WO2022131483A1 - High-strength pure titanium board having good formability at room temperature, and method for producing same - Google Patents

High-strength pure titanium board having good formability at room temperature, and method for producing same Download PDF

Info

Publication number
WO2022131483A1
WO2022131483A1 PCT/KR2021/011696 KR2021011696W WO2022131483A1 WO 2022131483 A1 WO2022131483 A1 WO 2022131483A1 KR 2021011696 W KR2021011696 W KR 2021011696W WO 2022131483 A1 WO2022131483 A1 WO 2022131483A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
pure titanium
strength
texture
titanium plate
Prior art date
Application number
PCT/KR2021/011696
Other languages
French (fr)
Korean (ko)
Inventor
김재혁
이상원
홍재근
박찬희
염종택
원종우
최성우
Original Assignee
한국재료연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국재료연구원 filed Critical 한국재료연구원
Publication of WO2022131483A1 publication Critical patent/WO2022131483A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present invention relates to a high formability titanium sheet material with excellent strength and advantageous texture for forming through the production of a sheet material using a new rolling process and a subsequent processing heat treatment process, and thus the press formability is greatly improved compared to the conventional titanium sheet material will be.
  • Titanium alloy is an alloy for structural materials having low density, high strength, excellent specific strength and corrosion resistance. Recently, demand is increasing as an industrial material requiring weight reduction such as blades for power generation and heat exchangers.
  • titanium or pure titanium means commercially pure titanium
  • the pure titanium sheet material manufactured by the conventional manufacturing method such as the rolling process of the high reduction ratio has a problem in that it is difficult to process it into a complex shape due to poor formability, particularly, press workability.
  • the present invention is to solve the problems of the conventional pure titanium plate described above, and the combination of formability and strength through the rolling process and subsequent heat treatment process design is greatly improved compared to the conventional pure titanium plate. And it aims to provide the manufacturing method.
  • an object of the present invention is to provide a pure titanium plate material capable of achieving high strength and excellent formability by forming a texture advantageous for molding while having an ultrafine grain microstructure, and a method for manufacturing the same.
  • an object of the present invention is to be able to economically provide a high-strength pure titanium plate having excellent room temperature formability only by a general rolling process without a separate plasticizing process.
  • a trajectory having the same value of ⁇ 002 ⁇ texture strength on a pole figure is a rolling direction (RD) and a rolling side It is characterized in that it is simultaneously symmetrical about each axis of the direction (TD).
  • the trajectory (contour) of the maximum value of the ⁇ 002 ⁇ texture strength on the pole figure intersects the axes of the rolling direction (RD) and the rolling side direction (TD) at the same time.
  • the ⁇ 002 ⁇ texture strength is at most 5.2 or less.
  • the difference between the yield strength and/or tensile strength in the rolling direction (RD) and the yield strength and/or tensile strength in the rolling lateral direction (TD) of the plate material is preferably within 5%.
  • the aspect ratio of the crystal grains of the plate material is 0.4 or more.
  • the Erichson value (index of Erichsen) of the plate material is 15 mm or more.
  • a method of manufacturing a titanium plate according to an embodiment of the present invention for achieving the above object (a) rolling the titanium plate in the rolling direction (RD) and the rolling side direction (TD); (b) annealing the rolled sheet material; characterized in that the ratio of the rolling reduction in the rolling direction to the rolling reduction in the rolling side direction in step (a) is 1: 1.25 to 1: 1.75 do it with
  • the total reduction in step (a) is preferably 60% or more.
  • the annealing in step (b) is preferably maintained at 600 °C or less.
  • the formability as well as the room temperature strength is greatly improved compared to the conventional pure titanium plate material, so that it can be widely applied to industries requiring weight reduction. It is possible to obtain a high formability pure titanium sheet material.
  • FIG. 1 shows a method of manufacturing a titanium plate material using a conventional general rolling process.
  • FIG. 2 shows the microstructure of the pure titanium plate made by the general rolling process of FIG. 1
  • (b) shows the microstructure of the pure titanium plate made by the general rolling process ⁇ 002 ⁇ Show the pole figure (PF) of the plane.
  • FIG 3 shows a method of manufacturing a pure titanium plate according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram showing the Erichsen (Erichsen) test method for evaluating the formability of the pure titanium plate material of the present invention.
  • FIG. 7 shows the “RD/TD texture intensity ratio” of FIG. 6 .
  • Figure 10 shows the results of the Erichsen (Erichsen) test for evaluating the formability of the pure titanium plate material of the present invention.
  • FIG. 1 shows a method of manufacturing a titanium plate material using a conventional general rolling process.
  • the plate-shaped titanium plate is rolled a plurality of times (n times) in the rolling direction (longitudinal direction of the plate, rolling direction, refer to the arrow in FIG. 1) at room temperature until the final desired reduction ratio in the general rolling process. Thereafter, the rolled titanium sheet is annealed to remove the internal energy accumulated therein.
  • the annealing process is typically performed at a temperature of half or more of a melting point for at least 1 hour.
  • the final annealed titanium plate has a new recrystallized microstructure with significantly reduced defects such as dislocations.
  • a processing method for creating a flow of material in a specific direction such as rolling, results in a texture in which crystal grains are arranged in a specific crystal direction (rolling direction).
  • rolling direction the direction to the crystal plane as well as the crystal direction can be defined.
  • the microstructure having the texture is to create mechanical anisotropy.
  • the rolled sheet having a microstructure of the texture has a characteristic that the mechanical properties are different depending on the direction.
  • the mechanical anisotropy again adversely affects the workability of the sheet material, such as press formability.
  • the mechanical properties in the rolling direction (RD) and the transverse direction (TD) of the sheet material are different from each other, the poor workability in the weak direction makes it difficult to uniformly process the sheet material. can cause
  • FIG. 2 shows the microstructure of the pure titanium plate made by the general rolling process of FIG. 1
  • (b) shows the microstructure of the pure titanium plate made by the general rolling process ⁇ 002 ⁇ Show the pole figure (PF) of the plane.
  • the pure titanium sheet when rolling is performed at a high rolling reduction for grain refinement, even if a recrystallized microstructure in which internal defects are removed by annealing is formed, the pure titanium sheet has crystal grains in the rolling direction. It can be seen that it has a stretched anisotropic microstructure.
  • FIG. 2(b) it can be seen that the ⁇ 002 ⁇ planes are strongly oriented in a direction perpendicular to the transverse rolling direction.
  • FIGS. 1 and 2 mean that when a pure titanium plate is processed through a general rolling process at a high reduction ratio for grain refinement, the anisotropy of mechanical properties is necessarily accompanied. And the above result means that although it is possible to improve the mechanical properties through grain refinement in the general rolling process, the improvement of the isotropic mechanical properties cannot be achieved.
  • FIG 3 shows a method of manufacturing a pure titanium plate according to an embodiment of the present invention.
  • the plate material manufacturing method of FIG. 3 has a feature of controlling the rolling direction in the rolling process, compared to the conventional general rolling process of FIG. 1 . More specifically, the plate material manufacturing method of FIG. 3 is characterized in that the rolling direction is mixed in the rolling direction and the rolling transverse direction during the rolling process. In other words, in the plate material manufacturing method of FIG. 3 , the rolling reduction in the rolling direction and the rolling reduction in the rolling transverse direction during rolling were controlled at specific ratios, respectively.
  • the annealing process after the controlled rolling process is substantially the same as the annealing process after the general rolling process of FIG. 1 .
  • the annealing process is preferably performed at 600° C. or less. If the annealing exceeds 600° C., grain growth may occur excessively after recrystallization, thereby reducing mechanical strength.
  • Figure 4 (a) shows the microstructure of the scanning electron microscope observing the microstructure of the pure titanium plate made of 73.3% of the total cumulative rolling reduction (3.0t > 0.8t) by the controlled rolling process of Figure 3, (b) is The pole figure (PF) of the ⁇ 002 ⁇ plane of the pure titanium plate by the controlled rolling process is shown.
  • the pure titanium sheet material when controlled rolling is performed with a high reduction amount for grain refinement, does not have an anisotropy tendency in which the grains are stretched in the rolling direction, but rather has an isotropy tendency.
  • the grain size of the microstructure produced by the controlled rolling process is finer than the grain size of the microstructure produced by the general rolling process.
  • pure titanium having a hexagonal closed packed (HCP) crystal structure has anisotropic characteristics in plastic deformation
  • the texture of a pure titanium plate manufactured by a controlled rolling process is in the rolling direction and transverse direction. As a result, it has a more balanced shape, and the strength of the collective tissue is also significantly weakened (Fig.
  • the result of FIG. 4 shows that the total reduction amount is 73.3%, but when the total reduction amount is about 60% or more, it was confirmed that the microstructure and the texture as shown in FIG. 4 were obtained.
  • Figure 5 is a schematic diagram showing the Erichsen (Erichsen) test method for evaluating the formability of the pure titanium plate material of the present invention.
  • the improvement of the isotropy of the pure titanium plate according to the present invention greatly affects the formability of the plate.
  • an Ericsson test was performed according to EN ISO 20482 and KS B 5529 standards.
  • a disk-shaped specimen having a diameter of 50 mm and a thickness of 0.7 mm is prepared, the specimen is inserted between the upper die and the lower die, and the specimen is fixed with a force of 10 kN.
  • the lubricating oil may be a known press oil.
  • a spherical punch having a diameter of 20 mm is used to apply deformation at a rate of 0.1 mm/sec, and as shown in FIG. 5 , the punch is inserted until the specimen is broken, and then the deformation height at break is measured.
  • FIG 6 shows the change in pole figure (PF) according to the change in the reduction ratio of various RD and TD when the total reduction amount is 60% or more.
  • the reduction ratio of RD:TD was 1:1.25, although it had a strong ⁇ 002 ⁇ texture in the rolling transverse direction, the strength (or strength) of the texture was measured to be more reduced (FIG. 6 (d)).
  • the reduction ratio of RD:TD is 1:1.25, the ⁇ 002 ⁇ texture on the pole figure shows a substantially symmetrical shape at the same time in the rolling direction and the rolling transverse axis.
  • the texture as described above means that the anisotropy of the pure titanium plate material is reduced on a plane including the rolling direction and the rolling transverse direction.
  • the decrease in the strength of the texture to 3 or less means that the directionality of grains in the pure titanium plate material is greatly reduced, which means that the isotropy of the pure titanium plate material is improved.
  • Table 1 below is a table summarizing the results of FIG. 6 .
  • Agglomerate strength in Table 1 means the maximum value of the texture measured in RD (rolling direction) or TD (rolling transverse direction).
  • RD/TD texture intensity ratio in Table 1 is a ratio obtained by dividing the maximum values in RD and TD measured in each experimental example.
  • the TD measured value is greater than the RD measured value (see FIG. 6), so the “RD/TD texture strength ratio” in Table 1 is the TD measured value/RD Means the measured value.
  • the RD measured value is larger than the TD measured value (see Fig. 6), so Table 1 "RD/TD texture strength ratio" is the RD measured value/TD measured value. it means.
  • FIG. 7 shows the “RD/TD texture intensity ratio” of FIG. 6 .
  • the texture strength ratio for each rolling direction starts to increase rapidly with an inflection point between the RD:TD reduction ratio of 1:1 and 1:1.25, and the RD:TD reduction ratio is 1:1.5 days. was measured to have a maximum value when After that, the tissue strength ratio again started to decrease rapidly, and it was measured that the RD:TD reduction ratio slowly decreased with an inflection point between 1:1.75 and 1:2.
  • the tissue strength ratio result of FIG. 7 can be said to quantitatively prove that the RD:TD reduction ratio has a critical significance between 1:1.25 and 1:1.75.
  • the pure titanium sheet rolled by the general rolling process (RD) first has crystal grains elongated in a specific direction due to the developed texture.
  • the grain aspect ratio in the general rolled pure titanium plate under the same total reduction condition showed a low value of 0.2, and the average grain size was measured to be about 3.6 ⁇ m. .
  • the pure titanium plate rolled by the controlled rolling process has a relatively weak texture development, so it is generally uniform and has fine grains mainly, elongated in a specific direction, and has a microstructure in which coarse grains are part of it. (Fig. 8(b)).
  • the grain aspect ratio in the control-rolled pure titanium plate under the same total reduction condition had a very high value as 0.43, and the average grain size was about 0.8 ⁇ m, which was sub-micro (sub-micron) level was measured.
  • the tensile test result agrees very well with the result of the pole figure of FIG. 6 , and it means that the anisotropy of the pure titanium sheet material can be greatly improved through the control of the rolling process.
  • Table 2 below is a table summarizing the mechanical property evaluation results of FIGS. 9 (a) and (d).
  • the difference in yield strength (YS) and tensile strength (UTS) for each RD, 45 degree and TD direction was measured to be within 5% of the pure titanium sheet rolled by control rolling even if the total rolling reduction was changed. This is considered to be because the texture produced by the controlled rolling in the present invention has better isotropy than the texture produced by the conventional general rolling.
  • Figure 10 shows the results of the Erichsen (Erichsen) test for evaluating the formability of the pure titanium plate material of the present invention.
  • I.E. is the Erichsen value (index Erichsen), a numerical value expressed in mm that indicates the distance (punch stroke) that the punch tip moves from the lower die surface until a crack that reaches the back surface of at least one part of the test piece occurs (until fracture) , and it means that the larger the I. E. value, the better the stretching properties.
  • the controlled-rolled pure titanium plate according to an embodiment of the present invention has a higher yield strength and Erikson value than conventional grades 1 and 2 commercial titanium plates as well as a general rolled pure titanium plate.
  • the control-rolled pure titanium sheet material of the present invention has better workability (high Ericsson value) than the commercial grade 1 titanium sheet material due to the isotropy of the improved mechanical properties unique to the present invention.

Abstract

The present invention relates to a pure titanium board and a method for producing same, the pure titanium board being characterized in that contours, on a pole figure, with the same (002) texture intensity value are symmetric with respect to both the rolling direction (RD) and transverse direction (TD) axes.

Description

상온 성형성이 우수한 고강도 순수 타이타늄 판재 및 그 제조 방법 High-strength pure titanium plate with excellent room temperature formability and manufacturing method thereof
본 발명은 새로운 방식의 압연 공정을 이용한 판재의 제조와 후속 가공 열처리 공정을 통해 우수한 강도 및 성형에 유리한 집합조직을 가짐으로써 종래의 타이타늄 판재에 비해 프레스 성형성이 크게 개선된 고성형성 타이타늄 판재에 관한 것이다.The present invention relates to a high formability titanium sheet material with excellent strength and advantageous texture for forming through the production of a sheet material using a new rolling process and a subsequent processing heat treatment process, and thus the press formability is greatly improved compared to the conventional titanium sheet material will be.
타이타늄 합금은 낮은 밀도와 높은 강도, 우수한 비강도 및 내식성을 갖는 구조 재료용 합금으로, 최근 발전용 블레이드 및 열교환기 등과 같이 경량화가 필요한 산업용 소재로서 수요가 증대되고 있다. Titanium alloy is an alloy for structural materials having low density, high strength, excellent specific strength and corrosion resistance. Recently, demand is increasing as an industrial material requiring weight reduction such as blades for power generation and heat exchangers.
그 중에서도 상업적으로 순수한 타이타늄(commercially pure titanium, 이하 본 명세서에서 타이타늄 또는 순수 타이타늄은 상업적으로 순수한 타이타늄을 의미한다)은 우수한 부식 저항성과 생체 적합성을 가진다. Among them, commercially pure titanium (hereinafter, titanium or pure titanium means commercially pure titanium) has excellent corrosion resistance and biocompatibility.
그러나 순수 타이타늄은 육방정계(hexagonal close packed, HCP) 단상(single phase) 결정 구조의 특성으로 인해 낮은 항복강도를 가지므로 공업적인 응용에 제한을 받아 왔다. However, since pure titanium has a low yield strength due to the characteristics of a hexagonal close packed (HCP) single phase crystal structure, industrial applications have been limited.
상기 순수 타이타늄의 강도를 증가시키기 위해 기존에는 주로 결정립 미세화(grain refinement) 방법이 주로 적용되었다. In order to increase the strength of the pure titanium, a grain refinement method has been mainly applied in the prior art.
그런데 결정립 미세화를 위해서는 높은 압하율의 압연 공정을 여러 번 실시해야 하는데, 상기 높은 압하율의 압연 공정은 육방정계 결정을 가지는 순수 타이타늄 판재 내에 강한 집합조직(texture)을 발달시킨다. However, in order to refine grains, a rolling process with a high reduction ratio must be performed several times, and the rolling process with a high reduction ratio develops a strong texture in a pure titanium sheet having hexagonal crystals.
순수 타이타늄 판재에서의 집합조직의 발달은 슬립계(slip system)가 적은 타이타늄의 경우 성형성을 저하시키는 문제가 있다.The development of texture in a pure titanium plate has a problem of lowering the formability in the case of titanium with a small slip system.
또한 상기 높은 압하율의 압연 공정과 같은 종래의 제조법에 의해 제조된 순수 타이타늄 판재는 성형성, 특히 프레스 가공성이 떨어져서 복잡한 형상으로 가공하기 어렵다는 문제가 있다. In addition, the pure titanium sheet material manufactured by the conventional manufacturing method such as the rolling process of the high reduction ratio has a problem in that it is difficult to process it into a complex shape due to poor formability, particularly, press workability.
따라서 고강도와 동시에 성형성이 향상된 순수 타이타늄 판재의 개발이 요구된다.Therefore, it is required to develop a pure titanium plate with improved formability and high strength.
본 발명은 전술한 종래의 순수 타이타늄 판재의 문제점을 해결하기 위한 것으로서, 압연공정과 후속 가공열처리 공정 설계를 통해 성형성과 강도의 조합이 종래의 순수 타이타늄 판재에 비해 크게 개선된 고강도 고성형성 순수 타이타늄 판재 및 그 제조 방법을 제공하는 것을 목적으로 한다. The present invention is to solve the problems of the conventional pure titanium plate described above, and the combination of formability and strength through the rolling process and subsequent heat treatment process design is greatly improved compared to the conventional pure titanium plate. And it aims to provide the manufacturing method.
보다 구체적으로 본 발명은 초미세 결정립 미세조직을 가지면서 동시에 성형에 유리한 집합조직을 형성하여 고강도 및 우수한 성형성을 달성할 수 있는 순수 타이타늄 판재 및 그 제조 방법을 제공하는 것을 목적으로 한다. More specifically, an object of the present invention is to provide a pure titanium plate material capable of achieving high strength and excellent formability by forming a texture advantageous for molding while having an ultrafine grain microstructure, and a method for manufacturing the same.
또한, 본 발명은 별도의 강소성 공정 없이 일반적인 압연 공정만으로도 상온 성형성이 우수한 고강도 순수 타이타늄 판재를 경제적으로 제공할 수 있는 것을 목적으로 한다.In addition, an object of the present invention is to be able to economically provide a high-strength pure titanium plate having excellent room temperature formability only by a general rolling process without a separate plasticizing process.
상기의 목적을 달성하기 위한 본 발명의 일 실시예에 따른 타이타늄 판재는, 극점도(pole figure) 상에서 {002} 집합조직 세기가 동일한 값을 가지는 궤적(contour)이 압연 방향(RD)과 압연 측 방향(TD) 각각의 축에 대해 동시에 대칭적인 것을 특징으로 한다.In a titanium plate according to an embodiment of the present invention for achieving the above object, a trajectory having the same value of {002} texture strength on a pole figure is a rolling direction (RD) and a rolling side It is characterized in that it is simultaneously symmetrical about each axis of the direction (TD).
이 때, 상기 극점도(pole figure) 상에서 {002} 집합조직 세기의 최대 값의 궤적(contour)이 압연 방향(RD)과 압연 측 방향(TD) 각각의 축과 동시에 교차하는 것이 바람직하다.At this time, it is preferable that the trajectory (contour) of the maximum value of the {002} texture strength on the pole figure intersects the axes of the rolling direction (RD) and the rolling side direction (TD) at the same time.
이 때, 상기 {002} 집합조직 세기는 최대 5.2 이하인 것이 바람직하다.In this case, it is preferable that the {002} texture strength is at most 5.2 or less.
이 때, 상기 판재의 압연 방향(RD)에서의 항복 강도 및/또는 인장 강도와 압연 측 방향(TD)에서의 항복 강도 및/또는 인장 강도의 차이는 5% 이내인 것이 바람직하다.At this time, the difference between the yield strength and/or tensile strength in the rolling direction (RD) and the yield strength and/or tensile strength in the rolling lateral direction (TD) of the plate material is preferably within 5%.
이 때, 상기 판재의 결정립의 종횡 비(aspect ratio)는 0.4 이상인 것이 바람직하다.At this time, it is preferable that the aspect ratio of the crystal grains of the plate material is 0.4 or more.
이 때, 상기 판재의 에릭슨 값(index of Erichsen)은 15㎜ 이상인 것이 바람직하다.At this time, it is preferable that the Erichson value (index of Erichsen) of the plate material is 15 mm or more.
상기의 목적을 달성하기 위한 본 발명의 일 실시예에 따른 타이타늄 판재의 제조 방법은, (a) 타이타늄 판재를 압연 방향(RD)과 압연 측 방향(TD)으로 압연하는 단계; (b) 상기 압연된 판재를 소둔하는 단계;를 포함하고, 상기 (a) 단계에서 상기 압연 방향에서의 압하량과 상기 압연 측 방향에서의 압하량의 비가 1: 1.25 내지 1: 1.75인 것을 특징으로 한다.A method of manufacturing a titanium plate according to an embodiment of the present invention for achieving the above object, (a) rolling the titanium plate in the rolling direction (RD) and the rolling side direction (TD); (b) annealing the rolled sheet material; characterized in that the ratio of the rolling reduction in the rolling direction to the rolling reduction in the rolling side direction in step (a) is 1: 1.25 to 1: 1.75 do it with
이 때, 상기 (a) 단계에서의 총 압하량은 60% 이상인 것이 바람직하다.In this case, the total reduction in step (a) is preferably 60% or more.
이 때, (b) 단계에서의 소둔은 600℃ 이하에서 유지되는 것이 바람직하다.At this time, the annealing in step (b) is preferably maintained at 600 ℃ or less.
본 발명에 의하면, 압연공정과 후속 가공열처리 공정 설계를 통한 결정립 미세화와 집합조직의 제어를 통해, 종래의 순수 타이타늄 판재에 비해 상온 강도는 물론 성형성이 크게 향상되어 경량화가 필요한 산업에 폭넓게 적용이 가능한 고성형성 순수 타이타늄 판재를 얻을 수 있다.According to the present invention, through the control of grain refinement and texture through the design of the rolling process and the subsequent heat treatment process, the formability as well as the room temperature strength is greatly improved compared to the conventional pure titanium plate material, so that it can be widely applied to industries requiring weight reduction. It is possible to obtain a high formability pure titanium sheet material.
또한, 본 발명에 따른 타이타늄 판재의 제조방법에 의하면, 개선된 상온 프레스 성형성을 얻을 수 있기 때문에 종래의 순수 타이타늄 판재에 비해 저렴한 비용으로 타이타늄 부품을 제조할 수 있다. In addition, according to the method of manufacturing a titanium plate material according to the present invention, since improved room temperature press formability can be obtained, it is possible to manufacture titanium parts at a lower cost compared to the conventional pure titanium plate material.
상술한 효과와 더불어 본 발명의 구체적인 효과는 이하 발명을 실시하기 위한 구체적인 사항을 설명하면서 함께 기술한다.In addition to the above-described effects, the specific effects of the present invention will be described together while describing specific details for carrying out the invention below.
도 1은 종래의 일반 압연 공정을 이용한 타이타늄 판재의 제조 방법을 나타낸다.1 shows a method of manufacturing a titanium plate material using a conventional general rolling process.
도 2의 (a)는 도 1의 일반 압연공정에 의해 만들어진 순수한 타이타늄 판재의 미세조직을 관찰한 주사전자현미경 미세조직을 나타내고, (b)는 상기 일반 압연공정에 의한 순수한 타이타늄 판재의 {002} 면의 극점도(pole figure, PF)를 도시한다.(a) of FIG. 2 shows the microstructure of the pure titanium plate made by the general rolling process of FIG. 1, and (b) shows the microstructure of the pure titanium plate made by the general rolling process {002} Show the pole figure (PF) of the plane.
도 3은 본 발명의 일 실시예에 따른 순수한 타이타늄 판재의 제조 방법을 나타낸다.3 shows a method of manufacturing a pure titanium plate according to an embodiment of the present invention.
도 4의 (a)는 도 3의 제어 압연공정에 의해 만들어진 순수한 타이타늄 판재의 미세조직을 관찰한 주사전자현미경 미세조직을 나타내고, (b)는 상기 제어 압연공정에 의한 순수한 타이타늄 판재의 {002} 면의 극점도(pole figure, PF)를 도시한다.4 (a) shows the microstructure of a pure titanium plate made by the controlled rolling process of FIG. 3, and (b) shows the microstructure of the pure titanium plate made by the controlled rolling process {002} Show the pole figure (PF) of the plane.
도 5는 본 발명의 순수한 타이타늄 판재의 성형성을 평가하기 위한 에릭슨(Erichsen) 시험 방법을 나타낸 도식도이다.Figure 5 is a schematic diagram showing the Erichsen (Erichsen) test method for evaluating the formability of the pure titanium plate material of the present invention.
도 6의 (a)~(h)는 각각 원소재(mill-annealed), 일반 압연공정(RD), RD:TD 압하율=1:1, RD:TD 압하율=1:1.25, RD:TD 압하율=1:1.5, RD:TD 압하율=1:1.75, RD:TD 압하율=1:2 및 TD 압연된 순수한 타이타늄 판재의 극점도 측정 결과를 도시한다.6 (a) to (h) are, respectively, raw material (mill-annealed), general rolling process (RD), RD:TD reduction ratio = 1:1, RD:TD reduction ratio = 1:1.25, RD:TD The reduction ratio=1:1.5, RD:TD reduction ratio=1:1.75, RD:TD reduction ratio=1:2, and TD-rolled pure titanium sheet are shown as the measurement results of pole viscosity.
도 7은 상기 도 6의 "RD/TD 집합 조직 세기 비"를 도시한다.FIG. 7 shows the “RD/TD texture intensity ratio” of FIG. 6 .
도 8의 (a)와 (b)는 각각 일반 압연공정(RD)과 RD:TD 압하율이 1:1.5인 제어 압연공정으로 압연된 순수한 타이타늄 판재의 전자 후방 산란 이미지(electron backscatter diffraction)를 도시한다.8 (a) and (b) show electron backscatter diffraction images of a pure titanium plate rolled by a general rolling process (RD) and a controlled rolling process in which the RD:TD reduction ratio is 1:1.5, respectively. do.
도 9의 (a)~(d)는 각각 일반 압연공정(RD), TD 압연 공정, RD:TD 압하율=1:1, 및 RD:TD 압하율=1:1.5 조건에서 압연된 순수한 타이타늄 판재의 기계적 특성 평가 측정 결과를 도시한다.9 (a) to (d) is a pure titanium sheet rolled under the conditions of general rolling process (RD), TD rolling process, RD:TD reduction ratio = 1:1, and RD:TD reduction ratio = 1:1.5, respectively. The measurement results of the evaluation of the mechanical properties are shown.
도 10은 본 발명의 순수한 타이타늄 판재의 성형성을 평가하기 위한 에릭슨(Erichsen) 시험 결과를 보여준다.Figure 10 shows the results of the Erichsen (Erichsen) test for evaluating the formability of the pure titanium plate material of the present invention.
이하, 도면을 참조하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, with reference to the drawings, embodiments of the present invention will be described in detail so that those of ordinary skill in the art to which the present invention pertains can easily implement them. The present invention may be embodied in many different forms and is not limited to the embodiments described herein.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다. 또한, 본 발명의 일부 실시예들을 예시적인 도면을 참조하여 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가질 수 있다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 수 있다.In order to clearly explain the present invention, parts irrelevant to the description are omitted, and the same reference numerals are assigned to the same or similar components throughout the specification. Further, some embodiments of the present invention will be described in detail with reference to exemplary drawings. In adding reference numerals to components of each drawing, the same components may have the same reference numerals as much as possible even though they are indicated in different drawings. In addition, in describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description may be omitted.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질, 차례, 순서 또는 개수 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 다른 구성 요소가 "개재"되거나, 각 구성 요소가 다른 구성 요소를 통해 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.In describing the components of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used. These terms are only for distinguishing the elements from other elements, and the nature, order, order, or number of the elements are not limited by the terms. When it is described that a component is “connected”, “coupled” or “connected” to another component, the component may be directly connected or connected to the other component, but other components may be interposed between each component. It should be understood that each component may be “interposed” or “connected”, “coupled” or “connected” through another component.
도 1은 종래의 일반 압연 공정을 이용한 타이타늄 판재의 제조 방법을 나타낸다.1 shows a method of manufacturing a titanium plate material using a conventional general rolling process.
판상의 타이타늄 판재는 일반 압연공정에서 원하는 최종 압하율까지 상온에서 압연 방향(판재의 길이 방향, rolling direction, 도 1의 화살표 참조)으로 복수 회(n번) 압연된다. 그 후 상기 압연된 타이타늄 판재는 내부에 축적된 내부 에너지를 제거하기 위해 소둔(annealing)된다. 상기 소둔 공정은 통상적으로 용융 온도(melting point)의 절반 이상의 온도에서 최소 1시간 이상 진행된다. 이와 같이 소둔된 최종 타이타늄 판재 내에는 전위(dislocation)와 같은 결함이 현저하게 줄어든 새로운 재결정된 미세조직을 가지게 된다.The plate-shaped titanium plate is rolled a plurality of times (n times) in the rolling direction (longitudinal direction of the plate, rolling direction, refer to the arrow in FIG. 1) at room temperature until the final desired reduction ratio in the general rolling process. Thereafter, the rolled titanium sheet is annealed to remove the internal energy accumulated therein. The annealing process is typically performed at a temperature of half or more of a melting point for at least 1 hour. The final annealed titanium plate has a new recrystallized microstructure with significantly reduced defects such as dislocations.
다만, 재결정된 새로운 미세조직이 상기 소둔에 의해 형성되더라도, 압연과 같은 특정 방향으로의 물질의 흐름을 만드는 가공방법은 결과적으로 특정 결정 방향(압연 방향)으로 결정립들이 배열된 집합조직을 만든다. 특히 압연된 판재의 경우, 결정 방향뿐만 아니라 결정면까지 방향이 규정될 수 있다.However, even if a new recrystallized microstructure is formed by the annealing, a processing method for creating a flow of material in a specific direction, such as rolling, results in a texture in which crystal grains are arranged in a specific crystal direction (rolling direction). In particular, in the case of a rolled sheet material, the direction to the crystal plane as well as the crystal direction can be defined.
상기 집합조직을 가지는 미세조직은 기계적 이방성을 만들게 된다. 다시 말하면 집합조직의 미세조직을 가지는 압연된 판재는 방향에 따라 기계적 특성이 서로 달라지는 특성을 가진다.The microstructure having the texture is to create mechanical anisotropy. In other words, the rolled sheet having a microstructure of the texture has a characteristic that the mechanical properties are different depending on the direction.
상기 기계적 이방성은 다시 프레스 성형성과 같은 판재의 가공성에 나쁜 영향을 미친다. 예를 들어 판재의 압연 방향(rolling direction, RD)과 압연 횡 방향(transverse direction, TD)에서의 기계적 특성이 서로 다르면, 이 중 취약한 방향에서의 열악한 가공성은 판재의 균일한 가공을 어렵게 하는 문제를 일으킬 수 있다. The mechanical anisotropy again adversely affects the workability of the sheet material, such as press formability. For example, if the mechanical properties in the rolling direction (RD) and the transverse direction (TD) of the sheet material are different from each other, the poor workability in the weak direction makes it difficult to uniformly process the sheet material. can cause
도 2의 (a)는 도 1의 일반 압연공정에 의해 만들어진 순수한 타이타늄 판재의 미세조직을 관찰한 주사전자현미경 미세조직을 나타내고, (b)는 상기 일반 압연공정에 의한 순수한 타이타늄 판재의 {002} 면의 극점도(pole figure, PF)를 도시한다.(a) of FIG. 2 shows the microstructure of the pure titanium plate made by the general rolling process of FIG. 1, and (b) shows the microstructure of the pure titanium plate made by the general rolling process {002} Show the pole figure (PF) of the plane.
도 2(a)에서 도시하는 바와 같이 결정립 미세화를 위해 높은 압하율로 압연이 진행된 경우, 비록 소둔에 의해 내부 결함이 제거된 재결정된 미세조직이 형성된다 할 지라도, 순수한 타이타늄 판재는 결정립이 압연방향으로 연신된 이방성 미세조직을 가짐을 알 수 있다.As shown in Fig. 2(a), when rolling is performed at a high rolling reduction for grain refinement, even if a recrystallized microstructure in which internal defects are removed by annealing is formed, the pure titanium sheet has crystal grains in the rolling direction. It can be seen that it has a stretched anisotropic microstructure.
육방밀집구조(hexagonal closed packed, HCP)의 결정 구조를 가지는 순수한 타이타늄 판재의 특성으로 인해 압연 과정을 거치면서 압연 횡 방향으로 강한 집합조직이 형성되는 것으로 측정되었다(도 2(b)). 상기 도 2(b)를 살펴보면, {002} 면들이 압연 횡 방향에 수직한 방향으로 강하게 배향되어 있음을 알 수 있다.It was measured that a strong texture was formed in the rolling lateral direction during the rolling process due to the characteristics of the pure titanium plate having a hexagonal closed packed (HCP) crystal structure (FIG. 2(b)). Referring to FIG. 2(b) , it can be seen that the {002} planes are strongly oriented in a direction perpendicular to the transverse rolling direction.
