WO2022131010A1 - 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池 - Google Patents

金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池 Download PDF

Info

Publication number
WO2022131010A1
WO2022131010A1 PCT/JP2021/044338 JP2021044338W WO2022131010A1 WO 2022131010 A1 WO2022131010 A1 WO 2022131010A1 JP 2021044338 W JP2021044338 W JP 2021044338W WO 2022131010 A1 WO2022131010 A1 WO 2022131010A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
positive electrode
air battery
composite oxide
catalyst
Prior art date
Application number
PCT/JP2021/044338
Other languages
English (en)
French (fr)
Inventor
謙次 高岡
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Publication of WO2022131010A1 publication Critical patent/WO2022131010A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/24Alkaline-earth metal silicates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material

Definitions

  • the present invention relates to a positive electrode catalyst for a metal-air battery, a positive electrode for a metal-air battery, and a metal-air battery.
  • a metal-air battery which is one of the candidates for an innovative storage battery, is a secondary battery that uses oxygen in the air as a positive electrode active material and a metal material for the negative electrode.
  • Oxygen is not only an element that is unlikely to cause problems such as resource supply, cost, and human body effects, but also has high oxidizing power. Therefore, high energy density is expected for metal-air batteries.
  • Non-Patent Documents 1 and 2 the development of perovskite (ABO 3 ) type transition metal oxides has been promoted as a positive electrode catalyst.
  • Metal-air batteries are required to further improve their output characteristics. Therefore, it is a main object of the present invention to provide a novel positive electrode catalyst for a metal-air battery capable of improving the output characteristics of the metal-air battery.
  • One aspect of the present invention relates to a positive electrode catalyst for a metal-air battery, which comprises a melilite type composite oxide represented by the following formula (1).
  • a positive electrode catalyst for a metal-air battery which comprises a melilite type composite oxide represented by the following formula (1).
  • Ca 2-x Sr x CoSi 2 O 7 (1) [In the equation (1), x satisfies 0 ⁇ x ⁇ 2. ]
  • the output characteristics of the metal-air battery can be improved. That is, by using the positive electrode catalyst on the above side surface for the positive electrode (air electrode) of the metal-air battery, a metal-air battery having excellent output characteristics at the time of discharge can be obtained.
  • the melilite-type composite oxide represented by the above formula (1) in the positive electrode catalyst on the side surface may be Ca 2 CoSi 2 O 7 . In this case, better output characteristics can be obtained.
  • the content of the melilite-type composite oxide represented by the above formula (1) in the positive electrode catalyst on the above side surface may be 10% by mass or more. In this case, better output characteristics can be obtained.
  • the positive electrode catalyst on the side surface may further include a brown mirror light type composite oxide (transition metal oxide) represented by the following formula (2).
  • a brown mirror light type composite oxide transition metal oxide
  • both excellent output characteristics and excellent life performance can be achieved.
  • the mass ratio of the content of the melilite type composite oxide represented by the above formula (1) to the content of the brown mirror light type composite oxide represented by the above formula (2) is 0. It may be 1 to 1.0. In this case, both output characteristics and life performance can be more highly compatible. In particular, when x in the above formula (1) is less than 2, the effect of improving the life performance becomes remarkable, and when x in the above formula (1) is 0, the effect of improving the life performance becomes more remarkable. ..
  • a positive electrode for a metal-air battery which comprises a catalyst layer including a positive electrode catalyst for a metal-air battery on the above side.
  • the positive electrode for the metal-air battery on the above side surface may further include a diffusion layer.
  • Another aspect of the present invention relates to a metal-air battery provided with a positive electrode, a negative electrode, and an electrolyte for the metal-air battery on the above side.
  • the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value and the lower limit value of the parameters in the present specification are described stepwise, the upper limit value and the lower limit value of a certain step can be arbitrarily combined.
  • the term "layer” is used only in a part of the region in addition to the case where the layer is formed in the entire region when the region in which the layer is present is observed. It is also included if there is.
  • the positive electrode catalyst of one embodiment is a positive electrode catalyst used to promote an oxygen reaction (particularly an oxygen reduction reaction) in the positive electrode of a metal-air battery.
  • the positive electrode catalyst includes a melilite-type composite oxide represented by the following formula (1) (hereinafter, also referred to as “composite oxide (1)”).
  • composite oxide (1) a melilite-type composite oxide represented by the following formula (1) (hereinafter, also referred to as “composite oxide (1)”).
  • the positive electrode catalyst of the present embodiment includes the composite oxide (1), it tends to have excellent ORR activity. Therefore, according to the positive electrode catalyst, the output characteristics of the metal-air battery can be improved.
  • the "merylite type compound” is A 2 MM'2 O 7 (A is a group 1 to 3 cation, and M and M'are divalent or higher valent transition metals or non-transition metals. All of M'refers to a group of compounds represented by (), which is arranged at a tetracoordinated site. All transition metals in the melilite-type structure are located at the tetracoordination site.
  • the melilite-type composite oxide has a smaller number of oxide ions coordinated to the transition metal ion than the perovskite-type composite oxide used as a positive catalyst material for an existing metal-air battery.
  • the melilite-type composite oxide has a higher adsorption capacity as a starting point of the catalytic reaction than the perovskite-type composite oxide. It is considered that this tends to show excellent OER activity and ORR activity.
  • the composite oxide (1) tends to exhibit excellent ORR activity even when compared with other melilite-type composite oxides.
  • the composite oxide (1) has excellent chemical stability.
  • the composite oxide (1) is difficult to dissolve in an alkaline solution when immersed in an alkaline solution. This is because the composite oxide (1) contains Si ions having an oxidation number of +4 and being very stable.
  • X in the equation (1) may be an integer or a decimal.
  • x may be 0 ⁇ x ⁇ 1 and may be 1 ⁇ x ⁇ 2.
  • x may be smaller than 2 from the viewpoint of being more excellent in the effect of improving the output characteristics, and may be smaller than 1 from the viewpoint of being more excellent in the effect of improving the output characteristics.
  • the composite oxide (1) include Ca 2 CoSi 2 O 7 , Sr 2 CoSi 2 O 7 , and Ca Sr CoSi 2 O 7 .
  • Ca 2 CoSi 2 O 7 when Ca 2 CoSi 2 O 7 is used, the effect of improving the output characteristics tends to be more remarkable.
  • the shape of the composite oxide (1) is not particularly limited and can be appropriately selected depending on the specifications of the metal-air battery to be used.
  • the shape of the composite oxide (1) is, for example, particulate or bulk, preferably particulate.
  • the particle size of the composite oxide (1) may be 0.01 ⁇ m or more, 0.02 ⁇ m or more, 1 ⁇ m or more, or 2 ⁇ m or more, and may be 50 ⁇ m or less, 20 ⁇ m or less, 3 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less. good.
  • the particle size in the present specification is a volume average particle size measured by a transmission electron microscope (TEM).
  • the specific surface area of the composite oxide (1) is 0.1 m 2 / g or more, 0.5 m 2 / g or more, 0.7 m 2 / g or more, or 1 m 2 / g or more from the viewpoint of superior catalytic activity. good.
  • the specific surface area of the composite oxide (1) may be 100 m 2 / g or less, and from the viewpoint of durability (for example, difficulty in dissolving in an alkali), it is 10 m 2 / g or less or 9 m 2 / g or less. It's okay.
  • the specific surface area in the present specification refers to a specific surface area / pore distribution measuring device for a sample after pretreatment of a sample using a pretreatment device (BELPREP-vacII manufactured by Microtrac BEL). A value measured by the BET method using (manufactured by Microtrac BEL, manufactured by BELSORP-miniII).
  • the composite oxide (1) can be used alone or in combination of a plurality of types.
  • the composite oxide (1) can be produced by using various methods for producing a ceramic material.
  • a liquid phase method such as a complex polymerization method and a hydrothermal synthesis method
  • a solid phase method such as a sintering method, or the like can be used.
  • particles having high chemical uniformity can be obtained even by low-temperature firing.
  • the composite oxide (1) can be synthesized, for example, by the amorphous metal complex method. According to this method, the firing temperature can be lowered as compared with the solid phase method. Therefore, this method is excellent in energy cost for producing the composite oxide.
  • this method first, the metal source is added and dissolved in pure water so as to have the same chemical ratio as the metal contained in the target product, citric acid is added, and the mixture is stirred to be uniform, and the raw material solution is prepared. (Solution preparation step). Next, the raw material solution is heated and concentrated to produce a citric acid gel (gelling step). Then, the citric acid gel is heat-treated to decompose organic components to obtain a powder precursor (precursor preparation step). By pulverizing this precursor (crushing step) and firing it (calcination step), the composite oxide (1) is obtained.
  • the pulverization step is an arbitrary step, and it is not always necessary to pulverize the precursor.
  • the Ca source, Sr source and Co source used in the solution preparation step are not particularly limited, and for example, nitrates or acetates of these metals can be used.
  • the Si source used in the solution preparation step is not particularly limited, and for example, glycol-modified silanes such as propylene glycol-modified silane, ethylene glycol-modified silane, and polyethylene glycol-modified silane can be used.
  • Such glycol-modified silanes can be prepared by mixing tetraalkoxysilanes such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetraisopropoxysilane, glycol, and hydrochloric acid (catalyst). can. Since a more detailed preparation method is disclosed in, for example, Patent Document 1 (Japanese Unexamined Patent Publication No. 2010-7032), the description thereof is omitted here.
  • the tetraalkoxysilane it is preferable to use tetramethoxysilane from the viewpoint of miscibility with other metal sources.
  • the amount of citric acid added to the raw material solution used in the solution preparation step is preferably 3 to 5 times the molar ratio of all metal ions in the raw material solution. This makes it possible to efficiently generate a gel in the gelation step described later.
  • the method of heat concentration in the gelling step is not particularly limited.
  • a constant temperature bath, a constant temperature furnace, or the like can be used for heating and concentrating.
  • the temperature of heat concentration (heating temperature) is not particularly limited.
  • the heating temperature may be 80 ° C. or higher and 150 ° C. or lower, and may be 90 ° C. or higher and 140 ° C. or lower.
  • the temperature of the heat treatment in the precursor preparation step is not particularly limited as long as it is the temperature at which the organic matter is decomposed.
  • the temperature of the heat treatment may be 250 ° C. or higher and 600 ° C. or lower, and may be 300 ° C. or higher and 550 ° C. or lower, or 400 ° C. or higher and 500 ° C. or lower.
  • the crushing step a conventionally known crushing device can be used.
  • the pulverization step can be carried out so that the particle size of the composite oxide (1) becomes the above-mentioned particle size.
  • the firing temperature in the firing process is not particularly limited.
  • the firing temperature may be 800 ° C. or higher and 1500 ° C. or lower, and may be 850 ° C. or higher and 1400 ° C. or lower, or 900 ° C. or higher and 1300 ° C. or lower.
  • the positive electrode catalyst may further include a catalyst compound other than the composite oxide (1).
  • a positive electrode catalyst having both excellent ORR activity and OER activity can be obtained by combining a composite oxide having excellent ORR activity and a composite oxide having excellent OER activity.
  • Examples of the catalyst compound to be combined with the composite oxide (1) include a brown mirror light type composite oxide (composite oxide having a brown mirror light type structure) and a spinel type composite oxide (composite oxide having a spinel type structure). And so on.
  • Known compounds can be used as the brown mirror light type composite oxide and the spinel type composite oxide.
  • a brown mirror light type composite oxide represented by the following formula (2) hereinafter, also referred to as “composite oxide (2)”
  • both excellent output characteristics and excellent life performance are achieved. be able to.
  • Z in equation (2) may be an integer or a decimal. z may be larger than 0 from the viewpoint that the output characteristics and the life performance can be more highly compatible with each other in combination with the composite oxide (1).
  • Specific examples of the composite oxide (2) include Ca 2 FeCoO 5 and Ca 2 Fe 2 O 5 .
  • Ca 2 FeCoO 5 when Ca 2 FeCoO 5 is used, the effect of improving the output characteristics and the effect of improving the life performance tend to be more remarkable.
  • the shape of the composite oxide (2) is not particularly limited and can be appropriately selected depending on the specifications of the metal-air battery to be used.
  • the shape of the composite oxide (2) is, for example, particulate or bulk, preferably particulate.
  • the particle size of the composite oxide (2) may be 0.01 ⁇ m or more, 0.02 ⁇ m or more, 1 ⁇ m or more, or 2 ⁇ m or more, and may be 50 ⁇ m or less, 20 ⁇ m or less, 3 ⁇ m or less, 1 ⁇ m or less, or 0.5 ⁇ m or less. good.
  • the specific surface area of the composite oxide (2) is 0.1 m 2 / g or more or 0.5 m 2 / g or more, 0.7 m 2 / g or more, or 1 m 2 / g or more from the viewpoint of superior catalytic activity. good.
  • the specific surface area of the composite oxide (2) may be 100 m 2 / g or less, and from the viewpoint of durability (for example, difficulty in dissolving in an alkali), it is 10 m 2 / g or less or 9 m 2 / g or less. It's okay.
  • the composite oxide (2) can be used alone or in combination of a plurality of types.
  • the composite oxide (2) it can be synthesized by a solid phase reaction method (for example, the method described in Non-Patent Document 3 and the like), and can also be synthesized by a liquid phase reaction method.
  • a solid phase reaction method for example, the method described in Non-Patent Document 3 and the like
  • a liquid phase reaction method for example, first, Ca salt (for example, Ca (NO 3 ) 2 ), Fe salt (for example, Fe (NO 3 ) 3.9H 2 O) and Co salt (for example, Co (NO 3 ) 2.6H 2 O ).
  • a gelling agent for example, citric acid, ethylenediaminetetraacetic acid, glycine, etc.
  • water distilled water or ion-exchanged water
  • the resulting mixture is gelled by, for example, heating to 50-90 ° C. to remove the solvent.
  • This gelled product is calcinated in air at 300 to 500 ° C. (for example, 450 ° C.) for 10 minutes to 6 hours (for example, 1 hour) to synthesize a precursor.
  • the precursor can be calcined in the air at 600 to 800 ° C. for 1 to 24 hours to synthesize the desired composite oxide (2) (for example, Ca 2 FeCoO 5 ).
  • the firing conditions can be changed to, for example, firing at 600 ° C. for a predetermined time (1 to 12 hours) and then raising the temperature to, for example, firing at 800 ° C. for a predetermined time (6 to 12 hours).
  • a composite oxide (2) for example, Ca 2 FeCoO 5
  • a composite oxide (2) can be obtained as particles having a smaller particle size and a higher specific surface area. Can be done.
  • the content of the composite oxide (1) in the positive electrode catalyst is 10% by mass or more, 20% by mass or more, 30% by mass or more, and 40% by mass based on the total mass of the positive electrode catalyst from the viewpoint of further excellent output characteristics. As mentioned above, it may be 50% by mass or more or 65% by mass or more.
  • the content of the composite oxide (1) in the positive electrode catalyst is the whole of the positive electrode catalyst from the viewpoint that it becomes easy to achieve both the output characteristics and the life characteristics by combining with other catalyst compounds capable of improving the life characteristics. Based on the mass, it may be 90% by mass or less, 80% by mass or less, 65% by mass or less, 50% by mass or less, 40% by mass or less, or 30% by mass or less.
  • the content of the composite oxide (1) in the positive electrode catalyst may be 100% by mass based on the total mass of the positive electrode catalyst.
  • the content of the composite oxide (2) in the positive electrode catalyst is 10% by mass or more, 20% by mass or more, 35% by mass or more, and 50% by mass or more based on the total mass of the positive electrode catalyst from the viewpoint of superior life characteristics. , 60% by mass or more, or 70% by mass or more.
  • the content of the composite oxide (2) in the positive electrode catalyst is 90% by mass or less, 80% by mass or less, and 70% by mass based on the total mass of the positive electrode catalyst from the viewpoint of facilitating both output characteristics and life characteristics. % Or less, 60% by mass or less, 50% by mass or less, or 35% by mass or less.
  • the mass ratio of the content of the composite oxide (1) to the content of the composite oxide (2) is 0.1 or more, 0.3 or more, and 0. It may be 5 or more, 0.75 or more, 1.0 or more, 1.5 or more, or 2.0 or more.
  • the mass ratio of the content of the composite oxide (1) to the content of the composite oxide (2) is 5.0 or less, 3.0 or less, and 2. It may be 0 or less, 1.0 or less, 0.75 or less, or 0.5 or less.
  • the mass ratio of the content of the composite oxide (1) to the content of the composite oxide (2) is 0.1 to 5.0, 0.1 to 3.0, 0.1 to 2 .0, 0.1-1.0, 0.1-0.75, 0.3-3.0, 0.3-2.0, 0.3-1.0, 0.5-3.0 , 0.5-2.0, 0.75-3.0, 0.75-2.0, 1.0-3.0, 1.0-2.0, 1.5-3.0, 2 It may be 0.0 to 3.0 or the like.
  • x in the above formula (1) is less than 2
  • the mass ratio is 0.1 to 1.0
  • the effect of improving the life performance becomes remarkable.
  • x in the above formula (1) is 0 (that is, when the composite oxide (1) is Ca 2 CoSi 2 O 7 )
  • the mass ratio is 0.1 to 1.0. If there is, the effect of improving the life performance becomes more remarkable.
  • the positive electrode catalyst described above can be widely applied to the air electrode used in a known metal-air battery, and for example, it can be applied to a bifunctional air electrode for an in-vehicle water-based air battery.
  • Air electrode and metal-air battery> an example of a positive electrode (air electrode) for a metal-air battery in which the positive electrode catalyst of the above embodiment is used and a metal-air battery provided with the positive electrode will be described.
  • the metal-air battery includes at least an air electrode (positive electrode), a negative electrode, and an electrolyte.
  • an electrolyte is arranged at least between the air electrode and the negative electrode, so that ion conduction is performed between the air electrode and the negative electrode.
  • the metal-air battery may be composed of at least one cell (cell) including an air electrode (positive electrode), a negative electrode, and an electrolyte, or may be composed of a plurality of cells.
  • the metal-air battery may further be provided with a separator for suppressing a short circuit between the air electrode and the negative electrode.
  • the separator is not an essential component.
  • the air electrode, negative electrode, electrolyte and separator may be housed in a housing (battery case).
  • a housing battery case
  • Specific examples of the shape of the housing include a coin type, a flat plate type, a cylindrical type, and a laminated type.
  • the housing may be an open-air battery case or a closed battery case.
  • the open-air battery case is a battery case having a structure in which at least the air electrode is sufficiently in contact with the atmosphere.
  • the housing is a closed type battery case, it is preferable to provide a gas (air) introduction pipe and an exhaust pipe in the closed type battery case.
  • the gas to be introduced and exhausted preferably has a high oxygen concentration, and more preferably pure oxygen. Further, it is preferable to increase the oxygen concentration during discharging and decrease the oxygen concentration during charging.
  • a metal-air battery can be obtained, for example, by arranging an air electrode in a housing, injecting an electrolyte into the housing, and immersing a negative electrode and a separator in the electrolyte.
  • the air electrode includes a current collector (air electrode current collector) and a catalyst layer and a diffusion layer (gas diffusion layer) provided in the current collector.
  • the diffusion layer is not an essential component.
  • the arrangement of the air electrode current collector, the catalyst layer and the diffusion layer is not particularly limited, but typically, the diffusion layer is arranged on the outside air side and the catalyst layer is arranged on the electrolyte side. Further, the air electrode current collector may be arranged so as to be on the outermost air side (that is, on the side opposite to the catalyst layer of the diffusion layer), or may be arranged between the catalyst layer and the diffusion layer.
  • the air electrode current collector is made of a conductive metal material such as stainless steel, copper, or nickel.
  • the shape of the current collector is not particularly limited, and is, for example, a mesh shape.
  • a lead (air electrode lead) is connected to the air electrode current collector.
  • An air electrode terminal (positive electrode terminal) is provided at the tip of the air electrode lead.
  • the catalyst layer contains the positive electrode catalyst of the above embodiment.
  • the catalyst layer may further contain a conductive material. It is preferable that the positive electrode catalyst and the conductive material are uniformly dispersed in the catalyst layer. In the catalyst layer, the positive electrode catalyst may be supported on the conductive material.
  • the content of the positive electrode catalyst in the catalyst layer is preferably 20% by mass or more, more preferably 40% by mass, based on the total mass of the catalyst layer from the viewpoint of improving the balance between the life characteristics and the input / output characteristics. % Or more, more preferably 60% by mass or more.
  • the content of the positive electrode catalyst in the catalyst layer is preferably 90% by mass or less, more preferably 80% by mass, based on the total mass of the catalyst layer from the viewpoint of improving the balance between the life characteristics and the input / output characteristics. % Or less, more preferably 70% by mass or less.
  • the content of the composite oxide (1) may be in the above range based on the total mass of the catalyst layer, and is the total content of the composite oxide (1) and the composite oxide (2). However, it may be in the above range based on the total mass of the catalyst layer.
  • Examples of the conductive material include graphite, carbon black, Ketjen black and the like.
  • graphite, carbon black, Ketjen black or the like is used as the conductive material, it is possible to achieve both life characteristics and input / output characteristics at a high level while reducing the manufacturing cost.
  • the content of the conductive material in the catalyst layer is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total mass of the catalyst layer, from the viewpoint of further improving the input / output characteristics. More preferably, it is 60% by mass or more.
  • the content of the conductive material in the catalyst layer is preferably 30% by mass or less, more preferably 15% by mass or less, and further preferably 15% by mass or less, based on the total mass of the catalyst layer, from the viewpoint of further improving the life characteristics. It is preferably 5% by mass or less.
  • the catalyst layer may further contain components other than the positive electrode catalyst and the conductive material.
  • components other than the positive electrode catalyst and the conductive material include a binder and the like.
  • binder examples include a fluorine-based binder and the like, and polytetrafluoroethylene (PTFE) is preferably used.
  • the content of the binder may be, for example, 1% by mass or more and 30% by mass or less based on the total mass of the catalyst layer.
  • the thickness of the catalyst layer may be, for example, 0.5 ⁇ m or more, and may be 500 ⁇ m or less.
  • the diffusion layer has conductivity and also has a function of diffusing oxygen gas used for the reaction in the catalyst layer. Therefore, when the air electrode includes a diffusion layer, the efficiency of supplying the gas to the catalyst layer is improved, and the battery characteristics (for example, input / output characteristics) tend to be improved.
  • the diffusion layer contains, for example, a conductive material.
  • the conductive material include the conductive material used for the catalyst layer described above.
  • the content of the conductive material in the diffusion layer may be, for example, 65% by mass or more and 99% by mass or less based on the total mass of the diffusion layer.
  • the diffusion layer may further contain other components such as a binder that may be contained in the catalyst layer. Examples and preferred embodiments of these components are the same as for the catalyst layer.
  • the content of the binder may be, for example, 5% by mass or more and 35% by mass or less based on the total mass of the diffusion layer.
  • the thickness of the diffusion layer may be, for example, 0.5 ⁇ m or more, and may be 500 ⁇ m or less.
  • the total thickness of the catalyst layer and the diffusion layer may be, for example, 1 ⁇ m or more and 1000 ⁇ m or less.
  • the above air electrode can be manufactured, for example, as follows.
  • a composition for forming a diffusion layer (for example, a slurry-like composition) is prepared by mixing a conductive material, a dispersion solvent, and a binder in a mortar.
  • the dispersion solvent include water, alcohols such as ethanol, and the like.
  • the content of the conductive material and the binder in the composition for forming the diffusion layer may be adjusted so that the content of each component in the diffusion layer is within the above-mentioned range.
  • a dispersant When preparing the composition for forming a diffusion layer, a dispersant may be further added.
  • the dispersant is not particularly limited as long as it can impart dispersion stability to the conductive material, and for example, a nonionic surfactant such as octylphenol ethoxylate can be used.
  • a nonionic surfactant such as octylphenol ethoxylate
  • Triton X-100 is preferably used.
  • the amount of the dispersant added may be, for example, 10 parts by mass or more and 60 parts by mass or less with respect to 100 parts by mass of the conductive material.
  • a composition for forming a catalyst layer (for example, an ink composition) is prepared by mixing a positive electrode catalyst, a conductive material, a dispersion solvent, and a binder.
  • the dispersion solvent include water, alcohols such as ethanol, and the like.
  • the positive electrode catalyst may be used as it is or may be used while being supported on a carrier for producing the composition for forming the catalyst layer. That is, a supported catalyst including a carrier and a positive electrode catalyst supported on the carrier may be used.
  • the carrier in the supported catalyst may be the above-mentioned conductive material.
  • the content of the positive electrode catalyst, the conductive material and the binder in the composition for forming the catalyst layer may be adjusted so that the content of each component in the catalyst layer is within the above-mentioned range.
  • a dispersant When preparing the composition for forming the catalyst layer, a dispersant may be further added.
  • the dispersant is not particularly limited as long as it can impart dispersion stability to the positive electrode catalyst and / or the conductive material, and for example, a nonionic surfactant such as octylphenol ethoxylate can be used.
  • a nonionic surfactant such as octylphenol ethoxylate
  • Triton X-100 is preferably used.
  • the amount of the dispersant added may be, for example, 5 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the total of the positive electrode catalyst and the conductive material.
  • a general method can be applied to the method used for stretching, and the method is not particularly limited as long as it can smoothly stretch the composition for forming a diffusion layer.
  • the method of stretching with an acrylic cylinder is suitable. Then, it is rolled to a specified thickness by a roll press, cut, and dried on a hot plate heated to 150 to 170 ° C. for 1 to 2 hours. As a result, a diffusion layer sheet is obtained.
  • the diffusion layer sheet obtained so far has a plate shape as a whole.
  • the composition for forming a catalyst layer is applied to the obtained diffusion layer sheet by, for example, a spray method, and heat-treated in an atmosphere of an inert gas such as argon to laminate the diffusion layer and the diffusion layer.
  • a laminated body for an air electrode including the catalyst layer is obtained.
  • the heat treatment is performed, for example, at 300 to 350 ° C. for 10 to 20 minutes.
  • an air electrode can be obtained by joining an air electrode current collector to the air electrode laminate by pressing or the like.
  • the method for producing an air electrode is not limited to the above method, and for example, a method of filling an air electrode current collector with a diffusion layer forming composition and a catalyst layer forming composition without forming them in a sheet shape (for example, Patent Document). 2 (the method described in JP-A-2014-49304)) can also be produced.
  • the negative electrode As the negative electrode, a negative electrode of a general metal-air battery can be used.
  • the negative electrode includes, for example, a current collector (negative electrode current collector) and a negative electrode active material layer provided on the current collector.
  • a lead (negative electrode lead) is connected to the negative electrode current collector.
  • a negative electrode terminal is provided at the tip of the negative electrode lead.
  • the negative electrode current collector is made of a conductive metal material such as stainless steel, copper, or nickel.
  • the shape of the current collector is not particularly limited, and is, for example, a mesh shape.
  • the negative electrode active material layer contains a negative electrode active material.
  • the negative electrode active material include elemental metals, alloys, compounds and the like containing a base metal having a high reducing power (for example, a metal having a standard electrode potential lower than that of hydrogen) as an element.
  • the base metal include lithium (Li), zinc (Zn) and iron (Fe) in addition to zinc.
  • the electrolyte is not particularly limited, and a known electrolyte can be used depending on the type of the negative electrode active material used for the negative electrode.
  • the form of the electrolyte is not particularly limited, and may be a liquid electrolyte, a gel electrolyte, a solid electrolyte, or the like.
  • an aqueous potassium hydroxide solution is preferably used.
  • the concentration of hydroxide ion ([OH ⁇ ]) in the electrolyte is preferably 1 to 10 mol / L or more.
  • the structure and material of the separator are not particularly limited as long as they do not inhibit metal ion conduction between the air electrode and the negative electrode and can suppress a short circuit between the two electrodes.
  • Specific examples thereof include a porous film or a resin non-woven fabric made of a resin material such as a polyolefin such as polyethylene and polypropylene, and a fluororesin such as polytetrafluoroethylene and polyvinylidene fluoride.
  • the current is input and output during charging and discharging using the air electrode terminal and the negative electrode terminal. Since the metal-air battery includes an air electrode containing the positive electrode catalyst of the above embodiment, it tends to exhibit excellent output characteristics, and also exhibits excellent input characteristics and excellent life characteristics.
  • Examples 1 to 10 and Comparative Example 1> (Preparation of positive electrode catalyst) [Synthesis of melilite-type composite oxide]
  • the target products (merylite type composite oxides A1 and A2) of the chemical formula shown in Table 1, the target products (merylite type composite oxides A1 and A2) have the same charging ratio as the chemical ratio of the metal ions in the chemical formula.
  • Ca source Ca (NO 3 ) 2.4H 2 O (99.9%, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Sr source SrNO 3 (purity 99.5%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Co source Co (CH 3 COO) 2.4H 2 O (purity 99%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • Si source fumed colloidal silica (purity 99%, manufactured by Wako Pure Chemical Industries, Ltd.)
  • the raw material solution was allowed to stand in a constant temperature bath set at 120 ° C. and concentrated by heating.
  • the supersaturated citrate gel which lost its fluidity and became a gel, was heat-treated at 450 ° C. to decompose organic components to obtain a powder precursor.
  • the precursor thus obtained was pulverized and calcined in the air at 1250 ° C. for 12 hours using a box furnace.
  • the melilite-type composite oxides A1 and A2 shown in Table 1 were obtained, respectively.
  • the melilite-type composite oxide A1 had an average particle size of 2.3 ⁇ m and a specific surface area of 3.5 m 2 / g.
  • the melilite-type composite oxide A2 had an average particle size of 3.1 ⁇ m.
  • the target product (Brown mirror light type composite oxide B1) represented by Ca 2 FeCoO 5
  • the target product (Brown mirror light type composite oxide) has the same charging ratio as the chemical ratio of the metal ions in the chemical formula. Dissolve each of the following metal sources in pure water so that B1) becomes 1 mmol, and add citric acid (gelling agent, C 6 H 8 O 7 , purity 98%, manufactured by Wako Pure Chemical Industries, Ltd.) to the total cation amount. 3 times the amount of the above was added and stirred to be uniform to obtain a raw material solution.
  • citric acid gelling agent, C 6 H 8 O 7 , purity 98%, manufactured by Wako Pure Chemical Industries, Ltd.
  • Ca source Ca (NO 3 ) 2.4H 2 O (99.9%, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Fe source Fe (NO 3 ) 3.9H 2 O (purity 99.9%, manufactured by Wako Pure Chemical Industries, Ltd.)
  • Co source Co (CH 3 COO) 2.4H 2 O (purity 99%, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the raw material solution was allowed to stand in a constant temperature bath set at 120 ° C. and concentrated by heating.
  • the supersaturated citrate gel which lost its fluidity and became a gel, was heat-treated at 450 ° C. to decompose organic components to obtain a powder precursor.
  • the precursor thus obtained was pulverized and calcined in the air at 800 ° C. for 12 hours using a box furnace.
  • a brown mirror light type composite oxide B1 represented by Ca 2 FeCoO 5 was obtained.
  • the brown mirror light type composite oxide B1 had an average particle size of 1.3 ⁇ m and a specific surface area of 4.2 m 2 / g.
  • the melilite-type composite oxide A1 obtained above was used as a positive electrode catalyst for a metal-air battery of Example 1. Further, the melilite type composite oxide A1 and the brown mirror light type composite oxide B1 were combined in the mass ratio (A1 / B1) shown in Table 2 to obtain the positive electrode catalyst for the metal-air battery of Examples 2 to 6. Further, the melilite-type composite oxide A2 obtained above was used as a positive electrode catalyst for a metal-air battery of Example 7. Further, the melilite type composite oxide A2 and the brown mirror light type composite oxide B1 were combined in the mass ratio (A2 / B1) shown in Table 3 to obtain the positive electrode catalyst for the metal-air battery of Examples 8 to 10. Further, the brown mirror light type composite oxide B1 obtained above was used as a positive electrode catalyst for a metal-air battery of Comparative Example 1.
  • Metal-air batteries were produced by the following methods using the positive electrode catalysts for metal-air batteries of Examples 1 to 10 and Comparative Example 1 obtained above as the positive electrode catalysts, respectively.
  • the ink obtained above was applied to the diffusion layer sheet obtained above by a spray method and fired at 335 ° C. under argon for 13 minutes to obtain a laminate for an air electrode.
  • a nickel mesh was crimped to the obtained laminate to obtain an air electrode.
  • the experimental cell shown in FIG. 1 was prepared by the following method.
  • the air electrode (1) was adhered to the acrylic housing (5) provided with the opening (6) from the catalyst layer (11) side so as to close the opening (6).
  • a platinum plate is used as the counter electrode (negative electrode) (2) and a mercury-mercury oxide electrode is used as the reference electrode (3).
  • the experimental cell (10) was prepared by immersing it in the electrolyte (4) in the housing (5).
  • the reference electrode (3) was arranged between the air electrode (1) and the negative electrode (2).
  • (12) in FIG. 1 shows a diffusion layer
  • (13) shows a current collector (nickel mesh).
  • the OER current value is set to + 40 mA / cm 2
  • the ORR current value is set to ⁇ 40 mA / cm 2
  • the OER and the ORR are set to 1 hour each
  • the rest time between the OER and the ORR is set to 3 minutes.
  • the charging / discharging cycle of OER and ORR was repeated 50 times.
  • OER or ORR with a constant current density of 40 mA / cm 2 was carried out for 1 minute, and the air electrode potential at the time after 1 minute was taken as the ORR potential.
  • the air pole potential is defined by the potential difference between the air pole and the reference pole.
  • the output characteristics were evaluated by comparing the ORR potentials.
  • the OER current value is set to + 40 mA / cm 2
  • the ORR current value is set to ⁇ 40 mA / cm 2
  • the OER and the ORR are set to 1 hour each
  • the rest time between the OER and the ORR is set to 3 minutes.
  • the charging / discharging cycle of OER and ORR was repeated.
  • the time when the OER potential became 0.8 V or more or the ORR potential became ⁇ 0.4 V or less was defined as the cycle life of the battery.
  • the life characteristics were evaluated by comparing the number of cycles up to the cycle life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

下記式(1)で表されるメリライト型複合酸化物を備える、金属空気電池用正極触媒。 Ca2-xSrxCoSi2O7 (1) [式(1)中、xは、0≦x≦2を満たす。]

Description

金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池
 本発明は、金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池に関する。
 革新型蓄電池の候補の一つである金属空気電池は、空気中の酸素を正極活物質として用い、負極に金属材料を用いる二次電池である。酸素は、資源供給、コスト、人体影響等の問題が起こりがたい元素であるだけでなく、高い酸化力を有している。そのため、金属空気電池には高エネルギー密度が期待される。
 ところで、金属空気電池の空気極では、放電時には酸素(活物質)の4電子還元反応により水酸化物イオンが生成する。一方、充電時には水酸化物イオンの4電子酸化反応により酸素が発生する。これら4電子の授受を伴う酸素還元反応(以下、「ORR」ということもある。)及び酸素発生反応(以下、「OER」ということもある。)は、速度論的に非常に遅い反応であることから充放電時に大きな過電圧が生じる。そのため、ORR/OERを促進し得る高活性な正極触媒が必要である。
 近年では、正極触媒として、ペロブスカイト(ABO)型遷移金属酸化物の開発が進められている(非特許文献1及び2)。
特開2010-7032号公報 特開2014-49304号公報
J.Suntivich,H.A.Gasteiger,N.Yabuuchi,H.Nakanishi,J.B.Goodenough,Y.S.-Horn,Nat.Chem.,3,546-550(2011). J.Suntivich,K.J.May,H.A.Gasteiger,J.B.Goodenough,Y.S.-Horn,Science,334,1383-1385(2011). F. Ramezanipour et al.,Chem. Mater.,22,6008(2010).
 金属空気電池には、出力特性の更なる向上が求められている。そこで、本発明は、金属空気電池の出力特性を向上させることができる新規な金属空気電池用正極触媒を提供することを主たる目的とする。
 本発明者らは、鋭意検討を重ねた結果、Ca及び/又はSrと、Coと、Siとを含むメリライト型複合酸化物が、金属空気電池用正極触媒として優れたORR活性を示す傾向があり、この複合酸化物を正極触媒に用いることで金属空気電池の出力特性を向上させ得ることを見出し、本発明を完成するに至った。
 本発明の一側面は、下記式(1)で表されるメリライト型複合酸化物を備える、金属空気電池用正極触媒に関する。
Ca2-xSrCoSi  (1)
[式(1)中、xは、0≦x≦2を満たす。]
 上記側面の正極触媒によれば、金属空気電池の出力特性を向上させることができる。すなわち、上記側面の正極触媒を金属空気電池の正極(空気極)に用いることで、放電時の出力特性に優れる金属空気電池を得ることができる。
 上記側面の正極触媒における上記式(1)で表されるメリライト型複合酸化物は、CaCoSiであってよい。この場合、より優れた出力特性が得られる。
 上記側面の正極触媒における上記式(1)で表されるメリライト型複合酸化物の含有量は10質量%以上であってよい。この場合、より優れた出力特性が得られる。
 上記側面の正極触媒は、下記式(2)で表されるブラウンミラーライト型複合酸化物(遷移金属酸化物)を更に備えていてよい。この場合、優れた出力特性と優れた寿命性能とを両立することができる。
CaFe2-zCo  (2)
[式(2)中、zは、0≦z≦1を満たす。]
 上記側面の正極触媒において、上記式(2)で表されるブラウンミラーライト型複合酸化物の含有量に対する上記式(1)で表されるメリライト型複合酸化物の含有量の質量比は0.1~1.0であってよい。この場合、出力特性と寿命性能をより高度に両立することができる。特に、上記式(1)中のxが2未満である場合に寿命性能の向上効果が顕著となり、上記式(1)中のxが0である場合に寿命性能の向上効果が一層顕著となる。
 本発明の他の一側面は、上記側面の金属空気電池用正極触媒を含む触媒層を備える、金属空気電池用正極に関する。
 上記側面の金属空気電池用正極は、拡散層を更に備えてよい。
 本発明の他の一側面は、上記側面の金属空気電池用正極と、負極と、電解質とを備える、金属空気電池に関する。
 本発明によれば、金属空気電池の出力特性を向上させることができる新規な金属空気電池用正極触媒を提供することができる。
実施例の性能評価に用いた実験用セルを示す概略断面図である。
 本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書中にあるパラメータの上限値と下限値とがそれぞれ段階的に記載されている場合、ある段階の上限値と下限値は任意に組み合わせ可能である。また、本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 以下、本発明の好適な実施形態について説明する。ただし、本発明は下記実施形態に何ら限定されるものではない。
<金属空気電池用正極触媒>
 一実施形態の正極触媒は、金属空気電池の正極における酸素反応(特に酸素還元反応)を促進するために用いられる正極触媒である。正極触媒は、下記式(1)で表されるメリライト型複合酸化物(以下、「複合酸化物(1)」ともいう)を備える。
Ca2-xSrCoSi  (1)
[式(1)中、xは、0≦x≦2を満たす。]
 本実施形態の正極触媒は、上記複合酸化物(1)を備えるため、ORR活性に優れる傾向がある。したがって、当該正極触媒によれば、金属空気電池の出力特性を向上させることができる。
 一般に、「メリライト型化合物」とは、AMM’(Aは1~3族の陽イオンであり、M及びM’は2価以上の遷移金属又は非遷移金属である。M及びM’のいずれも四配位サイトに配置される。)で表される化合物群をいう。メリライト型構造中で遷移金属は、全て四配位サイトに配置される。メリライト型複合酸化物は、既存の金属空気電池用正極触媒材料として用いられるペロブスカイト型複合酸化物に比べて、遷移金属イオンに配位する酸化物イオンの数が少ない。このように、酸化物イオンが遷移金属イオンに対し疎に配位するものであるため、メリライト型複合酸化物は、ペロブスカイト型複合酸化物に比べて、触媒反応の起点となる吸着能が高く、これにより優れたOER活性及びORR活性を示す傾向があると考えられる。複合酸化物(1)は、他のメリライト型複合酸化物と比較しても、優れたORR活性を示す傾向がある。
 また、複合酸化物(1)は、優れた化学的安定性を有する。例えば、複合酸化物(1)は、アルカリ浸漬させた場合にアルカリ溶液へ溶解し難い。これは、複合酸化物(1)が、酸化数が+4で非常に安定なSiイオンを含むためである。
 式(1)中のxは、整数であっても小数であってもよい。xは、0≦x≦1であってよく、1≦x≦2であってもよい。xは、出力特性の向上効果により優れる観点では、2より小さくてよく、出力特性の向上効果に更に優れる観点では、1より小さくてよい。
 複合酸化物(1)の具体例としては、CaCoSi、SrCoSi及びCaSrCoSiが挙げられる。これらの中でも、CaCoSiを用いる場合、出力特性の向上効果がより顕著に得られる傾向がある。
 複合酸化物(1)の形状は、特に限定されず、使用する金属空気電池の仕様により適宜選択することができる。複合酸化物(1)の形状は、例えば、粒子状又はバルク状であり、好ましくは粒子状である。
 複合酸化物(1)の粒子径は、0.01μm以上、0.02μm以上、1μm以上又は2μm以上であってよく、50μm以下、20μm以下、3μm以下、1μm以下又は0.5μm以下であってよい。なお、本明細書中の粒子径とは、透過型電子顕微鏡(TEM)によって測定される体積平均粒子径である。
 複合酸化物(1)の比表面積は、触媒活性により優れる観点では、0.1m/g以上、0.5m/g以上、0.7m/g以上又は1m/g以上であってよい。複合酸化物(1)の比表面積は、100m/g以下であってよく、耐久性(例えばアルカリへの溶解しにくさ)の観点では、10m/g以下又は9m/g以下であってよい。なお、本明細書中の比表面積とは、前処理装置(Microtrac BEL製BELPREP-vacII製)を用いて試料に前処理を施した後、その処理後の試料について比表面積/細孔分布測定装置(MicrotracBEL製BELSORP-miniII製)を用いてBET法により測定した値をいう。
 複合酸化物(1)は、1種を単独で、又は、複数種を組み合わせて用いることができる。
 複合酸化物(1)は、セラミックス材料の各種製造方法を用いて製造することができる。製造方法としては、例えば、錯体重合法、水熱合成法等の液相法、焼結法等の固相法などを用いることができる。このうち、液相法によれば、低温焼成でも化学的に均一性の高い粒子を得ることができる。その結果として、小粒径且つ高比表面積で、より高いORR活性を示す正極触媒を得ることができる。
 複合酸化物(1)は、例えばアモルファス金属錯体法により合成することができる。この方法によれば、固相法に比べ焼成温度を低くすることができる。そのため、この方法は、複合酸化物を製造するためのエネルギーコストに優れるものである。この方法では、まず、金属源を、目的生成物中に含まれる金属の化学量論比と同様になるよう純水に添加し溶解させ、クエン酸を加えて均一になるよう撹拌し、原料溶液を得る(溶液調製工程)。次に、原料溶液を加熱濃縮してクエン酸ゲルを製造する(ゲル化工程)。その後、クエン酸ゲルに熱処理を施すことによって有機分を分解させることで、粉体の前駆体を得る(前駆体調製工程)。この前駆体を粉砕し(粉砕工程)、焼成することで(焼成工程)、複合酸化物(1)が得られる。ただし、粉砕工程は任意の工程であり、必ずしも前駆体を粉砕する必要はない。
 溶液調製工程で用いるCa源、Sr源及びCo源としては、特に限定されず、例えばこれらの金属の硝酸塩又は酢酸塩を用いることができる。
 溶液調製工程で用いるSi源としては、特に限定されず、例えばプロピレングリコール修飾シラン、エチレングリコール修飾シラン、ポリエチレングリコール修飾シラン等のグリコール修飾シランを用いることができる。なお、このようなグリコール修飾シランは、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン等のテトラアルコキシシランと、グリコールと、塩酸(触媒)とを混合することにより調製することができる。より詳細な調製方法は、例えば上記特許文献1(特開2010-7032号公報)に開示されているため、ここでの記載は省略する。なお、テトラアルコキシシランとしては、他の金属源との混和性の観点等から、テトラメトキシシランを用いることが好ましい。
 溶液調製工程で用いる原料溶液中のクエン酸添加量は、原料溶液中の全金属イオンに対し、モル比で3~5倍とすることが好ましい。これにより、後述するゲル化工程でゲルを効率的に生成することができる。
 ゲル化工程における加熱濃縮の方法としては、特に限定されない。加熱濃縮には、例えば恒温槽、恒温炉等を用いることができる。加熱濃縮の温度(加熱温度)は、特に限定されない。加熱温度は、80℃以上150℃以下であってよく、90℃以上140℃以下であってもよい。
 前駆体調製工程における熱処理の温度は、有機物が分解する温度であれば特に限定されない。熱処理の温度は、250℃以上600℃以下であってよく、300℃以上550℃以下又は400℃以上500℃以下であってもよい。
 粉砕工程では、従来公知の粉砕装置を用いることができる。粉砕工程は、複合酸化物(1)の粒子径が上述した粒子径となるように実施することができる。
 焼成工程における焼成温度は、特に限定されない。焼成温度は、800℃以上1500℃以下であってよく、850℃以上1400℃以下又は900℃以上1300℃以下であってもよい。
 正極触媒は、複合酸化物(1)以外の他の触媒化合物を更に備えていてもよい。例えば、ORR活性に優れる複合酸化物と、OER活性に優れる複合酸化物とを組み合わせて、ORR活性及びOER活性のいずれにも優れる正極触媒を得ることもできる。
 複合酸化物(1)と組み合わせる触媒化合物としては、例えば、ブラウンミラーライト型複合酸化物(ブラウンミラーライト型構造を有する複合酸化物)、スピネル型複合酸化物(スピネル型構造を有する複合酸化物)等が挙げられる。ブラウンミラーライト型複合酸化物及びスピネル型複合酸化物としては公知の化合物を用いることができる。これらの中でも、下記式(2)で表されるブラウンミラーライト型複合酸化物(以下、「複合酸化物(2)」ともいう)を用いる場合、優れた出力特性と優れた寿命性能を両立することができる。
CaFe2-zCo  (2)
[式(2)中、zは、0≦z≦1を満たす。]
 式(2)中のzは、整数であっても小数であってもよい。zは、上記複合酸化物(1)との組み合わせによって出力特性と寿命性能をより高度に両立できる観点では、0より大きくてよい。
 複合酸化物(2)の具体例としては、CaFeCoO及びCaFeが挙げられる。これらの中でも、CaFeCoOを用いる場合、出力特性の向上効果と寿命性能の向上効果がより顕著に得られる傾向がある。
 複合酸化物(2)の形状は、特に限定されず、使用する金属空気電池の仕様により適宜選択することができる。複合酸化物(2)の形状は、例えば、粒子状又はバルク状であり、好ましくは粒子状である。
 複合酸化物(2)の粒子径は、0.01μm以上、0.02μm以上、1μm以上又は2μm以上であってよく、50μm以下、20μm以下、3μm以下、1μm以下又は0.5μm以下であってよい。
 複合酸化物(2)の比表面積は、触媒活性により優れる観点では、0.1m/g以上又は0.5m/g以上、0.7m/g以上又は1m/g以上であってよい。複合酸化物(2)の比表面積は、100m/g以下であってよく、耐久性(例えばアルカリへの溶解しにくさ)の観点では、10m/g以下又は9m/g以下であってよい。
 複合酸化物(2)は、1種を単独で、又は、複数種を組み合わせて用いることができる。
 複合酸化物(2)の製造方法としては、固相反応法(例えば、非特許文献3等に記載の方法)により合成可能であり、液相反応法により合成することも可能である。例えば、まず、Ca塩(例えば、Ca(NO)、Fe塩(例えば、Fe(NO・9HO)及びCo塩(例えば、Co(NO・6HO)と、ゲル化剤(例えば、クエン酸、エチレンジアミン四酢酸、グリシン等)とを、溶媒として、水(蒸留水又はイオン交換水)等を用いて混合する。得られた混合物を、例えば、50~90℃に加熱して溶媒を除去することでゲル化させる。このゲル化物を、例えば、空気中、300~500℃(例えば、450℃)で10分~6時間(例えば、1時間)仮焼成して前駆体を合成する。次にこの前駆体を、例えば、大気中、600~800℃で1~24時間焼成することで、目的物である複合酸化物(2)(例えばCaFeCoO)を合成することができる。焼成条件は、例えば、600℃で所定時間(1~12時間)焼成した後、温度を上げて、例えば、800℃で所定時間(6~12時間)焼成する条件に変更することもできる。液相反応法によれば、固相反応法よりも低温での合成が可能であり、より小粒径且つ高比表面積の粒子として複合酸化物(2)(例えばCaFeCoO)を得ることができる。
 正極触媒中の複合酸化物(1)の含有量は、出力特性により一層優れる観点から、正極触媒の全質量を基準として、10質量%以上、20質量%以上、30質量%以上、40質量%以上、50質量%以上又は65質量%以上であってよい。正極触媒中の複合酸化物(1)の含有量は、寿命特性を向上させることができる他の触媒化合物との組み合わせにより、出力特性と寿命特性とを両立しやすくなる観点から、正極触媒の全質量を基準として、90質量%以下、80質量%以下、65質量%以下、50質量%以下、40質量%以下又は30質量%以下であってよい。正極触媒中の複合酸化物(1)の含有量は、正極触媒の全質量を基準として、100質量%であってもよい。
 正極触媒中の複合酸化物(2)の含有量は、寿命特性により優れる観点から、正極触媒の全質量を基準として、10質量%以上、20質量%以上、35質量%以上、50質量%以上、60質量%以上又は70質量%以上であってよい。正極触媒中の複合酸化物(2)の含有量は、出力特性と寿命特性とを両立しやすくなる観点から、正極触媒の全質量を基準として、90質量%以下、80質量%以下、70質量%以下、60質量%以下、50質量%以下又は35質量%以下であってよい。
 複合酸化物(2)の含有量に対する複合酸化物(1)の含有量の質量比は、出力特性と寿命性能をより高度に両立する観点では、0.1以上、0.3以上、0.5以上、0.75以上、1.0以上、1.5以上又は2.0以上であってよい。複合酸化物(2)の含有量に対する複合酸化物(1)の含有量の質量比は、出力特性と寿命性能をより高度に両立する観点では、5.0以下、3.0以下、2.0以下、1.0以下、0.75以下又は0.5以下であってよい。これらの観点から、複合酸化物(2)の含有量に対する複合酸化物(1)の含有量の質量比は、0.1~5.0、0.1~3.0、0.1~2.0、0.1~1.0、0.1~0.75、0.3~3.0、0.3~2.0、0.3~1.0、0.5~3.0、0.5~2.0、0.75~3.0、0.75~2.0、1.0~3.0、1.0~2.0、1.5~3.0、2.0~3.0等であってよい。特に、上記式(1)中のxが2未満である場合には、上記質量比が0.1~1.0であると、寿命性能の向上効果が顕著となる。また、上記式(1)中のxが0である場合(すなわち、複合酸化物(1)がCaCoSiである場合)には、上記質量比が0.1~1.0であると、寿命性能の向上効果が一層顕著となる。
 以上説明した正極触媒は、公知の金属空気電池に用いられる空気極に広く適用可能であり、例えば、車載用水系空気電池向けのバイファンクショナル空気極への適用が考えられる。
<空気極及び金属空気電池>
 以下、上記実施形態の正極触媒が用いられる金属空気電池用正極(空気極)及び当該正極を備える金属空気電池の一例について説明する。
 金属空気電池は、空気極(正極)と、負極と、電解質と、を少なくとも備える。金属空気電池では、電解質が少なくとも空気極と負極との間に配置されることで、空気極と負極との間のイオン伝導が行われる。金属空気電池は、空気極(正極)と、負極と、電解質と、を少なくとも備える一つのセル(単電池)によって構成されていてもよく、複数のセルで構成されていてもよい。
 金属空気電池は、空気極と負極との間に短絡抑制のためのセパレータを更に備えてよい。セパレータは必須の構成要素ではない。
 空気極、負極、電解質及びセパレータは筐体(電池ケース)に収容されていてよい。筐体の形状としては、具体的にはコイン型、平板型、円筒型、ラミネート型等を挙げることができる。筐体は、大気開放型の電池ケースであってよく、密閉型の電池ケースであってもよい。大気開放型の電池ケースは、少なくとも空気極が充分に大気と接触可能な構造を有する電池ケースである。一方、筐体が密閉型電池ケースである場合は、密閉型電池ケースに、気体(空気)の導入管及び排気管を設けることが好ましい。この場合、導入及び排気する気体は、酸素濃度が高いことが好ましく、純酸素であることがより好ましい。また、放電時には酸素濃度を高くし、充電時には酸素濃度を低くすることが好ましい。
 金属空気電池は、例えば、筐体内に空気極を配置した後、電解質を筐体内に注入し、負極及びセパレータを電解質に浸すことで得ることができる。
 以下、金属空気電池の各構成要素について説明する。
(空気極)
 空気極は、集電体(空気極集電体)と、当該集電体に設けられた触媒層及び拡散層(ガス拡散層)と、を備える。ただし、拡散層は必須の構成要素ではない。
 空気極集電体、触媒層及び拡散層の配置は特に限定されないが、典型的には、拡散層が外気側となり、触媒層が電解質側となるように配置される。また、空気極集電体は、最も外気側となるように(すなわち、拡散層の触媒層とは反対側)に配置されてよく、触媒層と拡散層との間に配置されてもよい。
 空気極集電体は、例えば、ステンレス鋼、銅、ニッケル等の導電性を有する金属材料で構成される。集電体の形状は、特に限定されず、例えば、メッシュ状である。空気極集電体にはリード(空気極リード)が接続されている。空気極リードの先端には空気極端子(正極端子)が設けられている。
 触媒層は、上記実施形態の正極触媒を含む。触媒層は、導電性材料を更に含んでいてよい。触媒層中において正極触媒及び導電性材料は均一に分散されていることが好ましい。触媒層中では、正極触媒が、導電性材料に担持されていてもよい。
 触媒層中の正極触媒の含有量は、寿命特性と入出力特性のバランスがより良好となる観点から、触媒層の全質量を基準として、好ましくは20質量%以上であり、より好ましくは40質量%以上であり、更に好ましくは60質量%以上である。触媒層中の正極触媒の含有量は、寿命特性と入出力特性のバランスがより良好となる観点から、触媒層の全質量を基準として、好ましくは90質量%以下であり、より好ましくは80質量%以下であり、更に好ましくは70質量%以下である。本実施形態では、複合酸化物(1)の含有量が、触媒層の全質量を基準として、上記範囲であってよく、複合酸化物(1)と複合酸化物(2)の含有量の合計が、触媒層の全質量を基準として、上記範囲であってもよい。
 導電性材料としては、例えば、黒鉛、カーボンブラック、ケッチェンブラック等が挙げられる。導電性材料として、黒鉛、カーボンブラック、ケッチェンブラック等を用いる場合には、製造コストを低減しつつ、寿命特性と入出力特性とを高度に両立することができる。
 触媒層中の導電性材料の含有量は、入出力特性がより向上する観点から、触媒層の全質量を基準として、好ましくは30質量%以上であり、より好ましくは50質量%以上であり、更に好ましくは60質量%以上である。触媒層中の導電性材料の含有量は、寿命特性がより向上する観点から、触媒層の全質量を基準として、好ましくは30質量%以下であり、より好ましくは15質量%以下であり、更に好ましくは5質量%以下である。
 触媒層は、正極触媒及び導電性材料以外の他の成分を更に含んでいてよい。他の成分としては、例えば、結着剤等が挙げられる。
 結着剤としては、フッ素系バインダー等が挙げられ、好ましくはポリテトラフルオロエチレン(PTFE)が用いられる。結着剤の含有量は、例えば、触媒層の全質量を基準として、1質量%以上であってよく、30質量%以下であってよい。
 触媒層の厚さは、例えば、0.5μm以上であってよく、500μm以下であってよい。
 拡散層は、導電性を有するとともに、触媒層での反応に使用される酸素ガスを拡散する機能を有する。そのため、空気極が拡散層を備える場合、触媒層への上記ガスの供給効率が向上し、電池特性(例えば入出力特性)が向上する傾向がある。
 拡散層は、例えば導電性材料を含む。導電性材料としては、上述した触媒層に用いられる導電性材料が挙げられる。拡散層における導電性材料の含有量は、例えば、拡散層の全質量を基準として、65質量%以上であってよく、99質量%以下であってよい。
 拡散層は、触媒層に含まれ得る結着剤等の他の成分を更に含んでいてもよい。これらの成分の例及び好ましい態様は、触媒層の場合と同じである。結着剤の含有量は、例えば、拡散層の全質量を基準として、5質量%以上であってよく、35質量%以下であってよい。
 拡散層の厚さは、例えば、0.5μm以上であってよく、500μm以下であってよい。
 触媒層の厚さと拡散層の厚さの合計は、例えば、1μm以上であってよく、1000μm以下であってよい。
 上記空気極は、例えば以下のようにして作製することができる。
 まず、導電性材料と、分散溶媒と、結着剤と、を乳鉢内で混合することで、拡散層形成用組成物(例えばスラリー状組成物)を作製する。分散溶媒としては、例えば、水、エタノール等のアルコールなどが挙げられる。拡散層形成用組成物における導電性材料及び結着剤の含有量は、拡散層における各成分の含有量が上述した範囲内となるように調整してよい。
 拡散層形成用組成物の作製時には、分散剤を更に添加してもよい。分散剤としては、導電性材料に分散安定性を付与し得るものであれば特に限定されず、例えば、オクチルフェノールエトキシレート等の非イオン界面活性剤を使用可能である。オクチルフェノールエトキシレートとしては、Triton X-100が好ましく用いられる。分散剤の添加量は、例えば、導電性材料100質量部に対して、10質量部以上であってよく、60質量部以下であってよい。
 また、正極触媒と、導電性材料と、分散溶媒と、結着剤と、を混合することで、触媒層形成用組成物(例えばインク組成物)を作製する。分散溶媒としては、例えば、水、エタノール等のアルコールなどが挙げられる。触媒層形成用組成物の作製には、正極触媒をそのまま使用してもよいし、担体に担持した状態で使用してもよい。すなわち、担体と、当該担体に担持された正極触媒と、を含む担持触媒を用いてもよい。担持触媒における担体は、上記導電性材料であってよい。
 触媒層形成用組成物における正極触媒、導電性材料及び結着剤の含有量は、触媒層における各成分の含有量が上述した範囲内となるように調整してよい。
 触媒層形成用組成物の作製時には、分散剤を更に添加してもよい。分散剤としては、正極触媒及び/又は導電性材料に分散安定性を付与し得るものであれば特に限定されず、例えば、オクチルフェノールエトキシレート等の非イオン界面活性剤を使用可能である。オクチルフェノールエトキシレートとしては、Triton X-100が好ましく用いられる。分散剤の添加量は、例えば、正極触媒と導電性材料の合計100質量部に対して、5質量部以上であってよく、40質量部以下であってよい。
 次いで、得られた拡散層形成用組成物を延伸して二つに折りたたむ一連の作業を10~40回繰り返す。延伸に用いる手法は一般的な手法を適用可能であり、拡散層形成用組成物を平滑に伸ばせる手法であれば特に限定されない。例えば、アクリル製の円筒で延伸する手法は好適である。次いで、ロールプレスで規定の厚みになるまで圧延した後に裁断し、150~170℃に加熱したホットプレートで1~2時間乾燥する。これにより、拡散層シートが得られる。ここまでで得られた拡散層シートは全体として板状をなしている。
 次いで、得られた拡散層シートに、触媒層形成用組成物を、例えばスプレー法により塗布し、アルゴン等の不活性ガス雰囲気下で加熱処理することで、拡散層と、当該拡散層上に積層された触媒層とを備える空気極用積層体が得られる。加熱処理は、例えば、300~350℃で、10~20分間行う。
 次いで、空気極用積層体に対して、プレス等により空気極集電体を接合することで空気極が得られる。
 空気極の製造方法は上記方法に限定されず、例えば、拡散層形成用組成物及び触媒層形成用組成物をシート状に形成することなく、空気極集電体に充填する方法(例えば特許文献2(特開2014-49304号公報)に記載の方法)により作製することも可能である。
(負極)
 負極には、一般的な金属空気電池の負極を使用可能である。負極は、例えば、集電体(負極集電体)と、当該集電体に設けられた負極活物質層と、を備える。負極集電体にはリード(負極リード)が接続されている。負極リードの先端には負極端子が設けられている。
 負極集電体は、例えば、ステンレス鋼、銅、ニッケル等の導電性を有する金属材料で構成される。集電体の形状は、特に限定されず、例えば、メッシュ状である。
 負極活物質層は、負極活物質を含む。負極活物質は、還元力の高い卑金属(例えば、標準電極電位が水素より卑な金属)を元素として含む金属単体、合金、化合物等が挙げられる。卑金属としては、亜鉛の他に、例えばリチウム(Li)、亜鉛(Zn)及び鉄(Fe)が挙げられる。
(電解質)
 電解質は、特に限定されるものでなく、負極に使用される負極活物質の種類に応じて公知の電解質を使用可能である。電解質の形態も特に限定されず、液体電解質、ゲル電解質、固体電解質等であってよい。具体的には、例えば、水酸化カリウム水溶液が好適に用いられる。電解質における水酸化物イオンの濃度([OH-])は、1~10mol/L以上であることが好ましい。
(セパレータ)
 セパレータの構造及び材料は、空気極と負極との間の金属イオン伝導を阻害せず、且つ、両極間の短絡を抑制し得る構造及び材料であれば特に限定されない。具体的には、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン等のフッ素樹脂などの樹脂材料で構成された多孔質膜又は樹脂不織布が挙げられる。
 以上説明した金属空気電池では、空気極端子及び負極端子を利用して、充放電の際の電流の入力及び出力が行われる。金属空気電池は、上記実施形態の正極触媒を含む空気極を備えるため、優れた出力特性を示し、また、優れた入力特性と優れた寿命特性を示す傾向がある。
 以下、本発明の内容を実施例及び比較例を用いてより詳細に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1~10及び比較例1>
(正極触媒の調製)
[メリライト型複合酸化物の合成]
 表1に示す化学式の目的生成物(メリライト型複合酸化物A1及びA2)における、化学式中の金属イオンの化学両論比と同様の仕込み比で、目的生成物(メリライト型複合酸化物A1及びA2)が1mmolとなるように、以下に示す各金属源を純水に溶解し、クエン酸(ゲル化剤、C、純度98%、和光純薬工業製)を総カチオン量の3倍モル量加えて均一になるよう撹拌し、原料溶液を得た。
  Ca源:Ca(NO・4HO(99.9%、富士フイルム和光純薬株式会社製)
  Sr源:SrNO(純度99.5%、富士フイルム和光純薬株式会社製)
  Co源:Co(CHCOO)・4HO(純度99%、富士フイルム和光純薬株式会社製)
  Si源:fumedコロイド状シリカ(純度99%、富士フイルム和光純薬株式会社製)
 原料溶液を120℃に設定した恒温槽に静置し、加熱濃縮した。流動性を失いゲル状となった過飽和クエン酸ゲルに450℃で熱処理を施し、有機分を分解して粉体の前駆体を得た。このようにして得た前駆体を粉砕し、ボックス炉を用いて大気中1250℃で12時間焼成した。これにより、表1に示すメリライト型複合酸化物A1及びA2をそれぞれ得た。メリライト型複合酸化物A1は、平均粒子径が2.3μmであり、比表面積が3.5m/gであった。メリライト型複合酸化物A2は、平均粒子径が3.1μmであった。
Figure JPOXMLDOC01-appb-T000001
[ブラウンミラーライト型複合酸化物の合成]
 CaFeCoOで表される目的生成物(ブラウンミラーライト型複合酸化物B1)における、化学式中の金属イオンの化学両論比と同様の仕込み比で、目的生成物(ブラウンミラーライト型複合酸化物B1)が1mmolとなるように、以下に示す各金属源を純水に溶解し、クエン酸(ゲル化剤、C、純度98%、和光純薬工業製)を総カチオン量の3倍モル量加えて均一になるよう撹拌し、原料溶液を得た。
  Ca源:Ca(NO・4HO(99.9%、富士フイルム和光純薬株式会社製)
  Fe源:Fe(NO・9HO(純度99.9%、富士フイルム和光純薬株式会社製)
  Co源:Co(CHCOO)・4HO(純度99%、富士フイルム和光純薬株式会社製)
 原料溶液を120℃に設定した恒温槽に静置し、加熱濃縮した。流動性を失いゲル状となった過飽和クエン酸ゲルに450℃で熱処理を施し、有機分を分解して粉体の前駆体を得た。このようにして得た前駆体を粉砕し、ボックス炉を用いて大気中800℃で12時間焼成した。これにより、CaFeCoOで表されるブラウンミラーライト型複合酸化物B1を得た。ブラウンミラーライト型複合酸化物B1は、平均粒子径が1.3μmであり、比表面積が4.2m/gであった。
[正極触媒の調製]
 上記で得られたメリライト型複合酸化物A1を実施例1の金属空気電池用正極触媒とした。また、表2に示す質量比(A1/B1)でメリライト型複合酸化物A1とブラウンミラーライト型複合酸化物B1とを組み合わせて、実施例2~6の金属空気電池用正極触媒とした。また、上記で得られたメリライト型複合酸化物A2を実施例7の金属空気電池用正極触媒とした。また、表3に示す質量比(A2/B1)でメリライト型複合酸化物A2とブラウンミラーライト型複合酸化物B1とを組み合わせて、実施例8~10の金属空気電池用正極触媒とした。また、上記で得られたブラウンミラーライト型複合酸化物B1を比較例1の金属空気電池用正極触媒とした。
(金属空気電池の作製)
 正極触媒として、上記で得られた実施例1~10及び比較例1の金属空気電池用正極触媒をそれぞれ用いて、以下の方法で金属空気電池を作製した。
 まず、カーボン(東海カーボン社製、商品名:TOKABLACK#3855)3.3g、PTFEディスパージョン(固形分濃度:60質量%、三井・デュポン フロロケミカル社製、商品名:PTFE31-JR)0.909mL、Triton X-100(オクチルフェノールエトキシレート)1.33mL及び水4.0mLを乳鉢内で混合して、拡散層形成用組成物である合剤スラリーを作製した。得られた合剤スラリーを、厚さ0.5mmまで延伸して二つに折りたたむ一連の作業を40回繰り返した。次いで、ロールプレスで厚さ0.35mmになるまで圧延した後に裁断し、160℃に加熱したホットプレートで1時間乾燥することで拡散層シートを得た。
 カーボン(東海カーボン社製、商品名:TOKABLACK#3855)0.132g、正極触媒0.264g、PTFEディスパージョン(固形分濃度:60質量%、三井・デュポン フロロケミカル社製、商品名:PTFE31-JR)0.110mL及びTriton X-100(オクチルフェノールエトキシレート)0.089mL、プロパノール0.381mL及び水2.727mLを混合して触媒層形成用組成物であるインク(インク状の評価用試料)を調製した。
 上記で得られた拡散層シートに、スプレー法によって上記で得られたインクを塗布し、アルゴン下335℃で13分間焼成して空気極用積層体を得た。得られた積層体にニッケルメッシュを圧着させ、空気極を得た。
 得られた空気極を用いて、以下の方法で、図1に示す実験用セルを作製した。
 まず、開口(6)を設けたアクリル製の筐体(5)に、空気極(1)を、開口(6)を塞ぐように触媒層(11)側から接着した。次いで、電解質(4)として8mol/L水酸化カリウム水溶液を上記筐体(5)に注入した後、対極(負極)(2)として白金板を、参照極(3)として水銀―酸化水銀電極を上記筐体(5)内の電解質(4)に浸し、実験用セル(10)を作製した。参照極(3)は空気極(1)と負極(2)との間に配置した。なお、図1中の(12)は拡散層を示し、(13)は集電体(ニッケルメッシュ)を示す。
(金属空気電池の評価)
 上記で作製したセルの出力特性及び寿命特性を以下に示す方法で評価した。評価結果は表2及び表3に示す。
[出力特性の評価]
 まず、40℃の環境下において、OER電流値を+40mA/cmとし、ORR電流値を-40mA/cmとし、OERとORRを各1時間とし、OERとORRの間の休止時間を3分間として、OERとORRの充放電サイクルを50回繰り返した。その後、40mA/cmの定電流密度によるOER又はORRを1分間実施し、1分経過時点での空気極電位をORR電位とした。空気極電位は空気極と参照極間の電位差で規定した。出力特性の評価は、上記ORR電位を比較することにより行った。
[寿命特性の評価]
 まず、40℃の環境下において、OER電流値を+40mA/cmとし、ORR電流値を-40mA/cmとし、OERとORRを各1時間とし、OERとORRの間の休止時間を3分間として、OERとORRの充放電サイクルを繰り返した。OER電位が0.8V以上又はORR電位が-0.4V以下になった時点を、電池のサイクル寿命とした。寿命特性の評価は、上記サイクル寿命までのサイクル数を比較することにより行った。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 

Claims (8)

  1.  下記式(1)で表されるメリライト型複合酸化物を備える、金属空気電池用正極触媒。
    Ca2-xSrCoSi  (1)
    [式(1)中、xは、0≦x≦2を満たす。]
  2.  前記式(1)で表されるメリライト型複合酸化物が、CaCoSiである、請求項1に記載の金属空気電池用正極触媒。
  3.  前記式(1)で表されるメリライト型複合酸化物の含有量が10質量%以上である、請求項1又は2に記載の金属空気電池用正極触媒。
  4.  下記式(2)で表されるブラウンミラーライト型複合酸化物を更に備える、請求項1~3のいずれか一項に記載の金属空気電池用正極触媒。
    CaFe2-zCo  (2)
    [式(2)中、zは、0≦z≦1を満たす。]
  5.  前記式(2)で表されるブラウンミラーライト型複合酸化物の含有量に対する前記式(1)で表されるメリライト型複合酸化物の含有量の質量比が0.1~1.0である、請求項4に記載の金属空気電池用正極触媒。
  6.  請求項1~5のいずれか一項に記載の金属空気電池用正極触媒を含む触媒層を備える、金属空気電池用正極。
  7.  拡散層を更に備える、請求項6に記載の金属空気電池用正極。
  8.  請求項6又は7に記載の金属空気電池用正極と、負極と、電解質とを備える、金属空気電池。
PCT/JP2021/044338 2020-12-16 2021-12-02 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池 WO2022131010A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-208496 2020-12-16
JP2020208496A JP2024015461A (ja) 2020-12-16 2020-12-16 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池

Publications (1)

Publication Number Publication Date
WO2022131010A1 true WO2022131010A1 (ja) 2022-06-23

Family

ID=82057610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044338 WO2022131010A1 (ja) 2020-12-16 2021-12-02 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池

Country Status (2)

Country Link
JP (1) JP2024015461A (ja)
WO (1) WO2022131010A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183593A1 (en) * 2011-12-27 2013-07-18 Samsung Electronics Co., Ltd Solid oxide, solid oxide electrode, solid oxide fuel cell including the same, and methods of preparing the same
JP2019067597A (ja) * 2017-09-29 2019-04-25 学校法人神奈川大学 金属空気電池用正極触媒及び金属空気電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130183593A1 (en) * 2011-12-27 2013-07-18 Samsung Electronics Co., Ltd Solid oxide, solid oxide electrode, solid oxide fuel cell including the same, and methods of preparing the same
JP2019067597A (ja) * 2017-09-29 2019-04-25 学校法人神奈川大学 金属空気電池用正極触媒及び金属空気電池

Also Published As

Publication number Publication date
JP2024015461A (ja) 2024-02-02

Similar Documents

Publication Publication Date Title
Yan et al. Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries
KR101550956B1 (ko) 금속 도핑된 양극 활물질
JP6858992B2 (ja) メリライト型複合酸化物
JP2011175929A (ja) リチウム空気二次電池及びその空気極作製方法
US20200259187A1 (en) Positive-electrode catalyst for metal-air battery, and metal-air battery
Yang et al. Manipulating the Li–S reaction kinetics via the V 8 C 7/phosphorus defect-integrated carbon promoter
Ding et al. Co3O4/Co nano-heterostructures embedded in N-doped carbon for lithium-O2 batteries
KR101671964B1 (ko) 이산화루테늄/이산화망간/탄소 복합체를 이용한 리튬/공기 이차전지 공기전극의 제조방법 및 이에 따라 제조되는 공기전극.
KR20190017097A (ko) 금속공기전지용 양극재의 저온 합성 방법 및 이에 의해 제조되는 금속공기전지
Wei et al. Recent progress in electrochemical application of Magnéli phase Ti4O7-based materials: a review
JP2018152298A (ja) 金属空気電池用正極触媒及び金属空気電池
Wang et al. The introduction of oxygen vacancy defects in Al-doped transition metal silicates derived from fly ash for high-performance aqueous potassium ion capacitor
CN100499225C (zh) 锂电池磷酸铁锂复合正极材料的制备方法
WO2022131010A1 (ja) 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池
WO2019093441A1 (ja) 非晶質遷移金属酸化物及びその利用
CN108023079B (zh) 一种混合过渡金属硼酸盐负极材料及其制备方法
WO2020204005A1 (ja) 空気極用触媒、空気極及び金属空気二次電池
Hilal et al. A dual‐doping strategy of LaCoO3 for optimized oxygen evolution reaction toward zinc‐air batteries application
Zhang et al. Realizing extraordinary bifunctional electrocatalytic performance of layered perovskite through Ba-site Gd doping toward oxygen reduction and evolution reactions
JP2015069960A (ja) リチウム空気二次電池
JP6310413B2 (ja) リチウム空気二次電池、その空気極用触媒の製造方法、並びにリチウム空気二次電池の製造方法
JP7327798B2 (ja) 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池
WO2022190322A1 (ja) 金属空気電池用正極触媒、金属空気電池用正極及び金属空気電池
CN110611079B (zh) 一种钛锰双金属磷酸钠@碳复合材料及其制备和在钠离子电池中的应用
Hao et al. Pliable electrode of porous graphene-encapsulated FeNiSe 4 binary-metal selenide nanorods as a binder-free anode for lithium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906373

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP