WO2012070870A2 - Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same - Google Patents

Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same Download PDF

Info

Publication number
WO2012070870A2
WO2012070870A2 PCT/KR2011/008991 KR2011008991W WO2012070870A2 WO 2012070870 A2 WO2012070870 A2 WO 2012070870A2 KR 2011008991 W KR2011008991 W KR 2011008991W WO 2012070870 A2 WO2012070870 A2 WO 2012070870A2
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
alloy sheet
weight
magnesium
rolling
Prior art date
Application number
PCT/KR2011/008991
Other languages
French (fr)
Korean (ko)
Other versions
WO2012070870A3 (en
Inventor
김낙준
배준호
김동욱
김도향
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to EP11843068.5A priority Critical patent/EP2644728A4/en
Publication of WO2012070870A2 publication Critical patent/WO2012070870A2/en
Publication of WO2012070870A3 publication Critical patent/WO2012070870A3/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0622Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by two casting wheels

Definitions

  • the present invention relates to a magnesium alloy sheet having excellent room temperature formability and a method of manufacturing the same. More specifically, the present invention exhibits excellent press formability through secondary phase control, sheet casting, and subsequent processing heat treatment through an alloy component added to magnesium.
  • the present invention relates to a method for producing a magnesium plate that can secure high strength through additional heat treatment after molding and to a magnesium plate produced by the method.
  • Magnesium alloy is an alloy for structural materials exhibiting the lowest specific gravity, excellent specific strength, and rigidity among practical structural materials. Recently, demand is increasing for cases of mobile devices and materials for automobiles that require weight reduction.
  • this method is a grain size It is characterized in that the large grain size of the cast material by hot extrusion to make a material capable of pressing or forging.
  • magnesium is a highly active metal, surface blackening and combustion are likely to occur due to processing heat generated during hot extrusion. Accordingly, in the hot extrusion process of magnesium, extrusion must be performed at a speed that can be cooled to a degree that surface blackening or combustion does not occur, thereby limiting the extrusion speed.
  • the hot extrusion process which is essential for the conventional magnesium sheet process, has been a major factor in lowering productivity and increasing manufacturing cost. Moreover, since there is a limit to making the crystal grains fine only by the hot extrusion process, there is also a problem that it is difficult to beautifully process into a complicated shape.
  • Y yttrium
  • Zn zinc
  • a magnesium alloy sheet with improved press formability was proposed through the refinement of the structure and the control of the dispersed phase behavior by a subsequent work heat treatment process.
  • the magnesium alloy has a problem of not only using expensive yttrium, but also having low press formability compared to commercial aluminum, which has a certain limit in the application field.
  • the present invention has been researched and developed to solve the problems of the conventional magnesium alloy sheet and its manufacturing method, and can be manufactured at low cost using a low-cost alloy element, and also has a press formability equivalent to commercial aluminum Therefore, to solve the problem to provide a magnesium alloy plate and a method of manufacturing the same that can be suitably used for the production of a variety of complex parts.
  • the present invention provides a magnesium alloy sheet material containing Zn and Ca as an alloying element, the limit dome height (LDH) is 7mm or more, preferably 8mm or more.
  • LDH 'Limit Dome Height
  • the content of the Zn is 1 to 10% by weight, preferably 1 to 7% by weight
  • the content of Ca is 0.1 to 5% by weight, preferably 0.5 to 3% by weight It is characterized by that.
  • the magnesium alloy sheet material according to the present invention is characterized in that the grain size average grain size is 10 ⁇ m or less.
  • the magnesium alloy sheet according to the present invention is characterized in that the yield strength (YS) is 200MPa or more, the tensile strength (UTS) is 270MPa or more, and the elongation (EL) is 12% or more.
  • the magnesium alloy sheet according to the present invention is characterized in that the texture intensity of the (0002) plane is 2.5 or less.
  • the present invention to solve the above problems, (a) Zn: 1 to 10% by weight, Ca: 0.1 to 5% by weight to prepare a molten alloy of the alloy consisting of magnesium and magnesium inevitable; (b) maintaining the molten metal in a temperature range from a temperature at which the liquid fraction is 70% to a temperature before the molten metal is ignited; (c) injecting the molten metal maintained in the temperature range between two rotating cooling rolls to form a thin sheet of magnesium alloy sheet; (d) solution treatment of the cast magnesium alloy plate at 300 to 490 ° C. for 1 to 24 hours; (e) preheating the solution-treated magnesium alloy sheet to 300 to 400 ° C. and then rolling it to a required thickness of 1 to 45% per pass with a heated rolling roll; And (f) performing a solution treatment at 300 to 490 ° C. for 0.5 to 4 hours after the rolling.
  • the gap between the two cooling rolls in the step (c) is 1 to 5mm and the rotational speed of the cooling roll during the injection of the molten metal is 0.2 to 20m / min, It characterized in that the cooling rate of 10 2 ⁇ 10 3 K / s.
  • the content of Zn is 1 to 10% by weight, preferably 1 to 7% by weight
  • the content of Ca is 0.1 to 5% by weight, preferably 0.5 ⁇ 3% by weight is characterized in that.
  • the method for producing a magnesium alloy sheet according to the present invention may further include the step of performing an aging treatment for 1 to 72 hours at 150 to 200 °C the solution-treated magnesium alloy sheet after the rolling.
  • the method for producing a magnesium alloy sheet according to the present invention is characterized in that the addition of Ca is carried out by a method of adding a Mg-Ca mother alloy. This is because, when pure Ca is used, the melting point of Ca is not so high that it is not easily added as desired in casting, and the Mg-Ca master alloy is preferably a Mg-2 to 3.5 wt% Ca master alloy.
  • Zn is 6.2% by weight at 340 ° C in the maximum solid solution at Mg, and when 1.0% by weight or more is added, Zn forms an acicular precipitate through heat treatment. The hardening phenomenon is hardly expected, and when Zn is added in excess of 10% by weight, equilibrium precipitation may be encouraged at grain boundaries, resulting in deterioration of mechanical properties. Therefore, the content of Zn is preferably 1 to 10% by weight.
  • the addition of an appropriate amount of Zn leads to softening of the base and activates the base slip, but the addition of more Zn causes not only the bottom base but also a decrease in mechanical properties. In order to maximize the slip and precipitation strengthening effect of the upper limit of Zn is more preferably limited to 7% by weight.
  • Ca is an effective element for improving the high temperature strength of magnesium alloy. If the Ca content is less than 0.1% by weight, the effect of increasing the high temperature strength is insufficient, and if the Ca content is more than 5% by weight, the spreading decreases and the fluidity of the molten metal is reduced, resulting in poor castability and hot cracking. When solidified, the adhesion to the mold increases, resulting in a decrease in productivity. Therefore, the content of Ca is preferably in the range of 0.1 to 5% by weight, more preferably 0.5 to 3% by weight because the effect can be maximized.
  • the unavoidable impurity refers to a component that is incorporated in an unintentional state in a raw material or a manufacturing process, and the incorporated component is preferably contained at 0.5 wt% or less so as not to affect the physical properties of the magnesium alloy according to the present invention. More preferably 0.01% by weight or less.
  • elements such as Fe, Ni, Cr, Cu, Co, etc. may adversely affect the corrosion resistance, so management is required to be 0.005% by weight or less.
  • the grain size average grain size of the microstructured grains is preferably 10 ⁇ m or less.
  • the increase in texture intensity in magnesium alloys inhibits formability in the case of magnesium having a low slip system, and the texture intensity of the (0002) surface, which is the base surface, is 2.5 or less. If not, since it is difficult to implement press formability comparable to that of aluminum alloy, 2.5 or less is preferable, and more preferably 2.2 or less.
  • the melt temperature of the step (b) is less than the temperature at which the liquid fraction is 70% or less, the viscosity of the melt increases, so that the melt solidifies before contacting the cooling roll of the step (c) and does not exit the roll. Since the process cannot be performed when the temperature to be ignited is exceeded, the molten metal temperature should be maintained in the above range.
  • the cooling rate of the molten metal in the step (c) is less than 10 2 K / s, there is a problem that the cooling rate is slow, there is no significant difference in the microstructure of the general mold casting method and the flow of the molten metal before the casting can be unstable, If it exceeds 10 3 K / s, it is difficult to reach it commercially except for the quench solidification method, which obtains a very thin ribbon, so it is preferable to keep it at 10 2 to 10 3 K / s. Maintaining the gap between the rolls of 10 mm or less is also advantageous for obtaining the cooling rate as described above.
  • the fast cooling rate as in step (c) not only refines the cast structure and reduces segregation, but also finely disperses the intermetallic compounds in the matrix that play a detrimental role in tensile properties when the cooling rate is slow. Rather, it can play a beneficial role.
  • it is possible to manufacture a relatively thin plate compared to other casting methods in the casting step it is possible to reduce the rolling reduction rate and the rolling pass in the rolling process, thereby minimizing the texture generated in the rolling process, which adversely affects press formability.
  • the anisotropy of the plate can be reduced.
  • the solution treatment because the unevenness of the processed material may occur due to segregation of alloy elements that may occur during casting, and the solution treatment temperature and time are the main alloy elements. It is set in consideration of the diffusion of Zn, secondary dendrite arm spacing (SDAS), incipient melting and oxidation degree measured through DTA / DSC, and should be performed under conditions of 1 to 24 hours at 300 to 490 ° C. Sufficient solution treatment results can be obtained.
  • SDAS secondary dendrite arm spacing
  • the preheated temperature range may not be maintained when the solution-treated magnesium alloy sheet is preheated at 300 to 400 ° C. and then rolled to a required thickness of 1 to 45% per pass with a heated rolling roll.
  • it is preferable to maintain the preheating temperature range because it is difficult to obtain a healthy plate, and it is preferable to keep the reduction rate per pass in the range of 1 to 45% because the aggregate structure develops and the moldability decreases as the reduction amount increases. .
  • it may comprise the step of performing the aging treatment for 1 to 96 hours at 150 ⁇ 200 °C heat-treated magnesium alloy plate material after the rolling, which is most This is because the tensile properties can be improved efficiently.
  • the alloy component suitable for the twin roll type sheet casting method, grain refinement and intermetallic compound formation and volume fraction control by thin sheet casting and subsequent heat treatment or processing heat treatment Through the conventional commercial magnesium alloy sheet, the strength and room temperature as well as the elongation and formability is improved to provide a room temperature forming magnesium sheet that can be widely applied to the automotive and electronics industry.
  • the manufacturing method of the magnesium alloy plate material which concerns on this invention, since a manufacturing process number is reduced compared with the conventional manufacturing process of a plate material, a magnesium alloy plate material can be manufactured at low cost compared with the conventional commercial magnesium alloy plate material. In addition, since the final reduction can be greatly reduced, it is possible to minimize the formation of the aggregate structure, from which an improved press formability can be obtained.
  • FIG. 1 is a schematic view of a sheet casting apparatus for producing a magnesium alloy sheet used in an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing the evaluation method of the limit dome height of the magnesium alloy sheet according to the present invention.
  • Figure 3 shows the microstructure of the thin plate cast magnesium plate according to an embodiment of the present invention observed with an optical microscope after 1 hour heat treatment at 440 °C.
  • Figure 4 shows the microstructure observed by the optical microscope after 30 minutes solution treatment at 440 °C after rolling a thin sheet cast magnesium alloy sheet according to an embodiment of the present invention.
  • Figure 5 shows the microstructure observed by transmission electron microscope after 30 minutes solution treatment at 440 °C after rolling 0.95Zn, 0.9Ca alloy.
  • Figure 6 shows the microstructure observed by transmission electron microscope after 30 minutes solution treatment at 350 °C after rolling a 5.99Zn, 0.98Ca alloy.
  • Figure 7 shows the deformation of the specimen before and after the solution treatment after 30 minutes solution treatment at 440 °C after rolling 0.95Zn, 0.9Ca alloy using EBSD.
  • FIG. 8 shows the deformation of the specimens before and after the 30 minute solution treatment at 350 ° C. after rolling the 5.99 Zn and 0.98Ca alloys using EBSD.
  • 9A and 9B show the results of analysis of a basal pole figure of a magnesium alloy sheet manufactured according to an embodiment of the present invention, respectively.
  • Figure 10 shows the (0002) aggregate strength and LDH of the magnesium alloy sheet according to the embodiment and the comparative example of the present invention.
  • a magnesium alloy molten metal was prepared by dissolving a pure Mg (99.9%), a pure Zn (99.9%), and a Mg-3 wt% Ca master alloy under a CO 2 and SF 6 mixed gas atmosphere. At this time, the content ratio of each component in the prepared molten metal was set to the composition of Table 1 below.
  • a twin roll plate casting apparatus includes a melting furnace 10, a nozzle 20, and two cooling rolls 30.
  • the casting method using the twin roll type sheet casting apparatus is specifically, a temperature of about 70% of the molten metal dissolved in the above composition in the induction melting furnace 10 under a CO 2 and SF 6 mixed gas atmosphere (about 650). At a temperature of about 950 ° C. up to the temperature before the molten metal is ignited, and then transferred to the nozzle 20. In this case, if the temperature of the molten metal is too high, a liquid phase may exist inside the plate that has passed through the cooling roll, and thus, in the embodiment of the present invention, the melt is transferred to the nozzle 20 while maintaining the temperature below 750 ° C, specifically 710 ° C. .
  • the molten metal whose temperature is maintained at 710 ° C. is injected through the nozzle 20 between two cooling rolls 30 being cooled by a cooling device (not shown) provided in the twin roll sheet casting device.
  • a cooling device not shown
  • the casting speed of the molten metal was cast to be 200 ⁇ 300K / s under such conditions
  • a magnesium alloy sheet having a length of about 5 m, a width of about 70 mm, and a thickness of about 2 mm was obtained.
  • the plate material thus cast was subjected to the following processing heat treatment as follows. First, the cast plate was subjected to solution treatment at 440 ° C. for 1 hour. The solution treatment is to remove as much as possible the casting structure and segregation generated during casting before rolling, and to avoid defects caused by uneven grains or segregation during rolling.
  • plate material was preheated to 300 degreeC, and hot rolling was performed by the rolling roll heated to 200 degreeC.
  • Figure 3 is a photograph of the magnesium alloy sheet cast as described above after heat treatment at 440 °C for 1 hour to observe the microstructure of the specimen with an optical microscope.
  • Figure 4 is a photograph of the microstructure after the solution treatment for 30 minutes at 440 °C after rolling the magnesium alloy sheet prepared by the present invention with an optical microscope. As shown in FIG. 4, after the solution treatment after rolling, the average grain size of the microstructure is about 11 ⁇ m, and fine precipitated phases are evenly distributed throughout the microstructure.
  • 5 and 6 are photographs of the magnesium alloy plate produced by the present invention, respectively, and then rolled and subjected to a solution-treated microstructure with a transmission electron microscope.
  • the precipitated phase is formed differently according to the amount of Zn.
  • Zn When prepared by fixing Ca at 1% by weight and changing the Zn content to about 1, 4, 6% by weight, as shown in FIG. 5, when Zn is 1% by weight, Mg 2 Ca phase was formed, and Zn When the content of 6% by weight (4% by weight or more) can be seen in Figure 6 that the Mg 6 Zn 3 Ca 2 phase is formed.
  • FIG. 7 and 8 show the backscattering electron diffraction (EBSD) of the solution-treated microstructure after rolling 0.95 Zn, 0.9 Ca and 5.99 Zn, 0.98 Ca in the magnesium alloy sheet produced by the present invention, respectively.
  • EBSD backscattering electron diffraction
  • the method of manufacturing the magnesium alloy sheet according to the embodiment of the present invention can obtain a precipitated phase evenly dispersed in the microstructure by a simple process of the hot extrusion process compared with the conventional method.
  • the heat treatment temperature is set to be lower, which is an optimum temperature at which the precipitated phase is evenly distributed in each grain for each embodiment of the present invention, which is higher than the temperature.
  • the grain boundary is partially dissolved, and a large amount of precipitated phases are distributed in the grain boundary, thereby impairing room temperature tensile properties and formability.
  • FIG. 2 schematically illustrates a method for obtaining a selected limit dome height (LDH) value as an index for evaluating formability (particularly pressability) of a magnesium alloy sheet in an embodiment of the present invention.
  • a disk-shaped test piece having a diameter of 50 mm and a thickness of 0.7 mm was prepared, a test piece was inserted between the upper die and the lower die, and the specimen was fixed with a force of 5 kN, and lubricating oil was used as a known press oil. Then, a strain was applied at a speed of 0.1 mm / sec using a spherical punch having a diameter of 27.5 mm, the punch was inserted until the disc-shaped specimen was broken, and the deformation height at the fracture was measured.
  • the limit dome height test was carried out not only for the examples of the present invention but also for the magnesium alloy plates (AZ31 H24, ZW41) and aluminum plates (Al 5052) that are currently commercially available for comparison.
  • Table 2 shows the tensile and molding properties measured by the above method.
  • the magnesium alloy sheet produced according to the embodiment of the present invention exhibited an LDH of 6.6 to 8.8 mm.
  • the magnesium alloy prepared through the examples of the present invention not only shows three times or more excellent moldability as compared with the commercial AZ31 H24 alloy, but also has excellent moldability in the related art.
  • the ZW41 alloy known to represent it can be seen that the LDH is greatly improved in some examples.
  • the moldability is excellent in some embodiments.
  • FIGS. 9A and 9B show the results of analysis of a basal pole figure of a magnesium alloy sheet manufactured according to an embodiment of the present invention, respectively.
  • the pole plane of the basal plane becomes stronger during the rolling process, and the increase of the texture intensity results in a slip system. Less magnesium impairs formability.
  • the magnesium alloy sheet according to the embodiment of the present invention shows a low intensity (see FIG. 9A) of 3.8 in the case of the base surface even after rolling, and the heat treated alloy specimen exhibiting the highest LDH value.
  • the low intensity (see FIG. 9B) of case 2.0 is shown.
  • Table 3 it shows a low intensity (intensity) compared to the conventional magnesium plate.
  • Figure 10 shows the ratio of the base structure (0002) and the pyramid surface (10-11) texture of the alloy and the comparative example of the alloy, in the case of magnesium alloy sheet according to the present embodiment
  • the structure is relatively strong and has a lower value than that of the AZ31 alloy. This means that a random texture is formed in the magnesium alloy sheet according to the embodiment.
  • the magnesium alloy sheet according to the embodiment of the present invention has a considerably superior tensile strength compared to the same thin cast magnesium alloy sheet, and some examples of the magnesium alloy has a tensile strength of commercial AZ31 H24 A comparatively low degree is shown.
  • the magnesium alloy sheet according to the embodiment of the present invention may simultaneously control high formability and high mechanical properties so as to have mechanical properties comparable to those of aluminum, which is a lightweight metal, by heat treatment after rolling.
  • twin-roll thin plate casting method which is a method of manufacturing magnesium alloy sheet of the present invention, it is economical and provides a very fast cooling rate compared to the prior art, thereby making it possible to refine the particles. It can be improved.
  • the conventional magnesium alloy plate is relatively less strength than heat-treated aluminum, but the alloy plate according to the embodiment of the present invention can be applied to the automotive and structural materials industry that requires a high strength plate by implementing a relatively high strength.
  • due to the excellent moldability compared to the conventional magnesium can be used in a variety of fields that require a complex form of the plate is not applied to the conventional magnesium alloy plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

The aim of the present invention to provide a magnesium alloy sheet having high formability, in which Ca is added to a Mg-Zn-based alloy which is a precipitation hardened alloy, and a twin roll strip casting process and a subsequent heat-treatment process are performed to improve precipitation behavior, thus enabling the magnesium alloy sheet to have superior strength and low anisotropy, and particularly, press formability that is remarkably improved as compared to conventional magnesium alloy sheets. To accomplish the aim, the magnesium alloy sheet having high formability according to the present invention comprises 1 to 10 wt % of Zn and 0.1 to 5 wt % of Ca, the remainder being unavoidable impurities and magnesium, wherein the magnesium alloy sheet has a limiting dome height (LDH) of 7 mm or higher.

Description

상온성형성이 우수한 마그네슘 합금 판재 및 그 제조방법Magnesium alloy sheet having excellent room temperature formability and its manufacturing method
본 발명은 상온성형성이 우수한 마그네슘 합금 판재와 그 제조방법에 관한 것으로서, 보다 구체적으로는 마그네슘에 첨가되는 합금 성분을 통한 2차상 제어와 박판주조 및 후속 가공 열처리를 통해, 우수한 프레스 성형성을 나타내며, 성형 후 추가 열처리를 통해 고강도를 확보할 수 있는 마그네슘 판재의 제조 방법과 이 방법에 의해 제조된 마그네슘 판재에 관한 것이다.The present invention relates to a magnesium alloy sheet having excellent room temperature formability and a method of manufacturing the same. More specifically, the present invention exhibits excellent press formability through secondary phase control, sheet casting, and subsequent processing heat treatment through an alloy component added to magnesium. The present invention relates to a method for producing a magnesium plate that can secure high strength through additional heat treatment after molding and to a magnesium plate produced by the method.
마그네슘 합금은 실용 구조재료 중 가장 낮은 비중, 우수한 비강도, 및 강성을 나타내는 구조 재료용 합금으로, 최근 경량화가 필요한 휴대기기의 케이스류와 자동차용 소재로서 수요가 증대되고 있는 상황이다.Magnesium alloy is an alloy for structural materials exhibiting the lowest specific gravity, excellent specific strength, and rigidity among practical structural materials. Recently, demand is increasing for cases of mobile devices and materials for automobiles that require weight reduction.
그런데 마그네슘 합금에 대한 그동안 연구는 자동차 엔진이나 기어부품 등에 적용하기 위해 고온 물성의 향상에 치중되어온 반면, 판재와 같이 다양한 분야에 적용될 수 있는 가공용 마그네슘 합금에 대한 연구는 부족한 실정이었다.However, while the research on magnesium alloys has been focused on improving the high temperature properties for application to automobile engines and gear parts, research on processing magnesium alloys that can be applied to various fields such as plates has been insufficient.
마그네슘 합금 판재를 다양한 분야에 사용하기 위해서는 다양한 형상의 부품으로 가공할 수 있도록 우수한 성형성을 갖는 마그네슘 합금 판재의 개발이 필수적이며, 이러한 요구를 반영하여 최근 고온에서 높은 성형성을 갖는 마그네슘 판재에 대한 연구가 진행되고 있다. In order to use the magnesium alloy sheet in various fields, it is essential to develop a magnesium alloy sheet having excellent moldability so that it can be processed into various shaped parts. Research is ongoing.
그런데 마그네슘 합금 판재의 보다 다양한 분야로의 적용을 위해서는 상온에서 높은 성형성을 갖는 마그네슘 합금 판재의 개발이 요구된다.However, in order to apply the magnesium alloy sheet to various fields, it is required to develop a magnesium alloy sheet having high formability at room temperature.
한편, 마그네슘 합금 판재의 제조 방법으로, 종래 일반 주조나, 다이캐스팅과 같은 반연속 주조법에 따라 얻어진 주조재를 열간압출 및 압연가공함으로써 목표하는 두께의 판재로 만드는 방법이 알려져 있는데, 이 방법은 결정립 크기가 큰 주조재의 결정립 크기를 열간압출을 통해 미세화함으로써 프레스 또는 단조가공이 가능한 소재로 만드는 것을 특징으로 한다. 한편, 마그네슘은 활성이 높은 금속이기 때문에 열간압출을 할 때 발생하는 가공열에 의해 표면흑화나 연소가 발생하기 쉽다. 이에 따라 마그네슘의 열간압출 공정에서는 표면흑화나 연소가 발생하지 않을 정도로 냉각이 가능한 속도로 압출을 해야 하므로 압출속도를 높이는데 제한이 있다. 즉, 종래의 마그네슘 판재 공정에 필수적인 열간압출 공정은 생산성을 낮추가 제조원가를 높이는 주요인이 되어 왔다. 더욱이 열간압출 공정만으로 결정립을 미세화시키는데에는 한계가 있기 때문에, 복잡한 형상으로 미려하게 가공하기 곤란하다는 문제점도 있다.On the other hand, as a method of manufacturing a magnesium alloy sheet, a method of forming a sheet having a target thickness by hot extrusion and rolling a conventionally cast or obtained by a semi-continuous casting method such as die casting, this method is a grain size It is characterized in that the large grain size of the cast material by hot extrusion to make a material capable of pressing or forging. On the other hand, since magnesium is a highly active metal, surface blackening and combustion are likely to occur due to processing heat generated during hot extrusion. Accordingly, in the hot extrusion process of magnesium, extrusion must be performed at a speed that can be cooled to a degree that surface blackening or combustion does not occur, thereby limiting the extrusion speed. That is, the hot extrusion process, which is essential for the conventional magnesium sheet process, has been a major factor in lowering productivity and increasing manufacturing cost. Moreover, since there is a limit to making the crystal grains fine only by the hot extrusion process, there is also a problem that it is difficult to beautifully process into a complicated shape.
이러한 문제점을 해결하기 위하여, 본 발명자들은 한국공개특허공보 제2010-38809호에 개시된 바와 같이, Mg-Zn계 합금에 아연(Zn)의 함량을 고려하여 이트륨(Y)을 첨가하고, 박판주조와 후속 가공 열처리 공정에 의한 조직의 미세화 및 분산상의 거동 제어를 통해, 프레스 성형성이 개선된 마그네슘 합금 판재를 제안하였다. In order to solve this problem, the present inventors add yttrium (Y) in consideration of the content of zinc (Zn) to the Mg-Zn-based alloy, as disclosed in Korean Patent Publication No. 2010-38809, A magnesium alloy sheet with improved press formability was proposed through the refinement of the structure and the control of the dispersed phase behavior by a subsequent work heat treatment process.
그런데, 상기 마그네슘 합금은 고가의 이트륨을 사용할 뿐 아니라, 상용의 알루미늄에 비하면 여전히 프레스 성형성이 낮아 적용분야에 일정한 한계를 가지는 문제점이 있다.However, the magnesium alloy has a problem of not only using expensive yttrium, but also having low press formability compared to commercial aluminum, which has a certain limit in the application field.
본 발명은 종래의 마그네슘 합금 판재 및 그 제조방법의 문제점을 해결하기 위해 연구개발된 것으로서, 저가의 합금원소를 사용하여 저비용으로 제조할 수 있을 뿐 아니라, 상용의 알루미늄에 상당하는 프레스 성형성을 구비하여 복잡하고 다양한 부품의 제조에도 적합하게 사용될 수 있는 마그네슘 합금 판재와 이의 제조방법을 제공하는 것을 해결하려는 과제로 한다.The present invention has been researched and developed to solve the problems of the conventional magnesium alloy sheet and its manufacturing method, and can be manufactured at low cost using a low-cost alloy element, and also has a press formability equivalent to commercial aluminum Therefore, to solve the problem to provide a magnesium alloy plate and a method of manufacturing the same that can be suitably used for the production of a variety of complex parts.
상기 과제를 해결하기 위해 본 발명은, Zn과 Ca을 합금원소로 포함하는 마그네슘 합금 판재로서, 한계돔높이(LDH)가 7mm 이상, 바람직하게는 8mm 이상인 것을 특징으로 하는 마그네슘 합금 판재를 제공한다.In order to solve the above problems, the present invention provides a magnesium alloy sheet material containing Zn and Ca as an alloying element, the limit dome height (LDH) is 7mm or more, preferably 8mm or more.
'한계돔높이(이하, LDH(Limit Dome Height))'란, 판재의 성형성 특히 프레스성을 평가하는 지표로서, 본 발명에서는 도 1에 도시된 바와 같이, 직경 50mm, 두께 0.7mm의 디스크형 시험편의 외주부를 5KN의 힘으로 고정한 후 27mm의 직경을 가지는 구형 펀치를 이용하여 0.1mm/sec의 속도로 변형을 가하여 디스크형 시편이 파단될 때까지 펀치가 이동한 거리(즉, 시험편이 변형된 높이)를 의미한다.'Limit Dome Height (LDH)' is an index for evaluating the formability, in particular, the pressability of a plate, and in the present invention, as shown in FIG. 1, a disc shape having a diameter of 50 mm and a thickness of 0.7 mm After fixing the outer periphery of the test piece with a force of 5 KN, using a spherical punch having a diameter of 27 mm, deformation was performed at a speed of 0.1 mm / sec, and the distance the punch moved until the disc-shaped test piece broke (that is, the test piece was deformed). Height).
또한, 본 발명에 따른 마그네슘 합금 판재는, 상기 Zn의 함량이 1 ~ 10중량%, 바람직하게는 1 ~ 7중량%, 상기 Ca의 함량이 0.1 ~ 5중량%, 바람직하게는 0.5 ~ 3중량%인 것을 특징으로 한다.In addition, the magnesium alloy sheet according to the present invention, the content of the Zn is 1 to 10% by weight, preferably 1 to 7% by weight, the content of Ca is 0.1 to 5% by weight, preferably 0.5 to 3% by weight It is characterized by that.
또한, 본 발명에 따른 마그네슘 합금 판재는, 미세조직상 결정립 평균 입경이 10㎛ 이하인 것을 특징으로 한다.In addition, the magnesium alloy sheet material according to the present invention is characterized in that the grain size average grain size is 10 µm or less.
또한, 본 발명에 따른 마그네슘 합금 판재는, 항복강도(YS)가 200MPa 이상, 인장강도(UTS)가 270MPa 이상, 연신율(EL)이 12% 이상인 것을 특징으로 한다.In addition, the magnesium alloy sheet according to the present invention is characterized in that the yield strength (YS) is 200MPa or more, the tensile strength (UTS) is 270MPa or more, and the elongation (EL) is 12% or more.
또한, 본 발명에 따른 마그네슘 합금 판재는, (0002)면의 집합강도(texture intensity)가 2.5 이하인 것을 특징으로 한다.In addition, the magnesium alloy sheet according to the present invention is characterized in that the texture intensity of the (0002) plane is 2.5 or less.
또한, 본 발명은 상기 과제를 해결하기 위해, (a) Zn: 1 ~ 10중량%, Ca: 0.1 ~ 5중량%를 포함하고 나머지는 불가피한 불순물과 마그네슘으로 이루어지는 합금의 용탕을 제조하는 단계; (b) 상기 용탕을 액체 분율이 70%인 온도에서 상기 용탕이 발화되기 전의 온도까지의 온도 범위로 유지시키는 단계; (c) 상기 온도 범위로 유지된 용탕을 회전하는 두 냉각롤 사이에 주입하여 마그네슘 합금 판재로 박판 주조하는 단계; (d) 상기 주조된 마그네슘 합금 판재를 300 ~ 490℃에서 1 ~ 24시간 용체화 처리하는 단계; (e) 상기 용체화 처리된 마그네슘 합금 판재를 300 ~ 400℃로 예열한 후 가열된 압연 롤로 패스당 1 ~ 45%씩 요구되는 두께까지 압연하는 단계; 및 (f) 상기 압연 후 300 ~ 490℃에서 0.5 ~ 4시간 동안 용체화 처리를 수행하는 단계;를 포함하는 고성형성 마그네슘 합금 판재의 제조방법을 제공한다.In addition, the present invention to solve the above problems, (a) Zn: 1 to 10% by weight, Ca: 0.1 to 5% by weight to prepare a molten alloy of the alloy consisting of magnesium and magnesium inevitable; (b) maintaining the molten metal in a temperature range from a temperature at which the liquid fraction is 70% to a temperature before the molten metal is ignited; (c) injecting the molten metal maintained in the temperature range between two rotating cooling rolls to form a thin sheet of magnesium alloy sheet; (d) solution treatment of the cast magnesium alloy plate at 300 to 490 ° C. for 1 to 24 hours; (e) preheating the solution-treated magnesium alloy sheet to 300 to 400 ° C. and then rolling it to a required thickness of 1 to 45% per pass with a heated rolling roll; And (f) performing a solution treatment at 300 to 490 ° C. for 0.5 to 4 hours after the rolling.
또한, 본 발명에 따른 마그네슘 합금 판재의 제조방법은, 상기 (c)단계의 두 냉각롤 사이의 간격은 1 ~ 5mm로 하고 용탕 주입시 냉각롤의 회전 속도는 0.2 ~ 20m/min로 함으로써, 용탕의 냉각 속도가 102 ~ 103K/s가 되도록 하는 것을 특징으로 한다.In addition, in the method for producing a magnesium alloy sheet according to the present invention, the gap between the two cooling rolls in the step (c) is 1 to 5mm and the rotational speed of the cooling roll during the injection of the molten metal is 0.2 to 20m / min, It characterized in that the cooling rate of 10 2 ~ 10 3 K / s.
또한, 본 발명에 따른 마그네슘 합금 판재의 제조방법은, 상기 Zn의 함량은 1 ~ 10중량%, 바람직하게는 1 ~ 7중량%이고, 상기 Ca의 함량은 0.1 ~ 5중량%, 바람직하게는 0.5 ~ 3중량%인 것을 특징으로 한다.In addition, the method for producing a magnesium alloy sheet according to the present invention, the content of Zn is 1 to 10% by weight, preferably 1 to 7% by weight, the content of Ca is 0.1 to 5% by weight, preferably 0.5 ~ 3% by weight is characterized in that.
또한, 본 발명에 따른 마그네슘 합금 판재의 제조방법은, 추가로 상기 압연 후 용체화 처리된 마그네슘 합금 판재를 150 ~ 200℃에서 1 ~ 72 시간 동안 시효처리를 수행하는 단계;를 포함할 수 있다.In addition, the method for producing a magnesium alloy sheet according to the present invention may further include the step of performing an aging treatment for 1 to 72 hours at 150 to 200 ℃ the solution-treated magnesium alloy sheet after the rolling.
또한, 본 발명에 따른 마그네슘 합금 판재의 제조방법은, 상기 Ca의 첨가를 Mg-Ca 모합금을 첨가하는 방법으로 수행하는 것을 특징으로 한다. 이는 순수 Ca를 사용할 경우 Ca의 녹는점이 높아서 주조시 원하는 조성만큼 쉽게 첨가되지 않기 때문이며, Mg-Ca 모합금은 Mg-2~3.5중량%Ca 모합금이 바람직하다.In addition, the method for producing a magnesium alloy sheet according to the present invention is characterized in that the addition of Ca is carried out by a method of adding a Mg-Ca mother alloy. This is because, when pure Ca is used, the melting point of Ca is not so high that it is not easily added as desired in casting, and the Mg-Ca master alloy is preferably a Mg-2 to 3.5 wt% Ca master alloy.
다음으로 본 발명에 있어서 상기와 같이 합금조성과 제조공정을 제한한 이유를 설명한다.Next, the reason for limiting the alloy composition and the manufacturing process as described above in the present invention will be described.
Zn은 Mg 기지 내에서의 최대 고용한이 340℃에서 6.2중량%로서, 1.0중량% 이상 첨가 시 열처리를 통하여 침상 석출상을 형성시켜 시효강화 거동을 나타내므로, 1.0중량% 미만으로 첨가할 경우 석출강화 현상의 거의 기대할 수 없고, Zn을 10중량% 초과하여 첨가할 경우에는 결정립계에 평형상의 석출이 조장되어 기계적 성질의 저하를 가져올 수 있다. 따라서 Zn의 함량은 1 ~ 10중량%로 하는 것이 바람직하다. 한편 Mg-Zn 2원계 합금에서 적정량의 Zn 첨가는 비저면의 연화 현상을 가져와 비저면 슬립을 활성화하지만 그 이상의 Zn 첨가는 비저면의 강화 현상뿐만 아니라 기계적 성질의 저하를 가져오기 때문에 Zn의 비저면의 슬립과 석출강화 효과를 극대화하기 위해서는 Zn의 상한치를 7중량%로 제한하는 것이 보다 바람직하다.Zn is 6.2% by weight at 340 ° C in the maximum solid solution at Mg, and when 1.0% by weight or more is added, Zn forms an acicular precipitate through heat treatment. The hardening phenomenon is hardly expected, and when Zn is added in excess of 10% by weight, equilibrium precipitation may be encouraged at grain boundaries, resulting in deterioration of mechanical properties. Therefore, the content of Zn is preferably 1 to 10% by weight. On the other hand, in the Mg-Zn binary alloy, the addition of an appropriate amount of Zn leads to softening of the base and activates the base slip, but the addition of more Zn causes not only the bottom base but also a decrease in mechanical properties. In order to maximize the slip and precipitation strengthening effect of the upper limit of Zn is more preferably limited to 7% by weight.
Ca은 마그네슘 합금의 고온 강도 향상에 유효한 원소이다. Ca의 함량이 0.1중량% 미만일 경우 고온 강도 상승 효과가 불충분하고, 또한 Ca 함량이 5중량%를 초과할 경우 펴짐이 저하되고 용탕의 유동성을 감소시켜, 주조성이 낮아지고 열간균열이 발생하기 쉬어지며 응고 시 금형과의 점착성이 증대되어 결과적으로 생산성이 떨어진다. 그러므로 Ca의 함량은 0.1 ~ 5중량%의 범위로 하는 것이 바람직하며, 0.5 ~ 3중량%로 첨가할 경우 그 효과를 극대화시킬 수 있으므로 보다 바람직하다.Ca is an effective element for improving the high temperature strength of magnesium alloy. If the Ca content is less than 0.1% by weight, the effect of increasing the high temperature strength is insufficient, and if the Ca content is more than 5% by weight, the spreading decreases and the fluidity of the molten metal is reduced, resulting in poor castability and hot cracking. When solidified, the adhesion to the mold increases, resulting in a decrease in productivity. Therefore, the content of Ca is preferably in the range of 0.1 to 5% by weight, more preferably 0.5 to 3% by weight because the effect can be maximized.
본 발명에 있어서, 불가피한 불순물이란 원료 또는 제조과정에서 의도되지 않은 상태로 혼입된 성분을 말하며, 혼입된 성분은 본 발명에 따른 마그네슘 합금의 물성에 영향을 미치지 않도록 0.5중량% 이하로 함유되는 것이 바람직하며, 보다 바람직하게는 0.01중량% 이하이어야 한다. 특히, Fe, Ni, Cr, Cu, Co 등의 원소는 내식성에 악영향을 미칠 수 있으므로 0.005중량% 이하가 되도록 관리가 필요하다.In the present invention, the unavoidable impurity refers to a component that is incorporated in an unintentional state in a raw material or a manufacturing process, and the incorporated component is preferably contained at 0.5 wt% or less so as not to affect the physical properties of the magnesium alloy according to the present invention. More preferably 0.01% by weight or less. In particular, elements such as Fe, Ni, Cr, Cu, Co, etc. may adversely affect the corrosion resistance, so management is required to be 0.005% by weight or less.
또한, 미세조직상 결정립의 평균 입경이 10㎛를 초과하게 되면 재료의 강도 및 성형성이 저하되기 때문에 미세조직상 결정립 평균 입경이 10㎛ 이하인 것이 바람직하다. In addition, when the average grain size of the microstructured grains exceeds 10 µm, the strength and formability of the material are lowered, so that the grain size average grain size of the microstructured grains is preferably 10 µm or less.
또한, 마그네슘 합금에서 집합강도(texture intensity)의 증가는 슬립계(slip system)가 적은 마그네슘의 경우 성형성을 저해하는데, 베이슬면인 (0002)면의 집합강도(texture intensity)가 2.5 이하로 되지 않을 경우, 알루미늄 합금과 대등한 정도의 프레스 성형성을 구현하기 어려우므로, 2.5 이하가 바람직하며, 2.2 이하가 되도록 하는 것이 보다 바람직하다.In addition, the increase in texture intensity in magnesium alloys inhibits formability in the case of magnesium having a low slip system, and the texture intensity of the (0002) surface, which is the base surface, is 2.5 or less. If not, since it is difficult to implement press formability comparable to that of aluminum alloy, 2.5 or less is preferable, and more preferably 2.2 or less.
또한, 상기 (b) 단계의 용탕 온도가 액체 분율이 70% 이하가 되는 온도 미만일 경우 용탕의 점성이 높아져 상기 (c) 단계의 냉각롤에 접촉하기 전에 응고되어 롤을 빠져나오지 못하게 되고, 용탕이 발화되는 온도를 초과할 경우 공정을 수행할 수 없기 때문에, 용탕 온도는 상기 범위로 유지해야 한다.In addition, when the melt temperature of the step (b) is less than the temperature at which the liquid fraction is 70% or less, the viscosity of the melt increases, so that the melt solidifies before contacting the cooling roll of the step (c) and does not exit the roll. Since the process cannot be performed when the temperature to be ignited is exceeded, the molten metal temperature should be maintained in the above range.
또한, 상기 (c)단계에서 용탕의 냉각 속도가 102K/s 미만인 경우, 냉각 속도가 느려서 일반적인 몰드 주조법과 미세조직상 큰 차이가 없고 주조 전에 용탕의 흐름이 불안정 해질 수 있는 문제점이 있고, 103K/s을 초과하는 경우에는 매우 얇은 리본 형태를 얻는 급랭응고법을 제외하고는 상용적으로 도달하기 어렵기 때문에, 102 ~ 103K/s가 되도록 유지하는 것이 바람직하며, 상기 두 냉각롤의 간격을 10mm 이하로 유지하는 것 역시 상기와 같은 냉각속도를 얻는데 유리하다. 본 발명에 있어서, 상기 (c) 단계와 같은 빠른 냉각속도는 주조 조직을 미세화 시키고 편석을 감소시킬 뿐 아니라, 냉각속도가 느릴 경우 인장특성에 해로운 역할을 하는 금속간화합물들을 기지 내에 미세하게 분산시킴으로써 오히려 이로운 역할을 하게 할 수 있다. 더욱이 주조 단계에서 타 주조법에 비해 상대적으로 얇은 판재의 제조가 가능하기 때문에, 압연공정에 있어서 압하율 및 압연 패스 줄일 수 있어 압연공정에서 발생하는 집합조직을 최소화할 수 있어, 프레스 성형성에 악영향을 미치는 판재의 이방성을 줄일 수 있다.In addition, if the cooling rate of the molten metal in the step (c) is less than 10 2 K / s, there is a problem that the cooling rate is slow, there is no significant difference in the microstructure of the general mold casting method and the flow of the molten metal before the casting can be unstable, If it exceeds 10 3 K / s, it is difficult to reach it commercially except for the quench solidification method, which obtains a very thin ribbon, so it is preferable to keep it at 10 2 to 10 3 K / s. Maintaining the gap between the rolls of 10 mm or less is also advantageous for obtaining the cooling rate as described above. In the present invention, the fast cooling rate as in step (c) not only refines the cast structure and reduces segregation, but also finely disperses the intermetallic compounds in the matrix that play a detrimental role in tensile properties when the cooling rate is slow. Rather, it can play a beneficial role. In addition, since it is possible to manufacture a relatively thin plate compared to other casting methods in the casting step, it is possible to reduce the rolling reduction rate and the rolling pass in the rolling process, thereby minimizing the texture generated in the rolling process, which adversely affects press formability. The anisotropy of the plate can be reduced.
또한, 박판 주조된 합금판재에는 주조시 발생할 수 있는 합금원소의 편석에 의해 후가공시 가공재의 특성 불균일이 발생할 수 있기 때문에 용체화 처리를 하는 것이 바람직한데, 용체화 처리 온도 및 시간은 주 합금원소인 Zn의 확산도와 SDAS(secondary dendrite arm spacing)와, DTA/DSC를 통해 측정된 용융시작(incipient melting) 여부 및 산화도를 고려하여 설정되며, 300 ~ 490℃에서 1 ~ 24시간의 조건으로 수행되어야만 충분한 용체화 처리 결과를 얻을 수 있다.In addition, in the thin cast alloy sheet material, it is preferable to perform the solution treatment because the unevenness of the processed material may occur due to segregation of alloy elements that may occur during casting, and the solution treatment temperature and time are the main alloy elements. It is set in consideration of the diffusion of Zn, secondary dendrite arm spacing (SDAS), incipient melting and oxidation degree measured through DTA / DSC, and should be performed under conditions of 1 to 24 hours at 300 to 490 ° C. Sufficient solution treatment results can be obtained.
또한, 용체화 처리된 마그네슘 합금 판재를 300 ~ 400℃에서 예열한 후 가열된 압연롤로 패스당 1 ~ 45%씩 요구되는 두께까지 압연함에 있어서, 상기 예열온도범위(가공온도범위)를 유지하지 않을 경우 건전한 판재를 얻기 어렵기 때문에 상기 예열온도범위를 유지하는 것이 바람직하고, 압하량이 증가할수록 집합조직이 발달하여 성형성이 저하되므로 패스당 압하율은 1 ~ 45%의 범위로 유지하는 것이 바람직하다.In addition, the preheated temperature range (processing temperature range) may not be maintained when the solution-treated magnesium alloy sheet is preheated at 300 to 400 ° C. and then rolled to a required thickness of 1 to 45% per pass with a heated rolling roll. In this case, it is preferable to maintain the preheating temperature range because it is difficult to obtain a healthy plate, and it is preferable to keep the reduction rate per pass in the range of 1 to 45% because the aggregate structure develops and the moldability decreases as the reduction amount increases. .
또한, 압연 후에 300 ~ 490℃에서 0.5 ~ 4시간 동안 열처리를 하지 않으면 가공후 특성 불균일을 충분히 제거할 수 없으므로, 상기 조건을 유지하는 것이 바람직하다.In addition, if the heat treatment is not performed for 0.5 to 4 hours at 300 ~ 490 ℃ after rolling, it is not possible to sufficiently remove the characteristic non-uniformity after processing, it is preferable to maintain the above conditions.
또한, 상온 인장특성을 향상시키기 위하여, 상기 압연 후 열처리된 마그네슘 합금 판재를 150 ~ 200℃에서 1 ~ 96 시간 동안 시효처리를 수행하는 단계를 포함할 수 있는데, 이는 상기 열처리 조건 범위에 있을 때 가장 효율적으로 인장특성을 향상시킬 수 있기 때문이다.In addition, in order to improve the room temperature tensile characteristics, it may comprise the step of performing the aging treatment for 1 to 96 hours at 150 ~ 200 ℃ heat-treated magnesium alloy plate material after the rolling, which is most This is because the tensile properties can be improved efficiently.
본 발명에 의하면, 종래의 상용 마그네슘 합금 판재의 제조방법과 달리 쌍롤식 박판 주조법에 맞는 합금성분의 설계와, 박판 주조 및 그 후속 열처리 또는 가공 열처리를 통한 결정립 미세화와 금속간화합물 형성 및 부피 분율 제어를 통해, 종래의 상용 마그네슘 합금 판재에 비해 상온 강도와 더불어 연신 및 성형성이 향상되어 자동차 및 전자산업 등에 폭넓게 적용할 수 있는 상온성형성 마그네슘 판재를 제공한다.According to the present invention, unlike the conventional manufacturing method of commercial magnesium alloy sheet material, the alloy component suitable for the twin roll type sheet casting method, grain refinement and intermetallic compound formation and volume fraction control by thin sheet casting and subsequent heat treatment or processing heat treatment Through the conventional commercial magnesium alloy sheet, the strength and room temperature as well as the elongation and formability is improved to provide a room temperature forming magnesium sheet that can be widely applied to the automotive and electronics industry.
또한, 본 발명에 따른 마그네슘 합금 판재의 제조방법에 의하면, 종래의 판재의 제조공정에 비해 제조공정수가 줄기 때문에, 종래의 상용 마그네슘 합금 판재에 비해 저렴한 비용으로 마그네슘 합금 판재를 제조할 수 있다. 또한 최종 압하량을 크게 줄일 수 있기 때문에 집합조직의 형성을 최소화할 수 있고, 이로부터 개선된 프레스 성형성을 얻을 수 있다.Moreover, according to the manufacturing method of the magnesium alloy plate material which concerns on this invention, since a manufacturing process number is reduced compared with the conventional manufacturing process of a plate material, a magnesium alloy plate material can be manufactured at low cost compared with the conventional commercial magnesium alloy plate material. In addition, since the final reduction can be greatly reduced, it is possible to minimize the formation of the aggregate structure, from which an improved press formability can be obtained.
도 1은 본 발명의 실시예에서 사용한 마그네슘 합금 판재를 제조하기 위한 박판주조장치의 개략도이다.1 is a schematic view of a sheet casting apparatus for producing a magnesium alloy sheet used in an embodiment of the present invention.
도 2는 본 발명에 따른 마그네슘 합금 판재의 한계돔높이의 평가방법을 나타낸 개략도이다.Figure 2 is a schematic diagram showing the evaluation method of the limit dome height of the magnesium alloy sheet according to the present invention.
도 3은 본 발명의 일 실시예에 따라 박판주조된 마그네슘 판재를 440℃에서 1시간 열처리 후의 광학현미경으로 관찰한 미세조직을 나타낸 것이다.Figure 3 shows the microstructure of the thin plate cast magnesium plate according to an embodiment of the present invention observed with an optical microscope after 1 hour heat treatment at 440 ℃.
도 4는 본 발명의 일 실시예에 따라 박판주조된 마그네슘 합금 판재를 압연한 후 440℃에서 30분 용체화 처리 후의 광학현미경으로 관찰한 미세조직을 나타낸 것이다.Figure 4 shows the microstructure observed by the optical microscope after 30 minutes solution treatment at 440 ℃ after rolling a thin sheet cast magnesium alloy sheet according to an embodiment of the present invention.
도 5는 0.95Zn, 0.9Ca 합금을 압연한 후 440℃에서 30분 용체화 처리 후의 투과전자현미경으로 관찰한 미세조직을 나타낸 것이다.Figure 5 shows the microstructure observed by transmission electron microscope after 30 minutes solution treatment at 440 ℃ after rolling 0.95Zn, 0.9Ca alloy.
도 6은 5.99Zn, 0.98Ca 합금을 압연한 후 350℃에서 30분 용체화 처리 후의 투과전자현미경으로 관찰한 미세조직을 나타낸 것이다.Figure 6 shows the microstructure observed by transmission electron microscope after 30 minutes solution treatment at 350 ℃ after rolling a 5.99Zn, 0.98Ca alloy.
도 7은 0.95Zn, 0.9Ca 합금을 압연한 후 440℃에서 30분 용체화 처리 후 시편의 변형 전후를 EBSD를 이용하여 나타낸 것이다.Figure 7 shows the deformation of the specimen before and after the solution treatment after 30 minutes solution treatment at 440 ℃ after rolling 0.95Zn, 0.9Ca alloy using EBSD.
도 8은 5.99Zn, 0.98Ca 합금을 압연한 후 350℃에서 30분 용체화 처리 후 시편의 변형 전후를 EBSD를 이용하여 나타낸 것이다.FIG. 8 shows the deformation of the specimens before and after the 30 minute solution treatment at 350 ° C. after rolling the 5.99 Zn and 0.98Ca alloys using EBSD.
도 9a 및 9b는 각각 본 발명의 실시예에 따라 제조된 마그네슘 합금 판재의 (0002) 베이슬 폴 피겨(basal pole figure) 분석 결과를 보여주고 있다.9A and 9B show the results of analysis of a basal pole figure of a magnesium alloy sheet manufactured according to an embodiment of the present invention, respectively.
도 10은 본 발명의 실시예와 비교예에 따른 마그네슘 합금 판재의 (0002) 집합강도와 LDH를 나타낸 것이다.Figure 10 shows the (0002) aggregate strength and LDH of the magnesium alloy sheet according to the embodiment and the comparative example of the present invention.
본 발명의 실시예들을 설명하기 위해 사용되는 단수 형태들은 문구들이 이와 명백히 반대의 의미를 나타내지 않는 한 복수 형태들도 포함하는 의미이다. 그리고 '포함한다'의 의미는 특정 특성, 영역, 정수, 단계, 동작, 요소 및 /또는 성분을 구체화하며 다른 특정 특성, 영역, 정수, 단계, 동작, 요소, 성분 및/또는 군의 존재나 부가를 제외하는 것은 아니다.The singular forms used to describe the embodiments of the present invention are intended to include the plural forms as well, unless the phrases clearly indicate the opposite. And “includes” embodies a particular property, region, integer, step, operation, element, and / or component, and the presence or addition of another particular property, region, integer, step, operation, element, component, and / or group. It is not excluded.
다르게 정의하지는 않았지만 여기에 사용되는 기술용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미이다. 또한, 보통 사용되는 사전에 정의된 용어들은 관련 기술 문헌과 현재 개시된 내용에 부합되는 사전에 정의된 용어들은 관련 기술 문헌과 현재 개시된 내용에 부합하는 의미를 갖는 것으로 추가 해석되고 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.Although not defined otherwise, all terms including technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art. In addition, the commonly used terms defined in advance are ideal unless they are additionally interpreted and defined as having a meaning consistent with the related technical literature and the presently disclosed contents. It is not interpreted in a very official sense.
이하 첨부된 도면들을 참조하여 마그네슘 합금 판재의 제조방법 및 이를 이용하여 제조된 마그네슘 합금 판재에 대한 실시예들을 상세하게 설명하겠지만 본 발명이 하기의 실시예들에 제한되는 것은 아니다. 따라서 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양하게 변경할 수 있음은 자명하다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of a method for producing a magnesium alloy plate and a magnesium alloy plate manufactured using the same, but the present invention is not limited to the following embodiments. Therefore, it will be apparent to those skilled in the art that the present invention may be variously modified without departing from the technical spirit of the present invention.
[마그네슘 합금 판재의 제조][Manufacture of Magnesium Alloy Plate]
먼저, 순 Mg (99.9%)과 순 Zn (99.9%), 및 Mg-3중량%Ca 모합금을 사용하여 CO2와 SF6 혼합가스 분위기 하에서 용해하여 마그네슘 합금 용탕을 제조하였다. 이때 제조된 용탕에서 각 성분의 함량 비율은 하기 표 1의 조성이 되도록 하였다.First, a magnesium alloy molten metal was prepared by dissolving a pure Mg (99.9%), a pure Zn (99.9%), and a Mg-3 wt% Ca master alloy under a CO 2 and SF 6 mixed gas atmosphere. At this time, the content ratio of each component in the prepared molten metal was set to the composition of Table 1 below.
표 1
조성 (중량%)
Zn Ca Mg
0.95 0.9 Bal.
3.43 0.82 Bal.
5.99 0.98 Bal.
Table 1
Composition (wt%)
Zn Ca Mg
0.95 0.9 Bal.
3.43 0.82 Bal.
5.99 0.98 Bal.
도 1은 본 발명의 실시예에서 사용한 쌍롤식 박판주조 장치에 대한 개략도이다. 도 1에 도시된 바와 같이, 쌍롤식 판재 주조 장치는 용해로(10), 노즐(20), 및 두 개의 냉각 롤(30)을 포함한다.1 is a schematic view of a twin roll sheet casting apparatus used in the embodiment of the present invention. As shown in FIG. 1, a twin roll plate casting apparatus includes a melting furnace 10, a nozzle 20, and two cooling rolls 30.
이와 같은 쌍롤식 박판주조장치를 통한 주조방법은 구체적으로, CO2와 SF6 혼합가스 분위기 하에서 유도 용해로(10)에서 상기와 같은 조성으로 용해된 용탕을 액체 분율이 약 70%인 온도(약 650℃)에서 용탕이 발화되기 전의 온도까지의 온도(약 950℃) 범위 내로 유지시키며 노즐(20)로 이송시킨다. 이때 용탕의 온도가 지나치게 높으면 냉각 롤을 거친 판재의 내부에 액상이 존재할 수 있기 때문에, 이점을 고려하여 본 발명의 실시예에서는 750℃ 이하, 구체적으로 710℃를 유지시키면서 노즐(20)로 이송시켰다.Specifically, the casting method using the twin roll type sheet casting apparatus is specifically, a temperature of about 70% of the molten metal dissolved in the above composition in the induction melting furnace 10 under a CO 2 and SF 6 mixed gas atmosphere (about 650). At a temperature of about 950 ° C. up to the temperature before the molten metal is ignited, and then transferred to the nozzle 20. In this case, if the temperature of the molten metal is too high, a liquid phase may exist inside the plate that has passed through the cooling roll, and thus, in the embodiment of the present invention, the melt is transferred to the nozzle 20 while maintaining the temperature below 750 ° C, specifically 710 ° C. .
온도가 710℃로 유지된 용탕은 노즐(20)을 거쳐 쌍롤식 박판주조장치에 구비된 냉각장치(미도시)에 의해 냉각되고 있는 두 개의 냉각 롤(30) 사이로 주입된다. 이때 두 냉각롤 사이의 간격은 약 2mm로 유지되도록 하였고 용탕 주입시 냉각 롤의 회전속도를 약 4m/min으로 유지하였는데, 이러한 조건하에서 용탕의 냉각 속도는 200 ~ 300K/s가 되도록 주조하였으며, 이와 같은 주조방법을 통해 길이 약 5m, 폭 약 70mm, 및 두께 약 2mm인 마그네슘 합금 판재를 얻었다.The molten metal whose temperature is maintained at 710 ° C. is injected through the nozzle 20 between two cooling rolls 30 being cooled by a cooling device (not shown) provided in the twin roll sheet casting device. At this time, the gap between the two cooling rolls was maintained at about 2mm and the rotational speed of the cooling roll was maintained at about 4m / min during the injection of the molten metal. The casting speed of the molten metal was cast to be 200 ~ 300K / s under such conditions Through the same casting method, a magnesium alloy sheet having a length of about 5 m, a width of about 70 mm, and a thickness of about 2 mm was obtained.
이와 같이 주조된 판재를 다음과 같은 후속 가공 열처리를 행하였다. 먼저, 주조된 판재를 440℃에서 1시간 용체화 처리를 하였다. 용체화 처리는 압연 전 주조시 생성되는 주조 조직과 편석을 최대한 제거하고, 압연 시 불균일한 결정립이나 편석으로 인해 결함 발생하는 것을 피하기 위함이다.The plate material thus cast was subjected to the following processing heat treatment as follows. First, the cast plate was subjected to solution treatment at 440 ° C. for 1 hour. The solution treatment is to remove as much as possible the casting structure and segregation generated during casting before rolling, and to avoid defects caused by uneven grains or segregation during rolling.
다음으로 용체화처리된 판재를 300℃로 예열하여 200℃로 가열된 압연 롤로 열간압연을 실시하였다.Next, the solution-treated board | plate material was preheated to 300 degreeC, and hot rolling was performed by the rolling roll heated to 200 degreeC.
열간압연시 패스당 10%씩의 압하율을 주면서 5 패스로 최종 압하율 50%로 압연을 하여, 최종 두께 약 1~ 0.7mm의 판재를 얻은 후, 압연된 판재를 하기 표 2와 같이 후속 용체화 처리를 한 후, 시효처리를 하는 T6 열처리를 하였다.During hot rolling, rolling was carried out at 50% of the final reduction rate in 5 passes while giving a rolling reduction rate of 10% per pass, and after obtaining a sheet having a final thickness of about 1 to 0.7 mm, the rolled sheet was subsequently used as shown in Table 2 below. After the emulsification treatment, an aging treatment was performed for T6 heat treatment.
[마그네슘 판재의 미세조직][Microstructure of Magnesium Plate]
이상과 같이 제조된 판재의 미세조직을 분석하였다. 도 3은 이상과 같이 주조된 마그네슘 합금 판재를 440℃에서 1시간 동안 열처리한 후 시편의 미세조직을 광학현미경으로 관찰한 사진이다.The microstructure of the plate produced as described above was analyzed. Figure 3 is a photograph of the magnesium alloy sheet cast as described above after heat treatment at 440 ℃ for 1 hour to observe the microstructure of the specimen with an optical microscope.
도 4는 본 발명에 의해 제조된 마그네슘 합금 판재를 압연한 후 440℃에서 30분 동안 용체화 처리한 후의 미세조직을 광학현미경으로 관찰한 사진이다. 도 4에서 확인되는 바와 같이, 압연후 용체화 처리를 거친 후, 미세조직의 평균 결정립 크기는 대략 11㎛ 정도이고 미세한 석출상들이 미세조직 전반에 고르게 분포해 있다. Figure 4 is a photograph of the microstructure after the solution treatment for 30 minutes at 440 ℃ after rolling the magnesium alloy sheet prepared by the present invention with an optical microscope. As shown in FIG. 4, after the solution treatment after rolling, the average grain size of the microstructure is about 11 μm, and fine precipitated phases are evenly distributed throughout the microstructure.
도 5와 6은 각각 본 발명에 의해 제조된 마그네슘 합금 판재를 압연한 후 용체화 처리한 미세조직을 투과전자현미경으로 관찰한 사진이다. 5 and 6 are photographs of the magnesium alloy plate produced by the present invention, respectively, and then rolled and subjected to a solution-treated microstructure with a transmission electron microscope.
본 발명의 실시예에서 석출상은 Zn의 양에 따라 다르게 형성된다. Ca을 1 중량%로 고정하고 Zn의 함량을 대략 1, 4, 6중량%으로 변화시켜서 제조하였을 때, 도 5에서 보여주듯이 Zn가 1중량% 경우, Mg2Ca상이 형성됨을 확인할 수 있었고, Zn의 함량이 6중량%(4중량% 이상)일 경우 Mg6Zn3Ca2상이 형성됨을 도 6에서 확인할 수 있다. 이런 석출상들의 차이가 있음에도 하기 표 3과 같이 유사한 베이슬 폴 인텐시티를 가지는 것으로 보아 석출상의 차이로 인한 성형성의 차이는 없을 것이라 판단된다.In the embodiment of the present invention, the precipitated phase is formed differently according to the amount of Zn. When prepared by fixing Ca at 1% by weight and changing the Zn content to about 1, 4, 6% by weight, as shown in FIG. 5, when Zn is 1% by weight, Mg 2 Ca phase was formed, and Zn When the content of 6% by weight (4% by weight or more) can be seen in Figure 6 that the Mg 6 Zn 3 Ca 2 phase is formed. Although there is a difference between these precipitated phases, as shown in Table 3 below, it is considered that there is no difference in formability due to the difference in precipitation phase.
도 7과 8은 각각 본 발명에 의해 제조된 마그네슘 합금 판재 중 0.95 Zn, 0.9 Ca 과 5.99 Zn, 0.98 Ca을 압연한 후 용체화 처리한 미세조직을 주사전자현미경으로 후방산란전자회절(EBSD)을 이용하여 변형 거동을 분석한 것이다. 이들 도면에서 확인되는 바와 같이, 변형 전 후 결정립 방위의 변화정도가 상이하며, 이러한 차이로 인해 본 발명의 실시예 중, 0.95 Zn, 0.9 Ca 경우 다른 합금들에 비해 보다 성형성이 높아지는 것으로 추정된다.7 and 8 show the backscattering electron diffraction (EBSD) of the solution-treated microstructure after rolling 0.95 Zn, 0.9 Ca and 5.99 Zn, 0.98 Ca in the magnesium alloy sheet produced by the present invention, respectively. Deformation behavior is analyzed using As can be seen from these figures, the degree of change of the grain orientation before and after the deformation is different, and due to this difference, it is estimated that the formability of 0.95 Zn and 0.9 Ca is higher than other alloys in the embodiments of the present invention. .
이상과 같이, 본 발명의 실시예에 따른 마그네슘 합금 판재의 제조방법은 열간압출 공정을 종래에 비해 단순한 공정으로, 미세조직 내에 고르게 분산된 석출상을 얻을 수 있음을 알 수 있다.As described above, it can be seen that the method of manufacturing the magnesium alloy sheet according to the embodiment of the present invention can obtain a precipitated phase evenly dispersed in the microstructure by a simple process of the hot extrusion process compared with the conventional method.
또한 하기 표 2에 나타낸 바와 같이, Zn의 함량이 증가할수록 열처리 온도가 낮아지도록 설정되어 있는데, 이는 본 발명의 각 실시예에 대해 각 결정립에 석출상이 고르게 분포하는 최적의 온도로서, 상기 온도보다 높은 온도에서 장시간 열처리하게 되면 결정입계가 일부 용해되고, 결정입계에 석출상들이 다량 분포하여 상온 인장성질 및 성형성을 저해한다.In addition, as shown in Table 2, as the content of Zn increases, the heat treatment temperature is set to be lower, which is an optimum temperature at which the precipitated phase is evenly distributed in each grain for each embodiment of the present invention, which is higher than the temperature. When heat treatment for a long time at a temperature, the grain boundary is partially dissolved, and a large amount of precipitated phases are distributed in the grain boundary, thereby impairing room temperature tensile properties and formability.
[마그네슘 판재의 물성 평가][Evaluation of Physical Properties of Magnesium Plate]
이상과 같이 제조된 주조 및 후가공처리를 마친 마그네슘 합금 판재의 인장 특성을 평가하기 위해 게이지 길이 12.6mm, 게이지 너비 5mm, 두께 1mm를 갖는 인장 시편을 제작하여, 6.4 × 10-4s-1의 변형률 속도로 인장 시험하였다. In order to evaluate the tensile properties of the cast and post-processed magnesium alloy sheet prepared as described above, a tensile specimen having a gauge length of 12.6 mm, a gauge width of 5 mm, and a thickness of 1 mm was fabricated, and a strain of 6.4 × 10 -4 s -1 was obtained. Tensile testing was conducted at speed.
또한, 제조된 마그네슘 합금 판재의 프레스 성형성을 평가하기 위하여, 한계돔높이(LDH) 시험을 행하였다. 도 2는 본 발명의 실시예에서 마그네슘 합금 판재의 성형성(특히 프레스성)을 평가하는 지표로서 선택한 한계돔높이(LDH) 값을 구하는 방법을 개략적으로 나타낸 것이다.In addition, in order to evaluate the press formability of the manufactured magnesium alloy sheet material, a limit dome height (LDH) test was performed. FIG. 2 schematically illustrates a method for obtaining a selected limit dome height (LDH) value as an index for evaluating formability (particularly pressability) of a magnesium alloy sheet in an embodiment of the present invention.
한계돔높이 시험은 직경 50mm, 두께 0.7mm의 디스크형 시험편을 제작한 후, 상부다이와 하부다이 사이에 시험편을 삽입한 후 5kN의 힘으로 시편을 고정하고, 윤활유는 공지의 프레스유를 사용하였다. 그리고 27.5mm의 직경을 갖는 구형 펀치를 사용하여 0.1mm/sec의 속도로 변형을 가하여, 디스크형 시편의 파단 시까지 펀치를 삽입한 후 파단 시의 변형 높이를 측정하는 방식으로 수행하였다. 한계돔높이 시험은 본 발명의 실시예는 물론, 비교를 위하여 현재 상용되고 있는 마그네슘 합금 판재(AZ31 H24, ZW41) 및 알루미늄 판재(Al 5052)에 대해서도 실시하였다.In the limit dome height test, a disk-shaped test piece having a diameter of 50 mm and a thickness of 0.7 mm was prepared, a test piece was inserted between the upper die and the lower die, and the specimen was fixed with a force of 5 kN, and lubricating oil was used as a known press oil. Then, a strain was applied at a speed of 0.1 mm / sec using a spherical punch having a diameter of 27.5 mm, the punch was inserted until the disc-shaped specimen was broken, and the deformation height at the fracture was measured. The limit dome height test was carried out not only for the examples of the present invention but also for the magnesium alloy plates (AZ31 H24, ZW41) and aluminum plates (Al 5052) that are currently commercially available for comparison.
하기 표 2는 이상과 같은 방법에 의해 측정된 인장 특성과 성형 특성을 나타낸 것이다.Table 2 shows the tensile and molding properties measured by the above method.
표 2
조성 (중량%) 열처리 결정립 크기(um) UTS(MPa) YS (MPa) EL (mm) LDH(mm) 비고
Zn Ca Mg
0.95 0.9 Bal. 440℃/1h+5pass+440/30m 11.6 229.5 151.7 11.4 8.8 실시예
470℃/2h+5pass+470/30m 20 222.7 126.9 13.1 8 실시예
470℃/2h+5pass+380/30m 7.8 236 168.4 13.8 6.6 실시예
3.43 0.82 Bal. 400℃/1h+5pass+400/30m 11.2 258.2 151.9 14.5 7.1 실시예
380℃/4h+5pass+380/30m 13.2 254.4 158.8 15.5 7.4 실시예
5.99 0.98 Bal. 350℃/1h+5pass+350/30m 10.9 258.9 163.6 17.2 7.5 실시예
380℃/4h+5pass+380/30m 12.7 258.4 152.4 14.3 8 실시예
380℃/4h+5pass+300/ 1h - 247.7 154 14.8 8.6 실시예
상용 AZ31B H24 - 290 220 15 2.7 비교예
ZW41 4 223 89 21 6.6 비교예
Al 5052 29.2 189 82 16.9 7.7 비교예
TABLE 2
Composition (wt%) Heat treatment Grain size (um) UTS (MPa) YS (MPa) EL (mm) LDH (mm) Remarks
Zn Ca Mg
0.95 0.9 Bal. 440 ℃ / 1h + 5pass + 440 / 30m 11.6 229.5 151.7 11.4 8.8 Example
470 ℃ / 2h + 5pass + 470 / 30m 20 222.7 126.9 13.1 8 Example
470 ℃ / 2h + 5pass + 380 / 30m 7.8 236 168.4 13.8 6.6 Example
3.43 0.82 Bal. 400 ℃ / 1h + 5pass + 400 / 30m 11.2 258.2 151.9 14.5 7.1 Example
380 ℃ / 4h + 5pass + 380 / 30m 13.2 254.4 158.8 15.5 7.4 Example
5.99 0.98 Bal. 350 ℃ / 1h + 5pass + 350 / 30m 10.9 258.9 163.6 17.2 7.5 Example
380 ℃ / 4h + 5pass + 380 / 30m 12.7 258.4 152.4 14.3 8 Example
380 ℃ / 4h + 5pass + 300 / 1h - 247.7 154 14.8 8.6 Example
Commercial AZ31B H24 - 290 220 15 2.7 Comparative example
ZW41 4 223 89 21 6.6 Comparative example
Al 5052 29.2 189 82 16.9 7.7 Comparative example
시험결과, 상기 표 2에서 확인되는 바와 같이, 상용되고 있는 마그네슘 합금인 AZ31B H24의 LDH는 2.7mm에 불과했으나, 성형성이 우수한 마그네슘 합금으로 알려진 ZW41의 LDH는 6.6mm로 AZ31B H24보다는 매우 우수한 성형성을 나타내었으며, 마그네슘에 비해 성형성이 좋은 알루미늄 합금 Al 5052의 LDH는 상기 2 종류의 마그네슘 합금에 비해서 우수한 7.7mm를 나타내었다.As a result of the test, as shown in Table 2, the commercially available magnesium alloy AZ31B H24 LDH was only 2.7mm, ZW41 LDH, known as magnesium alloy excellent moldability is 6.6mm, which is much better than AZ31B H24 The LDH of the aluminum alloy Al 5052, which is better in formability than magnesium, showed an excellent 7.7 mm compared with the two kinds of magnesium alloys.
이에 비해, 본 발명의 실시예에 따라 제조된 마그네슘 합금 판재는 LDH가 6.6 ~ 8.8mm를 나타내었다. LDH가 클수록 성형성이 우수하다는 것을 고려하면, 본 발명의 실시예를 통해 제조된 마그네슘 합금은 상용의 AZ31 H24 합금과 비교해 볼 때 3배 이상의 월등히 우수한 성형성을 보여줄 뿐만이 아니라, 종래 우수한 성형성을 나타낸다고 알려진 ZW41 합금과 비교해 볼 때도 일부 실시예의 경우 LDH가 크게 향상되었음을 확인할 수 있다. 더욱이, 마그네슘에 비해 성형성이 우수한 재료인 알루미늄 중 Al 5052 계열과 비교하여도 대등하거나 일부 실시예의 경우 우수한 성형성을 나타내고 있다.In comparison, the magnesium alloy sheet produced according to the embodiment of the present invention exhibited an LDH of 6.6 to 8.8 mm. Considering that the larger the LDH, the higher the moldability, the magnesium alloy prepared through the examples of the present invention not only shows three times or more excellent moldability as compared with the commercial AZ31 H24 alloy, but also has excellent moldability in the related art. Compared with the ZW41 alloy known to represent, it can be seen that the LDH is greatly improved in some examples. Moreover, even when compared to the Al 5052 series of aluminum, which is a material having excellent moldability compared to magnesium, the moldability is excellent in some embodiments.
도 9a 및 9b는 각각 본 발명의 실시예에 따라 제조된 마그네슘 합금 판재의 (0002) 베이슬 폴 피겨(basal pole figure) 분석 결과를 보여주고 있다. 일반적으로 마그네슘 합금 판재의 경우 압연과정을 거치면서 베이슬 플레인(basal plane)의 폴 강도(pole intensity)가 강해지고, 이와 같은 텍스쳐(texture)의 강도(intensity) 증가는 슬립계(slip system)가 적은 마그네슘의 경우 성형성을 저해한다.9A and 9B show the results of analysis of a basal pole figure of a magnesium alloy sheet manufactured according to an embodiment of the present invention, respectively. In general, in the case of magnesium alloy sheet, the pole plane of the basal plane becomes stronger during the rolling process, and the increase of the texture intensity results in a slip system. Less magnesium impairs formability.
이에 따라 종래의 많은 연구가 이와 같은 베이슬 폴(basal pole)의 최대 강도(maximum intensity)를 낮추고 랜덤 텍스쳐(random textrue)를 가지게 하도록 공정 및 열처리에 관해 다양한 연구가 이루어져 왔다.Accordingly, many conventional studies have been conducted on various processes and heat treatments to lower the maximum intensity of such a basal pole and to have random textrue.
표 3
조성 (중량%) 열처리 EU (mm) LDH (mm) (0002) texture intensity 비고
Zn Ca Mg
0.95 0.9 Bal. 440℃/1h+5pass+440/30m 11.4 8.8 2.0 실시예
3.43 0.82 Bal. 400℃/1h+5pass+400/30m 14.5 7.1 2.0 실시예
5.99 0.98 Bal. 350℃/1h+5pass+350/30m 17.2 7.5 2.1 실시예
상용 AZ31 H24 15 2.7 - 비교예
AZ31 15.9 4.1 9.3 비교예
ZW41 21 6.6 3.0 비교예
Al 5052 16.9 7.7 - 비교예
TABLE 3
Composition (wt%) Heat treatment E U (mm) LDH (mm) (0002) texture intensity Remarks
Zn Ca Mg
0.95 0.9 Bal. 440 ℃ / 1h + 5pass + 440 / 30m 11.4 8.8 2.0 Example
3.43 0.82 Bal. 400 ℃ / 1h + 5pass + 400 / 30m 14.5 7.1 2.0 Example
5.99 0.98 Bal. 350 ℃ / 1h + 5pass + 350 / 30m 17.2 7.5 2.1 Example
Commercial AZ31 H24 15 2.7 - Comparative example
AZ31 15.9 4.1 9.3 Comparative example
ZW41 21 6.6 3.0 Comparative example
Al 5052 16.9 7.7 - Comparative example
그런데 바로 본 발명의 실시예에 따른 마그네슘 합금 판재는 압연 후에도 베이슬면의 집합조직 경우 3.8의 낮은 강도(intensity)(도 9a 참조)를 보여주고 있으며, 최고 LDH 값을 나타내는 열처리를 한 합금 시편의 경우 2.0의 낮은 강도(intensity)(도 9b 참조)를 보여주고 있다. 상기 표 3에서 확인되는 바와 같이 종래의 마그네슘 판재에 비해 낮은 강도(intensity)를 보여주고 있다.However, the magnesium alloy sheet according to the embodiment of the present invention shows a low intensity (see FIG. 9A) of 3.8 in the case of the base surface even after rolling, and the heat treated alloy specimen exhibiting the highest LDH value. The low intensity (see FIG. 9B) of case 2.0 is shown. As shown in Table 3, it shows a low intensity (intensity) compared to the conventional magnesium plate.
또한, 도 10은 상기 합금의 실시예와 비교예의 베이슬 면(0002) 집합 조직과 피라미드면(10-11) 집합 조직의 비를 나타낸 것인데, 본 실시예에 따른 마그네슘 합금 판재 경우 피라미드면의 집합조직이 상대적으로 강하게 발달하여 AZ31 합금의 비보다 낮은 값을 가진다. 이는 실시예에 따른 마그네슘 합금 판재에서 랜덤 집합조직이 형성되었음을 의미한다.In addition, Figure 10 shows the ratio of the base structure (0002) and the pyramid surface (10-11) texture of the alloy and the comparative example of the alloy, in the case of magnesium alloy sheet according to the present embodiment The structure is relatively strong and has a lower value than that of the AZ31 alloy. This means that a random texture is formed in the magnesium alloy sheet according to the embodiment.
상기 표 2의 합금에 추가적인 열처리(시효경화)를 통해 용체화 처리 후의 항복강도에 비해 고강도의 마그네슘 합금을 제조할 수 있다. 하기 표 4는 추가적인 시효경화 처리를 실시한 후의 인장성질과, 기존에 알려진 마그네슘 합금을 본 발명의 실시예와 동일하게 제조한 마그네슘 판재 및 상용 AZ31 H24의 인장성질을 비교한 것이다.By further heat treatment (aging hardening) to the alloy of Table 2, it is possible to produce a high-strength magnesium alloy compared to the yield strength after the solution treatment. Table 4 below compares the tensile properties after the additional age hardening treatment and the tensile properties of the magnesium plate and the commercially available AZ31 H24 prepared in the same manner as the examples of the present invention magnesium alloys.
표 4
조성 (중량%) 열처리 UTS (MPa) YS(MPa) EL (mm) 비고
Zn Ca Mg
0.95 0.9 Bal. 440℃/1h+5pass+440/30m+150/16h 252.4 194.2 8 실시예
470℃/2h+5pass+470/2h+150/48h 256.4 186.9 9.2 실시예
470℃/2h+5pass+470/2h+200/1h 256.3 201.3 7.2 실시예
3.43 0.82 Bal. 400℃/1h+5pass+400/30m+150/8h 262.7 180.5 16.2 실시예
380℃/4h+5pass+380/4h+150/16h 245.1 172.3 11.6 실시예
380℃/4h+5pass+380/4h+200/1h 253.7 174.7 15.9 실시예
5.99 0.98 Bal. 350℃/1h+5pass+350/30m+150/24h 263.7 175.8 13.9 실시예
380℃/4h+5pass+380/4h+150/48h 278.6 208.8 12 실시예
380℃/4h+5pass+380/4h+200/8h 262.5 205 8.4 실시예
상용 AZ31 B H24 290 220 15 비교예
AZ31 235 131 15.9 비교예
ZW41 223 89 25.5 비교예
Table 4
Composition (wt%) Heat treatment UTS (MPa) YS (MPa) EL (mm) Remarks
Zn Ca Mg
0.95 0.9 Bal.  440 ℃ / 1h + 5pass + 440 / 30m + 150 / 16h 252.4 194.2 8 Example
 470 ℃ / 2h + 5pass + 470 / 2h + 150 / 48h 256.4 186.9 9.2 Example
 470 ℃ / 2h + 5pass + 470 / 2h + 200 / 1h 256.3 201.3 7.2 Example
3.43 0.82 Bal.  400 ℃ / 1h + 5pass + 400 / 30m + 150 / 8h 262.7 180.5 16.2 Example
 380 ℃ / 4h + 5pass + 380 / 4h + 150 / 16h 245.1 172.3 11.6 Example
 380 ℃ / 4h + 5pass + 380 / 4h + 200 / 1h 253.7 174.7 15.9 Example
5.99 0.98 Bal.  350 ℃ / 1h + 5pass + 350 / 30m + 150 / 24h 263.7 175.8 13.9 Example
 380 ℃ / 4h + 5pass + 380 / 4h + 150 / 48h 278.6 208.8 12 Example
 380 ℃ / 4h + 5pass + 380 / 4h + 200 / 8h 262.5 205 8.4 Example
Commercial AZ31 B H24 290 220 15 Comparative example
AZ31 235 131 15.9 Comparative example
ZW41 223 89 25.5 Comparative example
            
상기 표 4에서 확인되는 바와 같이, 본 발명의 실시예에 따른 마그네슘 합금 판재는 동일하게 박판 주조된 마그네슘 합금 판재에 비해서 상당히 우수한 인장 강도를 가지고, 일부 실시예의 마그네슘 합금은 상용 AZ31 H24와 인장강도를 비교하여도 다소 낮은 정도를 나타낸다.As can be seen in Table 4, the magnesium alloy sheet according to the embodiment of the present invention has a considerably superior tensile strength compared to the same thin cast magnesium alloy sheet, and some examples of the magnesium alloy has a tensile strength of commercial AZ31 H24 A comparatively low degree is shown.
이와 같이 본 발명의 실시예에 따른 마그네슘 합금 판재는 압연 후 열처리를 통해 경량금속인 알루미늄과 대등한 기계적 특성을 가지도록 고성형성 및 고강도의 기계적 물성을 동시적으로 제어할 수 있다. As described above, the magnesium alloy sheet according to the embodiment of the present invention may simultaneously control high formability and high mechanical properties so as to have mechanical properties comparable to those of aluminum, which is a lightweight metal, by heat treatment after rolling.
우선 본 발명의 마그네슘 합금 판재 제조방법인 쌍롤식 박판 주조법을 통해 주조와 열간 압연 공정을 하나의 공정으로 동시에 진행하기 때문에 종래에 비해 경제적이고 매우 빠른 냉각속도를 제공하여 입자를 미세화시킬 수 있어 강도를 향상시킬 수 있게 된다. First, since the casting and hot rolling processes are simultaneously performed in one process through the twin-roll thin plate casting method, which is a method of manufacturing magnesium alloy sheet of the present invention, it is economical and provides a very fast cooling rate compared to the prior art, thereby making it possible to refine the particles. It can be improved.
또한 기존의 마그네슘 합금 판재는 열처리형 알루미늄에 비해 비교적 강도가 많이 떨어지는 편이었으나 본 발명의 실시예에 따른 합금 판재는 비교적 높은 강도를 구현함으로써 고강도 판재가 요구되는 자동차 및 구조재료 산업에 적용할 수 있을 뿐만 아니라 종래의 마그네슘에 비해 월등히 우수한 성형성으로 인해 기존의 마그네슘 합금 판재가 적용되지 못한 복잡한 형태의 판재가 요구되는 다양한 분야에 이용할 수 있다.In addition, the conventional magnesium alloy plate is relatively less strength than heat-treated aluminum, but the alloy plate according to the embodiment of the present invention can be applied to the automotive and structural materials industry that requires a high strength plate by implementing a relatively high strength In addition, due to the excellent moldability compared to the conventional magnesium can be used in a variety of fields that require a complex form of the plate is not applied to the conventional magnesium alloy plate.

Claims (11)

  1. Zn: 1 ~ 10 중량%, Ca: 0.1 ~ 5 중량%를 함유하고, 나머지 불가피한 불순물과 마그네슘으로 이루어지며, 한계돔높이(LDH)가 7mm 이상인 것을 특징으로 하는 고성형성 마그네슘 합금 판재.Zn: 1 to 10% by weight, Ca: 0.1 to 5% by weight, consisting of the remaining unavoidable impurities and magnesium, high forming magnesium alloy sheet, characterized in that the limit dome height (LDH) is 7mm or more.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 Zn의 함량이 1 ~ 7 중량%, Ca의 함량이 0.5 ~ 3 중량%인 것을 특징으로 하는 고성형성 마그네슘 합금 판재.The high-forming magnesium alloy sheet, characterized in that the Zn content of 1 to 7% by weight, Ca content of 0.5 to 3% by weight.
  3. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 마그네슘 합금 판재의 미세조직의 결정립 평균 입경이 10㎛ 이하인 것을 특징으로 하는 고성형성 마그네슘 합금 판재.The high-forming magnesium alloy sheet material, characterized in that the average grain size of the microstructure of the magnesium alloy sheet material is 10㎛ or less.
  4. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2,
    상기 마그네슘 합금 판재의 한계돔높이(LDH)가 8mm 이상인 것을 특징으로 하는 고성형성 마그네슘 합금 판재.Highly magnesium alloy sheet, characterized in that the limit dome height (LDH) of the magnesium alloy sheet is 8mm or more.
  5. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 마그네슘 합금 판재의 항복강도(YS)가 200MPa 이상, 인장강도(UTS)가 270MPa 이상, 연신율(EL)이 12% 이상인 것을 특징으로 하는 고성형성 마그네슘 합금 판재.Yield strength (YS) of the magnesium alloy sheet is 200MPa or more, tensile strength (UTS) of 270MPa or more, elongation (EL) is characterized in that the high-strength magnesium alloy plate.
  6. 제 1 항 또는 제 2 항에 있어서, The method according to claim 1 or 2,
    상기 마그네슘 합금 판재의 (0002)면의 집합강도(texture intensity)가 2.5 이하인 것을 특징으로 하는 고성형성 마그네슘 합금 판재.High strength magnesium alloy sheet, characterized in that the aggregate intensity (texture intensity) of the (0002) surface of the magnesium alloy sheet is less than 2.5.
  7. (a) Zn: 1 ~ 10중량%, Ca: 0.1 ~ 5중량%를 포함하고 나머지는 불가피한 불순물과 마그네슘으로 이루어지는 합금의 용탕을 제조하는 단계; (a) preparing a molten alloy of an alloy comprising 1 wt% to 10 wt% of Zn and 0.1 wt% to 5 wt% of Ca;
    (b) 상기 용탕을 액체 분율이 70%인 온도에서 상기 용탕이 발화되기 전의 온도까지의 온도 범위로 유지시키는 단계; (b) maintaining the molten metal in a temperature range from a temperature at which the liquid fraction is 70% to a temperature before the molten metal is ignited;
    (c) 상기 온도 범위로 유지된 용탕을 회전하는 두 냉각롤 사이에 주입하여 마그네슘 합금 판재로 박판 주조하는 단계; (c) injecting the molten metal maintained in the temperature range between two rotating cooling rolls to form a thin sheet of magnesium alloy sheet;
    (d) 상기 주조된 마그네슘 합금 판재를 300 ~ 490℃에서 1 ~ 24시간 용체화 처리하는 단계;(d) solution treatment of the cast magnesium alloy plate at 300 to 490 ° C. for 1 to 24 hours;
    (e) 상기 용체화 처리된 마그네슘 합금 판재를 300 ~ 400℃로 예열한 후 가열된 압연 롤로 패스당 1 ~ 45%씩 요구되는 두께까지 압연하는 단계; 및(e) preheating the solution-treated magnesium alloy sheet to 300 to 400 ° C. and then rolling it to a required thickness of 1 to 45% per pass with a heated rolling roll; And
    (f) 상기 압연 후 300 ~ 490℃에서 0.5 ~ 4시간 동안 용체화 처리를 수행하는 단계;(f) performing a solution treatment for 0.5 to 4 hours at 300 to 490 ° C. after the rolling;
    를 포함하는 고성형성 마그네슘 합금 판재의 제조방법.Method for producing a highly formed magnesium alloy sheet comprising a.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 (c)단계에서 두 냉각롤 사이의 간격은 1 ~ 5mm로 유지시키고 용탕 주입시 냉각롤의 회전 속도를 0.2~20m/min으로 유지시킴으로써, 용탕의 냉각 속도가 102~103K/s가 되도록 하는 것을 특징으로 하는 고성형성 마그네슘 합금 판재의 제조방법.In step (c), the gap between the two cooling rolls is maintained at 1 to 5 mm and the rotational speed of the cooling roll is maintained at 0.2 to 20 m / min during injection of the molten metal, thereby cooling the molten metal to 10 2 to 10 3 K / s Method for producing a highly formed magnesium alloy sheet, characterized in that to be.
  9. 제 7 항 또는 제 8 항에 있어서,The method according to claim 7 or 8,
    상기 Zn의 함량은 1 ~ 7중량%이고, 상기 Ca의 함량은 0.1 ~ 3중량%인 것을 특징으로 하는 고성형성 마그네슘 합금 판재의 제조방법.The content of Zn is 1 to 7% by weight, the content of Ca is 0.1 to 3% by weight manufacturing method of the high-forming magnesium alloy sheet material.
  10. 제 7 항 또는 제 8 항에 있어서, The method according to claim 7 or 8,
    추가로 상기 압연 후 용체화 처리된 마그네슘 합금 판재를 150 ~ 200℃에서 1 ~ 72 시간 동안 시효처리를 수행하는 단계;를 포함하는 것을 특징으로 하는 고성형성 마그네슘 합금 판재의 제조방법.And further performing aging treatment on the solution-treated magnesium alloy sheet at 150 to 200 ° C. for 1 to 72 hours after the rolling.
  11. 제 7 항 또는 제 8 항에 있어서,The method according to claim 7 or 8,
    상기 Ca의 첨가는 Mg-Ca 모합금을 첨가하는 방법에 의해 수행되는 것을 특징으로 하는 고성형성 마그네슘 합금 판재의 제조방법.The method of manufacturing a highly formed magnesium alloy sheet, characterized in that the addition of Ca is carried out by adding a Mg-Ca mother alloy.
PCT/KR2011/008991 2010-11-23 2011-11-23 Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same WO2012070870A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11843068.5A EP2644728A4 (en) 2010-11-23 2011-11-23 Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100116975A KR101303585B1 (en) 2010-11-23 2010-11-23 Magnesium alloy sheet having excellent room temperature formability and method of fabricating the same
KR10-2010-0116975 2010-11-23

Publications (2)

Publication Number Publication Date
WO2012070870A2 true WO2012070870A2 (en) 2012-05-31
WO2012070870A3 WO2012070870A3 (en) 2012-08-23

Family

ID=46146307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/008991 WO2012070870A2 (en) 2010-11-23 2011-11-23 Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same

Country Status (3)

Country Link
EP (1) EP2644728A4 (en)
KR (1) KR101303585B1 (en)
WO (1) WO2012070870A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180187A1 (en) * 2013-05-07 2014-11-13 宝山钢铁股份有限公司 Magnesium alloy sheet of low cost, fine grains, and weak texture, and manufacturing method therefor
CN109295365A (en) * 2018-10-23 2019-02-01 西安卓恰医疗器械有限公司 A kind of degradable magnesium alloy molding embryo material, Preparation equipment, preparation method and the forcing screw prepared by the molding embryo material
CN113840939A (en) * 2019-05-20 2021-12-24 大众汽车股份公司 Sheet metal product with high bendability and manufacturing method thereof
CN115044812A (en) * 2022-06-17 2022-09-13 北京机科国创轻量化科学研究院有限公司 High-elongation microalloyed modified AZ31 magnesium alloy sheet material and preparation method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626820B1 (en) 2013-12-05 2016-06-02 주식회사 포스코 magnesium-alloy plate and manufacturing method of it
EP3205736B1 (en) * 2016-02-11 2018-08-22 Volkswagen AG Magnesium alloy sheet produced by twin roll casting
CN107541627B (en) * 2016-06-24 2019-09-06 北京科技大学 A kind of wrought magnesium alloy plate and preparation method thereof with good room temperature formability
DE102016116244A1 (en) 2016-08-31 2018-03-01 Max-Planck-Institut Für Eisenforschung GmbH magnesium alloy
JP6760000B2 (en) * 2016-11-15 2020-09-23 住友電気工業株式会社 Magnesium alloy plate material
WO2018117695A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Magnesium alloy sheet and method for manufacturing same
KR101889019B1 (en) 2016-12-23 2018-08-20 주식회사 포스코 Magnesium alloy sheet, and method for manufacturing the same
CN106854724B (en) * 2016-12-29 2019-12-13 赵建武 medical magnesium alloy material containing rare earth elements and preparation method thereof
KR102043786B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same
KR102178806B1 (en) 2018-09-28 2020-11-13 주식회사 포스코 Magnesium alloy sheet and method for manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4678373B2 (en) * 2004-06-30 2011-04-27 住友電気工業株式会社 Method for producing magnesium alloy material
JP4433916B2 (en) * 2004-07-13 2010-03-17 株式会社豊田中央研究所 Magnesium alloy and magnesium alloy member for plastic working
JP2010047777A (en) * 2007-05-09 2010-03-04 National Institute For Materials Science Mg-BASED ALLOY
JP5467294B2 (en) * 2008-06-05 2014-04-09 独立行政法人産業技術総合研究所 Easy-formable magnesium alloy sheet and method for producing the same
KR20100038809A (en) * 2008-10-06 2010-04-15 포항공과대학교 산학협력단 Magnesium alloy panel having high formability and method of manufacturing the same
KR20100078107A (en) * 2008-12-30 2010-07-08 연세대학교 산학협력단 Magnesium alloys with good formability at low temparature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2644728A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014180187A1 (en) * 2013-05-07 2014-11-13 宝山钢铁股份有限公司 Magnesium alloy sheet of low cost, fine grains, and weak texture, and manufacturing method therefor
JP2016516126A (en) * 2013-05-07 2016-06-02 宝山鋼鉄股▲分▼有限公司 Inexpensive fine-grain weak-structure magnesium alloy sheet and method for producing the same
US10000836B2 (en) 2013-05-07 2018-06-19 Baoshan Iron & Steel Co., Ltd. Low-cost fine-grain weak-texture magnesium alloy sheet and method of manufacturing the same
CN109295365A (en) * 2018-10-23 2019-02-01 西安卓恰医疗器械有限公司 A kind of degradable magnesium alloy molding embryo material, Preparation equipment, preparation method and the forcing screw prepared by the molding embryo material
CN109295365B (en) * 2018-10-23 2019-09-06 西安卓恰医疗器械有限公司 A kind of degradable magnesium alloy molding embryo material, Preparation equipment, preparation method and the forcing screw prepared by the molding embryo material
CN113840939A (en) * 2019-05-20 2021-12-24 大众汽车股份公司 Sheet metal product with high bendability and manufacturing method thereof
CN115044812A (en) * 2022-06-17 2022-09-13 北京机科国创轻量化科学研究院有限公司 High-elongation microalloyed modified AZ31 magnesium alloy sheet material and preparation method thereof

Also Published As

Publication number Publication date
KR101303585B1 (en) 2013-09-11
WO2012070870A3 (en) 2012-08-23
EP2644728A2 (en) 2013-10-02
EP2644728A4 (en) 2017-05-17
KR20120055304A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2012070870A2 (en) Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same
US10000836B2 (en) Low-cost fine-grain weak-texture magnesium alloy sheet and method of manufacturing the same
KR100993840B1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
KR100933385B1 (en) Aluminum alloy plate and its manufacturing method
KR20100038809A (en) Magnesium alloy panel having high formability and method of manufacturing the same
KR101277297B1 (en) High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof
EP2274454B1 (en) Alloy composition and preparation thereof
KR101078308B1 (en) Magnesium alloy panel having high strength and manufacturing method for the same
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
TW200540280A (en) Al-MG alloy sheet with excellent formability at high temperatures and high speeds and method of production of same
JP2008163361A (en) Method for producing magnesium alloy thin sheet having uniformly fine crystal grain
WO2015126054A1 (en) Magnesium alloy board and preparation method therefor
JP2008308703A (en) Magnesium alloy for continuously casting and rolling, and method for producing magnesium alloy material
JP5945370B2 (en) Method for producing aluminum-zinc-magnesium-copper alloy sheet with refined crystal grains
WO2013058504A2 (en) Non-heat treated magnesium alloy sheet with excellent formability at room temperature in which segregation is minimized
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
CN111020320A (en) High-strength aluminum alloy and production method thereof
JP3767492B2 (en) Method for producing aluminum flexible foil
CN109680194A (en) A kind of high-intensitive extrudate preparation method of Mg-Zn-Sn-Mn alloy
JP2008025006A (en) Aluminum alloy sheet having excellent stress corrosion cracking resistance
KR101252784B1 (en) Magnesium alloy sheet having high strength and high formability and method for manufacturing the same
CN114277295B (en) High-strength magnesium-lithium alloy with weak basal plane texture and preparation method thereof
WO2016117768A1 (en) Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same
KR20150042099A (en) Method for manufacturing of Al-Zn-Cu-Mg alloy sheet and Al-Zn-Cu-Mg alloy sheet thereby
JP2007098407A (en) Method for manufacturing aluminum alloy plate for forming

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843068

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011843068

Country of ref document: EP