JP6760000B2 - Magnesium alloy plate material - Google Patents
Magnesium alloy plate material Download PDFInfo
- Publication number
- JP6760000B2 JP6760000B2 JP2016222628A JP2016222628A JP6760000B2 JP 6760000 B2 JP6760000 B2 JP 6760000B2 JP 2016222628 A JP2016222628 A JP 2016222628A JP 2016222628 A JP2016222628 A JP 2016222628A JP 6760000 B2 JP6760000 B2 JP 6760000B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- plate material
- magnesium alloy
- width direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 93
- 229910000861 Mg alloy Inorganic materials 0.000 title claims description 65
- 239000013078 crystal Substances 0.000 claims description 85
- 229910045601 alloy Inorganic materials 0.000 claims description 44
- 239000000956 alloy Substances 0.000 claims description 44
- 239000011777 magnesium Substances 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 15
- 229910052749 magnesium Inorganic materials 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 15
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 15
- 238000001887 electron backscatter diffraction Methods 0.000 claims description 9
- 239000012535 impurity Substances 0.000 claims description 6
- 229910052748 manganese Inorganic materials 0.000 claims description 2
- 238000005096 rolling process Methods 0.000 description 70
- 229910000691 Re alloy Inorganic materials 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 21
- 238000005266 casting Methods 0.000 description 20
- 239000011575 calcium Substances 0.000 description 16
- 239000011572 manganese Substances 0.000 description 16
- 239000011701 zinc Substances 0.000 description 13
- 229910009378 Zn Ca Inorganic materials 0.000 description 12
- 230000006866 deterioration Effects 0.000 description 11
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 229910000914 Mn alloy Inorganic materials 0.000 description 7
- 229910000765 intermetallic Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000000654 additive Substances 0.000 description 6
- 230000000996 additive effect Effects 0.000 description 6
- 238000001953 recrystallisation Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010791 quenching Methods 0.000 description 5
- 230000000171 quenching effect Effects 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 229910000600 Ba alloy Inorganic materials 0.000 description 2
- 229910001122 Mischmetal Inorganic materials 0.000 description 2
- 229910001278 Sr alloy Inorganic materials 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Continuous Casting (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、マグネシウム合金板材に関する。 The present invention relates to a magnesium alloy plate material.
一般に、マグネシウム合金板材は、六方晶の結晶構造(hcp構造)を有し、その(0002)面が板表面に平行であるため、常温での塑性加工性に乏しい。特許文献1、2には、各種の添加元素を所定の量含有するマグネシウム合金に所定の条件で圧延処理と熱処理とを施して、(0002)面の結晶方位を板表面に対して板幅方向に30°傾斜させることで、常温での塑性加工性を改善したマグネシウム合金板材を開示している(特許文献1の図1(d)、図2(b)、(d)、図3(c)、(f)、特許文献2の図1(2)、(3))。 In general, a magnesium alloy plate has a hexagonal crystal structure (hcp structure), and its (0002) plane is parallel to the plate surface, so that it is poor in plastic workability at room temperature. In Patent Documents 1 and 2, a magnesium alloy containing various additive elements in a predetermined amount is subjected to rolling treatment and heat treatment under predetermined conditions, and the crystal orientation of the (0002) plane is set in the plate width direction with respect to the plate surface. A magnesium alloy plate material having improved plastic workability at room temperature is disclosed by inclining it by 30 ° (FIG. 1 (d), FIG. 2 (b), (d), and FIG. 3 (c) of Patent Document 1). ), (F), FIGS. 1 (2), (3) of Patent Document 2.
常温での塑性加工性と強度とを兼備するマグネシウム合金板材の開発が望まれている。特許文献1,2のマグネシウム合金板材は、強度が低い。特に、(0002)面の結晶方位が板表面に対して板幅方向に30°傾斜していることで結晶方位と強度及び伸びの異方性が大きく、板幅方向の強度が低い。 It is desired to develop a magnesium alloy plate material that has both plastic workability and strength at room temperature. The magnesium alloy plates of Patent Documents 1 and 2 have low strength. In particular, since the crystal orientation of the (0002) plane is inclined by 30 ° in the plate width direction with respect to the plate surface, the anisotropy of the crystal orientation and the strength and elongation is large, and the strength in the plate width direction is low.
そこで、常温での塑性加工性に優れる上に、強度に優れるマグネシウム合金板材を提供することを目的の一つとする。 Therefore, one of the purposes is to provide a magnesium alloy plate material having excellent plastic workability at room temperature and also having excellent strength.
本開示に係るマグネシウム合金板材は、
マグネシウム基合金からなるマグネシウム合金板材であって、
前記マグネシウム基合金は、
Caを0.05質量%以上0.3質量%以下、及び希土類元素を0.05質量%以上0.5質量%以下の少なくとも一方と、Znを0.5質量%以上6.2質量%以下とを含み、残部がMg及び不可避的不純物である組成と、
平均結晶粒径が15μm以下で、EBSD法により(0002)面の極点図をとったとき、前記(0002)面の結晶方位が板表面に対して10°以上70°以下傾斜し、その極密度が2.5以上のピークが3つ以上存在する組織とを備える。
The magnesium alloy plate material according to the present disclosure is
A magnesium alloy plate made of a magnesium-based alloy
The magnesium-based alloy is
Ca is 0.05% by mass or more and 0.3% by mass or less, rare earth element is 0.05% by mass or more and 0.5% by mass or less, and Zn is 0.5% by mass or more and 6.2% by mass or less. And the composition that the balance is Mg and unavoidable impurities, including
When the average crystal grain size is 15 μm or less and the pole figure of the (0002) plane is taken by the EBSD method, the crystal orientation of the (0002) plane is inclined by 10 ° or more and 70 ° or less with respect to the plate surface, and its extreme density. It comprises a tissue having three or more peaks of 2.5 or more.
上記マグネシウム合金板材は、常温での塑性加工性に優れる上に、強度に優れる。 The magnesium alloy plate material is excellent in plastic workability at room temperature and also in strength.
《本発明の実施形態の説明》
最初に本発明の実施態様の内容を列記して説明する。
<< Explanation of Embodiments of the Present Invention >>
First, the contents of the embodiments of the present invention will be listed and described.
(1)本発明の一態様に係るマグネシウム合金板材は、
マグネシウム基合金からなるマグネシウム合金板材であって、
前記マグネシウム基合金は、
Caを0.05質量%以上0.3質量%以下、及び希土類元素を0.05質量%以上0.5質量%以下の少なくとも一方と、Znを0.5質量%以上6.2質量%以下とを含み、残部がMg及び不可避的不純物である組成と、
平均結晶粒径が15μm以下で、EBSD法により(0002)面の極点図をとったとき、前記(0002)面の結晶方位が板表面に対して10°以上70°以下傾斜し、その極密度が2.5以上のピークが3つ以上存在する組織とを備える。
(1) The magnesium alloy plate material according to one aspect of the present invention is
A magnesium alloy plate made of a magnesium-based alloy
The magnesium-based alloy is
Ca is 0.05% by mass or more and 0.3% by mass or less, rare earth element is 0.05% by mass or more and 0.5% by mass or less, and Zn is 0.5% by mass or more and 6.2% by mass or less. And the composition that the balance is Mg and unavoidable impurities, including
When the average crystal grain size is 15 μm or less and the pole figure of the (0002) plane is taken by the EBSD method, the crystal orientation of the (0002) plane is inclined by 10 ° or more and 70 ° or less with respect to the plate surface, and its extreme density. It comprises a tissue having three or more peaks of 2.5 or more.
上記の構成によれば、常温での塑性加工性に優れる上に、強度に優れる。結晶粒径が小さい上に、(0002)面の結晶方位の板表面に対する傾斜角度が10°以上70°以下のピークが3つ以上存在することで、(0002)面の結晶方位が種々の方向に傾斜しているため、結晶方位と強度及び伸びの異方性が小さく、常温での塑性加工性と強度とを兼備し易い。各添加元素の詳細は、後述する。 According to the above configuration, it is excellent in plastic workability at room temperature and also in strength. The crystal orientation of the (0002) plane is in various directions because the crystal grain size is small and there are three or more peaks in which the inclination angle of the crystal orientation of the (0002) plane with respect to the plate surface is 10 ° or more and 70 ° or less. Since it is inclined to, the crystal orientation, strength, and elongation anisotropy are small, and it is easy to combine plastic workability and strength at room temperature. Details of each additive element will be described later.
(2)上記マグネシウム合金板材の一形態として、前記Caを、Srを0.1質量%以上0.65質量%以下、又はBaを0.15質量%以上1.0質量%以下の一方に置換することが挙げられる。 (2) As one form of the magnesium alloy plate material, Ca is replaced with one of 0.1% by mass or more and 0.65% by mass or less of Sr or 0.15% by mass or more and 1.0% by mass or less of Ba. To do.
上記の構成によれば、Caを含む場合と同様、常温での塑性加工性に優れる上に、強度に優れる。 According to the above configuration, as in the case of containing Ca, it is excellent in plastic workability at room temperature and also in strength.
(3)上記マグネシウム合金板材の一形態として、更に、Srを0.1質量%以上0.65質量%以下、及びBaを0.15質量%以上1.0質量%以下の少なくとも一方を含むことが挙げられる。 (3) As one form of the magnesium alloy plate material, at least one of Sr of 0.1% by mass or more and 0.65% by mass or less and Ba of 0.15% by mass or more and 1.0% by mass or less is contained. Can be mentioned.
上記の構成によれば、常温での塑性加工性と強度とをより一層向上し易い。 According to the above configuration, it is easy to further improve the plastic workability and strength at room temperature.
(4)上記マグネシウム合金板材の一形態として、前記組織は、更に、前記(0002)面の結晶方位の板表面に対する傾斜角度が10°未満であり、その極密度が2.5以上であるピークを少なくとも1つ含むことが挙げられる。 (4) As one form of the magnesium alloy plate material, the structure further has a peak in which the inclination angle of the crystal orientation of the (0002) plane with respect to the plate surface is less than 10 ° and the extreme density is 2.5 or more. At least one is included.
上記の構成によれば、(0002)面が板表面に沿った又は略沿った結晶を有するため、マグネシウム合金板材における板面内の強度を確保し易い。 According to the above configuration, since the (0002) plane has crystals along or substantially along the plate surface, it is easy to secure the strength in the plate surface of the magnesium alloy plate material.
