WO2022127283A1 - 一种基于原子组装法制备镓基铟锡导电薄膜的方法 - Google Patents
一种基于原子组装法制备镓基铟锡导电薄膜的方法 Download PDFInfo
- Publication number
- WO2022127283A1 WO2022127283A1 PCT/CN2021/121723 CN2021121723W WO2022127283A1 WO 2022127283 A1 WO2022127283 A1 WO 2022127283A1 CN 2021121723 W CN2021121723 W CN 2021121723W WO 2022127283 A1 WO2022127283 A1 WO 2022127283A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gallium
- tin
- indium
- heat treatment
- coating machine
- Prior art date
Links
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 title claims abstract description 60
- 229910052733 gallium Inorganic materials 0.000 title claims abstract description 56
- RHZWSUVWRRXEJF-UHFFFAOYSA-N indium tin Chemical compound [In].[Sn] RHZWSUVWRRXEJF-UHFFFAOYSA-N 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000010438 heat treatment Methods 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 32
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 23
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims abstract description 23
- 229910052738 indium Inorganic materials 0.000 claims abstract description 18
- 229910052718 tin Inorganic materials 0.000 claims abstract description 17
- 238000001704 evaporation Methods 0.000 claims abstract description 13
- 230000008020 evaporation Effects 0.000 claims abstract description 10
- 239000000463 material Substances 0.000 claims abstract description 9
- 239000010408 film Substances 0.000 claims description 28
- 238000001771 vacuum deposition Methods 0.000 claims description 28
- 238000002360 preparation method Methods 0.000 claims description 14
- 239000010409 thin film Substances 0.000 claims description 14
- 238000000151 deposition Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 230000008021 deposition Effects 0.000 claims description 3
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 239000002245 particle Substances 0.000 claims description 3
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 3
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 229920001721 polyimide Polymers 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 229910001338 liquidmetal Inorganic materials 0.000 abstract description 12
- 230000008018 melting Effects 0.000 abstract 1
- 238000002844 melting Methods 0.000 abstract 1
- 238000007747 plating Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 5
- 239000004020 conductor Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
Definitions
- the invention relates to the technical field of electrode materials, in particular to a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method.
- Stretchable electronic devices are a new generation of electronic devices following the development of rigid electronic devices and flexible electronic devices.
- Traditional conductive materials cannot meet the requirements of stretchable electronic devices due to their high Young's modulus and low elongation.
- Gallium-based liquid metals combine electrical, thermal, mechanical and fluid properties with low toxicity, safety and high stability.
- the Young's modulus of gallium-based liquid metal is 5-6 orders of magnitude lower than that of common polymer substrates, and 10-12 orders of magnitude lower than that of traditional rigid, high-modulus, and intrinsically low-elongation metals and carbon-based conductive materials order of magnitude, and can still maintain a stable electrical conductivity after stretching 700%.
- After being prepared into a stretchable conductive element it can still stably transmit potential and current signals when anisotropic deformation is caused by force, that is, it shows high conductivity-strain. stability.
- Gallium-based liquid metals have gradually become one of the ideal materials for the preparation of flexible electronic devices such as flexible communication basebands, stretchable circuits, and stretchable electrodes.
- Gallium-based liquid metal alloys have poor film-forming properties due to their high surface tension and cannot be directly prepared into thin-film devices, which has become a technical problem that limits their large-scale commercial applications.
- a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method which solves the important technical bottleneck of preparing thin-film conductive elements from gallium-based liquid metal, and has great innovation and economic value.
- a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method includes the following preparation steps.
- step (2) the three materials of gallium, indium and tin are in the form of particles or targets.
- the purity of the gallium is between 99.9%-99.9999%, the purity of the indium is between 99.9%-99.9999%, and the purity of the tin is between 99.9%-99.9999%.
- step (5) the vacuum degree is reduced to 4 ⁇ 10 ⁇ 6 mbar by evacuation.
- step (9) the temperature of the vacuum heat treatment is set between 180°C and 250°C, and the heating time is greater than 1 hour.
- the cooling temperature of the vacuum heat treatment furnace is between 25°C and 30°C.
- the vacuum coating machine is a multi-evaporation source vacuum coating machine.
- the method adopts the atomic deposition method, which solves the problem that the existing gallium-based liquid metal is difficult to form a film due to its high surface energy, which makes it difficult to process the gallium-based liquid metal into a thin-film conductive component. And to achieve large-scale and mass production, it can be applied to stretchable conductive components on a large scale, and has very excellent application prospects.
- Example 1 is a schematic structural diagram of step (6) in the preparation method of Example 1.
- Example 2 is a schematic structural diagram of step (7) in the preparation method of Example 1.
- step (8) is a schematic structural diagram of step (8) in the preparation method of Example 1 before heat treatment.
- step (9) is a schematic structural diagram of step (9) in the preparation method of Example 1 after heat treatment.
- FIG. 5 is a schematic structural diagram of the preparation method of the preparation method of Example 1 in which step (10) is completed to prepare a gallium-based indium tin conductive film.
- a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method includes the following preparation steps.
- Step (1) Wipe and clean the evaporation tank of the vacuum coating machine with alcohol.
- the vacuum coating machine is a multi-evaporation source vacuum coating machine.
- Step (2) Prepare three materials of gallium, indium and tin with a purity of 99.9%-99.9999% for use; three of the materials are in the form of particles or targets.
- Step (3) Put the three materials of gallium, indium and tin into each evaporation tank of the vacuum coating machine.
- Step (4) The substrate is placed on the substrate frame of the vacuum coating machine and fixed; wherein, the substrate is one of polydimethylsiloxane, polyimide film or glass.
- Step (5) Close the chamber door of the vacuum coating machine, evacuate the chamber of the vacuum coating machine, and reduce the vacuum degree to 4 ⁇ 10 -6 mbar.
- step (6) regulates the current of the evaporation tank 11 in the vacuum coating machine 10, so that the gallium 3, the indium 4 and the tin 5 are evaporated at the same time, and the gallium atoms, the indium atoms and the tin atoms are hybridized and deposited at the same time. the surface of the substrate 6 to form a gallium indium tin atomic hybrid film.
- step (7) the deposition time is adjusted, so that the thickness of the GaInT atomic hybrid film is between 10 nm and 90000 nm, that is, a GaInT atomic hybrid thin film substrate is obtained.
- step (8) the chamber of the vacuum coating machine is filled with air until the chamber pressure is the same as the atmospheric pressure, and the gallium indium tin atomic hybrid film 7 is completely deposited on the surface of the substrate 6 to form gallium indium
- the gallium indium tin atom hybrid film substrate 8 is taken out from the vacuum coating machine.
- step (9) the gallium indium tin atomic hybrid film substrate 8 is placed in the vacuum heat treatment furnace 20, and the vacuum is evacuated and the temperature is set between 180 °C and 250 °C, and the heating time is For more than 1 hour, gallium atoms, indium atoms and tin atoms are alloyed on the substrate 6 to form a liquid gallium indium tin thin film 9 .
- step (10) turns off the heating device of the vacuum heat treatment furnace, and after the temperature of the vacuum heat treatment furnace drops to 25°C-30°C, fill the vacuum heat treatment furnace with air until the air pressure in the furnace is the same as the atmospheric pressure.
- the liquid gallium indium tin film 9 is completely deposited on the surface of the substrate 6 to form a gallium indium tin conductive film substrate; take out the gallium indium tin conductive film substrate to complete the preparation of the gallium indium tin conductive film.
- the method of this embodiment realizes the gallium-based indium tin conductive film of gallium-based liquid metal assembled from atoms by atomic assembly method and then heat treatment, thereby avoiding the technical problem that liquid metal prepared by traditional smelting method is difficult to form a film due to high surface tension.
- This technology solves an important technical bottleneck in the preparation of thin-film conductive components from gallium-based liquid metal, and has great innovation and economic value.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
Claims (8)
- 一种基于原子组装法制备镓基铟锡导电薄膜的方法,包括以下制备步骤:(1)用酒精擦拭清洗真空镀膜机的蒸发槽;(2)准备镓、铟及锡,待用;(3)将镓、铟及锡三种材料放入到真空镀膜机的各个蒸发槽中;(4)将基材置于真空镀膜机的基片架上并固定;(5)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空;(6)调控蒸发槽的电流,使镓、铟及锡同时蒸发,将镓原子、铟原子及锡原子杂化并同时沉积在基材的表面,以形成镓铟锡原子杂化薄膜;(7)调控沉积的时间,使得镓铟锡原子杂化薄膜厚度在10nm-90000nm之间,即获得镓铟锡原子杂化薄膜基材;(8)向真空镀膜机的腔室内充入空气,直至腔室气压与大气压相同时,将镓铟锡原子杂化薄膜基材从真空镀膜机中取出;(9)将镓铟锡原子杂化薄膜基材置于真空热处理炉中,使得镓铟锡原子杂化薄膜基材的镓原子、铟原子及锡原子在真空热处理炉中通过真空热处理合金化形成液态镓铟锡薄膜;(10)关闭真空热处理炉的加热装置,待真空热处理炉冷却后,向真空热处理炉中充入空气,直至炉中的气压与大气压相同时,取出镓基铟锡导电薄膜基材,完成镓基铟锡导电薄膜的制备。
- 根据权利要求1所述的方法,在步骤(2)中,所述镓、铟及锡三种材料为颗粒或者靶材形态。
- 根据权利要求1所述的方法,在步骤(2)中,所述镓的纯度在99.9%-99.9999%之间,所述铟的纯度在99.9%-99.9999%之间,所述锡的纯度在99.9%-99.9999%之间。
- 根据权利要求1所述的方法,在步骤(4)中,所述基材为聚二甲基硅氧烷、聚酰亚胺膜或者玻璃中的一种。
- 根据权利要求1所述的方法,在步骤(5)中,抽真空将真空度降至4×10 -6mbar。
- 根据权利要求1所述的方法,在步骤(9)中,真空热处理的温度设置在180℃-250℃之间,加热时间为大于1小时。
- 根据权利要求1所述的方法,在步骤(10)中,真空热处理炉的冷却温度在25℃-30℃之间。
- 根据权利要求1所述的方法,真空镀膜机为多蒸发源真空镀膜机。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011483749.8 | 2020-12-15 | ||
CN202011483749.8A CN112670028B (zh) | 2020-12-15 | 2020-12-15 | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022127283A1 true WO2022127283A1 (zh) | 2022-06-23 |
Family
ID=75405296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/121723 WO2022127283A1 (zh) | 2020-12-15 | 2021-09-29 | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN112670028B (zh) |
WO (1) | WO2022127283A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112670028B (zh) * | 2020-12-15 | 2022-11-01 | 东莞理工学院 | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013077547A (ja) * | 2011-09-15 | 2013-04-25 | Mitsubishi Materials Corp | 導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法 |
CN104099586A (zh) * | 2013-04-15 | 2014-10-15 | 中国科学院理化技术研究所 | 一种薄膜的制备方法 |
CN106011750A (zh) * | 2016-07-11 | 2016-10-12 | 中国科学院上海技术物理研究所 | 一种耐紫外辐照的银金合金薄膜及制备方法 |
CN109273169A (zh) * | 2018-09-18 | 2019-01-25 | 北京梦之墨科技有限公司 | 一种镓基透明导电薄膜及其制备方法、电子器件 |
CN111495210A (zh) * | 2020-05-11 | 2020-08-07 | 广东石油化工学院 | 一种超薄液态金属复合膜及制备方法和应用 |
CN112670028A (zh) * | 2020-12-15 | 2021-04-16 | 东莞理工学院 | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04346657A (ja) * | 1991-05-24 | 1992-12-02 | Fujitsu Ltd | 低融点金属の蒸着方法 |
CN101696481B (zh) * | 2009-10-23 | 2011-07-27 | 哈尔滨工业大学 | 用于微驱动元件的超高恢复应力Ti-Ni-Cu形状记忆合金薄膜的制备方法 |
CN102560371A (zh) * | 2011-12-31 | 2012-07-11 | 广东风华高新科技股份有限公司 | 一种金锡合金薄膜制备工艺 |
CN106498348B (zh) * | 2016-12-12 | 2019-02-01 | 中国科学院宁波材料技术与工程研究所 | 一种使用液态金属制备柔性电子线路的方法与装置 |
-
2020
- 2020-12-15 CN CN202011483749.8A patent/CN112670028B/zh active Active
-
2021
- 2021-09-29 WO PCT/CN2021/121723 patent/WO2022127283A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013077547A (ja) * | 2011-09-15 | 2013-04-25 | Mitsubishi Materials Corp | 導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法 |
CN104099586A (zh) * | 2013-04-15 | 2014-10-15 | 中国科学院理化技术研究所 | 一种薄膜的制备方法 |
CN106011750A (zh) * | 2016-07-11 | 2016-10-12 | 中国科学院上海技术物理研究所 | 一种耐紫外辐照的银金合金薄膜及制备方法 |
CN109273169A (zh) * | 2018-09-18 | 2019-01-25 | 北京梦之墨科技有限公司 | 一种镓基透明导电薄膜及其制备方法、电子器件 |
CN111495210A (zh) * | 2020-05-11 | 2020-08-07 | 广东石油化工学院 | 一种超薄液态金属复合膜及制备方法和应用 |
CN112670028A (zh) * | 2020-12-15 | 2021-04-16 | 东莞理工学院 | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN112670028A (zh) | 2021-04-16 |
CN112670028B (zh) | 2022-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102931055B (zh) | 一种多层石墨烯的减薄方法 | |
CN103215548B (zh) | 一种金属纳米颗粒掺杂石墨烯的制备方法 | |
US20120261167A1 (en) | Transparent Electrodes, Electrode Devices, and Associated Methods | |
CN103390674A (zh) | Czts柔性太阳电池及其制备方法 | |
US20160118619A1 (en) | Preparation Method of Glass Film, Photoelectric Device and Packaging Method Thereof, Display Device | |
US20230114347A1 (en) | Method of forming transition metal dichalcogenide thin film | |
CN103346073B (zh) | 一种β-碳化硅薄膜的制备方法 | |
US20180083220A1 (en) | Method for doping graphene, method for manufacturing graphene composite electrode, and graphene structure comprising same | |
WO2022127283A1 (zh) | 一种基于原子组装法制备镓基铟锡导电薄膜的方法 | |
KR101692514B1 (ko) | 기재 위에 대면적, 단결정, 단일층의 h-BN 박막을 형성하는 방법 및 그로부터 제조된 h-BN 박막 적층체 | |
JP2014170826A (ja) | 配線構造、配線形成方法および電子デバイス | |
CN104810114B (zh) | 高透光率柔性聚酰亚胺基底ito导电薄膜及其制备方法与应用 | |
CN103924191A (zh) | 在基片上镀制ito薄膜的方法 | |
CN107298437A (zh) | 一种pvd法低温制备石墨烯的方法 | |
JP2012077321A (ja) | 成膜基板の製造方法、成膜基板、および成膜装置 | |
CN111139526A (zh) | 一种利用离子束溅射沉积获得单晶氮化硼薄膜的方法 | |
CN105441877A (zh) | 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺 | |
JP2015512149A (ja) | 多層金属支持体 | |
CN106939405B (zh) | 一种石墨烯/氧化物复合光学薄膜的制备方法 | |
CN108754420A (zh) | 一种制备Cu掺杂AlN稀磁半导体薄膜的方法 | |
CN113061837A (zh) | 一种高透明的p型碘化亚铜导电薄膜的制备方法 | |
CN111826610B (zh) | 一种利用非晶碳低温制备石墨烯的方法 | |
TW201309826A (zh) | 氧化亞錫薄膜的製作方法 | |
CN109003889B (zh) | 一种柔性基底上ii-vi族半导体薄膜的制备方法 | |
US20200312659A1 (en) | Method for the preparation of gallium oxide/copper gallium oxide heterojunction |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21905213 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905213 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21905213 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.01.2024) |