WO2021215666A1 - High-quality magnesium alloy processed material and manufacturing method therefor - Google Patents

High-quality magnesium alloy processed material and manufacturing method therefor Download PDF

Info

Publication number
WO2021215666A1
WO2021215666A1 PCT/KR2021/003144 KR2021003144W WO2021215666A1 WO 2021215666 A1 WO2021215666 A1 WO 2021215666A1 KR 2021003144 W KR2021003144 W KR 2021003144W WO 2021215666 A1 WO2021215666 A1 WO 2021215666A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium alloy
magnesium
extruded material
weight
tin
Prior art date
Application number
PCT/KR2021/003144
Other languages
French (fr)
Korean (ko)
Inventor
박성혁
고종빈
진상철
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2021215666A1 publication Critical patent/WO2021215666A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/06Alloys based on magnesium with a rare earth metal as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention is a national research and development project implemented by the Ministry of Science and ICT (task unique number: 1711099226, (organization) detailed project number: 2019R1A2C1085272, project name: personal basic research (middle-level researcher support project), research project name: low cost for next-generation eco-friendly vehicles Development of full-cycle element technology for manufacturing high-performance lightweight magnesium, specialized research and management institution: National Research Foundation of Korea, organized institution: Kyungpook National University Industry-University Cooperation Foundation, research period: 2019. 09. 01 ⁇ 2024. 02.
  • the present invention relates to a high-physical magnesium alloy processed material that does not contain expensive rare earth metals and overcomes low mechanical properties, which is a disadvantage of conventional commercially available magnesium extruded materials, and a method for manufacturing the same.
  • magnesium based on magnesium (Mg: 1.738 g/cm 3 , Fe: 7.874 g/cm 3 , Ti: 4.506 g/cm 3 and Al: 2.70 g/cm 3 ), which has a significantly lower density than other metals for structural materials. Alloys are attracting considerable interest in the industry as a material for reducing the weight of automobiles.
  • magnesium alloys for casting to be applied to automobile engines and gear parts based on the excellent castability of magnesium.
  • casting defects such as holes and shrinkage cavities
  • studies on magnesium alloy workpieces obtained through plastic working processes such as extrusion, rolling, and forging to obtain better mechanical properties are being actively conducted.
  • magnesium alloy extruded material exhibits superior mechanical properties compared to cast material and can be manufactured in various shapes, so it is suitable for use in automobile body and chassis components such as bumper beams, radiator supports, engine cradles and subframes.
  • the technical problem to be solved by the present invention is significantly improved mechanical properties compared to the conventional magnesium extruded material, which did not contain expensive rare earth elements as alloy elements and had difficulty in expanding industrial applications due to conventional low mechanical properties (strength, elongation) It is to provide a novel magnesium alloy having a and a method for manufacturing the same.
  • the present invention provides 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; And it provides a magnesium alloy extruded material containing unavoidable impurities.
  • the magnesium alloy extruded material is more than 6.0% by weight and 8.0% by weight or less of bismuth (Bi); greater than 4.0% by weight 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and unavoidable impurities.
  • the magnesium alloy extruded material is characterized in that it does not contain a rare-earth metal as an alloying element.
  • the magnesium alloy extruded material is a secondary phase (second phase) Mg 3 Bi 2 or Mg 2 Sn It is characterized in that it contains precipitated particles.
  • the magnesium alloy extruded material is 7.0% by weight of bismuth (Bi); 6.0% by weight of tin (Sn); Magnesium (Mg) balance; and unavoidable impurities, wherein the ultimate tensile strength (UTS) ⁇ elongation value is 3689 MPa ⁇ %.
  • a method for manufacturing the magnesium alloy extruded material (a) 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and casting a molten magnesium alloy containing unavoidable impurities to prepare a magnesium alloy billet; (b) homogenizing heat treatment and cooling the magnesium alloy billet prepared in step (a); And (c) extruding the homogenized heat-treated magnesium alloy billet in step (b); provides a method of manufacturing a magnesium alloy extruded material comprising a.
  • step (a) 5.0 to 8.0 wt% of bismuth (Bi) in step (a); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and maintaining a molten magnesium alloy containing unavoidable impurities at 670 to 770 o C for 20 minutes and then casting to prepare a magnesium alloy billet.
  • step (b) the magnesium alloy billet is subjected to a homogenization heat treatment at 350 to 550 o C for 0.5 to 72 hours, followed by water cooling.
  • Magnesium alloy according to the invention extruded material is Mg-Bi 2 alloy by further comprising a tin (Sn) in the alloy is the dynamic recrystallization to promote the extrusion obtained even while the secondary precipitated in the microstructure and an extrusion consisting of a fine crystal grain phase (Mg 3 Bi 2 or Mg 2 Sn) particles, and exhibits significantly improved strength and elongation compared to conventional magnesium extruded materials without including rare earth metals.
  • a tin (Sn) in the alloy is the dynamic recrystallization to promote the extrusion obtained even while the secondary precipitated in the microstructure and an extrusion consisting of a fine crystal grain phase (Mg 3 Bi 2 or Mg 2 Sn) particles, and exhibits significantly improved strength and elongation compared to conventional magnesium extruded materials without including rare earth metals.
  • the magnesium alloy extruded material according to the present invention includes 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; And it is manufactured by extruding a magnesium alloy containing unavoidable impurities.
  • the reason for limiting the alloy composition as described above in the magnesium alloy extruded material according to the present invention is as follows.
  • Bismuth (Bi) may be added to the magnesium alloy to have favorable conditions for high-temperature extrusion and precipitation strengthening.
  • the maximum solid solution limit of Bi that can be dissolved in magnesium is as high as 9.0 wt% at 551 °C, and the melting point of the secondary phase Mg 3 Bi 2 formed by adding Bi is 823 °C.
  • the structure and mechanical properties of the final extruded material can be improved.
  • the content of bismuth contained in the magnesium alloy extruded material according to the present invention is less than 5.0 wt%, the precipitation strengthening effect cannot be effectively exhibited after extrusion due to the lack of dissolved Bi solute atoms, so the strength of the final extruded material is low and exceeds 8.0 wt% In this case, the coarse Mg 3 Bi 2 dispersed phase remaining after the homogenization heat treatment may remain in the final extruded material and may cause premature failure during the tensile test, which is not preferable.
  • the magnesium alloy extruded material according to the present invention preferably contains Bi in the range of 5.0 to 8.0 wt%, and more preferably, Bi in excess of 6.0 wt% in order to further improve the mechanical properties of the extruded material.
  • Tin (Sn) exhibits an aging strengthening behavior by forming a fine Mg 2 Sn precipitated phase through heat treatment when the maximum solid solution amount that can be dissolved in magnesium is 14.5 wt % at 561 ° C., and when 1.0 wt % or more is added.
  • the magnesium alloy extruded material according to the present invention preferably contains Sn in the range of 2.0 to 7.0 wt%, and more preferably, in order to further improve the mechanical properties of the extruded material, it may contain Sn exceeding 4.0 wt%.
  • the magnesium extruded material according to the present invention may contain impurities that are unavoidably mixed in the raw material of the alloy or in the manufacturing process, and among these impurities, Fe, Cu, and Ni are components that play a role in worsening the corrosion resistance of the magnesium alloy. Accordingly, it is preferable to maintain the Fe content of 0.004 wt% or less, the Cu content of 0.005 wt% or less, and the Ni content of 0.001 wt% or less.
  • the magnesium extruded material according to the present invention may further include one or more alloying elements as necessary in addition to the aforementioned Bi and Sn, and such additional alloying elements are typically aluminum (Al), zinc (Zn) as shown below. , manganese (Mn), calcium (Ca), and the like, but is not necessarily limited thereto.
  • Aluminum (Al) is an element added to the Mg-Bi alloy to improve the physical properties of the magnesium alloy.
  • the amount of aluminum is not sufficient to promote dynamic recrystallization, so the size of the grains after extrusion is not uniform, and it is difficult to expect an effect of increasing strength and ductility due to coarse initial grains.
  • it exceeds 9.0 wt % the coarse Mg 17 Al 12 phase formed during the solidification process during casting is not completely dissolved in the homogenization heat treatment and is present in the final material after extrusion, and this coarse phase is the risk of premature fracture during the tensile test. It can be a cause and is not recommended.
  • the magnesium alloy extruded material according to the present invention preferably contains Al in an amount of 1.0 to 9.0 wt%.
  • zinc (Zn) plays a role in increasing the strength of magnesium alloys through solid solution strengthening and precipitation strengthening.
  • the magnesium alloy extruded material according to the present invention contains Zn, it is preferably included in the range of 0.1 to 3.5 wt%.
  • Manganese (Mn) not only strengthens the solid solution but also forms various dispersed particles by combining with aluminum (Al), thereby contributing to an increase in the strength of the alloy and improving the corrosion resistance of the alloy.
  • the magnesium alloy extruded material according to the present invention contains Mn, it is preferably included in the range of 0.0 5 to 1.5 wt %.
  • Calcium (Ca) forms a Mg-Al-Ca intermetallic compound in the magnesium alloy containing aluminum to improve strength and heat resistance, and forms a thin and dense CaO oxide layer on the surface of the molten metal to inhibit oxidation of the magnesium alloy. improve the fire resistance of
  • the magnesium alloy extruded material according to the present invention includes Ca, it is preferably included in the range of 0.05 to 2.0 wt%.
  • step (a) 5.0 to 8.0% by weight of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; And after preparing a molten metal containing unavoidable impurities, it may be injected into a preheated metal mold to cast a billet.
  • the magnesium alloy molten metal In the casting process in this step, it is preferable to cast the magnesium alloy molten metal after maintaining it at 670 to 770 o C for 20 minutes.
  • the magnesium alloy molten metal is cast at less than 670° C., the fluidity of the molten magnesium alloy is low and casting is difficult.
  • the molten magnesium alloy is cast at a temperature exceeding 770° C., the molten magnesium alloy is rapidly oxidized and impurities may be mixed during casting, thereby reducing the purity of the magnesium alloy billet manufactured therefrom.
  • the molten magnesium alloy may be prepared by melting the raw material of the magnesium alloy, and the method for preparing the molten magnesium alloy is not limited thereto as long as it is a method commonly used in the art. For example, gravity casting, continuous casting , sand casting or pressure casting can be used.
  • the step (b) is a step of cooling after homogenization heat treatment of the manufactured magnesium alloy billet, and the homogenization treatment improves the heterogeneous structure due to segregation of alloy elements generated in the process of casting the magnesium alloy molten metal, and , it is possible to form equiaxed a-Mg particles to improve the high-temperature workability and mechanical properties of the magnesium alloy.
  • the range of the homogenization treatment temperature can be appropriately selected by those skilled in the art according to the type of constituent elements constituting the magnesium alloy billet, and the homogenization treatment of the magnesium alloy billet is preferably performed at 350 to 550° C. for 0.5 to 72 hours.
  • the homogenization treatment temperature is less than 350 °C, the temperature is low, so that the homogenization of the segregation of alloy elements and solid solution into the matrix of the secondary phase formed during solidification is not sufficiently achieved. There is a problem in that the dissolution of phosphorus may occur and the physical properties may be deteriorated.
  • the homogenization treatment time is less than 0.5 hours, the diffusion of the alloy elements of the magnesium alloy billet does not occur sufficiently, so the effect of the homogenization treatment may not appear. It is not economical because the rise is not large.
  • step (c) the homogenization heat treatment is a step of extruding the magnesium alloy billet and processing it into an extruded material.
  • a magnesium alloy extruded material can be manufactured by directly extruding or indirectly extruding a magnesium alloy. It is preferable to extrude after preheating to a temperature for 0.5 to 2 hours.
  • Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below.
  • the embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.
  • a magnesium alloy cast billet having the composition shown in Table 1 below was prepared as follows.
  • the manufacturing process of the billet for extrusion is to dissolve a pure Mg ingot with a purity of 99.99% in a carbon crucible in a mixed gas atmosphere of CO 2 and SF 6, add bismuth (Bi) and tin (Sn), and then stabilize at 720 ° C. was maintained for 20 minutes, stirred sufficiently to make the molten metal uniform, and then tapped into a steel mold preheated to 210 °C.
  • the chemical composition of the cast alloy was measured with an inductively coupled plasma spectrometer (PerkinElmer, Optima 7300DV).
  • the cast billet was subjected to homogenization heat treatment in an inert gas atmosphere using an electric furnace at 490° C. for 24 hours, and then cooled with water to prevent static precipitation of Bi and Sn dissolved in the magnesium matrix during cooling.
  • a magnesium alloy extruded material was prepared in the same manner as in Examples 1 to 5, except for having the alloy composition shown in Table 2 below.
  • the average grain size (59.6 ⁇ m) of the extruded material prepared according to Example 3 further containing tin (Sn) as an alloying element is the average grain size (91.3 ⁇ m) of the magnesium alloy extruded material prepared according to Comparative Example 2 ⁇ m), and the finer grain size increases the grain boundary reinforcing effect during tensile deformation to improve the strength of the extruded material.
  • FIG. 2 shows SEM photographs of the magnesium alloy (B5) extruded material prepared in Comparative Example 2 and the magnesium alloy (BT56) extruded material prepared in Example 3, respectively.
  • the extruded material prepared in Example 3 has more fine precipitates than the extruded material prepared in Comparative Example 2, and accordingly, the extruded material prepared in Example 3 has a smaller grain boundary due to the smaller grain size. Due to the reinforcing effect and the precipitation strengthening effect due to more precipitates, it has a higher strength than the extruded material prepared in Comparative Example 2 as will be described later.
  • a tensile test specimen having a gauge diameter of 6 mm and a gauge length of 25 mm obtained by processing the magnesium alloy extruded material was subjected to an Instron 8516 tester of 1 x 10 -3 s -1 at room temperature. A tensile test was performed at a rate of strain, and the results are shown in Tables 1, 2, 3 and 4 above.
  • the tensile strength ⁇ elongation value ( ⁇ 1405 MPa %) of the Mg-Bi-Sn ternary extruded material of Examples 1 to 5 in which tin (Sn) is further added as an alloying element is It was found to be more than twice the tensile strength ⁇ elongation value ( ⁇ 638 MPa ⁇ %) of the Mg-Bi binary extruded material of Comparative Examples 1 to 3 not containing tin (Sn).
  • Figure 4 is a SEM photograph showing the fracture surface after the tensile test of the magnesium alloy (B5) extruded material prepared in Comparative Example 2 and the magnesium alloy (BT56) extruded tensile specimen prepared in Example 3, according to which in Comparative Example 2
  • the extruded material according to the extruded material has a coarse grain size, so twin crystals are easily formed during tensile deformation, and cleavage fracture occurs, thereby having a 2.2% lower elongation, whereas the extruded material according to Example 3 has a relatively small grain size.
  • twin crystal formation is suppressed, resulting in ductile fracture, which results in a relatively high elongation of 7.7%.
  • the magnesium alloy extruded material according to the present invention does not contain rare earth metal and has significantly improved strength and elongation compared to the existing magnesium extruded material, so not only transportation equipment such as automobiles, aircraft, ships, etc. It can be usefully used as a material for

Abstract

The present invention relates to a magnesium alloy extrudate comprising 5.0-8.0 wt% of bismuth (Bi), 2.0-7.0 wt% of tin (Sn), the balance of magnesium (Mg) and inevitable impurities, and the magnesium alloy extrudate according to the present invention further comprises tin (Sn) in an Mg-Bi binary alloy so as to have a microstructure composed of uniform and fine grains, which are obtained by the acceleration of dynamic recrystallization during extrusion, and fine secondary phase (Mg3Bi2 or Mg2Sn) particles precipitated during extrusion, and thus exhibits, even without containing rare earth metals, strength and elongation greatly superior to that of a conventional magnesium extrudate.

Description

고물성 마그네슘 합금 가공재 및 그 제조방법High-physical magnesium alloy processing material and manufacturing method thereof
본 발명은, 과학기술정보통신부 시행 국가연구개발사업(과제고유번호: 1711099226, (기관)세부과제번호: 2019R1A2C1085272, 사업명: 개인기초연구(중견연구자지원사업), 연구과제명: 차세대 친환경 차량용 저비용·고특성 경량 마그네슘 제조를 위한 전주기적 요소기술 개발, 연구관리전문기관: 한국연구재단, 주관기관: 경북대학교 산학협력단, 연구기간: 2019. 09. 01 ~ 2024. 02. 29) 지원 하에 경북대학교가 수행한 결과물로서, 고가의 희토류 금속을 포함하지 않으면서도 종래의 상용 마그네슘 압출재의 단점인 낮은 기계적 특성을 극복한 고물성 마그네슘 합금 가공재 및 이의 제조방법에 관한 것이다. The present invention is a national research and development project implemented by the Ministry of Science and ICT (task unique number: 1711099226, (organization) detailed project number: 2019R1A2C1085272, project name: personal basic research (middle-level researcher support project), research project name: low cost for next-generation eco-friendly vehicles Development of full-cycle element technology for manufacturing high-performance lightweight magnesium, specialized research and management institution: National Research Foundation of Korea, organized institution: Kyungpook National University Industry-University Cooperation Foundation, research period: 2019. 09. 01 ~ 2024. 02. 29) supported by Kyungpook National University The present invention relates to a high-physical magnesium alloy processed material that does not contain expensive rare earth metals and overcomes low mechanical properties, which is a disadvantage of conventional commercially available magnesium extruded materials, and a method for manufacturing the same.
국제적인 환경 규제가 점점 강화됨에 따라 이산화탄소 배출량이 적고 연비가 우수한 경량 차량이 자동차 산업의 주요 초점이 되었다. As international environmental regulations become increasingly stringent, lightweight vehicles with low carbon dioxide emissions and excellent fuel efficiency have become a major focus of the automotive industry.
그에 따라, 다른 구조재료용 금속에 비해 현저히 낮은 밀도를 가지는 마그네슘 (Mg: 1.738 g/㎤, Fe: 7.874 g/㎤, Ti: 4.506 g/㎤ 및 Al: 2.70 g/㎤)을 기반으로 하는 마그네슘 합금이 자동차 경량화를 위한 소재로서 산업계에서 상당한 관심을 끌고 있다. Accordingly, magnesium based on magnesium (Mg: 1.738 g/cm 3 , Fe: 7.874 g/cm 3 , Ti: 4.506 g/cm 3 and Al: 2.70 g/cm 3 ), which has a significantly lower density than other metals for structural materials. Alloys are attracting considerable interest in the industry as a material for reducing the weight of automobiles.
한편, 마그네슘 합금에 대한 기존의 연구는 마그네슘의 우수한 주조성에 기초해 자동차 엔진이나 기어부품 등에 적용하기 위한 주조용 마그네슘 합금에 치중되어 있었으나, 마그네슘 합금 주조재는 기공(blow hole), 미세공(pin hole), 수축공(shrinkage cavity)과 같은 주조결함을 가짐에 따라 보다 우수한 기계적 성질을 얻기 위해 압출, 압연, 단조 등의 소성 가공 공정을 통하여 얻어지는 마그네슘 합금 가공재에 대한 연구가 활발히 이루어지고 있다. On the other hand, existing research on magnesium alloys has focused on magnesium alloys for casting to be applied to automobile engines and gear parts based on the excellent castability of magnesium. As it has casting defects such as holes and shrinkage cavities, studies on magnesium alloy workpieces obtained through plastic working processes such as extrusion, rolling, and forging to obtain better mechanical properties are being actively conducted.
특히, 마그네슘 합금 압출재는 주조재에 비해 뛰어난 기계적 특성을 나타내며 다양한 형재로의 제조가 가능하여 범퍼 빔, 라디에이터 지지대, 엔진 크래들 및 서브 프레임 등의 자동차 바디 및 섀시 구성 요소에 사용하기에 적합하다. In particular, magnesium alloy extruded material exhibits superior mechanical properties compared to cast material and can be manufactured in various shapes, so it is suitable for use in automobile body and chassis components such as bumper beams, radiator supports, engine cradles and subframes.
하지만, 알루미늄 합금 압출재에 비해 마그네슘 합금 압출재의 낮은 강도와 높은 가격은 마그네슘 합금 압출재를 자동차 산업 등 광범위하게 적용하는데 여전히 큰 장애가 되고 있다. However, the low strength and high price of the magnesium alloy extruded material compared to the aluminum alloy extruded material is still a great obstacle to the wide application of the magnesium alloy extruded material in the automobile industry and the like.
본 발명이 해결하고자 하는 기술적 과제는, 합금 원소로서 고가의 희토류 원소를 포함하지 않으면서도 종래 낮은 기계적 특성(강도, 연신율)으로 인해 산업계 적용 확대에 어려움이 있었던 종래의 마그네슘 압출재에 비해 현저히 향상된 기계적 물성을 가지는 신규한 마그네슘 합금 및 그 제조방법을 제공하는 것이다. The technical problem to be solved by the present invention is significantly improved mechanical properties compared to the conventional magnesium extruded material, which did not contain expensive rare earth elements as alloy elements and had difficulty in expanding industrial applications due to conventional low mechanical properties (strength, elongation) It is to provide a novel magnesium alloy having a and a method for manufacturing the same.
상기한 바와 같은 기술적 과제를 달성하기 위해서, 본 발명은 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금 압출재를 제공한다. In order to achieve the above technical object, the present invention provides 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; And it provides a magnesium alloy extruded material containing unavoidable impurities.
또한, 상기 마그네슘 합금 압출재는 6.0 중량% 초과 8.0 중량% 이하의 비스무트(Bi); 4.0 중량% 초과 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 것을 특징으로 한다.In addition, the magnesium alloy extruded material is more than 6.0% by weight and 8.0% by weight or less of bismuth (Bi); greater than 4.0% by weight 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and unavoidable impurities.
또한, 상기 마그네슘 합금 압출재는 합금 원소로서 희토류 금속(rare-earth metal)을 포함하지 않는 것을 특징으로 한다.In addition, the magnesium alloy extruded material is characterized in that it does not contain a rare-earth metal as an alloying element.
또한, 상기 마그네슘 합금 압출재는 이차상(second phase)으로 Mg3Bi2 혹은 Mg2Sn 석출 입자를 포함하는 것을 특징으로 한다.In addition, the magnesium alloy extruded material is a secondary phase (second phase) Mg 3 Bi 2 or Mg 2 Sn It is characterized in that it contains precipitated particles.
또한, 상기 마그네슘 합금 압출재는 7.0 중량%의 비스무트(Bi); 6.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하며, 최대인장강도(ultimate tensile strength, UTS) × 연신율(elongation) 값이 3689 MPa·%인 것을 특징으로 한다.In addition, the magnesium alloy extruded material is 7.0% by weight of bismuth (Bi); 6.0% by weight of tin (Sn); Magnesium (Mg) balance; and unavoidable impurities, wherein the ultimate tensile strength (UTS) × elongation value is 3689 MPa·%.
그리고, 본 발명은 발명의 다른 측면에서, 상기 마그네슘 합금 압출재의 제조방법으로서 (a) 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금의 용탕을 주조하여 마그네슘 합금 빌렛을 제조하는 단계; (b) 상기 단계 (a)에서 제조된 마그네슘 합금 빌렛을 균질화 열처리하고 냉각하는 단계; 및 (c) 상기 단계 (b)에서 균질화 열처리된 마그네슘 합금 빌렛을 압출하는 단계;를 포함하는 마그네슘 합금 압출재의 제조방법을 제공한다.And, in another aspect of the present invention, as a method for manufacturing the magnesium alloy extruded material, (a) 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and casting a molten magnesium alloy containing unavoidable impurities to prepare a magnesium alloy billet; (b) homogenizing heat treatment and cooling the magnesium alloy billet prepared in step (a); And (c) extruding the homogenized heat-treated magnesium alloy billet in step (b); provides a method of manufacturing a magnesium alloy extruded material comprising a.
이때, 상기 단계 (a)에서 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금의 용탕을 670 ~ 770 oC에서 20분간 유지한 후 주조하여 마그네슘 합금 빌렛을 제조하는 것을 특징으로 한다.In this case, 5.0 to 8.0 wt% of bismuth (Bi) in step (a); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and maintaining a molten magnesium alloy containing unavoidable impurities at 670 to 770 o C for 20 minutes and then casting to prepare a magnesium alloy billet.
또한, 상기 단계 (b)에서 마그네슘 합금 빌렛을 350 ~ 550 oC에서 0.5 ~ 72시간 동안 균질화 열처리를 수행한 후 수냉을 하는 것을 특징으로 한다.In addition, in step (b), the magnesium alloy billet is subjected to a homogenization heat treatment at 350 to 550 o C for 0.5 to 72 hours, followed by water cooling.
또한, 상기 단계 (c)에서 균질화 열처리된 빌렛을 200 ~ 450 oC에서 예열한 후 압출하는 것을 특징으로 한다.In addition, it is characterized in that the extruded after preheating the billet homogenized heat treatment in step (c) at 200 ~ 450 o C.
본 발명에 따른 마그네슘 합금 압출재는 Mg-Bi 2원계 합금에 주석(Sn)을 더 포함함으로써 압출 중에 동적 재결정이 촉진되어 얻어지는 균일하면서도 미세한 결정립으로 구성된 미세조직과 압출 중에 석출되는 이차상(Mg3Bi2 혹은 Mg2Sn) 입자를 가져, 희토류 금속을 포함하지 않으면서도 기존의 마그네슘 압출재에 비해 크게 향상된 강도 및 연신율을 나타낸다. Magnesium alloy according to the invention extruded material is Mg-Bi 2 alloy by further comprising a tin (Sn) in the alloy is the dynamic recrystallization to promote the extrusion obtained even while the secondary precipitated in the microstructure and an extrusion consisting of a fine crystal grain phase (Mg 3 Bi 2 or Mg 2 Sn) particles, and exhibits significantly improved strength and elongation compared to conventional magnesium extruded materials without including rare earth metals.
도 1은 비교예 2 및 실시예 3에서 제조된 마그네슘 합금 압출재 각각에 대한 역극점도지도(inverse pole figure map) 및 결정립 크기 분포 측정 결과이다. 1 is an inverse pole figure map and grain size distribution measurement results for each of the magnesium alloy extruded materials prepared in Comparative Examples 2 and 3;
도 2는 비교예 2 및 실시예 3에서 제조된 마그네슘 합금 압출재 각각에 대한 주사 전자 현미경(SEM) 사진이다. 2 is a scanning electron microscope (SEM) photograph of each of the magnesium alloy extruded materials prepared in Comparative Examples 2 and 3;
도 3은 비교예 2 및 실시예 1 내지 3에서 제조된 마그네슘 합금 압출재 각각의 최대인장강도(ultimate tensile strength, UTS) × 연신율(elongation) 값을 나타낸 그래프이다. 3 is a graph showing ultimate tensile strength (UTS) × elongation values of each of the magnesium alloy extruded materials prepared in Comparative Example 2 and Examples 1 to 3;
도 4는 비교예 2 및 실시예 3 각각에서 제조된 마그네슘 합금 압출재 인장시편의 인장 시험 후 파단면을 보여주는 주사 전자 현미경(SEM) 사진이다. 4 is a scanning electron microscope (SEM) photograph showing a fracture surface after a tensile test of the magnesium alloy extruded tensile specimen prepared in Comparative Examples 2 and 3, respectively.
본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.In describing the present invention, if it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description thereof will be omitted.
본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로 특정 실시예들을 도면에 예시하고 본 명세서 또는 출원에 상세하게 설명하고자 한다. 그러나 이는 본 발명의 개념에 따른 실시 예를 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the embodiment according to the concept of the present invention may have various changes and may have various forms, specific embodiments will be illustrated in the drawings and described in detail in the present specification or application. However, this is not intended to limit the embodiment according to the concept of the present invention with respect to a specific disclosed form, and should be understood to include all changes, equivalents or substitutes included in the spirit and scope of the present invention.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are used only to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In this specification, terms such as "comprises" or "have" are intended to designate that the described features, numbers, steps, operations, components, parts, or combinations thereof exist, and include one or more other features or numbers. , it is to be understood that it does not preclude the possibility of the presence or addition of steps, operations, components, parts, or combinations thereof.
이하, 본 발명을 상세히 설명하도록 한다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 마그네슘 합금 압출재는 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금을 압출해 제조된다. The magnesium alloy extruded material according to the present invention includes 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; And it is manufactured by extruding a magnesium alloy containing unavoidable impurities.
본 발명에 따른 마그네슘 합금 압출재에 있어서 상기와 같이 합금 조성을 한정한 이유는 다음과 같다. The reason for limiting the alloy composition as described above in the magnesium alloy extruded material according to the present invention is as follows.
비스무트(Bi)Bismuth (Bi)
비스무트(Bi)는 마그네슘 합금에 첨가되어 고온 압출과 석출 강화에 유리한 조건을 가질 수 있다. 마그네슘에 고용될 수 있는 Bi의 최대 고용한도가 551 ℃에서 9.0 중량%로 높고, Bi 첨가로 형성되는 이차상 Mg3Bi2의 융점은 823 ℃로 고온에서 안정한 상이 형성되어 열간 압출 중 발달하는 미세조직과 최종 압출재의 기계적 물성을 개선할 수 있다. Bismuth (Bi) may be added to the magnesium alloy to have favorable conditions for high-temperature extrusion and precipitation strengthening. The maximum solid solution limit of Bi that can be dissolved in magnesium is as high as 9.0 wt% at 551 °C, and the melting point of the secondary phase Mg 3 Bi 2 formed by adding Bi is 823 °C. The structure and mechanical properties of the final extruded material can be improved.
본 발명에 따른 마그네슘 합금 압출재에 포함되는 비스무트의 함량이 5.0 중량% 미만인 경우 고용된 Bi 용질 원자의 부족으로 인해 압출 후 석출 강화 효과를 효과적으로 나타낼 수 없어 최종 압출재의 강도가 낮고, 8.0 중량%를 초과하는 경우에는 균질화 열처리 이후 잔존하는 조대한 Mg3Bi2 분산상이 최종 압출재에 잔존하여 인장 시험 시 조기 파괴의 원인이 될 수 있어 바람직하지 못하다. When the content of bismuth contained in the magnesium alloy extruded material according to the present invention is less than 5.0 wt%, the precipitation strengthening effect cannot be effectively exhibited after extrusion due to the lack of dissolved Bi solute atoms, so the strength of the final extruded material is low and exceeds 8.0 wt% In this case, the coarse Mg 3 Bi 2 dispersed phase remaining after the homogenization heat treatment may remain in the final extruded material and may cause premature failure during the tensile test, which is not preferable.
따라서, 본 발명에 따른 마그네슘 합금 압출재는 Bi를 5.0 내지 8.0 중량%의 범위로 포함하는 것이 바람직하며, 더욱 바람직하게는 압출재의 기계적 물성을 한층 더 향상시키기 위해서 6.0 중량%를 초과하는 Bi를 포함할 수 있다. Therefore, the magnesium alloy extruded material according to the present invention preferably contains Bi in the range of 5.0 to 8.0 wt%, and more preferably, Bi in excess of 6.0 wt% in order to further improve the mechanical properties of the extruded material. can
주석(Sn)Tin (Sn)
주석(Sn)은 마그네슘에 고용될 수 있는 최대 고용량이 561 ℃에서 14.5 중량%로 높고, 1.0 중량% 이상 첨가시 열처리를 통하여 미세한 Mg2Sn 석출상을 형성시켜 시효강화 거동을 나타낸다. Tin (Sn) exhibits an aging strengthening behavior by forming a fine Mg 2 Sn precipitated phase through heat treatment when the maximum solid solution amount that can be dissolved in magnesium is 14.5 wt % at 561 ° C., and when 1.0 wt % or more is added.
마그네슘 합금에 Sn을 2.0 중량% 미만으로 첨가할 경우, 동적 재결정을 촉진시키기 위한 충분한 양이 되지 않아 압출 후 결정립의 크기가 균일하지 못하고 조대한 초기 결정립으로 인해 강도 증가 및 연성 증가 효과를 기대하기 어렵고, 7.0 중량%를 초과하여 첨가할 경우에는 주조 시 형성된 조대한 Mg2Sn 상의 분율이 과도하여 균질화 열처리시 완전히 고용되지 못하고 압출 후 최종 소재 내에 존재하여 합금의 기계적 성질의 저하를 초래할 수 있다. When Sn is added to the magnesium alloy in an amount of less than 2.0 wt %, the amount of Sn is not sufficient to promote dynamic recrystallization, so the size of the grains after extrusion is not uniform. , when added in excess of 7.0 wt%, the fraction of the coarse Mg 2 Sn phase formed during casting is excessive, so that it cannot be completely dissolved during homogenization heat treatment, and exists in the final material after extrusion, which may lead to deterioration of mechanical properties of the alloy.
따라서, 본 발명에 따른 마그네슘 합금 압출재는 Sn을 2.0 내지 7.0 중량%의 범위로 포함하는 것이 바람직하며, 더욱 바람직하게는 압출재의 기계적 물성을 한층 더 향상시키기 위해서는 4.0 중량%를 초과하는 Sn을 포함할 수 있다. Accordingly, the magnesium alloy extruded material according to the present invention preferably contains Sn in the range of 2.0 to 7.0 wt%, and more preferably, in order to further improve the mechanical properties of the extruded material, it may contain Sn exceeding 4.0 wt%. can
기타 불가피한 불순물Other unavoidable impurities
본 발명에 따른 마그네슘 압출재에는 합금의 원료 또는 제조과정에서 불가피하게 혼입되는 불순물을 포함할 수 있으며, 이러한 불순물 중에서도 특히, Fe, Cu 및 Ni은 마그네슘 합금의 내식성을 악화시키는 역할을 하는 성분이다. 따라서, Fe의 함량은 0.004 중량% 이하, Cu의 함량은 0.005 중량% 이하, Ni의 함량은 0.001 중량% 이하를 유지하도록 하는 것이 바람직하다.The magnesium extruded material according to the present invention may contain impurities that are unavoidably mixed in the raw material of the alloy or in the manufacturing process, and among these impurities, Fe, Cu, and Ni are components that play a role in worsening the corrosion resistance of the magnesium alloy. Accordingly, it is preferable to maintain the Fe content of 0.004 wt% or less, the Cu content of 0.005 wt% or less, and the Ni content of 0.001 wt% or less.
나아가, 본 발명에 따른 마그네슘 압출재는 전술한 Bi 및 Sn 외에 필요에 따라 1종 이상의 합금 원소를 더 포함할 수 있으며, 이와 같은 추가 합금 원소로는 대표적으로 아래와 같이 알루미늄(Al), 아연(Zn), 망간(Mn), 칼슘(Ca) 등을 들 수 있으나 반드시 이에 제한되는 것은 아니다. Furthermore, the magnesium extruded material according to the present invention may further include one or more alloying elements as necessary in addition to the aforementioned Bi and Sn, and such additional alloying elements are typically aluminum (Al), zinc (Zn) as shown below. , manganese (Mn), calcium (Ca), and the like, but is not necessarily limited thereto.
알루미늄(Al)Aluminum (Al)
알루미늄(Al)은 Mg-Bi 합금에 첨가되어 마그네슘 합금의 물성을 향상시키는 원소이다. Aluminum (Al) is an element added to the Mg-Bi alloy to improve the physical properties of the magnesium alloy.
알루미늄을 1.0 중량% 미만으로 첨가할 경우에는 동적 재결정을 촉진시키기 위한 충분한 양이 되지 않아 압출 후 결정립의 크기가 균일하지 못하고 조대한 초기 결정립으로 인해 강도 증가 및 연성 증가 효과를 기대하기 어렵다. 반면, 9.0 중량%를 초과하는 경우에는 주조 중 응고과정에서 형성되는 조대한 Mg17Al12 상이 균질화 열처리시 완전히 고용되지 못하고 압출 후 최종 소재 내에 존재하게 되고, 이러한 조대한 상은 인장 시험 시 조기 파괴의 원인이 될 수 있어 바람직하지 못하다. When aluminum is added in an amount of less than 1.0% by weight, the amount of aluminum is not sufficient to promote dynamic recrystallization, so the size of the grains after extrusion is not uniform, and it is difficult to expect an effect of increasing strength and ductility due to coarse initial grains. On the other hand, if it exceeds 9.0 wt %, the coarse Mg 17 Al 12 phase formed during the solidification process during casting is not completely dissolved in the homogenization heat treatment and is present in the final material after extrusion, and this coarse phase is the risk of premature fracture during the tensile test. It can be a cause and is not recommended.
따라서, 본 발명에 따른 마그네슘 합금 압출재는 Al을 1.0 내지 9.0 중량%의 범위로 포함하는 것이 바람직하다.Accordingly, the magnesium alloy extruded material according to the present invention preferably contains Al in an amount of 1.0 to 9.0 wt%.
아연(Zn)Zinc (Zn)
아연(Zn)은 알루미늄과 마찬가지로 고용 강화 및 석출 강화를 통해 마그네슘 합금의 강도 증가에 기여하는 역할을 한다. Like aluminum, zinc (Zn) plays a role in increasing the strength of magnesium alloys through solid solution strengthening and precipitation strengthening.
아연을 0.1 중량% 미만으로 첨가할 경우에는 강도 증가 효과를 기대할 수 없으며, 3.5 중량%를 초과하여 첨가할 경우 마이크로 갈바닉 부식이 촉진될 수 있어 압출재의 내부식성이 저하될 수 있다. When zinc is added in an amount of less than 0.1% by weight, an effect of increasing strength cannot be expected, and when added in an amount exceeding 3.5% by weight, microgalvanic corrosion may be promoted, and corrosion resistance of the extruded material may be reduced.
따라서, 본 발명에 따른 마그네슘 합금 압출재가 Zn을 포함할 경우에는 0.1 내지 3.5 중량%의 범위로 포함하는 것이 바람직하다.Therefore, when the magnesium alloy extruded material according to the present invention contains Zn, it is preferably included in the range of 0.1 to 3.5 wt%.
망간(Mn)Manganese (Mn)
망간(Mn)은 고용 강화 뿐 아니라 알루미늄(Al)과 결합하여 다양한 분산입자를 형성하여 합금의 강도 증가에 기여하며 또한 합금의 내식성을 향상시키는 효과도 얻을 수 있다. Manganese (Mn) not only strengthens the solid solution but also forms various dispersed particles by combining with aluminum (Al), thereby contributing to an increase in the strength of the alloy and improving the corrosion resistance of the alloy.
마그네슘 합금에 망간(Mn)을 0.05 중량% 미만으로 첨가할 경우 이러한 효과를 기대하기 힘들며, 1.5 중량%를 초과하여 첨가할 경우 750 ℃ 이하의 온도에서 용탕 내 조대한 망간(Mn) 입자가 형성되어 합금의 기계적 성질의 저하를 초래하게 된다. When manganese (Mn) is added to the magnesium alloy in an amount of less than 0.05 wt%, it is difficult to expect this effect, and when it is added in excess of 1.5 wt%, coarse manganese (Mn) particles are formed in the molten metal at a temperature of 750 ° C or less. This results in deterioration of the mechanical properties of the alloy.
따라서, 본 발명에 따른 마그네슘 합금 압출재가 Mn을 포함할 경우에는 0.0 5 내지 1.5 중량%의 범위로 포함하는 것이 바람직하다.Therefore, when the magnesium alloy extruded material according to the present invention contains Mn, it is preferably included in the range of 0.0 5 to 1.5 wt %.
칼슘(Ca)Calcium (Ca)
칼슘(Ca)은 알루미늄이 함유된 마그네슘 합금에서 Mg-Al-Ca 금속간 화합물을 형성하여 강도 및 내열특성을 향상시킬 뿐만 아니라 용탕 표면에 얇고 치밀한 CaO 산화층을 형성시켜 용탕의 산화를 억제함으로써 마그네슘 합금의 발화 저항성을 향상시킨다. Calcium (Ca) forms a Mg-Al-Ca intermetallic compound in the magnesium alloy containing aluminum to improve strength and heat resistance, and forms a thin and dense CaO oxide layer on the surface of the molten metal to inhibit oxidation of the magnesium alloy. improve the fire resistance of
칼슘을 0.05 중량% 미만으로 첨가할 경우 발화 저항성 향상 효과가 크지 않고, 2.0 중량%를 초과할 경우 용탕의 주조성이 떨어지고 열간 균열(hot cracking)이 발생하며, 금형과의 점착성(die sticking)이 증가하며 연신율이 크게 떨어지는 등의 문제가 있고, 압출 공정의 경우 압출 하중이 크게 증가하여 표면 균열 발생하는 문제가 있다. When calcium is added in an amount of less than 0.05% by weight, the effect of improving the ignition resistance is not great. When it exceeds 2.0% by weight, the castability of the molten metal is deteriorated, hot cracking occurs, and the die sticking with the mold is reduced. As it increases, there is a problem such as a large decrease in elongation, and in the case of an extrusion process, there is a problem in that the extrusion load is greatly increased and surface cracks occur.
따라서, 본 발명에 따른 마그네슘 합금 압출재가 Ca을 포함할 경우에는 0.05 내지 2.0 중량%의 범위로 포함하는 것이 바람직하다.Therefore, when the magnesium alloy extruded material according to the present invention includes Ca, it is preferably included in the range of 0.05 to 2.0 wt%.
상기와 같은 고물성 마그네슘 합금 압출재를 제조하기 위해서, 본 발명에서는 (a) 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금의 용탕을 주조하여 마그네슘 합금 빌렛을 제조하는 단계; (b) 상기 단계 (a)에서 제조된 마그네슘 합금 빌렛을 균질화 열처리하고 냉각하는 단계; 및 (c) 상기 단계 (b)에서 균질화 열처리된 마그네슘 합금 빌렛을 압출하는 단계;를 포함하는 마그네슘 합금 압출재의 제조방법을 제공한다. In order to prepare the extruded material of high physical properties magnesium alloy as described above, in the present invention, (a) 5.0 to 8.0 wt% of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and casting a molten magnesium alloy containing unavoidable impurities to prepare a magnesium alloy billet; (b) homogenizing heat treatment and cooling the magnesium alloy billet prepared in step (a); And (c) extruding the homogenized heat-treated magnesium alloy billet in step (b); provides a method of manufacturing a magnesium alloy extruded material comprising a.
상기 단계 (a)에서는 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 용탕을 제조한 후 이를 예열된 금속 몰드에 주입하여 빌렛을 주조할 수 있다. In step (a), 5.0 to 8.0% by weight of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; And after preparing a molten metal containing unavoidable impurities, it may be injected into a preheated metal mold to cast a billet.
본 단계에서의 주조 공정은 상기 마그네슘 합금 용탕을 670 ~ 770 oC에서 20분간 유지한 후 주조하는 것이 바람직하다. 마그네슘 합금 용탕을 670 ℃ 미만에서 주조하는 경우에는 마그네슘 합금 용탕의 유동도가 낮아 주조가 어려운 문제가 있다. 또한, 마그네슘 합금 용탕을 770 ℃를 초과하여 주조하는 경우에는 마그네슘 합금 용탕이 급격하게 산화되어 주조 시 불순물이 혼합될 수 있어 이로부터 제조된 마그네슘 합금 빌렛의 순도가 낮아지는 문제가 있다.In the casting process in this step, it is preferable to cast the magnesium alloy molten metal after maintaining it at 670 to 770 o C for 20 minutes. When the magnesium alloy molten metal is cast at less than 670° C., the fluidity of the molten magnesium alloy is low and casting is difficult. In addition, when the molten magnesium alloy is cast at a temperature exceeding 770° C., the molten magnesium alloy is rapidly oxidized and impurities may be mixed during casting, thereby reducing the purity of the magnesium alloy billet manufactured therefrom.
또한, 마그네슘 합금의 용탕은 마그네슘 합금의 원료를 용융하여 제조할 수 있는데, 상기 마그네슘 합금 용탕을 제조하는 방법은 당업에서 통상적으로 사용하는 방법이라면 이에 한정되지 않으며, 예를 들면, 중력주조, 연속주조, 사형주조 또는 가압주조 등을 사용할 수 있다.In addition, the molten magnesium alloy may be prepared by melting the raw material of the magnesium alloy, and the method for preparing the molten magnesium alloy is not limited thereto as long as it is a method commonly used in the art. For example, gravity casting, continuous casting , sand casting or pressure casting can be used.
다음으로, 상기 단계 (b)는 제조된 마그네슘 합금 빌렛을 균질화 열처리한 후 냉각하는 단계로서, 균질화 처리는 마그네슘 합금 용탕을 주조하는 과정에서 발생하는 합금원소의 편석으로 인한 불균질한 조직을 개선하고, 등축정 a-Mg 입자를 형성시켜 마그네슘 합금의 고온 가공성 및 기계적 특성을 향상시킬 수 있다. Next, the step (b) is a step of cooling after homogenization heat treatment of the manufactured magnesium alloy billet, and the homogenization treatment improves the heterogeneous structure due to segregation of alloy elements generated in the process of casting the magnesium alloy molten metal, and , it is possible to form equiaxed a-Mg particles to improve the high-temperature workability and mechanical properties of the magnesium alloy.
균질화 처리 온도의 범위는 마그네슘 합금 빌렛을 구성하는 구성원소의 종류에 따라 당업자가 적절하게 선택할 수 있는데, 상기 마그네슘 합금 빌렛의 균질화 처리는 바람직하게는 350 내지 550 ℃에서 0.5 내지 72 시간 동안 열처리 공정을 수행할 수 있으며, 균질화 처리온도가 350 ℃ 미만인 경우에는 온도가 낮아 합금원소 편석의 균질화와 응고 중 형성된 이차상의 기지로의 고용이 충분히 이루어지지 않고, 550 ℃를 초과하는 경우에는 마그네슘 합금 빌렛의 국부적인 용해가 발생하여 물성이 저하될 수 있는 문제가 있다.The range of the homogenization treatment temperature can be appropriately selected by those skilled in the art according to the type of constituent elements constituting the magnesium alloy billet, and the homogenization treatment of the magnesium alloy billet is preferably performed at 350 to 550° C. for 0.5 to 72 hours. When the homogenization treatment temperature is less than 350 ℃, the temperature is low, so that the homogenization of the segregation of alloy elements and solid solution into the matrix of the secondary phase formed during solidification is not sufficiently achieved. There is a problem in that the dissolution of phosphorus may occur and the physical properties may be deteriorated.
그리고, 균질화 처리시간이 0.5시간 미만인 경우에는 마그네슘 합금 빌렛의 합금원소의 확산이 충분히 일어나지 않아 균질화 처리의 효과가 나타나지 않을 수 있고, 균질화 처리를 72 시간을 초과하여 수행되는 경우에는 수행시간 대비 효과의 상승 폭이 크지 않아 경제적이지 않다. In addition, when the homogenization treatment time is less than 0.5 hours, the diffusion of the alloy elements of the magnesium alloy billet does not occur sufficiently, so the effect of the homogenization treatment may not appear. It is not economical because the rise is not large.
또한, 균질화 처리를 통해 마그네슘 합금 빌렛의 미세조직을 과고용체 상태로 만들기 위해서 마그네슘 합금 빌렛을 수냉 등을 통해 급속 냉각시킬 수 있도록 구성하는 것이 바람직하다. In addition, in order to make the microstructure of the magnesium alloy billet into a super-solid solution state through the homogenization treatment, it is preferable to rapidly cool the magnesium alloy billet through water cooling or the like.
마지막으로, 상기 단계 (c)에서는 균질화 열처리된 마그네슘 합금 빌렛을 압출해 압출재로 가공하는 단계이다. Finally, in step (c), the homogenization heat treatment is a step of extruding the magnesium alloy billet and processing it into an extruded material.
예를 들어, 마그네슘 합금을 직접 압출 또는 간접 압출하여 마그네슘 합금 압출재를 제조할 수 있으며, 이와 같이 압출 공정을 실시할 경우에는 보다 미세한 결정립의 형성을 위해 균질화 열처리된 마그네슘 합금 빌렛을 200 내지 450 ℃의 온도로 0.5 내지 2시간 동안 예열한 후 압출하는 것이 바람직하다.For example, a magnesium alloy extruded material can be manufactured by directly extruding or indirectly extruding a magnesium alloy. It is preferable to extrude after preheating to a temperature for 0.5 to 2 hours.
이하, 실시예를 들어 본 발명에 대해 보다 상세하게 설명하기로 한다. Hereinafter, the present invention will be described in more detail by way of examples.
본 명세서에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 명세서의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다. Embodiments according to the present specification may be modified in various other forms, and the scope of the present specification is not to be construed as being limited to the embodiments described below. The embodiments of the present specification are provided to more completely explain the present specification to those of ordinary skill in the art.
<실시예 1 내지 5><Examples 1 to 5>
본 발명에 따른 마그네슘 합금 압출재를 제조하기 위해서 하기 표 1의 조성을 갖는 마그네슘 합금 주조 빌렛을 다음과 같이 제조하였다. 압출용 빌렛의 제조과정은 CO2와 SF6의 혼합가스 분위기에서 탄소 도가니에 99.99%의 순도를 갖는 순수한 Mg 잉곳을 용해시키고 비스무트(Bi)와 주석(Sn)을 첨가한 후 안정화를 위해 720 ℃에서 20분간 유지하고, 용탕을 균일하게 하기 위해서 충분히 저어준 후 210 ℃로 예열된 스틸 몰드에 출탕하였다. 주조된 합금의 화학적 조성은 유도결합플라즈마 분광기 (PerkinElmer, Optima 7300DV) 로 측정하였다. In order to prepare a magnesium alloy extruded material according to the present invention, a magnesium alloy cast billet having the composition shown in Table 1 below was prepared as follows. The manufacturing process of the billet for extrusion is to dissolve a pure Mg ingot with a purity of 99.99% in a carbon crucible in a mixed gas atmosphere of CO 2 and SF 6, add bismuth (Bi) and tin (Sn), and then stabilize at 720 ° C. was maintained for 20 minutes, stirred sufficiently to make the molten metal uniform, and then tapped into a steel mold preheated to 210 °C. The chemical composition of the cast alloy was measured with an inductively coupled plasma spectrometer (PerkinElmer, Optima 7300DV).
다음으로, 주조된 빌렛을 490 ℃에서 24시간 동안 전기로를 사용하여 불활성 기체 분위기에서 균질화 열처리한 후, 냉각 중에 마그네슘 기지에 고용된 Bi 및 Sn의 정적 석출(static precipitation)을 방지하기 위해 수냉하였다. Next, the cast billet was subjected to homogenization heat treatment in an inert gas atmosphere using an electric furnace at 490° C. for 24 hours, and then cooled with water to prevent static precipitation of Bi and Sn dissolved in the magnesium matrix during cooling.
균질화 열처리된 빌렛을 직경 68 mm, 길이 120 mm로 가공 후 400 ℃에서 1시간 동안 예열한 후 램 속도(ram speed) 1 mm/s, 압출비 25로 직접 압출(direct extrusion)하여 직경 13.6mm을 가지는 봉상의 압출 바(bar)를 제조하였다. After processing the homogenized heat-treated billet to a diameter of 68 mm and a length of 120 mm, it was preheated at 400° C. for 1 hour, and then directly extruded at a ram speed of 1 mm/s and an extrusion ratio of 25 to obtain a diameter of 13.6 mm. Eggplant was made of a rod-shaped extruded bar (bar).
<표 1><Table 1>
Figure PCTKR2021003144-appb-I000001
Figure PCTKR2021003144-appb-I000001
<비교예 1 내지 3><Comparative Examples 1 to 3>
아래 표 2의 합금 조성을 갖는 것을 제외하고는 상기 실시예 1 내지 5와 동일한 공정에 따라 마그네슘 합금 압출재를 제조하였다.A magnesium alloy extruded material was prepared in the same manner as in Examples 1 to 5, except for having the alloy composition shown in Table 2 below.
<표 2><Table 2>
Figure PCTKR2021003144-appb-I000002
Figure PCTKR2021003144-appb-I000002
<실험예><Experimental example>
도 1은 비교예 2 및 실시예 3에서 제조된 마그네슘 합금 압출재 각각에 대한 전자후방산란회절(electron backscatter diffraction, EBSD) 미세조직 사진 및 결정립 크기에 따른 면적 분율을 측정한 결과이다. 1 is an electron backscatter diffraction (EBSD) microstructure photograph of each of the magnesium alloy extruded materials prepared in Comparative Examples 2 and 3 and the results of measuring the area fraction according to the grain size.
도 1을 참조하면, 합금원소로서 주석(Sn)을 더 포함하는 실시예 3에 따라 제조된 압출재의 평균 결정립 크기(59.6 ㎛)가 비교예 2에 따라 제조된 마그네슘 합금 압출재의 평균 결정립 크기(91.3 ㎛)에 비해 크게 감소하며, 이와 같이 미세해진 결정립 크기는 인장 변형 시 결정립계 강화 효과를 증대시켜 압출재의 강도를 향상시킨다. Referring to FIG. 1 , the average grain size (59.6 μm) of the extruded material prepared according to Example 3 further containing tin (Sn) as an alloying element is the average grain size (91.3 μm) of the magnesium alloy extruded material prepared according to Comparative Example 2 μm), and the finer grain size increases the grain boundary reinforcing effect during tensile deformation to improve the strength of the extruded material.
도 2에 비교예 2에서 제조한 마그네슘 합금(B5) 압출재 및 실시예 3에서 제조한 마그네슘 합금(BT56) 압출재 각각의 SEM 사진을 나타냈다. FIG. 2 shows SEM photographs of the magnesium alloy (B5) extruded material prepared in Comparative Example 2 and the magnesium alloy (BT56) extruded material prepared in Example 3, respectively.
도 2를 참조하면, 실시예 3에서 제조한 압출재가 비교예 2에서 제조한 압출재 보다 더 많은 미세 석출물을 가짐을 알 수 있고, 그에 따라 실시예 3에서 제조한 압출재는 더 작은 결정립 크기로 인한 결정립계 강화 효과와 더 많은 석출물로 인한 석출강화 효과에 기인해 후술하는 바와 같이 비교예 2에서 제조한 압출재에 비해 더 높은 강도를 가진다. 2, it can be seen that the extruded material prepared in Example 3 has more fine precipitates than the extruded material prepared in Comparative Example 2, and accordingly, the extruded material prepared in Example 3 has a smaller grain boundary due to the smaller grain size. Due to the reinforcing effect and the precipitation strengthening effect due to more precipitates, it has a higher strength than the extruded material prepared in Comparative Example 2 as will be described later.
마그네슘 합금 압출재의 기계적 특성을 분석하기 위해서, 마그네슘 합금 압출재를 가공해 얻은 게이지 직경 6 mm, 게이지 길이 25 mm를 가지는 인장 시험편에 대해 Instron 8516 시험기를 이용하여 상온에서 1 x 10-3 s-1의 변형률 속도로 인장 시험을 수행하였으며 그 결과를 상기 표 1, 표 2, 도 3 및 도 4에 나타내었다. In order to analyze the mechanical properties of the magnesium alloy extruded material, a tensile test specimen having a gauge diameter of 6 mm and a gauge length of 25 mm obtained by processing the magnesium alloy extruded material was subjected to an Instron 8516 tester of 1 x 10 -3 s -1 at room temperature. A tensile test was performed at a rate of strain, and the results are shown in Tables 1, 2, 3 and 4 above.
표 1, 표 2 및 도 3에 따르면, 합금원소로서 주석(Sn)이 더 첨가된 실시예 1 내지 5의 Mg-Bi-Sn 3원계 압출재의 인장강도×연신율 값 (≥ 1405 MPa·%)은 주석(Sn)을 포함하지 않는 비교예 1 내지 3의 Mg-Bi 2원계 압출재의 인장강도×연신율 값 (≤ 638 MPa·%)의 2배를 상회하는 것으로 나타났다. According to Table 1, Table 2, and Figure 3, the tensile strength × elongation value (≥ 1405 MPa %) of the Mg-Bi-Sn ternary extruded material of Examples 1 to 5 in which tin (Sn) is further added as an alloying element is It was found to be more than twice the tensile strength × elongation value (≤ 638 MPa·%) of the Mg-Bi binary extruded material of Comparative Examples 1 to 3 not containing tin (Sn).
한편, 도 4는 비교예 2에서 제조된 마그네슘 합금(B5) 압출재와 실시예 3에서 제조된 마그네슘 합금(BT56) 압출재 인장 시편의 인장 시험 후 파단면을 보여주는 SEM 사진으로서, 이에 따르면 비교예 2에 따른 압출재는 결정립 크기가 조대하여 인장 변형 시 쌍정이 용이하게 형성되어 벽개파괴(cleavage fracture)가 발생하고 이로 인해 2.2% 낮은 연신율을 가지는 반면, 실시예 3에 따른 압출재는 비교적 작은 결정립 크기를 가지고 있어 인장 변형 시 쌍정 형성이 억제되어 연성파괴(ductile fracture)가 발생하고 이로 인해 상대적으로 높은 7.7%의 연신율을 가짐을 알 수 있다. On the other hand, Figure 4 is a SEM photograph showing the fracture surface after the tensile test of the magnesium alloy (B5) extruded material prepared in Comparative Example 2 and the magnesium alloy (BT56) extruded tensile specimen prepared in Example 3, according to which in Comparative Example 2 The extruded material according to the extruded material has a coarse grain size, so twin crystals are easily formed during tensile deformation, and cleavage fracture occurs, thereby having a 2.2% lower elongation, whereas the extruded material according to Example 3 has a relatively small grain size. During tensile deformation, twin crystal formation is suppressed, resulting in ductile fracture, which results in a relatively high elongation of 7.7%.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.As mentioned above, although embodiments of the present invention have been described with reference to the accompanying drawings, those of ordinary skill in the art to which the present invention pertains can implement the present invention in other specific forms without changing its technical spirit or essential features. You will understand that there is Therefore, it should be understood that the embodiments described above are illustrative in all respects and not restrictive.
본 발명에 따른 마그네슘 합금 압출재는 희토류 금속을 포함하지 않으면서도 기존의 마그네슘 압출재에 비해 크게 향상된 강도 및 연신율을 가져, 자동차, 항공기, 선박 등 수송기기는 물론 전자제품, IT 융합 분야의 고기능성 제품 등의 소재로서 유용하게 사용할 수 있다. The magnesium alloy extruded material according to the present invention does not contain rare earth metal and has significantly improved strength and elongation compared to the existing magnesium extruded material, so not only transportation equipment such as automobiles, aircraft, ships, etc. It can be usefully used as a material for

Claims (9)

  1. 5.0 내지 8.0 중량%의 비스무트(Bi); 5.0 to 8.0% by weight of bismuth (Bi);
    2.0 내지 7.0 중량%의 주석(Sn); 2.0 to 7.0% by weight of tin (Sn);
    마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금 압출재.Magnesium (Mg) balance; And magnesium alloy extruded material containing unavoidable impurities.
  2. 제1항에 있어서, According to claim 1,
    6.0 중량% 초과 8.0 중량% 이하의 비스무트(Bi); greater than 6.0% by weight and not more than 8.0% by weight of bismuth (Bi);
    4.0 중량% 초과 7.0 중량%의 주석(Sn); greater than 4.0% by weight 7.0% by weight of tin (Sn);
    마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금 압출재.Magnesium (Mg) balance; And magnesium alloy extruded material containing unavoidable impurities.
  3. 제1항에 있어서, According to claim 1,
    합금 원소로서 희토류 금속(rare-earth metal)을 포함하지 않는 것을 특징으로 하는 마그네슘 합금 압출재.A magnesium alloy extruded material, characterized in that it does not contain a rare-earth metal as an alloying element.
  4. 제1항에 있어서, According to claim 1,
    이차상(second phase)으로 Mg3Bi2 혹은 Mg2Sn 석출 입자를 포함하는 것을 특징으로 하는 마그네슘 합금 압출재.Magnesium alloy extruded material, characterized in that it comprises Mg 3 Bi 2 or Mg 2 Sn precipitated particles as a secondary phase (second phase).
  5. 제1항에 있어서, According to claim 1,
    7.0 중량%의 비스무트(Bi); 6.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하며, 7.0% by weight of bismuth (Bi); 6.0% by weight of tin (Sn); Magnesium (Mg) balance; and unavoidable impurities;
    최대인장강도(ultimate tensile strength, UTS) × 연신율(elongation) 값이 3689 MPa·%인 것을 특징으로 마그네슘 합금 압출재.Magnesium alloy extruded material, characterized in that the ultimate tensile strength (ultimate tensile strength, UTS) × elongation (elongation) value is 3689 MPa · %.
  6. (a) 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금의 용탕을 주조하여 마그네슘 합금 빌렛을 제조하는 단계;(a) 5.0 to 8.0% by weight of bismuth (Bi); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and casting a molten magnesium alloy containing unavoidable impurities to prepare a magnesium alloy billet;
    (b) 상기 단계 (a)에서 제조된 마그네슘 합금 빌렛을 균질화 열처리하고 냉각하는 단계; 및 (b) homogenizing heat treatment and cooling the magnesium alloy billet prepared in step (a); and
    (c) 상기 단계 (b)에서 균질화 열처리된 마그네슘 합금 빌렛을 압출하는 단계;를 포함하는 마그네슘 합금 압출재의 제조방법.(c) extruding the homogenized heat-treated magnesium alloy billet in step (b);
  7. 제6항에 있어서, 7. The method of claim 6,
    상기 단계 (a)에서 5.0 내지 8.0 중량%의 비스무트(Bi); 2.0 내지 7.0 중량%의 주석(Sn); 마그네슘(Mg) 잔부; 및 불가피한 불순물을 포함하는 마그네슘 합금의 용탕을 670 ~ 770 oC에서 20분간 유지한 후 주조하여 마그네슘 합금 빌렛을 제조하는 것을 특징으로 하는 마그네슘 합금 압출재의 제조방법.5.0 to 8.0% by weight of bismuth (Bi) in step (a); 2.0 to 7.0% by weight of tin (Sn); Magnesium (Mg) balance; and maintaining a molten magnesium alloy containing unavoidable impurities at 670 to 770 o C for 20 minutes and then casting the magnesium alloy billet.
  8. 제6항에 있어서, 7. The method of claim 6,
    상기 단계 (b)에서 마그네슘 합금 빌렛을 350 ~ 550 oC에서 0.5 ~ 72시간 동안 균질화 열처리를 수행한 후 수냉을 하는 것을 특징으로 하는 마그네슘 합금 압출재의 제조방법.Method for producing a magnesium alloy extruded material, characterized in that the magnesium alloy billet in step (b) is subjected to a homogenization heat treatment at 350 to 550 o C for 0.5 to 72 hours, followed by water cooling.
  9. 제6항에 있어서, 7. The method of claim 6,
    상기 단계 (c)에서 균질화 열처리된 빌렛을 200 ~ 450 oC에서 예열한 후 압출하는 것을 특징으로 하는 마그네슘 합금 압출재의 제조방법.Method for producing a magnesium alloy extruded material, characterized in that the extruded after preheating the billet homogenized heat treatment in step (c) at 200 ~ 450 o C.
PCT/KR2021/003144 2020-04-22 2021-03-15 High-quality magnesium alloy processed material and manufacturing method therefor WO2021215666A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0048675 2020-04-22
KR1020200048675A KR20210130455A (en) 2020-04-22 2020-04-22 Wrought magnesium alloys with high mechanical properties and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2021215666A1 true WO2021215666A1 (en) 2021-10-28

Family

ID=78269474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003144 WO2021215666A1 (en) 2020-04-22 2021-03-15 High-quality magnesium alloy processed material and manufacturing method therefor

Country Status (2)

Country Link
KR (1) KR20210130455A (en)
WO (1) WO2021215666A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921700A (en) * 2022-05-25 2022-08-19 中南大学 Biodegradable Mg-Zn-Ca-Re alloy
CN114934217A (en) * 2022-05-25 2022-08-23 鹤壁海镁科技有限公司 Microalloy Mg-Sn-Bi-Gd-Zr high-plasticity magnesium alloy and preparation method thereof
CN114934219A (en) * 2022-06-09 2022-08-23 太原理工大学 Low-alloying high-strength-toughness magnesium-bismuth-tin alloy and processing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106337A (en) * 2006-10-27 2008-05-08 Shingijutsu Kenkyusho:Kk Rolled material of magnesium alloy, and method for producing the same
KR20110078446A (en) * 2009-12-31 2011-07-07 연세대학교 산학협력단 Magnesium alloys with good formability and manufacturing method thereof
JP2017206757A (en) * 2016-05-20 2017-11-24 不二ライトメタル株式会社 Resolvable magnesium alloy
WO2019013226A1 (en) * 2017-07-10 2019-01-17 国立研究開発法人物質・材料研究機構 Magnesium-based wrought alloy material and manufacturing method therefor
CN110306087A (en) * 2019-07-29 2019-10-08 深圳市爱斯特新材料科技有限公司 A kind of Mg-Al-Zn-Mn-Sn-Bi magnesium alloy with high strength and ductility and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100994812B1 (en) 2010-04-05 2010-11-16 한국기계연구원 High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
KR101277297B1 (en) 2011-02-18 2013-06-20 한국기계연구원 High-strength high-ductility magnesium alloy extrusions with low anisotropy and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106337A (en) * 2006-10-27 2008-05-08 Shingijutsu Kenkyusho:Kk Rolled material of magnesium alloy, and method for producing the same
KR20110078446A (en) * 2009-12-31 2011-07-07 연세대학교 산학협력단 Magnesium alloys with good formability and manufacturing method thereof
JP2017206757A (en) * 2016-05-20 2017-11-24 不二ライトメタル株式会社 Resolvable magnesium alloy
WO2019013226A1 (en) * 2017-07-10 2019-01-17 国立研究開発法人物質・材料研究機構 Magnesium-based wrought alloy material and manufacturing method therefor
CN110306087A (en) * 2019-07-29 2019-10-08 深圳市爱斯特新材料科技有限公司 A kind of Mg-Al-Zn-Mn-Sn-Bi magnesium alloy with high strength and ductility and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GO JONGBIN : "Microstructure and mechanical properties of hot extruded Mg-Bi binary alloys", ABSTRACTS OF 2019 SPRING CONFERENCE OF THE KOREAN INSTITUTE OF METALS AND MATERIALS, 24 April 2019 (2019-04-24), pages 1 - 61, XP055864775 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921700A (en) * 2022-05-25 2022-08-19 中南大学 Biodegradable Mg-Zn-Ca-Re alloy
CN114934217A (en) * 2022-05-25 2022-08-23 鹤壁海镁科技有限公司 Microalloy Mg-Sn-Bi-Gd-Zr high-plasticity magnesium alloy and preparation method thereof
CN114921700B (en) * 2022-05-25 2023-09-26 中南大学 Biodegradable Mg-Zn-Ca-Re alloy
CN114934217B (en) * 2022-05-25 2023-09-26 鹤壁海镁科技有限公司 Micro-alloy Mg-Sn-Bi-Gd-Zr high-plasticity magnesium alloy and preparation method thereof
CN114934219A (en) * 2022-06-09 2022-08-23 太原理工大学 Low-alloying high-strength-toughness magnesium-bismuth-tin alloy and processing method thereof

Also Published As

Publication number Publication date
KR20210130455A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
WO2021215666A1 (en) High-quality magnesium alloy processed material and manufacturing method therefor
CN102230118B (en) Magnesium alloy of high intensity and high yield ratio and preparation method thereof
JP5852580B2 (en) Flame retardant magnesium alloy having excellent mechanical properties and method for producing the same
US11326241B2 (en) Plastic wrought magnesium alloy and preparation method thereof
WO2016137211A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method
JP4203508B2 (en) Method for producing aluminum alloy cast plate
JP3997009B2 (en) Aluminum alloy forgings for high-speed moving parts
KR100994812B1 (en) High-strength high-ductility magnesium alloy extrudate and manufacturing method thereof
CN110885940B (en) Rare earth aluminum alloy material and preparation method thereof
WO2012070870A2 (en) Magnesium alloy sheet having superior formability at room temperature, and method for manufacturing same
WO2011062448A2 (en) Aluminum alloy and manufacturing method thereof
WO2016137210A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor
CN110983128A (en) High-strength heat-resistant wrought aluminum alloy and preparation method thereof
US8329094B2 (en) Magnesium alloy and process for producing the same
JP4856597B2 (en) Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same
JP5059353B2 (en) Aluminum alloy plate with excellent stress corrosion cracking resistance
WO2020067704A1 (en) Magnesium alloy sheet and manufacturing method therefor
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
WO2022102807A1 (en) Al-mg-si-based aluminum alloy and method for manufacturing same
WO2016117768A1 (en) Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same
CN112481532A (en) High-flame-retardance high-yield-ratio wrought magnesium alloy and preparation method thereof
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
KR102407828B1 (en) Wrought magnesium alloys with high mechanical properties and method for preparing the same
JPH11302764A (en) Aluminum alloy excellent in high temperature characteristic
JP2001181771A (en) High strength and heat resistant aluminum alloy material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21791630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21791630

Country of ref document: EP

Kind code of ref document: A1