(5)上記マグネシウム合金板材の一形態として、更に、Mnを0.1質量%以上0.8質量%以下含むことが挙げられる。 (5) One form of the magnesium alloy plate material further includes Mn of 0.1% by mass or more and 0.8% by mass or less.
Mnの含有量を0.1質量%以上とすれば、耐食性を向上し易い。加えて、結晶粒径の微細化に寄与する。Mnの含有量を0.8質量%以下とすれば、Mnが過度に多すぎず、結晶粒径が粗大になり難い上に、金属間化合物の生成を抑制し易いため、マグネシウム合金板材の機械的特性の低下を抑制し易い。 When the Mn content is 0.1% by mass or more, the corrosion resistance can be easily improved. In addition, it contributes to the miniaturization of crystal grain size. When the Mn content is 0.8% by mass or less, the Mn content is not excessively large, the crystal grain size is unlikely to be coarse, and the formation of intermetallic compounds is easily suppressed. Therefore, the machine for magnesium alloy plates. It is easy to suppress the deterioration of the target characteristics.
(6)上記マグネシウム合金板材の一形態として、板幅方向の0.2%耐力が95MPa以上であることが挙げられる。 (6) One form of the magnesium alloy plate material is that the 0.2% proof stress in the plate width direction is 95 MPa or more.
上記の構成によれば、板幅方向の0.2%耐力が大きく、板幅方向の強度に優れる。 According to the above configuration, the 0.2% proof stress in the plate width direction is large, and the strength in the plate width direction is excellent.
(7)上記マグネシウム合金板材の一形態として、エリクセン値が8.0mm以上であることが挙げられる。 (7) As one form of the magnesium alloy plate material, an Eriksen value of 8.0 mm or more can be mentioned.
上記の構成によれば、エリクセン値が大きく、マグネシウム合金板材の塑性加工性に優れる。 According to the above configuration, the Eriksen value is large and the magnesium alloy plate material is excellent in plastic workability.
(8)上記マグネシウム合金板材の一形態として、板幅方向の破断伸びが28%以上であることが挙げられる。 (8) One form of the magnesium alloy plate material is that the breaking elongation in the plate width direction is 28% or more.
上記の構成によれば、板幅方向の破断伸びが大きく、板幅方向の延性に優れる。 According to the above configuration, the breaking elongation in the plate width direction is large, and the ductility in the plate width direction is excellent.
(9)上記マグネシウム合金板材の一形態として、板幅方向の引張強さが200MPa以上であるであることが挙げられる。 (9) One form of the magnesium alloy plate material is that the tensile strength in the plate width direction is 200 MPa or more.
上記の構成によれば、板幅方向の引張強さ、0.2%耐力が大きく、板幅方向の強度に優れる。 According to the above configuration, the tensile strength in the plate width direction and the 0.2% proof stress are large, and the strength in the plate width direction is excellent.
《本発明の実施形態の詳細》
本発明の実施形態の詳細を、以下に説明する。
<< Details of Embodiments of the present invention >>
Details of the embodiments of the present invention will be described below.
〔マグネシウム合金板材〕
実施形態に係るマグネシウム合金板材は、マグネシウム基合金からなるもので、詳しくは後述のマグネシウム合金板材の製造方法で説明するが、鋳造板材を圧延加工した圧延板材を熱処理して得られる板材である。このマグネシウム合金板材の特徴の一つは、特定の添加元素を特定の量含有する組成と、特定の平均結晶粒径を満たすと共に特定の結晶面が特定の配向性を有する組織とを備える点にある。以下、その詳細を説明する。
[Magnesium alloy plate material]
The magnesium alloy plate material according to the embodiment is made of a magnesium-based alloy, and will be described in detail in the method for producing a magnesium alloy plate material described later, but is a plate material obtained by heat-treating a rolled plate material obtained by rolling a cast plate material. One of the features of this magnesium alloy plate material is that it has a composition containing a specific amount of a specific additive element and a structure having a specific crystal plane having a specific orientation while satisfying a specific average crystal grain size. is there. The details will be described below.
[組成]
マグネシウム基合金は、添加元素としてCa(カルシウム)及びRE(希土類元素)の少なくとも一方と、Zn(亜鉛)とを特定の量含有し、残部がMg及び不可避不純物である組成を有する。この組成は、Caの全てをSr(ストロンチウム)、又はBa(バリウム)の一方に置換してもよいし、Caに加えて、Sr及びBaの少なくとも一方を含んでいてもよい。この組成は、更にMn(マンガン)を含んでいてもよい。
[composition]
The magnesium-based alloy has a composition in which at least one of Ca (calcium) and RE (rare earth element) and Zn (zinc) are contained as additive elements in a specific amount, and the balance is Mg and unavoidable impurities. This composition may replace all of Ca with either Sr (strontium) or Ba (barium), or may contain at least one of Sr and Ba in addition to Ca. This composition may further contain Mn (manganese).
マグネシウム基合金の具体的な組成は、Mg−Zn−Ca系合金、Mg−Zn−RE系合金、Mg−Zn−Ca−RE系合金、Mg−Zn−RE−Mn系合金、Mg−Zn−Sr系合金、Mg−Zn−Ba系合金、Mg−Zn−Sr−RE系合金、Mg−Zn−Ba−RE系合金、Mg−Zn−Ca−Sr系合金、Mg−Zn−Ca−Ba系合金、Mg−Zn−Ca−Sr−Ba系合金、Mg−Zn−Ca−Sr−RE系合金、Mg−Zn−Ca−Ba−RE系合金、Mg−Zn−Ca−Sr−Ba−RE系合金などが挙げられる。 The specific composition of the magnesium-based alloy is Mg-Zn-Ca-based alloy, Mg-Zn-RE-based alloy, Mg-Zn-Ca-RE-based alloy, Mg-Zn-RE-Mn-based alloy, Mg-Zn- Sr-based alloy, Mg-Zn-Ba-based alloy, Mg-Zn-Sr-RE-based alloy, Mg-Zn-Ba-RE-based alloy, Mg-Zn-Ca-Sr-based alloy, Mg-Zn-Ca-Ba-based Alloys, Mg-Zn-Ca-Sr-Ba alloys, Mg-Zn-Ca-Sr-RE alloys, Mg-Zn-Ca-Ba-RE alloys, Mg-Zn-Ca-Sr-Ba-RE alloys Examples include alloys.
(Zn)
Znは、強度、破断伸び、引張強さなどの機械的特性を向上する。Znの含有量は、0.5質量%以上6.2質量%以下が挙げられる。Znの含有量を0.5質量%以上とすれば、機械的特性を向上させ易い。Znの含有量を6.2質量%以下とすれば、金属間化合物の形成を抑制し易く、常温(20℃±15℃)での塑性加工性の低下、及び機械的特性の低下を抑制し易い。
(Zn)
Zn improves mechanical properties such as strength, elongation at break, and tensile strength. The Zn content may be 0.5% by mass or more and 6.2% by mass or less. When the Zn content is 0.5% by mass or more, the mechanical properties can be easily improved. When the Zn content is 6.2% by mass or less, the formation of intermetallic compounds is easily suppressed, and the deterioration of plastic workability at room temperature (20 ° C. ± 15 ° C.) and the deterioration of mechanical properties are suppressed. easy.
Mg−Zn−Ca系合金、Mg−Zn−RE系合金、Mg−Zn−Sr系合金、及びMg−Zn−Ba系合金の場合、Znの含有量は、0.5質量%以上6.2質量%以下が好ましく、特に1.5質量%以上4.0質量%以下が好ましい。
Mg−Zn−Ca−RE系合金、Mg−Zn−RE−Mn系合金、Mg−Zn−Sr−RE系合金、及びMg−Zn−Ba−RE系合金の場合、Znの含有量は、0.5質量%以上5.0質量%以下が好ましく、特に1.0質量%以上3.5質量%以下が好ましい。
In the case of Mg-Zn-Ca alloy, Mg-Zn-RE alloy, Mg-Zn-Sr alloy, and Mg-Zn-Ba alloy, the Zn content is 0.5% by mass or more and 6.2. It is preferably 1% by mass or less, and particularly preferably 1.5% by mass or more and 4.0% by mass or less.
In the case of Mg-Zn-Ca-RE alloy, Mg-Zn-RE-Mn alloy, Mg-Zn-Sr-RE alloy, and Mg-Zn-Ba-RE alloy, the Zn content is 0. It is preferably 5.5% by mass or more and 5.0% by mass or less, and particularly preferably 1.0% by mass or more and 3.5% by mass or less.
(Ca)
Caは、(0002)面の板表面(板厚方向に直交する面)に対する傾斜を促進すると共に、機械的特性を向上する。Caの含有量は、0.05質量%以上0.3質量%以下が挙げられる。Caの含有量を0.05質量%以上とすれば、機械的特性を向上し易い。加えて、溶湯の難燃性の向上にも寄与する。Caの含有量を0.3質量%以下とすれば、金属間化合物の形成を抑制し易く、常温での塑性加工性の低下、及び機械的特性の低下を抑制し易い。
(Ca)
Ca promotes the inclination of the (0002) plane with respect to the plate surface (plane orthogonal to the plate thickness direction) and improves the mechanical properties. The Ca content is 0.05% by mass or more and 0.3% by mass or less. When the Ca content is 0.05% by mass or more, the mechanical properties can be easily improved. In addition, it also contributes to improving the flame retardancy of the molten metal. When the Ca content is 0.3% by mass or less, the formation of intermetallic compounds can be easily suppressed, and the deterioration of plastic workability at room temperature and the deterioration of mechanical properties can be easily suppressed.
Mg−Zn−Ca系合金の場合、Caの含有量は、0.05質量%以上0.3質量%以下が好ましく、特に0.1質量%以上0.2質量%以下が好ましい。
Mg−Zn−Ca−RE系合金の場合、Caの含有量は、0.05質量%以上0.2質量%以下が好ましく、特に0.08質量%以上0.15質量%以下が好ましい。
In the case of the Mg-Zn-Ca based alloy, the Ca content is preferably 0.05% by mass or more and 0.3% by mass or less, and particularly preferably 0.1% by mass or more and 0.2% by mass or less.
In the case of the Mg-Zn-Ca-RE alloy, the Ca content is preferably 0.05% by mass or more and 0.2% by mass or less, and particularly preferably 0.08% by mass or more and 0.15% by mass or less.
(Sr)
Srは、(0002)面の板表面に対する傾斜を促進すると共に、機械的特性を向上する。Srの含有量は、0.1質量%以上0.65質量%以下が挙げられる。Srの含有量を0.1質量%以上とすれば、機械的特性を向上し易い。Srの含有量を0.65質量%以下とすれば、金属間化合物の形成を抑制し易く、常温での塑性加工性の低下、及び機械的特性の低下を抑制し易い。
(Sr)
Sr promotes the inclination of the (0002) plane with respect to the plate surface and improves the mechanical properties. The content of Sr is 0.1% by mass or more and 0.65% by mass or less. When the content of Sr is 0.1% by mass or more, the mechanical properties can be easily improved. When the Sr content is 0.65% by mass or less, the formation of intermetallic compounds is easily suppressed, and the deterioration of plastic workability at room temperature and the deterioration of mechanical properties are easily suppressed.
Mg−Zn−Sr系合金の場合、Srの含有量は、0・1質量%以上0.65質量%以下が好ましく、特に0.22質量%以上0.45質量%以下が好ましい。
Mg−Zn−Sr−RE系合金の場合、Srの含有量は、0.1質量%以上0.45質量%以下が好ましく、特に0.17質量%以上0.33質量%以下が好ましい。
In the case of the Mg-Zn-Sr alloy, the Sr content is preferably 0.1% by mass or more and 0.65% by mass or less, and particularly preferably 0.22% by mass or more and 0.45% by mass or less.
In the case of the Mg-Zn-Sr-RE alloy, the Sr content is preferably 0.1% by mass or more and 0.45% by mass or less, and particularly preferably 0.17% by mass or more and 0.33% by mass or less.
(Ba)
Baは、(0002)面の板表面に対する傾斜を促進すると共に、機械的特性を向上する。Baの含有量は、0.15質量%以上1.0質量%以下が挙げられる。Baの含有量を0.15質量%以上とすれば、機械的特性を向上し易い。Baの含有量を1.0質量%以上とすれば、金属間化合物の形成を抑制し易く、常温での塑性加工性の低下、及び機械的特性の低下を抑制し易い。
(Ba)
Ba promotes the inclination of the (0002) plane with respect to the plate surface and improves the mechanical properties. The content of Ba is 0.15% by mass or more and 1.0% by mass or less. When the Ba content is 0.15% by mass or more, the mechanical properties can be easily improved. When the Ba content is 1.0% by mass or more, it is easy to suppress the formation of intermetallic compounds, and it is easy to suppress the deterioration of plastic workability at room temperature and the deterioration of mechanical properties.
Mg−Zn−Ba系合金の場合、Baの含有量は、0.15質量%以上1.0質量%以下が好ましく、特に0.35質量%以上0.7質量%以下が好ましい。
Mg−Zn−Ba−RE系合金の場合、Baの含有量は、0.15質量%以上0.7質量%以下が好ましく、特に0.27質量%以上0.52質量%以下が好ましい。
In the case of the Mg—Zn—Ba based alloy, the content of Ba is preferably 0.15% by mass or more and 1.0% by mass or less, and particularly preferably 0.35% by mass or more and 0.7% by mass or less.
In the case of the Mg-Zn-Ba-RE alloy, the Ba content is preferably 0.15% by mass or more and 0.7% by mass or less, and particularly preferably 0.27% by mass or more and 0.52% by mass or less.
(RE)
REは、(0002)面の板表面に対する傾斜を促進すると共に、結晶粒微細化により機械的特性を向上する。REは、周期表3族の元素、即ちスカンジウム(Sc)、イットリウム(Y)、ランタノイド、アクチノイドの中から選択される少なくとも1種の希土類元素であって、複数種の希土類元素を含む合金であるミッシュメタルも含む。REの含有量は、0.05質量%以上0.5質量%以下が挙げられる。REの含有量を0.05質量%以上とすれば、機械的特性を向上し易い。REの含有量を0.5質量%以下とすれば、金属間化合物の形成を抑制し易く、常温での塑性加工性の低下、及び機械的特性の低下を抑制し易い。
(RE)
RE promotes the inclination of the (0002) plane with respect to the plate surface, and improves the mechanical properties by grain refinement. RE is at least one rare earth element selected from the elements of Group 3 of the periodic table, that is, scandium (Sc), yttrium (Y), lanthanoid, and actinide, and is an alloy containing a plurality of rare earth elements. Including misch metal. The content of RE is 0.05% by mass or more and 0.5% by mass or less. When the RE content is 0.05% by mass or more, the mechanical properties can be easily improved. When the RE content is 0.5% by mass or less, the formation of intermetallic compounds is easily suppressed, and the deterioration of plastic workability at room temperature and the deterioration of mechanical properties are easily suppressed.
Mg−Zn−RE系合金の場合、REの含有量は、0.05質量%以上0.5質量%以下が好ましく、特に0.15質量%以上0.35質量%以下が好ましい。
Mg−Zn−Ca−RE系合金、Mg−Zn−RE−Mn系合金、Mg−Zn−Sr−RE系合金、及びMg−Zn−Ba−RE系合金の場合、REの含有量は、0.05質量%以上0.4質量%以下が好ましく、特に0.1質量%以上0.3質量%以下が好ましい。
In the case of the Mg-Zn-RE alloy, the RE content is preferably 0.05% by mass or more and 0.5% by mass or less, and particularly preferably 0.15% by mass or more and 0.35% by mass or less.
In the case of Mg-Zn-Ca-RE alloy, Mg-Zn-RE-Mn alloy, Mg-Zn-Sr-RE alloy, and Mg-Zn-Ba-RE alloy, the RE content is 0. It is preferably 0.05% by mass or more and 0.4% by mass or less, and particularly preferably 0.1% by mass or more and 0.3% by mass or less.
(Mn)
Mnは、耐食性を向上する。Mnの含有量は、0.1質量%以上0.8質量%以下が好ましい。Mnの含有量を0.1質量%以上とすれば、耐食性を向上し易い。加えて、結晶粒径の微細化に寄与する。Mnの含有量を0.8質量%以下とすれば、結晶粒径が粗大になり難い上に、金属間化合物の生成を抑制し易いため、常温での塑性加工性の低下、及び機械的特性の低下を抑制し易い。Mnの含有量は、更に0.2質量%以上0.6質量%以下が好ましく、特に0.25質量%以上0.5質量%以下が好ましい。
(Mn)
Mn improves corrosion resistance. The Mn content is preferably 0.1% by mass or more and 0.8% by mass or less. When the Mn content is 0.1% by mass or more, the corrosion resistance can be easily improved. In addition, it contributes to the miniaturization of crystal grain size. When the Mn content is 0.8% by mass or less, the crystal grain size is unlikely to be coarse, and the formation of intermetallic compounds is easily suppressed. Therefore, the plastic workability at room temperature is lowered and the mechanical properties are reduced. It is easy to suppress the decrease of. The Mn content is further preferably 0.2% by mass or more and 0.6% by mass or less, and particularly preferably 0.25% by mass or more and 0.5% by mass or less.
マグネシウム基合金の組成の測定は、例えば、ICP発光分光分析法(Inductively Coupled Plasma Optical Emission Spectrometry:ICP−OES)や、電子線マイクロアナライザ(EPMA)などによって成分分析を行うことで確認できる。 The composition of the magnesium-based alloy can be confirmed, for example, by performing component analysis by ICP emission spectroscopy (ICP-OES), electron beam microanalyzer (EPMA), or the like.
[組織]
マグネシウム基合金は、平均結晶粒径が小さく、(0002)面の結晶方位が板表面に対して特定の角度を満たし、その極密度が特定の数値を満たすピークが特定数存在する組織を有する。平均結晶粒径は、次のようにして測定する。測定試料を走査型電子顕微鏡(SEM)に挿入し、真空状態とした上で、室温、加速電圧15kVの条件で、150μm×500μmの観察視野(マグネシウム合金板材の表面又は断面)を1個以上採り、EBSD(Electron Back−Scatter diffraction)法により、全観察視野について各結晶粒の結晶方位別に色別(マッピング)を行う。得られたマッピング像について株式会社TSLソリューションズ社製OIM(Orientation Imaging Microscopy)6.2.0を用いて画像解析を行う。このとき、上記解析ソフトにおける信頼値係数(Confidence Index:CI値)が0.1以上のデータ点を用いて画像解析を行って各粒子の面積を求め、各面積に等しい円の直径の平均値を平均結晶粒径とする。(0002)面の結晶方位とその極密度は、EBSD法により、(0002)面の極点図を採ることで求められる。
[Organization]
The magnesium-based alloy has a structure in which the average crystal grain size is small, the crystal orientation of the (0002) plane satisfies a specific angle with respect to the plate surface, and the extreme density has a specific number of peaks satisfying a specific numerical value. The average crystal grain size is measured as follows. Insert the measurement sample into a scanning electron microscope (SEM), put it in a vacuum state, and take one or more observation fields (surface or cross section of magnesium alloy plate) of 150 μm × 500 μm under the conditions of room temperature and acceleration voltage of 15 kV. , EBSD (Electron Back-Scatter Diffraction) method is used to color-code (map) each crystal grain in each crystal orientation for the entire observation field. Image analysis is performed on the obtained mapping image using OIM (Orientation Imaging Microcopy) 6.2.0 manufactured by TSL Solutions Co., Ltd. At this time, the area of each particle is obtained by performing image analysis using data points having a confidence coefficient (Confidence Index: CI value) of 0.1 or more in the above analysis software, and the average value of the diameters of circles equal to each area. Is the average crystal grain size. The crystal orientation of the (0002) plane and its extreme density can be obtained by taking a pole figure of the (0002) plane by the EBSD method.
(平均結晶粒径)
平均結晶粒径は、15μm以下が挙げられる。平均結晶粒径が15μm以下であることで、常温での塑性加工性と強度に優れる。平均結晶粒径は、小さいほど好ましい。
(Average crystal grain size)
The average crystal grain size is 15 μm or less. When the average crystal grain size is 15 μm or less, the plastic workability and strength at room temperature are excellent. The smaller the average crystal grain size, the more preferable.
