WO2022121777A1 - 一种漂浮式MXene组装体光热转换材料的制备方法及应用 - Google Patents

一种漂浮式MXene组装体光热转换材料的制备方法及应用 Download PDF

Info

Publication number
WO2022121777A1
WO2022121777A1 PCT/CN2021/135169 CN2021135169W WO2022121777A1 WO 2022121777 A1 WO2022121777 A1 WO 2022121777A1 CN 2021135169 W CN2021135169 W CN 2021135169W WO 2022121777 A1 WO2022121777 A1 WO 2022121777A1
Authority
WO
WIPO (PCT)
Prior art keywords
mxene
binder
assembly
conversion material
floating
Prior art date
Application number
PCT/CN2021/135169
Other languages
English (en)
French (fr)
Inventor
李长平
宋浩然
周锐
王方娴
李琢
Original Assignee
东莞理工学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞理工学院 filed Critical 东莞理工学院
Publication of WO2022121777A1 publication Critical patent/WO2022121777A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/06Contaminated groundwater or leachate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation

Definitions

  • the invention relates to the technical field of environmental protection, in particular to a preparation method and application of a floating MXene assembly photothermal conversion material.
  • landfill leachate has always been a difficult point in environmental pollution control.
  • the composition of landfill leachate is complex.
  • Landfill leachate contains various pollutants such as refractory organic pollutants, metal ions, and high-concentration inorganic salts. Due to the complex types of pollutants contained, and most of the pollutants are biologically toxic, the treatment procedures are complicated and the cost is high.
  • landfill leachate treatment methods mainly include physical and chemical treatment in the front section, biological treatment in the middle section, concentration by end membrane method and thermal evaporation.
  • Landfill leachate contains biological toxic substances, so the stability of biological methods is poor.
  • Membrane methods and thermal evaporation are expensive, and only concentrate and transfer pollutants, not really pollutant removal methods.
  • Thermally activated persulfate is an advanced oxidation method capable of removing most refractory organic pollutants, but the energy cost required to heat water is high.
  • an efficient preparation method of a floating MXene assembly photothermal conversion material is provided.
  • a method for preparing a floating MXene assembly photothermal conversion material the MXene and a binder are mixed uniformly in water; then liquid nitrogen is used for directional freezing, and then a three-dimensional assembly is obtained by vacuum freeze drying.
  • M is one of Sc, Ti, V, Cr, Zr, Nb, Mo, Hf or Ta.
  • the binder is sodium hydroxymethyl cellulose, calcium chloride, polyvinylidene fluoride, N-methylpyrrolidone, polytetrafluoroethylene, perfluorosulfonic acid, styrene-butadiene latex, nano- One or more combinations of silica fume and sodium alginate.
  • the binder is one of a binder compound, a binder solution, or a binder dispersion.
  • the mass ratio of the MXene to the binder is 1:0.1-1:10.
  • the ratio of the MXene to water is 1:0.1-1:10.
  • the directional freezing is to use liquid nitrogen to freeze the mixed solution of MXene and the binder sequentially from bottom to top from the bottom of the solution.
  • the temperature of the vacuum freeze-drying is -30°C ⁇ -20°C.
  • a floating MXene assembly photothermal conversion material is also provided for use in thermally activated persulfate treatment of landfill leachate, so that the MXene assembly photothermal conversion material floats on the to-be-treated containing persulfate-containing photothermal conversion material.
  • the surface of the landfill leachate of sulfate is treated under the irradiation of sunlight.
  • the persulfates include peroxodisulfates and monopersulfates.
  • Photothermal conversion materials refer to a series of materials that can convert light energy into heat energy. Combining photothermal conversion materials with persulfate advanced oxidation technology, clean solar energy can be used to generate heat, significantly reducing treatment costs, while achieving degradation of organic pollutants and recycling of landfill leachate reclaimed water.
  • the present application Compared with the existing landfill leachate treatment method, the present application has the following advantages: the treatment process is simple, no pretreatment process is required, and the cost is low. At the same time, the degradation of organic pollutants and the recycling of reclaimed water are realized.
  • the density of the photothermal conversion material in the MXene assembly is low, and the photothermal conversion material can float on the surface of the liquid when added to the landfill leachate. At the same time, the material can convert sunlight into heat energy, and then activate the persulfate in the solution to achieve The purpose of removing organic pollutants in landfill leachate. At the same time, the steam formed by the photothermal conversion heat evaporation of the MXene assembly can be condensed and recovered to realize the recycling of regenerated water.
  • 1 is a scanning electron microscope image of MXene assemblies prepared according to some embodiments.
  • FIG. 2 is a schematic diagram of the application of MXene assemblies prepared according to some embodiments.
  • 3 is an infrared thermogram of MXene assemblies prepared according to some embodiments in application.
  • the present application provides a method for preparing a floating MXene assembly photothermal conversion material.
  • the MXene and the binder are mixed uniformly in water, followed by directional freezing with liquid nitrogen, and then vacuum freeze-drying to obtain a three-dimensional assembly.
  • M is one of Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, or Ta.
  • the binder is sodium hydroxymethyl cellulose, calcium chloride, polyvinylidene fluoride, N-methylpyrrolidone, polytetrafluoroethylene, perfluorosulfonic acid, styrene-butadiene latex, nano- One or more combinations of silica fume and sodium alginate.
  • the binder is one of a binder compound, a binder solution, or a binder dispersion.
  • the mass ratio of MXene to binder is 1:0.1-1:10.
  • the ratio of MXene to water is from 1:0.1 to 1:10.
  • the directional freezing is to use liquid nitrogen to freeze the mixed solution of MXene and binder sequentially from bottom to top from the bottom of the solution.
  • the temperature of vacuum freeze-drying is -30°C to -20°C.
  • FIG. 1 is a scanning electron microscope image of the MXene assembly prepared by the above method. It can be seen from the figure that the synthesized assembly has a porous and loose structure.
  • FIG. 2 is a schematic diagram of the application of the MXene assembly.
  • the application also provides a floating MXene assembly photothermal conversion material used in the thermally activated persulfate treatment of landfill leachate, so that the MXene assembly 2 photothermal
  • the heat conversion material floats on the surface of the persulfate-containing landfill leachate 1 to be treated, and is treated under the irradiation of sunlight.
  • the density of the photothermal conversion material in MXene assembly 2 is relatively low. Adding the photothermal conversion material to the landfill leachate 1 can float on the surface of the liquid 1. At the same time, the material can convert sunlight into heat energy, thereby activating the photothermal energy in the solution.
  • Persulfate to achieve the purpose of removing organic pollutants in landfill leachate 1.
  • the steam formed by the photothermal conversion heat evaporation of the MXene assembly 2 can be condensed and recovered by the condensation plate 3 to realize the recovery and utilization of the regenerated water 4 .
  • Figure 3 shows the infrared thermometry of the MXene assembly during application. It can be seen from the figure that the temperature of the three-dimensional assembly can reach 112 °C under visible light irradiation.
  • persulfates include peroxodisulfates and monopersulfates.
  • liquid nitrogen was used for directional freezing, and the MXene assemblies were obtained by vacuum freeze-drying at -20 °C for 24 h.
  • the MXene assemblies were added to landfill leachate containing 5 mM sodium peroxodisulfate, and the assemblies were irradiated with simulated sunlight at 1000 W/ m2 .
  • the chemical oxygen demand removal rate of landfill leachate after 10h of illumination was measured to be 40%.
  • About 9 mL of reclaimed water was obtained by collecting steam using a condensing plate, and the chemical oxygen demand removal rate of the reclaimed water was 93%.
  • Nb2C MXene and 0.3 g of perfluorosulfonic acid solution (commercially available Nafion 117 solution) were weighed into 100 ml of water, and stirred at 1000 rpm for 6 h using a magnetic stirrer.
  • the solid was obtained by directional freezing with liquid nitrogen, and finally the MXene assembly was obtained after vacuum freeze-drying at ⁇ 30 °C for 72 h.
  • the MXene assemblies were added to landfill leachate containing 5 mM potassium permonosulfate, and the assemblies were irradiated with simulated sunlight at 1000 W/ m2 .
  • the COD removal rate of landfill leachate was measured to be 54% after 10 hours of illumination. About 10 mL of reclaimed water was obtained by collecting steam with a condensing plate, and the removal rate of chemical oxygen demand of the reclaimed water was 96%.
  • the MXene assemblies were obtained after directional freezing with liquid nitrogen and vacuum freeze-drying at ⁇ 30 °C for 48 h.
  • the MXene assemblies were added to landfill leachate containing 2 mM sodium peroxodisulfate, and the assemblies were irradiated with simulated sunlight at 1000 W/m2.
  • the COD removal rate of landfill leachate was measured to be 27% after 10 hours of illumination.
  • About 9 mL of reclaimed water was obtained by collecting steam using a condensing plate, and the removal rate of chemical oxygen demand of the reclaimed water was 84%.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physical Water Treatments (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

本发明一种漂浮式MXene组装体光热转换材料的制备方法及应用,将MXene与粘结剂于水中混合均匀,用液氮进行定向冷冻后,再经过真空冷冻干燥得到三维组装体。之后再将光热转换材料投加到垃圾渗滤液中可以漂浮于液体表面,于此同时该材料可以将太阳光转换为热能,进而活化溶液中的过硫酸盐,达到去除垃圾渗滤液中的有机污染物的目的。

Description

一种漂浮式MXene组装体光热转换材料的制备方法及应用
相关申请的交叉引用
本申请要求于2020 年12月11日提交中国专利局、申请号为“202011463871.9”、发明名称为“一种漂浮式MXene组装体光热转换材料的制备方法及应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及环境保护技术领域,特别是涉及一种漂浮式MXene组装体光热转换材料的制备方法及应用。
背景技术
垃圾渗滤液的处理一直是环境污染治理的难点。垃圾渗滤液的成分复杂,垃圾渗滤液含有难降解有机污染物、金属离子、高浓度无机盐等多种污染物。由于含有的污染物种类复杂,且多数污染物具有生物毒性,处理程序复杂,成本高昂。
常用的垃圾渗滤液处理方法主要包括前段物理化学处理、中间段生物法处理、末端膜法浓缩和热蒸发。垃圾渗滤液含有生物毒性物质,因此生物法的稳定性较差。膜法和热蒸发的成本高昂,并且只是将污染物浓缩转移,并不是真正意义上的污染物去除方法。
技术问题
热活化过硫酸盐是一种能够去除多数难降解有机污染物的高级氧化方法,但是加热水体所需的能量成本较高。
技术解决方案
根据本申请的各种实施例,提供一种高效的漂浮式MXene组装体光热转换材料的制备方法。
一种漂浮式MXene组装体光热转换材料的制备方法,将MXene与粘结剂于水中混合均匀;之后用液氮进行定向冷冻,再经过真空冷冻干燥得到三维组装体。
所述MXene为结构式为Mn+1Xn的二维材料,其中,n=1、2、3,M为过渡金属元素,X为C或者N。
在其中一个实施例中,M为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf或者Ta中一种。
在其中一个实施例中,所述粘结剂为羟甲基纤维素钠、氯化钙、聚偏氟乙烯、N‑甲基吡咯烷酮、聚四氟乙烯、全氟磺酸、丁苯乳胶、纳米硅粉、海藻酸钠中一种或者多种组合。
在其中一个实施例中,所述粘结剂为粘结剂化合物、粘结剂溶液或者粘结剂分散液中一种。
在其中一个实施例中,所述MXene与粘结剂的质量比为1:0.1~1:10。
在其中一个实施例中,所述MXene与水的比例为1:0.1~1:10。
在其中一个实施例中,所述定向冷冻是利用液氮将MXene和粘结剂的混合溶液自溶液底部由下至上依次进行结冰冷冻。
在其中一个实施例中,所述真空冷冻干燥的温度为‑30℃~‑20℃。
根据本申请的各种实施例,还提供一种漂浮式MXene组装体光热转换材料在热活化过硫酸盐处理垃圾渗滤液中应用,使MXene组装体光热转换材料漂浮于待处理的含有过硫酸盐的垃圾渗滤液的表面,在太阳光的照射下进行处理。
在其中一个实施例中,所述过硫酸盐包括过二硫酸盐和单过硫酸盐。
有益效果
光热转化材料是指能够将光能转化为热能的一系列材料。将光热转化材料与过硫酸盐高级氧化技术结合,可以利用清洁的太阳能产生热量,显著降低处理成本,同时实现有机污染物的降解和垃圾渗滤液再生水的回收。
与现有的垃圾渗滤液处理方法相比,本申请具有以下优点:处理工艺简单,不需预处理工艺,成本低廉。同时实现有机污染物的降解与再生水的回收利用。
MXene组装体光热转换材料密度较低,将光热转换材料投加到垃圾渗滤液中可以漂浮于液体表面,同时该材料可以将太阳光转换为热能,进而活化溶液中的过硫酸盐,达到去除垃圾渗滤液中的有机污染物的目的。同时,MXene组装体光热转化热蒸发形成的蒸汽可以冷凝回收,实现再生水的回收利用。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为根据一些实施例制备的MXene组装体的扫描电子显微镜图。
图2为根据一些实施例制备的MXene组装体的应用示意图。
图3为根据一些实施例制备的MXene组装体在应用时的红外测温图。
本发明的实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
本申请提供一种漂浮式MXene组装体光热转换材料的制备方法,将MXene与粘结剂于水中混合均匀;之后用液氮进行定向冷冻,再经过真空冷冻干燥得到三维组装体。
MXene为结构式为Mn+1Xn的二维材料,其中,n=1、2、3,M为过渡金属元素,X为C或者N。
在一个或多个实施例中,M为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf或者Ta中一种。
在一个或多个实施例中,粘结剂为羟甲基纤维素钠、氯化钙、聚偏氟乙烯、N‑甲基吡咯烷酮、聚四氟乙烯、全氟磺酸、丁苯乳胶、纳米硅粉、海藻酸钠中一种或者多种组合。
在一个或多个实施例中,粘结剂为粘结剂化合物、粘结剂溶液或者粘结剂分散液中一种。
在一个或多个实施例中,MXene与粘结剂的质量比为1:0.1~1:10。
在一个或多个实施例中,MXene与水的比例为1:0.1~1:10。
在一个或多个实施例中,定向冷冻是利用液氮将MXene和粘结剂的混合溶液自溶液底部由下至上依次进行结冰冷冻。
在一个或多个实施例中,真空冷冻干燥的温度为‑30℃~‑20℃。
图1为采用上述方法制备的MXene组装体的扫描电子显微镜图。由图可知,合成的组装体为多孔疏松结构。
如图2所示,图2为MXene组装体的应用示意图,本申请还提供一种漂浮式MXene组装体光热转换材料在热活化过硫酸盐处理垃圾渗滤液中应用,使MXene组装体2光热转换材料漂浮于待处理的含有过硫酸盐的垃圾渗滤液1的表面,在太阳光的照射下进行处理。MXene组装体2光热转换材料密度较低,将光热转换材料投加到垃圾渗滤液1中可以漂浮于液体1表面,于此同时该材料可以将太阳光转换为热能,进而活化溶液中的过硫酸盐,达到去除垃圾渗滤液1中的有机污染物的目的。同时,MXene组装体2光热转化热蒸发形成的蒸汽可以通过冷凝板3进行冷凝回收,实现再生水4的回收利用。
图3为MXene组装体在应用时的红外测温图,由图可知,三维组装体在可见光照射下温度可以达到112℃。
在一个或多个实施例中,过硫酸盐包括过二硫酸盐和单过硫酸盐。
以下为漂浮式MXene组装体光热转换材料的制备方法及应用的各个实施例说明。
实施例1:
称取0.1g Ti3C2 MXene和0.1g聚四氟乙烯的水分散液(质量分数为60%)加入到100mL水中,并使用磁力搅拌器在转速500rpm下搅拌1h。
然后用液氮进行定向冷冻,在-20℃真空冷冻干燥24h得到MXene组装体。
将MXene组装体加入到含有5mM过二硫酸钠的垃圾渗滤液中,使用1000W/m 2的模拟太阳光照射组装体。
测得光照10h之后垃圾渗滤液的化学需氧量去除率为40%。使用冷凝板收集蒸汽得到了约9mL的再生水,再生水化学需氧量去除率为93%。
实施例2:
称取0.1g Nb2C MXene和0.3g全氟磺酸溶液(商业购得的Nafion 117溶液)加入到100ml水中,使用磁力搅拌器在转速1000rpm下搅拌6h。
然后用液氮进行定向冷冻得到固体,最后在‑30℃真空冷冻干燥72h后得到MXene组装体。
将MXene组装体加入到含有5mM过一硫酸钾的垃圾渗滤液中,使用1000W/m 2的模拟太阳光照射组装体。
测得光照10h之后垃圾渗滤液的化学需氧量去除率为54%。使用冷凝板收集蒸汽得到了约10mL的再生水,再生水化学需氧量去除率为96%。
实施例3:
称取0.1g Mo2C MXene和0.05g海藻酸钠加入到100ml水中,使用磁力搅拌器在转速800rpm下搅拌24h。
用液氮进行定向冷冻,然后在‑30℃真空冷冻干燥48h后得到MXene组装体。
将MXene组装体加入到含有2mM过二硫酸钠的垃圾渗滤液中,使用1000W/m 2的模拟太阳光照射组装体。
测得光照10h之后垃圾渗滤液的化学需氧量去除率为27%。使用冷凝板收集蒸汽得到了约9mL的再生水,再生水化学需氧量去除率为84%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的一种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (9)

  1. 一种漂浮式MXene组装体光热转换材料的制备方法,将MXene与粘结剂于水中混合均匀;之后用液氮进行定向冷冻,再经过真空冷冻干燥得到三维组装体;所述MXene为结构式为Mn+1Xn的二维材料,其中,n=1、2、3,M为过渡金属元素,X为C或者N。
  2. 根据权利要求1所述的方法,M为Sc、Ti、V、Cr、Zr、Nb、Mo、Hf或者Ta中一种。
  3. 根据权利要求1所述的方法,所述粘结剂为羟甲基纤维素钠、氯化钙、聚偏氟乙烯、N‑甲基吡咯烷酮、聚四氟乙烯、全氟磺酸、丁苯乳胶、纳米硅粉、海藻酸钠中一种或者多种组合。
  4. 根据权利要求1所述的方法,所述粘结剂为粘结剂化合物、粘结剂溶液或者粘结剂分散液中一种。
  5. 根据权利要求1所述的方法,所述MXene与粘结剂的质量比为1:0.1~1:10。
  6. 根据权利要求1所述的方法,所述MXene与水的比例为1:0.1~1:10。
  7. 根据权利要求1所述的方法,所述定向冷冻是利用液氮将MXene和粘结剂的混合溶液自溶液底部由下至上依次进行结冰冷冻。
  8. 一种漂浮式MXene组装体光热转换材料在热活化过硫酸盐处理垃圾渗滤液中应用,使MXene组装体光热转换材料漂浮于待处理的含有过硫酸盐的垃圾渗滤液的表面,在太阳光的照射下进行处理。
  9. 根据权利要求8所述的应用,所述过硫酸盐包括过二硫酸盐和单过硫酸盐。
PCT/CN2021/135169 2020-12-11 2021-12-02 一种漂浮式MXene组装体光热转换材料的制备方法及应用 WO2022121777A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011463871.9 2020-12-11
CN202011463871.9A CN112520807A (zh) 2020-12-11 2020-12-11 一种漂浮式MXene组装体光热转换材料的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2022121777A1 true WO2022121777A1 (zh) 2022-06-16

Family

ID=74999377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135169 WO2022121777A1 (zh) 2020-12-11 2021-12-02 一种漂浮式MXene组装体光热转换材料的制备方法及应用

Country Status (2)

Country Link
CN (1) CN112520807A (zh)
WO (1) WO2022121777A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396529A (zh) * 2023-04-14 2023-07-07 成都大学 一种多孔光热转换水凝胶膜的制备及在污水净化中的应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112520807A (zh) * 2020-12-11 2021-03-19 东莞理工学院 一种漂浮式MXene组装体光热转换材料的制备方法及应用
CN113171779B (zh) * 2021-04-28 2023-10-20 东莞理工学院 一种b位五元高熵钙钛矿催化剂的制备方法与应用
CN115490379A (zh) * 2022-04-14 2022-12-20 同济大学 一种利用光热活化过氧乙酸去除水中微污染物的方法
CN115286060A (zh) * 2022-07-15 2022-11-04 东莞理工学院 一种MXene@竹纤维组装体及其制备方法和应用
CN115403129A (zh) * 2022-08-02 2022-11-29 上海市政工程设计研究总院(集团)有限公司 一种光热耦合活化过硫酸盐的方法及其应用
CN115676892B (zh) * 2022-11-03 2024-03-29 东莞理工学院 一种三价锰的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423732A (zh) * 2018-02-01 2018-08-21 浙江大学 一种太阳能海水淡化及污染物去除双功能装置
CN110090603A (zh) * 2019-04-12 2019-08-06 湖北大学 一种MXene与氧化石墨烯复合气凝胶及其制备方法和应用
US20190367384A1 (en) * 2018-05-29 2019-12-05 Florida Polytechnic University Board of Trustees Synergistic chemical oxidative and photocatalytic enhancer system (scopes) for wastewater remediation
CN111218025A (zh) * 2020-01-08 2020-06-02 东华大学 一种仿树木光热水凝胶及其制备方法和应用
CN112520807A (zh) * 2020-12-11 2021-03-19 东莞理工学院 一种漂浮式MXene组装体光热转换材料的制备方法及应用

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108328616A (zh) * 2018-04-20 2018-07-27 昆明理工大学 一种三维MXene的制备方法
CN109647533B (zh) * 2018-11-08 2020-07-31 华南农业大学 一种可漂浮的磁性高分子复合材料及其制备方法与应用
CN110342516A (zh) * 2019-07-09 2019-10-18 哈尔滨工程大学 一种三维交联结构的MXene材料及其制备方法
CN110615440B (zh) * 2019-09-24 2022-02-11 哈尔滨师范大学 一种大尺寸、富含氧官能团的MXene纳米片及其制备方法和应用
CN111422873B (zh) * 2020-03-23 2021-09-28 北京化工大学 一种MXene/海藻酸钠衍生碳三维气凝胶及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108423732A (zh) * 2018-02-01 2018-08-21 浙江大学 一种太阳能海水淡化及污染物去除双功能装置
US20190367384A1 (en) * 2018-05-29 2019-12-05 Florida Polytechnic University Board of Trustees Synergistic chemical oxidative and photocatalytic enhancer system (scopes) for wastewater remediation
CN110090603A (zh) * 2019-04-12 2019-08-06 湖北大学 一种MXene与氧化石墨烯复合气凝胶及其制备方法和应用
CN111218025A (zh) * 2020-01-08 2020-06-02 东华大学 一种仿树木光热水凝胶及其制备方法和应用
CN112520807A (zh) * 2020-12-11 2021-03-19 东莞理工学院 一种漂浮式MXene组装体光热转换材料的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116396529A (zh) * 2023-04-14 2023-07-07 成都大学 一种多孔光热转换水凝胶膜的制备及在污水净化中的应用
CN116396529B (zh) * 2023-04-14 2024-05-03 成都大学 一种多孔光热转换水凝胶膜的制备及在污水净化中的应用

Also Published As

Publication number Publication date
CN112520807A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2022121777A1 (zh) 一种漂浮式MXene组装体光热转换材料的制备方法及应用
Yi et al. Scalable and low-cost synthesis of black amorphous Al-Ti-O nanostructure for high-efficient photothermal desalination
CN109485115A (zh) 一种基于玉米芯整体炭材料太阳能光热净化水的方法
CN108314118B (zh) 一种海水净化与淡化处理装置与应用
CN102078791A (zh) 一种污泥活性炭及其制备方法
CN110117046A (zh) 一种绿色电芬顿阴极的制备方法和应用
CN107195908B (zh) 一种微生物电解池的泡沫材料复合阴极及其制备方法
WO2023108868A1 (zh) 一种碳纳米管/聚丙烯酸水凝胶的制备方法及其产品与应用
CN108565471A (zh) 一种光热生物阳极的制备方法和光热生物阳极及其应用
CN113860413A (zh) 一种基于生物质水凝胶/纳米碳材的太阳能蒸发器及其应用
CN110280289A (zh) 一种氮化碳光催化材料及其制备方法
CN111087054A (zh) 一种芦苇秸秆碳化合成电吸附脱盐电极的简易制备方法
CN111204829B (zh) 基于废纸和石墨的太阳能污水净化气凝胶及其制备方法
CN110386728A (zh) 一种管式自由基氧化处理高盐度高cod工业废水的一体化工艺
CN109888280A (zh) 钾离子电池硫掺杂MXene负极材料及其制备方法
CN111635604B (zh) 一种天然胶体复合的水凝胶及其制备方法、应用
Fan et al. Architecting a bifunctional solar evaporator of perovskite La0. 5Sr0. 5CoO3 for solar evaporation and degradation
CN108380178A (zh) 一种生态修复剂的制备方法及其对放射性核素的吸附工艺
CN112250126A (zh) 一种光热薄膜及其制备方法与应用
CN111874981A (zh) 一种黄金冶炼废水处理技术
CN109289546A (zh) 一种石墨烯黑体滤膜的制备方法
CN113233532B (zh) 一种基于太阳能界面蒸发的低成本光热材料及其制备方法
CN110511393B (zh) 一种以铜网为基体的Fe-dobdc MOF及其制备方法和在太阳能蒸汽产生中的应用
CN113880086A (zh) 一种氮磷共掺杂生物质衍生电容去离子电极的制备方法
CN113583637A (zh) 一种易回收光热海水淡化三元复合材料及制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902484

Country of ref document: EP

Kind code of ref document: A1