WO2022127513A1 - 光学玻璃、光学元件及光学仪器 - Google Patents

光学玻璃、光学元件及光学仪器 Download PDF

Info

Publication number
WO2022127513A1
WO2022127513A1 PCT/CN2021/131806 CN2021131806W WO2022127513A1 WO 2022127513 A1 WO2022127513 A1 WO 2022127513A1 CN 2021131806 W CN2021131806 W CN 2021131806W WO 2022127513 A1 WO2022127513 A1 WO 2022127513A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
cao
mgo
optical
Prior art date
Application number
PCT/CN2021/131806
Other languages
English (en)
French (fr)
Inventor
毛露路
匡波
郝良振
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Publication of WO2022127513A1 publication Critical patent/WO2022127513A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/21Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus

Definitions

  • the invention relates to an optical glass, in particular to an optical glass with a refractive index of 1.58-1.67 and an Abbe number of 50-63, as well as an optical element and an optical instrument made of the same.
  • Optical glass with a refractive index of 1.58 to 1.67 and Abbe number of 50 to 63 belongs to heavy crown optical glass. This kind of glass has a moderate refractive index and Abbe number and is widely used in various imaging systems.
  • the design of lenses for vehicles and security has expanded from the visible light spectrum to the near-infrared spectrum. It is necessary to realize the imaging of visible light and near-infrared light on the same focal plane in the same lens. When using near-infrared light during day and night, both can be Clear imaging.
  • the auxiliary lighting wavelength of the camera at night is between 850 and 1000 nm. If the glass has lower ⁇ P C,s and ⁇ P C,t values, the difficulty of optical design to achieve day and night confocal can be greatly reduced. At the same time, optical systems that need to achieve day and night confocal usually need to work in harsh environments, and optical materials need to have good chemical stability to ensure the reliability of the optical system.
  • the heavy crown glass in the prior art usually has large ⁇ P C,s and ⁇ P C,t values and poor chemical stability, which cannot meet the development needs of new imaging optical devices.
  • the technical problem to be solved by the present invention is to provide an optical glass with lower ⁇ P C,s and ⁇ P C,t values and excellent chemical stability.
  • Optical glass whose components are expressed in weight percentage, and contains: P 2 O 5 : 20-60%; Al 2 O 3 : 0.5-10%; BaO: 10-50%; CaO: 2-15%; MgO: 1-11%; SrO: 0-15%; Li 2 O: 0.5-10%, wherein (CaO+SrO+MgO)/BaO is 0.1-1.5.
  • optical glass according to (1) wherein the components are expressed in weight percentage, and further contain: ZnO: 0-16%; and/or B 2 O 3 : 0-16%; and/or ZrO 2 : 0 to 3%; and/or Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O 5 : 0 to 10%; and/or La 2 O 3 +Gd 2 O 3 +Y 2 O 3 : 0-10%; and/or Na 2 O+K 2 O: 0-10%; and/or Sb 2 O 3 : 0-3%; and/or F: 0-3%.
  • Optical glass whose components are expressed by weight percentage, which are P 2 O 5 : 20-60%; Al 2 O 3 : 0.5-10%; BaO: 10-50%; CaO: 2-15%; MgO : 1-11%; SrO: 0-15%; ZnO: 0-16%; Li 2 O: 0.5-10%; B 2 O 3 : 0-16%; ZrO 2 : 0-3%; Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O 5 : 0-10%; La 2 O 3 +Gd 2 O 3 +Y 2 O 3 : 0-10%; Na 2 O+K 2 O : 0-10%; Sb 2 O 3 : 0-3%; F: 0-3% composition.
  • optical glass according to any one of (1) to (3), wherein the optical glass has a refractive index nd of 1.58 to 1.67, preferably a refractive index nd of 1.59 to 1.66, and more preferably a refractive index nd of 1.58 to 1.66. 1.60-1.66;
  • Abbe's number ⁇ d is 50-63, preferably Abbe's number ⁇ d is 51-61, more preferably Abbe's number ⁇ d is 52-58.
  • optical glass according to any one of (1) to (3), wherein the optical glass has a ⁇ P C,s value of 0 or less, preferably a ⁇ P C,s value of ⁇ 0.0050 or less, and more preferably a ⁇ P C,s value and/or a ⁇ P C,t value of -0.0020 or less, preferably a ⁇ P C,t value of -0.01 or less, more preferably a ⁇ P C,t value of -0.02 or less, still more preferably a ⁇ P C ,t value of -0.02 or less -0.025 or less; and/or water resistance stability D W is 2 or more, preferably water resistance stability D W is 1; and/or acid resistance stability D A is 4 or more, preferably acid resistance stability D A Class 3 or more, more preferably, acid resistance stability D A is class 2 or more; and/or temperature coefficient of refraction dn/dt is 0 or less, preferably temperature coefficient of refraction dn/dt is -
  • the optical element is made of the optical glass described in any one of (1) to (14) or the glass preform described in (15).
  • An optical instrument comprising the optical glass described in any one of (1) to (14); and/or the optical element described in (16).
  • the beneficial effects of the present invention are: through reasonable component design, the optical glass obtained by the present invention has lower values of ⁇ P C,s and ⁇ P C,t , which is beneficial for imaging equipment to realize day and night confocal, excellent chemical stability, suitable for in harsh environments.
  • optical glass of this invention is not limited to the following embodiment, It can change suitably within the range of the objective of this invention, and can implement.
  • description is abbreviate
  • the optical glass of the present invention is sometimes simply referred to as glass.
  • each component (component) of the optical glass of the present invention will be described below.
  • the content and total content of each component are all expressed in weight percent (wt%), that is, the content and total content of each component are all expressed in terms of glass with a composition converted into oxides It is expressed in weight percent of the total amount of substances.
  • the “composition in terms of oxides” refers to the case where the oxides, complex salts, hydroxides, etc. used as raw materials of the optical glass composition of the present invention are decomposed and converted into oxides when melted. , and the total amount of the oxide is taken as 100%.
  • P 2 O 5 belongs to the network former component in the present invention. If its content exceeds 60%, the refractive index of the glass is lower than the design requirement, the Abbe number is higher than the design requirement, and the melting property of the glass deteriorates. If its content is less than 20%, the broken bonds of the internal network of the glass rise rapidly, the chemical stability decreases, the temperature coefficient of refractive index is difficult to meet the design requirements, and the transition temperature of the glass increases, which cannot meet the requirements of precision pressing. Therefore, the content of P 2 O 5 is 20 to 60%, preferably 23 to 55%, and more preferably 25 to 52%.
  • a suitable amount of B 2 O 3 in the glass can repair the broken bonds in the internal network of the glass, improve the chemical stability of the glass, and increase the refractive index of the glass. If its content exceeds 16%, the ⁇ P C,s and ⁇ P C,t values of the glass. It is difficult to meet the design requirements. Therefore, the content of B 2 O 3 is 16% or less, preferably 10% or less, and more preferably 6% or less. In some embodiments, if the glass has sufficient chemical stability and refractive index, it is more preferable not to contain B 2 O 3 .
  • 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13 %, 13.5%, 14%, 14.5%, 15 %, 15.5%, 16 % B2O3.
  • F fluorine
  • 0% greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0% , 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7 %, 2.8%, 2.9%, 3.0% F.
  • the value of B 2 O 3 /(P 2 O 5 +F) exceeds 0.7, the values of ⁇ P C,s and ⁇ P C,t of the glass increase sharply, making it difficult to meet the design requirements, and the refraction of the glass The rate temperature coefficient rises sharply. Therefore, the value of B 2 O 3 /(P 2 O 5 +F) is preferably 0.7 or less, more preferably 0.5 or less, and still more preferably 0.3 or less.
  • the value of B2O3/( P2O5 + F) can be 0 , greater than 0, 0.01, 0.03, 0.05, 0.07, 0.1, 0.13, 0.15, 0.17, 0.2, 0.23, 0.25, 0.27, 0.3, 0.33, 0.35, 0.37, 0.4, 0.43, 0.45, 0.47, 0.5, 0.53, 0.55, 0.57, 0.6, 0.65, 0.67, 0.7.
  • Al 2 O 3 in the glass can repair the broken bonds in the internal network of the glass and significantly improve the chemical stability of the glass. If the content of Al 2 O 3 exceeds 10%, the ⁇ P C,s and ⁇ P C,t values of the glass will increase, making it difficult to meet the design requirements. At the same time, the stability of the glass decreases, which easily leads to devitrification of the glass, and the melting temperature of the glass increases, which increases the risk of infusible substances generated inside. If the content of Al 2 O 3 is less than 0.5%, the effect of improving chemical stability is not obvious. Therefore, the content of Al 2 O 3 is 0.5 to 10%, preferably 1 to 7%, and more preferably 1.5 to 6%.
  • BaO, SrO, CaO, and MgO are all alkaline earth metal oxides, which can increase the refractive index of the glass and increase the stability of the glass in the heavy crown glass of the silicate system.
  • the inventor found through a large number of experimental studies that the above four alkaline earth metal oxides have different effects on the stability, ⁇ P C,s value, ⁇ P C,t value and chemical stability of the glass. , there are complex synergistic effects between them.
  • the alkaline earth metal oxide is preferably used in BaO. If its content is less than 10%, the stability of the glass will drop rapidly, and the glass cannot even be formed, and the refractive index and dispersion of the glass are difficult to meet the design requirements; Its content is higher than 50%, the glass stability decreases, and the chemical stability decreases rapidly. Therefore, the content of BaO is 10 to 50%, preferably 15 to 48%, and more preferably 20 to 45%.
  • a suitable amount of CaO can be contained in the glass. If its content is less than 2%, the above effect is not obvious. 15%, the stability of the glass drops rapidly, the dispersion rises rapidly, and the Abbe number is difficult to meet the design requirements. Therefore, the content of CaO is limited to 2 to 15%, preferably 3 to 12%, and more preferably 4 to 10%.
  • the chemical stability of the glass is also a key indicator, especially if it needs to work in harsh conditions.
  • Appropriate amount of MgO can significantly improve the chemical stability of glass. If its content is less than 1%, the effect of improving chemical stability is not obvious; if its content exceeds 11%, the stability of glass drops sharply, and the tendency of glass to ceramize increases. Therefore, the content of MgO is limited to 1 to 11%, preferably 2 to 8%, and more preferably 3 to 8%. In some embodiments, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11% MgO.
