JPS63130753A - Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength - Google Patents

Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength

Info

Publication number
JPS63130753A
JPS63130753A JP27418686A JP27418686A JPS63130753A JP S63130753 A JPS63130753 A JP S63130753A JP 27418686 A JP27418686 A JP 27418686A JP 27418686 A JP27418686 A JP 27418686A JP S63130753 A JPS63130753 A JP S63130753A
Authority
JP
Japan
Prior art keywords
rolling
anisotropy
pure titanium
rolled
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27418686A
Other languages
Japanese (ja)
Inventor
Naotaka Noda
野田 直孝
Katsuo Kako
加来 勝夫
Hisao Fujikawa
寿生 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27418686A priority Critical patent/JPS63130753A/en
Publication of JPS63130753A publication Critical patent/JPS63130753A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PURPOSE:To manufacture the titled plate by counteracting, by means of the subsequent hot rolling, material anisotropy generated by the slabbing of pure Ti and also by controlling anisotropy generated by hot rolling so as to carry out rolling by a simple process and then annealing. CONSTITUTION:An ingot of pure Ti or a dummy slab (thickness t0), prepared by forging, of pure Ti is heated to a beta-phase region of <=970 deg.C in a slabbing stage, which is rolled at >=30% draft to be formed into a cold slab (thickness t1). Subsequently, this cold slab is reheated to a temp. of beta-transformation or below and then is rolled (thickness t2) so that final-rolling direction in hot rolling is perpendicular to the rolling direction in slabbing and a reduction cross ratio (t1/t2:t0/t1) is regulated to a range of 0.5-3.0. Successively, this rolled plate is cooled and then annealed.

Description

【発明の詳細な説明】 (圧東上の利用分野) 本発明は純チタン熱延板の製造法において、0゜2%耐
力の異方性の少ない純チタン熱延板の製造方法に関する
ものである。
[Detailed Description of the Invention] (Field of Application in Pressure Pressure) The present invention relates to a method for producing a pure titanium hot-rolled plate with less anisotropy in 0°2% proof stress. .

(従来の技術) 純チタン熱延板は、大気中あるいは海水中での耐食性が
優れているので、管種環境下での構造物材料としてその
使用が増加しているが、純チタンは0.2%耐力の異方
性が強いために、材料が有効に使われないことが多い。
(Prior Art) Pure titanium hot-rolled sheets have excellent corrosion resistance in the atmosphere or seawater, so their use as structural materials in pipe-type environments is increasing. Due to the strong anisotropy of the 2% yield strength, the material is often not used effectively.

純チタンの材質異方性の原因は、その製造過程で形成さ
れる集合組絨に起因するものといわれており、加熱、圧
延条件をコントロールして異方性を減じる方策がとられ
ている。
The cause of material anisotropy in pure titanium is said to be due to the aggregate fibers formed during its manufacturing process, and measures are being taken to reduce the anisotropy by controlling heating and rolling conditions.

例えば特開昭59−1661号公報のように、熱間又は
冷間圧延後焼鈍した純チタン板を軽圧下率で冷間圧延す
るか、又は上記軽圧下した板をさらに軽度の焼鈍を施こ
し、異方江の少ない純チタン熱延板の製造法がある。ま
た、%開昭60−230968号公報のように、チタン
合金についてクロス圧延により異方性を減少する方法が
ある。
For example, as in JP-A-59-1661, a pure titanium plate that has been hot- or cold-rolled and then annealed is cold-rolled at a light reduction ratio, or the lightly-reduced plate is further annealed to a mild degree. There is a method for producing pure titanium hot-rolled sheets with less anisotropy. There is also a method of reducing the anisotropy of titanium alloys by cross rolling, as disclosed in Japanese Patent Publication No. 60-230968.

しかしながら、これらの方法は熱間圧延の前段階の製造
履歴については十分検討されておらず、後工程のみでコ
ントロールしようとするものであり、製造上効率的な方
法ではない。
However, these methods do not sufficiently consider the manufacturing history before hot rolling, and attempt to control only the post-process, and are not efficient manufacturing methods.

(発明が解決しようとする問題点) 本発明は純チタン熱延板について、簡単な工程で圧延後
焼鈍を施こし、0.2%i+M力の異方性の少ない純チ
タン熱延板の製造法の開発を目的とする。
(Problems to be Solved by the Invention) The present invention applies annealing after rolling to a pure titanium hot-rolled sheet in a simple process to produce a pure titanium hot-rolled sheet with less anisotropy of 0.2% i + M force. The purpose is the development of law.

(問題点を解決するための手段) 本発明は上記の問題点を解決するために、数多くの実験
を行った結果見出されたもので、熱間圧延の条件によっ
て得られる材質は、その前段階での加熱、圧延条件が後
工程に引き継がれるという事実にもとづ(。
(Means for Solving the Problems) The present invention was discovered as a result of numerous experiments in order to solve the above problems, and the material obtained under hot rolling conditions is This is based on the fact that the heating and rolling conditions at this stage are carried over to subsequent processes.

即ち、分塊圧延により生じた材質異方性を、その後の熱
間圧延で打ち消すと同時に、熱間圧延で生じる異方性を
もコントロールすることにより、0.2%耐力の異方性
の少ない純チタンが得られるという知見に基づいたもの
で、本発明は、縄チタン切片又は鍛造により製造したス
ラブを、分塊圧延工根で970℃以下のβ相域に加熱後
、圧下率30%以上の圧下を加えて冷片とした後、β変
態以下の温度に再加熱し、熱間圧延工程で熱間圧延の最
終圧延方向が、分塊圧延の圧延方向と直角になるように
圧延し、かつ圧延クロス比が0.5〜3.0の範囲で圧
延した後冷却し、その後焼鈍を行うことを特徴とする0
2%動力の異方性の少ない純チタン板の製造方法である
In other words, by canceling out the material anisotropy caused by blooming in the subsequent hot rolling, and at the same time controlling the anisotropy caused by hot rolling, the anisotropy of the 0.2% proof stress is reduced. This invention is based on the knowledge that pure titanium can be obtained, and the present invention involves heating a rope titanium section or a slab manufactured by forging to a β phase region of 970°C or less with a blooming mill, and then rolling it at a reduction rate of 30% or more. After applying a reduction of , it is made into a cold piece, then reheated to a temperature below β transformation, and rolled in a hot rolling process so that the final rolling direction of hot rolling is perpendicular to the rolling direction of blooming rolling, and is characterized in that it is rolled with a rolling cross ratio in the range of 0.5 to 3.0, then cooled, and then annealed.
2% This is a method for producing a pure titanium plate with little power anisotropy.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明は真空中で溶解された鋳片ケ餉込みま又、又は鍛
造により製造に粗片を用い、これより分塊圧延および熱
間圧延を行い、0.2%耐力の異方性の少ない純チタン
板を得る製造栄件欠検討して得られたものである。
The present invention uses rough slabs made by melting cast slabs in a vacuum or by forging, and then performs blooming and hot rolling to achieve a low anisotropy of 0.2% proof stress. This was obtained by examining the manufacturing efficiency of obtaining pure titanium plates.

本発明の構成の第1は、純チタンの分塊圧延において鋳
片又はスラブなβ第1域に加熱し、圧下率30%以上の
圧下を加えることにある。この分塊圧延での圧下は、圧
延により生成する集合組織をその後の熱間圧延に引き継
ぐために必要なものである。
The first feature of the present invention is to heat the slab or slab in the β first region during the blooming of pure titanium, and to apply a rolling reduction of 30% or more. This reduction in blooming is necessary in order to carry over the texture generated by rolling to subsequent hot rolling.

β相域に加熱し分塊圧延ケ行う場合に生成する集合組織
は、α相の稠密六方晶のC側が、圧遮匝角方向に強(傾
いた方位に集積する結果、材質異方性が出やすく、これ
は次の加熱圧延工程との組合せで、異方性を減少させる
ために効果的に利用されるものである。この分塊圧延で
の圧下率は、最低30%は必要である。30%未満では
圧延時に集合組織を十分に形成できない。
The texture generated when heating to the β phase region and blooming rolling is such that the C side of the α phase close-packed hexagonal crystal is strongly concentrated in the crushing angle direction (as a result of accumulation in an inclined direction, the material anisotropy is This can be effectively used in combination with the next hot rolling process to reduce anisotropy.The reduction rate in this blooming rolling must be at least 30%. If it is less than 30%, a sufficient texture cannot be formed during rolling.

また、加熱温度は970℃を超えると結晶粒が粗大化す
るため、970℃以下が望ましく、加熱温度がα相域の
場仕は、分塊圧延で生成する菓合組域による材質異方性
は少なく、次の工程との組合わせで、等方的な材質の造
り込みが困痛である。
In addition, if the heating temperature exceeds 970°C, the crystal grains will become coarse, so it is desirable to set the heating temperature to 970°C or less, and when the heating temperature is in the α phase region, the material anisotropy due to the condensation region generated by blooming. This makes it difficult to create an isotropic material in combination with the next process.

次に本発明の構成の第2は、分塊圧延後の熱間圧延の際
の最終圧延の圧延方向が、分塊圧延の圧延方向と直角方
向に圧延し、かつ、その時の圧鉦クロス比が、0.5〜
3.0となるように圧延することにある。
Next, the second configuration of the present invention is that the rolling direction of the final rolling during hot rolling after blooming is rolled in a direction perpendicular to the rolling direction of blooming, and the rolling gong cross ratio at that time is However, from 0.5
The purpose is to roll it so that it becomes 3.0.

ここで、熱間圧延の圧延方向を次のように定義するO L方向圧延;熱間圧延の最終圧延方向が分塊圧延工根と
同− T方向圧延:熱間圧延の最終圧延方向が分塊圧延方向と
直角 圧延クロス比:熱間圧延の最終圧延方向の圧下比/申出
し時の圧下比 上記圧延方向を図に示すと第1図のとおりである。
Here, the rolling direction of hot rolling is defined as follows: O L direction rolling: The final rolling direction of hot rolling is the same as the blooming root - T direction rolling: The final rolling direction of hot rolling is Block rolling direction and orthogonal rolling cross ratio: Reduction ratio in the final rolling direction of hot rolling/reduction ratio at the time of offer The above rolling direction is shown in FIG. 1.

第1図囚はL方向圧延の場合のクロス圧延、(B)はT
方向圧延の湯介のクロス圧延を示す。
Figure 1 shows cross rolling in the case of L direction rolling, and (B) shows T.
It shows cross rolling of directional rolling.

この場合、L方向圧延、T方向圧延の圧延クロス比はそ
れぞれ(1)、(2)式のとおりとなる。
In this case, the rolling cross ratios of L direction rolling and T direction rolling are as shown in equations (1) and (2), respectively.

熱間圧延での圧延方向を、分塊圧延方向と直角方向に圧
延する場合、分塊圧延の集合組織は打ち消されるが、巾
出しをせずにT方向圧延のみでは、然間圧延時の最終段
階での圧延による采台スお減が強く幼(ために異方江が
太き(なる。
If the rolling direction in hot rolling is perpendicular to the blooming direction, the texture of the blooming rolling will be canceled out, but if only the T-direction rolling is performed without widening, the final Due to the strong reduction of the sashimi due to rolling at this stage, the anisogata becomes thicker.

従って、分塊圧延後の熱間圧延では、分塊圧延の集合組
織を打ち消すと同時に、熱間圧延で生成する集合組織を
等方向ならしめるために、クロス圧延を行う必要がある
Therefore, in the hot rolling after blooming, it is necessary to perform cross rolling in order to cancel out the texture of the blooming and at the same time make the texture produced in the hot rolling uniform.

この場合、0.2%耐力の異方性を〔最終圧延方向に直
角方向の値(T方向値)/最終圧延方向に平行の値(L
方向値)〕と定咳し、その許容範囲を1.05以下を狙
いとすると、T方向圧延を行い、圧延クロス比を0.5
〜3.0とする榮件が適正である。
In this case, the anisotropy of 0.2% proof stress is calculated as [value in the direction perpendicular to the final rolling direction (T direction value)/value parallel to the final rolling direction (L
direction value)], and aiming for the tolerance range to be 1.05 or less, perform rolling in the T direction and set the rolling cross ratio to 0.5.
A value of ~3.0 is appropriate.

この場合T方向値/L方向値の狙いを1805以下とす
る理由は、荷造物の設計で、材料特性を十分に生かすた
めである。
In this case, the reason why the T-direction value/L-direction value is set at 1805 or less is to make full use of the material properties in designing the package.

一方、L方向圧延の場合には、02%耐力のT方向値/
L方向値が1.05以下を得るには、クロス比0.4以
下にすれば可能であるが、実生座上はこのような圧延は
非効率的である。
On the other hand, in the case of L direction rolling, the T direction value of 02% proof stress/
Although it is possible to obtain an L direction value of 1.05 or less by setting the cross ratio to 0.4 or less, such rolling is inefficient on a seedling seat.

第2図は圧延方向およびクロス圧延比と0,2%耐力の
異方性との関係を示したもので、分塊圧延後の熱間圧延
では、″r方方圧圧延行い、かつクロス比0.5〜3.
0の範囲で圧延することが、0.2%耐性の少ない純チ
タン熱延板を得ることが出来る。
Figure 2 shows the relationship between the rolling direction, cross rolling ratio, and anisotropy of 0.2% proof stress. 0.5-3.
By rolling within the range of 0.0%, it is possible to obtain a pure titanium hot-rolled sheet with less resistance by 0.2%.

力の異方性の少ない純チタン熱延板の製造に適している
Suitable for manufacturing pure titanium hot-rolled sheets with little force anisotropy.

以上のように本発明では、純チタン鋳片又は鍛造により
製造したスラブを、β相域加熱分塊圧延を行った後、α
相域に加熱しT方向圧延ケ行い、かつクロス比0.5〜
3.0で圧延することにより、0.2%耐力の異方性の
少ない純チタン板の製造が可能である。
As described above, in the present invention, a pure titanium slab or a slab manufactured by forging is subjected to β phase region hot blooming rolling, and then α
Heating in phase region and rolling in T direction, and cross ratio 0.5~
By rolling at 3.0, it is possible to produce a pure titanium plate with a 0.2% yield strength and less anisotropy.

(実施例) 第1表は真空アータ溶解炉で溶解し、鍛造後分塊圧延を
行い、さらに熱間圧延を行った純チタン熱延板の成分組
成を示し、第2表および比2図は、該純チタン板の熱間
圧延後焼鈍後の機械的性質を示す。
(Example) Table 1 shows the composition of a pure titanium hot-rolled plate that was melted in a vacuum arter melting furnace, forged, then bloomed, and then hot-rolled. , shows the mechanical properties of the pure titanium plate after hot rolling and annealing.

これらの実験結果から明らかなように、分塊圧延工根で
はβ相域に加熱後圧下率30%以上の圧下を加えて冷片
とし、その後、熱間圧延工程ではβ変態点以下の温度に
加熱後、T方向圧延を行い、かつクロス比0.5〜3.
0の範囲で圧延した後冷却し、その後焼鈍を行うことに
より、0.2%耐力の異方(発明の効果) 本発明は純チタンの鋳片を分塊工程でβ域に加熱後圧延
して冷片とし、熱間圧延工程でβ変態点以下に加熱して
、最終圧延方向が分塊の圧延方向とクロスせしめること
により、0.2%耐力の異方性の少ない純チタン也を製
造し得るものであって、その工業的効果は大である。
As is clear from these experimental results, in the blooming rolling process, the β phase region is heated and then reduced by a reduction rate of 30% or more to form a cold piece, and then in the hot rolling process, the temperature is lowered to below the β transformation point. After heating, rolling is performed in the T direction, and the cross ratio is 0.5 to 3.
0.2% proof stress anisotropy (effect of the invention) By rolling the slab in the β range in a blooming process and then cooling it, and then annealing it, The titanium powder is cooled and heated to below the β transformation point in a hot rolling process so that the final rolling direction crosses the blooming direction, producing pure titanium with a 0.2% yield strength and low anisotropy. It is possible to do so, and its industrial effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図囚、(B)は圧延方法の定義を示す模式図、第2
図は圧延方向およびクロス圧延と0.2%耐力の異方性
との関係を示す図表である。
Figure 1 (B) is a schematic diagram showing the definition of the rolling method, Figure 2
The figure is a chart showing the relationship between the rolling direction, cross rolling, and the anisotropy of 0.2% proof stress.

Claims (1)

【特許請求の範囲】[Claims] 純チタンの鋳片又は鍛造により製造した粗片(厚み:t
_0)を分塊圧延工根で970℃以下のβ相域に加熱後
圧下率30%以上の圧延を行い、冷片(厚み:t_1)
とした後、β変態点以下の温度に再加熱し、熱間圧延工
程で熱間圧延の最終圧延方向が、分塊圧延の圧延方向と
直角になるように圧延し(厚み:t_2)、かつ、その
時の圧延クロス比(t_1/t_2:t_0/t_1)
が0.5〜3.0の範囲で圧延した後冷却し、その後焼
鈍を行うことを特徴とする0.2%耐力の異方性の少な
い純チタン板の製造方法。
Pure titanium slab or rough piece manufactured by forging (thickness: t
_0) is heated to the β phase region of 970°C or less with a blooming mill root, and then rolled at a reduction rate of 30% or more to obtain a cold piece (thickness: t_1).
After that, it is reheated to a temperature below the β transformation point, and rolled in a hot rolling process so that the final rolling direction of hot rolling is perpendicular to the rolling direction of blooming rolling (thickness: t_2), and , the rolling cross ratio at that time (t_1/t_2:t_0/t_1)
A method for producing a pure titanium plate having a 0.2% proof stress and low anisotropy, which comprises rolling the plate to a range of 0.5 to 3.0, cooling it, and then annealing it.
JP27418686A 1986-11-19 1986-11-19 Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength Pending JPS63130753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27418686A JPS63130753A (en) 1986-11-19 1986-11-19 Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27418686A JPS63130753A (en) 1986-11-19 1986-11-19 Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength

Publications (1)

Publication Number Publication Date
JPS63130753A true JPS63130753A (en) 1988-06-02

Family

ID=17538234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27418686A Pending JPS63130753A (en) 1986-11-19 1986-11-19 Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength

Country Status (1)

Country Link
JP (1) JPS63130753A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774531A1 (en) 1995-11-14 1997-05-21 Nkk Corporation Method for manufacturing alpha + beta type titanium alloy plate having small anisotropy
JP2012052213A (en) * 2010-09-03 2012-03-15 Nippon Steel Corp High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
CN109127726A (en) * 2018-08-22 2019-01-04 佛山职业技术学院 A kind of preparation method of technical pure titanium plate
WO2022131483A1 (en) * 2020-12-15 2022-06-23 한국재료연구원 High-strength pure titanium board having good formability at room temperature, and method for producing same
KR20230110326A (en) 2021-01-20 2023-07-21 닛폰세이테츠 가부시키가이샤 titanium plate

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0774531A1 (en) 1995-11-14 1997-05-21 Nkk Corporation Method for manufacturing alpha + beta type titanium alloy plate having small anisotropy
US5718779A (en) * 1995-11-14 1998-02-17 Nkk Corporation Method for manufacturing A + β type titanium alloy plate having small anisotropy
JP2012052213A (en) * 2010-09-03 2012-03-15 Nippon Steel Corp High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
CN109127726A (en) * 2018-08-22 2019-01-04 佛山职业技术学院 A kind of preparation method of technical pure titanium plate
CN109127726B (en) * 2018-08-22 2020-06-19 佛山职业技术学院 Preparation method of industrial pure titanium plate
WO2022131483A1 (en) * 2020-12-15 2022-06-23 한국재료연구원 High-strength pure titanium board having good formability at room temperature, and method for producing same
KR20230088655A (en) * 2020-12-15 2023-06-20 한국재료연구원 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same
KR20230110326A (en) 2021-01-20 2023-07-21 닛폰세이테츠 가부시키가이샤 titanium plate

Similar Documents

Publication Publication Date Title
US4581077A (en) Method of manufacturing rolled titanium alloy sheets
JP3445991B2 (en) Method for producing α + β type titanium alloy material having small in-plane anisotropy
JPH0686638B2 (en) High-strength Ti alloy material with excellent workability and method for producing the same
JPH11269621A (en) Method for working high-purity titanium material
CN114101556A (en) Processing method for preparing TB8 titanium alloy sheet in short process
JPS63130753A (en) Manufacture of pure titanium plate reduced in anisotropy of 0.2% yield strength
JP2005525469A5 (en)
JPS585970B2 (en) Method for manufacturing unidirectional silicon steel sheet without linear fine grains
US4675055A (en) Method of producing Ti alloy plates
JPH0613735B2 (en) Method for producing cube-on-edge oriented silicon steel from strand cast slabs
JP5005873B2 (en) Method for producing directional electromagnetic steel strip
JP2884913B2 (en) Manufacturing method of α + β type titanium alloy sheet for superplastic working
JPS6316445B2 (en)
JP2004513235A (en) Method of manufacturing cold-rolled strip cold-worked with low deformation
JP2613466B2 (en) Manufacturing method of aluminum alloy sheet excellent in bake hardenability
JPS6224498B2 (en)
JPH0257634A (en) Manufacture of high-strength steel plate and heat treatment for worked product of same
JPH0365409B2 (en)
JPH0122349B2 (en)
JPS61157668A (en) Manufacture of titanium hot rolled plate
JPS63270448A (en) Production of alpha type and alpha type titanium alloy plate
SU1206325A1 (en) Method of heating steel ingots
JPS6376706A (en) Production of thin sheet made of alpha+beta type alloy titanium
JPH0254745A (en) Manufacture of pure titanium plate for working
JPS634907B2 (en)