WO2016137210A1 - Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor - Google Patents

Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor Download PDF

Info

Publication number
WO2016137210A1
WO2016137210A1 PCT/KR2016/001770 KR2016001770W WO2016137210A1 WO 2016137210 A1 WO2016137210 A1 WO 2016137210A1 KR 2016001770 W KR2016001770 W KR 2016001770W WO 2016137210 A1 WO2016137210 A1 WO 2016137210A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
alloy
thermal conductivity
flame retardancy
magnesium alloy
Prior art date
Application number
PCT/KR2016/001770
Other languages
French (fr)
Korean (ko)
Inventor
이인영
김강형
전현석
Original Assignee
이인영
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이인영 filed Critical 이인영
Priority to US15/553,656 priority Critical patent/US20190112693A1/en
Publication of WO2016137210A1 publication Critical patent/WO2016137210A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/06Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of magnesium or alloys based thereon

Definitions

  • the present invention imparts plastic workability by adding 0.5-5% by weight of zinc to the magnesium (hereinafter,% by weight) to solid solution, and contains 0.6-3.5% by weight of tin (Sn) as a high melting point oxide film forming element, if necessary.
  • Thermal conductivity and flame retardancy of 2.5 to 6.3% by weight of the total alloying elements are added by selectively adding at least 1.5% by weight or less of calcium (Ca), silicon (Si), manganese (Mn) and mischmetal (Mischmetal).
  • the present invention relates to a magnesium alloy having excellent plasticity and easy to process.
  • magnesium alloy is currently the lightest metal among the commercially available metal materials, and the use of magnesium alloy is rapidly expanding as a material of various parts in place of aluminum in the metal material usage to achieve further weight reduction.
  • the demand for fuel economy and the application to mobile electronics are increasing rapidly.
  • Magnesium alloys have the lightest density of 1.74 g / cc among commercially available structural alloys, which is two-thirds the density of aluminum.
  • magnesium alloy has excellent machinability, high vibration damping property, excellent absorbency against vibration and shock, excellent electromagnetic shielding function, and the like.
  • the reason for the rapid expansion of magnesium alloy into computers, mobile phones, automobile parts, etc. in recent years is that it has excellent light weight and reproducibility, shielding against electromagnetic waves, and is capable of forming as a thin shape such as castability superior to aluminum. Because.
  • magnesium has a dense hexagonal lattice structure with a small slip system, which is essential for plastic deformation, and is mainly formed by casting due to poor extrudability and formability.
  • sand casting has many limitations in shape, and molding by die casting causes many problems in subsequent surface treatment processes because the cast structure is porous in its characteristics.
  • materials such as AZ31 and AM20 alloyed with aluminum and zinc or manganese were developed to enable plastic processing using the ductility of single-phase solid solution.
  • they have developed an anisotropy in one direction due to the development of the bottom surface tissue after annealing and strong anisotropy and easy formation of tensile twins. .
  • AZ-based and AM-based magnesium alloys are formed of an initial precipitate of high-melting point iron-based impurities (Fe, Ni) or copper (Cu) having low solid solubility during solidification, and then beta Mg 17 Al 12 Since the compounds make coarse plate-like precipitates, and these precipitates are linked to interfere with heat transfer, there is a problem that the thermal conductivity is greatly lowered even if the amount is about 3-4%. (Ed. GL Song, Corrosion of Magnesium Alloys, 2011, pp. 137-146)
  • alloys such as WE43, ZE41, ZE10 or Elektron 21, which are yttrium, niobium (Nb), samarium (Sm), ytterbium (Yb), gadolium (Gd), neodymium (Nd) and zirconium It is an alloy containing a rare earth element such as (Zr). These alloys are excellent in flame retardancy due to the strong oxide film of rare earth elements, but they do not satisfy the demands of the market because they require large amounts of expensive elements or poor plasticity.
  • the thermal conductivity decreases as the amount of the alloying element is increased.
  • zirconium is an element that refines the grain size and improves flame retardancy, but has a very low thermal conductivity and plastic workability. As a result, about 1% of magnesium is added to reduce the thermal conductivity by 50 to 70%.
  • WE43 with zirconium added has 51 ⁇ 54W / m-K and ZE41 has 24W / m-K thermal conductivity and low ductility, so it is mainly used as casting material rather than plastic processing.
  • Elektron 21 contains about 4% of rare earth elements and 0.5% or less of zinc, which is excellent in thermal conductivity of 116W / m-K and excellent in suppressing ignition but very low in elongation of 2%.
  • ZE10 is also difficult to use for plastic processing in the industry because it is formed by special method such as ECAP because of low thermal conductivity and plastic processability by addition of zirconium.
  • Korean Patent Registration No. 10-1367892 introduces a high temperature magnesium alloy magnesium alloy and a manufacturing method, which combines aluminum and calcium as the calcium oxide is reduced by adding 0.5 to 3.8% by weight of calcium oxide (CaO) to the magnesium alloy molten metal. To impart flame retardancy.
  • this alloy also has a disadvantage that the plastic workability is significantly reduced.
  • Korean Patent No. 10-0509648 introduces a method of manufacturing a magnesium alloy sheet having excellent plastic workability by adding zinc and yttrium to magnesium.
  • the molten metal containing 0.5-5.0% of zinc and 0.2-2.0% of yttrium was cast in a plate shape of 35 mm thickness and rolled to 1.0 mm plate through annealing to improve the plastic workability of the rolled plate material.
  • no solution has been provided for the segregation of the core and the specific gravity segregation of zinc, which is increased when 3% or more of zinc is added.
  • the method of improving the flame retardancy of the material was not considered at all.
  • the thermal conductivity of this alloy is improved by 75% compared to that of AZ91 and is only 87 W / mK, similar to AZ31, which is less than the thermal conductivity of 100 W / mK expected in the present invention.
  • Korean Patent No. 10-1276665 a magnesium alloy capable of plastic processing solved flame retardancy with an alloy based on magnesium (Sn) 4-10% and calcium (Ca) 0.05-1.0%.
  • Sn magnesium
  • Ca calcium
  • due to the problem of maintaining the melt temperature at 850 ⁇ 900 °C to dissolve high melting point elements such as calcium, manganese, yttrium, erbium unnecessarily increases the gas concentration and the oxide in the melt to increase the impurity concentration
  • Korean Patent Registration No. 10-1406111 introduces an alloy in which 6.5-7.5% of tin, 1% of zinc and aluminum are added to magnesium.
  • Korean Patent No. 10-0519721 discloses a high-strength magnesium alloy in which magnesium is 6% zinc as a basic composition and 0.4-3% of manganese, aluminum, silicon, and calcium are additionally added.
  • magnesium is 6% zinc as a basic composition
  • manganese, aluminum, silicon, and calcium are additionally added.
  • a large amount of zinc may cause specific gravity segregation, which may cause the billet to break during extrusion or deteriorate in plastic workability.
  • the high strength and plastic workability are mentioned. There was no basis for predicting gender performance.
  • magnesium alloys were initially developed to be inclined to plastic processability or to be flame retardant.
  • thermal conductivity and flame retardancy and securing plastic processability This is because structural materials are not simply satisfied with strength and formability in order to commercialize, and safety can be ensured by preventing the spread of fire only by suppressing the ignition property of magnesium material when a fire occurs.
  • fire must not ignite within two minutes of exposure to an oil burner flame for four minutes (240 seconds), and within three minutes after the burner is turned off. A total of 7 minutes of flame retardancy tests to be extinguished shall meet the specification if no more than 10% of the initial weight is lost.
  • Figure 1 shows a schematic of the aircraft magnesium alloy flame retardancy test apparatus and specimen approved by FAA.
  • the present invention was created to eliminate the above problems, and contains 0.5 to 5% by weight of zinc (Zn) and 0.6 to 3.5% by weight of tin (Sn) as a high melting point oxide forming element, but calcium (Ca) if necessary ), Silicon (Si), manganese (Mn) and mischmetal (Mischmetal) by selectively adding 1.5% by weight or less to manage the total amount of alloying elements from 2.5 to 6.3% by weight, excellent thermal conductivity and flame retardancy While the plastic workability is improved, extrusion is possible even at a pressure of 1000 kgf / cm 2 or less, and an object of the present invention is to provide a magnesium alloy for annealing and a method for producing the alloy having excellent thermal conductivity and flame retardancy of 100 W / mK or more.
  • the present invention contains 0.5 to 5% by weight of zinc and 0.6 to 3.5% by weight of tin (Sn) as a high-melting-point oxide film-forming element, but if necessary, calcium (Ca), silicon (Si), and manganese.
  • Sn tin
  • Mn and Mischmetal selectively add one or more of Mn and Mischmetal to 1.5 wt% or less to manage the total amount of alloying elements at 2.5 to 6.3 wt% to obtain a magnesium alloy having excellent thermal conductivity and flame retardancy and improved plastic workability.
  • high melting point elements other than zinc and stocks are added in the form of a mother alloy, and mechanical stirring is performed to remove component segregation and to cast. Thereafter, after removing the surface coating structure of the casting material and performing diffusion annealing, it is then molded into a predetermined shape through an annealing process such as rolling, extrusion or forging.
  • the high malleability of the magnesium alloy can be plasticized without surface defects even at an extrusion pressure of 1000 kgf / cm 2 or less, and has excellent flame retardancy and thermal conductivity, and thus requires heat conduction required in portable home appliances, automobiles, aircraft parts, and the like.
  • satisfactory performance and flame retardancy there is an effect of providing a magnesium alloy extruded material which can be usefully used at a low cost.
  • FIG. 1 is a schematic view of a flame retardant test apparatus and specimen.
  • Figure 2 is a schematic diagram showing the stirring process during mold cooling.
  • FIG. 10 is a high temperature stable phase precipitated state diagram of alloy 8.
  • FIG. 13 is a high temperature stable phase precipitation state diagram of Alloy 11.
  • FIG. 14 is a high temperature stable phase precipitation state diagram of Alloy 12.
  • 17 is a high temperature stable phase precipitation state diagram of an alloy 15 comparative example.
  • Fig. 19 shows a casting structure of alloy 10.
  • Fig. 21 is an extruded material structure of alloy 6.
  • 22 is an extruded material structure of alloy 7.
  • 26 is a flame retardant test scene.
  • the present invention contains 0.5 to 5% by weight of zinc in magnesium and 0.6 to 3.5% by weight of tin (Sn) as a high melting point oxide forming element, but if necessary, calcium (Ca), silicon (Si), manganese (Mn) and misc
  • tin tin
  • Ca silicon
  • Mn manganese
  • misc By selectively adding at least 1.5% by weight or less of the metal (Mischmetal) to manage the total amount of alloying elements at 2.5 to 6.3% by weight, not only has thermal conductivity and flame retardancy, but also high melting point alloying elements are added as a master alloy to provide 720 It can melt
  • Zinc is dissolved in Mg to change the c / a axis ratio, thereby inhibiting the development of the bottom aggregate tissue, and uniform solid working is possible due to the work hardening effect of MgZn 2 and MgZn 5 precipitates in solid solution.
  • less than 0.5% is less effective, so it is difficult to expect the work hardening and malleability required for plastic processing materials, and when it exceeds 5%, the bottom aggregate structure, which inhibits formability after annealing, is strengthened.
  • the precipitated phases such as Mg 2 Zn 3 and Mg 12 Zn 13 are laminated with the alpha phase to form a low melting point process phase around 340 ° C., thus limiting flame retardancy.
  • Tin improves high-temperature plasticity by making Mg 2 Sn precipitates, which are stable at high temperatures above 560 °C and by appropriately distributing them, and when exposed to flames in the air, contributes to the improvement of flame retardancy by forming SnO 2 oxide films with melting points above 1600 °C.
  • the addition amount when the addition amount is less than 0.6%, it is difficult to expect the effect. If the addition amount is more than 3.5%, the melting point is lowered and the ignition point may be lowered below 500 ° C., thereby impairing the flame retardancy, and the excessive amount of Mg 2 Sn precipitates. Since not only the malleability falls but also the manufacturing cost rises, 1.0 to 3.0% is preferable.
  • Mischmetal is a rare earth alloy containing 65% to 78% of cerium (Ce) and lanthanum (La), and the rest is neodymium (Nd), praseodymium (Pr) and indispensable impurities. Mischmetal is used as a substitute for lanthanum for cost savings because it is cheaper and has the same effect as lanthanum (La) or cerium (Ce), which have a lanthanum effect in magnesium alloy. Cerium and neodymium also exhibit flame retardancy by forming oxide films such as CeO 2 and Nd 2 O 3 with melting points of 2400 ° C and 2200 ° C, respectively, when exposed to flames in the atmosphere. Due to the high temperature stable phase, the high temperature strength is kept high, and the property of suppressing warpage, sagging or premature melt bar-separation at high temperatures by the flame is strong.
  • the present invention is limited to 1.5% or less.
  • the reason why the constituent elements in the rare earth metal are expressed by the mismetal is that the cost increases when the constituent elements are added as a single metal. Therefore, the addition of the constituent elements alone does not depart from the scope of the present invention.
  • Lanthanum is used as a substitute for misch metal in the present invention.
  • the high solubility limit of magnesium is 12.4%, and it is combined with MgZn 2 precipitate to form a long period stacking order structure of hexagonal system.
  • Precipitates are formed to form a lamellar lamellar process phase at the grain boundaries.
  • Precipitates are transformed into homogeneous intermetallic compounds through spinodal decomposition during homogenization heat treatment after casting, and dispersed during annealing to contribute to strengthening dispersion.
  • a La 2 O 3 oxide film having a melting point of 2300 ° C. or more is formed to exhibit flame retardancy.
  • the high temperature stable phase due to the high temperature stable phase, the high temperature strength is maintained, and the property of suppressing warpage, sag or premature melt bar-separation at high temperatures due to the flame is strong.
  • the precipitate tends to be coarse with increasing amount, so it is limited to 1.5% or less.
  • Mg 2 Ca is a group 2 alkaline earth metal such as magnesium.
  • Mg 2 Ca which has a melting point of 715 ° C, which is a secondary coagulation phase, is formed between dendritic tissues or is employed in a matrix with zinc, causing recrystallization in a disordered direction during heating. It has the effect of inhibiting development and miniaturizing grains, and improves flame retardancy by forming a CaO oxide film having a melting point of 2600 ° C. or more when exposed to flame in the air.
  • the high temperature stable phase the high temperature strength is maintained, and the property of suppressing warpage, sag or premature melt bar-separation at high temperatures due to the flame is strong.
  • the amount of Mg 2 Ca particles is excessively increased and the malleability may decrease, so the amount is limited to 1.5% or less.
  • a high temperature stable phase such as Mg 2 Si is formed to refine the grain size and exert a precipitation strengthening effect.
  • the precipitate is easy to coarse, but the addition of calcium can adjust the size or shape of the precipitate.
  • a SiO 2 oxide film having a melting point of 1600 ° C. or more is formed to exhibit flame retardancy. Due to the high temperature stable phase, the high temperature strength is kept high, and the property of suppressing warpage, sagging or premature melt bar-separation at high temperatures by the flame is strong.
  • the present invention is limited to 1.5% or less because the precipitate begins to coarsen with increasing amount.
  • Manganese has a maximum solubility of 2.2% in magnesium.
  • Magnesium alloys have a crystallization reaction in which the alpha phase of manganese precipitates and the excitation reaction in which the delta phase precipitates at 650 ° C., thereby minimizing grain size and improving corrosion resistance.
  • when exposed to a flame in the atmosphere has an effect of improving the flame retardancy by forming a MnO oxide film having a melting point of more than 1900 °C.
  • it is effective to refine the coarse plate-shaped Mg 17 Al 12 precipitate formed when aluminum is present as an impurity and to refine the MgZn 2 precipitate during recrystallization during annealing.
  • the present invention is limited to 1.5% or less because the effect is saturated and the malleability decreases as the amount added increases.
  • molten metal is prepared by selectively adding one or more kinds of metals (Mischmetal) to 1.5 wt% or less and undergoing mechanical stirring during the solidification process, the malleability is ensured to be extruded at a pressure of 1000 kgf / cm2 or less and exposed to flame.
  • a high melting point oxide film is formed on the surface of the material to exhibit flame retardancy, satisfies thermal conductivity at the same time, thereby preventing the occurrence of premature melting due to local heating and shortening the self-extinguishing time of the melted material.
  • the reason for managing the total amount of alloying elements in the present invention at 2.5 to 6.3% is less effective at improving the malleability and flame retardancy at less than 2.5%, and when the alloying elements are added in excess of 6%, compounds and precipitates are excessively high in thermal conductivity. It lowers, and since it has low malleability and melting point, it limits.
  • the ignition is suppressed and the flame retardancy is improved.
  • the melting point of the material is lowered and the thermal diffusion rate is also lowered as the amount is increased.
  • the total amount of the alloy is suppressed to 6.3% or less.
  • the thermal conductivity is lowered.
  • Aluminum contains a large amount of coarse plate-shaped Mg 17 Al 12 which contains only about 3%, which lowers thermal conductivity and consumes rare earth or alkaline earth elements and impairs flame retardancy. Therefore, aluminum is limited to 1% or less as impurities. .
  • zirconium combines with other rare earth elements in the dendritic structure at the grain boundary to form lamellae, the zirconium is limited to 0.5% or less because it significantly lowers the thermal conductivity and increases the brittleness, thereby deteriorating the malleability.
  • the thermal conductivity of 100 W / mK or more is exhibited by the above-described method, and tin (Sn), calcium (Ca), silicon (Si), manganese (Mn) and mischmetal (Mischmetal) as high melting point oxide film forming elements. It is characterized by satisfying the flame retardancy of more than 120 seconds of ignition time, less than 180 seconds of specimen extinguishing time after burner extinguishing, weight loss of 10% or less in the burner ignition test.
  • high melting point alloy elements excluding calcium and tin, which are low melting points in alloys (calcium, silicon, manganese, misc metal, lanthanum) They are added to the master alloy and characterized in that the molten metal is mechanically stirred.
  • Magnesium alloys often have a large difference in specific gravity between magnesium and other alloying elements.
  • zinc and tin tend to segregate in the center or under the mold, and coarse development of dendritic crystals leads to uneven macroscopic composition of billets. It causes a decrease in extrusion performance.
  • hot tearing occurs in the center of billet, which causes deformation, cracking, and fine wrinkles during the extrusion process. And reliability.
  • a high melting point alloying element as a mother alloy, it is possible to dissolve while managing the temperature of the melt at 720 ° C. or lower, thereby lowering the possibility of ignition of the melt, and the coagulation nucleus already formed in the mash zone in the melt through mechanical stirring.
  • By dispersing it it is possible to promote uniform solidification in the molten metal, to reduce segregation and to refine grains.
  • magnesium alloy does not have unpaired hole electrons, so the magnetization power is weak, so that it is difficult to obtain a sufficient magnetic stirring effect, and mechanical stirring is effective.
  • the method of manufacturing the master alloy lowers the melting point of the master alloy by forming a lump or granule, the main component of which is to be alloyed in the molten magnesium, in a shielding gas atmosphere shielding from the atmosphere, and by mechanically stirring the composition near the process composition. .
  • the total component segregation difference between the upper and lower parts of the casting material was less than 1% when mechanical stirring was performed during gravity casting of 30 kg magnesium alloy billet containing 4% zinc. There was more than 8% segregation difference. Therefore, it can be seen that mechanical stirring is effective for removing segregation. This segregation causes the billet to break at the segregation boundary during extrusion, or remains after extrusion, causing visual defects and uneven physical properties.
  • a stirring method using a motor and an impeller will be described as a method of mechanical stirring.
  • the use of attraction or other mechanical agitation does not detract from the effects sought in the scope of the present invention.
  • the casting material for example, billet
  • the casting material subjected to mechanical agitation when the molten metal is stirred while the solidification process proceeds inside disperses the high temperature stable phase and the high temperature precipitates formed as solids in the melt zone in the molten metal, thereby acting as a solidification core.
  • the structure of the casting material is uniform, segregation is eliminated, and the grains are effective.
  • the molten alloy is blocked from the atmosphere by the shielding gas injected through the cover 3 and the shielding gas pipe 4 combined with the crucible or the mold 1. While the billet is solidifying, the alloy composition is made uniform by inserting and stirring a small impeller 22 into a molten stainless steel lever 21 which is operated by a motor M through a through hole provided in the cover. By moving up and down to the marsh zone 8, the coagulation nuclei can be dispersed to refine the crystals. Impeller 22 used in the present invention is also included in the scope of the present invention using other metals, ceramic materials, composite materials, or depositing, plating, penetrating or spray coating other materials on the impeller.
  • the diameter of the impeller is 1/5 to 2/3 of the diameter of the billet. If the diameter of the impeller is larger than this, it is limited because it requires a large motor due to the load. In addition, if less than 1/5 of the billet diameter, the stirring effect is insignificant, which is not suitable for segregation prevention.
  • the magnesium alloy when producing the magnesium alloy molten magnesium is first dissolved in the crucible and the temperature is maintained at 680 ⁇ 720 °C.
  • the crucible was made of stainless steel, and the melting atmosphere shields contact with the atmosphere by flowing a gas mixed with 0.25 to 0.3% SF 6 in carbon dioxide gas. Then, zinc and / or tin are added as alloying elements, and other high melting point alloying elements (mischmetal, lanthanum, calcium, silicon, manganese) are added in the form of a master alloy close to the process composition.
  • the crucible is extracted and charged into a cooling bath. In this process, the refrigerant is injected or charged into a tank filled with a refrigerant, such as water of 30 ° C. or lower, to cool the crucible to promote solidification of the molten metal.
  • the crucible When cooling in a bath, the crucible is cooled at a rate of about 70-200 ° C / min depending on the capacity of the bath and the temperature of the refrigerant. If cooling by injecting the refrigerant, the cooling rate is higher, and when the crucible is sprayed and cooled in a water tank, it is cooled at a cooling rate of about 200 ⁇ 600 °C / min. In continuous casting where the solidification speed is to be increased, the mold and billet are increased by increasing the injection pressure. Intense cooling can result in cooling at a rate of about 400-900 ° C / min. However, if the cooling rate exceeds 900 °C / min, there is a problem that the crack in the center due to the heat shrinkage stress due to the cooling rate difference inside and outside the billet.
  • an impeller made of stainless steel is inserted into a crucible to mechanically stir the molten metal two or three times to disperse the coagulation nuclei formed in the cast material, thereby obtaining a cast material having a low segregation and a fine structure.
  • the surface chill (Chill) structure was removed to obtain a billet having a diameter of 74 ⁇ 75mm, and was subjected to diffusion annealing at 380 °C for 2 hours and cooled to room temperature.
  • the diffusion-unfolded billet was preheated at 380 ° C. for 1.5 hours, and the alloys of Table 1 were extruded from an extrusion die to form a sheet having a width of 50 mm and a thickness of 8 mm.
  • Example alloys of Table 1 were mostly extruded at 750-900 kgf / cm 2 pressure. However, the alloys of Comparative Examples 1 and 15 were extruded, but due to the low melting point process, microcracks exist on the surface of the plate. In Comparative Example 14, the extrusion temperature was lowered to around 340 ° C. and the extrusion pressure was increased to 1500 kgf / cm 2. Surface microcracks could be prevented, but after the burner was removed in the flame retardancy test, the natural digestion time was exceeded, and the weight loss was excessive.
  • the plate-like sample thus obtained was diffused and unannealed at 380 ° C. for 1 hour and processed into a diameter of 12.7 mm and a thickness of 2 mm, and thermal conductivity was measured by a laser flash method according to ASTM E4161.
  • the alloys of the present invention were 125 W / mK at a high temperature of 100 ° C. or higher. It was confirmed to exhibit the above thermal conductivity.
  • the ignition point of the processed chip obtained from the sample was measured by thermogravimetric analysis (TGA) using a differential scanning calorimeter (DSC), and a flame retardancy test was performed using a burner by processing a specimen having a width of 38.1 mm, a thickness of 6.4 mm, and a length of 508 mm. Each was carried out twice.
  • TGA thermogravimetric analysis
  • DSC differential scanning calorimeter
  • the alloys of the present invention have a ignition point of more than 550 ° C., a ignition time of 120 seconds or more, a burner digestion within 180 seconds of spontaneous fire extinguishing, satisfactory flame retardant conditions of less than 10% weight loss, plastic workability, and thermal conductivity. Doing.
  • the example alloys of the present invention were produced in 4.4 ⁇ 6.0% range showed excellent thermal conductivity and flame retardancy, yet easy plastic processing.
  • 3 to 17 is a high temperature stable phase precipitation state diagram of the alloys and comparative alloys according to the present invention
  • the high temperature stable phase begins to appear at least 430 °C or more in the state diagram of the comparative example is insufficient or excessively excessive precipitation of the high temperature stable phase
  • 18 to 23 show the structure of the alloy of the present invention. Looking at the precipitates of the cast structure in Figure 18 to 20 was suppressed the formation of coarse lamellae in the grain boundary, it can be seen that the precipitates are finely dispersed during the extrusion process in Figure 21 ⁇ Figure 23 of the extruded material.
  • 24 to 25 is a thermal conductivity measurement graph of the present invention, as shown in Table 1, the alloy of the present invention has a thermal conductivity of 115W / mK or more 51 ⁇ 54W / of WE43 used as a conventional AZ-based alloy or currently flame retardant alloy Compared with the 24W / mK of mK and ZE41, it shows higher thermal conductivity and satisfies the flame retardancy test.
  • Figure 26 is a flame retardant test scene of the present invention, the alloy of the present invention has the effect of improving the flame retardancy due to the small effect of shortening the melt time by the local heating when it touches the flame due to the excellent thermal conductivity.
  • cover 4 shielding gas piping
  • injection hole 6 continuous casting billet support
  • Coolant injection nozzle 8 Mashed zone

Abstract

The present invention relates to a magnesium alloy having excellent thermal conductivity and flame retardancy and facilitating plastic deformation, and a preparation method therefor, the magnesium alloy containing 0.5-5 wt% of zinc (Zn) and, as a high-melting-point-oxide-film-forming-element, 0.6-3.5 wt% of tin (Sn) in magnesium, wherein the total amount of alloying elements is 2.5-6.3 wt% by selectively adding 1.5 wt% or less of one or more of calcium (Ca), silicon (Si), manganese (Mn) and mischmetal, when necessary. The method for preparing the alloy comprises adding high-melting-point alloying elements in the form of a master alloy to a molten alloy of magnesium and zinc, melting the same, casting the same, removing the chill zone of a cast material, carrying out diffusion annealing, and then carrying out molding through a tempering process such as rolling, extrusion or forging. According to the present invention, there are effects of: improving ductility by the action of alloying elements inhibiting the formation of plate-like precipitates in a magnesium base texture; enabling extrusion even with a pressure of 1,000 kgf/cm2 or less since the plastic deformability of a magnesium alloy is improved; allowing wide application thereof as a radiation plate or a structural material of portable electric home appliances, automobile and aircraft parts, and the like since the present invention is suitable for a use requiring fire safety by having a thermal conductivity of 100 W/m·K or more and a flame retardancy satisfying the requirements of aircraft material usage; and contributing to weight reduction.

