WO2022126879A1 - 一种纳米二氧化钛紫外光催化净化涂层的制备方法 - Google Patents

一种纳米二氧化钛紫外光催化净化涂层的制备方法 Download PDF

Info

Publication number
WO2022126879A1
WO2022126879A1 PCT/CN2021/080913 CN2021080913W WO2022126879A1 WO 2022126879 A1 WO2022126879 A1 WO 2022126879A1 CN 2021080913 W CN2021080913 W CN 2021080913W WO 2022126879 A1 WO2022126879 A1 WO 2022126879A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
titanium dioxide
defoamer
add
dispersion
Prior art date
Application number
PCT/CN2021/080913
Other languages
English (en)
French (fr)
Inventor
王珂
Original Assignee
王珂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王珂 filed Critical 王珂
Publication of WO2022126879A1 publication Critical patent/WO2022126879A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K

Definitions

  • the invention relates to the technical field of purification, in particular to a preparation method of a nano-titanium dioxide ultraviolet photocatalytic purification coating.
  • the main purification technologies are high-voltage electrostatic dust collection; ozone, negative ion sterilization and disinfection; filter purification technology, HEPA, activated carbon smoke and dust removal, physical adsorption of harmful substances in the air, etc.
  • HEPA filter purification technology
  • HEPA activated carbon smoke and dust removal
  • physical adsorption of harmful substances in the air etc.
  • HEPA activated carbon smoke and dust removal
  • the purpose of the present invention is to solve the shortcomings in the prior art, and propose a preparation method of a nano-titania ultraviolet photocatalytic purification coating.
  • S1 Select 225 parts of nano titanium dioxide dispersion, 420 parts of carrier dispersion slurry, 256 parts of fluoroacrylic emulsion, 18 parts of cosolvent, 18 parts of film-forming auxiliary, 2 parts of multifunctional auxiliary, 1 part of defoamer, high shear 4 parts of rheological additives, 6 parts of low shear rheological additives, 50 parts of water glass;
  • S2 Put the carrier dispersion slurry in the high-speed disperser according to the proportion, and use the high-speed disperser to stir it at a low speed. While stirring, add the nano-titanium dioxide dispersion, fluorine-propylene emulsion and water glass respectively. After stirring evenly, continue the slow speed. Add equal amounts of co-solvent and film-forming aid;
  • the invention also provides a nano titanium dioxide dispersion liquid, the raw material of which is formulated in percentage as follows: deionized water 87%, wetting agent 0.2%, dispersant A 1%, dispersant B 1%, defoamer A 0.2% , Defoamer B 0.2%, multifunctional auxiliary agent 0.4%, nano titanium dioxide 10%.
  • the present invention also provides a preparation process of nano titanium dioxide dispersion, the specific steps are as follows:
  • the first step put deionized water in the high-speed disperser in proportion, stir with the high-speed disperser at a low speed, and add equal amounts of wetting agent, dispersant A, dispersant B, defoamer A and defoamer while stirring.
  • Foaming agent B then add multifunctional auxiliary to adjust the pH value between 9-11;
  • the second step adjust the rotating speed of the high-speed disperser, and the rotating speed shall be the criterion to avoid liquid splashing, and slowly add nano-titanium dioxide to premix until a uniform dispersion is obtained;
  • Step 3 Test the PH value to ensure that the PH value remains between 9-11;
  • the fourth step transfer the obtained mixture to a precision grinder, grind with 0.1mm zirconium beads, and measure the particle size of the dispersion from time to time during the process, until the particle size D90 is less than 110nm, bubbles will be generated during the grinding process, and the particles will be added dropwise from time to time.
  • Defoamer B
  • Step 5 Discharge after completion, filter with a 200-mesh sieve, and set aside.
  • the present invention also provides a carrier dispersing slurry, the raw materials of which are formulated in percentage as follows: 25% of deionized water, 0.2% of wetting agent, 0.8% of dispersant, 0.1% of defoamer A, 0.1% of defoamer B, Multifunctional additives 0.3%, titanium dioxide 57.5%, kaolin 16%.
  • the present invention also provides a preparation process of the carrier dispersion slurry, characterized in that the specific steps are as follows:
  • the nano titanium dioxide UV photocatalytic purification modified coating has the functions of purifying air and antibacterial.
  • nano-titanium dioxide material is added to the formula, and the nano-titanium dioxide dispersion liquid is evenly distributed in the coating by applying extraordinar dispersion technology and unique adding process, and the reaction and degradation of hydroxyl radicals and organic harmful substances are generated by the excitation of ultraviolet light. for carbon dioxide and water.
  • the activity of the inorganic catalytic material itself is lasting and is not consumed during the catalytic process.
  • the main material used in the coating after a series of tests, the validity period of the catalytic material is more than 15 years, and the service life of the modified coating is more than 5 years. Therefore, the coating product can degrade harmful substances such as free formaldehyde and toluene in indoor and outdoor environments for a long time. 2h purification efficiency of 99.99%.
  • nano-titanium dioxide is added to the formula to generate highly active hydroxyl radicals under the irradiation of ultraviolet light of a specific wavelength, which has a good antibacterial and killing function. Compared with the traditional sterilization and mildew prevention or nano silver, the effect is more prominent. obvious. Through repeated comparison tests of natural bacteria and special bacteria, the antibacterial efficiency of 1h reached 99.99%.
  • the present invention proposes a preparation method of nanometer titanium dioxide ultraviolet photocatalytic purification coating, comprising the following steps:
  • S1 Select 225 parts of nano titanium dioxide dispersion, 420 parts of carrier dispersion slurry, 256 parts of fluoroacrylic emulsion, 18 parts of cosolvent, 18 parts of film-forming auxiliary, 2 parts of multifunctional auxiliary, 1 part of defoamer, high shear 4 parts of rheological additives, 6 parts of low shear rheological additives, 50 parts of water glass;
  • the model of fluorine-propylene emulsion is BLJ9988; the cosolvent is propylene glycol; the film-forming aid is alcohol ester 12; the model of multifunctional auxiliary is AMP-95; the model of defoamer is BYK24; The model of the agent is BYK420; the model of the low shear rheology additive is BLJ-60;
  • S2 Put the carrier dispersion slurry in the high-speed disperser according to the proportion, and use the high-speed disperser to stir it at a low speed. While stirring, add the nano-titanium dioxide dispersion, fluorine-propylene emulsion and water glass respectively. After stirring evenly, continue the slow speed. Add equal amounts of co-solvent and film-forming aid;
  • the invention also provides a nano titanium dioxide dispersion liquid, the raw material of which is formulated in percentage as follows: deionized water 87%, wetting agent 0.2%, dispersant A 1%, dispersant B 1%, defoamer A 0.2% , Defoamer B 0.2%, multifunctional auxiliary agent 0.4%, nano titanium dioxide 10%;
  • the model of wetting agent is BYK-346; the model of dispersant A is BYK-2012; the model of dispersant B is polyethylene glycol; the model of defoamer A is BYK-19; the model of defoamer B is BYK- 24; the model of the multifunctional auxiliary agent is AMP-95; the model of nano titanium dioxide is P-25.
  • the present invention also provides a preparation process of nano titanium dioxide dispersion, the specific steps are as follows:
  • the first step put deionized water in the high-speed disperser in proportion, stir with the high-speed disperser at a low speed, and add equal amounts of wetting agent, dispersant A, dispersant B, defoamer A and defoamer while stirring.
  • Foaming agent B then add multifunctional auxiliary to adjust the pH value between 9-11;
  • the second step adjust the rotation speed of the high-speed disperser, and the rotation speed should avoid liquid splashing, and slowly add nano-titanium dioxide to premix until a uniform dispersion is obtained;
  • Step 3 Test the PH value to ensure that the PH value remains between 9-11;
  • the fourth step transfer the obtained mixture to a precision grinder, grind with 0.1mm zirconium beads, and measure the particle size of the dispersion from time to time during the process, until the particle size D90 is less than 110nm, bubbles will be generated during the grinding process, and the particle size will be added dropwise from time to time.
  • Defoamer B
  • Step 5 Discharge after completion, filter with a 200-mesh sieve, and set aside.
  • the present invention also provides a carrier dispersing slurry, the raw materials of which are formulated in percentage as follows: 25% of deionized water, 0.2% of wetting agent, 0.8% of dispersant, 0.1% of defoamer A, 0.1% of defoamer B, Multifunctional additives 0.3%, titanium dioxide 57.5%, kaolin 16%
  • the kaolin is specifically 4000 mesh kaolin;
  • the model of wetting agent is BYK346;
  • the model of dispersant is BYK190;
  • the model of defoamer A is BYK-19;
  • the model of defoamer B is BYK-24.
  • the present invention also provides a preparation process of the carrier dispersion slurry, characterized in that the specific steps are as follows:
  • the air purification technology of the nano-TiO2 photocatalytic coating of the invention is a high-tech cutting-edge purification technology. Under the irradiation of ultraviolet light, nano-TiO2 generates holes with strong oxidizing ability, captures the electrons of hydrogen and oxygen, which are part of the microorganisms and bacteria themselves, and destroys their cell walls, DNA, and biological chains. At the same time, in the process of losing and combining electrons The energy generated is equivalent to a high temperature of 15000K.
  • the above methods directly kill bacteria and completely decompose organic harmful substances into inorganic harmless small molecules such as CO2 and H2O. It has the advantages of comprehensive air purification, high efficiency, environmental protection, energy saving, etc.
  • the present invention is different from traditional Compared with purification technology, it has the following characteristics:
  • Safe purification The final products of purification are inorganic harmless small molecules such as CO2 and H2O, which are harmless to the human body. There is no secondary pollution.
  • the present invention uses water glass (sodium silicate) to modify the coating, which greatly improves the service life of the coating. After accelerated aging test, the coating life is increased by 2-3 compared with the previous coating. year.
  • Nano-powder is more thoroughly dispersed: Nano-powder is under the dual action of high-solid carboxylic acid surfactant and polyethylene glycol, D90 can reach below 120nm, D50 is below 65nm, nanoparticles are more fully dispersed, thus It can better play the role of photocatalytic purification.
  • the nano-titanium dioxide of the present invention is excited after ultraviolet light irradiation, and photogenerated electrons (e-) and holes (h+) are generated on the surface, which migrate to the solid surface to react with the dissolved oxygen and water on the surface, respectively, to generate hydroxyl radicals with high activity ( OH), hydroxyl radicals are considered to be the main active substances in the photocatalytic reaction of nano-titania, they provide highly active catalysts for the degradation of organic harmful substances such as formaldehyde and toluene, and can finally catalyze their degradation into carbon dioxide and water.
  • the specific reaction mechanism is as follows:
  • the nano-TiO2 is excited after UV light irradiation to generate photogenerated electrons (e - ) and holes (h + ) on the surface:
  • Photogenerated electrons (e - ) and holes (h + ) react with dissolved oxygen and water on their surfaces, respectively, to generate highly reactive free radicals ( ⁇ OH).
  • Organic harmful substances such as formaldehyde and toluene are oxidized and degraded into carbon dioxide and water by hydroxyl radicals.
  • C-R is the representative of organic harmful substances such as formaldehyde and toluene
  • the antibacterial mechanism of the nano titanium dioxide photocatalytic coating of the present invention is the antibacterial mechanism of the nano titanium dioxide photocatalytic coating of the present invention.
  • the antibacterial mechanism of the nano-titanium dioxide photocatalytic coating of the present invention is that under the irradiation of ultraviolet light, the nano-titanium dioxide can decompose negatively charged electrons (e-) in water and air by itself, while leaving positive charged holes (h+ ), this hole can stimulate the oxygen in the air to become active oxygen, has strong chemical activity, and can oxidize with most microorganisms to kill bacteria.
  • the nano-titanium dioxide ultraviolet photocatalytic purification modification coating of the invention has the functions of purifying air and antibacterial.
  • the nano-titanium dioxide ultraviolet photocatalytic purification modified coating of the present invention due to the addition of nano-titanium dioxide materials in the formula, the application of extraordinar dispersion technology and a unique addition process, makes the nano-titanium dioxide dispersion evenly distributed in the coating, and stimulated by ultraviolet light. Generate hydroxyl radicals and react with organic harmful substances to degrade into carbon dioxide and water. Moreover, the activity of the inorganic catalytic material itself is lasting and is not consumed during the catalytic process.
  • the coating product can degrade harmful substances such as free formaldehyde and toluene in indoor and outdoor environments for a long time. 2h purification efficiency of 99.99%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及净化技术领域,尤其是一种纳米二氧化钛紫外光催化净化涂层的制备方法,包括以下步骤:按比例把载体分散浆放置到高速分散机内,并利用高速分散机对其进行低速搅拌,边搅拌边分别加入纳米二氧化钛分散液、氟丙乳液以及水玻璃,搅拌均匀后,继续慢速加入等量的助溶剂和成膜助剂;调节高速分散机转速,然后继续缓慢加入高剪切流变助剂,并混合搅拌5-10min后,再进行下一步操作,随着粘度的增大,需要适当调节高速分散机转速;用两倍去离子水稀释低剪切流变助剂,再慢速分多次加入到高速分散机内,直到其粘度在85-90之间。本发明具备净化空气和抗菌的功能。

Description

一种纳米二氧化钛紫外光催化净化涂层的制备方法 技术领域
本发明涉及净化技术领域,尤其涉及一种纳米二氧化钛紫外光催化净化涂层的制备方法。
背景技术
当今社会,环境污染日益严重,当前的技术水平远远不能满足空气净化的要求。当前主要的净化技术有高压静电集尘;臭氧、负离子杀菌消毒;过滤式净化技术、HEPA、活性炭消烟除尘,物理吸附空气中的有害物质等.以上技术通过物理方法虽然起到一定的清新空气、抑制细菌、集尘除异味等净化空气的作用,但是还是无法达到彻底净化的目的。其存在的缺点主要有:对有害气体、病菌病毒微生物等污染物无法消除;不能分解有害气体,容易饱和,使用周期短缺点。
发明内容
本发明的目的是为了解决现有技术中存在的缺点,而提出的一种纳米二氧化钛紫外光催化净化涂层的制备方法。
为了实现上述目的,本发明采用了如下技术方案:
设计一种纳米二氧化钛紫外光催化净化涂层的制备方法,包括以下步骤:
S1:选取纳米二氧化钛分散液225份、载体分散浆420份、氟丙乳液256份、助溶剂18份、成膜助剂18份、多功能助剂2份、消泡剂1份、高剪切流变助剂4份、低剪切流变助剂6份、水玻璃50份;
S2:按比例把载体分散浆放置到高速分散机内,并利用高速分散 机对其进行低速搅拌,边搅拌边分别加入纳米二氧化钛分散液、氟丙乳液以及水玻璃,搅拌均匀后,继续慢速加入等量的助溶剂和成膜助剂;
S3:测试PH值,并添加多功能助剂来调节PH值,使PH值保持在在9-11之间,之后看气泡情况,若表面有气泡产生,则添加消泡剂,若表面无气泡产生,则不用加消泡剂;
S4:调节高速分散机转速,然后继续缓慢加入高剪切流变助剂,并混合搅拌5-10min后,再进行下一步操作,随着粘度的增大,需要适当调节高速分散机转速;
S5:用两倍去离子水稀释低剪切流变助剂,再慢速分多次加入到高速分散机内,直到其粘度在85-90之间,完成后,出料;
S6:经过喷涂、滚涂或者含浸之后晾干,即得纳米二氧化钛紫外光催化净化改性涂层。
本发明还提供了一种纳米二氧化钛分散液,其原料按百分比的配方如下:去离子水87%、润湿剂0.2%、分散剂A 1%、分散剂B 1%、消泡剂A 0.2%、消泡剂B 0.2%、多功能助剂0.4%、纳米二氧化钛10%。
本发明还提供了一种纳米二氧化钛分散液的制备工艺,具体步骤如下:
第一步:按比例把去离子水放到高速分散机中,用高速分散机低速搅拌,边搅拌边分别加入等量的润湿剂、分散剂A、分散剂B、消泡剂A以及消泡剂B,然后添加多功能助剂调节PH值在9-11之间;
第二步:调节高速分散机转速,且转速以避免液体飞溅为准,缓 慢加入纳米二氧化钛预混合,直到得到均匀分散体;
第三步:测试PH值,确保其PH值保持在9-11之间;
第四步:将上述所得到混合物转移到精密研磨机,用0.1mm锆珠研磨,过程中不定时测分散体粒径,直到粒径D90小于110nm,研磨过程中会产生气泡,不定时滴加消泡剂B;
第五步:完成后出料,用200目的筛网过滤,备用。
本发明还提供了一种载体分散浆,其原料按百分比的配方如下:去离子水25%、润湿剂0.2%、分散剂0.8%、消泡剂A 0.1%、消泡剂B 0.1%、多功能助剂0.3%、钛白粉57.5%、高岭土16%。
本发明还提供了一种载体分散浆的制备工艺,其特征在于,具体步骤如下:
A、按比例把去离子水放到高速分散机中,用高速分散机低速搅拌,边搅拌边分别加入等量的润湿剂、分散剂、消泡剂A以及消泡剂B,搅拌完成后,添加多功能助剂调节PH值在9-11之间;
B、调节高速分散机转速,且转速以避免液体飞溅为准,缓慢依次加入钛白粉和高岭土粉体预混合,直到得到均匀分散体,测试PH值,确保PH值在9-11之间;
C、将分散体转移到精密研磨机,用1mm锆珠研磨,用细度板测颗粒细度,直到细度小于25μm;
D、完成后出料,用200目的筛网过滤,备用。
本发明提出的一种纳米二氧化钛紫外光催化净化涂层的制备方法,有益效果在于:
1、该纳米二氧化钛紫外光催化净化改性涂层,具备净化空气和抗菌的功能。
2、本发明在配方中添加纳米二氧化钛材料,应用精湛的分散技术和独特的添加工艺,使纳米二氧化钛分散液均匀分布在涂层中,在紫外光照射激发产生羟基自由基与有机有害物质反应降解为二氧化碳和水。而且无机催化材料本身的活性是持久的,在催化的过程中并不被消耗掉。作为主要材料应用在涂层中,经过一系列试验,催化材料的有效期超过15年,改性涂层使用寿命超过5年。因此,涂层产生物能长久降解室内外环境中存在的游离甲醛,甲苯等有害物质。2h净化效率达99.99%。
3、本发明在配方中添加纳米二氧化钛,在特定波长紫外光照射下产生活性极强的羟基自由基,具有良好的抗菌消杀功能,与传统的杀菌防霉或者纳米银相比较,效果更加突出明显。通过对自然菌和特殊菌种反复的比较测试,1h抗菌效率均达到99.99%。
具体实施方式
下面结合具体实施例来对本发明做进一步说明。
本发明提出了一种纳米二氧化钛紫外光催化净化涂层的制备方法,包括以下步骤:
S1:选取纳米二氧化钛分散液225份、载体分散浆420份、氟丙乳液256份、助溶剂18份、成膜助剂18份、多功能助剂2份、消泡剂1份、高剪切流变助剂4份、低剪切流变助剂6份、水玻璃50份;
氟丙乳液的型号为BLJ9988;助溶剂具体为丙二醇;成膜助剂具 体为醇脂十二;多功能助剂的型号为AMP-95;消泡剂的型号为BYK24;高剪切流变助剂的型号为BYK420;低剪切流变助剂的型号为BLJ-60;
S2:按比例把载体分散浆放置到高速分散机内,并利用高速分散机对其进行低速搅拌,边搅拌边分别加入纳米二氧化钛分散液、氟丙乳液以及水玻璃,搅拌均匀后,继续慢速加入等量的助溶剂和成膜助剂;
S3:测试PH值,并添加多功能助剂来调节PH值,使PH值保持在在9-11之间,之后看气泡情况,若表面有气泡产生,则添加消泡剂,若表面无气泡产生,则不用加消泡剂;
S4:调节高速分散机转速,然后继续缓慢加入高剪切流变助剂,并混合搅拌5-10min后,再进行下一步操作,随着粘度的增大,需要适当调节高速分散机转速;
S5:用两倍去离子水稀释低剪切流变助剂,再慢速分多次加入到高速分散机内,直到其粘度在85-90之间,完成后,出料;
S6:经过喷涂、滚涂或者含浸之后晾干,即得纳米二氧化钛紫外光催化净化改性涂层。
本发明还提供了一种纳米二氧化钛分散液,其原料按百分比的配方如下:去离子水87%、润湿剂0.2%、分散剂A 1%、分散剂B 1%、消泡剂A 0.2%、消泡剂B 0.2%、多功能助剂0.4%、纳米二氧化钛10%;
润湿剂的型号为BYK-346;分散剂A的型号为BYK-2012;分散剂B具体为聚乙二醇;消泡剂A的型号为BYK-19;消泡剂B的型号为BYK-24;多功能助剂的型号为AMP-95;纳米二氧化钛的型号为P-25。
本发明还提供了一种纳米二氧化钛分散液的制备工艺,具体步骤如下:
第一步:按比例把去离子水放到高速分散机中,用高速分散机低速搅拌,边搅拌边分别加入等量的润湿剂、分散剂A、分散剂B、消泡剂A以及消泡剂B,然后添加多功能助剂调节PH值在9-11之间;
第二步:调节高速分散机转速,且转速以避免液体飞溅为准,缓慢加入纳米二氧化钛预混合,直到得到均匀分散体;
第三步:测试PH值,确保其PH值保持在9-11之间;
第四步:将上述所得到混合物转移到精密研磨机,用0.1mm锆珠研磨,过程中不定时测分散体粒径,直到粒径D90小于110nm,研磨过程中会产生气泡,不定时滴加消泡剂B;
第五步:完成后出料,用200目的筛网过滤,备用。
本发明还提供了一种载体分散浆,其原料按百分比的配方如下:去离子水25%、润湿剂0.2%、分散剂0.8%、消泡剂A 0.1%、消泡剂B 0.1%、多功能助剂0.3%、钛白粉57.5%、高岭土16%
其中,高岭土具体为4000目的高岭土;润湿剂的型号为BYK346;分散剂的型号为BYK190;消泡剂A的型号为BYK-19;消泡剂B的型号为BYK-24。
本发明还提供了一种载体分散浆的制备工艺,其特征在于,具体步骤如下:
A、按比例把去离子水放到高速分散机中,用高速分散机低速搅拌,边搅拌边分别加入等量的润湿剂、分散剂、消泡剂A以及消泡 剂B,搅拌完成后,添加多功能助剂调节PH值在9-11之间;
B、调节高速分散机转速,且转速以避免液体飞溅为准,缓慢依次加入钛白粉和高岭土粉体预混合,直到得到均匀分散体,测试PH值,确保PH值在9-11之间;
C、将分散体转移到精密研磨机,用1mm锆珠研磨,用细度板测颗粒细度,直到细度小于25μm;
D、完成后出料,用200目的筛网过滤,备用。
本发明纳米TiO2光催化涂层净化空气技术是一种高科技前沿净化技术。纳米TiO2在紫外光的照射下,产生具有强氧化能力的空穴,扑捉微生物、细菌本身组成部分氢、氧的电子,破坏其细胞壁、DNA、生物链,同时在失去及结合电子的过程中产生的能量相当于15000K的高温,以上途径直接杀灭细菌和彻底分解有机有害物质变为CO2和H2O等无机无害小分子.具有全面净化空气,高效,环保,节能等优点.本发明跟传统净化技术相比,它具有以下特点:
彻底净化:是分解而不是吸附,是质变而不是量变。
广泛净化:对几乎所有污染物起作用,特别是对人们不易感知的细菌和病毒进行彻底分解。
实用净化:不存在饱和问题,不必更换滤芯,经济实用,维护方便,周期长,高效率。
安全净化:净化的最终产物是CO2和H2O等无机无害小分子,对人体无害.且无二次污染。
涂层寿命长:本发明使用水玻璃(硅酸钠)对涂层进行改性,在 很大程度改善涂层的使用寿命,经过加快老化测试,涂层寿命较以往涂层增加了2-3年。
纳米粉体分散更彻底:纳米粉体经过高固含羧酸类的表面活性剂和聚乙二醇双重作用下,D90能达到120nm以下,D50在65nm以下,纳米颗粒得到更充分的分散,从而能更好的发挥光催化净化的作用。
本发明纳米二氧化钛紫外光催化涂层净化空气的机理:
本发明纳米二氧化钛在紫外光照射后激发,表面生成光生电子(e-)和空穴(h+),迁移到固体表面分别与其表面的溶解氧和水发生反应,生成具有高活性的羟基自由基(·OH),羟基自由基被认为是纳米二氧化钛光催化反应的主要活性物质,它们为甲醛、甲苯等有机有害物质的降解提供高活性的催化剂,最终可以将它们催化降解为二氧化碳和水。具体的反应机理如下:
纳米二氧化钛在紫外光照射后激发,在表面生成光生电子(e -)和空穴(h +):
TiO 2+hv→TiO 2+h ++e -
光生电子(e -)和空穴(h +),分别与其表面的溶解氧和水发生反应,生成具有高活性的自由基(·OH)。
H 2O+h +→·OH+H +
OH -+h +→·OH
Figure PCTCN2021080913-appb-000001
Figure PCTCN2021080913-appb-000002
2·OOH→O 2+H 2O 2
·OOH+H 2O+e -→H 2O 2+OH -
H 2O 2+e -→·OH+OH -
甲醛、甲苯等有机有害物质被羟基自由基氧化降解为二氧化碳和水。
C-R+·OH→H 2O+CO 2
(备注:C-R为甲醛、甲苯等有机有害物质的代表)
本发明纳米二氧化钛光催化涂层的抗菌机理:
本发明纳米二氧化钛光催化涂层抗菌机理,即纳米二氧化钛在紫外光照射下,在水和空气中能自行分解出带负电的电子(e-),同时留下了带正电的空穴(h+),这种空穴可以激发空气中的氧变为活性氧,有极强的化学活性,能与多数微生物发生氧化反应,从而把细菌杀灭。
本发明纳米二氧化钛紫外光催化净化改性涂层,具备净化空气和抗菌的功能。本发明纳米二氧化钛紫外光催化净化改性涂层,由于在配方中添加纳米二氧化钛材料,应用精湛的分散技术和独特的添加工艺,使纳米二氧化钛分散液均匀分布在涂层中,在紫外光照射激发产生羟基自由基与有机有害物质反应降解为二氧化碳和水。而且无机催化材料本身的活性是持久的,在催化的过程中并不被消耗掉。作为主要材料应用在涂层中,经过一系列试验,催化材料的有效期超过15年,改性涂层使用寿命超过5年。因此,涂层产生物能长久降解室内外环境中存在的游离甲醛,甲苯等有害物质。2h净化效率达99.99%。
由于在配方中添加纳米二氧化钛,在特定波长紫外光照射下产生 活性极强的羟基自由基,具有良好的抗菌消杀功能,与传统的杀菌防霉或者纳米银相比较,效果更加突出明显。通过对自然菌和特殊菌种反复的比较测试,1h抗菌效率均达到99.99%。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (5)

  1. 一种纳米二氧化钛紫外光催化净化涂层的制备方法,其特征在于,包括以下步骤:
    S1:选取纳米二氧化钛分散液225份、载体分散浆420份、氟丙乳液256份、助溶剂18份、成膜助剂18份、多功能助剂2份、消泡剂1份、高剪切流变助剂4份、低剪切流变助剂6份、水玻璃50份;
    S2:按比例把载体分散浆放置到高速分散机内,并利用高速分散机对其进行低速搅拌,边搅拌边分别加入纳米二氧化钛分散液、氟丙乳液以及水玻璃,搅拌均匀后,继续慢速加入等量的助溶剂和成膜助剂;
    S3:测试PH值,并添加多功能助剂来调节PH值,使PH值保持在在9-11之间,之后看气泡情况,若表面有气泡产生,则添加消泡剂,若表面无气泡产生,则不用加消泡剂;
    S4:调节高速分散机转速,然后继续缓慢加入高剪切流变助剂,并混合搅拌5-10min后,再进行下一步操作,随着粘度的增大,需要适当调节高速分散机转速;
    S5:用两倍去离子水稀释低剪切流变助剂,再慢速分多次加入到高速分散机内,直到其粘度在85-90之间,完成后,出料;
    S6:经过喷涂、滚涂或者含浸之后晾干,即得纳米二氧化钛紫外光催化净化改性涂层。
  2. 一种根据权利要求1所述的纳米二氧化钛分散液,其特征在于,其原料按百分比的配方如下:去离子水87%、润湿剂0.2%、分散剂A 1%、分散剂B 1%、消泡剂A 0.2%、消泡剂B 0.2%、多功能助剂 0.4%、纳米二氧化钛10%。
  3. 一种根据权利要求2所述的纳米二氧化钛分散液的制备工艺,其特征在于,具体步骤如下:
    第一步:按比例把去离子水放到高速分散机中,用高速分散机低速搅拌,边搅拌边分别加入等量的润湿剂、分散剂A、分散剂B、消泡剂A以及消泡剂B,然后添加多功能助剂调节PH值在9-11之间;
    第二步:调节高速分散机转速,且转速以避免液体飞溅为准,缓慢加入纳米二氧化钛预混合,直到得到均匀分散体;
    第三步:测试PH值,确保其PH值保持在9-11之间;
    第四步:将上述所得到混合物转移到精密研磨机,用0.1mm锆珠研磨,过程中不定时测分散体粒径,直到粒径D90小于110nm,研磨过程中会产生气泡,不定时滴加消泡剂B;
    第五步:完成后出料,用200目的筛网过滤,备用。
  4. 一种根据权利要求1所述的载体分散浆,其特征在于,其原料按百分比的配方如下:去离子水25%、润湿剂0.2%、分散剂0.8%、消泡剂A 0.1%、消泡剂B 0.1%、多功能助剂0.3%、钛白粉57.5%、高岭土16%。
  5. 一种根据权利要求4所述的载体分散浆的制备工艺,其特征在于,具体步骤如下:
    A、按比例把去离子水放到高速分散机中,用高速分散机低速搅拌,边搅拌边分别加入等量的润湿剂、分散剂、消泡剂A以及消泡剂B,搅拌完成后,添加多功能助剂调节PH值在9-11之间;
    B、调节高速分散机转速,且转速以避免液体飞溅为准,缓慢依次加入钛白粉和高岭土粉体预混合,直到得到均匀分散体,测试PH值,确保PH值在9-11之间;
    C、将分散体转移到精密研磨机,用1mm锆珠研磨,用细度板测颗粒细度,直到细度小于25μm;
    D、完成后出料,用200目的筛网过滤,备用。
PCT/CN2021/080913 2020-12-18 2021-03-16 一种纳米二氧化钛紫外光催化净化涂层的制备方法 WO2022126879A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011511003.3A CN112646447A (zh) 2020-12-18 2020-12-18 一种纳米二氧化钛紫外光催化净化涂层的制备方法
CN202011511003.3 2020-12-18

Publications (1)

Publication Number Publication Date
WO2022126879A1 true WO2022126879A1 (zh) 2022-06-23

Family

ID=75358370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/080913 WO2022126879A1 (zh) 2020-12-18 2021-03-16 一种纳米二氧化钛紫外光催化净化涂层的制备方法

Country Status (2)

Country Link
CN (1) CN112646447A (zh)
WO (1) WO2022126879A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410637A (zh) * 2023-03-09 2023-07-11 杭州开物鑫工程技术有限公司 稀土抗菌抗病毒的稀土罩光漆及其应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112646447A (zh) * 2020-12-18 2021-04-13 瑞康诺(深圳)创新发展有限公司 一种纳米二氧化钛紫外光催化净化涂层的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544558A (zh) * 2003-11-27 2004-11-10 上海大学 一种环保型光催化内墙涂料
CN101037561A (zh) * 2006-03-15 2007-09-19 宋陆罡 高科全能墙面漆
CN106085039A (zh) * 2016-05-27 2016-11-09 潘成明 一种高科环保涂料及其制备方法
CN112210256A (zh) * 2020-10-10 2021-01-12 佛山市净野环保材料有限公司 一种净味防腐面漆涂料及其制备方法
CN112646447A (zh) * 2020-12-18 2021-04-13 瑞康诺(深圳)创新发展有限公司 一种纳米二氧化钛紫外光催化净化涂层的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1803949A (zh) * 2005-12-27 2006-07-19 上海大学 具有净化空气功能的建筑涂层材料及其制备方法
CN102618129A (zh) * 2012-03-21 2012-08-01 深圳市嘉达节能环保科技有限公司 水玻璃-苯丙乳液复合型内外墙涂料及其制备方法
CN107189618A (zh) * 2017-05-27 2017-09-22 太仓卡斯特姆新材料有限公司 一种水性无机富锌底漆及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1544558A (zh) * 2003-11-27 2004-11-10 上海大学 一种环保型光催化内墙涂料
CN101037561A (zh) * 2006-03-15 2007-09-19 宋陆罡 高科全能墙面漆
CN106085039A (zh) * 2016-05-27 2016-11-09 潘成明 一种高科环保涂料及其制备方法
CN112210256A (zh) * 2020-10-10 2021-01-12 佛山市净野环保材料有限公司 一种净味防腐面漆涂料及其制备方法
CN112646447A (zh) * 2020-12-18 2021-04-13 瑞康诺(深圳)创新发展有限公司 一种纳米二氧化钛紫外光催化净化涂层的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116410637A (zh) * 2023-03-09 2023-07-11 杭州开物鑫工程技术有限公司 稀土抗菌抗病毒的稀土罩光漆及其应用
CN116410637B (zh) * 2023-03-09 2023-11-24 杭州开物鑫工程技术有限公司 稀土抗菌抗病毒的稀土罩光漆及其应用

Also Published As

Publication number Publication date
CN112646447A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
CN103131313B (zh) 复合型光触媒空气净化水性内墙涂料及其制备方法
Gaya et al. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems
WO2022126879A1 (zh) 一种纳米二氧化钛紫外光催化净化涂层的制备方法
CN104277626B (zh) 空气净化漆及其制备方法
CN102151562B (zh) 一种制备能够对空气进行有效净化的碳纤维布材料的方法
CN105648743B (zh) 一种纺织用电气石改性纳米二氧化钛高性能整理剂的制备方法
CN110465320A (zh) 一种复合型二氧化钛光催化活性涂层及其制备方法
CN105457658A (zh) 一种模拟光合作用降解污染物同时产氢的z型催化剂及其制备方法
CN102489290A (zh) 一种活性碳纤维负载纳米钒酸铋光催化剂的制备方法
CN105013448B (zh) 一种二氧化钛/壳聚糖层层自组装复合薄膜材料的制备及应用
CN107151941A (zh) 光触媒悬浮液、抗粘连自清洁人造板装饰纸及其制备方法
CN113976103A (zh) 一种废水处理高活性可见光催化剂及其制备方法
CN102489291B (zh) 一种膨胀石墨负载纳米钒酸铋光催化剂的制备方法
CN106946312A (zh) 利用光催化水泥基材料降解饮用水消毒副产物三氯乙酰胺的方法
CN110935441A (zh) 一种高效降解甲醛的钛基复合催化网及其制备方法
CN102627906B (zh) 一种透明紫外线杀菌涂料
CN101209412A (zh) 用于制备宽谱光催化材料的二氧化钛溶胶及其制备方法
CN111957320B (zh) 一种催化降解水中污染物的负载催化剂过滤纤维及其制备与应用
CN112126304A (zh) 一种纳米二氧化钛紫外光催化净化涂层的制备方法
CN110526484B (zh) 一种有机磷农药工业废水处理工艺
CN104353354A (zh) 电化学降解与光催化技术联用的空气净化方法
Ban et al. Degradation of malachite green by visible light-assisted electrocatalytic treatment using NV co-doped TiO2 as photocatalyst
CN103242687A (zh) 一种纳米光触媒喷涂剂及其制备方法
CN110028136B (zh) 电催化三维MnOx-CeOx/PHTS填料粒子处理废水的方法
CN106732495A (zh) 一种固载二氧化钛的方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21904819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21904819

Country of ref document: EP

Kind code of ref document: A1