비 FeO 및 Fe2SiO4의 합계 함량이 2중량% 미만이면, 스케일층의 밀착성이 떨어져서 표면에 스케일의 박리가 불규칙적으로 발생할 우려가 있다. 반면, 상기 상기 스케일층의 전체 함량 대비 FeO 및 Fe2SiO4의 합계 함량이 5%를 초과하면, 항복강도가 245MPa을 초과하는 문제가 생길 수 있다. 전술한 효과를 보다 개선하는 측면에서, 상기 스케일층의 전체 함량 대비 FeO 및 Fe2SiO4의 합계 함량의 하한은 2.28%일 수 있고, 혹은 상기 스케일층의 전체 함량 대비 FeO 및 Fe2SiO4의 합계 함량의 상한은 4%일 수 있다.
한편, 특별히 한정하는 것은 아니나, 본 발명의 일 측면에 따르면, 낮은 항복강도와 우수한 저온 충격 인성을 확보함과 동시에, 항복점 현상을 발현하고, 또한 스케일층의 밀착성을 확보하여 우수한 표면 특성을 가진 제진 댐퍼용 강판을 제공하는 효과를 보다 개선하기 위해, 상기 스케일층에서 FeO의 함량은 0.5~2중량%%일 수 있고, 및/또는 상기 스케일층에서 Fe2SiO4의 함량은 1~4.5중량%일 수 있다. 혹은, 전술한 효과를 극대화하는 측면에서, 상기 스케일층에서 FeO의 함량의 하한은 0.79%일 수 있고, 혹은 상기 스케일층에서 FeO의 함량의 상한은 1.5%일 수 있다. 혹은, 전술한 효과를 극대화하는 측면에서, 상기 스케일층에서 Fe2SiO4의 함량의 하한은 1.18%일 수 있고, 혹은 상기 스케일층에서 Fe2SiO4의 함량의 상한은 3.5%일 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 스케일층에서 Fe2SiO4의 함량(W1) 및 FeO의 함량(W2)의 비율(W1/W2)은 1~9일 수 있다. 상기 스케일층에 있어서, 상기 W1/W2의 비율이 1.0 미만이면, Fe2SiO4의 비율이 부족하여 스케일의 접착력의 약화되는 문제가 생길 수 있고, 상기 W1/W2의 비율이 9 초과이면, 강판표면에 적스케일의 문제가 생길 수 있다. 전술한 효과를 보다 개선하는 측면에서, 상기 비율(W1/W2)의 하한은 1.06일 수 있고, 혹은 상기 비율(W1/W2)의 상한은 4일 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 스케일층의 평균 두께는 10~100㎛일 수 있다. 상기 스케일층의 평균 두께가 10㎛ 미만이면 스케일의 밀착성의 약화되는 문제가 생길 수 있고, 100㎛ 초과이면 가공상의 문제가 생길 수 있다. 한편, 전술한 효과를 보다 개선하는 측면에서, 상기 스케일층의 평균 두께의 하한은 31㎛일 수 있고, 혹은 상기 스케일층의 평균 두께의 상한은 45㎛일 수 있다.
이하에서는 본 발명의 또 다른 일 측면인 제진 댐퍼용 강판의 제조방법에 대하여 상세히 설명한다. 다만, 본 발명의 제진 댐퍼용 강판의 제조방법이 반드시 이하의 제조방법에 의해 제조되어야 함을 의미하는 것은 아니다.
슬라브의 재가열 단계
본 발명의 일 측면에 따른 제진 댐퍼용 강재의 제조방법은, 전술한 조성을 충족하는 강 슬라브를 재가열하는 단계를 포함할 수 있고, 상기 재가열은 1050~1250℃의 온도 범위에서 수행할 수 있다. 이 때, 주조 중에 형성된 Ti 및/또는 Nb의 탄질화물을 충분히 고용시키기 위하여 강 슬라브의 가열온도를 1050℃ 이상으로 제어한다. 다만, 과다하게 높은 온도로 가열할 경우에는 오스테나이트가 조대화될 우려가 있고, 조압연 이후 표면의 온도가 표층부 냉각 시작 온도에 이르기까지 과도한 시간이 소요되므로, 슬라브의 가열을 1250℃ 이하에서 행하는 것이 바람직하다.
재가열 단계 후 스케일 제거 단계
전술한 슬라브의 재가열 시에는 가열로에서 생긴 산화물이 강 슬라브의 표면에 파고들어 최종적으로 생성되는 스케일층의 밀착성을 악화시킬 수 있다. 따라서, 스케일층의 양호한 밀착성 확보를 통한 표면 품질을 개선시키기 위해, 상기 재가열 단계 이후 조압연 단계 전에, 강 슬라브 표면에 150~200bar 압력의 고압수를 제공하여 스케일 제거 처리를 수행할 수 있다.
조압연 단계
본 발명의 일 측면에 따르면, 상기 재가열된 강 슬라브는 후술하는 마무리 압연 단계 전에, 슬라브의 형상 조정을 위해 조압연을 행하는 단계를 더 포함할 수 있고, 이러한 조압연의 온도는 오스테나이트의 재결정이 멈추는 온도(Tnr)+50℃ 이상으로 제어될 수 있다. 조압연에 의해 주조 중에 형성된 덴트라이트 등의 구조조직을 파괴하는 효과를 얻을 수 있고, 또한 오스테나이트의 크기를 작게 만드는 효과도 얻을 수 있다. 한편, 보다 바람직하게는 상기 조압연은 999~1155℃의 범위에서 수행될 수 있다.
조압연 단계 이후의 2차 스케일 제거 단계
한편, 전술한 슬라브의 재가열 단계뿐만 아니라, 조압연 단계에서도 조압연된 바의 표면에 형성된 산화물이 파고들어 최종적으로 생성되는 스케일층의 밀착성에 영향을 미칠 수 있다. 따라서, 본 발명에서는 스케일층의 양호한 밀착성 확보를 통한 표면 품질 향상을 위해, 상기 조압연 단계 이후 열간 압연 단계 전에, 선택적으로 조압연된 바의 표면에 150~bar압력의 고압수를 제공하여 스케일 제거 처리를 수행할 수 있고, 상기 2차 스케일 제거 단계에서의 고압수의 압력은 상기 1차 스케일 제거 단계에서의 고압수 압력에 대하여 1~1.2배 범위로 제어할 수 있고, 보다 바람직하게는 1.02~1.2배의 범위로 제어할 수 있다.
열간 압연 단계
전술한 조압연된 바를 Tnr 이상의 온도 범위에서 열간 압연하는 단계를 포함하고, 열간 압연 이후 공냉으로 냉각할 수 있다.
상기 열간 압연의 온도가 Tnr 미만이면 도 3과 같이 오스테나이트 결정립에 불균일 변형대가 다량 도입되어 페라이트 핵생성 자리로 작용하여 미세한 페라이트가 변태되어 항복강도가 245MPa을 초과할 수 있다. 즉, 열간 압연 온도가 미재결정 정지 온도(Tnr) 보다 낮아지면 항복강도의 급격한 증가에 의해서 항복강도가 245MPa을 초과하게 된다. 따라서 압연 종료 온도는 미재결정 정지 온도(Tnr)보다 높게 하여야 한다. 이 때, 상기 Tnr로는 통상의 극저탄소강에서 사용되는 Tnr 수식이 동일하게 적용 가능하므로, 본 발명에서 별도로 정의하지 않는다. 한편, 본 발명의 일 측면에 따르면, 상기 열간 압연은 922~962℃의 온도범위에서 수행될 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허 청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실험예 1)
하기 표 1의 합금조성 및 성질을 갖는 강 슬라브를 준비하였다. 이 때, 하기 표 1에서 각 성분의 함량은 중량%이고, 나머지는 Fe 및 기타 불가피한 불순물이다. 즉, 하기 표 1, 2에 기재된 강 슬라브에 있어서, 발명강 A~D는 본 발명에서 정의하는 합금 조성의 범위를 일치하는 예이고, 비교강 E~I는 본 발명에서 정의하는 합금 조성의 범위를 벗어나는 예이다.
준비된 강 슬라브를 1050~1250℃의 온도 범위에서 재가열한 후, 하기 표 3에 기재된 조건으로 슬라브 재가열-조압연-열간 압연을 수행하여 강재를 제조하였다. 이 때, 재가열 이후 조압연 전에, 슬라브 표면에 150bar 압력의 고압수를 제공하여 1차 스케일 제거 처리를 하였고, 상기 조압연 이후 열간압연 전에, 조압연된 바의 표면에 180bar 압력의 고압수를 제공하여 2차 스케일 제거 처리를 하였다.
강종 C Si Mn P S Al Ti Nb N
발명강 A 0.011 0.12 0.25 0.009 0.003 0.03 0.021 0.04 0.0035
발명강 B 0.018 0.15 0.35 0.001 0.004 0.027 0.025 0.03 0.0017
발명강 C 0.015 0.08 0.21 0.012 0.002 0.023 0.03 0.05 0.0025
발명강 D 0.013 0.07 0.18 0.013 0.003 0.035 0.041 0.03 0.0032
비교강E 0.003 0.1 0.32 0.014 0.002 0.035 0.025 0.04 0.0038
비교강F 0.03 0.15 0.21 0.013 0.001 0.04 0.016 0.05 0.0021
비교강G 0.015 0.35 0.15 0.011 0.003 0.024 0.035 0.01 0.0015
비교강H 0.02 0.09 0.33 0.016 0.004 0.03 0.056 0.02 0.0021
비교강I 0.013 0.01 0.17 0.015 0.002 0.025 0.023 0.03 0.0023
강종 [A]* Free C* Tnr [℃]
발명강 A 0.007 0.004 938
발명강 B 0.018 0.010 921
발명강 C 0.02 0.003 951
발명강 D 0.028 0.002 922
비교강E 0.010 -0.005 937
비교강F 0.008 0.022 952
비교강G 0.029 0.006 932
비교강H 0.048 0.005 935
비교강I 0.014 0.006 931
[A]* = [Ti]-48/12×[N]
Free C* = [C]-12/93×[Nb]-12/48×[A]
강종 No. 조건 열간압연 조건 비고
제품
두께
[mm]
슬라브
두께
[mm]
재가열
추출
온도[℃]
조압연
종료
온도[℃]
압연
개시
온도 [℃]
압연
종료
온도
[℃]
발명강A A-1 30 285 1150 1050 995 939 권장조건
A-2 20 295 1115 1035 1021 940 권장조건
A-3 35 280 1135 995 945 872 열간압연 종료 온도 Tnr 미만
발명강B B-1 20 280 1175 1015 995 923 권장조건
B-2 25 285 1125 1002 985 922 권장조건
B-3 30 255 1085 975 915 865 열간압연 종료 온도 Tnr 미만
발명강C C-1 25 285 1155 1155 1085 952 권장조건
C-2 20 280 1125 1055 1011 962 권장조건
C-3 18 275 1110 1054 970 870 열간압연 종료 온도 Tnr 미만
발명강D D-1 40 295 1135 999 985 925 권장조건
D-2 25 285 1145 1010 989 923 권장조건
D-3 32 280 1130 995 970 865 열간압연 종료 온도 Tnr 미만
비교강E E-1 40 255 1115 1000 975 938 권장조건
비교강F F-1 24 290 1135 1095 1020 955 권장조건
비교강G G-1 15 295 1130 1035 985 935 권장조건
비교강H H-1 25 285 1125 1005 995 940 권장조건
비교강I I-1 30 290 1135 1015 995 935 권장조건
상기 표 3에 기재된 조건으로 강판을 제조한 후, 이렇게 얻어진 강판에 대하여 폴리싱-에칭한 후에, 광학현미경으로 관찰함으로써 소지강판은 페라이트 단상조직을 가지는 것을 확인하였다.
또한, 각 실험예로부터 얻어지는 강판에 대한 페라이트 결정립의 평균 입경, 항복강도(YS), 인장강도(TS) 및 샤피 충격 천이 온도를 측정한 결과를 하기 표 4에 나타내었다. 이 때, 본 발명에서 목적하는 강도 특성 범위에 해당하는 상기 항복강도와 인장강도의 목표 범위를 페라이트 결정립 크기와 함께, 도 2에 나타내었다.
또한, 스케일층이 관찰되도록 광학 현미경으로 촬영하여 스케일층의 평균 두께를 측정하여 하기 표 4에 나타내었다. 또한, 스케일층 중에, FeO와 Fe2SiO4의 함량은 주사 전자 현미경 및 EDS를 이용하여 측정하였고, 하기 표 4에 나타내었다.
이 때, 페라이트 결정립의 평균 입경은 라인측정법을 이용하여 측정하였고, 인장 시험기를 사용하여 항복이 일어나는 점을 항복강도로 하였고, 네킹이 일어날 때의 강도를 인장강도로 하였다. 샤피 충격 천이 온도는 샤피충격 시험기를 이용하여 충격흡수 에너지를 측정하여, 연성에서 취성으로 파단이 천이할 때의 온도를 나타내었다.
추가적으로, 강판의 표면 특성을 평가하기 위하여, 각 실험예로부터 얻어지는 강판에 대하여, 1m2 면적의 강판 표면을 육안으로 관찰한 후, 스케일층의 박리 면적을 측정하여 하기 기준에 따라 평가하였다.
○: 스케일층의 박리 면적이 20% 이하
△: 스케일층의 박리 면적이 20% 초과 40% 이하
×: 스케일층의 박리 면적이 40% 초과
No. 구분 소지강판 스케일층
페라이트 분율
[%]
평균 결정립 직경
[㎛]
FeO 함량
[wt%]
Fe2SiO4
[wt%]
FeO 및 Fe2SiO4의 합계
[wt%]
스케일층의 평균 두께
[㎛]
A-1 실시예1-1 98 43 1.1 2.3 3.4 38
A-2 실시예1-2 99 39 1.09 2.26 3.35 34
A-3 참고예1 97 22 1.08 2.3 3.38 17
B-1 실시예2-1 98 43 0.85 3.15 4 38
B-2 실시예2-2 99 36 0.79 3.16 3.95 31
B-3 참고예2 97 16 0.78 3.2 3.98 11
C-1 실시예 3-1 98 44 1.2 1.39 2.59 39
C-2 실시예 3-2 96 50 1.21 1.39 2.6 45
C-3 참고예3 99 20 1.3 1.31 2.61 15
D-1 실시예 4-1 98 39 1.05 1.23 2.28 34
D-2 실시예 4-2 97 43 1.11 1.18 2.29 38
D-3 참고예4 97 16 1.15 1.15 2.3 11
비교강E 비교예1 98 44 1.3 1.69 2.99 39
비교강F 비교예2 99 31 1.25 1.66 2.91 26
비교강G 비교예3 98 36 0.7 7.8 8.5 31
비교강H 비교예4 99 45 1.12 1.72 2.84 40
비교강I 비교예5 98 46 0.4 0.34 0.85 85