Description

열전도성과 난연성이 우수한 소성가공용 마그네슘 합금과 그의 제조방법Magnesium alloy for plastic working with excellent thermal conductivity and flame retardancy and its manufacturing method
본 발명은 마그네슘에 아연을 0.5~5중량%(이하 %는 중량%)첨가하여 고용시킴으로써 소성가공성을 부여하고, 고융점 산화막 형성원소로 주석(Sn)을 0.6~3.5중량% 함유하되, 필요 시 칼슘(Ca), 규소(Si), 망가니즈(Mn) 및 미쉬메탈(Mischmetal) 중의 1종 이상을 선택적으로 1.5중량% 이하로 첨가하여 합금원소의 총량이 2.5~6.3중량%인 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금과 그의 제조방법에 관한 것이다.The present invention imparts plastic workability by adding 0.5-5% by weight of zinc to the magnesium (hereinafter,% by weight) to solid solution, and contains 0.6-3.5% by weight of tin (Sn) as a high melting point oxide film forming element, if necessary. Thermal conductivity and flame retardancy of 2.5 to 6.3% by weight of the total alloying elements are added by selectively adding at least 1.5% by weight or less of calcium (Ca), silicon (Si), manganese (Mn) and mischmetal (Mischmetal). The present invention relates to a magnesium alloy having excellent plasticity and easy to process.
주지된 바와 같이 마그네슘합금은 현재 실용화 금속재료 중 가장 경량의 금속으로 한층 더 경량화를 달성하려는 금속재료 사용처에 있어서 알루미늄을 대체하여 각종 부품의 재료로 급속히 그 사용이 확대되고 있으며, 또한, 자동차와 항공기 연비에 대한 이슈와 모바일 전자제품에의 적용으로 수요가 급격히 늘고 있는 추세이다.As is well known, magnesium alloy is currently the lightest metal among the commercially available metal materials, and the use of magnesium alloy is rapidly expanding as a material of various parts in place of aluminum in the metal material usage to achieve further weight reduction. The demand for fuel economy and the application to mobile electronics are increasing rapidly.
마그네슘합금은 상용되고 있는 구조용 합금가운데 가장 가벼운 밀도인 1.74g/cc을 가지고 있으며, 이는 알루미늄 밀도의 2/3에 해당된다. 또, 마그네슘합금은 우수한 기계 가공성과 높은 진동감쇠성, 진동 및 충격에 대한 탁월한 흡수성, 우수한 전자파차단기능 등을 구비하고 있다. 또한, 최근 급속히 마그네슘합금이 컴퓨터나 휴대전화, 자동차부품 등으로 확대되는 이유는 경량성, 재생성의 우수함과 함께 전자파에 대한 차폐능력을 가지고 있으며, 알루미늄보다 뛰어난 주조성 등 얇은 형재로서의 성형이 가능하기 때문이다.Magnesium alloys have the lightest density of 1.74 g / cc among commercially available structural alloys, which is two-thirds the density of aluminum. In addition, magnesium alloy has excellent machinability, high vibration damping property, excellent absorbency against vibration and shock, excellent electromagnetic shielding function, and the like. In addition, the reason for the rapid expansion of magnesium alloy into computers, mobile phones, automobile parts, etc. in recent years is that it has excellent light weight and reproducibility, shielding against electromagnetic waves, and is capable of forming as a thin shape such as castability superior to aluminum. Because.
그러나 마그네슘은 소성변형에 필수적인 슬립 시스템이 적은 조밀육방격자 구조를 지니고 있어 압출성이나 성형성이 나빠 주조에 의한 성형이 주로 이루어졌다. 하지만 사형 주조는 형상에 많은 제약이 따르고, 다이캐스팅에 의한 성형은 그 특성상 주조조직이 다공성이므로 후속되는 표면처리 공정에서 많은 문제를 야기한다. 그러던 중 알루미늄과 아연 또는 망가니즈를 합금한 AZ31, AM20 등의 재료가 개발되면서 단상고용체의 연성을 이용한 소성가공이 가능하게 되었다. 그런데 이들은 풀림처리 후 저면집합조직이 발달하여 일방향으로 소성변형된 판재나 형재의 경우 이방성이 강하고 인장쌍정이 쉽게 형성되어 풍부한 연성에도 불구하고 실제적으로는 소성가공에 문제가 많아 상용화가 느리게 진행되고 있다.However, magnesium has a dense hexagonal lattice structure with a small slip system, which is essential for plastic deformation, and is mainly formed by casting due to poor extrudability and formability. However, sand casting has many limitations in shape, and molding by die casting causes many problems in subsequent surface treatment processes because the cast structure is porous in its characteristics. Meanwhile, materials such as AZ31 and AM20 alloyed with aluminum and zinc or manganese were developed to enable plastic processing using the ductility of single-phase solid solution. However, they have developed an anisotropy in one direction due to the development of the bottom surface tissue after annealing and strong anisotropy and easy formation of tensile twins. .
즉, 400℃ 이상 온도에서 압출할 경우 다이와의 마찰열로 저융점 공정 액상과 알파 마그네슘 고용체가 공존하는 온도구간에서 압출되는 까닭으로 표면에 미세한 균열들이 지문처럼 보이는 주름형태의 결함이 나타나는 문제가 있었다. 이런 미세한 표면결함들은 피로강도를 저하시키므로 제거해야 하는데 실제 현장에서는 비용과 환경, 분진의 발화로 인한 안전문제 등으로 제거가 용이하지 않다. 따라서 표면 결함없이 깨끗한 제품을 얻기 위해서는 350℃ 이하 온도에서 압출하게 되는데 이로 인해 압력을 알루미늄 압출압력인 1000kgf/㎠보다 최소 5배 이상 크게 높여야 하는 어려움이 있었다.That is, when extruded at a temperature of 400 ℃ or more, due to the frictional heat with the die is extruded in the temperature zone where the low-melting process liquid and alpha magnesium solid solution coexist, there was a problem that the appearance of fine cracks on the surface appear wrinkle-like defects. These fine surface defects should be removed because they lower the fatigue strength, but they are not easy to remove due to cost, environment, and safety issues caused by dust ignition. Accordingly, in order to obtain a clean product without surface defects, extrusion is performed at a temperature of 350 ° C. or lower, which causes the pressure to be increased at least five times higher than the aluminum extrusion pressure of 1000 kgf / cm 2.
이 외에 기존에 단련용으로 많이 사용된 AZ계와 AM계 마그네슘 합금들은 저융점 공정상으로 인해 난연성을 보장하지 못하는 문제를 안고 있었다. In addition, the AZ-based and AM-based magnesium alloys, which have been used for many times for annealing, had problems of not guaranteeing flame retardancy due to the low melting point process.
이들 AZ계와 AM계 마그네슘 합금은 응고 과정에서 고용도가 낮은 고융점 철계불순물들(Fe, Ni)이나 구리(Cu)가 초기 석출물을 형성하고, 뒤에 석출하는 알루미늄과 마그네슘의 베타 Mg17Al12화합물이 조대한 판상 석출물을 만들어 이들 석출물들이 연결되면서 열전달을 방해하기 때문에 첨가량이 3-4% 내외일지라도 열전도성이 크게 낮아지는 문제가 있다. (Ed. G.L. Song, Corrosion of Magnesium Alloys, 2011, pp.137-146)These AZ-based and AM-based magnesium alloys are formed of an initial precipitate of high-melting point iron-based impurities (Fe, Ni) or copper (Cu) having low solid solubility during solidification, and then beta Mg 17 Al 12 Since the compounds make coarse plate-like precipitates, and these precipitates are linked to interfere with heat transfer, there is a problem that the thermal conductivity is greatly lowered even if the amount is about 3-4%. (Ed. GL Song, Corrosion of Magnesium Alloys, 2011, pp. 137-146)
따라서 이 소재에 화염이 가해지면 열전도도가 낮아 구조물에서 가열부위에 국부적으로 온도가 급상승하기 쉽고, 용해되면 공기 중의 산소와 쉽게 반응하여 발화하는데다 화염이 소화되어도 열확산이 늦어 재료의 온도가 내려가기 어려워 계속 연소하므로 빨리 소화되기 어려워 안전성을 보장할 수 없는 심각한 문제가 있다. 화재에 대한 우려는 자동차에서만 아니라 산업 전반에 걸쳐 작용하여 마그네슘 소재 적용을 크게 지연시켰다. Therefore, when flame is applied to the material, the thermal conductivity is low, so the temperature rises easily at the heating part in the structure, and when dissolved, it reacts easily with oxygen in the air to ignite, and even if the flame is extinguished, the temperature of the material decreases due to late thermal diffusion. There is a serious problem that it is difficult to keep burning because it is difficult to extinguish quickly. Concerns about fire acted not only in automobiles but throughout the industry, significantly delaying the application of magnesium materials.
이런 이유로 마그네슘에 난연성을 부여하기 위해 희토류를 첨가하는 시도가 계속 이어졌다. For this reason, attempts have been made to add rare earths to impart flame retardancy to magnesium.
기존에 이를 만족하는 소재는 WE43, ZE41, ZE10 또는 Elektron 21과 같은 합금으로 이트륨, 나이오븀(Nb), 사마륨(Sm), 이터븀(Yb), 가돌륨(Gd), 네오디뮴(Nd)과 지르코늄(Zr)과 같은 희토류계 원소가 함유된 합금이다. 이 합금들은 희토류 원소의 강한 산화막으로 인해 난연성은 뛰어나지만 고가 원소를 다량 요구하거나 소성가공성이 나빠 시장의 요구를 제대로 만족하지 못하고 있다. 하지만 희토류 원소들의 경우에도 4% 이상 함유되면 전연성을 크게 저하시키는 역효과를 가져오게 되며, 일반적으로 합금원소의 첨가량이 늘어날수록 열전도도는 저하한다. 특히 지르코늄은 결정입도를 미세화하고 난연성을 향상시키지만 열전도도와 소성 가공성이 매우 낮은 원소로서 마그네슘에서는 약 1% 첨가만으로 열전도도를 50~70% 낮추는 결과가 나타난다.Existing materials that satisfy this are alloys such as WE43, ZE41, ZE10 or Elektron 21, which are yttrium, niobium (Nb), samarium (Sm), ytterbium (Yb), gadolium (Gd), neodymium (Nd) and zirconium It is an alloy containing a rare earth element such as (Zr). These alloys are excellent in flame retardancy due to the strong oxide film of rare earth elements, but they do not satisfy the demands of the market because they require large amounts of expensive elements or poor plasticity. However, in the case of rare earth elements, containing 4% or more has the adverse effect of greatly reducing the malleability, and in general, the thermal conductivity decreases as the amount of the alloying element is increased. In particular, zirconium is an element that refines the grain size and improves flame retardancy, but has a very low thermal conductivity and plastic workability. As a result, about 1% of magnesium is added to reduce the thermal conductivity by 50 to 70%.
지르코늄이 첨가되는 WE43은 51~54W/m-K, ZE41은 24W/m-K 수준의 열전도도를 가지며 전연성이 낮아 주로 소성가공용이 아닌 주조용 소재로 사용하고 있다. Elektron 21은 희토류 원소가 약 4%, 아연이 0.5% 이하 첨가되어 열전도도가116W/m-K으로 우수하며 발화 억제 성능도 우수하나 연신율이 2% 수준으로 매우 낮아 소성가공이 어렵다. ZE10도 지르코늄 첨가로 열전도성과 소성가공성이 낮아 ECAP과 같은 특수한 방법으로 성형하는 상황이라 실제 산업에서 소성가공용으로 사용하기는 어려운 실정이다.WE43 with zirconium added has 51 ~ 54W / m-K and ZE41 has 24W / m-K thermal conductivity and low ductility, so it is mainly used as casting material rather than plastic processing. Elektron 21 contains about 4% of rare earth elements and 0.5% or less of zinc, which is excellent in thermal conductivity of 116W / m-K and excellent in suppressing ignition but very low in elongation of 2%. ZE10 is also difficult to use for plastic processing in the industry because it is formed by special method such as ECAP because of low thermal conductivity and plastic processability by addition of zirconium.
이외에도 한국등록특허 10-1367892호에서는 고온용 마그네슘합금 마그네슘합금과 제조방법을 소개하고 있는데 마그네슘 합금 용탕에 0.5~3.8 중량%의 산화칼슘(CaO)를 첨가하여 산화칼슘이 환원되면서 알루미늄과 칼슘이 결합하여 난연성을 부여하였다. 그러나 이 합금의 경우도 소성가공성이 현저히 저하하는 단점이 있다.In addition, Korean Patent Registration No. 10-1367892 introduces a high temperature magnesium alloy magnesium alloy and a manufacturing method, which combines aluminum and calcium as the calcium oxide is reduced by adding 0.5 to 3.8% by weight of calcium oxide (CaO) to the magnesium alloy molten metal. To impart flame retardancy. However, this alloy also has a disadvantage that the plastic workability is significantly reduced.
또한 마그네슘에 탄화규소(SiC)나 섬유상 알루미나를 혼합하여 열전도성을 개선하는 방법도 시도되었는데 소성가공성을 악화시키므로 단련용에는 부적합하였다. (A. Rudajevova 등, On the Thermal Characteristics of Mg Based Composites, Kompozyty, 4, 10, 2004)In addition, a method of improving thermal conductivity by mixing silicon carbide (SiC) or fibrous alumina with magnesium has been attempted, but it is not suitable for annealing because it degrades plastic workability. (A. Rudajevova et al., On the Thermal Characteristics of Mg Based Composites, Kompozyty, 4, 10, 2004)
이같이 마그네슘합금에서 난연성과 소성가공성을 아울러 얻는 것은 어려운 문제로 여겨졌다.As such, it was considered to be a difficult problem to obtain flame retardancy and plastic workability in magnesium alloy.
희토류를 첨가하여 소성가공성을 개선한 예로 한국등록특허 10-0509648호는 마그네슘에 아연과 이트륨을 첨가한 합금으로 소성가공성이 우수한 마그네슘합금 판재를 제조하는 방법을 소개하고 있다. 그러나 이 발명에서는 아연 0.5~5.0%, 이트륨 0.2~2.0%를 함유한 용탕으로 두께 35mm의 판상으로 주조하고 어닐링을 거쳐 1.0mm의 판재로 압연함으로써 압연용 판재의 소성가공성을 향상시키는 데는 성공하였으나 75mm이상 대경의 빌렛으로 주조할 때 나타나는 중심부 편석과 아연이 3% 이상 첨가될 때 심해지는 아연 비중편석에 대해서는 해결방안을 제시하지 못했다. 또한 이 발명에서는 재료의 난연성 개선방법에 대해서는 전혀 고려하지 못했다.As an example of improving the plastic workability by adding rare earth, Korean Patent No. 10-0509648 introduces a method of manufacturing a magnesium alloy sheet having excellent plastic workability by adding zinc and yttrium to magnesium. In the present invention, however, the molten metal containing 0.5-5.0% of zinc and 0.2-2.0% of yttrium was cast in a plate shape of 35 mm thickness and rolled to 1.0 mm plate through annealing to improve the plastic workability of the rolled plate material. As a result, no solution has been provided for the segregation of the core and the specific gravity segregation of zinc, which is increased when 3% or more of zinc is added. In addition, in this invention, the method of improving the flame retardancy of the material was not considered at all.
이런 가운데 재료의 열전도성과 고온 안정성을 개선하는 방안으로 기존의 AZ계 마그네슘 합금에 토류금속인 스트론튬(Sr)이나 칼슘을 첨가하여 베타 Mg17Al12와 결합하여 형상을 조절하는 방안이 제안되었다. (A. Kielbus등, The Thermal Diffusivity of Mg-Al-Sr and Mg-Al-Ca-Sr and Casting Magnesium Alloys, Defect and Diffusion Forum, Vol. 326-328, 2012, pp.249-254) 스트론튬이나 칼슘은 베타상 석출물의 표면장력을 높여 입계에서 석출물이 라멜라상으로 석출하는 것을 억제하고, 석출물 크기를 줄여 열전도도를 개선하고, 화염에 용탕이 노출되면 표면에 치밀한 산화막이 생기면서 발화를 억제하게 된다. 그러나 이 소재는 알루미늄이 6~9% 이고 추가로 스트론튬을 0.8~2%, 또는 칼슘을 1.5~2.2% 첨가하는데, 합금원소를 합하면 총량이 8~11%에 달하기 때문에 전연성이 낮아져 단련용으로서 부적합할 뿐만 아니라 이 합금의 열전도도는 AZ91의 열전도도에 비해 75% 정도 개선하고 AZ31과 유사한 정도인 87 W/m-K에 그쳐 본 발명에서 기대하는 100W/m-K 이상의 열전도도에는 미치지 못한다. In order to improve the thermal conductivity and high temperature stability of the material, a method of controlling the shape by adding strontium (Sr) or calcium, which is an earth metal, to beta Mg 17 Al 12 is proposed. (A. Kielbus et al., The Thermal Diffusivity of Mg-Al-Sr and Mg-Al-Ca-Sr and Casting Magnesium Alloys, Defect and Diffusion Forum, Vol. 326-328, 2012, pp.249-254) Strontium or Calcium By increasing the surface tension of the beta-phase precipitates, it is possible to suppress the precipitation of the precipitates into the lamellar phase at the grain boundaries, to improve the thermal conductivity by reducing the size of the precipitates, and to suppress the ignition by forming a dense oxide film on the surface when the molten metal is exposed to the flame. . However, this material is 6 ~ 9% aluminum and 0.8 ~ 2% strontium or 1.5 ~ 2.2% calcium, and the alloying elements total 8 ~ 11%, so its malleability is low. Not only are they unsuitable, but the thermal conductivity of this alloy is improved by 75% compared to that of AZ91 and is only 87 W / mK, similar to AZ31, which is less than the thermal conductivity of 100 W / mK expected in the present invention.
한국등록특허 10-1276665호에서는 소성가공이 가능한 마그네슘 합금으로 마그네슘에 주석(Sn) 4~10%와 칼슘(Ca) 0.05~1.0%를 기본으로 하는 합금으로 난연성을 해결하였다. 하지만 이 발명에서는 칼슘, 망가니즈, 이트륨, 에르븀 등의 고융점 원소를 용해하기 위해 850~900℃에서 용탕온도를 유지해야 하는 문제로 인해 불필요하게 가스고용도와 용탕 내 산화물이 증가하여 불순물 농도를 높이는 문제뿐만 아니라 용탕의 발화 가능성이 높아 작업상 안정성을 저해하는 문제가 있었다. In Korean Patent No. 10-1276665, a magnesium alloy capable of plastic processing solved flame retardancy with an alloy based on magnesium (Sn) 4-10% and calcium (Ca) 0.05-1.0%. However, in the present invention, due to the problem of maintaining the melt temperature at 850 ~ 900 ℃ to dissolve high melting point elements such as calcium, manganese, yttrium, erbium unnecessarily increases the gas concentration and the oxide in the melt to increase the impurity concentration In addition to the problem, there is a problem that the high probability of ignition of the molten metal inhibits the operational stability.
다른 대안으로 한국등록특허 10-1406111호에서는 마그네슘에 주석 6.5~7.5%와 아연, 알루미늄을 각각 1%씩 첨가한 합금을 소개하고 있다. As another alternative, Korean Patent Registration No. 10-1406111 introduces an alloy in which 6.5-7.5% of tin, 1% of zinc and aluminum are added to magnesium.
이 합금들은 난연성은 개선되었으나 석출경화성이 높은 주석을 다량 함유하기 때문에 소성 가공성과 열전도도가 낮아 빌렛을 압출가공하기 위해서는 480~500℃의 고온에서 장시간 열처리를 해야 하며, 압출압력도9946kgf/㎠로 업계에서 통상의 알루미늄용 압출기에서 얻는 1000kgf/㎠ 이하의 압력에서는 소성가공이 어렵다는 단점이 있다.These alloys have improved flame retardancy, but because they contain a large amount of tin with high precipitation hardening, they have low plastic workability and low thermal conductivity, so they need to be heat treated for a long time at a high temperature of 480 ~ 500 ℃ to extrude the billet. At a pressure of 1000 kgf / cm 2 or less obtained in a conventional extruder for aluminum in the industry, there is a disadvantage in that plastic working is difficult.
이 외에 한국등록특허 10-0519721호에서는 마그네슘에 아연 6%를 기본조성으로 하고 추가로 망가니즈, 알루미늄, 규소, 칼슘을 0.4~3% 첨가한 고강도 마그네슘 합금을 소개하고 있다. 그러나 이 합금은 상용 빌렛으로 제조할 경우 다량의 아연이 비중편석을 일으켜 압출 중에 빌렛이 파괴되거나 소성가공성이 저하하는 우려가 있으며, 발명의 상세한 설명에서도 고강도와 소성가공성에 대해서만 언급할 뿐 난연성과 열전도성에 대한 성능을 예측할 수 있는 근거가 없었다. In addition, Korean Patent No. 10-0519721 discloses a high-strength magnesium alloy in which magnesium is 6% zinc as a basic composition and 0.4-3% of manganese, aluminum, silicon, and calcium are additionally added. However, when the alloy is manufactured as a commercial billet, a large amount of zinc may cause specific gravity segregation, which may cause the billet to break during extrusion or deteriorate in plastic workability.In the detailed description of the present invention, only the high strength and plastic workability are mentioned. There was no basis for predicting gender performance.
이처럼 마그네슘합금에서는 초기에는 소성가공성에 치우쳐 개발되거나 난연성에 치우쳐 개발되었으나 실제 상용화를 위해서는 열전도도와 난연성을 함께 만족하고 소성가공성까지 확보해야 하는 요구가 대두되었다. 이는 구조용 재료가 상용화하기 위해서는 단순히 강도와 성형성만 만족해서는 부족하고, 화재발생 때 마그네슘 재료가 가지는 발화성을 억제해야 화재가 확대되는 것을 막아 안전성이 보장될 수 있기 때문이다. As such, magnesium alloys were initially developed to be inclined to plastic processability or to be flame retardant. However, for commercialization, there is a demand for satisfying both thermal conductivity and flame retardancy and securing plastic processability. This is because structural materials are not simply satisfied with strength and formability in order to commercialize, and safety can be ensured by preventing the spread of fire only by suppressing the ignition property of magnesium material when a fire occurs.
이같이 기술발달이 지연되는 가운데 개발을 촉진하기 위하여 미 항공관리국(FAA)에서는 항공기용 시트 구조물용 마그네슘 합금에 대해 난연성 시험에 대한 기준을 개정하여 현실화하였다. In order to facilitate development in the face of such delays in technology development, the FAA revised the standard for flame retardancy testing of magnesium alloys for aircraft seat structures.
2014년 개정된 이 규정(DOT/FAA/TC-13/52) 에 의하면 4분(240초) 동안 오일 버너 화염에 노출된 조건에서 2분 이내에 발화하지 않아야 하며, 버너가 꺼지고 나서 3분 이내 스스로 소화되어야 하는 총 7분의 난연성 시험에서 초기 무게에서 10% 이상 감량되지 않는다면 규격을 만족한다. According to this 2014 amendment (DOT / FAA / TC-13 / 52), fire must not ignite within two minutes of exposure to an oil burner flame for four minutes (240 seconds), and within three minutes after the burner is turned off. A total of 7 minutes of flame retardancy tests to be extinguished shall meet the specification if no more than 10% of the initial weight is lost.
도1에 FAA에서 승인한 항공기용 마그네슘 합금 난연성 시험 장치와 시편의 개략도가 나타나 있다.Figure 1 shows a schematic of the aircraft magnesium alloy flame retardancy test apparatus and specimen approved by FAA.
본 발명은 상기와 같은 제반 문제점들을 제거하기 위하여 창출된 것으로서 마그네슘에 아연(Zn) 0.5~5중량%와 고융점 산화막 형성원소로 주석(Sn)을 0.6~3.5중량% 함유하되 필요 시 칼슘(Ca), 규소(Si), 망가니즈(Mn) 및 미쉬메탈(Mischmetal) 중의 1종 이상을 선택적으로 1.5중량% 이하로 첨가하여 합금원소의 총량을 2.5~6.3중량%로 관리함으로써 열전도성과 난연성이 우수하면서 소성가공성이 향상되어 1000kgf/㎠ 이하의 압력으로도 압출이 가능하고, 100W/m-K이상의 열전도도와 난연성이 우수한 단련용 마그네슘합금과 그 제조방법을 제공하는데 그 목적이 있다. The present invention was created to eliminate the above problems, and contains 0.5 to 5% by weight of zinc (Zn) and 0.6 to 3.5% by weight of tin (Sn) as a high melting point oxide forming element, but calcium (Ca) if necessary ), Silicon (Si), manganese (Mn) and mischmetal (Mischmetal) by selectively adding 1.5% by weight or less to manage the total amount of alloying elements from 2.5 to 6.3% by weight, excellent thermal conductivity and flame retardancy While the plastic workability is improved, extrusion is possible even at a pressure of 1000 kgf / cm 2 or less, and an object of the present invention is to provide a magnesium alloy for annealing and a method for producing the alloy having excellent thermal conductivity and flame retardancy of 100 W / mK or more.
상기 목적을 달성하기 위해 본 발명은 마그네슘에 아연을 0.5~5중량%와 고융점 산화막 형성원소로 주석(Sn)을 0.6~3.5중량% 함유하되 필요 시 칼슘(Ca), 규소(Si), 망가니즈(Mn) 및 미쉬메탈(Mischmetal) 중의 1종 이상을 선택적으로 1.5중량% 이하로 첨가하여 합금원소의 총량을 2.5~6.3중량%로 관리함으로써 열전도성과 난연성이 우수하면서 소성가공성이 향상된 마그네슘 합금을 얻는다. 또한 본 발명의 마그네슘 합금은 아연과 주식을 제외한 고융점 원소들을 모합금 형태로 첨가하고 기계적 교반을 행하여 성분편석을 제거하고 주조한다. 이후 주조재의 표면칠조직을 제거한 뒤 확산풀림을 행하고, 이후 압연, 압출 또는 단조와 같은 단련과정을 거쳐 소정의 형재로 성형하게 된다.In order to achieve the above object, the present invention contains 0.5 to 5% by weight of zinc and 0.6 to 3.5% by weight of tin (Sn) as a high-melting-point oxide film-forming element, but if necessary, calcium (Ca), silicon (Si), and manganese. Selectively add one or more of Mn and Mischmetal to 1.5 wt% or less to manage the total amount of alloying elements at 2.5 to 6.3 wt% to obtain a magnesium alloy having excellent thermal conductivity and flame retardancy and improved plastic workability. Get In the magnesium alloy of the present invention, high melting point elements other than zinc and stocks are added in the form of a mother alloy, and mechanical stirring is performed to remove component segregation and to cast. Thereafter, after removing the surface coating structure of the casting material and performing diffusion annealing, it is then molded into a predetermined shape through an annealing process such as rolling, extrusion or forging.
본 발명에 따르면, 마그네슘 합금의 전연성이 높아 1000kgf/㎠ 이하 저압의 압출압력으로도 표면결함없이 소성가공하는 것이 가능하고, 난연성과 열전도성이 우수하여 휴대용 가전제품이나 자동차, 항공기 부품 등에서 요구하는 열전도성과 난연성을 만족함으로써 유용하게 이용할 수 있는 마그네슘합금 압출재를 저렴하게 제공할 수 있는 효과가 있다.According to the present invention, the high malleability of the magnesium alloy can be plasticized without surface defects even at an extrusion pressure of 1000 kgf / cm 2 or less, and has excellent flame retardancy and thermal conductivity, and thus requires heat conduction required in portable home appliances, automobiles, aircraft parts, and the like. By satisfactory performance and flame retardancy, there is an effect of providing a magnesium alloy extruded material which can be usefully used at a low cost.
도1은 난연성 시험장치와 시편의 개략도이다.1 is a schematic view of a flame retardant test apparatus and specimen.
도2는 주형 냉각시 교반과정을 나타내는 개략도이다.Figure 2 is a schematic diagram showing the stirring process during mold cooling.
도3은 합금 1 비교예의 고온 안정상 석출상태도이다.3 is a high temperature stable phase precipitation state diagram of the alloy 1 comparative example.
도4는 합금 2 비교예의 고온 안정상 석출상태도이다.4 is a high temperature stable phase precipitation state diagram of an alloy 2 comparative example.
도5는 합금 3 비교예의 고온 안정상 석출상태도이다.5 is a high temperature stable phase precipitation state diagram of the alloy 3 comparative example.
도6은 합금 4 비교예의 고온 안정상 석출상태도이다.6 is a high temperature stable phase precipitation state diagram of the alloy 4 comparative example.
도7은 합금 5 비교예의 고온 안정상 석출상태도이다.7 is a high temperature stable phase precipitation state diagram of the alloy 5 Comparative Example.
도8은 합금6의 고온안정상 석출상태도이다.8 is a high temperature stable phase precipitation state diagram of Alloy 6.
도9는 합금 7의 고온안정상 석출상태도이다.9 is a high temperature stable phase precipitation state diagram of Alloy 7.
도10은 합금 8의 고온 안정상 석출상태도이다.10 is a high temperature stable phase precipitated state diagram of alloy 8. FIG.
도11은 합금 9의 고온안정상 석출상태도이다.11 is a high temperature stable phase precipitation state diagram of Alloy 9.
도12는 합금 10의 고온안정상 석출상태도이다.12 is a high temperature stable phase precipitation state diagram of Alloy 10.
도13은 합금 11의 고온 안정상 석출상태도이다.13 is a high temperature stable phase precipitation state diagram of Alloy 11. FIG.
도14는 합금 12의 고온 안정상 석출상태도이다.14 is a high temperature stable phase precipitation state diagram of Alloy 12. FIG.
도15는 합금 13 비교예의 고온 안정상 석출상태도이다.15 is a high temperature stable phase precipitation state diagram of the alloy 13 Comparative Example.
도16은 합금 14 비교예의 고온 안정상 석출상태도이다.16 is a high temperature stable phase precipitation state diagram of the alloy 14 comparative example.
도17은 합금 15 비교예의 고온 안정상 석출상태도이다.17 is a high temperature stable phase precipitation state diagram of an alloy 15 comparative example.
도18은 합금7의 주조조직이다.18 is a casting structure of alloy 7.
도19는 합금10의 주조조직이다.Fig. 19 shows a casting structure of alloy 10.
도20은 합금7 주조조직의 전자현미경 사진이다.20 is an electron micrograph of the alloy 7 casting structure.
도21은 합금6의 압출재 조직이다.Fig. 21 is an extruded material structure of alloy 6.
도22는 합금7의 압출재 조직이다.22 is an extruded material structure of alloy 7.
도23은 합금10의 압출재 조직이다.23 is an extruded material structure of alloy 10.
도24는 합금7의 열전도도이다.24 is a thermal conductivity of Alloy 7.
도25는 합금10의 열전도도이다.25 is a thermal conductivity of Alloy 10.
도26은 난연성 시험 장면이다.26 is a flame retardant test scene.
본 발명은 마그네슘에 아연을 0.5~5중량%와 고융점 산화막 형성원소로 주석(Sn)을 0.6~3.5중량% 함유하되 필요 시 칼슘(Ca), 규소(Si), 망가니즈(Mn) 및 미쉬메탈(Mischmetal) 중의 1종 이상을 선택적으로 1.5중량% 이하로 첨가하여 합금원소의 총량을 2.5~6.3중량%로 관리함으로써 열전도도와 난연성을 가질 뿐만 아니라, 고융점 합금원소들을 모합금으로 첨가하여 720℃ 이하 온도로 용해가 가능하고 산화물 불순물을 억제하는 효과가 있다. 용탕의 응고 중에 기계적 교반을 실시함으로써 상기 합금원소들의 편석을 줄여 전연성이 우수하고 소성가공이 용이한 마그네슘 합금이다. 특히 고가 원소의 합금양을 낮춤으로써 융점과 열전도성 저하를 억제하고 원가절감과 난연성을 동시에 만족하는 마그네슘 합금을 제공한다. The present invention contains 0.5 to 5% by weight of zinc in magnesium and 0.6 to 3.5% by weight of tin (Sn) as a high melting point oxide forming element, but if necessary, calcium (Ca), silicon (Si), manganese (Mn) and misc By selectively adding at least 1.5% by weight or less of the metal (Mischmetal) to manage the total amount of alloying elements at 2.5 to 6.3% by weight, not only has thermal conductivity and flame retardancy, but also high melting point alloying elements are added as a master alloy to provide 720 It can melt | dissolve at the temperature below ° C, and there exists an effect which suppresses oxide impurities. It is a magnesium alloy having excellent malleability and easy plastic working by reducing the segregation of the alloying elements by performing mechanical stirring during solidification of the molten metal. In particular, by lowering the alloying amount of expensive elements, it is possible to provide a magnesium alloy that suppresses the melting point and thermal conductivity drop and satisfies both cost reduction and flame retardancy.
본 발명에서 합금원소의 첨가범위가 위에 제시한 바와 같이 제한되는 이유에 대해 설명한다.The reason why the addition range of the alloying elements in the present invention is limited as set forth above will be described.
아연은 Mg 내에 고용되어 c/a축비를 변화시킴으로써 저면집합조직의 발달을 억제하고, 고용체 내에서는 MgZn2,MgZn5석출물에 의한 가공경화 효과로 균일한 소성가공이 가능하다. 그러나 0.5% 미만에서는 효과가 적어 소성가공용 재료에서 요구되는 가공경화성과 전연성을 기대하기 어렵고, 5%를 초과하면서 풀림처리 후 성형성을 저해하는 저면집합조직이 강화되는 현상이 발생해 소성가공성이 급격히 저하하며, 마그네슘 용탕 내에서의 편석경향이 증가하고 Mg2Zn3, Mg12Zn13등의 석출상들이 알파상과 적층되어 340℃ 내외의 저융점 공정상을 형성하기 때문에 난연성을 해치므로 제한한다. 바람직하기로는 1.0~4.0%가 적합하다.Zinc is dissolved in Mg to change the c / a axis ratio, thereby inhibiting the development of the bottom aggregate tissue, and uniform solid working is possible due to the work hardening effect of MgZn 2 and MgZn 5 precipitates in solid solution. However, less than 0.5% is less effective, so it is difficult to expect the work hardening and malleability required for plastic processing materials, and when it exceeds 5%, the bottom aggregate structure, which inhibits formability after annealing, is strengthened. It is lowered, and the segregation tendency increases in the molten magnesium, and the precipitated phases such as Mg 2 Zn 3 and Mg 12 Zn 13 are laminated with the alpha phase to form a low melting point process phase around 340 ° C., thus limiting flame retardancy. . Preferably 1.0 to 4.0% is suitable.
주석은 560℃ 이상 융점의 고온안정상인 Mg2Sn석출물을 만들어 적절하게 분포함으로써 고온소성가공성을 향상시키며, 대기에서 화염에 노출되면 융점이 1600℃ 이상인 SnO2산화막을 형성하여 난연성 향상에 기여한다. 그러나 본 발명에서는 0.6% 미만 첨가할 경우에 효과를 기대하기 어렵고, 첨가량이 3.5%를 초과하면 융점이 저하하면서 발화점이 500℃이하로 내려가는 경우가 있어 도리어 난연성을 해치게 되며, Mg2Sn석출물의 과다로 전연성이 저하할 뿐 아니라 제조원가가 상승하므로 바람직하기로는 1.0~3.0%가 적합하다.Tin improves high-temperature plasticity by making Mg 2 Sn precipitates, which are stable at high temperatures above 560 ℃ and by appropriately distributing them, and when exposed to flames in the air, contributes to the improvement of flame retardancy by forming SnO 2 oxide films with melting points above 1600 ℃. However, in the present invention, when the addition amount is less than 0.6%, it is difficult to expect the effect. If the addition amount is more than 3.5%, the melting point is lowered and the ignition point may be lowered below 500 ° C., thereby impairing the flame retardancy, and the excessive amount of Mg 2 Sn precipitates. Since not only the malleability falls but also the manufacturing cost rises, 1.0 to 3.0% is preferable.
미쉬메탈은 세륨(Ce)과 란타넘(La)이 65~78% 정도 함유되고 나머지는 네오디뮴(Nd)과 프라세오디뮴(Pr) 그리고 불가결한 불순물로 구성된 희토류 합금이다. 미쉬메탈은 마그네슘 합금 내에서 란타넘과 같은 효과를 얻는데 정련분리 과정을 거치는 란타넘(La)이나 세륨(Ce)보다 가격이 싸고 효과는 동등하므로 원가절감을 위해 란타넘 대체로 사용한다. 세륨과 네오디뮴도 대기에서 화염에 노출될 때 융점이 각각 2400℃, 2200℃ 이상인 CeO2, Nd2O3 등 산화막을 형성하여 난연성을 나타낸다. 고온 안정상으로 인해 고온강도가 높게 유지되어 화염에 의한 고온에서의 휨, 처짐이나 조기 용락(melt bar-separation)을 억제하는 특성이 강하다.Mischmetal is a rare earth alloy containing 65% to 78% of cerium (Ce) and lanthanum (La), and the rest is neodymium (Nd), praseodymium (Pr) and indispensable impurities. Mischmetal is used as a substitute for lanthanum for cost savings because it is cheaper and has the same effect as lanthanum (La) or cerium (Ce), which have a lanthanum effect in magnesium alloy. Cerium and neodymium also exhibit flame retardancy by forming oxide films such as CeO 2 and Nd 2 O 3 with melting points of 2400 ° C and 2200 ° C, respectively, when exposed to flames in the atmosphere. Due to the high temperature stable phase, the high temperature strength is kept high, and the property of suppressing warpage, sagging or premature melt bar-separation at high temperatures by the flame is strong.
하지만 미쉬메탈 중의 세륨이 마그네슘에 대한 고용한도가 낮아 0.5%가 최대 고용한도이고 미쉬메탈 구성 원소들의 원자량이 커서 과다 첨가하면 석출물이 조대하게 형성되는 경향이 있기 때문에 본 발명에서는 1.5%이하로 제한한다. 또한 본 발명에서 희토류 금속 중의 구성 원소를 미쉬메탈로 표현한 이유는 단독 금속으로 첨가할 경우 원가가 상승하기 때문이므로 구성 원소를 단독으로 첨가한다고 해서 이 발명의 범주를 벗어나지는 않는다. However, since cerium in the mismetal has a high solubility limit for magnesium, 0.5% is the maximum solubility limit, and an excessive amount of the atomic metal of the mismetal constituents tends to form coarse precipitates, so the present invention is limited to 1.5% or less. . In the present invention, the reason why the constituent elements in the rare earth metal are expressed by the mismetal is that the cost increases when the constituent elements are added as a single metal. Therefore, the addition of the constituent elements alone does not depart from the scope of the present invention.
란타넘은 본 발명에서 미쉬메탈의 대용으로 사용되며, 희토류 금속에서 대표적인 금속으로 마그네슘에 대한 고용한도가 12.4%로 높으며, MgZn2석출물과 결합하여 육방정계의 장주기 적층규칙(Long Period Stacking Order) 구조인 석출물을 만들어 입계에 층상의 라멜라(lamellar) 공정상을 형성한다. 석출물은 주조 후 균질화 열처리를 거치면서 스피노달 분해로 정합성 금속간화합물로 바뀌고 단련 과정을 거치면서 분산되어 분산강화에 기여한다. 대기에서 화염에 노출될 때 융점이 2300℃ 이상인 La2O3산화막을 형성하여 난연성을 나타낸다. 또한 고온 안정상으로 인해 고온강도가 높게 유지되어 화염에 의한 고온에서의 휨, 처짐이나 조기 용락(melt bar-separation)을 억제하는 특성이 강하다. 하지만 본 발명에서는 첨가량이 증가하면서 석출물이 조대하게 형성되는 경향이 있어 1.5% 이하로 제한한다. Lanthanum is used as a substitute for misch metal in the present invention.As a representative metal in rare earth metals, the high solubility limit of magnesium is 12.4%, and it is combined with MgZn 2 precipitate to form a long period stacking order structure of hexagonal system. Precipitates are formed to form a lamellar lamellar process phase at the grain boundaries. Precipitates are transformed into homogeneous intermetallic compounds through spinodal decomposition during homogenization heat treatment after casting, and dispersed during annealing to contribute to strengthening dispersion. When exposed to a flame in the air, a La 2 O 3 oxide film having a melting point of 2300 ° C. or more is formed to exhibit flame retardancy. In addition, due to the high temperature stable phase, the high temperature strength is maintained, and the property of suppressing warpage, sag or premature melt bar-separation at high temperatures due to the flame is strong. In the present invention, however, the precipitate tends to be coarse with increasing amount, so it is limited to 1.5% or less.
칼슘은 마그네슘과 같은 2족 알카리토류 금속으로 2차 응고상인 융점 715℃인 Mg2Ca를 수지상 조직 사이에 형성하거나 아연과 함께 기지조직 내에 고용되어 가열 중에 무질서한 방향으로 재결정이 일어나면서 저면집합조직의 발달을 억제하고 결정립이 미세화되는 효과가 있으며, 대기에서 화염에 노출될 때 융점이 2600℃ 이상인 CaO 산화막을 형성하여 난연성을 향상시킨다. 또한 고온 안정상으로 인해 고온강도가 높게 유지되어 화염에 의한 고온에서의 휨, 처짐이나 조기 용락(melt bar-separation)을 억제하는 특성이 강하다. 그러나 본 발명에서는 첨가량이 증가하면서 Mg2Ca입자의 양이 과도하여 전연성이 저하할 수 있으므로1.5% 이하로 제한한다. Calcium is a group 2 alkaline earth metal such as magnesium. Mg 2 Ca, which has a melting point of 715 ° C, which is a secondary coagulation phase, is formed between dendritic tissues or is employed in a matrix with zinc, causing recrystallization in a disordered direction during heating. It has the effect of inhibiting development and miniaturizing grains, and improves flame retardancy by forming a CaO oxide film having a melting point of 2600 ° C. or more when exposed to flame in the air. In addition, due to the high temperature stable phase, the high temperature strength is maintained, and the property of suppressing warpage, sag or premature melt bar-separation at high temperatures due to the flame is strong. However, in the present invention, the amount of Mg 2 Ca particles is excessively increased and the malleability may decrease, so the amount is limited to 1.5% or less.
규소를 첨가하면 Mg2Si와 같은 고온안정상을 형성하여 결정입도를 미세화하고 석출강화효과를 발휘한다. 석출물이 조대화하기 쉽지만 칼슘을 복합 첨가하면 석출물의 크기나 형상을 조절할 수 있다. 대기에서 화염에 노출될 때 융점이 1600℃ 이상인 SiO2 산화막을 형성하여 난연성을 나타낸다. 고온 안정상으로 인해 고온강도가 높게 유지되어 화염에 의한 고온에서의 휨, 처짐이나 조기 용락(melt bar-separation)을 억제하는 특성이 강하다. 그러나 본 발명에서는 첨가량이 증가하면서 석출물이 조대화되기 시작하므로 1.5% 이하로 제한한다. When silicon is added, a high temperature stable phase such as Mg 2 Si is formed to refine the grain size and exert a precipitation strengthening effect. The precipitate is easy to coarse, but the addition of calcium can adjust the size or shape of the precipitate. When exposed to a flame in the atmosphere, a SiO 2 oxide film having a melting point of 1600 ° C. or more is formed to exhibit flame retardancy. Due to the high temperature stable phase, the high temperature strength is kept high, and the property of suppressing warpage, sagging or premature melt bar-separation at high temperatures by the flame is strong. However, the present invention is limited to 1.5% or less because the precipitate begins to coarsen with increasing amount.
망가니즈는 마그네슘에서의 최대고용도가 2.2%이다. 마그네슘합금에서는 650℃에서 망가니즈의 알파상이 석출하는 포정반응과 델타상이 석출하는 편정반응이 일어나 결정입도를 미세화하고 내식성을 개선하는 효과가 있다. 특히 대기에서 화염에 노출될 때 융점이 1900℃ 이상인 MnO 산화막을 형성하여 난연성을 향상시키는 효과가 있다. 본 발명에서는 불순물로 알루미늄이 존재할 때 형성되는 조대한 판상 Mg17Al12 석출물을 미세화하고 풀림 중 재결정 과정에서 MgZn2 석출물을 미세화하는데 효과가 있다. 그러나 본 발명에서는 첨가량이 증가하면서 효과가 포화되어 전연성이 저하하므로 1.5% 이하로 제한한다.Manganese has a maximum solubility of 2.2% in magnesium. Magnesium alloys have a crystallization reaction in which the alpha phase of manganese precipitates and the excitation reaction in which the delta phase precipitates at 650 ° C., thereby minimizing grain size and improving corrosion resistance. In particular, when exposed to a flame in the atmosphere has an effect of improving the flame retardancy by forming a MnO oxide film having a melting point of more than 1900 ℃. In the present invention, it is effective to refine the coarse plate-shaped Mg 17 Al 12 precipitate formed when aluminum is present as an impurity and to refine the MgZn 2 precipitate during recrystallization during annealing. However, the present invention is limited to 1.5% or less because the effect is saturated and the malleability decreases as the amount added increases.
본 발명에서 아연(Zn) 0.5~5중량%와 고융점 산화막 형성 원소로 주석(Sn)을 0.6~3.5중량% 함유하되 필요 시 칼슘(Ca), 규소(Si), 망가니즈(Mn) 및 미쉬메탈(Mischmetal) 중의 1종 이상을 선택적으로 1.5중량% 이하로 첨가하여 용탕을 제조하고 응고과정에서 기계적 교반을 거치면 1000kgf/㎠ 이하의 압력으로도 압출이 가능하도록 전연성이 확보되고, 화염에 노출되는 경우에 재료의 표면에 고융점 산화막이 형성되어 난연성을 발휘하며, 열전도성을 동시에 만족하여 국부적인 가열로 인해 조기에 용락이 일어나는 현상이 억제되고 용락된 재료의 자기 소화 시간이 단축된다. 아래에 그에 대한 상세한 설명을 기술한다. In the present invention, 0.5 to 5% by weight of zinc (Zn) and 0.6 to 3.5% by weight of tin (Sn) as the high melting point oxide film forming element, but if necessary, calcium (Ca), silicon (Si), manganese (Mn) and misch When molten metal is prepared by selectively adding one or more kinds of metals (Mischmetal) to 1.5 wt% or less and undergoing mechanical stirring during the solidification process, the malleability is ensured to be extruded at a pressure of 1000 kgf / cm2 or less and exposed to flame. In this case, a high melting point oxide film is formed on the surface of the material to exhibit flame retardancy, satisfies thermal conductivity at the same time, thereby preventing the occurrence of premature melting due to local heating and shortening the self-extinguishing time of the melted material. A detailed description is given below.
본 발명에서 합금원소의 총량을 2.5~6.3%로 관리하는 이유는 2.5% 미만에서는 전연성 개선과 난연성 개선에 효과가 적고, 6%를 초과하여 합금원소가 첨가되면 화합물과 석출물이 과다하여 열전도성을 저하시키고, 전연성과 용융점이 낮아지므로 제한한다. The reason for managing the total amount of alloying elements in the present invention at 2.5 to 6.3% is less effective at improving the malleability and flame retardancy at less than 2.5%, and when the alloying elements are added in excess of 6%, compounds and precipitates are excessively high in thermal conductivity. It lowers, and since it has low malleability and melting point, it limits.
종래 기술에서 희토류나 알카리토류 금속을 다량 첨가하면 발화가 억제되어 난연성이 향상되는 효과가 있었지만, 첨가량 증가에 따라 재료의 융점이 낮아지고 열확산 속도도 낮아지는 문제가 있다. 이는 화재발생 시 화염에 노출된 부위에서 국부적으로 가열되면 조기 용락(Melt down)되고 용탕으로 존재하는 시간이 늘어나는 결과를 가져오기 때문에 본 발명에서는 합금의 총량을 6.3% 이하로 억제한다. In the prior art, when a large amount of rare earth or alkaline earth metal is added, the ignition is suppressed and the flame retardancy is improved. However, the melting point of the material is lowered and the thermal diffusion rate is also lowered as the amount is increased. In the present invention, since the local heating at the site exposed to the flame at the time of fire causes the melt down and the time of the molten metal increases, the total amount of the alloy is suppressed to 6.3% or less.
또한 본 발명에서는 합금원소를 총량 6% 이하로 관리하더라도 불순물로 알루미늄이나 지르코늄이 과다하게 존재하면 열전도도가 낮아지는 역효과가 있다. 알루미늄은 3% 정도 함유만으로도 조대한 판상 Mg17Al12를 다량 형성하여 열전도도를 낮추고, 희토류나 알카리 토류원소를 소모시키는 결과를 가져오게 되어 난연성을 해치므로 불순물로서 알루미늄을 1% 이하로 제한한다. 또한 지르코늄은 입계에서 수지상조직 내의 다른 희토류 원소들과 결합하여 라멜라를 형성하기 때문에 열전도도를 크게 저하시키고 취성을 상승시켜 전연성을 해치는 결과를 가져오므로 불순물로서 지르코늄을 0.5% 이하로 제한한다.In addition, in the present invention, even if the alloying element is managed in a total amount of 6% or less, when the aluminum or zirconium is excessively present as an impurity, the thermal conductivity is lowered. Aluminum contains a large amount of coarse plate-shaped Mg 17 Al 12 which contains only about 3%, which lowers thermal conductivity and consumes rare earth or alkaline earth elements and impairs flame retardancy. Therefore, aluminum is limited to 1% or less as impurities. . In addition, since zirconium combines with other rare earth elements in the dendritic structure at the grain boundary to form lamellae, the zirconium is limited to 0.5% or less because it significantly lowers the thermal conductivity and increases the brittleness, thereby deteriorating the malleability.
본 발명에서는 상기한 방법으로 100W/m-K이상의 열전도도를 발휘하며, 고융점 산화막 형성 원소들로 주석(Sn), 칼슘(Ca), 규소(Si), 망가니즈(Mn) 및 미쉬메탈(Mischmetal) 중의 하나 또는 복합으로 0.3~2.0%까지 함유함으로써 버너 발화시험에서 발화시간 120초 이상, 버너 소화 후 시편 소화시간 180초 이내, 무게 감량 10% 이하의 난연성을 만족하는 것을 특징으로 한다. In the present invention, the thermal conductivity of 100 W / mK or more is exhibited by the above-described method, and tin (Sn), calcium (Ca), silicon (Si), manganese (Mn) and mischmetal (Mischmetal) as high melting point oxide film forming elements. It is characterized by satisfying the flame retardancy of more than 120 seconds of ignition time, less than 180 seconds of specimen extinguishing time after burner extinguishing, weight loss of 10% or less in the burner ignition test.
또한 본 발명에서는 용탕에서의 합금원소 편석을 저감하고 소성가공성과 물성을 개량하기 위해, 합금 시 저융점인 아연과 주석을 제외한 고융점 합금원소(칼슘, 규소, 망가니즈, 미쉬메탈, 란타넘)들은 모합금으로 첨가하고 용탕을 기계적 교반하는 것을 특징으로 한다. In addition, in the present invention, in order to reduce segregation of alloy elements in the molten metal and to improve plastic workability and physical properties, high melting point alloy elements excluding calcium and tin, which are low melting points in alloys (calcium, silicon, manganese, misc metal, lanthanum) They are added to the master alloy and characterized in that the molten metal is mechanically stirred.
마그네슘합금에서는 마그네슘과 다른 합금원소 간의 비중 차이가 큰 경우가 많은데, 예를 들어 아연, 주석 등은 중심부나 주형 아래 쪽에 편석되기 쉽고 수지상결정이 조대하게 발달하는 문제로 빌렛의 거시적 조성이 불균일해지며 압출성능이 떨어지는 원인이 된다. 편석이 심할 경우 빌렛의 중심부에는 열간균열(Hot Tearing)이 발생하고, 압출과정에서 변형과 균열, 미세주름 발생 등의 원인이 될 뿐 아니라 압출재의 스트레칭이나 교정작업 중 파단과 피로강도를 떨어뜨려 내구성과 신뢰성을 해치게 된다.Magnesium alloys often have a large difference in specific gravity between magnesium and other alloying elements. For example, zinc and tin tend to segregate in the center or under the mold, and coarse development of dendritic crystals leads to uneven macroscopic composition of billets. It causes a decrease in extrusion performance. In the case of severe segregation, hot tearing occurs in the center of billet, which causes deformation, cracking, and fine wrinkles during the extrusion process. And reliability.
본 발명에서 고융점 합금원소를 모합금으로 첨가하게 됨으로써 용탕의 온도를 720℃ 이하로 관리하면서 용해가 가능하여 용탕 발화 가능성을 낮출 수 있고, 기계적 교반을 통해 용탕 내에서 머쉬존에 이미 형성된 응고핵을 분산시킴으로써 용탕 내에서 균일한 응고를 촉진하고 편석을 저감하며 결정립을 미세화할 수 있다. 특히 마그네슘합금은 쌍을 이루지 않은 홀전자가 없어 자화력이 약해 자기적 교반효과를 충분히 얻기 어려워 기계적 교반이 효과적이다. In the present invention, by adding a high melting point alloying element as a mother alloy, it is possible to dissolve while managing the temperature of the melt at 720 ° C. or lower, thereby lowering the possibility of ignition of the melt, and the coagulation nucleus already formed in the mash zone in the melt through mechanical stirring. By dispersing it, it is possible to promote uniform solidification in the molten metal, to reduce segregation and to refine grains. In particular, magnesium alloy does not have unpaired hole electrons, so the magnetization power is weak, so that it is difficult to obtain a sufficient magnetic stirring effect, and mechanical stirring is effective.
이에 대한 구체적 방법은 실시예에서 추가로 상세 설명한다.Specific methods for this are further described in detail in the Examples.
모합금을 제조하는 방법은 대기와 차단하는 차폐 가스 분위기에서 마그네슘 용탕에 합금할 원소가 주성분인 럼프(lump)나 알갱이를 첨가하는데 공정조성에 가깝도록 조성하고 기계적으로 교반함으로써 모합금의 융점을 낮춘다.The method of manufacturing the master alloy lowers the melting point of the master alloy by forming a lump or granule, the main component of which is to be alloyed in the molten magnesium, in a shielding gas atmosphere shielding from the atmosphere, and by mechanically stirring the composition near the process composition. .
본 발명자들의 실험결과에서 4% 아연을 함유한 30kg 마그네슘합금 빌렛 중력주조 시 기계적 교반을 한 경우 주조재 상부와 하부의 총 성분 편석차가 1% 이내이지만, 주형에 주조하고 교반을 실시하지 않은 경우에는 8% 이상 편석차가 나타났다. 따라서 편석 제거를 위해서는 기계적 교반이 효과적임을 알 수 있다. 이런 편석은 후에 압출할 때 편석 경계부에서 빌렛이 파괴되거나 압출 후에도 잔류하여 육안상 결함과 물리적 성질이 불균일한 원인이 된다. According to the experimental results of the present inventors, the total component segregation difference between the upper and lower parts of the casting material was less than 1% when mechanical stirring was performed during gravity casting of 30 kg magnesium alloy billet containing 4% zinc. There was more than 8% segregation difference. Therefore, it can be seen that mechanical stirring is effective for removing segregation. This segregation causes the billet to break at the segregation boundary during extrusion, or remains after extrusion, causing visual defects and uneven physical properties.
본 발명에서는 기계적 교반의 방법으로 모터와 임펠러를 이용한 교반방법을 들어 설명한다. 그러나 인력을 이용하거나 다른 방식으로 기계적 교반을 하더라도 본 발명의 범주에서 추구하는 효과를 벗어나는 것은 아니다. 본 발명에서 기계적 교반을 행한 주조재(예를 들어 빌렛)는 내부에서 응고과정이 진행될 때 용탕을 교반하면 용탕 내에 머시존에 고체로 형성된 고온 안정상과 고온 석출물들이 분산되어 응고핵 역할을 하기 때문에 주조재의 조직이 균일하고 편석이 해소되며 결정립이 미세해지는 효과가 있다. In the present invention, a stirring method using a motor and an impeller will be described as a method of mechanical stirring. However, the use of attraction or other mechanical agitation does not detract from the effects sought in the scope of the present invention. In the present invention, the casting material (for example, billet) subjected to mechanical agitation when the molten metal is stirred while the solidification process proceeds inside, disperses the high temperature stable phase and the high temperature precipitates formed as solids in the melt zone in the molten metal, thereby acting as a solidification core. The structure of the casting material is uniform, segregation is eliminated, and the grains are effective.
도2에 나타낸 바와 같이 본 발명에서는 합금용탕은 도가니 또는 주형(1)에 조합되는 커버(3)와 차폐가스 배관(4)을 통해 주입되는 차폐가스에 의해 대기와 차단된다. 빌렛이 응고되는 중에 커버에 설치된 관통구를 통해 모터(M)에 의해 작동되는 스텐레스강으로 만든 레버(21)에 작은 임펠러(22)를 단 교반장치를 용탕에 삽입하고 교반함으로써 합금조성을 균일하게 하고, 머쉬존(8)까지 상하로 이동함으로써 응고핵을 분산시켜 결정을 미세화 할 수 있다. 본 발명에 사용되는 임펠러(22)는 다른 금속이나 세라믹재료, 복합재료를 사용하거나 임펠러에 다른 재료를 증착, 도금, 침투하거나 용사코팅하는 것도 본 발명의 범주에 포함된다. 임펠러의 직경은 빌렛직경의 1/5~2/3로 하며, 이보다 크면 부하로 인해 대형모터를 요구하게 되므로 제한한다. 또한 빌렛직경의 1/5 미만에서는 교반효과가 미미하여 편석방지에 부적합하므로 제한한다. As shown in FIG. 2, in the present invention, the molten alloy is blocked from the atmosphere by the shielding gas injected through the cover 3 and the shielding gas pipe 4 combined with the crucible or the mold 1. While the billet is solidifying, the alloy composition is made uniform by inserting and stirring a small impeller 22 into a molten stainless steel lever 21 which is operated by a motor M through a through hole provided in the cover. By moving up and down to the marsh zone 8, the coagulation nuclei can be dispersed to refine the crystals. Impeller 22 used in the present invention is also included in the scope of the present invention using other metals, ceramic materials, composite materials, or depositing, plating, penetrating or spray coating other materials on the impeller. The diameter of the impeller is 1/5 to 2/3 of the diameter of the billet. If the diameter of the impeller is larger than this, it is limited because it requires a large motor due to the load. In addition, if less than 1/5 of the billet diameter, the stirring effect is insignificant, which is not suitable for segregation prevention.
도 2의 좌측 그림은 도가니에서 용해한 뒤 도가니를 추출하여 응고시키는 중력주조의 일례이며, 우측 그림은 연속주조의 일례이다. 2 is an example of gravity casting in which the crucible is extracted and solidified after melting in the crucible, and the right figure is an example of continuous casting.
아래에 본 발명에 대해 도가니로에서 용해하는 실시예를 들어 구체적으로 설명한다.EMBODIMENT OF THE INVENTION Below, this invention is demonstrated concretely by the Example which melt | dissolves in a crucible furnace.
본 발명에서는 마그네슘 합금용탕을 제조할 때 마그네슘 지금을 먼저 도가니로에서 용해하고 온도를 680~720℃로 유지한다. 이때 도가니는 스테인리스강으로 만든 것을 사용했으며, 용해 분위기는 이산화탄소 가스에 0.25~0.3% SF6를 혼합한 가스를 흘려 주어 대기와 접촉을 차폐한다. 이후 합금 원소로 아연과/또는 주석을 첨가하고 다른 고융점 합금원소(미쉬메탈, 란타넘, 칼슘, 규소, 망가니즈)들은 공정조성에 가까운 모합금형태로 첨가한다. 다음 표1의 조성으로 이들 합금원소들을 첨가한 후 용탕을 기계적 교반하고 안정화 시킨 후 도가니를 추출하여 냉각조에 장입한다. 이 과정에서 냉매를 분사하거나 30℃ 이하의 물과 같은 냉매가 채워진 수조에 장입하여 도가니 채로 냉각하여 용탕의 응고를 촉진한다. In the present invention, when producing the magnesium alloy molten magnesium is first dissolved in the crucible and the temperature is maintained at 680 ~ 720 ℃. The crucible was made of stainless steel, and the melting atmosphere shields contact with the atmosphere by flowing a gas mixed with 0.25 to 0.3% SF 6 in carbon dioxide gas. Then, zinc and / or tin are added as alloying elements, and other high melting point alloying elements (mischmetal, lanthanum, calcium, silicon, manganese) are added in the form of a master alloy close to the process composition. Following the addition of these alloying elements in the composition of Table 1, after stirring and stabilizing the molten metal, the crucible is extracted and charged into a cooling bath. In this process, the refrigerant is injected or charged into a tank filled with a refrigerant, such as water of 30 ° C. or lower, to cool the crucible to promote solidification of the molten metal.
수조에서 냉각할 경우 도가니는 수조의 용량과 냉매의 온도에 따라 약 70~200℃/분의 속도로 냉각된다. 만약 냉매를 분사하면서 냉각하면 냉각속도는 더 높아져 도가니를 수조에서 분사냉각하면 약 200~600℃/분의 냉각속도로 냉각되며, 응고속도가 빨라야 하는 연속주조에서는 분사압을 높여 주형과 빌렛을 더 강하게 냉각하면 약 400~900℃/분의 속도로 냉각할 수 있다. 하지만 900℃/분의 냉각속도를 초과할 경우에는 빌렛 내외부의 냉각속도 차이로 인한 열수축 응력으로 인해 중심부에 균열이 생기는 문제가 있다.When cooling in a bath, the crucible is cooled at a rate of about 70-200 ° C / min depending on the capacity of the bath and the temperature of the refrigerant. If cooling by injecting the refrigerant, the cooling rate is higher, and when the crucible is sprayed and cooled in a water tank, it is cooled at a cooling rate of about 200 ~ 600 ℃ / min. In continuous casting where the solidification speed is to be increased, the mold and billet are increased by increasing the injection pressure. Intense cooling can result in cooling at a rate of about 400-900 ° C / min. However, if the cooling rate exceeds 900 ℃ / min, there is a problem that the crack in the center due to the heat shrinkage stress due to the cooling rate difference inside and outside the billet.
상기 마그네슘 합금용탕이 응고되는 중에 스텐레스강으로 제조된 임펠러를 도가니에 삽입하여 용탕을 위아래로 2~3회 기계적 교반하여 주조재에 형성된 응고핵들을 분산함으로써 편석이 적고 미세한 조직의 주조재를 얻는다. 상기 주조재의 기계가공으로 표면 칠(Chill)조직을 제거하여 직경 74~75mm인 빌렛을 얻고, 380℃에서 2시간 동안 확산풀림을 행하고 상온으로 냉각하였다. While the magnesium alloy molten metal is solidified, an impeller made of stainless steel is inserted into a crucible to mechanically stir the molten metal two or three times to disperse the coagulation nuclei formed in the cast material, thereby obtaining a cast material having a low segregation and a fine structure. By machining the cast material, the surface chill (Chill) structure was removed to obtain a billet having a diameter of 74 ~ 75mm, and was subjected to diffusion annealing at 380 ℃ for 2 hours and cooled to room temperature.
이후 상기 확산풀림된 빌렛을 380℃에서 1.5시간 예열하고, 표1의 합금들을 압출 다이스에서 압출하여 폭 50mm, 두께 8mm인 판재로 성형하였다. Then, the diffusion-unfolded billet was preheated at 380 ° C. for 1.5 hours, and the alloys of Table 1 were extruded from an extrusion die to form a sheet having a width of 50 mm and a thickness of 8 mm.
표 1의 실시예 합금들은 대부분 750~900kgf/㎠ 압력으로 압출되었다. 그러나 비교예 1, 15번 합금은 압출은 되었으나 저융점 공정상 때문에 판재의 표면에 미세균열이 존재하며, 비교예 14번 합금은 압출온도를 340℃ 부근으로 낮추고 압출압력을 1500kgf/㎠으로 상승시킴으로써 표면 미세균열은 방지할 수 있었으나 난연성 시험에서 버너를 제거한 뒤 자연 소화시간을 초과하였고, 무게 감량도 과다하여 만족하지 못했다. 표 1에서 압출소성가공의 평가는 깨끗하고 평활한 표면을 얻고 압출속도가 1.5~2m/min의 속도를 만족한 경우 O, 표면에 약간의 미세주름이 생기거나 압출속도가 1m/min 내외일 때는 △로 표시하고 만족하지 않을 경우는 원인을 기재하였다.Example alloys of Table 1 were mostly extruded at 750-900 kgf / cm 2 pressure. However, the alloys of Comparative Examples 1 and 15 were extruded, but due to the low melting point process, microcracks exist on the surface of the plate. In Comparative Example 14, the extrusion temperature was lowered to around 340 ° C. and the extrusion pressure was increased to 1500 kgf / cm 2. Surface microcracks could be prevented, but after the burner was removed in the flame retardancy test, the natural digestion time was exceeded, and the weight loss was excessive. In Table 1, the evaluation of extrusion firing was performed when O, when a clean and smooth surface was obtained, and the extrusion speed satisfies the speed of 1.5 ~ 2m / min, when some fine wrinkles occurred on the surface or the extrusion speed was about 1m / min. If not satisfactory, the reason is described.
비교예 2, 3, 4, 5, 13, 16번 합금은 압출 중에 압출압력이 상승하면서 도중에 실린더가 정지하거나 빌렛이 파단되어 소성가공을 포기하였다.In Comparative Examples 2, 3, 4, 5, 13, and 16, the extruding pressure was increased during extrusion, and the cylinder was stopped or the billet was broken.
비교예 15번 합금은 압출온도를 300℃ 부근으로 낮추고 5300 kgf/㎠의 높은 압력에서 압출은 되었으나 과다한 베타 Mg17Al12석출로 측면균열이 발생하였지만 가공으로 제거하여 난연성 시편을 얻을 수 있었다. 그럼에도 불구하고 발화점이 낮아 난연성 시험에서 초기 발화시간, 자연 소화시간과 무게감량 모두에서 기준을 미달하였다. In Comparative Example 15, the extrusion temperature was lowered to around 300 ° C. and extruded at a high pressure of 5300 kgf / cm 2, but side cracks occurred due to excessive precipitation of beta Mg 17 Al 12, but it was removed by processing to obtain a flame-retardant specimen. Nevertheless, the low flash point did not meet the criteria for both initial ignition time, natural digestion time and weight loss in the flame retardant test.
이렇게 얻어진 판상 시료를 380℃에서 1시간 확산풀림하고 직경 12.7mm, 두께 2mm크기로 가공하여 ASTM E4161에 의한 레이저 플래시법으로 열전도도를 측정한 결과 본 발명의 합금들은 100℃ 이상 고온에서 125W/m-K이상의 열전도도를 발휘하는 것을 확인하였다. The plate-like sample thus obtained was diffused and unannealed at 380 ° C. for 1 hour and processed into a diameter of 12.7 mm and a thickness of 2 mm, and thermal conductivity was measured by a laser flash method according to ASTM E4161. The alloys of the present invention were 125 W / mK at a high temperature of 100 ° C. or higher. It was confirmed to exhibit the above thermal conductivity.
상기 시료에서 얻은 가공 칩에 대해 시차주사열량계(DSC)를 이용하여 열중량분석(TGA)으로 발화점을 측정하였고, 폭 38.1mm, 두께 6.4mm, 길이 508mm 시편으로 가공하여 버너로 가열하는 난연성 시험을 각각 2회 실시하였다. The ignition point of the processed chip obtained from the sample was measured by thermogravimetric analysis (TGA) using a differential scanning calorimeter (DSC), and a flame retardancy test was performed using a burner by processing a specimen having a width of 38.1 mm, a thickness of 6.4 mm, and a length of 508 mm. Each was carried out twice.
표1에서 보듯 본 발명의 합금들은 발화점이 550℃ 이상이면서 발화시간 120초 이상, 버너 소화 후 시편의 자발적 소화시간 180초 이내, 무게 감량 10% 이하의 난연조건과 소성가공성, 열전도도를 잘 만족하고 있다. As shown in Table 1, the alloys of the present invention have a ignition point of more than 550 ° C., a ignition time of 120 seconds or more, a burner digestion within 180 seconds of spontaneous fire extinguishing, satisfactory flame retardant conditions of less than 10% weight loss, plastic workability, and thermal conductivity. Doing.
이 결과를 보면 비교예의 합금들에서는 합금원소의 총량이 6.5~9.45%인 경우에 전연성이 저하하여 압출응력이 크게 증가하거나 열전도도가 저하하는 경향을 보이는 것을 알 수 있다. These results show that in the alloys of the comparative example, the malleability is lowered when the total amount of the alloying elements is 6.5 to 9.45%, so that the extrusion stress increases or the thermal conductivity tends to decrease.
반면에 본 발명의 실시예 합금들은 4.4~6.0% 범위에서 제조됨으로써 열전도도와 난연성이 우수하면서도 소성가공이 용이한 결과를 나타내었다.On the other hand, the example alloys of the present invention were produced in 4.4 ~ 6.0% range showed excellent thermal conductivity and flame retardancy, yet easy plastic processing.
Figure PCTKR2016001770-appb-T000001
Figure PCTKR2016001770-appb-T000001
도3~도17은 본 발명에 따른 실시예 합금들과 비교예 합금들의 고온 안정상 석출상태도이며, 고온 안정상이 최소 430℃ 이상에서 나타나기 시작하는데 비교예의 상태도에서는 고온 안정상이 부족하거나 지나치게 과다하게 석출한다는 것을 알 수 있다. 그리고 도 18~도 23은 본 발명 합금의 조직이다. 도 18~도 20에서 주조조직의 석출물을 보면 입계에 조대 라멜라의 형성이 억제되었으며, 도 21~도 23 압출재의 조직에서는 압출과정에서 석출물들이 미세하게 분산된 것을 볼 수 있다. 3 to 17 is a high temperature stable phase precipitation state diagram of the alloys and comparative alloys according to the present invention, the high temperature stable phase begins to appear at least 430 ℃ or more in the state diagram of the comparative example is insufficient or excessively excessive precipitation of the high temperature stable phase It can be seen that. 18 to 23 show the structure of the alloy of the present invention. Looking at the precipitates of the cast structure in Figure 18 to 20 was suppressed the formation of coarse lamellae in the grain boundary, it can be seen that the precipitates are finely dispersed during the extrusion process in Figure 21 ~ Figure 23 of the extruded material.
도 24~도 25는 본 발명의 열전도도 측정 그래프이며, 표1에서 보듯 본 발명의 합금은 열전도도가 115W/m-K 이상으로 종래의 AZ계 합금이나 현재 난연성 합금으로 사용되는 WE43의 51~54W/m-K, ZE41의 24W/m-K에 비교하여 높은 열전도도를 발휘하며, 난연성 시험을 잘 만족하는 것을 보여 주고 있다. 도 26은 본 발명의 난연성 시험 장면이며, 본 발명의 합금은 우수한 열전도도로 인해 화염에 닿았을 때 국부적인 가열에 의해 용락 시간이 단축되는 영향이 적어 난연성이 향상되는 효과를 가져 온다. 24 to 25 is a thermal conductivity measurement graph of the present invention, as shown in Table 1, the alloy of the present invention has a thermal conductivity of 115W / mK or more 51 ~ 54W / of WE43 used as a conventional AZ-based alloy or currently flame retardant alloy Compared with the 24W / mK of mK and ZE41, it shows higher thermal conductivity and satisfies the flame retardancy test. Figure 26 is a flame retardant test scene of the present invention, the alloy of the present invention has the effect of improving the flame retardancy due to the small effect of shortening the melt time by the local heating when it touches the flame due to the excellent thermal conductivity.
[부호의 설명][Description of the code]
1 : 주형 2 : 빌렛 주조재1: mold 2: billet casting material
3 : 커버 4 : 차폐가스 배관3: cover 4: shielding gas piping
5 : 주입구 6 : 연속주조 빌렛 받침대5: injection hole 6: continuous casting billet support
7 : 냉각수 분사노즐 8 : 머쉬존7: Coolant injection nozzle 8: Mashed zone
21 : 레버 22 : 임펠러21: lever 22: impeller
41 : 유도코일 M : 모터41: induction coil M: motor

Claims (7)

  1. 중량%로 아연: 0.5~5%, 고융점 산화막 형성원소인 주석: 0.6~3.5%, 잔부: 불가피한 불순물과 마그네슘으로 이루어지되, 상기 불가피한 불순물 중에서 알루미늄과 지르코늄은 0.5% 이하로 관리되는 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금.Zinc: 0.5 to 5% by weight, tin: 0.6 to 3.5%, which is a high melting point oxide forming element, remainder: consisting of inevitable impurities and magnesium, among which the aluminum and zirconium are managed to be 0.5% or less. Magnesium alloy with excellent thermal conductivity and flame retardancy and easy plastic processing.
  2. 제1항에 있어서, The method of claim 1,
    상기 마그네슘 합금에는 칼슘, 규소, 망가니즈, 미쉬메탈 중에서 선택된 1종이상을 1.5중량% 이하 더 첨가하되, 상기 합금원소의 총량은 2.5~6.3%인 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금.The magnesium alloy is added at least 1.5% by weight of at least one selected from calcium, silicon, manganese, and mischmetal, and the total amount of the alloying elements is 2.5 to 6.3%, and the plastic processing is excellent in thermal conductivity and flame retardancy. This easy magnesium alloy.
  3. 대기와 차단한 상태에서 마그네슘 지금을 용해로에 투입, 용해하여 마그네슘 용탕을 제조하고 온도를 680~720℃로 유지하는 단계,Magnesium now is put into a melting furnace in a state of being cut off from the atmosphere to dissolve the molten magnesium to prepare a molten magnesium and maintain the temperature at 680 ~ 720 ° C.
    상기 마그네슘 용탕에 아연을 첨가, 용해하여 마그네슘-아연 합금 용탕을 제조하는 단계,Adding zinc to the molten magnesium and dissolving it to prepare a magnesium-zinc alloy molten metal;
    상기 마그네슘-아연 용탕에 고융점 원소인 주석, 이트륨, 미쉬메탈, 칼슘, 규소, 망가니즈 중에서 선택된 1종 이상을 모합금 형태로 첨가하고 기계적 교반을 행하여 마그네슘 합금 용탕을 제조하는 단계,Preparing a magnesium alloy molten metal by adding at least one selected from tin, yttrium, mismetal, calcium, silicon, and manganese as a master alloy to the magnesium-zinc molten metal and performing mechanical stirring;
    상기 마그네슘 합금 용탕이 담긴 주형을 냉각하여 주조재를 제조하는 단계로 이루어진 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금의 제조방법.Cooling the mold containing the magnesium alloy molten metal to produce a casting material, characterized in that the excellent thermal conductivity and flame retardancy, the plastic process is easy to manufacture a magnesium alloy manufacturing method.
  4. 제3항에 있어서,The method of claim 3,
    상기 용탕의 냉각은 주형을 냉매가 채워진 수조에 장입하거나 주형 측면에 냉매를 분사하여 냉각시키되, 냉각 중에 용탕을 기계적으로 교반하여 머쉬존의 응고핵을 분산시키는 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금의 제조방법.The cooling of the molten metal is cooled by charging a mold into a tank filled with a refrigerant or by spraying a refrigerant on the side of the mold, while mechanically agitating the molten metal during cooling to disperse the coagulation nuclei in the mash zone while providing excellent thermal conductivity and flame retardancy. Method for producing magnesium alloy easy plastic processing.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 용탕의 냉각 중 교반은 직경이 빌렛직경의 1/5~2/3인 임펠러를 주형 내에 삽입하여 기계적으로 교반하여 머쉬존의 응고핵을 분산시키는 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금의 제조방법. Stirring during cooling of the molten metal is excellent in thermal conductivity and flame retardancy, and plastic processing, characterized in that the impeller having a diameter of 1/5 to 2/3 of the billet diameter is inserted into the mold to mechanically stir to disperse the solidified core of the mash zone. Method for producing this easy magnesium alloy.
  6. 제3항에 있어서,The method of claim 3,
    상기 냉각단계에서 주형 냉각을 수조에서 70-200℃/분의 냉각속도로 냉각하되, 냉각 중에 주형 내의 용탕을 기계적으로 교반하여 머쉬존의 응고핵을 분산시키는 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금의 제조방법.While cooling the mold in the cooling step at a cooling rate of 70-200 ° C./min in the water tank in the cooling step, while mechanically stirring the molten metal in the mold during cooling, the thermal conductivity and flame retardancy are excellent, Method for producing magnesium alloy easy plastic processing.
  7. 제3항에 있어서,The method of claim 3,
    상기 냉각단계에서 마그네슘 합금 용탕을 연속주조장치의 주형에 투입하면서 주형 측면과 빌렛 표면에 냉매를 분사하여 200~900℃/분의 냉각속도로 냉각하되, 냉각 중에 임펠러를 주형 내에 삽입하여 기계적으로 교반하여 머쉬존의 응고핵을 분산시키는 것을 특징으로 하는 열전도성과 난연성이 우수하면서 소성가공이 용이한 마그네슘 합금의 제조방법.In the cooling step, the magnesium alloy molten metal is injected into the mold of the continuous casting apparatus, and the refrigerant is injected to the mold side and the billet surface, and cooled at a cooling rate of 200 to 900 ° C / min, during which the impeller is inserted into the mold and mechanically stirred. A method of producing a magnesium alloy having excellent thermal conductivity and flame retardancy, and easy plastic working, characterized in that the coagulation nuclei in the mash zone are dispersed.
PCT/KR2016/001770 2015-02-25 2016-02-24 Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor WO2016137210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/553,656 US20190112693A1 (en) 2015-02-25 2016-02-24 Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0026496 2015-02-25
KR1020150026496 2015-02-25

Publications (1)

Publication Number Publication Date
WO2016137210A1 true WO2016137210A1 (en) 2016-09-01

Family

ID=56788796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001770 WO2016137210A1 (en) 2015-02-25 2016-02-24 Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor

Country Status (2)

Country Link
US (1) US20190112693A1 (en)
WO (1) WO2016137210A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517447A (en) * 2018-05-03 2018-09-11 重庆大学 A kind of high plastic magnesium alloy and preparation method thereof
CN110317984A (en) * 2019-07-04 2019-10-11 重庆电子工程职业学院 A kind of antiflaming magnesium alloy composite material and preparation method with excellent toughness
CN112048650A (en) * 2020-07-22 2020-12-08 东华大学 High-electromagnetic-shielding and high-heat-conducting-property high-strength magnesium alloy and preparation method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708815B (en) * 2020-12-09 2022-05-06 威海万丰镁业科技发展有限公司 Heat-conducting anti-fatigue magnesium alloy and preparation method thereof
CN113981259B (en) * 2021-11-01 2022-06-28 吉林大学 Magnesium-aluminum-tin-calcium alloy and preparation method thereof
CN114850727B (en) * 2022-05-19 2023-01-20 吉林大学 High-performance antioxidant rare earth magnesium alloy ultra-long thin wire and preparation method thereof
CN115323200B (en) * 2022-07-21 2023-07-25 惠州德晋昌光电科技有限公司 Solid-liquid diffusion method of mixture, alloy material, preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073374A (en) * 1993-06-16 1995-01-06 Toyota Central Res & Dev Lab Inc Heat resistant magnesium alloy
KR20030044997A (en) * 2003-05-23 2003-06-09 연우인더스트리(주) High formability the Magnesium alloy and manufacture method of the Magnesium alloy product thereof
KR20060098039A (en) * 2005-03-08 2006-09-18 학교법인연세대학교 High temperature structural mg alloys containing misch metal
KR20140063025A (en) * 2012-11-16 2014-05-27 한국생산기술연구원 High heat-conductivity magnesium alloy and its casting product thereof
KR20150017143A (en) * 2013-08-06 2015-02-16 이인영 Magnesium alloy for extrusion with excellent plasticity―workability and method for producing the same
KR101594857B1 (en) * 2015-02-25 2016-02-17 이인영 Method of High Thermal Conductive and Flame Retardant Wrought Magnesium Alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5552110A (en) * 1991-07-26 1996-09-03 Toyota Jidosha Kabushiki Kaisha Heat resistant magnesium alloy
KR100816339B1 (en) * 2001-10-17 2008-03-24 삼성전자주식회사 Thin film transistor array panel
KR101127113B1 (en) * 2004-01-09 2012-03-26 켄지 히가시 Magnesium alloy for die cast and magnesium die cast products using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073374A (en) * 1993-06-16 1995-01-06 Toyota Central Res & Dev Lab Inc Heat resistant magnesium alloy
KR20030044997A (en) * 2003-05-23 2003-06-09 연우인더스트리(주) High formability the Magnesium alloy and manufacture method of the Magnesium alloy product thereof
KR20060098039A (en) * 2005-03-08 2006-09-18 학교법인연세대학교 High temperature structural mg alloys containing misch metal
KR20140063025A (en) * 2012-11-16 2014-05-27 한국생산기술연구원 High heat-conductivity magnesium alloy and its casting product thereof
KR20150017143A (en) * 2013-08-06 2015-02-16 이인영 Magnesium alloy for extrusion with excellent plasticity―workability and method for producing the same
KR101594857B1 (en) * 2015-02-25 2016-02-17 이인영 Method of High Thermal Conductive and Flame Retardant Wrought Magnesium Alloy

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108517447A (en) * 2018-05-03 2018-09-11 重庆大学 A kind of high plastic magnesium alloy and preparation method thereof
CN110317984A (en) * 2019-07-04 2019-10-11 重庆电子工程职业学院 A kind of antiflaming magnesium alloy composite material and preparation method with excellent toughness
CN112048650A (en) * 2020-07-22 2020-12-08 东华大学 High-electromagnetic-shielding and high-heat-conducting-property high-strength magnesium alloy and preparation method thereof

Also Published As

Publication number Publication date
US20190112693A1 (en) 2019-04-18

Similar Documents

Publication Publication Date Title
WO2016137211A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method
WO2016137210A1 (en) Plastic deformation magnesium alloy having excellent thermal conductivity and flame retardancy, and preparation method therefor
AU2017239455B2 (en) Lightweight, high-conductivity, heat-resistant, iron-containing aluminum wire and preparation process therefor
KR101600590B1 (en) High Thermal Conductive and Flame Retardant Wrought Magnesium Alloy
KR101066536B1 (en) Ignition-proof magnesium alloy with excellent mechanical properties and method for manufacturing the ignition-proof magnesium alloy
WO2011122784A2 (en) Magnesium alloy for room temperature and manufacturing method thereof
WO2010110505A1 (en) Magnesium-zinc based alloy materials having excellent high-speed formability at low temperature, and manufacturing method for alloy plate
US20080138236A1 (en) Mg Alloys Containing Misch Metal Manufacturing Method of Wrought Mg Alloys Containing Misch Metal, and Wrought Mg Alloys Thereby
WO2020122472A2 (en) Magnesium alloy material and method for producing same
WO2020085755A1 (en) Composite copper alloy comprising high-entropy alloy, and manufacturing method therefor
KR20130012662A (en) High-strength high-ductility ignition-proof magnesium alloy
WO2021215666A1 (en) High-quality magnesium alloy processed material and manufacturing method therefor
Ye et al. Beneficial effects of Sc/Zr addition on hypereutectic Al–Ce alloys: modification of primary phases and precipitation hardening
WO2015126054A1 (en) Magnesium alloy board and preparation method therefor
CN115109974A (en) Al-Cu-Li-Zr-Ce-Sc alloy plate with ultrahigh strength and good plasticity and preparation method thereof
CN114774724A (en) High-strength deformation rare earth aluminum alloy and preparation method thereof
CN112481532A (en) High-flame-retardance high-yield-ratio wrought magnesium alloy and preparation method thereof
WO2020111879A1 (en) Steel sheet plated with al-fe alloy for hot press forming having excellent corrosion resistance and heat resistance, hot press formed part, and manufacturing method therefor
Huang et al. Effects of Gd on microstructure and mechanical property of ZK60 magnesium alloy
RU2687359C1 (en) Magnesium casting alloy
WO2016117768A1 (en) Method for manufacturing magnesium alloy billet for plastic processing and high-strength wrought magnesium alloy manufacturing method including the same
WO2018117632A1 (en) Magnesium alloy having excellent corrosion resistance and method for manufacturing same
KR101218875B1 (en) High-strength magnesium alloy extrusion manufacturing
AU2021103058A4 (en) Aluminum alloy, and manufacturing process and use thereof
CN103526092A (en) Novel flame-retardant deformed magnesium alloy and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755860

Country of ref document: EP

Kind code of ref document: A1