도 1 및 2의 상기 결과는 결정립 미세화를 위해 높은 압하율로 일반 압연공정을 통해 순수한 타이타늄 판재를 가공하게 되면, 기계적 특성의 이방성은 반드시 수반됨을 의미한다. 그리고 상기 결과는 일반 압연공정으로는 결정립 미세화를 통한 기계적 특성 향상은 가능해도, 등방성(isotropic) 기계적 특성의 향상은 달성할 수 없음을 의미한다.The above results in FIGS. 1 and 2 mean that when a pure titanium plate is processed through a general rolling process at a high reduction ratio for grain refinement, the anisotropy of mechanical properties is necessarily accompanied. And the above result means that although it is possible to improve the mechanical properties through grain refinement in the general rolling process, the improvement of the isotropic mechanical properties cannot be achieved.
도 3은 본 발명의 일 실시예에 따른 순수한 타이타늄 판재의 제조 방법을 나타낸다.3 shows a method of manufacturing a pure titanium plate according to an embodiment of the present invention.
도 3의 판재 제조 방법은, 도 1의 종래의 일반 압연공정 대비, 압연 과정에서 압연 방향을 제어한 특징을 가진다. 보다 구체적으로 도 3의 판재 제조 방법은 압연 과정에서 압연 방향을 압연 방향(rolling direction)과 압연 횡 방향(transverse direction)으로 혼합한 것에 특징이 있다. 다시 말하면 도 3의 판재 제조 방법에서는 압연 시 압연 방향에서의 압하율과 압연 횡 방향에서의 압하율을 각각 특정 비율로 제어하였다. The plate material manufacturing method of FIG. 3 has a feature of controlling the rolling direction in the rolling process, compared to the conventional general rolling process of FIG. 1 . More specifically, the plate material manufacturing method of FIG. 3 is characterized in that the rolling direction is mixed in the rolling direction and the rolling transverse direction during the rolling process. In other words, in the plate material manufacturing method of FIG. 3 , the rolling reduction in the rolling direction and the rolling reduction in the rolling transverse direction during rolling were controlled at specific ratios, respectively.
한편 도 3의 판재 제조 방법에서 상기 제어 압연공정 이후의 소둔 과정은 상기 도 1의 일반 압연공정 이후의 소둔 과정과 실질적으로 동일하다. 다만 상기 상기 소둔 과정은 600℃ 이하에서 수행되는 것이 바람직하다. 만일 상기 소둔이 600℃를 초과하게 되면, 재결정 이후 결정립 성장이 지나치게 발생하여 기계적 강도의 저하가 발생할 수 있다.Meanwhile, in the sheet material manufacturing method of FIG. 3 , the annealing process after the controlled rolling process is substantially the same as the annealing process after the general rolling process of FIG. 1 . However, the annealing process is preferably performed at 600° C. or less. If the annealing exceeds 600° C., grain growth may occur excessively after recrystallization, thereby reducing mechanical strength.
도 4의 (a)는 도 3의 제어 압연공정에 의해 총 누적 압하량 73.3%(3.0t > 0.8t)만들어진 순수한 타이타늄 판재의 미세조직을 관찰한 주사전자현미경 미세조직을 나타내고, (b)는 상기 제어 압연공정에 의한 순수한 타이타늄 판재의 {002} 면의 극점도(pole figure, PF)를 도시한다.Figure 4 (a) shows the microstructure of the scanning electron microscope observing the microstructure of the pure titanium plate made of 73.3% of the total cumulative rolling reduction (3.0t > 0.8t) by the controlled rolling process of Figure 3, (b) is The pole figure (PF) of the {002} plane of the pure titanium plate by the controlled rolling process is shown.
도 4(a)에서 도시하는 바와 같이 결정립 미세화를 위해 높은 압하량으로 제어 압연이 진행된 경우, 순수한 타이타늄 판재는 결정립이 압연방향으로 연신된 이방성(anisotropy) 경향이 없고 오히려 등방성(isotropy) 경향을 가짐을 알 수 있다. 이에 더하여 제어 압연공정에 의해 제조된 미세조직의 결정립 크기가 일반 압연공정에 의해 제조된 미세조직의 결정립 크기 보다 더 미세함을 알 수 있다. As shown in Fig. 4(a), when controlled rolling is performed with a high reduction amount for grain refinement, the pure titanium sheet material does not have an anisotropy tendency in which the grains are stretched in the rolling direction, but rather has an isotropy tendency. can be known In addition, it can be seen that the grain size of the microstructure produced by the controlled rolling process is finer than the grain size of the microstructure produced by the general rolling process.
더 나아가 비록 육방밀집구조(hexagonal closed packed, HCP)의 결정 구조를 가지는 순수한 타이타늄이 소성변형에 있어서 이방성 특징을 가진다 하더라도, 제어 압연공정에 의해 제조된 순수한 타이타늄 판재의 집합조직은 압연 방향 및 횡 방향으로 더욱 균형잡힌 형태를 가지며 집합조직의 세기 역시 상당히 약해진 것으로 나타났다(도 4(b)).Furthermore, although pure titanium having a hexagonal closed packed (HCP) crystal structure has anisotropic characteristics in plastic deformation, the texture of a pure titanium plate manufactured by a controlled rolling process is in the rolling direction and transverse direction. As a result, it has a more balanced shape, and the strength of the collective tissue is also significantly weakened (Fig.
도 3 및 4의 상기 결과는 결정립 미세화를 위해 높은 압하율로 제어 압연공정을 통해 순수한 타이타늄 판재를 가공하게 되면, 기계적 특성의 이방성이 억제될 수 있음을 의미한다. 그리고 상기 결과는 제어 압연공정은 결정립 미세화를 통한 기계적 특성 향상은 물론이거니와 등방성(isotropic) 기계적 특성의 달성도 가능할 수 있음을 의미한다.The above results in FIGS. 3 and 4 mean that when a pure titanium plate is processed through a controlled rolling process at a high rolling reduction for grain refinement, the anisotropy of mechanical properties can be suppressed. And the above result means that the controlled rolling process can achieve not only the improvement of mechanical properties through grain refinement, but also the achievement of isotropic mechanical properties.
한편 상기 도 4의 결과는 총 압하량이 73.3%인 경우이나, 상기 총 압하량이 대략 60% 이상이면 상기 도 4와 같은 미세조직 및 집합 조직이 얻어짐을 확인하였다.On the other hand, the result of FIG. 4 shows that the total reduction amount is 73.3%, but when the total reduction amount is about 60% or more, it was confirmed that the microstructure and the texture as shown in FIG. 4 were obtained.
도 5는 본 발명의 순수한 타이타늄 판재의 성형성을 평가하기 위한 에릭슨(Erichsen) 시험 방법을 나타낸 도식도이다.Figure 5 is a schematic diagram showing the Erichsen (Erichsen) test method for evaluating the formability of the pure titanium plate material of the present invention.
본 발명에 따른 순수한 타이타늄 판재의 등방성 향상은 특히 판재의 성형성에 크게 영향을 미친다. 본 발명에서는 판재의 성형성을 평가하기 위해, EN ISO 20482 및 KS B 5529 규격에 따라 에릭슨 시험을 실시하였다.The improvement of the isotropy of the pure titanium plate according to the present invention greatly affects the formability of the plate. In the present invention, in order to evaluate the formability of the plate, an Ericsson test was performed according to EN ISO 20482 and KS B 5529 standards.
에릭슨 시험은 직경 50㎜, 두께 0.7㎜의 디스크형 시험편을 제작한 후, 상부 다이와 하부 다이 사이에 상기 시험편을 삽입한 후 10kN의 힘으로 시편을 고정한다. 이 때, 윤활유는 공지의 프레스유가 사용될 수 있다. 이후 20㎜의 직경을 가지는 구형의 펀치를 사용하여 0.1㎜/sec의 속도로 변형을 가하여, 도 5에서 도시된 바와 같이 시편의 파단 시까지 펀치를 삽입한 후 파단 시의 변형 높이를 측정한다. In the Ericsson test, a disk-shaped specimen having a diameter of 50 mm and a thickness of 0.7 mm is prepared, the specimen is inserted between the upper die and the lower die, and the specimen is fixed with a force of 10 kN. At this time, the lubricating oil may be a known press oil. Thereafter, a spherical punch having a diameter of 20 mm is used to apply deformation at a rate of 0.1 mm/sec, and as shown in FIG. 5 , the punch is inserted until the specimen is broken, and then the deformation height at break is measured.
이하 본 발명의 실험예들을 통해 본 발명을 더욱 구체적으로 살펴보기로 한다.Hereinafter, the present invention will be described in more detail through experimental examples of the present invention.
도 6은 전체 압하량은 60% 이상일 때, 다양한 RD와 TD의 압하율 변화에 따른 극점도(pole figure, PF)의 변화를 도시한다.6 shows the change in pole figure (PF) according to the change in the reduction ratio of various RD and TD when the total reduction amount is 60% or more.
도 6의 (a)~(h)는 각각 원소재(mill-annealed), 일반 압연공정(RD), RD:TD 압하율=1:1, RD:TD 압하율=1:1.25, RD:TD 압하율=1:1.5, RD:TD 압하율=1:1.75, RD:TD 압하율=1:2 및 TD 압연된 순수한 타이타늄 판재의 극점도 측정 결과를 도시한다.6 (a) to (h) are, respectively, raw material (mill-annealed), general rolling process (RD), RD:TD reduction ratio = 1:1, RD:TD reduction ratio = 1:1.25, RD:TD The reduction ratio=1:1.5, RD:TD reduction ratio=1:1.75, RD:TD reduction ratio=1:2, and TD-rolled pure titanium sheet are shown as the measurement results of pole viscosity.
먼저 원소재(mill-anneaed)의 경우, 압연 횡 방향으로 강한 {002} 집합 조직을 가지며 집합조직의 세기(또는 강도)도 매우 높은 것으로 측정되었다(도 6 (a)).First, in the case of a raw material (mill-anneaed), it was measured to have a strong {002} texture in the rolling transverse direction and the strength (or strength) of the texture was also very high (FIG. 6 (a)).
일반 압연공정의 경우와 RD:TD의 압하율이 1:1인 경우도 압연 횡 방향으로 강한 {002} 집합 조직을 가지며 집합조직의 세기(또는 강도)도 여전히 매우 높은 것으로 측정되었다(도 6 (b) 및 (c)).In the case of the general rolling process and the case where the reduction ratio of RD:TD is 1:1, it has a strong {002} texture in the rolling transverse direction, and the strength (or strength) of the texture is still very high (Fig. b) and (c)).
반면 RD:TD의 압하율이 1:1.25인 경우, 비록 압연 횡 방향으로 강한 {002} 집합 조직을 가지지만 집합조직의 세기(또는 강도)는 보다 감소한 것으로 측정되었다(도 6 (d)). 특히 RD:TD의 압하율이 1:1.25인 경우, 극점도(pole figure) 상에서 {002} 집합조직은 압연 방향 및 압연 횡 방향 축에 동시에 실질적으로 대칭적인 형상을 나타낸다. 상기와 같은 집합조직은 압연 방향 및 압연 횡 방향을 포함하는 평면 상에서 순수 타이타늄 판재의 이방성이 감소함을 의미한다. On the other hand, when the reduction ratio of RD:TD was 1:1.25, although it had a strong {002} texture in the rolling transverse direction, the strength (or strength) of the texture was measured to be more reduced (FIG. 6 (d)). In particular, when the reduction ratio of RD:TD is 1:1.25, the {002} texture on the pole figure shows a substantially symmetrical shape at the same time in the rolling direction and the rolling transverse axis. The texture as described above means that the anisotropy of the pure titanium plate material is reduced on a plane including the rolling direction and the rolling transverse direction.
한편 RD:TD의 압하율이 1:1.5인 경우는 매우 극적인 변화가 나타났다. 구체적으로 RD:TD의 압하율이 1:1.5인 경우 극점도(pole figure) 상에서 {002} 집합조직은 압연 방향 및 압연 횡 방향 축에 동시에 실질적으로 대칭적이면서 극점도(pole figure) 상에서 집합조직 세기의 최대 값의 궤적이 압연 방향(RD)과 압연 측 방향(TD) 각각의 축과 동시에 교차하는 집합 조직을 가지며, 집합조직의 세기(또는 강도)도 전체 압하율에 따라 다르지만 모두 4 이하의 낮은 값을 가지는 것으로 측정되었다(도 6 (e)).On the other hand, when the reduction ratio of RD:TD was 1:1.5, a very dramatic change was observed. Specifically, when the reduction ratio of RD:TD is 1:1.5, the {002} texture on the pole figure is substantially symmetrical with respect to the rolling direction and the rolling transverse axis at the same time and the texture on the pole figure The trajectory of the maximum value of the strength has a texture that intersects the axes of the rolling direction (RD) and the rolling lateral direction (TD) at the same time, and the strength (or strength) of the texture also varies depending on the overall reduction ratio, but all of them are 4 or less. It was measured to have a low value (Fig. 6 (e)).
도 6 (e)의 RD:TD의 압하율이 1:1.5인 경우의 집합 조직의 결과는 매우 이례적이며 고무적이다. 왜냐하면 집합 조직이 극점도(pole figure) 상에서 {002} 집합조직은 압연 방향 및 압연 횡 방향 축에 동시에 실질적으로 대칭적이면서 극점도(pole figure) 상에서 집합조직 세기의 최대 값의 궤적이 압연 방향(RD)과 압연 측 방향(TD) 각각의 축과 동시에 교차한다는 것은 압연 방향 및 압연 횡 방향을 포함하는 평면 상에서 순수 타이타늄 판재의 이방성이 사라졌음을 의미하기 때문이다. The result of the texture when the reduction ratio of RD:TD of FIG. 6(e) is 1:1.5 is very unusual and encouraging. Because the texture {002} on the pole figure is substantially symmetrical at the same time to the rolling direction and the rolling transverse axis, the locus of the maximum value of the texture strength on the pole figure is the rolling direction ( RD) and the rolling lateral direction (TD) intersecting at the same time means that the anisotropy of the pure titanium sheet material on the plane including the rolling direction and the rolling transverse direction has disappeared.
더 나아가 집합 조직의 강도가 3 이하(도 6 (e))로 감소한 것은, 순수 타이타늄 판재 내의 결정립의 방향성이 크게 감소함을 의미하고, 이는 순수 타이타늄 판재의 등방성이 향상됨을 의미한다.Furthermore, the decrease in the strength of the texture to 3 or less (FIG. 6 (e)) means that the directionality of grains in the pure titanium plate material is greatly reduced, which means that the isotropy of the pure titanium plate material is improved.
한편 RD:TD의 압하율이 1:1.75, 1:2 및 TD 압연의 경우, 다시 {002} 집합 조직이 더 강하게 발현되었다(도 6 (f)~(h)). 구체적으로 상기 압연 조건에서는 앞에서의 RD 압연 경우와는 달리, 집합 조직은 압연 방향을 따라 나타났으며 집합 조직의 강도 또한 증가하는 경향을 나타냈다. On the other hand, in the case of the RD:TD rolling reduction ratios of 1:1.75, 1:2, and TD rolling, the {002} texture was more strongly expressed again (FIGS. 6 (f) to (h)). Specifically, under the rolling conditions, unlike the case of RD rolling, the texture appeared along the rolling direction and the strength of the texture also showed a tendency to increase.
다만 RD:TD의 압하율이 1:1.75인 경우는 극점도(pole figure) 상에서 {002} 집합조직은 압연 방향 및 압연 횡 방향 축에 동시에 실질적으로 대칭적인 특징을 유지하였으나, RD:TD의 압하율이 1:2.0인 경우는 상기 집합조직의 대칭성이 완전히 사라진 것으로 측정되었다.However, when the rolling reduction ratio of RD:TD was 1:1.75, the {002} texture maintained substantially symmetrical characteristics in the rolling direction and the rolling transverse axis at the same time on the pole figure, but the rolling reduction of RD:TD When the ratio was 1:2.0, it was measured that the symmetry of the texture was completely disappeared.
아래의 표 1은 상기 도 6의 결과를 정리한 표이다.Table 1 below is a table summarizing the results of FIG. 6 .
[표 1][Table 1]
Figure PCTKR2021011696-appb-img-000001
Figure PCTKR2021011696-appb-img-000001
상기 표 1에서의 "집합 조직 세기"는 RD(압연 방향) 또는 TD(압연 횡 방향) 에서 측정된 집합 조직의 최대 값을 의미한다."Agglomerate strength" in Table 1 means the maximum value of the texture measured in RD (rolling direction) or TD (rolling transverse direction).
상기 표 1에서의 "RD/TD 집합 조직 세기 비"는 각각의 실험예에서 측정된 RD 및 TD 에서의 최대 값들을 나눈 비이다. 여기서 일반 압연공정부터 RD:TD 압하율이 1:1.25까지는 TD 측정 값이 RD 측정 값보다 크므로(도 6 참조), 표 1에서의 "RD/TD 집합 조직 세기 비"는 TD 측정 값/RD 측정 값을 의미한다. 반면 RD:TD 압하율이 1:1.75부터 TD 압연까지는 RD 측정 값이 TD 측정 값보다 크므로(도 6 참조), 표 1 "RD/TD 집합 조직 세기 비"는 RD 측정 값/TD 측정 값을 의미한다."RD/TD texture intensity ratio" in Table 1 is a ratio obtained by dividing the maximum values in RD and TD measured in each experimental example. Here, from the general rolling process to the RD:TD reduction ratio of 1:1.25, the TD measured value is greater than the RD measured value (see FIG. 6), so the “RD/TD texture strength ratio” in Table 1 is the TD measured value/RD Means the measured value. On the other hand, from the RD:TD rolling reduction ratio of 1:1.75 to the TD rolling, the RD measured value is larger than the TD measured value (see Fig. 6), so Table 1 "RD/TD texture strength ratio" is the RD measured value/TD measured value. it means.
결국 상기 표 1에서의 "RD/TD 집합 조직 세기 비"가 1에 가깝다는 것은 순수 타이타늄 판재 내의 압연 방향과 압연 횡 방향에서의 집합 조직의 강도가 서로 유사한 것을 의미하며, 이는 다시 순수 타이타늄 판재의 기계적 특성의 등방성이 향상됨을 의미한다.In the end, when the "RD/TD texture strength ratio" in Table 1 is close to 1, it means that the strength of the texture in the rolling direction and the rolling lateral direction in the pure titanium sheet is similar to each other, which is again the case of the pure titanium sheet. It means that the isotropy of mechanical properties is improved.
도 7은 상기 도 6의 "RD/TD 집합 조직 세기 비"를 도시한 것이다.FIG. 7 shows the “RD/TD texture intensity ratio” of FIG. 6 .
도 7에서 도시하는 바와 같이, 압연 방향 별 집합 조직 세기 비는 RD:TD 압하율이 1:1 내지 1:1.25 사이에서 변곡점을 가지고 급격히 증가하기 시작하고, RD:TD 압하율이 1:1.5일 때 최대값을 가지는 것으로 측정되었다. 이 후 다시 집합 조직 세기 비는 급격히 감소하기 시작하다가 RD:TD 압하율이 1:1.75 내지 1:2 사이에서 변곡점을 가지고 완만하게 감소하는 것으로 측정되었다. As shown in FIG. 7 , the texture strength ratio for each rolling direction starts to increase rapidly with an inflection point between the RD:TD reduction ratio of 1:1 and 1:1.25, and the RD:TD reduction ratio is 1:1.5 days. was measured to have a maximum value when After that, the tissue strength ratio again started to decrease rapidly, and it was measured that the RD:TD reduction ratio slowly decreased with an inflection point between 1:1.75 and 1:2.
도 7의 상기 집합 조직 세기 비 결과는 RD:TD 압하율이 1:1.25 내지 1:1.75 사이에서 임계적 의의가 있음을 정량적으로 입증하는 것이라 할 수 있다.The tissue strength ratio result of FIG. 7 can be said to quantitatively prove that the RD:TD reduction ratio has a critical significance between 1:1.25 and 1:1.75.
도 8의 (a)와 (b)는 각각 일반 압연공정(RD)과 RD:TD 압하율이 1:1.5인 제어 압연공정으로 압연된 순수한 타이타늄 판재의 전자 후방 산란 이미지(electron backscatter diffraction)를 도시한다.8 (a) and (b) show electron backscatter diffraction images of a pure titanium plate rolled by a general rolling process (RD) and a controlled rolling process in which the RD:TD reduction ratio is 1:1.5, respectively. do.
도 8 (a)에서 도시하는 바와 같이, 먼저 일반 압연공정(RD)으로 압연된 순수한 타이타늄 판재는 발달된 집합조직으로 인해 특정 방향으로 길게 연신된 결정립을 가진다. 그 결과 동일한 전체 압하량 조건에서 일반 압연된 순수한 타이타늄 판재 내의 결정립의 종횡비(grain aspect ratio)가 0.2로 낮은 값을 보임을 확인하였으며, 결정립 평균 크기(average grain size)는 약 3.6㎛인 것으로 측정되었다.As shown in Fig. 8 (a), the pure titanium sheet rolled by the general rolling process (RD) first has crystal grains elongated in a specific direction due to the developed texture. As a result, it was confirmed that the grain aspect ratio in the general rolled pure titanium plate under the same total reduction condition showed a low value of 0.2, and the average grain size was measured to be about 3.6 μm. .
반면 제어 압연공정으로 압연된 순수한 타이타늄 판재는 상대적으로 집합조직의 발달이 미약하여 대체적으로 균일하고 미세한 결정립들이 주를 이루며 특정 방향으로 연신되고 조대한 결정립이 일부를 이루는 미세조직을 가짐을 알 수 있다(도 8 (b)). 그 결과 동일한 전체 압하량 조건에서 제어 압연된 순수한 타이타늄 판재 내의 결정립의 종횡비(grain aspect ratio)는 0.43으로 매우 높은 값을 가짐을 확인하였으며, 결정립 평균 크기(average grain size)는 약 0.8㎛로 서브 마이크로(sub-micron) 수준인 것으로 측정되었다.On the other hand, it can be seen that the pure titanium plate rolled by the controlled rolling process has a relatively weak texture development, so it is generally uniform and has fine grains mainly, elongated in a specific direction, and has a microstructure in which coarse grains are part of it. (Fig. 8(b)). As a result, it was confirmed that the grain aspect ratio in the control-rolled pure titanium plate under the same total reduction condition had a very high value as 0.43, and the average grain size was about 0.8㎛, which was sub-micro (sub-micron) level was measured.
도 9는 다양한 RD와 TD의 압하율 변화에 따른 순수 타이타늄 판재의 기계적 특성 평가 결과를 도시한다.9 shows the evaluation results of the mechanical properties of the pure titanium plate material according to the various RD and TD changes in the reduction ratio.
도 9의 (a)~(d)는 각각 일반 압연공정(RD), TD 압연 공정, RD:TD 압하율=1:1, 및 RD:TD 압하율=1:1.5 조건에서 압연된 순수한 타이타늄 판재의 기계적 특성 평가 측정 결과를 도시한다.9 (a) to (d) is a pure titanium sheet rolled under the conditions of general rolling process (RD), TD rolling process, RD:TD reduction ratio = 1:1, and RD:TD reduction ratio = 1:1.5, respectively. The measurement results of the evaluation of the mechanical properties are shown.
먼저 일반 압연공정(RD)의 경우(도 9 (a))와 RD:TD 압하율=1:1로 압연된 순수한 타이타늄 판재의 경우(도 9 (c)), 압연 방향(RD)의 인장시험 결과가 압연 측 방향(TD) 방향의 인장시험 결과보다 인장 강도는 우수한 반면 항복 강도는 더 낮은 것으로 측정되었으며, 연신율은 대략 동일한 것으로 측정되었다. 반면 45도 방향의 인장시험 결과는 RD 방향 및 TD 방향보다 강도는 모두 낮고 연신율은 크게 증가하는 것으로 측정되었다. 상기 인장시험 결과는 일반 압연공정(RD) 및 RD:TD 압하율=1:1로 압연된 순수한 타이타늄 판재는 기계적 이방성이 매우 높은 것을 의미하며, 상기 인장 시험결과는 도 6의 극점도의 결과와도 매우 잘 부합된다.First, in the case of the general rolling process (RD) (FIG. 9 (a)) and in the case of a pure titanium sheet rolled with an RD:TD reduction ratio = 1:1 (FIG. 9 (c)), a tensile test in the rolling direction (RD) The tensile strength was better than the result of the tensile test in the rolling lateral direction (TD) direction, while the yield strength was measured to be lower, and the elongation was measured to be approximately the same. On the other hand, the tensile test results in the 45 degree direction showed that both strength and elongation were significantly increased compared to the RD and TD directions. The tensile test result means that the pure titanium sheet rolled by the general rolling process (RD) and RD:TD reduction ratio = 1:1 has very high mechanical anisotropy, and the tensile test result is the result of the pole figure of FIG. also fits very well.
한편 압연 측 방향(TD) 압연된 순수한 타이타늄 판재의 경우(도 9 (b))도 인장시험 결과 기계적 이방성이 매우 높은 것으로 측정되었으며, 상기 인장 시험결과는 도 6의 극점도의 결과와도 매우 잘 부합된다.On the other hand, in the case of a pure titanium plate rolled in the rolling side direction (TD) (FIG. 9 (b)), the mechanical anisotropy was also measured to be very high as a result of the tensile test, and the tensile test result was very well with the result of the pole figure of FIG. match
반면, 본 발명의 일 실시예에 따른 RD:TD 압하율=1:1.5로 압연된 순수한 타이타늄 판재(도 9 (d))는 방향 별 항복 강도와 인장 강도가 거의 동일하거나 또는 유사한 것으로 측정되었다. 상기 인장시험 결과는 도 6의 극점도의 결과와 매우 잘 부합되며, 압연 공정의 제어를 통해 순수한 타이타늄 판재의 이방성이 크게 개선될 수 있음을 의미한다.On the other hand, the pure titanium plate material (FIG. 9 (d)) rolled with RD:TD reduction ratio = 1:1.5 according to an embodiment of the present invention was measured to have substantially the same or similar yield strength and tensile strength in each direction. The tensile test result agrees very well with the result of the pole figure of FIG. 6 , and it means that the anisotropy of the pure titanium sheet material can be greatly improved through the control of the rolling process.
아래의 표 2은 상기 도 9의 (a)와 (d)의 기계적 특성 평가 결과를 정리한 표이다.Table 2 below is a table summarizing the mechanical property evaluation results of FIGS. 9 (a) and (d).
[표 2][Table 2]
Figure PCTKR2021011696-appb-img-000002
Figure PCTKR2021011696-appb-img-000002
(YS, UTS: MPa)(YS, UTS: MPa)
상기 표 2에 기재된 바와 같이, 본 발명의 일 실시예에 따른 RD:TD 압하율=1:1.5로 압연된 순수한 타이타늄 판재(도 9 (d))는 RD, 45도, TD 방향 별 항복 강도(YS) 및 인장 강도(UTS)의 차이가 모두 3% 이내이며, 강도 면에서 실질적으로 등방성 특성을 가짐을 알 수 있다. As described in Table 2 above, the pure titanium plate (FIG. 9 (d)) rolled with RD: TD reduction ratio = 1:1.5 according to an embodiment of the present invention has yield strength according to RD, 45 degrees, and TD directions ( YS) and the difference in tensile strength (UTS) are both within 3%, and it can be seen that they have substantially isotropic properties in terms of strength.
또한 제어 압연에 의해 압연된 순수한 타이타늄 판재는 총 압하량이 변화하더라도 RD, 45도, TD 방향 별 항복 강도(YS) 및 인장 강도(UTS)의 차이는 모두 5% 이내인 것으로 측정되었다. 이는 본 발명에서의 제어 압연에 의해 생성된 집합 조직은 종래의 일반 압연에 의한 집합 조직 대비 등방성이 더 우수하기 때문인 것으로 판단된다.In addition, the difference in yield strength (YS) and tensile strength (UTS) for each RD, 45 degree and TD direction was measured to be within 5% of the pure titanium sheet rolled by control rolling even if the total rolling reduction was changed. This is considered to be because the texture produced by the controlled rolling in the present invention has better isotropy than the texture produced by the conventional general rolling.
도 10은 본 발명의 순수한 타이타늄 판재의 성형성을 평가하기 위한 에릭슨(Erichsen) 시험 결과를 보여준다. Figure 10 shows the results of the Erichsen (Erichsen) test for evaluating the formability of the pure titanium plate material of the present invention.
아래의 표 3은 등급 1 및 2 상용 순수 타이타늄 판재(mill annealed), 일반 압연공정(RD), 압연 횡 방향 압연공정(TD), RD:TD 압하율=1:1 및 RD:TD 압하율=1:1.5 제어 압연된 순수한 타이타늄 판재의 에릭슨 값을 나타낸다. 여기서 I. E.는 에릭슨 값(index Erichsen)이란 적어도 시험편의 1개소의 뒷면에 도달하는 균열이 생길 때까지(파단 시까지) 펀치 끝이 하형 다이 면에서 이동한 거리(펀치 스트로크)를 mm로 표시한 수치이며, I. E.값이 클수록 스트레칭 특성이 우수함을 의미한다.Table 3 below shows grades 1 and 2 commercial pure titanium plate (mill annealed), general rolling process (RD), rolling transverse rolling process (TD), RD:TD reduction ratio = 1:1 and RD:TD reduction ratio = 1:1.5 Shows the Erikson values of the control-rolled pure titanium sheet. Here, I.E. is the Erichsen value (index Erichsen), a numerical value expressed in mm that indicates the distance (punch stroke) that the punch tip moves from the lower die surface until a crack that reaches the back surface of at least one part of the test piece occurs (until fracture) , and it means that the larger the I. E. value, the better the stretching properties.
[표 3][Table 3]
Figure PCTKR2021011696-appb-img-000003
Figure PCTKR2021011696-appb-img-000003
표 3의 결과로부터, RD:TD 압하율=1:1.5 제어 압연된 순수한 타이타늄 판재는 15㎜ 이상의 에릭슨 값을 가짐을 알 수 있다. 특히 RD:TD 압하율=1:1.5 제어 압연된 순수한 타이타늄 판재는 산소 등의 불순물이 가장 적게 포함되어 연신율 및 가공성이 매우 뛰어난 등급 1의 순수한 타이타늄 판재보다도 더 우수한 가공성을 가지는 것으로 측정되었다. From the results of Table 3, it can be seen that the RD:TD reduction ratio = 1:1.5 control-rolled pure titanium plate has an Erickson value of 15 mm or more. In particular, it was measured that the RD:TD reduction ratio = 1:1.5 control-rolled pure titanium plate contained the least impurities such as oxygen, and thus had better workability than the grade 1 pure titanium plate, which had excellent elongation and workability.
표 4는 상용(mill annealed) 등급 1, 2 순수 타이타늄 판재, 일반 압연된(RD) 순수 타이타늄 판재, 제어 압연된(RD:TD 압하율=1:1.5) 순수 타이타늄 판재의 압연 방향(RD)에서의 기계적 특성 평가 결과를 요약한 것이다.Table 4 shows the rolling direction (RD) of mill annealed grades 1 and 2 pure titanium sheet, normal rolled (RD) pure titanium sheet, and controlled rolled (RD:TD reduction ratio = 1:1.5) pure titanium sheet. This is a summary of the evaluation results of the mechanical properties of
[표 4][Table 4]
Figure PCTKR2021011696-appb-img-000004
Figure PCTKR2021011696-appb-img-000004
본 발명의 일 실시예에 따른 제어 압연된 순수한 타이타늄 판재는 기존의 등급 1, 2의 상용 타이타늄 판재는 물론이거니와 일반 압연된 순수한 타이타늄 판재보다 높은 항복 강도와 에릭슨 값을 가짐을 알 수 있다. 특히 본 발명의 제어 압연된 순수한 타이타늄 판재는 본 발명 특유의 향상된 기계적 특성의 등방성으로 인해 등급 1의 상용 타이타늄 판재보다도 더 우수한 가공성(높은 에릭슨 값)을 가짐을 확인할 수 있다. It can be seen that the controlled-rolled pure titanium plate according to an embodiment of the present invention has a higher yield strength and Erikson value than conventional grades 1 and 2 commercial titanium plates as well as a general rolled pure titanium plate. In particular, it can be confirmed that the control-rolled pure titanium sheet material of the present invention has better workability (high Ericsson value) than the commercial grade 1 titanium sheet material due to the isotropy of the improved mechanical properties unique to the present invention.
이상과 같이 본 발명에 대해서 예시한 도면을 참조로 하여 설명하였으나, 본 명세서에 개시된 실시예와 도면에 의해 본 발명이 한정되는 것은 아니며, 본 발명의 기술사상의 범위 내에서 통상의 기술자에 의해 다양한 변형이 이루어질 수 있음은 자명하다. 아울러 앞서 본 발명의 실시예를 설명하면서 본 발명의 구성에 따른 작용 효과를 명시적으로 기재하여 설명하지 않았을지라도, 해당 구성에 의해 예측 가능한 효과 또한 인정되어야 함은 당연하다.As described above, the present invention has been described with reference to the illustrated drawings, but the present invention is not limited by the embodiments and drawings disclosed in the present specification. It is obvious that variations can be made. In addition, although the effects of the configuration of the present invention are not explicitly described and described while describing the embodiments of the present invention, it is natural that the effects predictable by the configuration should also be recognized.

Claims (9)

  1. 극점도(pole figure) 상에서 {002} 집합조직 세기가 동일한 값을 가지는 궤적이 압연 방향(RD)과 압연 측 방향(TD) 각각의 축에 대해 동시에 대칭적인 것을 특징으로 하는 타이타늄 판재.A titanium sheet, characterized in that the trajectory having the same value of the {002} texture strength on the pole figure is simultaneously symmetrical with respect to the respective axes of the rolling direction (RD) and the rolling side direction (TD).
  2. 제 1항에 있어서,The method of claim 1,
    상기 극점도(pole figure) 상에서 {002} 집합조직 세기의 최대 값의 궤적이 압연 방향(RD)과 압연 측 방향(TD) 각각의 축과 동시에 교차하는 것을 특징으로 하는 타이타늄 판재.Titanium sheet material, characterized in that the trajectory of the maximum value of the {002} texture strength on the pole figure intersects the axes of the rolling direction (RD) and the rolling side direction (TD) at the same time.
  3. 제 1항에 있어서,The method of claim 1,
    상기 {002} 집합조직 세기는 최대 5.2 이하인 것을 특징으로 하는 타이타늄 판재.The {002} texture strength is a titanium plate, characterized in that the maximum is 5.2 or less.
  4. 제 1항에 있어서,The method of claim 1,
    상기 판재의 압연 방향(RD)에서의 항복 강도 및/또는 인장 강도와 압연 측 방향(TD)에서의 항복 강도 및/또는 인장 강도의 차이는 5% 이내인 것을 특징으로 하는 타이타늄 판재.A titanium sheet material, characterized in that the difference between the yield strength and/or tensile strength in the rolling direction (RD) and the yield strength and/or tensile strength in the rolling lateral direction (TD) of the sheet material is within 5%.
  5. 제 1항에 있어서,The method of claim 1,
    상기 판재의 결정립의 종횡 비(aspect ratio)는 0.4 이상인 것을 특징으로 하는 타이타늄 판재.A titanium plate, characterized in that the aspect ratio (aspect ratio) of the crystal grains of the plate is 0.4 or more.
  6. 제 1항에 있어서,The method of claim 1,
    상기 판재의 에릭슨 값(index of Erichsen)은 15㎜ 이상인 것을 특징으로 하는 타이타늄 판재.Titanium plate, characterized in that the Erichson value (index of Erichsen) of the plate is 15 mm or more.
  7. (a) 타이타늄 판재를 압연 방향(RD)과 압연 측 방향(TD)으로 압연하는 단계;(a) rolling the titanium plate in the rolling direction (RD) and the rolling side direction (TD);
    (b) 상기 압연된 판재를 소둔하는 단계;를 포함하고,(b) annealing the rolled plate material; including,
    상기 (a) 단계에서 상기 압연 방향에서의 압하량과 상기 압연 측 방향에서의 압하량의 비가 1: 1.25 내지 1: 1.75인 것을 특징으로 하는 타이타늄 판재의 제조 방법.In the step (a), the ratio of the rolling reduction in the rolling direction to the rolling reduction in the rolling side direction is 1: 1.25 to 1: 1.75.
  8. 제 7항에 있어서,8. The method of claim 7,
    상기 (a) 단계에서의 총 압하량은 60% 이상인 것을 특징으로 하는 타이타늄 판재의 제조 방법.The method of manufacturing a titanium plate material, characterized in that the total reduction in step (a) is 60% or more.
  9. 제 7항에 있어서,8. The method of claim 7,
    상기 (b) 단계에서의 소둔은 600℃ 이하에서 유지되는 것을 특징으로 하는 타이타늄 판재의 제조 방법.The annealing in step (b) is a method of manufacturing a titanium plate, characterized in that maintained at 600 ℃ or less.
PCT/KR2021/011696 2020-12-15 2021-08-31 High-strength pure titanium board having good formability at room temperature, and method for producing same WO2022131483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0175012 2020-12-15
KR1020200175012A KR20220085856A (en) 2020-12-15 2020-12-15 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2022131483A1 true WO2022131483A1 (en) 2022-06-23

Family

ID=82057861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011696 WO2022131483A1 (en) 2020-12-15 2021-08-31 High-strength pure titanium board having good formability at room temperature, and method for producing same

Country Status (2)

Country Link
KR (2) KR20220085856A (en)
WO (1) WO2022131483A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130753A (en) * 1986-11-19 1988-06-02 Nippon Steel Corp Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength
JP2004285457A (en) * 2003-01-31 2004-10-14 Kobe Steel Ltd Titanium sheet with excellent formability, and its manufacturing method
JP4094244B2 (en) * 2001-03-23 2008-06-04 新日本製鐵株式会社 Titanium for copper foil production drum excellent in surface layer structure and production method thereof
JP2011230171A (en) * 2010-04-28 2011-11-17 National Institute Of Advanced Industrial Science & Technology Titanium plate with excellent press moldability, and method for manufacturing the same
KR101773602B1 (en) * 2016-03-23 2017-08-31 포항공과대학교 산학협력단 Method for improving formability of pure titanium sheet and pure titanium sheet prepared thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230968A (en) * 1984-04-27 1985-11-16 Nippon Mining Co Ltd Manufacture of rolled titanium alloy plate
JP2008231553A (en) * 2007-03-23 2008-10-02 Nissan Motor Co Ltd Method for producing low elastic titanium alloy sheet and titanium alloy sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63130753A (en) * 1986-11-19 1988-06-02 Nippon Steel Corp Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength
JP4094244B2 (en) * 2001-03-23 2008-06-04 新日本製鐵株式会社 Titanium for copper foil production drum excellent in surface layer structure and production method thereof
JP2004285457A (en) * 2003-01-31 2004-10-14 Kobe Steel Ltd Titanium sheet with excellent formability, and its manufacturing method
JP2011230171A (en) * 2010-04-28 2011-11-17 National Institute Of Advanced Industrial Science & Technology Titanium plate with excellent press moldability, and method for manufacturing the same
KR101773602B1 (en) * 2016-03-23 2017-08-31 포항공과대학교 산학협력단 Method for improving formability of pure titanium sheet and pure titanium sheet prepared thereby

Also Published As

Publication number Publication date
KR20230088655A (en) 2023-06-20
KR102582659B1 (en) 2023-09-22
KR20220085856A (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2012070870A2 (en) Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same
US4412008A (en) Composite sinter of silicon nitride/boron nitride and method for manufacturing thereof
WO2010074438A9 (en) Dies for shear drawing
WO2020209485A1 (en) Cu-co-si-fe-p-based copper alloy having excellent bending workability and method for preparing same
CN112981170B (en) Chromium-zirconium-copper alloy for cold heading and preparation method thereof
WO2020080660A1 (en) Medium-entropy alloy and manufacturing method therefor
WO2020085755A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
WO2017082684A1 (en) Wire having excellent cold forgeability and manufacturing method therefor
WO2019164082A1 (en) Method and apparatus for manufacturing steel wire
WO2021215666A1 (en) High-quality magnesium alloy processed material and manufacturing method therefor
WO2020032785A1 (en) Wire rod for cold heading, capable of reducing softening thermal treatment time, and method for manufacturing same
WO2022131483A1 (en) High-strength pure titanium board having good formability at room temperature, and method for producing same
JPS62109956A (en) Manufacture of titanium alloy
WO2022102807A1 (en) Al-mg-si-based aluminum alloy and method for manufacturing same
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
WO2013172510A1 (en) Fe-mn-c-based twip steel having remarkable mechanical performance at very low temperature, and preparation method thereof
WO2018079945A1 (en) Method for producing hot-stamped aluminum case and hot-stamped aluminum case produced by method
WO2016117768A1 (en) Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same
CN115261668B (en) Brass alloy strip and preparation method thereof
CN116555629A (en) High-strength high-damping Al-Zn eutectoid damping alloy and preparation method thereof
WO2022239886A1 (en) Pure titanium having high strength and high ductility, and preparation method therefor
WO2023096150A1 (en) Method for producing copper alloy sheet for vehicle or electric/electronic component having excellent strength, electrical conductivity, and bendability, and copper alloy sheet produced thereby
WO2022225178A1 (en) Fine grained pure titanium and manufacturing method therefor
WO2019078474A1 (en) Copper alloy sheet having excellent heat resistance and heat dissipation
WO2019039824A1 (en) Cold-rolled steel sheet for enameling and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906788

Country of ref document: EP

Kind code of ref document: A1