Mg−Zn−Ca系合金の場合、平均結晶粒径は、15μm以下が好ましく、特に12μm以下が好ましい。
Mg−Zn−RE系合金、及びMg−Zn−Ca−RE系合金の場合、平均結晶粒径は、12μm以下が好ましく、特に8μm以下が好ましい。
Mg−Zn−RE−Mn系合金の場合、平均結晶粒径は、10μm以下が好ましく、特に7μm以下が好ましい。
平均結晶粒径の下限値は、実用上、4μm程度が挙げられる。
In the case of the Mg—Zn—Ca based alloy, the average crystal grain size is preferably 15 μm or less, and particularly preferably 12 μm or less.
In the case of the Mg-Zn-RE alloy and the Mg-Zn-Ca-RE alloy, the average crystal grain size is preferably 12 μm or less, and particularly preferably 8 μm or less.
In the case of the Mg-Zn-RE-Mn alloy, the average crystal grain size is preferably 10 μm or less, particularly preferably 7 μm or less.
The lower limit of the average crystal grain size is practically about 4 μm.
(結晶面)
マグネシウム基合金の組織は、(0002)面の結晶方位が板表面に対して10°以上70°以下の角度で傾斜し、その極密度が2.5以上のピークが3つ以上存在する。(0002)面の結晶方位の板表面に対する傾斜角度が10°以上70°以下のピークが3つ以上存在することで、(0002)面の結晶方位が種々の方向に傾斜しているため、結晶方位と強度及び伸びの異方性が小さく、常温での塑性加工性と強度とを兼備し易い。(0002)面の結晶方位の板表面に対する傾斜方向は、板幅方向に加えて、圧延方向や、板幅方向と圧延方向との間の方向などが挙げられる。圧延板材は一般に長尺材であるため、板材を平面視したとき、その長手方向が圧延方向、短手方向が板幅方向である。換言すれば、圧延方向は、圧延時に板が進行する方向、板幅方向は、圧延方向に直交し、かつ板の平面方向に沿った方向(圧延ロールの軸方向に沿った方向)である。
(Crystal face)
In the structure of the magnesium-based alloy, the crystal orientation of the (0002) plane is inclined at an angle of 10 ° or more and 70 ° or less with respect to the plate surface, and there are three or more peaks having an extreme density of 2.5 or more. Since the crystal orientation of the (0002) plane is inclined in various directions by the presence of three or more peaks having an inclination angle of the crystal orientation of the (0002) plane with respect to the plate surface of 10 ° or more and 70 ° or less, the crystal The anisotropy of orientation, strength and elongation is small, and it is easy to combine plastic workability and strength at room temperature. Examples of the inclination direction of the crystal orientation of the plane (0002) with respect to the plate surface include a rolling direction and a direction between the plate width direction and the rolling direction, in addition to the plate width direction. Since the rolled plate material is generally a long material, when the plate material is viewed in a plan view, the longitudinal direction thereof is the rolling direction and the lateral direction is the plate width direction. In other words, the rolling direction is the direction in which the plate advances during rolling, and the plate width direction is a direction orthogonal to the rolling direction and along the plane direction of the plate (direction along the axial direction of the rolling roll).
傾斜角度は、更に15°以上60°以下とすることができ、特に25°以上55°以下とすることができる。上記極密度は、3.0以上とすることができ、更に3.5以上、4.0以上とすることができ、特に4.5以上、5.0以上とすることができる。上記極密度が2.5以上のピークは、更に4つ以上存在することが好ましい。上記極密度が3.0以上のピークは、例えば、3つ以上存在することが好ましく、更に上記極密度が3.5以上のピークは、例えば、3つ以上存在することが好ましい。上記極密度が4.0以上のピークは、例えば、3つ以上存在することが好ましく、特に上記極密度が4.5以上のピークは、例えば、2つ以上存在することが好ましい。上記極密度が5.0以上のピークは、例えば、2つ以上存在することが好ましい。 The inclination angle can be further set to 15 ° or more and 60 ° or less, and particularly 25 ° or more and 55 ° or less. The extreme density can be 3.0 or more, further 3.5 or more, 4.0 or more, and particularly 4.5 or more and 5.0 or more. It is preferable that four or more peaks having an extreme density of 2.5 or more are present. For example, it is preferable that three or more peaks having an extreme density of 3.0 or more are present, and three or more peaks having an extreme density of 3.5 or more are present. For example, it is preferable that three or more peaks having an extreme density of 4.0 or more are present, and in particular, two or more peaks having an extreme density of 4.5 or more are preferably present. For example, it is preferable that two or more peaks having an extreme density of 5.0 or more are present.
マグネシウム基合金の組織は、(0002)面の結晶方位の板表面に対する傾斜角度が10°未満(0°を含む)であり、その極密度が2.5以上であるピークを少なくとも1つ含んでいてもよい。この場合、(0002)面の結晶方位の全てが板表面に対して10°以上70°以下傾斜しているのではない。この組織は、(0002)面の結晶方位の板表面に対する傾斜角度が0°であり、(0002)面が板表面に沿う結晶や、上記傾斜角度が0°超10°未満であり、(0002)面が板表面に略沿う結晶も存在する。このように、(0002)面が板表面に沿った結晶や略沿った結晶を有するため、マグネシウム合金板材における板面内の強度を確保し易い。 The structure of the magnesium-based alloy contains at least one peak in which the angle of inclination of the (0002) plane with respect to the plate surface is less than 10 ° (including 0 °) and the extreme density is 2.5 or more. You may. In this case, not all of the crystal orientations of the (0002) plane are inclined by 10 ° or more and 70 ° or less with respect to the plate surface. In this structure, the inclination angle of the crystal orientation of the (0002) plane with respect to the plate surface is 0 °, the crystal whose (0002) plane is along the plate surface, and the inclination angle is more than 0 ° and less than 10 °, and (0002). ) There are also crystals whose surface is approximately along the surface of the plate. As described above, since the (0002) plane has crystals along the plate surface and crystals substantially along the plate surface, it is easy to secure the strength in the plate surface of the magnesium alloy plate material.
[特性]
マグネシウム合金板材は、常温での塑性加工性に優れる上に、強度に優れる。具体的には、エリクセン値、及び0.2%耐力の少なくとも一方が高いことが好適である。このマグネシウム合金板材は、更に、破断伸び、及び引張り強さの少なくとも一方も高いことが好適である。
[Characteristic]
The magnesium alloy plate material is excellent in plastic workability at room temperature and also in strength. Specifically, it is preferable that at least one of the Eriksen value and the 0.2% proof stress is high. It is preferable that the magnesium alloy plate material has at least one of high breaking elongation and tensile strength.
(エリクセン値)
マグネシウム合金板材のエリクセン値は、8.0mm以上とすることができる。エリクセン値が8.0mm以上であることで、常温での塑性加工性に優れる。エリクセン値は、「エリクセン試験機 JIS B 7729(2005)」及び「エリクセン試験方法 JIS Z 2247(2006)」に準拠して求めた値である。
(Eriksen value)
The Eriksen value of the magnesium alloy plate material can be 8.0 mm or more. When the Eriksen value is 8.0 mm or more, the plastic workability at room temperature is excellent. The Eriksen value is a value obtained in accordance with "Eriksen tester JIS B 7729 (2005)" and "Eriksen test method JIS Z 2247 (2006)".
Mg−Zn−Ca系合金の場合、エリクセン値は、更に8.5mm以上とすることができ、特に8.7mm以上とすることができる。
Mg−Zn−RE系合金、及びMg−Zn−Ca−RE系合金の場合、エリクセン値は、更に8.3mm以上とすることができ、特に8.5mm以上とすることができる。
Mg−Zn−RE−Mn系合金の場合、エリクセン値は、更に8.2mm以上とすることができ、特に8.4mm以上とすることができる。
このエリクセン値の上限値は、実用上、10mm程度が挙げられる。
In the case of Mg—Zn—Ca based alloys, the Eriksen value can be further set to 8.5 mm or more, and particularly 8.7 mm or more.
In the case of the Mg-Zn-RE alloy and the Mg-Zn-Ca-RE alloy, the Eriksen value can be further set to 8.3 mm or more, and particularly 8.5 mm or more.
In the case of the Mg-Zn-RE-Mn alloy, the Eriksen value can be further set to 8.2 mm or more, and particularly 8.4 mm or more.
The upper limit of the Eriksen value is practically about 10 mm.
(0.2%耐力)
マグネシウム合金板材の板幅方向の0.2%耐力は、95MPa以上とすることができる。この板幅方向の0.2%耐力が95MPa以上であることで、板幅方向の強度に優れる。
(0.2% proof stress)
The 0.2% proof stress of the magnesium alloy plate material in the plate width direction can be 95 MPa or more. When the 0.2% proof stress in the plate width direction is 95 MPa or more, the strength in the plate width direction is excellent.
Mg−Zn−Ca系合金の場合、板幅方向の0.2%耐力は、更に100MPa以上とすることができ、特に115MPa以上とすることができる。
Mg−Zn−RE系合金、及びMg−Zn−Ca−RE系合金の場合、板幅方向の0.2%耐力は、更に110MPa以上とすることができ、特に120MPa以上とすることができる。
Mg−Zn−RE−Mn系合金の場合、板幅方向の0.2%耐力は、更に120MPa以上とすることができ、特に130MPa以上とすることができる。
板幅方向の0.2%耐力の上限値は、実用上、160MPa程度が挙げられる。
In the case of the Mg-Zn-Ca based alloy, the 0.2% proof stress in the plate width direction can be further set to 100 MPa or more, and particularly 115 MPa or more.
In the case of the Mg-Zn-RE alloy and the Mg-Zn-Ca-RE alloy, the 0.2% proof stress in the plate width direction can be further set to 110 MPa or more, and particularly 120 MPa or more.
In the case of the Mg-Zn-RE-Mn-based alloy, the 0.2% proof stress in the plate width direction can be further set to 120 MPa or more, and particularly 130 MPa or more.
The upper limit of the 0.2% proof stress in the plate width direction is practically about 160 MPa.
一方、マグネシウム合金板材の圧延方向の0.2%耐力は、120MPa以上とすることができる。この圧延方向の0.2%耐力が120MPa以上であることで、圧延方向の強度に優れる。 On the other hand, the 0.2% proof stress of the magnesium alloy plate material in the rolling direction can be 120 MPa or more. When the 0.2% proof stress in the rolling direction is 120 MPa or more, the strength in the rolling direction is excellent.