구분 항복점 현상 유무 [有無] YS
[MPa]
TS
[MPa]
샤피 충격 천이 온도 [℃] 표면 특성 평가
실시예1-1 212 307 -45
실시예1-2 219 313 -50
참고예1 265 357 -35
실시예2-1 214 308 -38
실시예2-2 224 317 -37
참고예2 275 365 -40
실시예 3-1 211 306 -37
실시예 3-2 202 300 -41
참고예3 275 369 -28
실시예 4-1 219 313 -37
실시예 4-2 214 308 -51
참고예4 296 354 -41
비교예1 203 306 -26
비교예2 255 345 -21
비교예3 263 352 -25
비교예4 196 305 -8
비교예5 193 301 -23 ×
상기 표 5에서 볼 수 있듯이, 본 발명의 강 조성 및 제조조건을 모두 충족하는 실시예들은 항복점 현상이 발현하였으며, 강재의 물성이 모두 항복강도205~245MPa, 인장강도 300MPA 이상 및 샤피충격천이온도 -20℃ 이하를 만족하였다.
또한, 본 발명의 실시예들로부터 얻어지는 강판은 모두 스케일층에서 FeO 및 Fe2SiO4의 합계 함량은 2~5중량% 범위를 충족하였고, 이로 인해 스케일층의 박리가 없이 밀착성이 우수하여, 우수한 표면 특성을 확인하였다. 이는 스케일과 모재 경계에서 형성된 SiO2는 FeO와 반응하여 Fe2SiO4(Fayalite)를 형성하여 스케일과 모재의 결속력을 높여 안정적인 스케일 상태가 되기 때문으로 판단된다.
특히, 상기 실시예 1-1로부터 얻어지는 강판에 대하여, 광학 현미경을 이용하여 미세조직을 촬영한 사진을 도 1에 나타내었다. 도 1에서 볼 수 있듯이, 강판의 미세조직은 페라이트 단일 조직으로서, 페라이트의 결정립 평균 크기가 20~50㎛ 범위임을 확인할 수 있었다.
또한, 실시예 1-1로부터 얻어지는 강판에 대하여, 스케일층이 관찰되도록 두께방향으로의 단면이 관찰되도록 제조한 후, 광학 현미경으로 촬영한 사진을 도 5에 나타내었다. 이를 통해, 소지강판 상에 형성된 스케일층 중에 FeO+Fe2SiO4가 포함됨을 확인하였다.
반면, 비교예 1은 C함량이 본 발명에서 규정하는 하한을 미달하여, Free C의 값이 부족하였고, 이로 인해 연속항복을 나타내고, 항복강도가 205MPa 미만이었다.
비교예 2는 C 함량이 본 발명에서 규정하는 함량을 초과하여 항복강도가245MPa을 초과하였다.
비교예 3은 Si을 과다하게 첨가한 경우로서, 항복강도가 245MPa을 초과하였다.
비교예 4는 본 발명의 제조 조건을 모두 충족하지만, Ti의 함량이 본 발명에서 규정하는 상한을 초과하는 경우로서, 조대한 석출물의 생성으로 인해 샤피 충격 천이 온도가 -20℃를 상회하였다.
비교예 5는 본 발명에서 규정하는 Si 함량이 미달하여 항복강도가 205MPa을 미달하였을 뿐만 아니라, 스케일층에서 FeO 및 Fe2SiO4의 합계 함량은 2중량% 미만이어서, 표면 특성이 열위함을 확인하였다. 특히, 비교예 5에 대한 스케일층의 박리 상태를 도4에 나타내었다.
또한, 본 발명의 강 조성은 충족하지만, 제조 조건을 충족하지 못하는 참고예 1~4의 경우, 열간 압연 종료 온도가 Tnr 미만인 경우이다. 이러한 참고예 1~4는 페라이트 영역에서의 압연에 의하여 전위가 도입되어 연속항복 거동을 보이며 항복강도가 모두 245MPa초과를 나타내었다.

Claims (14)

  1. 소지강판; 및
    상기 소지강판의 적어도 일면에 형성된 스케일층;을 포함하고,
    상기 소지강판은 중량%로, C: 0.005~0.02%, Si: 0.05~0.2%, Mn: 0.1~0.5%, P: 0.02% 이하, S: 0.01% 이하, Al: 0.005~0.05%, N: 0.005% 이하, Nb: 0.02~0.06%, Ti: 48/14×[N]~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하고,
    상기 스케일층에서 FeO 및 Fe2SiO4의 합계 함량은 2~5중량%인, 제진 댐퍼용 강판.
  2. 청구항 1에 있어서,
    상기 소지강판의 미세조직은 페라이트 단일 조직인, 제진 댐퍼용 강판.
  3. 청구항 2에 있어서,
    상기 페라이트의 결정립 평균 입경은 20~50㎛인, 제진 댐퍼용 강판.
  4. 청구항 1에 있어서,
    상기 소지강판은 하기 관계식 1을 충족하는, 제진 댐퍼용 강판.
    [관계식 1]
    0.001 ≤ [C]-12/93×[Nb]-12/48×[A] ≤ 0.01
    (상기 관계식 1에 있어서, 상기 [C]은 상기 소지강판 내 C의 평균 중량% 함량을 나타내고, 상기 [Nb]은 상기 소지강판 내 Nb의 평균 중량% 함량을 나타내며, 상기 [A]는 하기 관계식 2로 정의되는 값을 나타낸다.)
    [관계식 2]
    [A] = [Ti]-48/12×[N]
    (상기 관계식 2에 있어서, 상기 [Ti]은 상기 소지강판 내 Ti의 평균 중량% 함량을 나타내고, 상기 [N]은 상기 소지강판 내 N의 평균 중량% 함량을 나타낸다.)
  5. 청구항 1에 있어서,
    상기 스케일층에서 FeO의 함량은 0.5~2중량%인, 제진 댐퍼용 강판.
  6. 청구항 1에 있어서,
    상기 스케일층에서 Fe2SiO4의 함량은 1~4.5중량%인, 제진 댐퍼용 강판.
  7. 청구항 1에 있어서,
    상기 스케일층에서 Fe2SiO4의 함량(W1) 및 FeO의 함량(W2)의 비율(W1/W2)는 1~9인, 제진 댐퍼용 강판.
  8. 청구항 1에 있어서,
    상기 스케일층의 평균 두께는 10~100㎛인, 제진 댐퍼용 강판.
  9. 청구항 1에 있어서,
    상기 강판의 항복강도는 205~245MPa인, 제진 댐퍼용 강판.
  10. 청구항 1에 있어서,
    상기 강판의 인장강도는 300MPa 이상인, 제진 댐퍼용 강판.
  11. 청구항 1에 있어서,
    상기 강판의 샤피 충격 천이온도는 -20℃ 이하인, 제진 댐퍼용 강판.
  12. 중량%로, C: 0.005~0.02%, Si: 0.05~0.2%, Mn: 0.1~0.5%, P: 0.02% 이하, S: 0.01% 이하, Al: 0.005~0.05%, N: 0.005% 이하, Nb: 0.02~0.06%, Ti: 48/14×[N]~0.05%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃에서 재가열하는 단계;
    상기 재가열된 강 슬라브를 Tnr+50℃ 이상의 온도에서 조압연하여, 조압연된 바를 얻는 단계; 및
    상기 조압연된 바를 Tnr 이상에서 열간압연하여, 열연 강판을 얻는 단계;
    를 포함하는, 제진 댐퍼용 강판의 제조방법.
  13. 청구항 12에 있어서,
    상기 재가열하는 단계 이후, 조압연 전에, 강 슬라브 표면에 150~200bar 압력의 고압수를 제공하여 스케일 제거 처리하는 단계를 더 포함하는, 제진 댐퍼용 강판의 제조방법.
  14. 청구항 13에 있어서,
    상기 조압연 단계 이후 열간 압연 전에, 조압연된 바의 표면에 150~200bar 압력의 고압수를 제공하는 2차 스케일 제거 처리하는 단계를 더 포함하고,
    상기 2차 스케일 제거 단계에서의 고압수의 압력은 상기 1차 스케일 제거 단계에서의 고압수 압력에 대하여 1~1.2배 범위로 제어하는, 제진 댐퍼용 강판의 제조방법.
PCT/KR2021/017872 2020-12-18 2021-11-30 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법 WO2022131618A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21906923.4A EP4265762A1 (en) 2020-12-18 2021-11-30 Steel sheet for seismic damper having superior toughness property and manufacturing method of same
JP2023535596A JP2023554331A (ja) 2020-12-18 2021-11-30 衝撃靭性に優れた制震ダンパー用鋼板及びその製造方法
US18/267,674 US20240052451A1 (en) 2020-12-18 2021-11-30 Steel sheet for seismic damper having superior toughness property and manufacturing method of same
CN202180084766.0A CN116635552A (zh) 2020-12-18 2021-11-30 具有优异的韧性特性的抗震阻尼器用钢板及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0179049 2020-12-18
KR1020200179049A KR102488496B1 (ko) 2020-12-18 2020-12-18 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2022131618A1 true WO2022131618A1 (ko) 2022-06-23

Family

ID=82059213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017872 WO2022131618A1 (ko) 2020-12-18 2021-11-30 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법

Country Status (6)

Country Link
US (1) US20240052451A1 (ko)
EP (1) EP4265762A1 (ko)
JP (1) JP2023554331A (ko)
KR (1) KR102488496B1 (ko)
CN (1) CN116635552A (ko)
WO (1) WO2022131618A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279324A (ja) * 2000-03-28 2001-10-10 Nippon Steel Corp レーザ溶接用鋼の製造方法
JP2006124773A (ja) * 2004-10-28 2006-05-18 Sumitomo Metal Ind Ltd 熱延鋼帯およびその製造方法
KR20080088605A (ko) 2007-02-09 2008-10-02 세키스이가가쿠 고교가부시키가이샤 제진재 및 제진 구조
JP2011189394A (ja) * 2010-03-16 2011-09-29 Nisshin Steel Co Ltd 表面性状に優れた熱延鋼板の製造方法
JP2011202231A (ja) * 2010-03-25 2011-10-13 Nisshin Steel Co Ltd 酸洗性および加工性に優れた熱延鋼板の製造方法
JP2013237101A (ja) * 2012-04-20 2013-11-28 Kobe Steel Ltd 耐水素誘起割れ性に優れた鋼材およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120132839A (ko) * 2011-05-30 2012-12-10 현대제철 주식회사 저항복비를 가지는 내진용 댐퍼강 및 그 제조방법
JP6406481B1 (ja) * 2017-04-07 2018-10-17 Jfeスチール株式会社 黒皮熱延鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279324A (ja) * 2000-03-28 2001-10-10 Nippon Steel Corp レーザ溶接用鋼の製造方法
JP2006124773A (ja) * 2004-10-28 2006-05-18 Sumitomo Metal Ind Ltd 熱延鋼帯およびその製造方法
KR20080088605A (ko) 2007-02-09 2008-10-02 세키스이가가쿠 고교가부시키가이샤 제진재 및 제진 구조
JP2011189394A (ja) * 2010-03-16 2011-09-29 Nisshin Steel Co Ltd 表面性状に優れた熱延鋼板の製造方法
JP2011202231A (ja) * 2010-03-25 2011-10-13 Nisshin Steel Co Ltd 酸洗性および加工性に優れた熱延鋼板の製造方法
JP2013237101A (ja) * 2012-04-20 2013-11-28 Kobe Steel Ltd 耐水素誘起割れ性に優れた鋼材およびその製造方法

Also Published As

Publication number Publication date
KR102488496B1 (ko) 2023-01-13
KR20220088225A (ko) 2022-06-27
CN116635552A (zh) 2023-08-22
EP4265762A1 (en) 2023-10-25
US20240052451A1 (en) 2024-02-15
JP2023554331A (ja) 2023-12-27

Similar Documents

Publication Publication Date Title
WO2019107700A1 (ko) 수소 유기 균열 저항성 및 저온 충격인성이 우수한 고강도 강재 및 그 제조방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2018117646A1 (ko) 극저온 충격인성이 우수한 후강판 및 이의 제조방법
WO2018117614A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2019132465A1 (ko) 수소유기균열 저항성이 우수한 강재 및 그 제조방법
WO2020111863A1 (ko) 냉간가공성 및 ssc 저항성이 우수한 초고강도 강재 및 그 제조방법
WO2018117507A1 (ko) 저온인성이 우수한 저항복비 강판 및 그 제조방법
WO2020111856A2 (ko) 연성 및 저온 인성이 우수한 고강도 강재 및 이의 제조방법
WO2020085684A1 (ko) 극저온 인성 및 연성이 우수한 압력용기용 강판 및 그 제조 방법
WO2018117650A1 (ko) 표면부 nrl-dwt 물성이 우수한 극후물 강재 및 그 제조방법
WO2022131618A1 (ko) 충격 인성이 우수한 제진 댐퍼용 강판 및 이의 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2020111891A1 (ko) 저온파괴인성 및 연신율이 우수한 고강도 강판 및 그 제조방법
WO2019132179A1 (ko) 고강도 고인성 열연강판 및 그 제조방법
WO2019117432A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스강 및 그 제조방법
WO2015099214A1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2018110850A1 (ko) 충격인성이 우수한 고강도 선재 및 그 제조방법
WO2017111303A1 (ko) 굽힘 가공성이 우수한 고강도 열연 강판 및 그 제조 방법
WO2017095049A1 (ko) 저온 충격 인성이 우수한 선재 및 그 제조방법
WO2020111547A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2021125640A1 (ko) 충격인성이 우수한 제진 댐퍼용 강재 및 이의 제조방법
WO2020085852A1 (ko) 항복강도가 우수한 오스테나이트계 고망간 강재 및 그 제조방법
WO2020111858A1 (ko) 수소유기균열 저항성이 우수한 압력용기용 강재 및 그 제조방법
WO2020130614A2 (ko) 구멍확장성이 우수한 고강도 열연강판 및 그 제조방법
WO2022124682A1 (ko) 충격 인성이 우수한 제진 댐퍼용 강재 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023535596

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180084766.0

Country of ref document: CN

Ref document number: 18267674

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021906923

Country of ref document: EP

Effective date: 20230718