  • the glass when the value of MgO/CaO is preferably 0.2 to 1.5, more preferably 0.3 to 1.3, and further preferably 0.4 to 1.1, the glass has the best stability and chemical stability.
  • the value of MgO/CaO may be 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1 , 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5.
  • a suitable amount of SrO can improve the stability of the glass, especially when the BaO content exceeds 30%, the inclusion of SrO can improve the chemical stability of the glass while ensuring that the glass has lower ⁇ P C,s and ⁇ P C,t values. stability; if the content of SrO exceeds 15%, the stability of the glass decreases. Therefore, the content of SrO is limited to 15% or less, preferably 10% or less, and more preferably 8% or less. In some embodiments, it is further preferred not to contain SrO.
  • 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%, 10.5%, 11%, 11.5%, 12%, 12.5%, 13 %, 13.5%, 14%, 14.5%, 15% SrO.
  • the preferred value of (CaO+SrO+MgO)/BaO is 0.1-1.5, more preferably 0.15 ⁇ 1.0, more preferably 0.15 ⁇ 0.9, the glass stability, ⁇ P C,s value, ⁇ P C,t value, and chemical stability of the glass are the best.
  • the value of (CaO+SrO+MgO)/BaO may be 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85 , 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5.
  • Alkaline earth metal oxides and P 2 O 5 are the main components of the glass of the present invention, and their relative contents have a great influence on the stability, refractive index, temperature coefficient of refractive index and transition temperature of the glass.
  • the value of (BaO+SrO+CaO+MgO)/P 2 O 5 exceeds 2.0, the temperature coefficient of refractive index of the glass rises rapidly, it is difficult to meet the design requirements, the chemical stability of the glass deteriorates, and the transition temperature
  • the value of (BaO+SrO+CaO+MgO)/P 2 O 5 is lower than 0.4, it needs to contain more high-refractive oxides to meet the requirement of refractive index, and the glass is easy to phase-separate or even become ceramic.
  • the range of (BaO+SrO+CaO+MgO)/P 2 O 5 is preferably 0.4 to 2.0, more preferably 0.6 to 1.7, and even more preferably 0.8 to 1.5.
  • the value of (BaO+SrO+CaO+MgO)/ P2O5 may be 0.4, 0.45, 0.5 , 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0.
  • ZnO is more conducive to reducing the ⁇ P C,s and ⁇ P C,t values of the glass, and improving the chemical stability of the glass, but if its content exceeds 16%, the glass becomes very unstable, and at the same time Since the temperature coefficient of refractive index of glass increases rapidly, the content of ZnO is limited to 16% or less. In some embodiments, if the content of ZnO is less than 0.1%, stones are prone to appear in the glass. Therefore, the content of ZnO is preferably 0.1 to 10%, and more preferably 0.1 to 5%.
  • the presence of a suitable amount of ZnO in the glass will ameliorate the problem of glass instability caused by the addition of large amounts of alkaline earth metal oxides.
  • the value of ZnO/(CaO+SrO+MgO+BaO) is lower than 0.001, the above effect is not obvious; when the value of ZnO/(CaO+SrO+MgO+BaO) exceeds 0.36, the temperature coefficient of refractive index of the glass increases rapidly , the glass ceramization tendency increases. Therefore, the value of ZnO/(CaO+SrO+MgO+BaO) becomes like this.
  • the value of ZnO/(CaO+SrO+MgO+BaO) may be 0.001, 0.003, 0.005, 0.007, 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06 , 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.10, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, , 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36.
  • a small amount of ZrO 2 in the glass can improve the chemical stability of the glass. If its content exceeds 3%, the ⁇ P C,s and ⁇ P C,t values of the glass increase rapidly. Since the glass of the present invention belongs to the phosphate system glass, it needs to be in a relatively high temperature. Smelting at low temperature, more than 3% ZrO 2 is likely to cause a large number of stones inside the glass. Therefore, the content of ZrO 2 is limited to 3% or less, preferably 2% or less, and more preferably 1% or less.
  • Nb 2 O 5 , TiO 2 , WO 3 , Bi 2 O 3 , Ta 2 O 5 are oxides with high refractive index and high dispersion. In glass, the refractive index and Abbe number of glass can be adjusted. If the total content of Nb 2 O When 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O 5 exceeds 10%, the stability of the glass decreases, and the Abbe number of the glass is difficult to meet the design requirements. Therefore, Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O 5 is 10% or less, preferably 8% or less, and more preferably 7% or less.
  • Nb2O5 + TiO2 +WO3 + Bi2O3 + Ta2O5 can be 0 %, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5% , 10%.
  • Nb 2 O 5 has poor ability to reduce ⁇ P C,s and ⁇ P C,t values, so its content is limited to 5% or less, preferably 3% or less, more preferably 2% the following. In some embodiments, 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5% Nb 2 O 5 .
  • a suitable amount of WO 3 can reduce the ⁇ P C,s and ⁇ P C,t values of the glass, but if its content exceeds 5%, the transmittance of the glass decreases rapidly. Therefore, the content of WO 3 is limited to 5% or less, preferably 3% or less, and more preferably 2% or less. In some embodiments, 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5% WO 3 .
  • Bi 2 O 3 can reduce the ⁇ P C,s and ⁇ P C,t values of glass. If its content exceeds 10%, Bi 2 O 3 will severely corrode platinum products during the smelting process, making it difficult to smelt. Therefore, the content of Bi 2 O 3 is limited to 10% or less, preferably 8% or less, and more preferably 6% or less. In some embodiments, 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10 % Bi2O3 .
  • Ta 2 O 5 can appropriately reduce the ⁇ P C,s and ⁇ P C,t values of the glass. Since Ta 2 O 5 is a rare component and the raw material is expensive, its content is limited to less than 5%, preferably less than 3%, more preferably to not contain. In some embodiments, 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5% Ta 2 O 5 .
  • TiO 2 has a very strong ability to reduce the ⁇ P C,s and ⁇ P C,t values, and can also significantly improve the chemical stability of the glass. If its content is less than 0.5%, the above effect is not obvious; if its content is higher than 8%, The dispersion of the glass rises rapidly and the Abbe number is lower than the design requirement. Therefore, the content of TiO 2 is 0 to 8%, preferably 0.5 to 8%, more preferably 1 to 6%, and further preferably 1 to 5%.
  • 0%, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5% may be included , 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8% TiO2 .
  • La 2 O 3 , Gd 2 O 3 , Y 2 O 3 are high-refractive and low-dispersion oxides, which can ensure a high Abbe number in glass and rapidly increase the refractive index of the glass, which has a great impact on the refractive index in the production process. Precise control is especially important.
  • the total content of La 2 O 3 , Gd 2 O 3 and Y 2 O 3 is preferably 0.1 % or more.
  • La 2 O 3 , Gd 2 O 3 and Y 2 O 3 have lower ability to reduce the ⁇ P C,s and ⁇ P C,t values of glass than high refractive index and high dispersion oxides, but a small amount of them can not only reduce the ⁇ P C,s and ⁇ P C,t values of glass. Adjusting the refractive index of the glass can also enhance the stability of the glass. If the total content of La 2 O 3 +Gd 2 O 3 +Y 2 O 3 is higher than 10%, the ⁇ P C,s and ⁇ P C,t values of the glass are difficult to achieve When the design requirements are met, the stability of the glass will also decrease.
  • the content of La 2 O 3 +Gd 2 O 3 +Y 2 O 3 ranges from 0 to 10%, preferably from 0.1 to 8%, and more preferably from 0.1 to 6%.
  • La2O3 + Gd2O3 + Y2O3 can be 0 %, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the present invention finds that the above-mentioned high-refractive low-dispersion oxides (La 2 O 3 , Gd 2 O 3 , Y 2 O 3 ) and high-refractive high-dispersion oxides (Nb 2 O 5 , TiO 2 , WO 3 , Bi 2 O 3 , Ta 2 O 5 ) content relative values to the glass's ⁇ P C,s and ⁇ P C,t values have a greater correlation with the stability of the glass.
  • the value of (La 2 O 3 +Gd 2 O 3 +Y 2 O 3 )/(Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O 5 ) may be 0.3 , 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55 , 1.6, 1.65, 1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0, 2.05, 2.1, 2.15, 2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65, 2.7, 2.75, 2.8 , 2.85, 2.9, 2.95, 3.0, 3.05, 3.1, 3.15, 3.2, 3.25, 3.3, 3.35, 3.4, 3.45, 3.5, 3.55, 3.6
  • Li 2 O, Na 2 O, K 2 O are alkali metal oxides, and their ability to reduce ⁇ P C,s and ⁇ P C,t values is similar, but they have effects on glass stability, chemical stability and glass transition temperature. There is a big difference. On the whole, a suitable amount of Li 2 O can quickly reduce the transition temperature of the glass, meet the requirements of precision pressing, and can also enhance the chemical stability and strength of the glass. If its content is less than 0.5%, the above effect is not obvious, especially It is difficult for the transition temperature of the glass to meet the design requirements; if its content is higher than 10%, the stability of the glass decreases rapidly, and the ⁇ P C,s and ⁇ P C,t of the glass are higher than the design requirements.
  • the content of Li 2 O is 0.5 to 10%, preferably 0.5 to 5%, and more preferably 1 to 4%. In some embodiments, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10% Li2O .
  • Na 2 O+K 2 O is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
  • Na 2 O is preferably included, considering that Na 2 O has a weaker ability to weaken glass chemical stability than K 2 O.
  • Na2O + K2O may be 0 %, greater than 0%, 0.01%, 0.05%, 0.1%, 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5% %, 4%, 4.5%, 5%, 5.5%, 6%, 6.5%, 7%, 7.5%, 8%, 8.5%, 9%, 9.5%, 10%.
  • the value of (Na 2 O+K 2 O)/Li 2 O is preferably 2.5 or less, more preferably 2.0 or less, further preferably 1.0 or less, the chemical stability of the glass, ⁇ P C,s and The ⁇ P C,t value, the temperature coefficient of refractive index, and the transition temperature are the most balanced.
  • the value of (Na2O + K2O)/ Li2O can be 0 , greater than 0, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5.
  • Sb 2 O 3 can act as a clarifying agent in glass, and can also reduce the ⁇ P C,s and ⁇ P C,t values of glass. If its content is higher than 3%, the glass solution will easily corrode platinum products, which will not only cause valuable assets loss, and it is easy to generate platinum inclusions inside the glass and cause rapid deterioration of transmittance. Therefore, the content of Sb 2 O 3 is limited to 3% or less, preferably 2% or less, and more preferably 1% or less. In some embodiments, it is more preferable not to contain Sb 2 O 3 if the glass solution has a sufficient ability to remove air bubbles.
  • 0% greater than 0%, 0.01%, 0.05%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%, 1.0% , 1.1%, 1.2%, 1.3%, 1.4%, 1.5%, 1.6%, 1.7%, 1.8%, 1.9%, 2.0%, 2.1%, 2.2%, 2.3%, 2.4%, 2.5%, 2.6%, 2.7 %, 2.8%, 2.9%, 3.0% Sb 2 O 3 .
  • the glass of the present invention even if the oxides of transition metals such as V, Cr, Mn, Fe, Co, Ni, Cu, Ag, and Mo are contained in small amounts alone or in combination, the glass will be colored, and in the visible light region Specified wavelengths are absorbed, thereby weakening the property of the present invention to improve the visible light transmittance effect. Therefore, it is preferable not to actually contain the optical glass, which requires transmittance at wavelengths in the visible light region.
  • Oxides of Th, Cd, Tl, Os, Be, and Se tend to be used in a controlled manner as harmful chemical substances in recent years, not only in the glass manufacturing process, but also in the processing process and disposal after productization. Action is required. Therefore, when considering the influence on the environment, it is preferable not to actually contain them except for unavoidable mixing. Thereby, the optical glass becomes practically free of substances that pollute the environment. Therefore, the optical glass of the present invention can be manufactured, processed, and discarded without taking special measures for environmental measures.
  • the optical glass of the present invention preferably does not contain As 2 O 3 and PbO.
  • As 2 O 3 has the effect of eliminating bubbles and preventing glass coloration
  • the addition of As 2 O 3 will increase the platinum erosion of the glass to the furnace, especially the platinum furnace, resulting in more platinum ions entering the glass.
  • the service life of the platinum furnace is adversely affected.
  • PbO can significantly improve the high refractive index and high dispersion properties of glass, but both PbO and As 2 O 3 are substances that cause environmental pollution.
  • Does not contain and “0%” described herein means that the compound, molecule, ion or element is not intentionally added to the optical glass of the present invention as a raw material; however, as a raw material and/or equipment for producing optical glass, there may be Some impurities or components not intentionally added will be contained in a small or trace amount in the final optical glass, and this situation is also within the protection scope of the patent of the present invention.
  • the refractive index (n d ) and Abbe number ( ⁇ d ) of optical glass are tested according to the methods specified in GB/T 7962.1-2010.
  • the refractive index (n d ) of the optical glass of the present invention is in the range of 1.58 to 1.67, preferably the refractive index (n d ) is in the range of 1.59 to 1.66, and more preferably the refractive index (n d ) is in the range of 1.60 ⁇ 1.66.
  • the refractive index of the optical glass may be 1.580, 1.585, 1.590, 1.595, 1.600, 1.605, 1.610, 1.615, 1.620, 1.625, 1.630, 1.635, 1.640, 1.645, 1.650, 1.655, 1.660, 1.665, 1.670 .
  • the Abbe number ( ⁇ d ) of the optical glass of the present invention is in the range of 50 to 63, preferably the Abbe number ( ⁇ d ) is in the range of 51 to 61, and more preferably the Abbe number ( ⁇ d ) is in the range of 51 to 61.
  • the range is 52 to 58.
  • the Abbe number of the optical glass may be 50.0, 50.5, 51.0, 51.5, 52.0, 52.5, 53.0, 53.5, 54.0, 54.5, 55.0, 55.5, 56.0, 56.5, 57.0, 57.5, 58.0, 58.5, 59.0, 59.5, 60.0, 60.5, 61.0, 61.5, 62.0, 62.5, 63.0.
  • the ⁇ P C ,s and ⁇ P C ,t values of the optical glass shall be measured according to the method specified in "GB/T 7962.1-2010 " .
  • the ⁇ P C,s value of the optical glass of the present invention is 0 or less, preferably -0.0050 or less, and more preferably -0.0100 or less.
  • the optical glass of the present invention has a ⁇ P C,t value of -0.0020 or less, preferably a ⁇ P C,t value of -0.01 or less, more preferably a ⁇ P C,t value of -0.02 or less, and still more preferably a ⁇ P C,t value .
  • the value is -0.025 or less.
  • the water resistance stability (D W ) of the optical glass of the present invention is 2 or more types, preferably 1 type.
  • the acid resistance stability (D A ) (powder method) of optical glass is tested according to the method specified in "GB/T 17129".
  • the acid resistance stability (D A ) of the optical glass of this invention is 4 types or more, Preferably it is 3 types or more, More preferably, it is 2 types or more.
  • the temperature coefficient of refractive index (dn/dt) of optical glass is measured in accordance with the method specified in "GB/T 7962.4-2010", and the temperature coefficient of refractive index (d line dn/dt relative (10 -6 / °C))
  • the temperature coefficient of refractive index (dn/dt) of the optical glass of the present invention is 0 or less, preferably -1.0 ⁇ 10 -6 /°C or less, and more preferably -3.0 ⁇ 10 -6 /°C or less.
  • the transition temperature (T g ) of the optical glass is tested according to the method specified in "GB/T7962.16-2010".
  • the transition temperature (T g ) of the optical glass of the present invention is 570°C or lower, preferably 560°C or lower, and more preferably 550°C or lower.
  • the manufacturing method of the optical glass of the present invention is as follows: the glass of the present invention is produced by using conventional raw materials and conventional processes, using carbonates, nitrates, sulfates, phosphates, metaphosphates, hydroxides, oxides, etc. After batching in the conventional method, put the prepared charge into a melting furnace (such as platinum crucible, quartz crucible, etc.) at 1100-1350 ° C for melting, and after clarification, stirring and homogenization, no bubbles and no undissolved are obtained. A homogeneous molten glass of a substance, which is cast and annealed in a mold. Those skilled in the art can appropriately select raw materials, process methods and process parameters according to actual needs.
  • a melting furnace such as platinum crucible, quartz crucible, etc.
  • a glass preform can be produced from the optical glass produced by using, for example, a means of grinding, or a means of press forming such as reheat press forming and precision press forming. That is, a glass preform can be produced by subjecting optical glass to mechanical processing such as grinding and polishing, or by producing a preform for press-molding from optical glass, reheating the preform, and then grinding the preform. Glass preforms are produced by machining, or by precision stamping of preforms produced by grinding.
  • the means for preparing the glass preform is not limited to the above-mentioned means.
  • the optical glass of the present invention is useful for various optical elements and optical designs, and it is particularly preferable to form a preform from the optical glass of the present invention, and to perform reheat press molding, precision press molding, etc. using the preform , making optical components such as lenses and prisms.
  • the glass of the present invention can also be used to manufacture glass preforms by one-shot drop forming.
  • Both the glass preform and the optical element of the present invention are formed from the optical glass of the present invention described above.
  • the glass preform of the present invention has the excellent characteristics of optical glass;
  • the optical element of the present invention has the excellent characteristics of optical glass, and can provide various optical elements such as lenses and prisms with high optical value.
  • lenses include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
  • the optical glass or the optical element formed by the optical glass of the present invention can be used to manufacture optical instruments such as photographing equipment, imaging equipment, display equipment and monitoring equipment.
  • the optical glass or optical element of the present invention is suitable for use in vehicle lighting instruments, optical equipment, and in the fields of vehicle and the like.
  • the optical glass which has the composition shown in Table 1 - Table 2 was obtained by the manufacturing method of the said optical glass.
  • the properties of each glass were measured by the test method described in the present invention, and the measurement results were shown in Tables 1 to 2, wherein M1 represents La 2 O 3 +Gd 2 O 3 +Y 2 O 3 , and M2 represents La 2 O 3 +Gd 2 O 3 +Y 2 O 3 It is represented by Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O 5 , with K1 representing B 2 O 3 /(P 2 O 5 +F), with K2 representing (BaO+SrO+CaO+MgO )/P 2 O 5 , represented by K3 ZnO/(CaO+SrO+MgO+BaO), represented by K4 (La 2 O 3 +Gd 2 O 3 +Y 2 O 3 )/(Nb 2 O 5 +TiO 2 +WO 3 +Bi 2 O 3 +Ta 2 O
  • Concave meniscus lenses, convex meniscus lenses, and biconvex lenses are produced by using the glasses obtained in optical glass Examples 1 to 15, for example, by means of grinding, or by means of press molding such as reheat press molding and precision press molding. , Bi-concave lenses, plano-convex lenses, plano-concave lenses and other lenses, prisms and other prefabricated parts.
  • the preforms obtained in the above glass preform examples are annealed, and the refractive index is fine-tuned while reducing the internal stress of the glass, so that the optical properties such as the refractive index reach desired values.
  • each preform is ground and polished to produce various lenses and prisms such as a concave meniscus lens, a convex meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens.
  • An antireflection film may also be coated on the surface of the obtained optical element.
  • optical elements produced by the above-mentioned optical element embodiments are optically designed and formed by using one or more optical elements to form optical components or optical assemblies, which can be used in, for example, imaging equipment, sensors, microscopes, medical technology, digital projection, communications, optical communications Technology/information transmission, optics/lighting in the automotive field, lithography, excimer lasers, wafers, computer chips and integrated circuits and electronic devices including such circuits and chips.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

一种光学玻璃,所述光学玻璃的组分以重量百分比表示,含有:P 2O 5:20~60%;Al 2O 3:0.5~10%;BaO:10~50%;CaO:2~15%;MgO:1~10%;SrO:0~15%;ZnO:0.1~16%;Li 2O:0.5~10%,其中(CaO+SrO+MgO)/BaO为0.1~1.5。通过合理的组分设计,所获得的光学玻璃具有较低的ΔP C,s与ΔP C,t值,有益于成像设备实现日夜共焦,化学稳定性优异,适用于恶劣环境中。

Description

光学玻璃、光学元件及光学仪器 技术领域
本发明涉及一种光学玻璃,尤其是涉及一种折射率为1.58~1.67,阿贝数为50~63的光学玻璃,以及由其制成的光学元件及光学仪器。
背景技术
折射率为1.58~1.67,阿贝数为50~63的光学玻璃属于重冕光学玻璃,该类玻璃折射率与阿贝数适中,广泛的应用于各类成像系统中。近年来,车载、安防等镜头设计从可见光光谱扩展到近红外光谱,需要在同一个镜头中实现可见光与近红外光在同一个焦平面上成像,白天和夜晚使用近红外光照明时,均能清晰成像。
通常来讲摄像机在夜晚的辅助照明波长处于850~1000nm之间,若玻璃具有较低的ΔP C,s与ΔP C,t值,可以大幅度降低光学设计实现日夜共焦的难度。与此同时,需要实现日夜共焦的光学系统通常需要工作在恶劣环境中,需要光学材料具备较好的化学稳定性以保证光学系统的可靠性。现有技术中的重冕玻璃通常ΔP C,s与ΔP C,t值较大,化学稳定性较差,不能满足新型成像光学设备的发展需要。
发明内容
本发明所要解决的技术问题是提供一种具有较低的ΔP C,s与ΔP C,t值,化学稳定性优异的光学玻璃。
本发明解决技术问题采用的技术方案是:
(1)光学玻璃,其组分以重量百分比表示,含有:P 2O 5:20~60%;Al 2O 3:0.5~10%;BaO:10~50%;CaO:2~15%;MgO:1~11%;SrO:0~15%;Li 2O:0.5~10%,其中(CaO+SrO+MgO)/BaO为0.1~1.5。
(2)根据(1)所述的光学玻璃,其组分以重量百分比表示,还含有:ZnO:0~16%;和/或B 2O 3:0~16%;和/或ZrO 2:0~3%;和/或Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~10%;和/或La 2O 3+Gd 2O 3+Y 2O 3:0~10%;和/ 或Na 2O+K 2O:0~10%;和/或Sb 2O 3:0~3%;和/或F:0~3%。
(3)光学玻璃,其组分以重量百分比表示,由P 2O 5:20~60%;Al 2O 3:0.5~10%;BaO:10~50%;CaO:2~15%;MgO:1~11%;SrO:0~15%;ZnO:0~16%;Li 2O:0.5~10%;B 2O 3:0~16%;ZrO 2:0~3%;Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~10%;La 2O 3+Gd 2O 3+Y 2O 3:0~10%;Na 2O+K 2O:0~10%;Sb 2O 3:0~3%;F:0~3%组成。
(4)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:(CaO+SrO+MgO)/BaO为0.1~1.5,优选(CaO+SrO+MgO)/BaO为0.15~1.0,更优选(CaO+SrO+MgO)/BaO为0.15~0.9。
(5)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:ZnO/(CaO+SrO+MgO+BaO)为0.001~0.36,优选ZnO/(CaO+SrO+MgO+BaO)为0.001~0.25,更优选ZnO/(CaO+SrO+MgO+BaO)为0.001~0.15。
(6)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:MgO/CaO为0.2~1.5,优选MgO/CaO为0.3~1.3,更优选MgO/CaO为0.4~1.1。
(7)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)为0.3~4.3,优选(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)为0.4~3.5,更优选(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)为0.5~1.5。
(8)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:(Na 2O+K 2O)/Li 2O为2.5以下,优选(Na 2O+K 2O)/Li 2O为2.0以下,更优选(Na 2O+K 2O)/Li 2O为1.0以下。
(9)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:B 2O 3/(P 2O 5+F)为0.7以下,优选B 2O 3/(P 2O 5+F)为0.5以下,更优选B 2O 3/(P 2O 5+F)为0.3以下。
(10)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比 表示,其中:(BaO+SrO+CaO+MgO)/P 2O 5为0.4~2.0,优选(BaO+SrO+CaO+MgO)/P 2O 5为0.6~1.7,更优选(BaO+SrO+CaO+MgO)/P 2O 5为0.8~1.5。
(11)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:P 2O 5:23~55%,优选P 2O 5:25~52%;和/或Al 2O 3:1~7%,优选Al 2O 3:1.5~6%;和/或BaO:15~48%,优选BaO:20~45%;和/或CaO:3~12%,优选CaO:4~10%;和/或MgO:2~8%,优选MgO:3~8%;和/或SrO:0~10%,优选SrO:0~8%;和/或ZnO:0.1~10%,优选ZnO:0.1~5%;和/或Li 2O:0.5~5%,优选Li 2O:1~4%;和/或B 2O 3:0~10%,优选B 2O 3:0~6%;和/或ZrO 2:0~2%,优选ZrO 2:0~1%;和/或Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~8%,优选Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~7%;和/或La 2O 3+Gd 2O 3+Y 2O 3:0.1~8%,优选La 2O 3+Gd 2O 3+Y 2O 3:0.1~6%;和/或Na 2O+K 2O:0~8%,优选Na 2O+K 2O:0~5%;和/或Sb 2O 3:0~2%,优选Sb 2O 3:0~1%;和/或F:0~2%,优选F:0~1%。
(12)根据(1)~(3)任一所述的光学玻璃,其组分以重量百分比表示,其中:Nb 2O 5:0~5%,优选Nb 2O 5:0~3%,更优选Nb 2O 5:0~2%;和/或WO 3:0~5%,优选WO 3:0~3%,更优选WO 3:0~2%;和/或Bi 2O 3:0~10%,优选Bi 2O 3:0~8%,更优选Bi 2O 3:0~6%;和/或Ta 2O 5:0~5%,优选Ta 2O 5:0~3%;和/或TiO 2:0~8%,优选TiO 2:0.5~8%,更优选TiO 2:1~6%,进一步优选TiO 2:1~5%。
(13)根据(1)~(3)任一所述的光学玻璃,所述光学玻璃的折射率n d为1.58~1.67,优选折射率n d为1.59~1.66,更优选折射率n d为1.60~1.66;阿贝数ν d为50~63,优选阿贝数ν d为51~61,更优选阿贝数ν d为52~58。
(14)根据(1)~(3)任一所述的光学玻璃,所述光学玻璃的ΔP C,s值为0以下,优选ΔP C,s值为-0.0050以下,更优选ΔP C,s值为-0.0100以下;和/或ΔP C,t值为-0.0020以下,优选ΔP C,t值为-0.01以下,更优选ΔP C,t 值为-0.02以下,进一步优选ΔP C,t值为-0.025以下;和/或耐水作用稳定性D W为2类以上,优选耐水作用稳定性D W为1类;和/或耐酸作用稳定性D A为4类以上,优选耐酸作用稳定性D A为3类以上,更优选耐酸作用稳定性D A为2类以上;和/或折射率温度系数dn/dt为0以下,优选折射率温度系数dn/dt为-1.0×10 -6/℃以下,更优选折射率温度系数dn/dt为-3.0×10 -6/℃以下;和/或转变温度T g为570℃以下,优选转变温度T g为560℃以下,更优选转变温度T g为550℃以下。
(15)玻璃预制件,采用(1)~(14)任一所述的光学玻璃制成。
(16)光学元件,采用(1)~(14)任一所述的光学玻璃或(15)所述的玻璃预制件制成。
(17)光学仪器,含有(1)~(14)任一所述的光学玻璃;和/或含有(16)所述的光学元件。
本发明的有益效果是:通过合理的组分设计,本发明获得的光学玻璃具有较低的ΔP C,s与ΔP C,t值,有益于成像设备实现日夜共焦,化学稳定性优异,适用于恶劣环境中。
具体实施方式
下面,对本发明的光学玻璃的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨。以下内容中有时候将本发明光学玻璃简称为玻璃。
[光学玻璃]
下面对本发明光学玻璃的各组分(成分)范围进行说明。在本发明中,如果没有特殊说明,各组分的含量、总含量全部采用重量百分比(wt%)表示,即,各组分的含量、总含量全部采用相对于换算成氧化物的组成的玻璃物质总量的重量百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的光学玻璃组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总量作 为100%。
除非在具体情况下另外指出,本发明所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
<必要组分和任选组分>
P 2O 5在本发明中属于网络形成体组分,若其含量超过60%,玻璃的折射率低于设计要求,阿贝数高于设计要求,同时玻璃的熔融性能恶化。若其含量低于20%,玻璃内部网络断键快速上升,化学稳定性下降,折射率温度系数难以达到设计要求,玻璃的转变温度升高,不能满足精密压型要求。因此,P 2O 5的含量为20~60%,优选为23~55%,更优选为25~52%。在一些实施方式中,可包含20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%、35.5%、36%、36.5%、37%、37.5%、38%、38.5%、39%、39.5%、40%、40.5%、41%、41.5%、42%、42.5%、43%、43.5%、44%、44.5%、45%、45.5%、46%、46.5%、47%、47.5%、48%、48.5%、49%、49.5%、50%、50.5%、51%、51.5%、52%、52.5%、53%、53.5%、54%、54.5%、55%、55.5%、56%、56.5%、57%、57.5%、58%、58.5%、59%、59.5%、60%的P 2O 5
合适量的B 2O 3在玻璃中可以修补玻璃内部网络断键,提升玻璃的化学稳定性,提高玻璃的折射率,若其含量超过16%,玻璃的ΔP C,s与ΔP C,t值上升,难以达到设计要求。因此,B 2O 3的含量为16%以下,优选为10%,更优选为6%以下。在一些实施方式中,若玻璃的化学稳定性和折射率有富余,则进一步优选不含有B 2O 3。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%的B 2O 3
合适量的F(氟)能够降低玻璃的ΔP C,s与ΔP C,t值,若其含量超过3%,玻璃在熔炼过程中的挥发不易控制,玻璃的折射率与阿贝数难以控制在期望的范围内,因此其含量限定在3%以下,优选为2%以下,更优选为1%以下。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%的F。
发明人研究发现,B 2O 3在与P 2O 5、F共存时,三种组分的相对含量变化会带来玻璃结构的变化,从而导致玻璃主要性能发生变化。在一些实施方式中,当B 2O 3/(P 2O 5+F)的值超过0.7时,玻璃的ΔP C,s与ΔP C,t值急剧上升,难以达到设计要求,同时玻璃的折射率温度系数急剧上升。因此B 2O 3/(P 2O 5+F)的值优选为0.7以下,更优选为0.5以下,进一步优选为0.3以下。在一些实施方式中,B 2O 3/(P 2O 5+F)的值可为0、大于0、0.01、0.03、0.05、0.07、0.1、0.13、0.15、0.17、0.2、0.23、0.25、0.27、0.3、0.33、0.35、0.37、0.4、0.43、0.45、0.47、0.5、0.53、0.55、0.57、0.6、0.65、0.67、0.7。
Al 2O 3在玻璃中可以修补玻璃内部网络断键,明显地提升玻璃的化学稳定性,若其含量超过10%,玻璃的ΔP C,s与ΔP C,t值上升,难以达到设计要求,同时玻璃的稳定性下降,容易导致玻璃失透,且玻璃熔化温度升高,内部产生不熔物的风险增加。若Al 2O 3的含量低于0.5%,提升化学稳定性的作用不明显。因此,Al 2O 3的含量为0.5~10%,优选为1~7%,更优选为1.5~6%。在一些实施方式中,可包含0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Al 2O 3
BaO、SrO、CaO、MgO均属于碱土金属氧化物,在硅酸盐体系的重冕玻璃中可以提升玻璃的折射率,增加玻璃的稳定性。在本发明的磷酸盐体系玻璃中,发明人通过大量实验研究发现,上述四种碱土金属氧化物对玻璃的稳定性、ΔP C,s值、ΔP C,t值、化学稳定性影响是不同的,彼此之间存在 复杂的协同效应。
从提升玻璃稳定性的角度来讲,BaO优于SrO优于CaO优于MgO,发明人进一步研究发现,当上述四种氧化物组合使用时,比单独使用一种碱土金属氧化物提升玻璃稳定性的效果更佳。从降低玻璃ΔP C,s与ΔP C,t值的角度来讲,CaO优于BaO优于SrO优于MgO。从提升玻璃化学稳定性的角度来讲,MgO优于CaO优于SrO优于BaO。因此,在折射率与阿贝数达到设计要求的前提下,如何平衡玻璃的稳定性、ΔP C,s值、ΔP C,t值和化学稳定性等关键指标是一个综合考虑的问题。
于本发明玻璃而言,稳定性是优先考虑的问题,若玻璃的稳定性差,则难以形成玻璃。因此,在本发明玻璃体系中,碱土金属氧化物优先考虑使用BaO,若其含量低于10%,玻璃的稳定性快速下降,甚至不能形成玻璃,玻璃的折射率与色散难以达到设计要求;若其含量高于50%,玻璃稳定性下降,化学稳定性快速下降。因此,BaO的含量为10~50%,优选为15~48%,更优选为20~45%。在一些实施方式中,可包含10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%、16.5%、17%、17.5%、18%、18.5%、19%、19.5%、20%、20.5%、21%、21.5%、22%、22.5%、23%、23.5%、24%、24.5%、25%、25.5%、26%、26.5%、27%、27.5%、28%、28.5%、29%、29.5%、30%、30.5%、31%、31.5%、32%、32.5%、33%、33.5%、34%、34.5%、35%、35.5%、36%、36.5%、37%、37.5%、38%、38.5%、39%、39.5%、40%、40.5%、41%、41.5%、42%、42.5%、43%、43.5%、44%、44.5%、45%、45.5%、46%、46.5%、47%、47.5%、48%、48.5%、49%、49.5%、50%的BaO。
考虑到降低玻璃的ΔP C,s值与ΔP C,t值,提升玻璃的化学稳定性,玻璃中可以含有合适量的CaO,若其含量低于2%,上述作用不明显,若其含量超过15%,玻璃的稳定性快速下降,色散快速上升,阿贝数难以达到设计要求。因此CaO的含量限定为2~15%,优选为3~12%,更优选为4~10%。在一些实施方式中,可包含2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、 6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%的CaO。
玻璃的化学稳定性也是关键指标,尤其是需要工作在恶劣条件的情况下。合适量的MgO可以明显提升玻璃的化学稳定性,若其含量低于1%,提升化学稳定性的作用不明显;若其含量超过11%,玻璃的稳定性急剧下降,玻璃陶瓷化倾向增加。因此,MgO的含量限定为1~11%,优选为2~8%,更优选为3~8%。在一些实施方式中,可包含1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%的MgO。
在一些实施方式中,当MgO/CaO的值优选为0.2~1.5,更优选为0.3~1.3,进一步优选为0.4~1.1时,玻璃的稳定性和化学稳定性最佳。在一些实施方式中,MgO/CaO的值可为0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5。
合适量的SrO可以提升玻璃的稳定性,尤其在BaO含量超过30%的情况下,含有SrO可以在保证玻璃具备较低的ΔP C,s与ΔP C,t值的情况下提升玻璃的化学稳定性;若SrO的含量超过15%,玻璃的稳定性降低。因此,SrO的含量限定为15%以下,优选为10%以下,更优选为8%以下。在一些实施方式中,进一步优选不含有SrO。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%的SrO。
发明人通过大量研究发现,BaO、SrO、CaO、MgO在玻璃中存在复杂的协同作用,在一些实施方式中,优选(CaO+SrO+MgO)/BaO的值为0.1~1.5,更优选为0.15~1.0,进一步优选为0.15~0.9,玻璃的稳定性、ΔP C,s值、ΔP C,t值以及玻璃的化学稳定性最佳。在一些实施方式中,(CaO+SrO+MgO)/BaO的值可为0.1、0.15、0.2、0.25、0.3、0.35、0.4、 0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5。
碱土金属氧化物与P 2O 5均为本发明玻璃的主要组分,其相对含量对玻璃的稳定性、折射率、折射率温度系数以及玻璃的转变温度有较大的影响。在一些实施方式中,若(BaO+SrO+CaO+MgO)/P 2O 5的值超过2.0,玻璃的折射率温度系数快速上升,难以达到设计要求,玻璃的化学稳定性变差,转变温度上升;若(BaO+SrO+CaO+MgO)/P 2O 5的值低于0.4,则需要含有更多的高折射氧化物以满足折射率的要求,玻璃容易分相甚至陶瓷化。因此,优选(BaO+SrO+CaO+MgO)/P 2O 5的范围为0.4~2.0,更优选为0.6~1.7,进一步优选为0.8~1.5。在一些实施方式中,(BaO+SrO+CaO+MgO)/P 2O 5的值可为0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、1.95、2.0。
相对于碱土金属氧化物,ZnO更有利于降低玻璃的ΔP C,s值与ΔP C,t值,并提升玻璃的化学稳定性,但若其含量超过16%,玻璃变得非常不稳定,同时玻璃的折射率温度系数快速上升,因此ZnO的含量限定为16%以下。在一些实施方式中,若ZnO的含量低于0.1%,玻璃中容易出现结石。因此,ZnO的含量优选为0.1~10%,更优选为0.1~5%。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.15%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%、15%、15.5%、16%的ZnO。
在一些实施方式中,玻璃中存在合适量的ZnO会改善大量添加碱土金属氧化物带来的玻璃不稳定的问题。当ZnO/(CaO+SrO+MgO+BaO)的值低于0.001时,上述效果不明显;当ZnO/(CaO+SrO+MgO+BaO)的值超过0.36时,玻璃的折射率温度系数快速上升,玻璃陶瓷化倾向增加。因此,ZnO/(CaO+SrO+MgO+BaO)的值优选为0.001~0.36,更优选为0.001~0.25, 进一步优选为0.001~0.15。在一些实施方式中,ZnO/(CaO+SrO+MgO+BaO)的值可为0.001、0.003、0.005、0.007、0.01、0.015、0.02、0.025、0.03、0.035、0.04、0.045、0.05、0.055、0.06、0.065、0.07、0.075、0.08、0.085、0.09、0.095、0.10、0.11、0.12、0.13、0.14、0.15、0.16、0.17、0.18、0.19、0.20、0.21、0.22、0.23、0.24、0.25、0.26、0.27、0.28、0.29、0.30、0.31、0.32、0.33、0.34、0.35、0.36。
少量的ZrO 2在玻璃中可以提升玻璃的化学稳定性,若其含量超过3%,玻璃的ΔP C,s与ΔP C,t值快速上升,由于本发明玻璃属于磷酸盐系统玻璃,需要在较低温度下熔炼,超过3%的ZrO 2容易导致玻璃内部出现大量结石。因此,ZrO 2的含量限定为3%以下,优选为2%以下,更优选为1%以下。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、2.5%、2.6%、2.7%、2.8%、2.9%、3.0%的ZrO 2
Nb 2O 5、TiO 2、WO 3、Bi 2O 3、Ta 2O 5属于高折射率高色散氧化物,在玻璃中可以调节玻璃的折射率和阿贝数,若其合计含量Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5超过10%,玻璃的稳定性下降,玻璃的阿贝数难以达到设计要求。因此,Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5为10%以下,优选为8%以下,更优选7%以下。在一些实施方式中,Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5可为0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%。
上述高折射率高色散氧化物中,Nb 2O 5降低ΔP C,s与ΔP C,t值的能力较差,因此其含量限定在5%以下,优选为3%以下,更优选为2%以下。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的Nb 2O 5
合适量的WO 3可以降低玻璃的ΔP C,s与ΔP C,t值,但若其含量超过5%,玻璃的透过率快速下降。因此WO 3的含量限定在5%以下,优选为3%以下, 更优选为2%以下。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的WO 3
合适量的Bi 2O 3可以降低玻璃的ΔP C,s与ΔP C,t值,若其含量超过10%,在熔炼过程中Bi 2O 3会剧烈腐蚀铂金制品,导致熔炼不易进行。因此Bi 2O 3的含量限定在10%以下,优选为8%以下,更优选为6%以下。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Bi 2O 3
Ta 2O 5可以适当降低玻璃的ΔP C,s与ΔP C,t值,由于Ta 2O 5属于稀有组分,原料价格高昂,因此其含量限定在5%以下,优选3%以下,更优选为不含有。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%的Ta 2O 5
TiO 2降低ΔP C,s与ΔP C,t值的能力非常强,同时还可以显著提升玻璃的化学稳定性,若其含量低于0.5%,上述效果不明显;若其含量高于8%,玻璃的色散快速上升,阿贝数低于设计要求。因此,TiO 2的含量为0~8%,优选为0.5~8%,更优选为1~6%,进一步优选为1~5%。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%的TiO 2
La 2O 3、Gd 2O 3、Y 2O 3属于高折射低色散氧化物,在玻璃中可以保证较高阿贝数的同时快速地提升玻璃的折射率,这对生产过程中折射率的精确控制特别重要。为了实现上述性能,在一些实施方式中,La 2O 3、Gd 2O 3、Y 2O 3的合计含量La 2O 3+Gd 2O 3+Y 2O 3优选在0.1%以上。发明人研究发现,La 2O 3、Gd 2O 3、Y 2O 3降低玻璃ΔP C,s与ΔP C,t值虽然比高折射率高色散氧化物的能力低,但少量的含有不但可以调节玻璃的折射率,还可以增强玻璃的稳定性,若其合计含量La 2O 3+Gd 2O 3+Y 2O 3高于10%,玻璃的ΔP C,s与ΔP C,t值难以达到设计要求,玻璃的稳定性也会下降。因此,本发明中La 2O 3+Gd 2O 3+Y 2O 3的含量范围为0~10%,优选为0.1~8%,更优选为0.1~6%。在一些实施方式中, La 2O 3+Gd 2O 3+Y 2O 3可为0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%。
本发明通过大量实验研究发现,上述的高折射低色散氧化物(La 2O 3、Gd 2O 3、Y 2O 3)与高折射高色散氧化物(Nb 2O 5、TiO 2、WO 3、Bi 2O 3、Ta 2O 5)的含量的相对值对玻璃的ΔP C,s与ΔP C,t值与玻璃的稳定性有较大关联。在一些实施方式中,当(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)的值低于0.3时,虽然有利于玻璃的ΔP C,s与ΔP C,t值满足设计要求,但是玻璃的稳定性快速下降;当(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)的值高于4.3时,玻璃的组分设计自由度上升,玻璃的稳定性能达到要求,但玻璃的ΔP C,s与ΔP C,t值快速下降。因此,为了平衡玻璃的稳定性与ΔP C,s与ΔP C,t值,(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)的值优选为0.3~4.3,更优选为0.4~3.5,进一步优选为0.5~1.5。在一些实施方式中,(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)的值可为0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.05、1.1、1.15、1.2、1.25、1.3、1.35、1.4、1.45、1.5、1.55、1.6、1.65、1.7、1.75、1.8、1.85、1.9、1.95、2.0、2.05、2.1、2.15、2.2、2.25、2.3、2.35、2.4、2.45、2.5、2.55、2.6、2.65、2.7、2.75、2.8、2.85、2.9、2.95、3.0、3.05、3.1、3.15、3.2、3.25、3.3、3.35、3.4、3.45、3.5、3.55、3.6、3.65、3.7、3.75、3.8、3.85、3.9、3.95、4.0、4.05、4.1、4.15、4.2、4.25、4.3。
Li 2O、Na 2O、K 2O属于碱金属氧化物,降低ΔP C,s与ΔP C,t值的能力较为接近,但对玻璃的稳定性、化学稳定性以及对玻璃转变温度的影响有较大的差别。综合来看,合适量的Li 2O可以快速降低玻璃的转变温度,满足精密压型的要求,还可以增强玻璃的化学稳定性和强度,若其含量低于0.5%,上述效果不明显,尤其是玻璃的转变温度难以达到设计要求;若其含量高于10%,玻璃的稳定性快速下降,玻璃的ΔP C,s与ΔP C,t高于设计要求。因 此,Li 2O的含量为0.5~10%,优选为0.5~5%,更优选为1~4%。在一些实施方式中,可包含0.5%、0.6%、0.7%、0.8%、0.9%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%的Li 2O。
在玻璃化学稳定性、ΔP C,s与ΔP C,t值还存在富余的情况下,玻璃中还可以含有少量Na 2O与K 2O,以进一步降低玻璃的转变温度,提升精密压型(如非球面精密压型)的良品率,若其合计含量Na 2O+K 2O高于10%,玻璃的稳定性快速恶化。因此,Na 2O+K 2O优选为10%以下,更优选为8%以下,进一步优选为5%以下。在一些实施方式中,考虑到Na 2O减弱玻璃化学稳定性的能力弱于K 2O,因此优选含有Na 2O。在一些实施方式中,Na 2O+K 2O可为0%、大于0%、0.01%、0.05%、0.1%、0.5%、1%、1.5%、2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%。
在一些实施方式中,(Na 2O+K 2O)/Li 2O的值优选为2.5以下,更优选为2.0以下,进一步优选为1.0以下时,玻璃的化学稳定性、ΔP C,s与ΔP C,t值、折射率温度系数以及转变温度最为平衡。在一些实施方式中,(Na 2O+K 2O)/Li 2O的值可为0、大于0、0.01、0.05、0.1、0.15、0.2、0.25、0.3、0.35、0.4、0.45、0.5、0.55、0.6、0.65、0.7、0.75、0.8、0.85、0.9、0.95、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5。
Sb 2O 3在玻璃中可以起到澄清剂作用,同时还可以降低玻璃的ΔP C,s与ΔP C,t值,若其含量高于3%,玻璃溶液容易腐蚀铂金制品,不仅造成贵重资产损失,而且容易在玻璃内部产生铂金夹杂物以及导致透过率快速恶化。因此,Sb 2O 3的含量限定在3%以下,优选为2%以下,更优选为1%以下。在一些实施方式中,若玻璃溶液排除气泡的能力有富余,进一步优选不含有Sb 2O 3。在一些实施方式中,可包含0%、大于0%、0.01%、0.05%、0.1%、0.2%、0.3%、0.4%、0.5%、0.6%、0.7%、0.8%、0.9%、1.0%、1.1%、1.2%、1.3%、1.4%、1.5%、1.6%、1.7%、1.8%、1.9%、2.0%、2.1%、2.2%、2.3%、2.4%、 2.5%、2.6%、2.7%、2.8%、2.9%、3.0%的Sb 2O 3
<不应含有的组分>
本发明玻璃中,V、Cr、Mn、Fe、Co、Ni、Cu、Ag以及Mo等过渡金属的氧化物,即使单独或复合地少量含有的情况下,玻璃也会被着色,在可见光区域的特定的波长产生吸收,从而减弱本发明的提高可见光透过率效果的性质,因此,特别是对于可见光区域波长的透过率有要求的光学玻璃,优选实际上不含有。
Th、Cd、Tl、Os、Be以及Se的氧化物,近年来作为有害的化学物质而有控制使用的倾向,不仅在玻璃的制造工序,直至加工工序以及产品化后的处置上对环境保护的措施是必需的。因此,在重视对环境的影响的情况下,除了不可避免地混入以外,优选实际上不含有它们。由此,光学玻璃变得实际上不包含污染环境的物质。因此,即使不采取特殊的环境对策上的措施,本发明的光学玻璃也能够进行制造、加工以及废弃。
为了实现环境友好,本发明的光学玻璃优选不含有As 2O 3和PbO。虽然As 2O 3具有消除气泡和较好的防止玻璃着色的效果,但As 2O 3的加入会加大玻璃对熔炉特别是对铂金熔炉的铂金侵蚀,导致更多的铂金离子进入玻璃,对铂金熔炉的使用寿命造成不利影响。PbO可显著提高玻璃的高折射率和高色散性能,但PbO和As 2O 3都造成环境污染的物质。
本文所记载的“不含有”“0%”是指没有故意将该化合物、分子、离子或元素等作为原料添加到本发明光学玻璃中;但作为生产光学玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的光学玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
下面,对本发明的光学玻璃的性能进行说明。
<折射率与阿贝数>
光学玻璃的折射率(n d)与阿贝数(ν d)按照《GB/T 7962.1—2010》规定的方法测试。
在一些实施方式中,本发明光学玻璃的折射率(n d)的范围为1.58~ 1.67,优选折射率(n d)的范围为1.59~1.66,更优选折射率(n d)的范围为1.60~1.66。在一些实施方式中,光学玻璃的折射率可为1.580、1.585、1.590、1.595、1.600、1.605、1.610、1.615、1.620、1.625、1.630、1.635、1.640、1.645、1.650、1.655、1.660、1.665、1.670。
在一些实施方式中,本发明光学玻璃的阿贝数(ν d)的范围为50~63,优选阿贝数(ν d)的范围为51~61,更优选阿贝数(ν d)的范围为52~58。在一些实施方式中,光学玻璃的阿贝数可为50.0、50.5、51.0、51.5、52.0、52.5、53.0、53.5、54.0、54.5、55.0、55.5、56.0、56.5、57.0、57.5、58.0、58.5、59.0、59.5、60.0、60.5、61.0、61.5、62.0、62.5、63.0。
<ΔP C,s与ΔP C,t值>
光学玻璃的ΔP C,s与ΔP C,t值按照《GB/T 7962.1—2010》规定的方法测试玻璃的n F、n C、n s、n t值,按以下公式进行计算:
P C,s=(n C-n s)/(n F-n C)
ΔP C,s=P C,s-0.4017-0.002365ν d
P C,t=(n C-n t)/(n F-n C)
ΔP C,t=P C,t-0.5462-0.004713ν d
在一些实施方式中,本发明光学玻璃的ΔP C,s值为0以下,优选为-0.0050以下,更优选为-0.0100以下。
在一些实施方式中,本发明光学玻璃的ΔP C,t值为-0.0020以下,优选ΔP C,t值为-0.01以下,更优选ΔP C,t值为-0.02以下,进一步优选ΔP C,t值为-0.025以下。
<耐水作用稳定性>
光学玻璃的耐水作用稳定性(D W)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐水作用稳定性(D W)为2类以上,优选为1类。
<耐酸作用稳定性>
光学玻璃的耐酸作用稳定性(D A)(粉末法)按照《GB/T 17129》规定的方法测试。
在一些实施方式中,本发明光学玻璃的耐酸作用稳定性(D A)为4类以上,优选为3类以上,更优选为2类以上。
<折射率温度系数>
光学玻璃的折射率温度系数(dn/dt)按照《GB/T 7962.4—2010》规定方法,测试在20~40℃范围光学玻璃的折射率温度系数(d线dn/dt relative(10 -6/℃))
在一些实施方式中,本发明光学玻璃的折射率温度系数(dn/dt)为0以下,优选为-1.0×10 -6/℃以下,更优选为-3.0×10 -6/℃以下。
<转变温度>
光学玻璃的转变温度(T g)按照《GB/T7962.16-2010》规定的方法进行测试。
在一些实施方式中,本发明光学玻璃的转变温度(T g)为570℃以下,优选为560℃以下,更优选为550℃以下。
[光学玻璃的制造方法]
本发明光学玻璃的制造方法如下:本发明的玻璃采用常规原料和常规工艺生产,使用碳酸盐、硝酸盐、硫酸盐、磷酸盐、偏磷酸盐、氢氧化物、氧化物等为原料,按常规方法配料后,将配好的炉料投入到1100~1350℃的熔炼炉(如铂金坩埚、石英坩埚等)中熔制,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。本领域技术人员能够根据实际需要,适当地选择原料、工艺方法和工艺参数。
[玻璃预制件和光学元件]
可以使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,由所制成的光学玻璃来制作玻璃预制件。即,可以通过对光学玻璃进行磨削和研磨等机械加工来制作玻璃预制件,或通过对由光学玻 璃制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件,或通过对进行研磨加工而制成的预成型坯进行精密冲压成型来制作玻璃预制件。
需要说明的是,制备玻璃预制件的手段不限于上述手段。如上所述,本发明的光学玻璃对于各种光学元件和光学设计是有用的,其中特别优选由本发明的光学玻璃形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。本发明玻璃还可采用一次滴料成型的方法来制造玻璃预制件。
本发明的玻璃预制件与光学元件均由上述本发明的光学玻璃形成。本发明的玻璃预制件具有光学玻璃所具有的优异特性;本发明的光学元件具有光学玻璃所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
[光学仪器]
本发明光学玻璃或光学玻璃所形成的光学元件可制作如照相设备、摄像设备、显示设备和监控设备等光学仪器。本发明光学玻璃或光学元件适合用于车载照明仪器、光学设备,应用于车载等领域。
实施例
<光学玻璃实施例>
为了进一步清楚地阐释和说明本发明的技术方案,提供以下的非限制性实施例。
本实施例采用上述光学玻璃的制造方法得到具有表1~表2所示组成的光学玻璃。另外,通过本发明所述的测试方法测定各玻璃的特性,并将测定结果表示在表1~表2中,其中用M1表示La 2O 3+Gd 2O 3+Y 2O 3,用M2表示Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5,用K1表示B 2O 3/(P 2O 5+F),用K2表示(BaO+SrO+CaO+MgO)/P 2O 5,用K3表示ZnO/(CaO+SrO+MgO+BaO),用K4表示 (La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5),用K5表示(CaO+SrO+MgO)/BaO,用K6表示MgO/CaO,用K7表示(Na 2O+K 2O)/Li 2O。
表1.
Figure PCTCN2021131806-appb-000001
Figure PCTCN2021131806-appb-000002
表2.
Figure PCTCN2021131806-appb-000003
Figure PCTCN2021131806-appb-000004
<玻璃预制件实施例>
将光学玻璃实施例1~15所得到的玻璃使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,来制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜等的预制件。
<光学元件实施例>
将上述玻璃预制件实施例所得到的这些预制件退火,在降低玻璃内部应力的同时对折射率进行微调,使得折射率等光学特性达到所需值。
接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜。所得到的光学元件的表面上还可涂布防反射膜。
<光学仪器实施例>
将上述光学元件实施例制得的光学元件通过光学设计,通过使用一个或多个光学元件形成光学部件或光学组件,可用于例如成像设备、传感器、显微镜、医药技术、数字投影、通信、光学通信技术/信息传输、汽车领域中的光学/照明、光刻技术、准分子激光器、晶片、计算机芯片以及包括这样的电路及芯片的集成电路和电子器件。

Claims (17)

  1. 光学玻璃,其特征在于,其组分以重量百分比表示,含有:P 2O 5:20~60%;Al 2O 3:0.5~10%;BaO:10~50%;CaO:2~15%;MgO:1~11%;SrO:0~15%;Li 2O:0.5~10%,其中(CaO+SrO+MgO)/BaO为0.1~1.5。
  2. 根据权利要求1所述的光学玻璃,其特征在于,其组分以重量百分比表示,还含有:ZnO:0~16%;和/或B 2O 3:0~16%;和/或ZrO 2:0~3%;和/或Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~10%;和/或La 2O 3+Gd 2O 3+Y 2O 3:0~10%;和/或Na 2O+K 2O:0~10%;和/或Sb 2O 3:0~3%;和/或F:0~3%。
  3. 光学玻璃,其特征在于,其组分以重量百分比表示,由P 2O 5:20~60%;Al 2O 3:0.5~10%;BaO:10~50%;CaO:2~15%;MgO:1~11%;SrO:0~15%;ZnO:0~16%;Li 2O:0.5~10%;B 2O 3:0~16%;ZrO 2:0~3%;Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~10%;La 2O 3+Gd 2O 3+Y 2O 3:0~10%;Na 2O+K 2O:0~10%;Sb 2O 3:0~3%;F:0~3%组成。
  4. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(CaO+SrO+MgO)/BaO为0.1~1.5,优选(CaO+SrO+MgO)/BaO为0.15~1.0,更优选(CaO+SrO+MgO)/BaO为0.15~0.9。
  5. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:ZnO/(CaO+SrO+MgO+BaO)为0.001~0.36,优选ZnO/(CaO+SrO+MgO+BaO)为0.001~0.25,更优选ZnO/(CaO+SrO+MgO+BaO)为0.001~0.15。
  6. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:MgO/CaO为0.2~1.5,优选MgO/CaO为0.3~1.3,更优选MgO/CaO为0.4~1.1。
  7. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)为0.3~4.3,优选(La 2O 3+Gd 2O 3+Y 2O 3) /(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)为0.4~3.5,更优选(La 2O 3+Gd 2O 3+Y 2O 3)/(Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5)为0.5~1.5。
  8. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(Na 2O+K 2O)/Li 2O为2.5以下,优选(Na 2O+K 2O)/Li 2O为2.0以下,更优选(Na 2O+K 2O)/Li 2O为1.0以下。
  9. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:B 2O 3/(P 2O 5+F)为0.7以下,优选B 2O 3/(P 2O 5+F)为0.5以下,更优选B 2O 3/(P 2O 5+F)为0.3以下。
  10. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:(BaO+SrO+CaO+MgO)/P 2O 5为0.4~2.0,优选(BaO+SrO+CaO+MgO)/P 2O 5为0.6~1.7,更优选(BaO+SrO+CaO+MgO)/P 2O 5为0.8~1.5。
  11. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:P 2O 5:23~55%,优选P 2O 5:25~52%;和/或Al 2O 3:1~7%,优选Al 2O 3:1.5~6%;和/或BaO:15~48%,优选BaO:20~45%;和/或CaO:3~12%,优选CaO:4~10%;和/或MgO:2~8%,优选MgO:3~8%;和/或SrO:0~10%,优选SrO:0~8%;和/或ZnO:0.1~10%,优选ZnO:0.1~5%;和/或Li 2O:0.5~5%,优选Li 2O:1~4%;和/或B 2O 3:0~10%,优选B 2O 3:0~6%;和/或ZrO 2:0~2%,优选ZrO 2:0~1%;和/或Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~8%,优选Nb 2O 5+TiO 2+WO 3+Bi 2O 3+Ta 2O 5:0~7%;和/或La 2O 3+Gd 2O 3+Y 2O 3:0.1~8%,优选La 2O 3+Gd 2O 3+Y 2O 3:0.1~6%;和/或Na 2O+K 2O:0~8%,优选Na 2O+K 2O:0~5%;和/或Sb 2O 3:0~2%,优选Sb 2O 3:0~1%;和/或F:0~2%,优选F:0~1%。
  12. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,其组分以重量百分比表示,其中:Nb 2O 5:0~5%,优选Nb 2O 5:0~3%,更优选Nb 2O 5:0~2%;和/或WO 3:0~5%,优选WO 3:0~3%,更优选WO 3:0~2%;和/或Bi 2O 3:0~10%,优选Bi 2O 3:0~8%,更优选Bi 2O 3:0~6%;和/或Ta 2O 5: 0~5%,优选Ta 2O 5:0~3%;和/或TiO 2:0~8%,优选TiO 2:0.5~8%,更优选TiO 2:1~6%,进一步优选TiO 2:1~5%。
  13. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的折射率n d为1.58~1.67,优选折射率n d为1.59~1.66,更优选折射率n d为1.60~1.66;阿贝数ν d为50~63,优选阿贝数ν d为51~61,更优选阿贝数ν d为52~58。
  14. 根据权利要求1~3任一权利要求所述的光学玻璃,其特征在于,所述光学玻璃的ΔP C,s值为0以下,优选ΔP C,s值为-0.0050以下,更优选ΔP C,s值为-0.0100以下;和/或ΔP C,t值为-0.0020以下,优选ΔP C,t值为-0.01以下,更优选ΔP C,t值为-0.02以下,进一步优选ΔP C,t值为-0.025以下;和/或耐水作用稳定性D W为2类以上,优选耐水作用稳定性D W为1类;和/或耐酸作用稳定性D A为4类以上,优选耐酸作用稳定性D A为3类以上,更优选耐酸作用稳定性D A为2类以上;和/或折射率温度系数dn/dt为0以下,优选折射率温度系数dn/dt为-1.0×10 -6/℃以下,更优选折射率温度系数dn/dt为-3.0×10 -6/℃以下;和/或转变温度T g为570℃以下,优选转变温度T g为560℃以下,更优选转变温度T g为550℃以下。
  15. 玻璃预制件,其特征在于,采用权利要求1~14任一权利要求所述的光学玻璃制成。
  16. 光学元件,其特征在于,采用权利要求1~14任一权利要求所述的光学玻璃或权利要求15所述的玻璃预制件制成。
  17. 光学仪器,其特征在于,含有权利要求1~14任一权利要求所述的光学玻璃;和/或含有权利要求16所述的光学元件。
PCT/CN2021/131806 2020-12-18 2021-11-19 光学玻璃、光学元件及光学仪器 WO2022127513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011503912.2A CN114644454B (zh) 2020-12-18 2020-12-18 光学玻璃、光学元件及光学仪器
CN202011503912.2 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022127513A1 true WO2022127513A1 (zh) 2022-06-23

Family

ID=81990702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131806 WO2022127513A1 (zh) 2020-12-18 2021-11-19 光学玻璃、光学元件及光学仪器

Country Status (2)

Country Link
CN (1) CN114644454B (zh)
WO (1) WO2022127513A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130136A (ja) * 1982-01-25 1983-08-03 Hoya Corp 光学ガラス
CN101362629A (zh) * 2007-08-10 2009-02-11 株式会社小原 光学玻璃
CN101643314A (zh) * 2008-08-06 2010-02-10 柯尼卡美能达精密光学株式会社 光学玻璃及光学元件
CN101973705A (zh) * 2010-09-28 2011-02-16 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN104230166A (zh) * 2013-06-17 2014-12-24 成都光明光电股份有限公司 光学玻璃及光学元件
CN104803603A (zh) * 2014-01-23 2015-07-29 成都光明光电股份有限公司 光学玻璃及光学元件

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101792258A (zh) * 2009-01-30 2010-08-04 株式会社小原 光学玻璃、光学元件和精密加压成形用预成形品
CN114853334A (zh) * 2018-12-03 2022-08-05 成都光明光电股份有限公司 光学玻璃、光学预制件、光学元件和光学仪器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130136A (ja) * 1982-01-25 1983-08-03 Hoya Corp 光学ガラス
CN101362629A (zh) * 2007-08-10 2009-02-11 株式会社小原 光学玻璃
CN101643314A (zh) * 2008-08-06 2010-02-10 柯尼卡美能达精密光学株式会社 光学玻璃及光学元件
CN101973705A (zh) * 2010-09-28 2011-02-16 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN104230166A (zh) * 2013-06-17 2014-12-24 成都光明光电股份有限公司 光学玻璃及光学元件
CN107555783A (zh) * 2013-06-17 2018-01-09 成都光明光电股份有限公司 光学玻璃及光学元件
CN104803603A (zh) * 2014-01-23 2015-07-29 成都光明光电股份有限公司 光学玻璃及光学元件

Also Published As

Publication number Publication date
CN114644454B (zh) 2023-07-18
CN114644454A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
TWI756114B (zh) 光學玻璃
CN112125511B (zh) 光学玻璃
CN109970338B (zh) 光学玻璃、玻璃预制件、光学元件及光学仪器
WO2022193797A1 (zh) 高折射高色散光学玻璃及光学元件
CN111018342B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
JP2012229135A (ja) 光学ガラス、プレス成形用ガラス素材、光学素子およびその製造方法、ならびに接合光学素子
TW201619083A (zh) 玻璃、壓製成型用玻璃材料、光學元件胚料及光學元件
CN110963701A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2022267751A1 (zh) 特殊色散光学玻璃
TW201619084A (zh) 玻璃、壓製成型用玻璃材料、光學元件胚料及光學元件
WO2022062638A1 (zh) 光学玻璃、光学元件和光学仪器
CN112142322B (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
JP2013014454A (ja) 光学ガラス
TWI783603B (zh) 光學玻璃、玻璃預製件、光學元件及光學儀器
CN110937802B (zh) 光学玻璃
JP2013032232A (ja) 光学ガラス
JP7171241B2 (ja) 光学ガラスおよび光学素子
WO2023040558A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
WO2023035887A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
JP2012197217A (ja) 光学ガラス
WO2022127513A1 (zh) 光学玻璃、光学元件及光学仪器
CN110963702A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN114644455B (zh) 光学玻璃
JP7320110B2 (ja) 光学ガラスおよび光学素子
JP7488878B2 (ja) 光学ガラスおよび光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905442

Country of ref document: EP

Kind code of ref document: A1