Mg−Zn−Ca系合金、及びMg−Zn−Ca−RE系合金の場合、圧延方向の0.2%耐力は、更に140MPa以上とすることができ、特に145MPa以上とすることができる。
Mg−Zn−RE系合金の場合、圧延方向の0.2%耐力は、更に125MPa以上とすることができ、特に130MPa以上とすることができる。
Mg−Zn−RE−Mn系合金の場合、圧延方向の0.2%耐力は、更に130MPa以上とすることができ、特に135MPa以上とすることができる。
圧延方向の0.2%耐力の上限値は、実用上、180MPa程度が挙げられる。
In the case of the Mg-Zn-Ca-based alloy and the Mg-Zn-Ca-RE-based alloy, the 0.2% proof stress in the rolling direction can be further set to 140 MPa or more, and particularly 145 MPa or more.
In the case of Mg-Zn-RE alloy, the 0.2% proof stress in the rolling direction can be further set to 125 MPa or more, and particularly 130 MPa or more.
In the case of the Mg-Zn-RE-Mn alloy, the 0.2% proof stress in the rolling direction can be further set to 130 MPa or more, and particularly 135 MPa or more.
The upper limit of the 0.2% proof stress in the rolling direction is practically about 180 MPa.
(破断伸び)
マグネシウム合金板材の板幅方向の破断伸びは、28%以上とすることができる。板幅方向の破断伸びが28%以上であることで、板幅方向の破断伸びが大きく、板幅方向の延性に優れる。
(Breaking elongation)
The breaking elongation of the magnesium alloy plate material in the plate width direction can be 28% or more. When the breaking elongation in the plate width direction is 28% or more, the breaking elongation in the plate width direction is large and the ductility in the plate width direction is excellent.
Mg−Zn−Ca系合金の場合、板幅方向の破断伸びは、更に30%以上とすることができ、特に35%以上とすることができる。
Mg−Zn−RE系合金、Mg−Zn−Ca−RE系合金、及びMg−Zn−RE−Mn系合金の場合、板幅方向の破断伸びは、更に30%以上とすることができ、特に32%以上とすることができる。
板幅方向の破断伸びの上限値は、実用上、40%程度が挙げられる。
In the case of Mg-Zn-Ca based alloys, the elongation at break in the plate width direction can be further set to 30% or more, and particularly 35% or more.
In the case of Mg-Zn-RE alloys, Mg-Zn-Ca-RE alloys, and Mg-Zn-RE-Mn alloys, the elongation at break in the plate width direction can be further increased to 30% or more, particularly. It can be 32% or more.
Practically, the upper limit of the breaking elongation in the plate width direction is about 40%.
一方、マグネシウム合金板材の圧延方向の破断伸びは、26%以上とすることができる。圧延方向の破断伸びが26%以上であることで、圧延方向の破断伸びが大きく、圧延方向の延性に優れる。 On the other hand, the breaking elongation of the magnesium alloy plate material in the rolling direction can be 26% or more. When the breaking elongation in the rolling direction is 26% or more, the breaking elongation in the rolling direction is large and the ductility in the rolling direction is excellent.
Mg−Zn−Ca系合金の場合、圧延方向の破断伸びは、更に28%以上とすることができ、特に30%以上とすることができる。
Mg−Zn−RE系合金、Mg−Zn−Ca−RE系合金、及びMg−Zn−RE−Mn系合金の場合、圧延方向の破断伸びは、更に27%以上とすることができ、特に29%以上とすることができる。
圧延方向の破断伸びの上限値は、実用上、32%程度が挙げられる。
In the case of Mg—Zn—Ca based alloys, the elongation at break in the rolling direction can be further 28% or more, and particularly 30% or more.
In the case of Mg-Zn-RE alloys, Mg-Zn-Ca-RE alloys, and Mg-Zn-RE-Mn alloys, the elongation at break in the rolling direction can be further increased to 27% or more, particularly 29. It can be% or more.
Practically, the upper limit of the elongation at break in the rolling direction is about 32%.
(引張強さ)
マグネシウム合金板材の板幅方向の引張強さは、200MPa以上とすることができる。板幅方向の引張強さが200MPa以上であることで、板幅方向の引張強さが大きく、板幅方向の強度に優れる。
(Tensile strength)
The tensile strength of the magnesium alloy plate material in the plate width direction can be 200 MPa or more. When the tensile strength in the plate width direction is 200 MPa or more, the tensile strength in the plate width direction is large and the strength in the plate width direction is excellent.
Mg−Zn−Ca系合金の場合、板幅方向の引張強さは、更に220MPa以上とすることができ、特に230MPa以上とすることができる。
Mg−Zn−RE系合金の場合、板幅方向の引張強さは、更に225MPa以上とすることができ、特に235MPa以上とすることができる。
Mg−Zn−Ca−RE系合金の場合、板幅方向の引張強さは、更に230MPa以上とすることができ、特に240MPa以上とすることができる。
Mg−Zn−RE−Mn系合金の場合、板幅方向の引張強さは、更に240MPa以上とすることができ、特に250MPa以上とすることができる。
板幅方向の引張強さの上限値は、実用上、280MPa程度が挙げられる。
In the case of the Mg-Zn-Ca based alloy, the tensile strength in the plate width direction can be further set to 220 MPa or more, and particularly 230 MPa or more.
In the case of the Mg-Zn-RE alloy, the tensile strength in the plate width direction can be further set to 225 MPa or more, and particularly 235 MPa or more.
In the case of the Mg-Zn-Ca-RE alloy, the tensile strength in the plate width direction can be further set to 230 MPa or more, and particularly 240 MPa or more.
In the case of the Mg-Zn-RE-Mn-based alloy, the tensile strength in the plate width direction can be further set to 240 MPa or more, and particularly 250 MPa or more.
The upper limit of the tensile strength in the plate width direction is practically about 280 MPa.
一方、マグネシウム合金板材の圧延方向の引張強さは、220MPa以上とすることができる。圧延方向の引張強さが220MPa以上であることで、圧延方向の引張強さが大きく、圧延方向の強度に優れる。 On the other hand, the tensile strength of the magnesium alloy plate material in the rolling direction can be 220 MPa or more. When the tensile strength in the rolling direction is 220 MPa or more, the tensile strength in the rolling direction is large and the strength in the rolling direction is excellent.
Mg−Zn−Ca系合金の場合、圧延方向の引張強さは、更に225MPa以上とすることができ、特に235MPa以上とすることができる。
Mg−Zn−RE系合金の場合、圧延方向の引張強さは、更に230MPa以上とすることができ、特に240MPa以上とすることができる。
Mg−Zn−Ca−RE系合金の場合、圧延方向の引張強さは、更に235MPa以上とすることができ、特に245MPa以上とすることができる。
Mg−Zn−RE−Mn系合金の場合、圧延方向の引張強さは、更に245MPa以上とすることができ、特に255MPa以上とすることができる。
圧延方向の引張強さの上限値は、実用上、300MPa程度が挙げられる。
In the case of the Mg-Zn-Ca based alloy, the tensile strength in the rolling direction can be further set to 225 MPa or more, and particularly 235 MPa or more.
In the case of the Mg-Zn-RE alloy, the tensile strength in the rolling direction can be further set to 230 MPa or more, and particularly 240 MPa or more.
In the case of Mg-Zn-Ca-RE alloy, the tensile strength in the rolling direction can be further set to 235 MPa or more, and particularly 245 MPa or more.
In the case of Mg-Zn-RE-Mn-based alloys, the tensile strength in the rolling direction can be further set to 245 MPa or more, and particularly 255 MPa or more.
Practically, the upper limit of the tensile strength in the rolling direction is about 300 MPa.
これら0.2%耐力、破断伸び、及び引張強さは、次のようにして求められる。長手方向が板幅方向に沿ったJIS 13B号の板状試験片と長手方向が圧延方向に沿ったJIS 13B号の板状試験片とをマグネシウム合金板材から作製する。この試験片に対して、「金属材料引張試験方法 JIS Z 2241(2011)」に準拠して常温で引張試験を行う。 These 0.2% proof stress, elongation at break, and tensile strength are obtained as follows. A JIS 13B plate-shaped test piece whose longitudinal direction is along the plate width direction and a JIS 13B plate-shaped test piece whose longitudinal direction is along the rolling direction are produced from a magnesium alloy plate material. This test piece is subjected to a tensile test at room temperature in accordance with "Metallic Material Tensile Test Method JIS Z 2241 (2011)".
[用途]
実施形態に係るマグネシウム合金板材は、自動車の構成部材(ボディーパネル、シャーシ周りの部品)や、航空機、鉄道などの輸送機の構成部材や電気・電子機器類の構成部材などに好適に利用できる。
[Use]
The magnesium alloy plate material according to the embodiment can be suitably used for components of automobiles (body panels, parts around chassis), components of transport aircraft such as aircraft and railways, and components of electrical and electronic equipment.
〔マグネシウム合金板材の製造方法〕
実施形態に係るマグネシウム合金板材は、急冷凝固法により鋳造板材を作製する鋳造工程と、鋳造板材に圧延加工を施して圧延板材を作製する圧延工程と、圧延板材に熱処理を施す熱処理工程とを備えるマグネシウム合金板材の製造方法により製造できる。
[Manufacturing method of magnesium alloy plate]
The magnesium alloy plate material according to the embodiment includes a casting step of producing a cast plate material by a quenching solidification method, a rolling step of rolling the cast plate material to produce a rolled plate material, and a heat treatment step of applying a heat treatment to the rolled plate material. It can be manufactured by a method for manufacturing a magnesium alloy plate material.
[鋳造工程]
鋳造工程では、上述の組成を有する溶湯を冷却・凝固して、マグネシウム基合金の組成を有する鋳造板材を作製する。この鋳造工程は、溶湯の冷却速度(凝固速度)が早い急冷凝固法により行う。急冷凝固法としては、例えば、双ロール鋳造法(双ロール連続鋳造法)が挙げられる。この鋳造工程により、結晶方位が板表面に対して傾斜する双晶が形成される共に、(0002)面の結晶方位が板表面に対して種々の方向(板幅方向、鋳造方向、板幅方向と鋳造方向との間の方向)に傾斜している組織を有する鋳造板材が得られる。
[Casting process]
In the casting step, the molten metal having the above composition is cooled and solidified to produce a cast plate material having the composition of the magnesium-based alloy. This casting process is performed by a quenching solidification method in which the cooling rate (solidification rate) of the molten metal is high. Examples of the quenching solidification method include a double roll casting method (double roll continuous casting method). By this casting step, a diploid whose crystal orientation is inclined with respect to the plate surface is formed, and the crystal orientation of the (0002) plane is in various directions (plate width direction, casting direction, plate width direction) with respect to the plate surface. A cast plate material having a structure inclined in the direction between the casting direction and the casting direction is obtained.
冷却速度は、例えば、100℃/s以上が挙げられる。冷却速度を100℃/s以上とすれば、冷却速度が早いため、粗大な結晶粒の形成を抑制して結晶粒を微細にし易い。その上、溶質原子が十分に固溶することで、後述するように再結晶メカニズムが変化し、結晶が微細化すると共に、板表面に対して種々の方向に傾斜した結晶が形成され易い。冷却速度は、更に500℃/s以上が好ましく、特に1000℃/s以上が好ましい。冷却速度の上限値は、実用上、2000℃/s以下が挙げられる。 The cooling rate is, for example, 100 ° C./s or higher. When the cooling rate is 100 ° C./s or higher, the cooling rate is high, so that it is easy to suppress the formation of coarse crystal grains and make the crystal grains finer. In addition, when the solute atoms are sufficiently solid-solved, the recrystallization mechanism changes as described later, the crystals become finer, and crystals inclined in various directions with respect to the plate surface are likely to be formed. The cooling rate is further preferably 500 ° C./s or higher, and particularly preferably 1000 ° C./s or higher. Practically, the upper limit of the cooling rate is 2000 ° C./s or less.
[圧延工程]
圧延工程では、鋳造板材に圧延加工を施して圧延板材を作製する。圧延加工は、対向配置された圧延ロールを備える圧延装置を用い、その圧延ロール間に鋳造板材を挿通させることで行う。このとき、鋳造板材を特定の温度に予熱すると共に、圧延ロールを特定の温度とする。この圧延加工により、微細な結晶粒を有する圧延板材が得られる。これは、圧延加工時の温度により、鋳造工程で形成された双晶を核として再結晶するからだと考えられる。
[Rolling process]
In the rolling process, the cast plate material is rolled to produce a rolled plate material. The rolling process is performed by using a rolling apparatus provided with rolling rolls arranged so as to face each other and inserting a cast plate material between the rolling rolls. At this time, the cast plate material is preheated to a specific temperature, and the rolling roll is set to a specific temperature. By this rolling process, a rolled plate material having fine crystal grains can be obtained. It is considered that this is because the twins formed in the casting process are recrystallized as nuclei depending on the temperature during rolling.
鋳造板材の予熱温度とは、圧延ロールに接触する直前の鋳造板材の温度とする。鋳造板材の加熱(予熱)は、加熱炉を別途設けて行うことが挙げられる。鋳造板材が加熱炉から圧延ローラに接触するまでの間に、板材の温度が低下せず、圧延ローラに接触する直前の板材の温度が後述の温度範囲を満たすように、搬送距離や搬送時間を調整したり、搬送経路に鋳造板材の温度が低下しないように保温する保温カバーを設けたり、雰囲気の温度制御を行ったりすることが好ましい。 The preheating temperature of the cast plate material is the temperature of the cast plate material immediately before coming into contact with the rolling roll. Heating (preheating) of the cast plate material may be performed by separately providing a heating furnace. The transfer distance and transfer time are set so that the temperature of the plate material does not decrease between the time when the cast plate material comes into contact with the rolling roller and the temperature of the plate material immediately before contact with the rolling roller satisfies the temperature range described later. It is preferable to adjust the temperature of the cast plate material, provide a heat insulating cover for keeping the temperature of the cast plate material in the transport path, or control the temperature of the atmosphere.
鋳造板材の予熱温度は、例えば、250℃以上450℃以下とし、圧延ロールの温度は、例えば、100℃以上300℃以下とすることが挙げられる。鋳造板材の予熱温度を250℃以上とし、圧延ロールの温度を100℃以上とすることで、微細な結晶粒を有する圧延板材を作製し易い。鋳造板材の予熱温度を450℃以下とし、圧延ロールの温度を300℃以下とすることで、結晶粒が粗大になり難い。鋳造板材の予熱温度は、更に300℃以上425℃以下とすることができ、特に350℃以上400℃以下とすることができる。圧延ロールの温度は、更に125℃以上250℃以下とすることができ、特に150℃以上200℃以下とすることができる。1パス当たりの圧下率は、10%以上30%以下、総圧下率は、25%以上90%以下が好ましい。 The preheating temperature of the cast plate material is, for example, 250 ° C. or higher and 450 ° C. or lower, and the temperature of the rolling roll is, for example, 100 ° C. or higher and 300 ° C. or lower. By setting the preheating temperature of the cast plate material to 250 ° C. or higher and the temperature of the rolling roll to 100 ° C. or higher, it is easy to produce a rolled plate material having fine crystal grains. By setting the preheating temperature of the cast plate material to 450 ° C. or lower and the temperature of the rolling roll to 300 ° C. or lower, the crystal grains are less likely to become coarse. The preheating temperature of the cast plate material can be further set to 300 ° C. or higher and 425 ° C. or lower, and particularly 350 ° C. or higher and 400 ° C. or lower. The temperature of the rolling roll can be further set to 125 ° C. or higher and 250 ° C. or lower, and particularly 150 ° C. or higher and 200 ° C. or lower. The reduction rate per pass is preferably 10% or more and 30% or less, and the total reduction rate is preferably 25% or more and 90% or less.
[熱処理工程]
熱処理工程は、圧延板材を加熱する。それにより、圧延工程で導入された歪を除去する。この熱処理工程により、平均結晶粒径が15μm以下で、(0002)面の結晶方位が板表面に対して10°以上70°以下傾斜し、その極密度が2.5以上のピークが3つ以上存在する組織を有するマグネシウム合金板材を作製できる。この組織を有するマグネシウム合金板材が得られるメカニズムは、詳しくは分かっていないが、次のように推測される。
[Heat treatment process]
The heat treatment step heats the rolled plate material. As a result, the strain introduced in the rolling process is removed. By this heat treatment step, the average crystal grain size is 15 μm or less, the crystal orientation of the (0002) plane is inclined by 10 ° or more and 70 ° or less with respect to the plate surface, and there are three or more peaks having an extreme density of 2.5 or more. A magnesium alloy plate having an existing structure can be produced. The mechanism by which a magnesium alloy plate having this structure is obtained is not known in detail, but is presumed as follows.
一般的なマグネシウム合金板材の再結晶は、粒界に生成した再結晶粒が回転しながら成長するメカニズムが考えられており、この場合、元の結晶粒の結晶方位がベースとなるため、再結晶後も方位変化は少ない。一方、本実施形態では、鋳造工程で急冷することにより、溶質原子が十分固溶し、一部は粒界に原子レベルで偏析する。この偏析した溶質原子が上記粒界からの再結晶を抑制する代わりに、圧延時に導入された双晶を核とした再結晶が生じる。これらの双晶は(0002)面の結晶方位が板表面に対して種々の方向に傾斜している。そのため、これらの双晶を核として再結晶することに加え、鋳造工程で(0002)面の結晶方位が板表面に対して種々の方向に傾斜した結晶が形成されたことが相まって、(0002)面の結晶方位が板表面に対して種々の方向に傾斜した結晶が得られたと考えられる。また、平均結晶粒径の小さいマグネシウム合金板材が得られたのは、鋳造工程で急冷することにより十分に固溶した溶質原子が圧延時に導入される転位の障壁となり、転位が活動し難くなる代わりに双晶が多量に導入され、これら双晶を核として再結晶が生じたためと考えられる。その鋳造板材を用いることで、圧延工程、及び熱処理工程を経ても(0002)面の全てが板表面に沿うことがない上に、その結晶方位が板幅方向だけではなく、板幅方向に加えて圧延方向や板幅方向と圧延方向との間の方向にも傾斜した組織を形成できる。 The recrystallization of a general magnesium alloy plate is considered to have a mechanism in which the recrystallized grains generated at the grain boundaries grow while rotating. In this case, the crystal orientation of the original crystal grains is the base, so that the recrystallization occurs. There is little change in orientation after that. On the other hand, in the present embodiment, the solute atoms are sufficiently solid-solved by quenching in the casting step, and a part of the solute atoms is segregated at the grain boundaries at the atomic level. Instead of the segregated solute atoms suppressing recrystallization from the grain boundaries, recrystallization with twins introduced during rolling occurs. The crystal orientation of the (0002) plane of these twins is inclined in various directions with respect to the plate surface. Therefore, in addition to recrystallizing these twins as nuclei, crystals in which the crystal orientation of the (0002) plane is inclined in various directions with respect to the plate surface are formed in the casting step, and (0002) It is considered that crystals in which the crystal orientation of the surface was inclined in various directions with respect to the plate surface were obtained. In addition, the magnesium alloy plate with a small average crystal grain size was obtained because the solute atoms that were sufficiently solid-solved by quenching in the casting process became a barrier to dislocations introduced during rolling, making it difficult for dislocations to act. It is probable that a large amount of twins were introduced into the material and recrystallization occurred with these twins as nuclei. By using the cast plate material, not all of the (0002) planes follow the plate surface even after the rolling step and the heat treatment step, and the crystal orientation is added not only in the plate width direction but also in the plate width direction. It is possible to form an inclined structure in the rolling direction and the direction between the plate width direction and the rolling direction.
圧延板材の加熱温度は、例えば、300℃以上450℃以下が挙げられ、熱処理時間は、例えば、0.5時間以上3.0時間以下が挙げられる。圧延板材の加熱温度を300℃以上とし、熱処理時間を0.5時間以上とすることで、圧延板材の歪を除去し易い。圧延板材の加熱温度を450℃以下とし、熱処理時間を3.0時間以下とすることで、結晶粒の粗大化を抑制し易い。圧延板材の加熱温度は、更に320℃以上420℃以下が好ましく、特に350℃以上400℃以下が好ましい。熱処理時間は、更に0.75時間以上2.5時間以下が好ましく、特に1.0時間以上2.0時間以下が好ましい。 The heating temperature of the rolled plate material is, for example, 300 ° C. or higher and 450 ° C. or lower, and the heat treatment time is, for example, 0.5 hour or longer and 3.0 hours or lower. By setting the heating temperature of the rolled plate material to 300 ° C. or higher and the heat treatment time to 0.5 hours or more, it is easy to remove the strain of the rolled plate material. By setting the heating temperature of the rolled plate material to 450 ° C. or lower and the heat treatment time to 3.0 hours or less, it is easy to suppress the coarsening of crystal grains. The heating temperature of the rolled plate material is more preferably 320 ° C. or higher and 420 ° C. or lower, and particularly preferably 350 ° C. or higher and 400 ° C. or lower. The heat treatment time is further preferably 0.75 hours or more and 2.5 hours or less, and particularly preferably 1.0 hours or more and 2.0 hours or less.
