JPS60230968A - Manufacture of rolled titanium alloy plate - Google Patents

Manufacture of rolled titanium alloy plate

Info

Publication number
JPS60230968A
JPS60230968A JP8405884A JP8405884A JPS60230968A JP S60230968 A JPS60230968 A JP S60230968A JP 8405884 A JP8405884 A JP 8405884A JP 8405884 A JP8405884 A JP 8405884A JP S60230968 A JPS60230968 A JP S60230968A
Authority
JP
Japan
Prior art keywords
cross
rolling
ratio
titanium alloy
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8405884A
Other languages
Japanese (ja)
Other versions
JPS6224498B2 (en
Inventor
Hideo Sakuyama
秀夫 作山
Ichiro Sawamura
一郎 澤村
Michio Hanaki
花木 道夫
Chiaki Ouchi
大内 千秋
Hiroyoshi Suenaga
末永 博義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Nippon Mining Co Ltd
Priority to JP8405884A priority Critical patent/JPS60230968A/en
Priority to US06/725,454 priority patent/US4581077A/en
Priority to CA000479793A priority patent/CA1257528A/en
Priority to FR8506421A priority patent/FR2565252B1/en
Priority to GB08510702A priority patent/GB2158373B/en
Publication of JPS60230968A publication Critical patent/JPS60230968A/en
Publication of JPS6224498B2 publication Critical patent/JPS6224498B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a rolled Ti alloy plate of high reliability by carrying out recrystallization annealing in a rolling stage and cross rolling before and after the annealing so as to prevent the formation of a locally isometric crystal structure and to reduce the amount of alpha-phase. CONSTITUTION:The ingot of an alpha- or (alpha+beta)-Ti alloy is broken down and cross rolled (A) in the alpha+beta range at >=1.2 draft and 0.6-1.4 cross ratio. The resulting plate is subjected to recrystallization annealing (B) at the beta transformation point -20 deg.C--100 deg.C, and it is cross rolled (C) in the (alpha+beta) range at >=1.6 draft and 0.6-1.4 cross ratio. The stages B, C may be repeated once or more. By this method a Ti alloy plate having the isometric alpha-crystal structure with no anisotropy can be obtd. The Ti alloy plate has superior strength and ductility.

Description

【発明の詳細な説明】 本発明は、チタン合金圧延板の製造方法に関するもので
あり、特には再結晶焼鈍の前後にクロス圧延を行うこと
により強度及び延性に優れそして異方性のない等軸α晶
組織を有するチタン合金板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a titanium alloy rolled sheet, and in particular, cross rolling is performed before and after recrystallization annealing to produce an equiaxed titanium alloy sheet with excellent strength and ductility and no anisotropy. The present invention relates to a method for manufacturing a titanium alloy plate having an α-crystal structure.

チタン合金は、その比強崖が高くしかも耐食性等に優れ
るところから、航空宇宙分野を始めとして陸上分計でも
各種設備において使用量が次第に増加しつつある。これ
に伴い、Ti−AI−V系、Ti−Al−8n糸、Tl
−Mn糸、’i’1−AI−M n系、Ti−AI−M
o−V系等の多くのチタン合金が開発されている。
Titanium alloys have a high specific strength slope and are excellent in corrosion resistance, so their use is gradually increasing in various types of equipment, including the aerospace field and even terrestrial instruments. Along with this, Ti-AI-V series, Ti-Al-8n yarn, Tl
-Mn yarn, 'i'1-AI-M n series, Ti-AI-M
Many titanium alloys, such as o-V series, have been developed.

チタン合金は輪加工材の一つであり、その−漬方法に関
する報告は少ないが、一般に構造成いは圧延によりα+
β域で出来るだけ多くの加工度をとって加工することに
より機械的特性に優れた等軸鉢α晶組1姻が得られると
されている。更には、構造品と関連して、一定の加工率
以上の構造加工とβ域温度での加熱処理と2組合せるこ
とにより組織の均一微細化を計れることが報告されてい
る(特公昭56−8099号)。圧延材と関連しては、
少くとも70%の熱間圧延と冷却及び再加熱を指定条件
の下で行う等軸晶形成処理とを組合せることにより結晶
の等方化及び微細化を計ることが提唱されている(特開
昭58−25425号)。
Titanium alloy is one of the wheel processed materials, and although there are few reports on its dipping method, generally the structure is improved by rolling.
It is said that by processing as much as possible in the β range, an equiaxed α crystal structure with excellent mechanical properties can be obtained. Furthermore, in connection with structural products, it has been reported that uniform refinement of the structure can be achieved by combining structural processing at a certain processing rate or higher and heat treatment at a temperature in the β region (Japanese Patent Publication No. 1983- No. 8099). In relation to rolled materials,
It has been proposed to make the crystals isotropic and finer by combining at least 70% hot rolling with an equiaxed crystal formation process in which cooling and reheating are performed under specified conditions (Japanese Patent Application Laid-Open No. No. 58-25425).

しかしながら、これら方法ではどうしても部分的に等軸
重組偵にならないα相が残存し、製品の信頼度に問題が
生じる。構造により製造した場合、鍜漬長手方向の組織
のバラツキ、断面内での組織のバラツキ等が著しい。圧
延により製造した場合でも、チタン合金のα相がhep
 結晶構造であるため圧延方向とその直角方向において
大きな機械的異方性が生じることが知られている。チタ
ン合金は高温、高腐食、高負荷等の苛酷な環境でこそ使
用される為、製品に高い信頼度が要求される。
However, in these methods, the α phase that is not equiaxed partially remains, which causes a problem in the reliability of the product. When manufactured according to this structure, there are significant variations in the structure in the longitudinal direction of dipping and in the cross section. Even when manufactured by rolling, the α phase of titanium alloy is hep
It is known that due to the crystalline structure, large mechanical anisotropy occurs in the rolling direction and the direction perpendicular to the rolling direction. Titanium alloys are used in harsh environments such as high temperatures, high corrosion, and high loads, so high reliability is required of the products.

基本的に、圧延法は鍛造法に較べて、製品品質及び#造
効率の面から有利であり、今後益々増大する斯界の要請
に答える為には、前記の等軸重組1にならないα相の残
存を大巾に抑制乃至解消し且つ機械的異方性を生じない
チタン合金圧延法を確立することが必要である。
Basically, the rolling method is more advantageous than the forging method in terms of product quality and manufacturing efficiency, and in order to meet the demands of this industry that will increase in the future, it is necessary to It is necessary to establish a titanium alloy rolling method that largely suppresses or eliminates the residual and does not cause mechanical anisotropy.

本発明は、こうした要求に答えて、局所的な等軸重組織
とならないα相の減少により製品信頼度の大巾に改善さ
れたそして機械的異方性も大巾に低減された高品質チタ
ン合金圧延板の製造方法を提供することを目的とする。
In response to these demands, the present invention has developed high-quality titanium that has greatly improved product reliability by reducing the alpha phase that does not form a local equiaxed heavy structure, and has greatly reduced mechanical anisotropy. The object of the present invention is to provide a method for manufacturing rolled alloy plates.

広範な研7℃の結果、本発明者等は、 (1) 圧延途中において再結晶焼鈍を組込むことによ
り局所的な等軸重組織とならないα相の残存が大巾に抑
制されること、及び (2)圧延をクロス圧延とすることにより機械的異方性
を大巾に低減しうろこと を知見した。上記再結晶焼鈍及びクロス圧延は特定範囲
の温度及び圧逸条件の下で実施せねばならない。こうし
て再結晶焼鈍を間に挾んで前後にクロス圧延を行うこと
により、局所的に残存する等軸重組織とならないα相の
ないそして機械的異方性のない等軸α晶組織を有するチ
タン合金板の製造が可能となる。得られるチタン合金板
は、強度及び延性の点でも改善され、高負荷、高温及び
高腐食性の環境において高い信頼性をもって使用するこ
とができる。
As a result of extensive grinding at 7°C, the present inventors found that: (1) By incorporating recrystallization annealing during rolling, the residual α phase that does not form a local equiaxed heavy structure is greatly suppressed; (2) It has been found that mechanical anisotropy can be greatly reduced by cross rolling. The recrystallization annealing and cross rolling described above must be carried out under specific ranges of temperature and stress conditions. In this way, by cross-rolling back and forth with recrystallization annealing in between, a titanium alloy with an equiaxed α-crystalline structure without locally remaining equiaxed heavy structures, without an α-phase, and without mechanical anisotropy. It becomes possible to manufacture plates. The resulting titanium alloy plate also has improved strength and ductility and can be used with high reliability in high load, high temperature and highly corrosive environments.

要約すると、本発明は、α型またはα+β型のチタン合
金を、インボッ)ブレイクダウン後、(A) α+β域
において臣下比12以上そしてクロス比α6〜t4の下
でクロス圧伏を行う段階と、 (B) その後、β変態点以下20°Cから100℃ま
での間の温度で再結晶焼鈍を行う段階と、(C) 更に
、α+β域において圧下比1.6以上そしてクロス比α
6〜1.4の下でクロス圧延を行う段階と を経て焼鈍、溶体化時効処理等の製品用途に応じた熱処
理を行うことを特徴とするチタン合金圧延板の製造方法
を提供する。
In summary, the present invention comprises the steps of: (A) cross-compressing an α-type or α+β-type titanium alloy at a ratio of 12 or more and a cross ratio of α6 to t4 in the α+β region after (a) breakdown; (B) Thereafter, a step of performing recrystallization annealing at a temperature between 20°C and 100°C below the β transformation point, and (C) further, a reduction ratio of 1.6 or more in the α+β region and a cross ratio α
Provided is a method for manufacturing a titanium alloy rolled sheet, which comprises a step of cross rolling under conditions 6 to 1.4, and then heat treatment such as annealing and solution aging treatment depending on the product use.

一層異方性及び等軸重組織とならないα相の残存を低減
するために、必要に応じ、CD)前記(B)及び(C)
の段階を少くとも1回繰返す段階を付加することもでき
る。
In order to further reduce the residual α phase that does not result in an anisotropic and equiaxed heavy structure, if necessary, perform the above (B) and (C).
It is also possible to add a step of repeating the step at least once.

以下、本発明について具体的に説明する。The present invention will be explained in detail below.

本発明の処理の対象とするチタン合金は、α型及びα+
β型のものならいずれでもよい。α+β型の代表的な実
用合金であるTl−6AI−4Vを始めとして、Ti−
6AI−6V−28n。
The titanium alloys to be treated in the present invention are α-type and α+
Any β type may be used. Starting with Tl-6AI-4V, which is a typical α+β type practical alloy, Ti-
6AI-6V-28n.

T1−5AI−2,5V、TI−8Mn%、TI−4A
l−4Mn、Ti−4ATi−4AI−8、Ti−4A
Ti−4AI−4’lIが挙げラレル。
T1-5AI-2,5V, TI-8Mn%, TI-4A
l-4Mn, Ti-4ATi-4AI-8, Ti-4A
Ti-4AI-4'lI is an example.

チタン合金圧延製品は、最初に生成されたインボッ(を
分塊圧延あるいは鍛造するインゴットブレイクダウンの
工程から出発して、スラブ材を所定の寸法に1−、F、
延する圧延工程を経て、最終的に製品の用途に応じて・
倖鈍処理、溶体化!寺効処理等の熱処理を実施すること
により製造される。前述したように、本発明を特徴づけ
るのは、インゴットブレイクダウン工程と最終熱処理と
の間の圧延工程であり、これは次の3段階から成る。
Titanium alloy rolled products start from the ingot breakdown process, in which the ingot is first produced by blooming rolling or forging.
After the rolling process, the product is finally rolled according to its purpose.
Dull treatment, solution treatment! Manufactured by performing heat treatment such as heat treatment. As mentioned above, what characterizes the present invention is the rolling process between the ingot breakdown process and the final heat treatment, which consists of the following three steps.

(A) α+β域における圧下比1.2以上、りpス(
B) β変態点以下20〜100°Cにおける再結(C
) α+β域における圧下比1,6以上、クロス比0.
6〜1.4のクロス圧延12階 ここで、圧下比及びクロス比は次の通り定義される。
(A) Reduction ratio of 1.2 or more in the α+β region, Rips (
B) Reconsolidation at 20 to 100°C below the β transformation point (C
) Rolling ratio in the α+β region of 1.6 or more, cross ratio of 0.
6 to 1.4 cross rolling 12th floor Here, the rolling ratio and the cross ratio are defined as follows.

圧延のJ”1ン終パス方向と同方向の圧下比β変態点以
上で行われたインゴットブレイクダウン工程を経たスラ
ブ材は、先ず(A)段階において、インゴットブレイク
ダウン工程で生じたウィドマンステテン状のα相や、旧
β粒界に生じた結晶電界α相を次の(B)再結晶焼鈍工
程で等軸α晶に近づけるためのドライビングフォースと
して歪を貯えるべく、圧下比12以上、そしてクロス比
α6〜14の条件の下でクロス圧延される。クロス圧延
は、圧延方向を90゛変更して圧延材をロールに4’l
1次いで通ず圧延法である。圧勉蟲度は、α+β域であ
れは特に温度の指定はないが、β変態点の直下近くでは
加工熱により材料温度がβ変態点以上となる可能性があ
り、また温度が低すぎると加工による割れが発生するた
め、β友想点以下50°Cから200℃程度までの温度
が好ましい〇この(A)段階での圧下比は大きい程、次
の(B)段階での等軸α晶化のためには好ましいのであ
るが、ここでは完全な等軸α品にする必要はなく、ウィ
ツトマンステテン状のα相や結晶粒界α相を破壊して等
軸α晶に近づけることがホ要であり、そのためには圧下
比は最低12程度が必要となる。圧下比の上限は、合金
種及び温度に依存するが、割れの発生がない8〜10程
度まで可能であり、そして通常は上述した理由で15程
度までで充分である。最終製品の機械的特性の異方性を
無くすためには(A)段階からクロス圧延を実施すべき
である。クロス圧延を(C)段階のみで行って、(A)
段階で通常のストレート圧延を行っても相応の効果は得
られるが、より異方性のない高品質の製品を信頼性を持
って製造するには、この(A)段階からクロス圧延を行
うのがよいことが一14IuJiシた。クロス圧延比は
0.6〜1.4のクロス比において実施さバる。クロス
比は1に近い程効果があり、上記範囲外ではクロス圧延
の意iが失われる。(A)段階は、最終的な等軸α晶化
に備えての予(IIli段階とみなすことができる。
First, in step (A), the slab material that has undergone the ingot breakdown process, which is carried out at a reduction ratio of β transformation point or higher in the same direction as the J"1 final pass direction of rolling, undergoes Widmansteten formed in the ingot breakdown process. In order to store strain as a driving force to bring the alpha phase of the shape and the crystal electric field alpha phase generated at the prior beta grain boundaries closer to the equiaxed alpha crystal in the next (B) recrystallization annealing process, the rolling reduction ratio is 12 or more, and Cross rolling is carried out under the conditions of a cross ratio α6 to 14. In cross rolling, the rolling direction is changed by 90° and the rolled material is rolled by 4'l.
The first method is rolling. There is no particular temperature specification for the degree of compaction in the α+β range, but near the β transformation point, the material temperature may rise above the β transformation point due to processing heat, and if the temperature is too low, the processing Therefore, the temperature below the β-friendly point is preferably 50°C to 200°C. The higher the reduction ratio in this (A) stage, the more equiaxed α crystals will be formed in the next (B) stage. However, in this case, it is not necessary to make a completely equiaxed α crystal, and it is possible to destroy the Wittmann-Steten-like α phase and the grain boundary α phase to make it close to an equiaxed α crystal. Yes, and for that purpose, the rolling reduction ratio needs to be at least about 12. The upper limit of the reduction ratio depends on the type of alloy and the temperature, but it is possible to set it up to about 8 to 10 without causing cracks, and usually up to about 15 is sufficient for the reasons mentioned above. In order to eliminate anisotropy in the mechanical properties of the final product, cross rolling should be carried out from step (A). Cross rolling is performed only in stage (C), and (A)
Normal straight rolling at this stage can produce a certain effect, but in order to reliably produce high-quality products with less anisotropy, it is necessary to perform cross rolling from stage (A) onwards. It was 114 IuJi that it was good. The cross rolling ratio is carried out at a cross rolling ratio of 0.6 to 1.4. The closer the cross ratio is to 1, the more effective it is, and outside the above range, the purpose of cross rolling is lost. The (A) stage can be regarded as a pre-(IIli stage) in preparation for the final equiaxed α crystallization.

続いて、クロス圧延後の材料は、β変態点以下20°C
から100℃までの温度で再結晶焼鈍を受ける。β変態
点は合金種により定まるが、例えばTi−6AI−4V
合金では約1000°Cであり、従って980〜900
°Cの範囲内の温度で焼鈍が為される。β変If調点以
下20℃より高い温度では、初晶α相の割合が極端に少
なくなり、最終の製品の機械的特性を劣化させる。jl
k方、β変態点以下100℃より低いtea I!では
、傳軸α舗化へのP多結晶は充分に行われず、効果がな
い。焼鈍時間は倣細な再結晶化が起るに充分のものであ
ればよく、合金種及び温度に依存する。
Subsequently, the material after cross rolling is heated at 20°C below the β transformation point.
undergo recrystallization annealing at temperatures from to 100°C. The β transformation point is determined by the alloy type, but for example, Ti-6AI-4V
For alloys it is about 1000°C, so 980-900°C
Annealing is carried out at a temperature within the range of °C. At temperatures higher than 20° C. below the β change If adjustment point, the proportion of the primary α phase becomes extremely low, deteriorating the mechanical properties of the final product. jl
On the k side, tea I! is lower than 100℃ below the β transformation point! In this case, the polycrystalline P polycrystal is not sufficiently applied to the axis α, and is ineffective. The annealing time may be sufficient to cause fine recrystallization and depends on the alloy type and temperature.

上記(A)及び(B)段階だけでも、成る程度の等軸α
型組に掴のチタン合金板は得られるが、どうしても部分
的に等軸品組城とならないα相が残存することが知見さ
れた。(A)段階における圧下比を大きくしていけは、
等軸型組織とならないα相の残存数は若干減少していく
が、抜本的な解決にはならず、等軸型組織とならないα
相が不可避的に残留する〇 そこで、本発明においては、(c)L9階において再度
クロス圧延を行うことにより内部歪を充分に蓄積し、そ
して最終的熱処理において等軸α晶化を計ることによっ
て等軸型組織とならないα相の残存を大巾に低減するも
のである。その効果は、圧下比最低1.6以上、一般に
は2以上において顕果は(A)工程でクロス圧延を行っ
ておくことにより一層顕著となり、クロス圧延を実施す
る意義が生きてくる。しかも、単にクロス圧延のみを行
うよりも、再結晶i暁!IfI段階を間に挾んでその前
後にクロス圧延を行うことにより異方性の発生を一層少
くすることができる。(C)段階においても、クロス比
は0.6〜t4範囲内とすることが必要であり、1に近
い程その効果は大きい。(C)段階における材料温度は
α+β域であれば特に温度の指定はないが、(A)段階
と同じくβ変態点50〜200℃程度が好ましい。
Equiaxed α to the extent that even stages (A) and (B) above alone
Although a titanium alloy plate that can be assembled into a mold can be obtained, it has been found that α phase that does not form an equiaxed product remains in some parts. The reduction ratio in stage (A) should be increased.
The number of remaining α phases that do not form an equiaxed structure will decrease slightly, but this will not be a fundamental solution;
Therefore, in the present invention, (c) cross-rolling is performed again on the L9th floor to sufficiently accumulate internal strain, and in the final heat treatment, equiaxed α crystallization is carried out. This greatly reduces the residual α phase that does not form an equiaxed structure. The effect becomes more pronounced when the rolling reduction ratio is at least 1.6, generally 2 or more, by performing cross rolling in the step (A), and the significance of cross rolling comes into play. What's more, recrystallization is better than simply cross-rolling! By performing cross rolling before and after the IfI stage, the occurrence of anisotropy can be further reduced. In stage (C) as well, the cross ratio needs to be within the range of 0.6 to t4, and the closer it is to 1, the greater the effect. The material temperature in the (C) stage is not particularly specified as long as it is in the α+β range, but as with the (A) stage, the β transformation point is preferably about 50 to 200°C.

(B)段階から(C)段階への移行に際しては、材料を
一旦嵐、′晶まで冷却してもよいし、そのまま(C)J
2階へ移行してもよい。
When transitioning from the (B) stage to the (C) stage, the material may be cooled once to a crystalline state, or it may be directly cooled to the (C)J stage.
You may move to the second floor.

以上説明したように、本発明における等軸型組織となら
ないα相の残存の抑制のメカニズムは、段階(A)にお
いて内部歪を貯えまたウィツトマンステテン状のα相や
結晶粒界α相を壊し、段階(B)において等軸α晶化を
計り、更に段階(C)で再び内部歪を貯え、その後の最
終熱処理で再度等軸α晶化を計るという2回にわたる等
軸α晶化によって等軸型組織とならないα相の残存を極
力排除するものである。同時に、クロス圧延を再結晶焼
鈍の前後で実施することにより材料の機械的等方化をも
実現する。クロス圧延は材料の等方化のみならず、等軸
α晶化にも貢献しており、そしてクロス圧延途中の再結
晶焼鈍は等軸型組織とならないα相の残存の抑制のみな
らず、異方性を減少することにおいても重要な役割を行
っている。この点で、本発明においては、再結晶焼鈍と
その前後のクロス圧延の組合せによる重畳効果によって
、等軸型組織とならないα相の排除と機械的異方性の排
除がより完全な形で達成されるのである。
As explained above, the mechanism of suppressing the residual α phase that does not form an equiaxed structure in the present invention is that internal strain is stored in step (A) and the Wittmann-Steten-like α phase and grain boundary α phase are suppressed. In step (B), the internal strain is stored again, and in the subsequent final heat treatment, equiaxed α crystallization is performed twice. This is to eliminate as much as possible the remaining α phase that does not form an equiaxed structure. At the same time, cross rolling is performed before and after recrystallization annealing to achieve mechanical isotropy of the material. Cross rolling contributes not only to isotropy of the material but also to equiaxed α crystallization, and recrystallization annealing during cross rolling not only suppresses the remaining α phase that does not form an equiaxed structure, but also contributes to It also plays an important role in reducing polarity. In this respect, in the present invention, the superimposed effect of the combination of recrystallization annealing and cross rolling before and after recrystallization annealing achieves more complete elimination of the α phase that does not result in an equiaxed structure and the elimination of mechanical anisotropy. It will be done.

この意味から、段階(A)→段階CB)→段階(C)→
段階(B)→段階(C)→最終熱処理とし1うように、
段階(B)及び(C)を少くとも一回繰返すことによっ
て、本発明目的をより完全に実現しうろことが理解され
る。
From this meaning, stage (A) → stage CB) → stage (C) →
As shown in step (B) → stage (C) → final heat treatment,
It will be appreciated that by repeating steps (B) and (C) at least once, the objectives of the invention may be more fully realized.

実施例1及び比較例 α+β型の代表的実用合金であるTi−6AI−4Vに
ついて、β域で鍛造した厚さ160鰭tのスラブに対し
て次の5つの試験を行った。尚、この材料のβ変態点は
1000°Cであった。
Example 1 and Comparative Examples Regarding Ti-6AI-4V, which is a typical practical alloy of α+β type, the following five tests were conducted on a slab with a thickness of 160 fins forged in the β region. Note that the β transformation point of this material was 1000°C.

(1)本発明による工程(実施例1) 圧下比 4.80 クロス比 0.99 (2)クロス圧延のみを行った場合(比較例1)950
℃加熱圧延(160fl →25露 )圧下比 6.4
0 クロス比 1.00 (3)ストレート圧延工程(比較例2)950℃加熱圧
延(160鰭 →25酩 )圧下比 &40 クロス圧延 なし 上記工程を経た(1)、+2)及び(3)の圧延材それ
ぞれに最終熱処理として溶体化時効処理を行った。溶体
化時効処理の条件は、AMg規格にも定められる一般的
な条件として955℃Xt5hr水急冷と続いて568
℃X6hr空冷とした。
(1) Process according to the present invention (Example 1) Reduction ratio 4.80 Cross ratio 0.99 (2) Case where only cross rolling is performed (Comparative Example 1) 950
°C heating rolling (160 fl → 25 dew) Reduction ratio 6.4
0 Cross ratio 1.00 (3) Straight rolling process (Comparative example 2) 950°C heat rolling (160 fins → 25 fins) Reduction ratio &40 Cross rolling None Rolling of (1), +2) and (3) through the above steps Each material was subjected to solution aging treatment as the final heat treatment. The solution aging treatment conditions are general conditions stipulated in the AMg standard: 955°C x 5hr water quenching, followed by 568°C
It was air-cooled for 6 hours at ℃.

その後各材料のミクOMiをi察した結果を写真1に示
す。観察面は最終の圧延方向に平行な断面である。写真
(&)の本発明工程によるものは、微細な等軸α晶組織
となっている。これに対し、クロス圧延工程、ストレー
ト圧延工程によるものは、写真(b)及び(e)中に見
られるような等軸型組織とならないα相があちらこちら
に観察される。
Photo 1 shows the results of the subsequent observation of the MikuOMi of each material. The observation plane is a cross section parallel to the final rolling direction. The product produced by the process of the present invention shown in the photo (&) has a fine equiaxed α crystal structure. On the other hand, in the cross-rolling process and the straight-rolling process, α phases which do not form an equiaxed structure as seen in photographs (b) and (e) are observed here and there.

また、それぞれの材料の引張試験結果を表1にIn addition, the tensile test results for each material are shown in Table 1.

【図面の簡単な説明】[Brief explanation of the drawing]

添付写t″{(a)、(b)及び(c)は実施例1、比
較例1旋び比;咬例2それぞれの金f−’i #jl織
を示す頌{1;i鏡写真である。 代理人の氏名 倉 内 甚 弘 、′ 四 介 橋 ]clQ
Attached photos t'' {(a), (b) and (c) are Example 1, Comparative Example 1 twist ratio; bite example 2 Ode showing gold f-'i #jl weave {1; i mirror photo The name of the agent is Jinhiro Kurauchi,' Shisuke Hashi] clQ

Claims (1)

【特許請求の範囲】 1)α型またはα+β型のチタン合金を、インゴットブ
レイクダウン後、 (A) α+β域において圧下比12以上そしてクロス
比16〜t4の下でクロス圧延を行う段階と、 (B) その後、β変態点以下20″Cから100℃ま
での間の温度で再結晶焼鈍を行う段階と、(C) 更に
、α+β域において圧下比16以上そしてクロス比0.
6〜t4の下でクロス圧延を行う段階と を経て焼鈍、溶体化時効処理等の製品用途に応じた熱処
理を行うことを特徴とするチタン合金圧延板の製造方法
。 2)α型またはα+β型のチタン合金を、インゴットブ
レイクダウン後、 (A) α+β域において圧下比1.2以上そしてクロ
ス比α6〜t4の下でクロス圧延を行う段階と、 CB) その後、β変態点以下20°Cから100°C
までの間の温度で再結晶焼鈍を行う段階と、(C) 更
に、α+β域において圧下比16以上そしてクロス比α
6〜t4の下でクロス圧延を行う段階と、 (D) 前記(B)及び(C)の段階を少くとも1回繰
返す段階と を経て焼鈍、溶体化時効処理等の製品用途に応じた熱処
理を行うことを特徴とするチタン合金圧延板の製造方法
[Claims] 1) After ingot breakdown of an α-type or α+β-type titanium alloy, (A) cross-rolling the α-type or α+β-type titanium alloy at a reduction ratio of 12 or more and a cross ratio of 16 to t4 in the α+β region; B) Thereafter, a step of recrystallization annealing is performed at a temperature between 20"C and 100C below the β transformation point, and (C) further, a reduction ratio of 16 or more and a cross ratio of 0.
A method for manufacturing a titanium alloy rolled sheet, which comprises a step of cross rolling at a temperature of 6 to 4 t4, followed by heat treatment such as annealing and solution aging treatment depending on the product use. 2) After ingot breakdown of the α-type or α+β-type titanium alloy, (A) a step of cross rolling in the α+β region at a reduction ratio of 1.2 or more and a cross ratio of α6 to t4, and CB) then β 20°C to 100°C below transformation point
(C) Further, in the α+β region, the reduction ratio is 16 or more and the cross ratio α is
A step of cross-rolling at 6 to t4, and (D) a step of repeating steps (B) and (C) at least once, followed by heat treatment depending on the product use such as annealing and solution aging treatment. A method for manufacturing a titanium alloy rolled plate, the method comprising:
JP8405884A 1984-04-27 1984-04-27 Manufacture of rolled titanium alloy plate Granted JPS60230968A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP8405884A JPS60230968A (en) 1984-04-27 1984-04-27 Manufacture of rolled titanium alloy plate
US06/725,454 US4581077A (en) 1984-04-27 1985-04-22 Method of manufacturing rolled titanium alloy sheets
CA000479793A CA1257528A (en) 1984-04-27 1985-04-23 Method of manufacturing rolled titanium alloy sheets
FR8506421A FR2565252B1 (en) 1984-04-27 1985-04-26 PROCESS FOR MANUFACTURING LAMINATED TITANIUM ALLOY SHEETS
GB08510702A GB2158373B (en) 1984-04-27 1985-04-26 Method of manufacturing rolled titanium alloy sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8405884A JPS60230968A (en) 1984-04-27 1984-04-27 Manufacture of rolled titanium alloy plate

Publications (2)

Publication Number Publication Date
JPS60230968A true JPS60230968A (en) 1985-11-16
JPS6224498B2 JPS6224498B2 (en) 1987-05-28

Family

ID=13819891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8405884A Granted JPS60230968A (en) 1984-04-27 1984-04-27 Manufacture of rolled titanium alloy plate

Country Status (1)

Country Link
JP (1) JPS60230968A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176452A (en) * 1987-01-19 1988-07-20 Nkk Corp Manufacture of (alpha+beta)-type titanium alloy sheet
JPH01156456A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Method for hot-working titanium ingot
JP2012052213A (en) * 2010-09-03 2012-03-15 Nippon Steel Corp High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
JP2014019945A (en) * 2012-07-24 2014-02-03 Toho Titanium Co Ltd Titanium alloy and method for producing the same
CN113351814A (en) * 2021-04-29 2021-09-07 洛阳双瑞精铸钛业有限公司 Preparation method of TA5-A titanium alloy medium plate
KR20230088655A (en) * 2020-12-15 2023-06-20 한국재료연구원 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EPRI ELECTRIC POWER RESEARCH INSTITUTE CS-2933 PROJECT 1266-1 FINAL REPORT=1983 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176452A (en) * 1987-01-19 1988-07-20 Nkk Corp Manufacture of (alpha+beta)-type titanium alloy sheet
JPH0373624B2 (en) * 1987-01-19 1991-11-22 Nippon Kokan Kk
JPH01156456A (en) * 1987-12-11 1989-06-20 Nippon Steel Corp Method for hot-working titanium ingot
JP2012052213A (en) * 2010-09-03 2012-03-15 Nippon Steel Corp High corrosion-resistance titanium alloy large in 0.2%-proof stress in rolling direction, and its manufacturing method
JP2014019945A (en) * 2012-07-24 2014-02-03 Toho Titanium Co Ltd Titanium alloy and method for producing the same
KR20230088655A (en) * 2020-12-15 2023-06-20 한국재료연구원 Commercially pure titanium sheet having high room temperature formability and high strength and method for manufacturing the same
CN113351814A (en) * 2021-04-29 2021-09-07 洛阳双瑞精铸钛业有限公司 Preparation method of TA5-A titanium alloy medium plate

Also Published As

Publication number Publication date
JPS6224498B2 (en) 1987-05-28

Similar Documents

Publication Publication Date Title
EP0157600B1 (en) Aluminum lithium alloys
US4889170A (en) High strength Ti alloy material having improved workability and process for producing the same
US5516375A (en) Method for making titanium alloy products
JPS63501883A (en) Aluminum-lithium alloy and method of manufacturing the same
JPS63186859A (en) Method for improving dynamical and statical mechanical properties of (alpha + beta)- titanium alloy
FR2565252A1 (en) PROCESS FOR PRODUCING LAMINATED TITANIUM ALLOY SHEETS
JP7229370B2 (en) Method for producing AlMgSc-based alloy product
US4797165A (en) Aluminum-lithium alloys having improved corrosion resistance and method
JP3873313B2 (en) Method for producing high-strength titanium alloy
JPS62109956A (en) Manufacture of titanium alloy
JPS62267438A (en) High-strength ti alloy material excellent in workability and its production
JPS60230968A (en) Manufacture of rolled titanium alloy plate
EP2801631B1 (en) Alpha+beta-type titanium alloy plate for welded pipe, method for producing same, and alpha+beta-type titanium-alloy welded pipe product
JP3252596B2 (en) Method for producing high strength and high toughness titanium alloy
US5417779A (en) High ductility processing for alpha-two titanium materials
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JPS6339661B2 (en)
JPH07180011A (en) Production of alpha+beta type titanium alloy extruded material
JPS5826425B2 (en) Manufacturing method for high-strength aluminum alloy with excellent mechanical properties in the thickness direction
JP2004052008A (en) Titanium-copper alloy and manufacturing method therefor
JPS6058298B2 (en) Method for producing Al-Zn-Mg-Cu alloy material with uniform formability
JP2017057473A (en) α+β TYPE TITANIUM ALLOY SHEET AND MANUFACTURING METHOD THEREFOR
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure