WO2022127283A1 - 一种基于原子组装法制备镓基铟锡导电薄膜的方法 - Google Patents

一种基于原子组装法制备镓基铟锡导电薄膜的方法 Download PDF

Info

Publication number
WO2022127283A1
WO2022127283A1 PCT/CN2021/121723 CN2021121723W WO2022127283A1 WO 2022127283 A1 WO2022127283 A1 WO 2022127283A1 CN 2021121723 W CN2021121723 W CN 2021121723W WO 2022127283 A1 WO2022127283 A1 WO 2022127283A1
Authority
WO
WIPO (PCT)
Prior art keywords
gallium
tin
indium
heat treatment
coating machine
Prior art date
Application number
PCT/CN2021/121723
Other languages
English (en)
French (fr)
Inventor
巫运辉
吴文剑
方泽阳
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2022127283A1 publication Critical patent/WO2022127283A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables

Definitions

  • the invention relates to the technical field of electrode materials, in particular to a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method.
  • Stretchable electronic devices are a new generation of electronic devices following the development of rigid electronic devices and flexible electronic devices.
  • Traditional conductive materials cannot meet the requirements of stretchable electronic devices due to their high Young's modulus and low elongation.
  • Gallium-based liquid metals combine electrical, thermal, mechanical and fluid properties with low toxicity, safety and high stability.
  • the Young's modulus of gallium-based liquid metal is 5-6 orders of magnitude lower than that of common polymer substrates, and 10-12 orders of magnitude lower than that of traditional rigid, high-modulus, and intrinsically low-elongation metals and carbon-based conductive materials order of magnitude, and can still maintain a stable electrical conductivity after stretching 700%.
  • After being prepared into a stretchable conductive element it can still stably transmit potential and current signals when anisotropic deformation is caused by force, that is, it shows high conductivity-strain. stability.
  • Gallium-based liquid metals have gradually become one of the ideal materials for the preparation of flexible electronic devices such as flexible communication basebands, stretchable circuits, and stretchable electrodes.
  • Gallium-based liquid metal alloys have poor film-forming properties due to their high surface tension and cannot be directly prepared into thin-film devices, which has become a technical problem that limits their large-scale commercial applications.
  • a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method which solves the important technical bottleneck of preparing thin-film conductive elements from gallium-based liquid metal, and has great innovation and economic value.
  • a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method includes the following preparation steps.
  • step (2) the three materials of gallium, indium and tin are in the form of particles or targets.
  • the purity of the gallium is between 99.9%-99.9999%, the purity of the indium is between 99.9%-99.9999%, and the purity of the tin is between 99.9%-99.9999%.
  • step (5) the vacuum degree is reduced to 4 ⁇ 10 ⁇ 6 mbar by evacuation.
  • step (9) the temperature of the vacuum heat treatment is set between 180°C and 250°C, and the heating time is greater than 1 hour.
  • the cooling temperature of the vacuum heat treatment furnace is between 25°C and 30°C.
  • the vacuum coating machine is a multi-evaporation source vacuum coating machine.
  • the method adopts the atomic deposition method, which solves the problem that the existing gallium-based liquid metal is difficult to form a film due to its high surface energy, which makes it difficult to process the gallium-based liquid metal into a thin-film conductive component. And to achieve large-scale and mass production, it can be applied to stretchable conductive components on a large scale, and has very excellent application prospects.
  • Example 1 is a schematic structural diagram of step (6) in the preparation method of Example 1.
  • Example 2 is a schematic structural diagram of step (7) in the preparation method of Example 1.
  • step (8) is a schematic structural diagram of step (8) in the preparation method of Example 1 before heat treatment.
  • step (9) is a schematic structural diagram of step (9) in the preparation method of Example 1 after heat treatment.
  • FIG. 5 is a schematic structural diagram of the preparation method of the preparation method of Example 1 in which step (10) is completed to prepare a gallium-based indium tin conductive film.
  • a method for preparing a gallium-based indium tin conductive thin film based on an atomic assembly method includes the following preparation steps.
  • Step (1) Wipe and clean the evaporation tank of the vacuum coating machine with alcohol.
  • the vacuum coating machine is a multi-evaporation source vacuum coating machine.
  • Step (2) Prepare three materials of gallium, indium and tin with a purity of 99.9%-99.9999% for use; three of the materials are in the form of particles or targets.
  • Step (3) Put the three materials of gallium, indium and tin into each evaporation tank of the vacuum coating machine.
  • Step (4) The substrate is placed on the substrate frame of the vacuum coating machine and fixed; wherein, the substrate is one of polydimethylsiloxane, polyimide film or glass.
  • Step (5) Close the chamber door of the vacuum coating machine, evacuate the chamber of the vacuum coating machine, and reduce the vacuum degree to 4 ⁇ 10 -6 mbar.
  • step (6) regulates the current of the evaporation tank 11 in the vacuum coating machine 10, so that the gallium 3, the indium 4 and the tin 5 are evaporated at the same time, and the gallium atoms, the indium atoms and the tin atoms are hybridized and deposited at the same time. the surface of the substrate 6 to form a gallium indium tin atomic hybrid film.
  • step (7) the deposition time is adjusted, so that the thickness of the GaInT atomic hybrid film is between 10 nm and 90000 nm, that is, a GaInT atomic hybrid thin film substrate is obtained.
  • step (8) the chamber of the vacuum coating machine is filled with air until the chamber pressure is the same as the atmospheric pressure, and the gallium indium tin atomic hybrid film 7 is completely deposited on the surface of the substrate 6 to form gallium indium
  • the gallium indium tin atom hybrid film substrate 8 is taken out from the vacuum coating machine.
  • step (9) the gallium indium tin atomic hybrid film substrate 8 is placed in the vacuum heat treatment furnace 20, and the vacuum is evacuated and the temperature is set between 180 °C and 250 °C, and the heating time is For more than 1 hour, gallium atoms, indium atoms and tin atoms are alloyed on the substrate 6 to form a liquid gallium indium tin thin film 9 .
  • step (10) turns off the heating device of the vacuum heat treatment furnace, and after the temperature of the vacuum heat treatment furnace drops to 25°C-30°C, fill the vacuum heat treatment furnace with air until the air pressure in the furnace is the same as the atmospheric pressure.
  • the liquid gallium indium tin film 9 is completely deposited on the surface of the substrate 6 to form a gallium indium tin conductive film substrate; take out the gallium indium tin conductive film substrate to complete the preparation of the gallium indium tin conductive film.
  • the method of this embodiment realizes the gallium-based indium tin conductive film of gallium-based liquid metal assembled from atoms by atomic assembly method and then heat treatment, thereby avoiding the technical problem that liquid metal prepared by traditional smelting method is difficult to form a film due to high surface tension.
  • This technology solves an important technical bottleneck in the preparation of thin-film conductive components from gallium-based liquid metal, and has great innovation and economic value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种基于原子组装法制备镓基铟锡导电薄膜的方法,通过将高纯度的镓、铟及锡三种材料放置在真空镀膜机的蒸发槽中,在真空中通过加热将镓基液态金属的各组份形成原子沉积在基材上,以此形成原子均匀杂化的薄膜状态;然后将各组分放置在高于各组份熔点以上温度的真空热处理炉中,经过热处理后,在基材上形成镓基液态金属杂化原子的镓基铟锡导电薄膜。

Description

一种基于原子组装法制备镓基铟锡导电薄膜的方法
相关申请的交叉引用。
本申请要求于2020 年12月15日提交中国专利局、申请号为“202011483749.8 ”、发明名称为“一种基于原子组装法制备镓基铟锡导电薄膜的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电极材料技术领域,特别是涉及一种基于原子组装法制备镓基铟锡导电薄膜的方法。
背景技术
可拉伸电子器件是继刚性电子器件、柔性电子器件发展的新一代电子器件,传统的导电材料因自身杨氏模量高、伸长率低已难于满足可拉伸电子器件的使用要求。而镓基液态金属结合了电、热、机械和流体特性,且具有低毒安全与高稳定性。镓基液态金属的杨氏模量比常用高分子衬底低 5-6个数量级,比传统的刚性、高模量、本征低伸长率的金属与碳系导电材料要低10-12个数量级,并且在拉伸 700%仍能保持稳定的电导率,制备成可拉伸导电元件后在受力产生各向异性形变时仍能稳定地传输电势、电流信号,即表现为高电导-应变稳定性。
镓基液态金属已逐渐成为制备柔性通信基带、可拉伸电路、可拉伸电极等柔性电子器件的理想材料之一。
技术问题
镓基液态金属合金因表面张力高,造成其成膜性差,无法直接将其制备成薄膜器件,已成限制其大规模商业化应用的技术难题。
技术解决方案
根据本申请的各种实施例,提供一种基于原子组装法制备镓基铟锡导电薄膜的方法,解决镓基液态金属制备薄膜导电元件的重要技术瓶颈,具有重大的创新性和经济价值。
一种基于原子组装法制备镓基铟锡导电薄膜的方法,包括以下制备步骤。
(1)用酒精擦拭清洗真空镀膜机的蒸发槽。
(2)准备镓、铟及锡,待用。
(3)将镓、铟及锡三种材料放入到真空镀膜机的各个蒸发槽中。
(4)将基材置于真空镀膜机的基片架上并固定。
(5)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空。
(6)调控蒸发槽的电流,使镓、铟及锡同时蒸发,将镓原子、铟原子及锡原子杂化并同时沉积在基材的表面,以形成镓铟锡原子杂化薄膜。
(7)调控沉积的时间,使得镓铟锡原子杂化薄膜厚度在10nm-90000nm之间,即获得镓铟锡原子杂化薄膜基材。
(8)向真空镀膜机的腔室内充入空气,直至腔室气压与大气压相同时,将镓铟锡原子杂化薄膜基材从真空镀膜机中取出。
(9)将镓铟锡原子杂化薄膜基材置于真空热处理炉中,使得镓铟锡原子杂化薄膜基材的镓原子、铟原子及锡原子在真空热处理炉中通过真空热处理合金化形成液态镓铟锡薄膜。
(10)关闭真空热处理炉的加热装置,待真空热处理炉冷却后,向真空热处理炉中充入空气,直至炉中的气压与大气压相同时,取出镓基铟锡导电薄膜基材,完成镓基铟锡导电薄膜的制备。
在其中一个实施例中,在步骤(2)中,所述镓、铟及锡三种材料为颗粒或者靶材形态。
所述镓的纯度在99.9%-99.9999%之间,所述铟的纯度在99.9%-99.9999%之间,所述锡的纯度在99.9%-99.9999%之间。
在其中一个实施例中,在步骤(4)中,所述基材为聚二甲基硅氧烷、聚酰亚胺膜或者玻璃中的一种。
在其中一个实施例中,在步骤(5)中,抽真空将真空度降至4×10 -6mbar。
在其中一个实施例中,在步骤(9)中,真空热处理的温度设置在180℃-250℃之间,加热时间为大于1小时。
在其中一个实施例中,在步骤(10)中,真空热处理炉的冷却温度在25℃-30℃之间。
在其中一个实施例中,真空镀膜机为多蒸发源真空镀膜机。
有益效果
本方法采用原子沉积方法,该方法解决了现有镓基液态金属因高表面能而难于成膜,造成镓基液态金属难于加工成薄膜导电元器件的难题。并实现规模、批量化生产,可大规模应用于可拉伸导电元器件中,具有非常优异的应用前景。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为实施例1的制备方法中步骤(6)的结构示意图。
图2为实施例1的制备方法中步骤(7)的结构示意图。
图3为实施例1的制备方法中步骤(8)在热处理前的结构示意图。
图4为实施例1的制备方法中步骤(9)在热处理后的结构示意图。
图5为实施例1的制备方法中步骤(10)完成制备镓基铟锡导电薄膜的结构示意图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
以下为实施例及附图进行说明。
实施例1。
一种基于原子组装法制备镓基铟锡导电薄膜的方法,包括以下制备步骤。
步骤(1)用酒精擦拭清洗真空镀膜机的蒸发槽,该真空镀膜机为多蒸发源真空镀膜机。
步骤(2)准备纯度在99.9%-99.9999%之间的镓、铟及锡三种材料待用;其中三种材料为颗粒或者靶材形态。
步骤(3)将镓、铟及锡三种材料放入到真空镀膜机的各个蒸发槽中。
步骤(4)将基材置于真空镀膜机的基片架上并固定;其中,基材为聚二甲基硅氧烷、聚酰亚胺膜或者玻璃中的一种。
步骤(5)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空,并将真空度降至4×10 -6mbar。
结合图1所示,步骤(6)调控真空镀膜机10中的蒸发槽11的电流,使镓3、铟4及锡5同时蒸发,将镓原子、铟原子及锡原子杂化并同时沉积在基材6的表面,以形成镓铟锡原子杂化薄膜。
步骤(7)调控沉积的时间,使得镓铟锡原子杂化薄膜厚度在10nm-90000nm之间,即获得镓铟锡原子杂化薄膜基材。
结合图2所示,步骤(8)向真空镀膜机的腔室内充入空气,直至腔室气压与大气压相同时,镓铟锡原子杂化薄膜7完全沉积在基材6的表面,形成镓铟锡原子杂化薄膜基材,将镓铟锡原子杂化薄膜基材8从真空镀膜机中取出。
结合图3及图4所示,步骤(9)将镓铟锡原子杂化薄膜基材8置于真空热处理炉20中,抽真空并将温度设置在180℃-250℃之间,加热时间为大于1小时,使得镓原子、铟原子及锡原子在基材6上合金化形成液态镓铟锡薄膜9。
结合图5所示,步骤(10)关闭真空热处理炉的加热装置,待真空热处理炉温度降至25℃-30℃后,向真空热处理炉中充入空气,直至炉中的气压与大气压相同时,液态镓铟锡薄膜9完全沉积在基材6的表面,以形成镓基铟锡导电薄膜基材;取出镓基铟锡导电薄膜基材,完成镓基铟锡导电薄膜的制备。
本实施例的方法通过原子组装法,然后热处理,实现从原子组装镓基液态金属的镓基铟锡导电薄膜,从而避免了传统冶炼法制备的液态金属因表面张力高难于成膜的技术难题。该技术解决镓基液态金属制备薄膜导电元件的重要技术瓶颈,具有重大的创新性和经济价值。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

  1. 一种基于原子组装法制备镓基铟锡导电薄膜的方法,包括以下制备步骤:
    (1)用酒精擦拭清洗真空镀膜机的蒸发槽;
    (2)准备镓、铟及锡,待用;
    (3)将镓、铟及锡三种材料放入到真空镀膜机的各个蒸发槽中;
    (4)将基材置于真空镀膜机的基片架上并固定;
    (5)关闭真空镀膜机的室门,将真空镀膜机的腔室抽真空;
    (6)调控蒸发槽的电流,使镓、铟及锡同时蒸发,将镓原子、铟原子及锡原子杂化并同时沉积在基材的表面,以形成镓铟锡原子杂化薄膜;
    (7)调控沉积的时间,使得镓铟锡原子杂化薄膜厚度在10nm-90000nm之间,即获得镓铟锡原子杂化薄膜基材;
    (8)向真空镀膜机的腔室内充入空气,直至腔室气压与大气压相同时,将镓铟锡原子杂化薄膜基材从真空镀膜机中取出;
    (9)将镓铟锡原子杂化薄膜基材置于真空热处理炉中,使得镓铟锡原子杂化薄膜基材的镓原子、铟原子及锡原子在真空热处理炉中通过真空热处理合金化形成液态镓铟锡薄膜;
    (10)关闭真空热处理炉的加热装置,待真空热处理炉冷却后,向真空热处理炉中充入空气,直至炉中的气压与大气压相同时,取出镓基铟锡导电薄膜基材,完成镓基铟锡导电薄膜的制备。
  2. 根据权利要求1所述的方法,在步骤(2)中,所述镓、铟及锡三种材料为颗粒或者靶材形态。
  3. 根据权利要求1所述的方法,在步骤(2)中,所述镓的纯度在99.9%-99.9999%之间,所述铟的纯度在99.9%-99.9999%之间,所述锡的纯度在99.9%-99.9999%之间。
  4. 根据权利要求1所述的方法,在步骤(4)中,所述基材为聚二甲基硅氧烷、聚酰亚胺膜或者玻璃中的一种。
  5. 根据权利要求1所述的方法,在步骤(5)中,抽真空将真空度降至4×10 -6mbar。
  6. 根据权利要求1所述的方法,在步骤(9)中,真空热处理的温度设置在180℃-250℃之间,加热时间为大于1小时。
  7. 根据权利要求1所述的方法,在步骤(10)中,真空热处理炉的冷却温度在25℃-30℃之间。
  8. 根据权利要求1所述的方法,真空镀膜机为多蒸发源真空镀膜机。
PCT/CN2021/121723 2020-12-15 2021-09-29 一种基于原子组装法制备镓基铟锡导电薄膜的方法 WO2022127283A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011483749.8 2020-12-15
CN202011483749.8A CN112670028B (zh) 2020-12-15 2020-12-15 一种基于原子组装法制备镓基铟锡导电薄膜的方法

Publications (1)

Publication Number Publication Date
WO2022127283A1 true WO2022127283A1 (zh) 2022-06-23

Family

ID=75405296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121723 WO2022127283A1 (zh) 2020-12-15 2021-09-29 一种基于原子组装法制备镓基铟锡导电薄膜的方法

Country Status (2)

Country Link
CN (1) CN112670028B (zh)
WO (1) WO2022127283A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112670028B (zh) * 2020-12-15 2022-11-01 东莞理工学院 一种基于原子组装法制备镓基铟锡导电薄膜的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077547A (ja) * 2011-09-15 2013-04-25 Mitsubishi Materials Corp 導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法
CN104099586A (zh) * 2013-04-15 2014-10-15 中国科学院理化技术研究所 一种薄膜的制备方法
CN106011750A (zh) * 2016-07-11 2016-10-12 中国科学院上海技术物理研究所 一种耐紫外辐照的银金合金薄膜及制备方法
CN109273169A (zh) * 2018-09-18 2019-01-25 北京梦之墨科技有限公司 一种镓基透明导电薄膜及其制备方法、电子器件
CN111495210A (zh) * 2020-05-11 2020-08-07 广东石油化工学院 一种超薄液态金属复合膜及制备方法和应用
CN112670028A (zh) * 2020-12-15 2021-04-16 东莞理工学院 一种基于原子组装法制备镓基铟锡导电薄膜的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04346657A (ja) * 1991-05-24 1992-12-02 Fujitsu Ltd 低融点金属の蒸着方法
CN101696481B (zh) * 2009-10-23 2011-07-27 哈尔滨工业大学 用于微驱动元件的超高恢复应力Ti-Ni-Cu形状记忆合金薄膜的制备方法
CN102560371A (zh) * 2011-12-31 2012-07-11 广东风华高新科技股份有限公司 一种金锡合金薄膜制备工艺
CN106498348B (zh) * 2016-12-12 2019-02-01 中国科学院宁波材料技术与工程研究所 一种使用液态金属制备柔性电子线路的方法与装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013077547A (ja) * 2011-09-15 2013-04-25 Mitsubishi Materials Corp 導電性膜及びその製造方法並びに導電性膜形成用銀合金スパッタリングターゲット及びその製造方法
CN104099586A (zh) * 2013-04-15 2014-10-15 中国科学院理化技术研究所 一种薄膜的制备方法
CN106011750A (zh) * 2016-07-11 2016-10-12 中国科学院上海技术物理研究所 一种耐紫外辐照的银金合金薄膜及制备方法
CN109273169A (zh) * 2018-09-18 2019-01-25 北京梦之墨科技有限公司 一种镓基透明导电薄膜及其制备方法、电子器件
CN111495210A (zh) * 2020-05-11 2020-08-07 广东石油化工学院 一种超薄液态金属复合膜及制备方法和应用
CN112670028A (zh) * 2020-12-15 2021-04-16 东莞理工学院 一种基于原子组装法制备镓基铟锡导电薄膜的方法

Also Published As

Publication number Publication date
CN112670028A (zh) 2021-04-16
CN112670028B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
CN102931055B (zh) 一种多层石墨烯的减薄方法
CN103215548B (zh) 一种金属纳米颗粒掺杂石墨烯的制备方法
US20120261167A1 (en) Transparent Electrodes, Electrode Devices, and Associated Methods
CN103390674A (zh) Czts柔性太阳电池及其制备方法
US20160118619A1 (en) Preparation Method of Glass Film, Photoelectric Device and Packaging Method Thereof, Display Device
US20230114347A1 (en) Method of forming transition metal dichalcogenide thin film
CN103346073B (zh) 一种β-碳化硅薄膜的制备方法
US20180083220A1 (en) Method for doping graphene, method for manufacturing graphene composite electrode, and graphene structure comprising same
WO2022127283A1 (zh) 一种基于原子组装法制备镓基铟锡导电薄膜的方法
KR101692514B1 (ko) 기재 위에 대면적, 단결정, 단일층의 h-BN 박막을 형성하는 방법 및 그로부터 제조된 h-BN 박막 적층체
JP2014170826A (ja) 配線構造、配線形成方法および電子デバイス
CN104810114B (zh) 高透光率柔性聚酰亚胺基底ito导电薄膜及其制备方法与应用
CN103924191A (zh) 在基片上镀制ito薄膜的方法
CN107298437A (zh) 一种pvd法低温制备石墨烯的方法
JP2012077321A (ja) 成膜基板の製造方法、成膜基板、および成膜装置
CN111139526A (zh) 一种利用离子束溅射沉积获得单晶氮化硼薄膜的方法
CN105441877A (zh) 电阻式热蒸发制备铁磁性材料Fe3Si薄膜的工艺
JP2015512149A (ja) 多層金属支持体
CN106939405B (zh) 一种石墨烯/氧化物复合光学薄膜的制备方法
CN108754420A (zh) 一种制备Cu掺杂AlN稀磁半导体薄膜的方法
CN113061837A (zh) 一种高透明的p型碘化亚铜导电薄膜的制备方法
CN111826610B (zh) 一种利用非晶碳低温制备石墨烯的方法
TW201309826A (zh) 氧化亞錫薄膜的製作方法
CN109003889B (zh) 一种柔性基底上ii-vi族半导体薄膜的制备方法
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21905213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21905213

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21905213

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11.01.2024)