[用途]
上記マグネシウム合金板材の製造方法は、上記マグネシウム合金板材の製造に好適に利用できる。
[Use]
The method for producing a magnesium alloy plate material can be suitably used for producing the magnesium alloy plate material.
〔作用効果〕
実施形態に係るマグネシウム合金板材によれば、結晶粒径が小さい上に、(0002)面の結晶方位が板表面に対して種々の方向に傾斜していることで、結晶方位と強度及び伸びの異方性が小さいため、常温での塑性加工性に優れる上に、強度に優れる。
[Action effect]
According to the magnesium alloy plate material according to the embodiment, the crystal grain size is small and the crystal orientation of the (0002) plane is inclined in various directions with respect to the plate surface, so that the crystal orientation, strength, and elongation can be determined. Since the anisotropy is small, it is excellent in plastic workability at room temperature and also in strength.
《試験例1》
マグネシウム基合金からなるマグネシウム合金板材を作製し、常温での塑性加工性と機械的特性とを評価した。
<< Test Example 1 >>
A magnesium alloy plate made of a magnesium-based alloy was prepared, and its plastic workability and mechanical properties at room temperature were evaluated.
〔試料No.1−1,No.1−2〕
マグネシウム合金板材の試料No.1−1、No.1−2は、上述のマグネシウム合金板材の製造方法と同様にして、鋳造工程→圧延工程→熱処理工程の手順で作製した。各工程の条件は、表1に示す。
[Sample No. 1-1, No. 1-2]
Sample No. of magnesium alloy plate material. 1-1, No. 1-2 was produced by the procedure of casting step → rolling step → heat treatment step in the same manner as the above-mentioned manufacturing method of magnesium alloy plate material. The conditions for each step are shown in Table 1.
[鋳造工程]
鋳造工程では、双ロール鋳造法により、冷却速度を1000℃/sとして、厚さが4mmの鋳造板材を作製した。試料No.1−1の組成は、添加元素としてZnを1.5質量%、Caを0.1質量%含有し、残部がMg及び不可避的不純物からなるMg−Zn−Ca系合金(表1、2ではZX10で示す)とした。試料No.1−2の組成は、添加元素としてZnを2.0質量%、Mm(ミッシュメタル)を0.3質量%含有し、残部がMg及び不可避的不純物からなるMg−Zn−Mm系合金(表1、2ではZE20で示す)とした。Mmの含有元素及びその含有量は、Ce(セリウム)を52質量%、La(ランタン)を28質量%、Nd(ネオジム)を15質量%、Pr(プラセオジム)を5質量%とした。
[Casting process]
In the casting process, a cast plate material having a thickness of 4 mm was produced by a double roll casting method at a cooling rate of 1000 ° C./s. Sample No. The composition of 1-1 is an Mg—Zn—Ca alloy containing 1.5% by mass of Zn and 0.1% by mass of Ca as additive elements, and the balance is Mg and unavoidable impurities (in Tables 1 and 2). (Indicated by ZX10). Sample No. The composition of 1-2 is an Mg-Zn-Mm alloy containing 2.0% by mass of Zn as an additive element and 0.3% by mass of Mm (mischmetal), and the balance is Mg and unavoidable impurities (Table). In 1 and 2, it is indicated by ZE20). The elements contained in Mm and their contents were 52% by mass for Ce (cerium), 28% by mass for La (lanthanum), 15% by mass for Nd (neodymium), and 5% by mass for Pr (praseodymium).
[圧延工程]
圧延工程では、鋳造板材の温度(圧延温度)、圧延ロールの温度、1パス当たりの圧下率、総圧下率を以下の条件として、厚さ4mmの鋳造板材に圧延加工を施して厚さ1mmの圧延板材を作製した。
圧延温度 :395℃
圧延ロールの温度 :200℃
圧下率 :20%/1パス
総圧下率 :75%
[Rolling process]
In the rolling process, the temperature of the cast plate (rolling temperature), the temperature of the rolling roll, the reduction rate per pass, and the total reduction rate are the following conditions, and the cast plate material with a thickness of 4 mm is rolled to a thickness of 1 mm. A rolled plate material was produced.
Rolling temperature: 395 ° C
Rolling roll temperature: 200 ° C
Reduction rate: 20% / 1 pass Total reduction rate: 75%
[熱処理工程]
熱処理工程では、温度、時間を以下の条件として、圧延板材に熱処理を施した。
温度:350℃
時間:1時間
[Heat treatment process]
In the heat treatment step, the rolled plate material was heat-treated under the following conditions of temperature and time.
Temperature: 350 ° C
Time: 1 hour
〔試料No.1−101,No.1−102〕
マグネシウム合金板材の試料No.1−101、No.1−102はそれぞれ、表1に示すように、試料No.1−1、No.1−2と鋳造工程が相違する点を除き、試料No.1−1、No.1−2と同じ組成で同じ圧延工程及び熱処理工程を経て作製した。鋳造工程では、双ロール鋳造法ではなく、鋳型に溶湯を注いで、冷却速度を10℃/sとして、厚さ4mmの板状のインゴット(鋳造板材)を作製した。
[Sample No. 1-101, No. 1-102]
Sample No. of magnesium alloy plate material. 1-101, No. As shown in Table 1, each of 1-102 has sample No. 1-1, No. Except for the difference between 1-2 and the casting process, Sample No. 1-1, No. It was produced through the same rolling step and heat treatment step with the same composition as 1-2. In the casting step, a molten metal was poured into a mold instead of the twin roll casting method, and a plate-shaped ingot (cast plate material) having a thickness of 4 mm was produced at a cooling rate of 10 ° C./s.
〔平均結晶粒径〕
各試料の平均結晶粒径を測定した。この測定は、次のようにして行った。試料をSEMに挿入し、真空状態とした上で、室温、加速電圧15kVの条件で150μm×500μmの観察視野(表面)を1個採り、EBSD法により、全観察視野について各結晶粒の結晶方位別に色別(マッピング)を行った。得られたマッピング像について株式会社TSLソリューションズ社製OIM6.2.0を用いて画像解析を行なった。このとき、上記解析ソフトにおける信頼値係数CI値が0.1以上のデータ点を用いて画像解析を行って各粒子の面積を求め、各面積に等しい円の直径の平均値を平均結晶粒径とした。その結果を表2に示す。
[Average crystal grain size]
The average crystal grain size of each sample was measured. This measurement was performed as follows. After inserting the sample into the SEM and creating a vacuum state, one observation field (surface) of 150 μm × 500 μm was taken under the conditions of room temperature and an acceleration voltage of 15 kV, and the crystal orientation of each crystal grain was taken for the entire observation field by the EBSD method. Color coding was performed separately. Image analysis was performed on the obtained mapping image using OIM 6.2.0 manufactured by TSL Solutions Co., Ltd. At this time, image analysis is performed using data points having a reliability coefficient CI value of 0.1 or more in the above analysis software to obtain the area of each particle, and the average value of the diameters of circles equal to each area is the average crystal grain size. And said. The results are shown in Table 2.
〔塑性加工性の評価〕
各試料の塑性加工性の評価は、エリクセン値を測定することで行った。エリクセン値は、「エリクセン試験機 JIS B 7729(2005)」及び「エリクセン試験方法 JIS Z 2247(2006)」に準拠して求めた。その結果を表2に示す。
[Evaluation of plastic workability]
The plastic workability of each sample was evaluated by measuring the Eriksen value. The Eriksen value was determined in accordance with "Eriksen tester JIS B 7729 (2005)" and "Eriksen test method JIS Z 2247 (2006)". The results are shown in Table 2.
〔機械的特定の評価〕
各試料の機械的特性の評価は、引張試験により、圧延方向(RD)及び板幅方向(TD)の引張強さ、0.2%耐力、及び破断伸びを測定することで行った。この引張試験は、各試料において、長手方向が板幅方向に沿ったJIS 13B号の板状試験片と長手方向が圧延方向に沿ったJIS 13B号の板状試験片とを作製し、この試験片に対して、「金属材料引張試験方法 JIS Z 2241(2011)」に準拠して常温で行った。それら結果を表2に併せて示す。
[Mechanical specific evaluation]
The mechanical properties of each sample were evaluated by measuring the tensile strength in the rolling direction (RD) and the plate width direction (TD), 0.2% proof stress, and breaking elongation by a tensile test. In this tensile test, a JIS 13B plate-shaped test piece whose longitudinal direction is along the plate width direction and a JIS 13B plate-shaped test piece whose longitudinal direction is along the rolling direction are prepared for each sample, and this test is performed. One piece was subjected to at room temperature in accordance with "Metallic Material Tensile Test Method JIS Z 2241 (2011)". The results are also shown in Table 2.
表2に示すように、試料No.1−1、No.1−2は、平均結晶粒径が15μm以下で、エリクセン値が高い上に、圧延方向及び板幅方向のいずれの方向における機械的特性も高い。即ち、この試料No.1−1、No.1−2は、常温での塑性加工性に優れる上に、機械的特性に優れることが分かる。一方、試料No.1−101、No.1−102は、平均結晶粒径が15μm超であり、エリクセン値が低く、圧延方向及び板幅方向のいずれの方向における機械的特性も低い。 As shown in Table 2, the sample No. 1-1, No. No. 1-2 has an average crystal grain size of 15 μm or less, a high Eriksen value, and high mechanical properties in both the rolling direction and the plate width direction. That is, this sample No. 1-1, No. It can be seen that 1-2 is excellent in plastic workability at room temperature and also in mechanical properties. On the other hand, sample No. 1-101, No. In 1-102, the average crystal grain size is more than 15 μm, the Eriksen value is low, and the mechanical properties in both the rolling direction and the plate width direction are low.
EBSD法により試料No.1−1の(0002)面の極点図を採った。その極点図を図1に示す。この極点図は、(0002)面の結晶方位の分布状態(極密度の大きさ)を色別(極密度が大きい順に、赤、橙、黄、緑、青)で表す。この極点図の中心は板表面に対して0°、円周上は板表面に対して90°を示し、説明の便宜上、板表面に対して10°傾斜した地点と70°傾斜した地点とを二点鎖線円で示す。図1は、グレースケールで示すが、実際には上記色別がある。 Sample No. by the EBSD method. The pole figure of the (0002) plane of 1-1 was taken. The pole figure is shown in FIG. In this pole figure, the distribution state (magnitude of extreme density) of the crystal orientation of the (0002) plane is represented by color (red, orange, yellow, green, blue in descending order of extreme density). The center of this pole figure shows 0 ° with respect to the plate surface, and 90 ° with respect to the plate surface on the circumference. For convenience of explanation, a point inclined by 10 ° and a point inclined by 70 ° with respect to the plate surface are shown. It is indicated by a two-dot chain line circle. Although FIG. 1 is shown in gray scale, there are actually the above-mentioned colors.
図1に破線円で示すように、試料No.1−1は、(0002)面の結晶方位が板表面に対して10°以上70°以下傾斜し、その極密度が2.5以上のピークが3つ以上存在する組織を有することが分かる。具体的には、図1の極点図では、板幅方向に加えて、圧延方向と、板幅方向と圧延方向との間の方向とに合計4つの上記ピークが存在することが分かる。この4つのピークうち2つのピークの値は、3.0以上4.0未満であり、残り2つのピークの値は、4.0以上、更には5.0以上である。このように、上記ピークが分散している、即ち、結晶方位が種々の方向に傾斜していることで、試料No.1−1のエリクセン値と機械的特性とが高い結果となったと考えられる。更に、図1の極点図では、中心(0°)の極密度も2.5以上、更には3.0以上であることが分かる。 As shown by the broken line circle in FIG. 1, the sample No. It can be seen that 1-1 has a structure in which the crystal orientation of the (0002) plane is inclined by 10 ° or more and 70 ° or less with respect to the plate surface, and three or more peaks having an extreme density of 2.5 or more are present. Specifically, in the pole view of FIG. 1, it can be seen that in addition to the plate width direction, there are a total of four peaks in the rolling direction and in the direction between the plate width direction and the rolling direction. The value of two of these four peaks is 3.0 or more and less than 4.0, and the value of the remaining two peaks is 4.0 or more and further 5.0 or more. In this way, the peaks are dispersed, that is, the crystal orientations are inclined in various directions, so that the sample No. It is considered that the Eriksen value of 1-1 and the mechanical characteristics were high. Further, in the pole figure of FIG. 1, it can be seen that the pole density at the center (0 °) is 2.5 or more, and further 3.0 or more.
試料No.1−2における(0002)面の極点図は図示していないが、試料No.1−2のエリクセン値と機械的特性とが、試料No.1−1と同様に高い結果になったことから、試料No.1−2は図1に示す試料No.1−1と同様の組織を有していると考えられる。 Sample No. Although the pole figure of the (0002) plane in 1-2 is not shown, the sample No. The Eriksen value of 1-2 and the mechanical properties are the sample No. Since the results were as high as 1-1, the sample No. 1-2 is the sample No. 1 shown in FIG. It is considered that it has the same tissue as 1-1.
一方、試料No.1−101,No.1−102は、エリクセン値及び機械的特性が低い結果になったことから、試料No.1−1とは異なる組織を有していると考えられる。即ち、試料No.1−101,No.1−102の組織は、試料No.1−1のような(0002)面の結晶方位が板表面に対して10°以上70°以下傾斜し、その極密度が2.5以上のピークが3つ以上存在する組織を有していない。 On the other hand, sample No. 1-101, No. Sample Nos. 1-102 had low Eriksen values and mechanical properties. It is considered that it has a different organization from 1-1. That is, the sample No. 1-101, No. The structure of 1-102 is the sample No. It does not have a structure in which the crystal orientation of the (0002) plane such as 1-1 is inclined by 10 ° or more and 70 ° or less with respect to the plate surface, and three or more peaks having an extreme density of 2.5 or more are present. ..
なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
Claims (9)
前記マグネシウム基合金は、
Caを0.05質量%以上0.3質量%以下、及び希土類元素を0.05質量%以上0.5質量%以下の少なくとも一方と、Znを0.5質量%以上6.2質量%以下とを含み、残部がMg及び不可避的不純物である組成と、
平均結晶粒径が15μm以下で、EBSD法により(0002)面の極点図をとったとき、前記(0002)面の結晶方位が板表面に対して10°以上70°以下傾斜し、その極密度が2.5以上のピークが3つ以上存在する組織とを備えるマグネシウム合金板材。 A magnesium alloy plate made of a magnesium-based alloy
The magnesium-based alloy is
Ca is 0.05% by mass or more and 0.3% by mass or less, rare earth element is 0.05% by mass or more and 0.5% by mass or less, and Zn is 0.5% by mass or more and 6.2% by mass or less. And the composition that the balance is Mg and unavoidable impurities, including
When the average crystal grain size is 15 μm or less and the pole view of the (0002) plane is taken by the EBSD method, the crystal orientation of the (0002) plane is inclined by 10 ° or more and 70 ° or less with respect to the plate surface, and its extreme density. A magnesium alloy plate having a structure having three or more peaks having a value of 2.5 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016222628A JP6760000B2 (en) | 2016-11-15 | 2016-11-15 | Magnesium alloy plate material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016222628A JP6760000B2 (en) | 2016-11-15 | 2016-11-15 | Magnesium alloy plate material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018080363A JP2018080363A (en) | 2018-05-24 |
JP6760000B2 true JP6760000B2 (en) | 2020-09-23 |
Family
ID=62198082
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016222628A Active JP6760000B2 (en) | 2016-11-15 | 2016-11-15 | Magnesium alloy plate material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6760000B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021131205A1 (en) * | 2019-12-23 | 2021-07-01 | 住友電気工業株式会社 | Magnesium alloy plate and magnesium alloy coil material |
WO2021214890A1 (en) * | 2020-04-21 | 2021-10-28 | 住友電気工業株式会社 | Magnesium alloy plate, press compact, and method for manufacturing magnesium alloy plate |
WO2021214891A1 (en) * | 2020-04-21 | 2021-10-28 | 住友電気工業株式会社 | Magnesium alloy sheet, press-formed body, and method for manufacturing magnesium alloy sheet |
CN114921700B (en) * | 2022-05-25 | 2023-09-26 | 中南大学 | Biodegradable Mg-Zn-Ca-Re alloy |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO20064605L (en) * | 2006-10-11 | 2008-04-14 | Norsk Hydro As | Process for making magnesium alloy bands |
KR100993840B1 (en) * | 2008-01-30 | 2010-11-11 | 포항공과대학교 산학협력단 | Magnesium alloy panel having high strength and manufacturing method thereof |
KR20100038809A (en) * | 2008-10-06 | 2010-04-15 | 포항공과대학교 산학협력단 | Magnesium alloy panel having high formability and method of manufacturing the same |
RS52412B (en) * | 2008-10-06 | 2013-02-28 | Milanka GLAVANOVIĆ | PROCEDURE FOR DETERMINING δD VALUES OF UNCHANGEABLE STABLE ISOTOPES OF HYDROGEN IN METHYL GROUP OF ETHANOL USING ISOTOPE RATIO MASS SPECTROMETRY (IRMS) INSTRUMENT TECHNIQUE |
KR101303585B1 (en) * | 2010-11-23 | 2013-09-11 | 포항공과대학교 산학협력단 | Magnesium alloy sheet having excellent room temperature formability and method of fabricating the same |
JP5692847B2 (en) * | 2010-12-08 | 2015-04-01 | 独立行政法人産業技術総合研究所 | Magnesium alloy sheet with improved room temperature formability and strength and method for producing the same |
EP3205736B1 (en) * | 2016-02-11 | 2018-08-22 | Volkswagen AG | Magnesium alloy sheet produced by twin roll casting |
-
2016
- 2016-11-15 JP JP2016222628A patent/JP6760000B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018080363A (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6760000B2 (en) | Magnesium alloy plate material | |
JP5852580B2 (en) | Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same | |
JP5658609B2 (en) | Magnesium alloy materials and engine parts | |
JP6936293B2 (en) | Aluminum alloy foil | |
US20210115538A1 (en) | Magnesium alloy | |
KR101159790B1 (en) | Magnesium alloy having high ductility and high toughness and process for preparing the same | |
KR102043774B1 (en) | High formability magnesium alloy sheet and method for manufacturing the same | |
JP6465338B2 (en) | Magnesium alloy, magnesium alloy plate, magnesium alloy member, and method for producing magnesium alloy | |
JP2009242926A (en) | Copper-nickel-silicon based alloy for electronic material | |
JP6869119B2 (en) | Cu-Ni-Al-based copper alloy plate material, manufacturing method, and conductive spring member | |
EP3395458A1 (en) | Magnesium alloy sheet and method for manufacturing same | |
KR20200027918A (en) | Manufacturing method of aluminum alloy foil and aluminum alloy foil | |
KR20170140771A (en) | High-strength 6000-based alloy thick plate having uniform strength in plate thickness direction and method for manufacturing the same | |
JP7274585B2 (en) | Magnesium alloy plate and manufacturing method thereof | |
KR20160136832A (en) | High strength wrought magnesium alloys and method for manufacturing the same | |
CN108291275B (en) | Copper alloy material | |
JP2020510750A (en) | Magnesium alloy sheet and method of manufacturing the same | |
KR101993506B1 (en) | Precipitation hardening magnesium alloy for extruding and method for manufacturing the same | |
WO2022080233A1 (en) | Aluminum alloy foil and manufacturing method thereof | |
WO2021214890A1 (en) | Magnesium alloy plate, press compact, and method for manufacturing magnesium alloy plate | |
US10358697B2 (en) | Cu—Co—Ni—Si alloy for electronic components | |
JP2020503461A (en) | Magnesium alloy sheet and method of manufacturing the same | |
KR101988794B1 (en) | Magnesium alloy sheet having excellent corrosion resistance, and method for manufacturing the same | |
JP2020524219A (en) | Magnesium alloy sheet material and manufacturing method thereof | |
WO2021214891A1 (en) | Magnesium alloy sheet, press-formed body, and method for manufacturing magnesium alloy sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190521 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200122 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200804 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200817 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6760000 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |