WO2022130800A1 - ウェーハの研磨方法およびウェーハの製造方法 - Google Patents

ウェーハの研磨方法およびウェーハの製造方法 Download PDF

Info

Publication number
WO2022130800A1
WO2022130800A1 PCT/JP2021/039884 JP2021039884W WO2022130800A1 WO 2022130800 A1 WO2022130800 A1 WO 2022130800A1 JP 2021039884 W JP2021039884 W JP 2021039884W WO 2022130800 A1 WO2022130800 A1 WO 2022130800A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
wafer
polishing rate
rate
ratio
Prior art date
Application number
PCT/JP2021/039884
Other languages
English (en)
French (fr)
Inventor
志豪 林
和成 高石
Original Assignee
株式会社Sumco
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Sumco filed Critical 株式会社Sumco
Priority to KR1020237018209A priority Critical patent/KR20230096088A/ko
Priority to CN202180085408.1A priority patent/CN116615305A/zh
Priority to US18/257,710 priority patent/US20240055264A1/en
Publication of WO2022130800A1 publication Critical patent/WO2022130800A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Definitions

  • the present disclosure relates to a wafer polishing method and a wafer manufacturing method, and more particularly to a wafer polishing method and a wafer manufacturing method in which the flatness of the wafer is controlled based on the magnitude of the mechanical polishing rate with respect to the chemical polishing rate. ..
  • Patent Document 1 a silicon wafer is held in a carrier plate, the wafer is sandwiched between upper and lower platens to which a polishing cloth is attached, and then a polishing liquid is placed between the polishing cloth and the surface of the silicon wafer.
  • the carrier plate is revolved and rotated by the sun gear and the internal gear, and the abrasive grains (for example, silica: SiO 2 ) contained in the polishing liquid remain on the surface of the polishing cloth, so that both sides of the silicon wafer are polished.
  • a method for polishing both sides of a silicon wafer is disclosed.
  • polishing to a state where the thickness of the wafer after polishing is equal to or less than the thickness of the carrier plate is referred to as "fixed size polishing".
  • polishing in which the thickness of the wafer after polishing becomes thicker than the thickness of the carrier plate is called “non-standard size polishing”.
  • the shape of the wafer after double-sided polishing is a "concave shape" in which the central portion is thin and the outer peripheral portion is thick in the state of non-standard size polishing.
  • the concave shape of the "concave shape” tends to be excessively dented, and the carrier plate is heavily worn, which causes a problem that the polishing time is long.
  • the gist structure of the present invention is as follows.
  • the method of polishing the wafer is The first correlation, which is the correlation between the alkali concentration and the chemical polishing rate, is obtained by using a plurality of polishing solutions having different alkali concentrations, and the abrasive grain concentration is obtained by using a plurality of polishing solutions having different abrasive grain concentrations.
  • the process of finding the second correlation which is the correlation between the machine polishing rate and the machine polishing rate.
  • a step of calculating the mechanical polishing rate / chemical polishing rate which is the ratio of the mechanical polishing rate to the chemical polishing rate of the plurality of polishing liquids, based on the first correlation and the second correlation.
  • the wafer manufacturing method is as follows: after slicing a single crystal ingot grown by the Czochralski method to obtain a pre-polished wafer, the obtained pre-polished wafer is subjected to the above-mentioned wafer polishing method. Apply polishing treatment.
  • the present invention it is possible to provide a wafer polishing method and a wafer manufacturing method that can effectively shorten the test time and at the same time accurately control the shape of the wafer.
  • terms such as “about” and “approximately” are typically within +/- 20%, preferably within +/- 10%, more preferably within +/- 5% of a given value or range. Within, or within +/- 3%, or within +/- 2%, or within +/- 1%, or within +/- 0.5%.
  • the predetermined number shown here is an approximate number, that is, even if there is no description of "about” or “about”, the meaning of "about” or “about” may be included.
  • FIGS. 1A and 1B are a schematic perspective view and a cross-sectional view of a main part of the double-sided polishing apparatus 100 used for polishing a wafer.
  • the double-sided polishing apparatus 100 as shown in FIGS. 1A and 1B can be used, but the present invention is not limited to this, and in other embodiments, one side is used. Polishing can also be performed using a polishing device.
  • FIG. 1A is a schematic perspective view showing the configuration of the double-sided polishing apparatus according to the present embodiment
  • FIG. 1B is a cross-sectional view of a main part in FIG. 1A
  • the double-sided polishing apparatus 100 includes an upper surface plate 10, a lower surface plate 20, a sun gear 40, an inner gear 50, and a plurality of carrier plates 30.
  • a single or a plurality of silicon wafers WF are housed in the carrier plate 30.
  • the size of the double-sided polishing device is represented by the diameter of the carrier plate 30, and when the carrier diameter is about 28 inches, it is called Type_28B, and when the carrier diameter is about 20 inches, it is called Type_20B.
  • Type_28B the carrier diameter is about 28 inches
  • Type_20B when the carrier diameter is about 20 inches
  • three wafers (for example, silicon wafers) WF are configured to be housed in one carrier plate 30.
  • the double-sided polishing apparatus 100 of Type_28B when the diameter of the silicon wafer WF is 300 mm, it is usual to store three silicon wafers WF in one carrier plate 30.
  • the upper surface plate 10 is configured to include an elevating mechanism 110 that brings the upper surface plate 10 closer to and away from the lower surface plate 20.
  • the upper surface plate 10 and the lower surface plate 20 are formed in a substantially disk shape, and as shown in FIG. 1B, the lower surface of the upper surface plate 10 comes into contact with the upper surface of the silicon wafer WF when polishing the silicon wafer WF.
  • the upper polishing pad 11 is provided.
  • the upper surface plate 10 is provided with a plurality of supply holes (not shown) for supplying the polishing liquid 60 and rinsing with pure water at the time of polishing, and the polishing liquid 60 and the pure water are supplied to the upper surface plate 10. It can be supplied between the lower surface plate 20 and the lower surface plate 20.
  • the lower surface plate 20 is a disk-shaped body rotatably provided on the pedestal of the double-sided polishing device 100, and the lower polishing pad 21 is provided on the surface of the lower surface plate 20 facing the upper surface plate 10. Then, when polishing, the lower polishing pad 21 comes into contact with the lower surface of the silicon wafer WF.
  • the sun gear 40 is provided at substantially the center of the disk of the lower platen 20 so as to rotate independently of the lower platen 20, and a tooth portion that meshes with the carrier plate 30 is formed on the outer peripheral side surface thereof.
  • the inner null gear 50 is composed of a ring-shaped body surrounding the lower platen 20, and a tooth portion that meshes with the carrier plate 30 is formed on the inner surface of the ring.
  • the rotation shafts of the drive motors are coupled to the rotation centers of the upper surface plate 10, the lower surface plate 20, the sun gear 40, and the inner gear 50, and each drive motor rotates independently. ..
  • the carrier plate 30 is made of a disk-shaped body, and a tooth portion that meshes with the sun gear 40 and the inner null gear 50 is formed on the outer peripheral side surface thereof. Further, a single or a plurality of wafer holding holes 31 are formed inside the disk-shaped body, and the silicon wafer WF is housed inside the wafer holding holes 31.
  • the double-sided polishing device 100 is a planetary gear type double-sided polishing device capable of causing the carrier plate 30 to perform planetary motions of revolution motion and rotation motion by rotating the sun gear 40 and the inner gear 50.
  • a carrier plate 30 is set on the lower surface plate 20
  • the silicon wafer WF is stored in the wafer holding hole 31, and then the elevating mechanism 110.
  • each drive motor is supplied with the polishing liquid 60 from the supply hole formed in the upper surface plate 10.
  • the silicon wafer WF is double-sided polished by driving the silicon wafer.
  • the polishing liquid 60 used in the polishing step usually contains alkaline chemicals and abrasive grains, and is a combined action of the chemical polishing action (alkali etching action) by the alkaline chemicals and the mechanical polishing action of the abrasive grains.
  • alkali etching action chemical polishing action
  • the polishing liquid 60 used in the polishing step usually contains alkaline chemicals and abrasive grains, and is a combined action of the chemical polishing action (alkali etching action) by the alkaline chemicals and the mechanical polishing action of the abrasive grains.
  • the hydroxide ion (OH ⁇ ) in the alkaline chemical product chemically acts on the surface of the silicon wafer to form a reaction layer, the silicon atom is removed from the chemical reaction layer by the chemical etching action. Therefore, the effect of the chemical polishing action of this polishing liquid on the surface of the silicon wafer is determined by the hydroxide ion concentration and the heat distribution during polishing.
  • the mechanical polishing action is a mechanism in which after the abrasive grains come into contact with the chemical reaction layer on the surface of the silicon wafer, some of the silicon atoms are aggregated on the silica surface and removed.
  • the allowance amount of the inner peripheral portion and the outer peripheral portion of the silicon wafer is different, and generally, the allowance amount of the outer peripheral portion is larger.
  • alkaline chemicals include inorganic alkaline compounds such as potassium hydroxide, sodium hydroxide, potassium hydrogencarbonate, potassium carbonate, sodium hydrogencarbonate, sodium carbonate and the like; ammonium.
  • Ammine salts such as tetramethylammonium hydroxide, ammonium hydrogencarbonate, ammonium carbonate and the like; amines such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl).
  • Ethanolamine N- ( ⁇ -aminoethyl) ethanolamine, AEEA), hexamethylenediamine (HMDA), diethylenetriamine (diethylenetriamine, DETA), triethylenetetraamine, triethylenetetraamine (triethylenet) ), Piperazine hexahydrate, 1- (2-aminoethyl) piperazine (1- (2-aminoethyl) piperazine, AEPIZ), N-methylpiperazine (MPIZ) and the like.
  • the material or property of the abrasive grains is not particularly limited, and may be appropriately selected depending on the purpose of use, the state of use, and the like.
  • the abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • Specific examples of the inorganic particles include oxide particles such as silica particles, aluminum oxide particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and red oxidation.
  • organic particles include polymethylmethacrylate (PMMA) particles, poly (meth) acrylic acid, polyacrylonitrile, and the like.
  • PMMA polymethylmethacrylate
  • silica particles include colloidal silica, fumed silica, and precipitated silica. The silica particles may be used alone or in combination of two or more.
  • the specific surface area (BET) diameter of the abrasive grains (hereinafter, simply referred to as "BET diameter") is not particularly limited, and is preferably 5 nm or more, and more preferably 10 nm or more from the viewpoint of polishing efficiency.
  • the BET diameter is preferably, for example, 15 nm or more, more preferably 20 nm or more, and more than 20 nm from the viewpoint of obtaining a better polishing effect, for example, exhibiting effects such as haze reduction or defect removal. Is the most preferable.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • non-spherical particles include peanut-shaped, cocoon-shaped, konpeito-shaped, rugby ball-shaped and the like.
  • abrasive grains in which a large number of particles are peanut-shaped.
  • the wafer polishing method according to the first embodiment of the present disclosure includes the following steps S110 to S140.
  • step S110 a plurality of polishing liquids having different alkali concentrations are used to obtain a first correlation which is a correlation between the alkali concentration and the chemical polishing rate, and a plurality of polishing liquids having different abrasive grain concentrations are used.
  • the second correlation which is the correlation between the abrasive grain concentration and the mechanical polishing rate.
  • a plurality of polishing solutions having different alkali concentrations are used to obtain a polishing rate standard curve showing the relationship between the alkali concentration and the chemical polishing rate, and a plurality of polishing solutions having different abrasive grain concentrations.
  • polishing rate standard curve showing the relationship between the abrasive grain concentration and the mechanical polishing rate.
  • polishing liquid achieves chemical mechanical polishing by the combined action of both chemical polishing action and mechanical polishing action, it is necessary to obtain the independent acting force of each of the chemical polishing action and the mechanical polishing action.
  • polishing is performed using a polishing liquid containing only alkaline chemicals and not containing abrasive grains at different alkaline concentrations, and the respective polishing rates at different alkaline concentrations are obtained.
  • polishing is performed using a polishing solution containing a fixed concentration of alkaline chemicals and containing abrasive grains at different abrasive grain concentrations, and the respective polishing rates at different abrasive grain concentrations are obtained. ..
  • polishing rate k (polishing coefficient) x p (pressure) x V (relative velocity), P (pressure) and V. (Relative velocity) is affected by the polishing equipment. Therefore, under the condition that P (pressure) and V (relative velocity) are constant, the polishing rate calculation formula of the polishing liquid is as shown in the following (formula 1).
  • Equation 1 f ([abrasive grain], [OH- ] ) ⁇ f ([abrasive grain], 0) + f (0, [OH- ] )
  • f ([abrasive grain], [OH- ] ) represents the polishing rate
  • f ([abrasive grain], 0) represents the mechanical polishing rate
  • f (0, [OH- ] ) represents the chemical polishing rate.
  • polishing is performed using a polishing solution containing a fixed concentration of alkaline chemicals and containing abrasive grains at different abrasive grain concentrations, and after obtaining the respective polishing rates, the following (Equation 3) is performed by quadratic linear regression. ) Can be obtained.
  • Equation 3) f ([abrasive grain], 0) a2 * Y 2 + b2 * Y + C2
  • Y represents the abrasive grain concentration
  • a2, b2 and C2 are regression coefficients.
  • C2 represents f (0, [OH ⁇ ]).
  • polishing rate standard curve is calculated by quadratic linear regression, but the present invention is not limited to this, that is, if the person has ordinary knowledge in the art, it is based on the ordinary knowledge in the art. It must be understood that a more ideal polishing rate standard curve can be obtained by selecting a preferred calculation method and performing curve fitting. Examples include polynomial regression such as cubic linear regression, S function, trigonometric function and the like.
  • step S120 mechanical polishing, which is the ratio of the mechanical polishing rate of each polishing liquid to the chemical polishing rate, based on the first correlation and the second correlation (in this example, each polishing rate standard curve).
  • the ratio of rate / chemical polishing rate (hereinafter, also referred to as M / C ratio) is calculated.
  • the formula is as shown in the following (formula 4).
  • Equation 4 The index of the magnitude of the mechanical polishing rate with respect to the chemical polishing rate is not limited to the above M / C ratio, but is an index of flatness described later such as M / (C + c) (c is a constant) and M 2 / C. It can be used as various indicators that can be used to determine the relationship with.
  • an index of wafer flatness obtained after polishing with each polishing liquid for example, global back surface-reflected ideal plane / Range, GBIR
  • GBIR global back surface-reflected ideal plane / Range
  • ESFQR ESFQR
  • the lower limit of the M / C ratio is preferably 0.70 or more from the viewpoint of bringing the global shape of the wafer closer to the ideal shape. , 0.80 or more is more preferable, 0.85 or more is further preferable, 0.90 or more is more preferable, 0.95 or more is more preferable, and 1.15 or more is the most preferable. Preferably, 1.20 or more is most preferable.
  • the upper limit of the M / C ratio is preferably 1.60 or less, more preferably 1.55 or less. It is more preferably 50 or less, further preferably 1.45 or less, and even more preferably 1.40 or less.
  • the lower limit of the M / C ratio is 1.00 or more from the viewpoint of bringing the outer peripheral flatness of the wafer closer to slight sagging. It is preferably 1.05 or more, more preferably 1.10 or more, further preferably 1.15 or more, further preferably 1.20 or more, and even more preferably 1.25 or more. Is most preferable, and 1.30 or more is most preferable.
  • the upper limit of the M / C ratio is not particularly limited, but is preferably 1.70 or less, more preferably 1.65 or less, still more preferably 1.60 or less, and 1.55. It is more preferably less than or equal to, and even more preferably 1.50 or less.
  • GBIR is a backside-based Global Flatness index that can be measured using a wafer flatness measuring instrument, with the backside of the wafer as the reference plane. It is defined as the deviation between the maximum thickness and the minimum thickness of the wafer surface with respect to its reference plane.
  • ESFQR is measured using a wafer flatness measuring device, and it is possible to evaluate the ESFQR of the edge of a silicon wafer that has been double-sided polished.
  • ESFQR is an evaluation index of the flatness of an edge whose flatness tends to decrease (site flatness), and represents the magnitude of the amount of sagging (edge roll off).
  • ESFQR is defined as the difference between the maximum value and the minimum value of the deviation from the reference surface (Site Best Surface), and this reference surface further divides the annular region along the edge of the wafer evenly in the circumferential direction.
  • the unit region (site) to be obtained is targeted, and is obtained by the least squares method based on the thickness distribution in the site.
  • the above-mentioned wafer flatness index is not limited to GBIR and ESFQR, and may be, for example, an evaluation index for evaluating the flatness of other semiconductors.
  • Backshurface-refracted Ideal plane / Range) and the like can be mentioned.
  • a first target polishing liquid that satisfies the specific range of the M / C ratio is selected.
  • the first correlation and the first correlation and Based on the second correlation in this example, each polishing rate standard curve
  • the abrasive grain concentration and the [OH ⁇ ] concentration corresponding to the specific M / C ratio are determined. For example, by adjusting the abrasive grain concentration and the [OH ⁇ ] concentration in the first target polishing liquid, the M / C ratio of the first target polishing liquid is kept within the above-mentioned specific range.
  • the wafer is polished using the first target polishing liquid.
  • the wafer polishing can be sizing or non-sizing as required.
  • the M / C ratio of the first target polishing liquid is within a specific range, the GBIR and ESFQR of the polished wafer can be easily kept within the ideal values, and the wafer can be made into the target shape.
  • the ideal shape of a wafer is a shape in which the global shape is slightly concave and the outer peripheral shape is slightly sagging, but the present invention is not limited to this, that is, it is necessary depending on the desired wafer shape.
  • a specific range of M / C ratio can be set.
  • FIG. 3 shows a flowchart of a wafer polishing method according to the second embodiment of the present disclosure, the same reference numerals are used for the same steps as those in FIG. 2, and the description thereof will be omitted. Please refer to FIG. The difference from FIG. 2 is that the first target polishing liquid is used in two stages to polish the wafer.
  • step S151 the GBIR of the wafer is controlled by using the first target polishing liquid in the first step, and the wafer is used by using the first target polishing liquid in the second step.
  • the GBIR of the wafer is controlled in the first stage using the target polishing liquid of 1, and the ESFQR of the wafer is controlled in the second stage using the target polishing liquid of the first stage to control the wafer shape more accurately.
  • the grinding machines used in the first and second stages may be the same or different. Further, the order of the steps of the first step and the second step is merely an example, and the present invention is not limited to this. That is, first a step of controlling ESFQR is performed, and then a step of controlling GBIR is performed. May be good.
  • FIG. 4 shows a flowchart of a wafer polishing method according to the third embodiment of the present disclosure, the same reference numerals are used for the same steps as those in FIG. 2, and the description thereof will be omitted.
  • the first target polishing liquid and the second target polishing liquid are selected based on the relationship diagram between the M / C ratio and the wafer flatness index, and the first target is selected in the first stage.
  • the GBIR is controlled by using the polishing liquid
  • the ESFQR is controlled by using the second target polishing liquid in the second stage.
  • a first target polishing liquid that satisfies the specific range of the M / C ratio and a second target polishing liquid that satisfies the specific range of the M / C ratio are selected. Specifically, based on the relationship diagram between the M / C ratio and GBIR or ESFQR, the M / C ratio in a specific range with respect to GBIR can be determined, and the M / C ratio in a specific range with respect to ESFQR can be determined.
  • the specific range of the M / C ratio of GBIR and ESFQR may be different, and the first target polishing liquid is adjusted to satisfy the M / C ratio with respect to GBIR based on the determined M / C ratio described above. At the same time, the second target polishing liquid is adjusted so as to satisfy the M / C ratio with respect to ESFQR.
  • step S152 the GBIR of the wafer is controlled by using the first target polishing liquid in the first step, and the ESFQR of the wafer is controlled by using the second target polishing liquid in the second step.
  • the wafer polished with the first target polishing solution in the first step has a wafer shape satisfying the ideal GBIR, and then the second target polishing solution is used in the second step.
  • the polished wafer can have a wafer outer shape that satisfies the ideal ESFQR.
  • the grinding machines used in the first and second stages may be the same or different.
  • the order of the steps of the first step and the second step is merely an example, and the present invention is not limited to this, that is, first, the step of controlling ESFQR using the second target polishing liquid is performed. , The step of controlling GBIR may be performed using the first target polishing liquid.
  • FIG. 5 shows a flowchart of a wafer polishing method according to the fourth embodiment of the present disclosure, the same reference numerals are used for the same steps as those in FIG. 2, and the description thereof will be omitted.
  • the first target polishing liquid and the second target polishing liquid are selected based on the relationship diagram between the M / C ratio and the wafer flatness index, and the first target is selected in the first stage.
  • the GBIR and ESFQR of the wafer are controlled by using the polishing liquid, and the GBIR and ESFQR are controlled by using the second target polishing liquid in the second stage.
  • a first target polishing liquid satisfying a specific range of M / C ratio and a second target polishing liquid satisfying a specific range of M / C ratio are selected. .. Specifically, the M / C ratio in a specific range with respect to GBIR or ESFQR is determined based on the relationship diagram between the M / C ratio and GBIR or ESFQR, and the first M / C ratio is determined based on the above-mentioned determined M / C ratio.
  • the second target polishing liquid is adjusted to satisfy the M / C ratio to GBIR and ESFQR.
  • the M / C ratios of both the first target polishing liquid and the second target polishing liquid satisfy the specific range of the above M / C ratio, even if the M / C ratios are different from each other. good.
  • step S153 the GBIR and ESFQR of the wafer are controlled by using the first target polishing liquid in the first step, and the GBIR and ESFQR of the wafer are controlled by using the second target polishing liquid in the second step.
  • the wafer polished with the first target polishing solution in the first step has a wafer shape close to the ideal GBIR and ESFQR, and then the second target polishing solution is applied in the second step. Wafers polished using can have more ideal GBIR and ESFQR wafer perimeter shapes.
  • it is preferable to use different polishing machines in the first stage and the second stage but the present invention is not limited to this, and the same polishing machine may be used. However, in this case, two-step polishing is performed.
  • a silicon wafer manufactured by a predetermined method was polished using a Type1-28B double-sided grinding machine as shown in FIG. 1.
  • the polishing test for processing was performed under non-standard size conditions.
  • a polishing liquid containing an alkaline chemical ([OH ⁇ ] concentration 0.00026 mol / L) containing no abrasive grains was supplied for polishing, and the polishing time was set to 60 minutes. The polishing rate was obtained from the polished silicon wafer.
  • the silicon wafer was polished under the conditions of each polishing liquid shown in Table 1 by the same method as in Example 1 except for the conditions of the alkaline chemical concentration and the abrasive grain concentration.
  • polishing was performed with a polishing liquid containing no abrasive grains and containing an alkaline chemical ([OH ⁇ ] concentrations were 0.00118 and 0.00186 mol / L, respectively). Then, the polishing rate of each polishing liquid was obtained, and the rate of change of the polishing rate of each example was obtained based on the polishing rate of Comparative Example 1.
  • polishing is performed with a polishing solution containing a fixed concentration of an alkaline chemical product (0.00186 mol / L) and containing abrasive grains having different concentrations, and the polishing rate of each polishing solution is obtained.
  • a polishing solution containing a fixed concentration of an alkaline chemical product (0.00186 mol / L) and containing abrasive grains having different concentrations, and the polishing rate of each polishing solution is obtained.
  • rice field silica (SiO 2 ) particles having an average particle size (BET) of 20 to 30 nm were used as examples of the abrasive grains.
  • Equation 2 was obtained by quadratic linear regression from the results of each concentration and polishing rate of Examples 1 and 2 and Comparative Example 1. This represents the standard curve of the chemical polishing rate.
  • Equation 3 was obtained by quadratic linear regression from the results of each concentration and polishing rate of Examples 3 to 5 and Comparative Example 1. This represents the standard curve of the mechanical polishing rate.
  • polishing is performed under each polishing liquid condition shown in Table 2 to obtain the polishing rate of each polishing liquid, and the polishing rates, alkaline chemical concentration, and silica of Examples 3 to 8 and Comparative Example 1 are obtained. Substituting the concentration into the above equation, the M / C ratio of each example was obtained.
  • the M / C ratio is preferably in the range of 0.7 or more and 1.4 or less in order to optimize the GBIR of the wafer surface.
  • the M / C ratio is 1.0 or more and 1.4 or less.
  • the M / C ratio is 1.2, which is in the range of 1.7. It is preferable to do so. Therefore, when GBIR and ESFQR are considered at the same time, it is preferable that the M / C ratio is 1.2 or more and 1.4 or less. Therefore, depending on the specific range of the M / C ratio, the conditions in the predetermined polishing liquid can be easily adjusted, so that the subsequent wafer has a desired wafer shape.
  • the same polishing liquid as in Examples 4 and 7 was used as Examples 9 and 10, respectively, and the carrier diameter was set.
  • the silicon wafer was polished using a Type_20B double-sided grinding machine having the same configuration and operation as the double-sided grinding machine shown in FIG. 1 except that the thickness was about 20 inches.
  • the polishing time was set to 60 minutes.
  • the polishing rate was obtained from the polished silicon wafer.
  • the GBIR and ESFQR rate of change were determined by the same method as described above. The results are shown in Table 3.
  • Double-sided polishing device 10 Upper surface plate 11: Upper surface plate 20: Lower surface plate 21: Lower polishing pad 30: Carrier plate 31: Wafer holding hole 40: Sun gear 50: Internal gear 60: Polishing liquid 110: Elevating mechanism S110, S120, S130, S140, S141, S142, S150, S151, S152, S153: Step WF: Silicon wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

本発明のウェーハの研磨方法は、アルカリ濃度が異なる複数の研磨液を用いて、アルカリ濃度と化学研磨率との相関性である第1の相関性を求め、且つ、砥粒濃度が異なる複数の研磨液を用いて、砥粒濃度と機械研磨率との相関性である第2の相関性を求める工程と、前記第1の相関性及び前記第2の相関性に基づいて、前記複数の研磨液の、化学研磨率に対する機械研磨率の比率である、機械研磨率/化学研磨率を算出する工程と、前記化学研磨率に対する機械研磨率の比率とウェーハの平坦度の指標との関係を得ると共に、前記化学研磨率に対する機械研磨率の比率の特定範囲を決定する工程と、前記第1の相関性および前記第2の相関性に基づいて、前記化学研磨率に対する機械研磨率の比率の特定範囲を満たす第1の目標研磨液を選択する工程と、前記第1の目標研磨液を用いてウェーハに対し研磨を行う工程と、を含む。本発明のウェーハの製造方法は、上記ウェーハの研磨方法により研磨処理を施す工程を含む。

Description

ウェーハの研磨方法およびウェーハの製造方法
 本開示は、ウェーハの研磨方法およびウェーハの製造方法に関し、詳細には、化学研磨率に対する機械研磨率の大きさに基づいてウェーハの平坦度を制御する、ウェーハの研磨方法およびウェーハの製造方法に関する。
 近年、急速に進む半導体デバイスの高集積化に伴い、その材料であるシリコンウェーハに要求される平坦度がより厳しいものとなってきている。また、半導体デバイスのさらなる製造コストを低減するためにシリコンウェーハの大口径化が進んでおり、これに伴い求められる平坦度を有するウェーハに研磨する難度も高まっている。
 これに対し、特許文献1には、シリコンウェーハをキャリアプレート内に保持し、ウェーハを研磨布が貼付された上下定盤の間に挟み込み、次いで、研磨液を研磨布とシリコンウェーハ表面との間に流し入れ、サンギアとインターナルギアとでキャリアプレートを公転及び自転させ、上記研磨液中に含まれる砥粒(例えばシリカ:SiO)が研磨布表面に残っていることにより、シリコンウェーハの両面が研磨される、シリコンウェーハの両面研磨方法が開示されている。
特開2003-285262号公報
 ここで、両面研磨において、研磨後のウェーハの厚さがキャリアプレートの厚さ以下となる状態まで行う研磨を「定寸研磨」と称する。一方で、研磨後のウェーハの厚さがキャリアプレートの厚さよりも厚い状態となる研磨を「非定寸研磨」と称する。両面研磨後のウェーハの形状は、非定寸研磨の状態では、そのグローバルな厚さ分布は、中心部が薄く外周部が厚い、「凹状形状」となる。定寸研磨では、「凹状形状」の凹状が過度に凹んでしまう傾向がある他、キャリアプレートの摩耗が大きくなり、研磨時間が長くなってしまうという問題が生じる。
 こうした状況において、ウェーハの平坦度を高めると同時に、キャリアプレートの摩耗を抑制し、研磨時間を短縮するためには、試験を幾度も行わなって最適な研磨条件を把握しなければならず、特に研磨環境等の大幅な変更がある(例えば機械を交換する)場合、複数ロットのウェーハを幾度も繰り返し研磨して試験を行う必要があり、大きなコストと時間を投入しなければ最適な研磨条件を求めることができない。したがって、試験時間を有効に短縮できると同時に、ウェーハの良好な平坦度を得ることのできる研磨条件が求められる。
 上述の問題に鑑みて、本発明は、試験時間を有効に短縮すると同時に、ウェーハの形状を精度良く制御することができる、ウェーハの研磨方法およびウェーハの製造方法を提供することを目的とする。
 本発明の要旨構成は、以下の通りである。
 一実施形態において、ウェーハの研磨方法は、
 アルカリ濃度が異なる複数の研磨液を用いて、アルカリ濃度と化学研磨率との相関性である第1の相関性を求め、且つ、砥粒濃度が異なる複数の研磨液を用いて、砥粒濃度と機械研磨率との相関性である第2の相関性を求める工程と、
 前記第1の相関性及び前記第2の相関性に基づいて、前記複数の研磨液の、化学研磨率に対する機械研磨率の比率である、機械研磨率/化学研磨率を算出する工程と、
 前記化学研磨率に対する機械研磨率の比率とウェーハの平坦度の指標との関係を得ると共に、前記化学研磨率に対する機械研磨率の比率の特定範囲を決定する工程と、
 前記第1の相関性および前記第2の相関性に基づいて、前記化学研磨率に対する機械研磨率の比率の特定範囲を満たす第1の目標研磨液を選択する工程と、
 前記第1の目標研磨液を用いてウェーハに対し研磨を行う工程と、
を含む。
 一実施形態において、ウェーハの製造方法は、チョクラルスキー法で育成した単結晶インゴットをスライスして研磨前ウェーハを得た後、得られた研磨前ウェーハに対して、上記のウェーハの研磨方法により研磨処理を施す。
 本発明によれば、試験時間を有効に短縮すると同時に、ウェーハの形状を精度良く制御することができる、ウェーハの研磨方法およびウェーハの製造方法を提供することができる。
本開示の第1から第4実施形態によるウェーハの研磨に用いる両面研磨装置の概略斜視図である。 本開示の第1から第4実施形態によるウェーハの研磨に用いる両面研磨装置の要部の断面図である。 本開示の第1実施形態によるウェーハの研磨方法のフローチャートである。 本開示の第2実施形態によるウェーハの研磨方法のフローチャートである。 本開示の第3実施形態によるウェーハの研磨方法のフローチャートである。 本開示の第4実施形態によるウェーハの研磨方法のフローチャートである。 本開示の実施例による研磨率と各研磨液のアルカリ濃度および砥粒濃度との相関性のグラフである。 本開示の実施例による機械研磨率/化学研磨率の比率(M/C比率)の変化とウェーハの厚さ分布(GBIR)との相関性を示すグラフである。 本開示の実施例による機械研磨率/化学研磨率の比率(M/C比率)の変化と外周平坦度(ESFQR)との相関性を示すグラフである。 本開示の実施例による、それぞれ異なる研磨装置の機械研磨率/化学研磨率の比率(M/C比率)の変化とウェーハの厚さ分布(GBIR)との相関性を示すグラフである。 本開示の実施例による、それぞれ異なる研磨装置の機械研磨率/化学研磨率の比率(M/C比率)の変化と外周平坦度(ESFQR)との相関性を示すグラフである。
 本発明の特徴および利点がより明瞭となるよう、以下にいくつかの実施形態を提示し、添付の図面と対応させながら、詳細に説明する。
 本発明の各観点をより明瞭かつ分かり易くするため、以下、添付の図面と対応させて詳細に説明する。なお、工業における慣例にしたがって、各種装置および設備は必ずしも縮尺で描かれるとは限らない。実際に、説明を明確とする目的で各種装置および設備の寸法は任意に拡大または縮小することができる。
 以下、本発明のウェーハの研磨方法のいくつかの実施形態を説明する。しかしながら、本発明の実施形態が多くの適した創作概念を提供するもので、各種特定の場面において広く実施可能であるということは、容易に理解されるであろう。開示される特定の実施形態は、特定の方法で本発明を用いることを説明するものに過ぎず、本発明の範囲を限定するものではない。
 特に定義しない限り、ここで使用するすべての用語(技術用語および科学用語を含む)は、本発明が属する技術分野において通常の知識を有する者が通常理解する意味と同じ意味を有する。これらの用語、例えば通常使用される辞書において定義されているような用語は、ここで特に定義されない限り、関連技術および本発明の背景または前後文脈に合致する意味に解釈されるべきであり、過度に厳密な方式で解釈されるべきではない。
 本明細書において使用される「約」、「およそ」などの用語は通常、所定の値または範囲の+/-20%以内、好ましくは+/-10%以内、より好ましくは+/-5%以内、または+/-3%以内、または+/-2%以内、または+/-1%以内、または+/-0.5%以内を表す。ここに示される所定の数はおよその数である、つまり特に「約」、「およそ」の記載が無くとも、「約」、「およそ」の意味が含まれ得る。
 本明細書で用いられる「基本的に」、「実質的に」などの用語は通常、所定の値または範囲の90%以内、例えば95%以内、または98%以内、または99%以内を表す。
 図1A、図1Bは、ウェーハの研磨に用いる両面研磨装置100の概略斜視図および要部の断面図である。本開示の第1から第4実施形態では、例えば図1A、図1Bに示されるような両面研磨装置100を用いることができるが、本発明はこれに限定されず、他の実施形態においては片面研磨装置を用いて研磨を行うこともできる。
 図1Aは、本実施形態における両面研磨装置の構成を表す概略斜視図であり、図1Bは、図1Aにおける要部の断面図である。図1Aに示すように、両面研磨装置100は、上定盤10、下定盤20、サンギア40、インナーナルギア50、および、複数のキャリアプレート30を備えて構成される。キャリアプレート30内には、単数又は複数のシリコンウェーハWFが収納される。一般に両面研磨装置の大きさはキャリアプレート30の直径により表され、キャリア直径が約28インチの場合はType_28Bと呼ばれ、キャリア直径が約20インチの場合はType_20Bと呼ばれる。図1Aでは、1枚のキャリアプレート30内に3枚のウェーハ(例えばシリコンウェーハ)WFが収納されるように構成されている。Type_28Bの両面研磨装置100において、シリコンウェーハWFの直径が300mmの場合、1枚のキャリアプレート30内にシリコンウェーハWFを3枚収納するのが通常である。
 また、上定盤10は、上定盤10を下定盤20に対して接近離間させる昇降機構110とを備えて構成される。上定盤10と下定盤20は、略円板状に形成され、図1Bに示すように、上定盤10の下面には、シリコンウェーハWFを研磨する際にシリコンウェーハWFの上面と当接する上研磨パッド11が設けられる。更に、上定盤10には、研磨時に研磨液60の供給や純水でリンスするための、複数の供給孔(図示せず)が穿設され、研磨液60や純水を上定盤10および下定盤20の間に供給できるようになっている。
 下定盤20は、両面研磨装置100の台座上に回転自在に設けられる円板状体であり、この下定盤20の上定盤10と対向する面には下研磨パッド21が設けられる。そして、研磨する際にはこの下研磨パッド21がシリコンウェーハWFの下面と当接する。サンギア40は、下定盤20の円板の略中心に、下定盤20と独立して回転するように設けられ、その外周側面には、キャリアプレート30と噛合する歯部が形成されている。インナーナルギア50は、下定盤20を囲むリング状体から構成され、リングの内側面にはキャリアプレート30と噛合する歯部が形成されている。
 上定盤10、下定盤20、サンギア40、および、インナーナルギア50の回転中心には、それぞれ駆動モータの回転軸が結合され、各駆動モータによってそれぞれが独立して回転するようになっている。キャリアプレート30は、円板状体から構成され、その外周側面には上記のサンギア40およびインナーナルギア50と噛合する歯部が形成される。また、円板状体内部には、単数又は複数のウェーハ保持孔31が形成され、このウェーハ保持孔31内部にシリコンウェーハWFが収納される。
 両面研磨装置100は、サンギア40とインナーナルギア50とを回転させることにより、キャリアプレート30に、公転運動および自転運動の遊星運動をさせることができる、遊星歯車方式の両面研磨装置である。このような両面研磨装置100により、シリコンウェーハWFを研磨する際には、まず、下定盤20上にキャリアプレート30をセットし、ウェーハ保持孔31内にシリコンウェーハWFを収納した後、昇降機構110により上定盤10を下降させ、上定盤10を下方向に所定の圧力で加圧した状態で、上定盤10に形成された供給孔から研磨液60を供給しながら、それぞれの駆動モータを駆動させることにより、シリコンウェーハWFの両面研磨が行われる。
 上記研磨ステップにおいて使用される研磨液60には、通常、アルカリ性化学品および砥粒が含まれており、アルカリ性化学品による化学研磨作用(アルカリエッチング作用)と砥粒の機械研磨作用との複合作用によって研磨プロセスを進行する。アルカリ性化学品中の水酸化物イオン(OH)はシリコンウェーハ表面で化学作用を生じて反応層を生成するため、化学エッチング作用によりシリコン原子は化学反応層から除去される。よって、この研磨液の化学研磨作用がシリコンウェーハ表面に対して及ぼす影響は、水酸化物イオン濃度および研磨中の熱分布によって決まる。
 さらに、機械研磨作用は、砥粒とシリコンウェーハ表面の化学反応層とが接触した後、シリコン原子の一部がシリカ表面に凝集し、除去されるというメカニズムである。通常、シリコンウェーハ内周部と外周部の取代量は異なり、一般には外周部の取代量の方が多い。
 本開示のいくつかの実施形態によれば、アルカリ性化学品の具体例としては、無機アルカリ性化合物,例えば水酸化カリウム、水酸化ナトリウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等;アンモニウム;アンモニウム塩類、例えば水酸化テトラメチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム等;アミン類、例えばメチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン (N-(β-aminoethyl) ethanolamine, AEEA)、ヘキサメチレンジアミン(hexamethylenediamine, HMDA)、ジエチレントリアミン(diethylenetriamine, DETA)、トリエチレンテトラアミン(triethylenetetramine, TETA)、ピペラジン無水物(piperazine anhydrous, PIZ)、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン(1-(2-aminoethyl)piperazine, AEPIZ)、N-メチルピペラジン(N-methylpiperazine, MPIZ)等を挙げることができる。
 本開示のいくつかの実施形態によれば、砥粒の材質または性質に特に制限はなく、使用の目的または使用の状態等により適宜選択すればよい。砥粒としては、無機粒子、有機粒子および有機無機複合粒子等が挙げられる。無機粒子の具体例としては、酸化物粒子、例えばシリカ粒子、酸化アルミニウム粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、赤色酸化鉄粒子等;窒化物粒子、例えば窒化ケイ素粒子、窒化ホウ素粒子等;炭化物粒子、例えば炭化ケイ素粒子、炭化ホウ素粒子等;ダイヤモンド粒子;炭酸塩、例えば炭酸カルシウムまたは炭酸バリウム等が挙げられる。有機粒子の具体例としては、例えばポリメタクリル酸メチル(PMMA)粒子またはポリ(メタ)クリル酸、ポリアクリロニトリル等が挙げられる。これら砥粒は単独で用いてもよいし、また2種類以上を組み合わせて用いてもよい。このうちシリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ(fumed silica)、沈降シリカ等が挙げられる。シリカ粒子は単独で用いてもよいし、また2種類以上を組み合わせて用いてもよい。
 さらに、砥粒の比表面積(BET)径(以下、単に「BET径」という)に特に限定はなく、研磨効率の点から、5nm以上が好ましく、10nm以上であるとより好ましい。より良好な研磨効果を得るという点、例えばヘイズ低減または欠陥の除去等といった効果をより発揮するという点からは、上記BET径は、例えば15nm以上が好ましく、20nm以上であるとより好ましく、20nm超であると最も好ましい。また、砥粒の形状(外形)は球形であってもよいし、非球形であってもよい。非球形粒子の具体例としては、ピーナッツ形、繭形、金平糖形、ラグビーボール形等が挙げられる。例として、多数の粒子がピーナッツ形である砥粒を用いるのが好ましい。
 以下、図1および2を参照にして、この両面研磨装置100により実行されるウェーハの両面研磨方法の一例を説明する。本開示の第1実施形態にかかるウェーハの研磨方法は、下記ステップS110~S140を含む。
 ステップS110において、アルカリ濃度が異なる複数の研磨液を用いて、アルカリ濃度と化学研磨率との相関性である第1の相関性を求め、且つ、砥粒濃度が異なる複数の研磨液を用いて、砥粒濃度と機械研磨率との相関性である第2の相関性を求める。具体的には、本例では、アルカリ濃度が異なる複数の研磨液を用いて、アルカリ濃度と化学研磨率との関係を示す研磨率標準曲線を求め、且つ、砥粒濃度が異なる複数の研磨液を用いて、砥粒濃度と機械研磨率との関係を示す研磨率標準曲線を求める。具体的には、上述したように、研磨液は化学研磨作用および機械研磨作用両者の複合作用によって化学機械研磨を達成するため、化学研磨作用および機械研磨作用それぞれの単独の作用力を求めるべく、先ずは、アルカリ性化学品のみを含んで砥粒を含まない研磨液を異なるアルカリ濃度で用いて研磨を行い、異なるアルカリ濃度での各々の研磨率を求める。次いで(なお、求める順序は逆でも良い)、固定濃度のアルカリ性化学品を含みかつ砥粒を含む研磨液を異なる砥粒濃度で用いて研磨を行い、異なる砥粒濃度における各々の研磨率を求める。
 つまり、化学機械研磨の基本法則は、プレストンのCMPの式(Preston’s CMP Rate)=k(研磨係数)×p(圧力)×V(相対速度)に基づいており、P(圧力)およびV(相対速度)は研磨装置の影響を受ける。よって、P(圧力)およびV(相対速度)が一定であるという条件の下、研磨液の研磨率計算式は下記の(式1)に示される通りとなる。
(式1)
f([砥粒],[OH])≒f([砥粒],0)+f(0,[OH])
 式中、f([砥粒],[OH])は研磨率を表し、f([砥粒],0)は機械研磨率を表し、f(0,[OH])は化学研磨率を表す。本開示のいくつかの実施形態において、砥粒をシリカとすることができると例示しているが、本発明はこれに限定されないということが理解されなければならない。
 アルカリ性化学品のみを含んで砥粒を含まない研磨液を異なるアルカリ濃度で用いて研磨を行い、各々の研磨率を求めた後に、二次線形回帰により下記の(式2)を求めることができる。
(式2)
f(0,[OH])=a1*X+b1*X+C1
 式中、Xは[OH]濃度を表し、a1、b1およびC1は回帰係数を表す。
 さらに、上記(式2)から、化学研磨率を表す標準曲線を求めることができる。
 類似する方式で、固定濃度のアルカリ性化学品を含みかつ砥粒を含む研磨液を異なる砥粒濃度で用いて研磨を行い、それぞれの研磨率を求めた後、二次線形回帰により下記(式3)を求めることができる。
(式3)
f([砥粒],0)=a2*Y+b2*Y+C2
 式中、Yは砥粒濃度を表し、a2、b2およびC2は回帰係数である。[OH]濃度が一定であるとき、C2はf(0,[OH])を表す。
 つまり、(式3)からf([砥粒],0)=a2*Y+b2*Y+f(0,[OH])を導き出すことができる。
 さらに、上記(式3)から、機械研磨率を表す標準曲線を求めることができる。
 上記研磨率標準曲線は二次線形回帰によって演算しているが、本発明はこれに限定されず、つまり、当該技術分野において通常の知識を有する者であれば、当該分野における通常の知識に基づいて好ましい演算方式を選択して曲線あてはめを行い、より理想的な研磨率標準曲線を求めることができるという点が理解されなければならない。例として、三次線形回帰等の多項式回帰、S関数、三角関数等を挙げることができる。
 次いで、ステップS120において、上記第1の相関性及び第2の相関性(本例では各研磨率標準曲線)に基づき、各研磨液の、化学研磨率に対する機械研磨率の比率である、機械研磨率/化学研磨率の比率(以下、M/C比率と称することもある)を算出する。具体的には、研磨液のM/C比率の定量化の計算を行う際、その式は下記(式4)に示されるとおりとなる。
(式4)
Figure JPOXMLDOC01-appb-I000001
 なお、化学研磨率に対する機械研磨率の大きさの指標は、上記のM/C比率には限られず、M/(C+c)(cは定数)、M/C等、後述の平坦度の指標との関係を求め得る様々な指標とすることができる。
 ところで、機械研磨を実行するにあたり、一定の[OH]濃度がなければ研磨ステップを進行することはできない。このため実際の機械研磨率は、研磨率からこの一定の[OH]濃度下の化学研磨率を減じて求められる、つまり、機械研磨率=研磨率-化学研磨率(f([砥粒],0)=f([砥粒],[OH])-f(0,[OH]))であり、よってこれを(式4)に代入すると、(式5)を導き出すことができる。
(式5)
Figure JPOXMLDOC01-appb-I000002
 したがって、(式2)、(式3)を(式5)に代入すれば、各研磨液のM/C比率が求められる。
 ステップS130において、各研磨液で研磨を行った後に得られたウエーハ平坦度の指標(例えば、厚さ分布(Global Backsurface-referenced Ideal plane/Range,GBIR)(以下、「GBIR」と略称する)または外周平坦度(Edge Site Front least sQuares Range,ESFQR)(以下、「ESFQR」と略称する)とM/C比率とに基づいて、M/C比率とGBIRまたはESFQRとの関係性(関係図)を得ることができる。この関係図により、特定範囲のM/C比率で所望のウェーハ形状が得られる、ということを知得できる。つまり、目標のウェーハ形状を得るには、この関係性(関係図)によりM/C比率の特定範囲を決めればよい。
 本開示のいくつかの実施形態によれば、ウェーハ平坦度の指標がGBIRであるとき、ウェーハのグローバル形状を理想形状に近づけるという点から、M/C比率の下限値は0.70以上が好ましく、0.80以上であるとより好ましく、0.85以上であるとさらに好ましく、0.90以上であると一層好ましく、0.95以上であるとより一層好ましく、1.15以上であると最も好ましく、1.20以上が最も好適である。ウェーハのグローバル形状が過度に凸状となってしまうのを回避するという点からは、M/C比率の上限値は、1.60以下が好ましく、1.55以下であるとより好ましく、1.50以下であるとさらに好ましく、1.45以下であると一層好ましく、1.40以下であるとより一層好ましい。
 本開示のいくつかの実施形態によれば、ウェーハ平坦度の指標がESFQRであるとき、ウェーハの外周平坦度を微ダレに近づけるという点から、M/C比率の下限値は、1.00以上であると好ましく、1.05以上であるとより好ましく、1.10以上であるとさらに好ましく、1.15以上であると一層好ましく、1.20以上であるとより一層好ましく、1.25以上であると最も好ましく、1.30以上が最も好適である。ESFQRを考慮する場合、M/C比率の上限値に特に制限はないが、1.70以下が好ましく、1.65以下であるとより好ましく、1.60以下であるとさらに好ましく、1.55以下であると一層好ましく、1.50以下であるとより一層好ましい。
 本開示のいくつかの実施形態によれば、GBIRはウェーハ平坦度測定器を用いて測定することができる、裏面基準のグローバルフラットネス(Global Flatness)指標であって、ウェーハの裏面を基準面としたときのウェーハ表面のその基準面に対する最大厚さと最小厚さとの偏差として定義される。
 また、ESFQRはウェーハ平坦度測定器を用いて測定されるもので、両面研磨がなされたシリコンウェーハのエッジのESFQRを評価することができる。ESFQRは平坦度が低下し易いエッジの平坦度の評価指標であって(サイトフラットネス(site flatness))、ダレ(edge roll off)量の大きさを表す。ESFQRは、基準面(Site Best Fit Surface)からの偏差の最大値と最小値との差として定義され、この基準面は、ウエーハのエッジに沿う環状の領域を周方向にさらに均等に分割して得られる単位領域(サイト)を対象とし、サイト内の厚さ分布に基づいて、最小二乗法により求められるものである。
 上述のウェーハ平坦度の指標はGBIRおよびESFQRに限定されず、例えばその他の半導体の平坦度を評価する評価指標であってもよく、例としてSFQR(Site Frontsurface referenced least sQuares/Range)、SBIR (Site Backsurface-referenced Ideal plane/Range)等を挙げることができる。
 次いで、ステップS140において、M/C比率の特定範囲を満たす第1の目標研磨液を選択する。具体的には、上述したM/C比率とGBIRまたはESFQRとの関係図から、特定のM/C比率の範囲において理想的なウェーハ形状が得られることを知得でき、第1の相関性および第2の相関性(本例では各研磨率標準曲線)に基づいて、当該特定のM/C比率に対応する砥粒濃度および[OH]濃度を決定する。例えば、第1の目標研磨液中における砥粒濃度および[OH]濃度を調整することで、第1の目標研磨液のM/C比率が上記特定範囲内に入るようにする。
 ステップS150において、第1の目標研磨液を用いてウェーハに対し研磨を行う。本開示のいくつかの実施形態によれば、ウェーハ研磨は、必要に応じて定寸研磨または非定寸研磨とすることができる。さらに、第1の目標研磨液のM/C比率は特定範囲内にあるため、研磨されたウェーハのGBIRおよびESFQRを容易に理想値内に収め、ウェーハを目標の形状にすることができる。一般に、ウェーハの理想の形状はグローバル形状が微凹状を呈し、かつ外周形状が微ダレを呈する形状であるが、本発明はこれに限定はされず、つまり所望のウェーハ形状に応じて、必要なM/C比率の特定範囲を設定することができる。
 図3は、本開示の第2実施形態によるウェーハの研磨方法のフローチャートを示しており、図2におけるものと同じステップには同じ符号を用い、その説明は省略する。図3を参照にされたい。図2と異なるのは、第1の目標研磨液を2つの段階に分けて用いウェーハを研磨する点である。
 本開示の第2実施形態では、ステップS151において、第1の段階で第1の目標研磨液を用いてウェーハのGBIRを制御し、かつ第2の段階で第1の目標研磨液を用いてウェーハのESFQRを制御する。具体的には、M/C比率とGBIRまたはESFQRとの関係性(関係図)に基づいて、M/C比率がGBIRおよびESFQR両方の理想を満たす特定の範囲内に入るように選択し、第1の目標研磨液を用い第1の段階でウェーハのGBIRを制御し、第1の目標研磨液を用い第2の段階でウェーハのESFQRを制御して、ウェーハ形状をより精度よく制御する。また、第1の段階および第2の段階で用いる研磨機は同じでも、または異なっていてよいという点が理解されなければならない。また、第1の段階および第2の段階のステップの順序は例示に過ぎず、本発明はこれに限定されない、つまり、先ずESFQRを制御するステップを行ってから、GBIRを制御するステップを行ってもよい。
 図4は、本開示の第3実施形態によるウェーハの研磨方法のフローチャートを示し、図2におけるものと同じステップには同じ符号を用い、その説明は省略する。図4を参照にされたい。図2と異なるのは、M/C比率とウェーハ平坦度指標との関係図に基づいて第1の目標研磨液および第2の目標研磨液をそれぞれ選択し、第1の段階で第1の目標研磨液を用いてGBIRの制御を行い、第2の段階で第2の目標研磨液を用いてESFQRの制御を行うという点である。
 本開示の第3実施形態では、ステップS141において、M/C比率の特定範囲を満たす第1の目標研磨液およびM/C比率の特定範囲を満たす第2の目標研磨液を選択する。具体的には、M/C比率とGBIRまたはESFQRとの関係図に基づき、GBIRに対する特定範囲のM/C比率を決定すると共に、ESFQRに対する特定範囲のM/C比率を決定することができる。つまり、GBIRおよびESFQRのM/C比率の特定範囲は異なっていてもよく、上述の決定したM/C比率に基づいて、第1の目標研磨液をGBIRに対するM/C比率を満たすように調整し、同時に第2の目標研磨液をESFQRに対するM/C比率を満たすように調整する。
 次いで、ステップS152において、第1の段階で第1の目標研磨液を用いてウェーハのGBIRを制御し、かつ第2の段階で第2の目標研磨液を用いてウェーハのESFQRを制御する。具体的には、第1の段階で第1の目標研磨液を用いて研磨したウェーハが理想的なGBIRを満たすウェーハ形状を有し、次いで第2の段階で第2の目標研磨液を用いて研磨したウェーハが理想的なESFQRを満たすウェーハ外周形状を有し得るようになる。
 また、第2実施形態と同じように、第1の段階および第2の段階で用いる研磨機は同じでも、または異なっていてもよいという点が理解されなければならない。また、第1の段階および第2の段階のステップの順序は例示に過ぎず、本発明はこれに限定されない、つまり、先ず第2の目標研磨液を用いてESFQRを制御するステップを行ってから、第1の目標研磨液を用いてGBIRを制御するステップを行ってもよい。
 図5は、本開示の第4実施形態によるウェーハの研磨方法のフローチャートを示しており、図2におけるものと同じステップには同じ符号を用い、その説明は省略する。図5を参照にされたい。図2と異なるのは、M/C比率とウェーハ平坦度指標との関係図に基づいて第1の目標研磨液および第2の目標研磨液をそれぞれ選択し、第1の段階で第1の目標研磨液を用いてウェーハのGBIRおよびESFQRの制御を行い、第2の段階で第2の目標研磨液を用いてGBIRおよびESFQRの制御を行うという点である。
 本開示の第4の実施形態によれば、ステップS141において、M/C比率の特定範囲を満たす第1の目標研磨液およびM/C比率の特定範囲を満たす第2の目標研磨液を選択する。具体的には、M/C比率とGBIRまたはESFQRとの関係図に基づき、GBIRまたはESFQRに対する特定範囲のM/C比率を決定すると共に、上述の決定した上記M/C比率に基づいて第1の目標研磨液をGBIRおよびESFQRに対するM/C比率を満たすように調整し、同時に第2の目標研磨液をGBIRおよびESFQRに対するM/C比率を満たすように調整する。ただし、第1の目標研磨液および第2の目標研磨液両者のM/C比率はいずれも上記M/C比率の特定範囲を満たすものであるが、そのM/C比率は互いに異なっていてもよい。
 次いで、ステップS153において、第1の段階で第1の目標研磨液を用いてウェーハのGBIRおよびESFQRを制御し、かつ第2の段階で第2の目標研磨液を用いてウェーハのGBIRおよびESFQRを制御する。具体的には、第1の段階で第1の目標研磨液を用いて研磨したウエーハが理想的なGBIRおよびESFQRに近いウェーハ形状を有し、次いで第2の段階で第2の目標研磨液を用いて研磨したウェーハがより理想的なGBIRおよびESFQRのウェーハ外周形状を有し得るようになる。また、第4実施形態では、第1の段階および第2の段階でそれぞれ異なる研磨機を用いることが好ましいが、本発明はこれに限定はされず、同じ研磨機を用いてもよい。ただしこの場合は2段階の研磨を行う。
 以下、実施例等を通してより具体的に本発明を説明するが、本発明の範囲はこれら実施例等に限定されない。
 既定の方法で製造して得られたシリコンウェーハに対し、図1に示すようなType1_28B両面研磨機を使用し、シリコンウェーハの研磨を行った。以下、加工の研磨試験は非定寸条件下で行った。実施例1として、砥粒を含まずアルカリ性化学品([OH]濃度0.00026mol/L)を含む研磨液を供給して研磨を行い、研磨時間は60分に設定した。研磨後のシリコンウェーハからその研磨率を得た。
 下記する実施例において、アルカリ性化学品濃度および砥粒濃度の条件の他は実施例1と類似する方式で、シリコンウェーハに対し表1に示される各研磨液の条件で研磨を行った。具体的には、実施例2および比較例1ではそれぞれ、砥粒を含まずアルカリ性化学品を含む([OH]濃度はそれぞれ0.00118および0.00186 mol/L)研磨液で研磨を行って、各研磨液の研磨率を求め、さらに比較例1の研磨レートを基準とし、各実施例の研磨レートの変化率を求めた。
 さらに、実施例3~5では、固定濃度のアルカリ性化学品(0.00186 mol/L)を含み、かつそれぞれ異なる濃度の砥粒を含む研磨液で研磨行って、各研磨液の研磨率を得た。これら実施例において、砥粒には、平均粒径(BET)20~30nmのシリカ(SiO)粒子を例として用いた。
Figure JPOXMLDOC01-appb-T000003
 実施例1~2および比較例1の各濃度および研磨率の結果から、二次線形回帰により上記(式2)を求めた。これは化学研磨率の標準曲線を表すものである。同様に、実施例3~5および比較例1の各濃度および研磨率の結果から、二次線形回帰により上記(式3)を求めた。これは機械研磨率の標準曲線を表すものである。上記の結果は図6に示すとおりである。
 次いで、(式2)および(式3)を上記(式5)に代入して、各研磨液のM/C比率を下記のように求めた。
Figure JPOXMLDOC01-appb-I000004
 実施例6~8において、表2に示される各研磨液条件で研磨を行い、各研磨液の研磨率を得ると共に、実施例3~8および比較例1の研磨率、アルカリ性化学品濃度、シリカ濃度を上式に代入して各実施例のM/C比率を求めた。
<GBIRの測定>
 実施例3~8及び比較例1の各ウェーハの表面を、ウェーハ平坦度測定器(KLA Tecnor社製、Wafersight)を用いて測定し(測定範囲298mm、外周1mm除外)、各ウェーハの厚さおよびGBIRを求めると共に、比較例1のGBIRを基準とし、各実施例3~8のGBIR変化率を求め、かつGBIR変化率とM/C比率との関係図を作成した。その結果は図7に示すとおりである。
<ESFQRの測定>
 実施例3~8および比較例1の各ウェーハを、ウェーハ平坦度測定器(KLA Tecnor社製、Wafersight)を用い、測定範囲298mm(外周1mm除外)で、ESFQR(角度5度×長さ35mm)を測定し、比較例1のESFQRを基準とし、各実施例3~8のESFQR変化率を求め、かつESFQR変化率とM/C比率との関係図を作成した。その結果は図8に示すとおりである。
Figure JPOXMLDOC01-appb-T000005
 図7に示されるように、両面研磨を行う際、ウェーハ表面のGBIRを最適化するため、M/C比率は0.7以上1.4以下の範囲が好ましい。研磨後の形状を微凸状としたい場合、M/C比率を1.0以上であって1.4以下の範囲とすることが好ましい。また、図8に示されるように、ESFQRを最適化して、研磨後のウェーハを微ダレから平坦な状態とするためには、M/C比率を1.2であって1.7の範囲とすることが好ましい。よって、GBIRおよびESFQRを同時に考慮する場合、M/C比率は1.2以上であって1.4以下の範囲とするのが好適である。故に、上記M/C比率の特定の範囲によって、容易に所定の研磨液中の条件を調整することができ、これにより後続におけるウェーハが所望のウェーハ形状を有するようになる。
 異なる研磨機で研磨を行う場合でのM/C比率とGBIRおよびESFQRとの相関性を考慮するため、実施例4、7と同じ研磨液を用いてそれぞれ実施例9、10とし、キャリア直径を約20inchとした以外、図1の両面研磨機と同一構成と作動のType_20B両面研磨機を使用して、シリコンウェーハの研磨を行った。研磨時間は60分に設定した。研磨後のシリコンウェーハからその研磨率を得た。次いで、上述と同じ方式でそのGBIRおよびESFQR変化率を求めた。その結果が表3に示されている。
 実施例9、10のM/C比率に関し、同じ研磨液を同一濃度で用いるとすると、
Figure JPOXMLDOC01-appb-I000006
で表される化学研磨率のCは一定である。よって、Type_28BとType_20B両面研磨機の差異は、機械研磨率のMの数値変化のみにあると認められる。故に、この結果から、実施例9、10のM/C比率を下記(式6)により推定することができる。
(式6)
Figure JPOXMLDOC01-appb-I000007
 表3に示すM/C比率、GBIRおよびESFQRに基づいて、M/C比率とGBIRおよびESFQRとの関係図を作成した。その結果が図9および図10に示されている。図9および図10の関係図から、そのM/C比率がなおもGBIRおよびESFQRと上述の実施例に一致する相関性を呈していることがわかる。つまり、研磨機を変えても、依然そのM/C比率を推測することができ、さらには使用したい異なる研磨機に応じて適したM/C比率の特定範囲を別途決定することができるため、異なる研磨機を用い、別途決定した新たな研磨液で研磨を行う際に、なおも理想的なウェーハ形状を得ることが可能となる。
Figure JPOXMLDOC01-appb-T000008
 以上、本発明のいくつかの実施形態の特徴を概略的に説明して、当該技術分野において通常の知識を有する者が本開示の形態をより容易に理解できるようにした。当該技術分野において通常の知識を有する者であれば、本開示を他の製造プロセスや設計のベースとして容易に利用して、本明細書で記載された実施形態と同じ目的を達成するおよび/または同じ利点が得られる旨を理解するはずである。また、当該技術分野において通常の知識を有する者であれば、上述と同等の構造は本開示の精神から逸脱せずに保護の範囲内にあって、本開示の精神および範囲を逸脱することなく変更、置換および修飾が可能であるということを理解するであろう。
100:両面研磨装置
10:上定盤
11:上研磨パッド
20:下定盤
21:下研磨パッド
30:キャリアプレート
31:ウェーハ保持孔
40:サンギア
50:インターナルギア
60:研磨液
110:昇降機構
S110、S120、S130、S140、S141、S142、S150、S151、S152、S153:ステップ
WF:シリコンウェーハ

Claims (13)

  1.  アルカリ濃度が異なる複数の研磨液を用いて、アルカリ濃度と化学研磨率との相関性である第1の相関性を求め、且つ、砥粒濃度が異なる複数の研磨液を用いて、砥粒濃度と機械研磨率との相関性である第2の相関性を求める工程と、
     前記第1の相関性及び前記第2の相関性に基づいて、前記複数の研磨液の、化学研磨率に対する機械研磨率の比率である、機械研磨率/化学研磨率を算出する工程と、
     前記化学研磨率に対する機械研磨率の比率とウェーハの平坦度の指標との関係を得ると共に、前記化学研磨率に対する機械研磨率の比率の特定範囲を決定する工程と、
     前記第1の相関性および前記第2の相関性に基づいて、前記化学研磨率に対する機械研磨率の比率の特定範囲を満たす第1の目標研磨液を選択する工程と、
     前記第1の目標研磨液を用いてウェーハに対し研磨を行う工程と、
    を含むことを特徴とする、ウェーハの研磨方法。
  2.  前記ウェーハ平坦度の指標がGBIRを含む、請求項1に記載のウェーハの研磨方法。
  3.  前記機械研磨率/化学研磨率の比率の特定範囲が0.70以上であって1.60以下の範囲である、請求項1又は2に記載のウェーハの研磨方法。
  4.  前記ウェーハ平坦度の指標がESFQRを含む、請求項1~3のいずれか一項に記載のウェーハの研磨方法。
  5.  前記機械研磨率/化学研磨率の比率の特定範囲が1.20以上であって1.70以下の範囲である、請求項4に記載のウェーハの研磨方法。
  6.  前記ウェーハ平坦度の指標がGBIRをさらに含み、かつ前記機械研磨率/化学研磨率の比率の特定範囲が1.20以上であって1.40以下の範囲である、請求項4に記載のウェーハの研磨方法。
  7.  前記研磨を行う工程は、第1の段階でウェーハのGBIRを制御する工程、および第2の段階でウェーハのESFQRを制御する工程をさらに含む、請求項1~6のいずれか一項に記載のウェーハの研磨方法。
  8.  前記研磨を行う工程は、前記第1の目標研磨液を用い第1の研磨機で前記第1の段階を実行し、かつ前記第1の目標研磨液を用い第2の研磨機で前記第2の段階を実行する工程をさらに含む、請求項7に記載のウェーハの研磨方法。
  9.  前記研磨を行う工程は、前記第1の目標研磨液を用い第1の研磨機で前記第1の段階および前記第2の段階を実行し、かつ前記第1の目標研磨液を用い第2の研磨機で前記第1の段階および前記第2の段階を実行する工程をさらに含む、請求項7に記載のウェーハの研磨方法。
  10.  前記機械研磨率/化学研磨率の比率の特定範囲を満たす第2の目標研磨液を選択する工程をさらに含む、請求項7に記載のウェーハの研磨方法。
  11.  前記研磨を行う工程は、前記第1の目標研磨液を用い第1の研磨機で前記第1の段階を実行し、かつ前記第2の目標研磨液を用い第2の研磨機で前記第2の段階を実行する工程をさらに含む、請求項10に記載のウェーハの研磨方法。
  12.  前記研磨を行う工程は、前記第1の目標研磨液を用い第1の研磨機で前記第1の段階および前記第2の段階を実行し、かつ前記第2の目標研磨液を用い第2の研磨機で前記第1の段階および前記第2の段階を実行する工程をさらに含む、請求項10に記載のウェーハの研磨方法。
  13.  チョクラルスキー法で育成した単結晶インゴットをスライスして研磨前ウェーハを得た後、得られた研磨前ウェーハに対して、請求項1~12のいずれか一項に記載のウェーハの研磨方法により研磨処理を施すことを特徴とする、ウェーハの製造方法。
PCT/JP2021/039884 2020-12-18 2021-10-28 ウェーハの研磨方法およびウェーハの製造方法 WO2022130800A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237018209A KR20230096088A (ko) 2020-12-18 2021-10-28 웨이퍼의 연마 방법 및 웨이퍼의 제조 방법
CN202180085408.1A CN116615305A (zh) 2020-12-18 2021-10-28 晶圆的研磨方法及晶圆的制造方法
US18/257,710 US20240055264A1 (en) 2020-12-18 2021-10-28 Wafer polishing method and wafer producing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-210662 2020-12-18
JP2020210662A JP7452403B2 (ja) 2020-12-18 2020-12-18 ウェーハの研磨方法およびウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2022130800A1 true WO2022130800A1 (ja) 2022-06-23

Family

ID=82057538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039884 WO2022130800A1 (ja) 2020-12-18 2021-10-28 ウェーハの研磨方法およびウェーハの製造方法

Country Status (6)

Country Link
US (1) US20240055264A1 (ja)
JP (1) JP7452403B2 (ja)
KR (1) KR20230096088A (ja)
CN (1) CN116615305A (ja)
TW (1) TWI807244B (ja)
WO (1) WO2022130800A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7464088B2 (ja) 2022-08-31 2024-04-09 株式会社Sumco 半導体ウェーハの両面研磨方法、研磨ウェーハの製造方法、及び半導体ウェーハの両面研磨装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184733A (ja) * 2000-12-18 2002-06-28 Hitachi Ltd 処理方法、測定方法及び半導体装置の製造方法
JP2018074086A (ja) * 2016-11-02 2018-05-10 株式会社Sumco 半導体ウェーハの両面研磨方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935757B2 (ja) 2002-03-28 2007-06-27 信越半導体株式会社 ウエーハの両面研磨装置及び両面研磨方法
US10600634B2 (en) * 2015-12-21 2020-03-24 Globalwafers Co., Ltd. Semiconductor substrate polishing methods with dynamic control

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002184733A (ja) * 2000-12-18 2002-06-28 Hitachi Ltd 処理方法、測定方法及び半導体装置の製造方法
JP2018074086A (ja) * 2016-11-02 2018-05-10 株式会社Sumco 半導体ウェーハの両面研磨方法

Also Published As

Publication number Publication date
TWI807244B (zh) 2023-07-01
JP2022097206A (ja) 2022-06-30
CN116615305A (zh) 2023-08-18
TW202225367A (zh) 2022-07-01
JP7452403B2 (ja) 2024-03-19
KR20230096088A (ko) 2023-06-29
US20240055264A1 (en) 2024-02-15

Similar Documents

Publication Publication Date Title
EP1808887B1 (en) Production method of semiconductor wafer
JP5402391B2 (ja) 半導体用合成石英ガラス基板の加工方法
US9293318B2 (en) Semiconductor wafer manufacturing method
JP2003077870A (ja) 半導体ウェーハを同時に両面で材料除去加工するための方法
WO2012002525A1 (ja) シリコンウェーハの研磨方法
CN109676437B (zh) 碳化硅晶片及其制造方法
WO2022130800A1 (ja) ウェーハの研磨方法およびウェーハの製造方法
JP2006205265A (ja) 研磨方法および研磨用組成物
WO2014185003A1 (ja) ワークの研磨装置
WO2016170721A1 (ja) エピタキシャルウェーハの製造方法
US11325220B2 (en) Double-side polishing method and double-side polishing apparatus
TWI727165B (zh) 矽晶圓的研磨方法
JP2021536140A (ja) パッド−パッド変動のために調整を行う半導体基板の研磨方法 (関連出願の相互参照) 本願は、2018年9月10日に出願された米国仮特許出願第62/729,134号の優先権の利益を主張する。当該米国仮特許出願の開示内容は、全ての関連性および一貫性のため(for all relevant and consistent purposes)参照により本明細書中に組み込まれる。
WO2018116690A1 (ja) シリコンウェーハの枚葉式片面研磨方法
CN112372509B (zh) 一种将抛光垫的初始状态转变为亲水性的方法和装置
WO2022215370A1 (ja) ウェーハの加工方法及びウェーハ
US20230268186A1 (en) Systems and methods for producing epitaxial wafers
TW202230499A (zh) 承載板的研磨方法、承載板及半導體晶圓的研磨方法
CN114774003A (zh) NiP改性层化学机械抛光液及其制备方法和应用
KR20230171390A (ko) 기판 및 그 제조 방법
JP5988480B2 (ja) 研磨方法
WO2017134914A1 (ja) ウェーハの両面研磨方法
JP2009135180A (ja) 半導体ウェーハの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906164

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237018209

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18257710

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180085408.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906164

Country of ref document: EP

Kind code of ref document: A1