WO2022121350A1 - 一种空调化霜控制方法、装置、存储介质及空调 - Google Patents

一种空调化霜控制方法、装置、存储介质及空调 Download PDF

Info

Publication number
WO2022121350A1
WO2022121350A1 PCT/CN2021/112226 CN2021112226W WO2022121350A1 WO 2022121350 A1 WO2022121350 A1 WO 2022121350A1 CN 2021112226 W CN2021112226 W CN 2021112226W WO 2022121350 A1 WO2022121350 A1 WO 2022121350A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
temperature
preset
air conditioner
value
Prior art date
Application number
PCT/CN2021/112226
Other languages
English (en)
French (fr)
Inventor
田雅颂
徐耿彬
廖敏
连彩云
梁之琦
熊绍森
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2022121350A1 publication Critical patent/WO2022121350A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the field of control, and in particular, to a defrosting control method, device, storage medium and air conditioner for an air conditioner.
  • Heat pump type air conditioners can provide heat to the room during the cold season.
  • the heat pump air conditioner runs for a period of time, the heat exchanger of the outdoor unit will often form frost, which will affect the heat exchange efficiency of the air conditioner.
  • frost In bad weather, the thickness of the frost layer will even cover the outdoor unit, seriously affecting the comfort of users using the air conditioner. Air conditioner defrosting is required to solve this problem.
  • the existing defrosting method mainly judges that after the outdoor unit is frosted to a relatively thick level, when the indoor heating capacity is seriously affected, the heating mode is switched to the cooling mode, so that the high-temperature gas of the compressor directly enters the outdoor unit, thereby realizing defrosting.
  • the indoor heating capacity will drop significantly for a period of time before the defrosting starts.
  • the main purpose of the present disclosure is to overcome the above-mentioned defects of the related art, and to provide an air-conditioning defrost control method, device, storage medium and air conditioner, so as to solve the problem of inability to take into account the comfort in the room when defrosting the outdoor unit of the air conditioner in the related art.
  • One aspect of the present disclosure provides a defrosting control method for an air conditioner, comprising: in the case of the air conditioner heating operation, when the air conditioner meets a defrosting condition, judging that the degree of frost formation of the outdoor heat exchanger is the first a degree of frost formation or a second degree of frost formation; wherein, the thickness of the frost layer of the first degree of frost formation is less than the thickness of the frost layer of the second degree of frost formation; if it is judged that the degree of frost formation of the outdoor heat exchanger is If the degree of frosting of the outdoor heat exchanger is determined to be the second degree of frosting, the air conditioner is controlled to defrost in the second defrosting method. Defrosting; the first defrosting mode and the second defrosting mode are that the four-way valve is not reversed for defrosting, and the air conditioner maintains a heating state during defrosting.
  • judging that the degree of frost formation of the outdoor heat exchanger is the first degree of frost formation or the second degree of frost formation includes: when the heating operation time of the air conditioner reaches a first preset time, and all When the temperature of the outdoor heat exchanger of the air conditioner is lower than the first preset temperature threshold, it is determined that the frosting degree of the outdoor heat exchanger is the first frosting degree; when the heating operation time of the air conditioner reaches the second preset temperature time, and when the temperature of the outdoor heat exchanger of the air conditioner is lower than the second preset temperature threshold, it is determined that the frosting degree of the outdoor heat exchanger is the second frosting degree; wherein the first preset time is less than The second preset time, and/or the first preset temperature threshold is greater than the second preset temperature threshold.
  • controlling the air conditioner to defrost in a first defrosting manner or controlling the air conditioner to defrost in a second defrosting manner includes: controlling the air conditioner to defrost in the first defrosting manner or in the second defrosting manner In the first stage of defrosting, the first temperature difference between the temperature of the target indoor heat exchanger and the temperature of the first indoor heat exchanger when entering the defrosting method is obtained; The interval in which the two or more temperature difference intervals are located determines the speed reduction value of the indoor fan, so as to control the operation of the indoor fan according to the determined speed reduction value; wherein, in the same temperature difference interval, the first defrosting mode corresponds to The rotation speed reduction value is smaller than the rotation speed reduction value corresponding to the second defrosting mode; and/or, in the second stage of controlling the air conditioner to defrost in the first defrosting mode or the second defrosting mode, obtain The second temperature difference value between the current second indoor heat exchanger temperature and the target indoor heat exchanger temperature; determined according to the
  • the current rotational speed of the indoor fan is maintained unchanged; when the When the second temperature difference is less than or equal to the lower limit value of the set stability interval, reduce the preset rotational speed value every preset interval time until the rotational speed of the indoor fan drops to the preset rotational speed lower limit value; when the When the second temperature difference is greater than the upper limit of the set stability interval, the preset rotational speed value is increased at every preset interval until the rotational speed of the indoor fan reaches the set rotational speed value or the preset rotational speed upper limit .
  • the method further includes: after controlling the air conditioner to start defrosting in a first defrosting manner or a second defrosting manner, when it is determined that the temperature of the indoor heat exchanger is less than or equal to a first temperature value, controlling the The electric auxiliary heating device of the air conditioner is turned on; and/or, after the air conditioner is controlled to start or end defrosting in the first defrosting mode or the second defrosting mode, when it is determined that the temperature of the indoor heat exchanger is greater than At the second temperature value, the electric auxiliary heating device for controlling the air conditioner is turned off.
  • the first temperature value is determined according to the rotational speed of the indoor fan and the indoor ambient temperature
  • the second temperature value is determined according to the rotational speed of the indoor fan and the indoor ambient temperature
  • Under the temperature the first temperature value under the first defrosting mode is different and/or the second temperature value is different, and the first temperature value under the second defrosting mode is different and/or the The second temperature value is different; under the same indoor fan speed and indoor ambient temperature, the first temperature value in the first defrosting mode is greater than the first temperature value in the second defrosting mode ; the second temperature value under the first defrosting mode is greater than the second temperature value under the second defrosting mode; the first temperature value under the same internal fan speed and indoor ambient temperature less than the second temperature value.
  • an air conditioner defrosting control device comprising: a judgment unit configured to judge the outdoor heat exchange when the air conditioner satisfies defrosting conditions under the condition of the heating operation of the air conditioner
  • the frosting degree of the device is the first frosting degree or the second frosting degree; wherein, the thickness of the frost layer of the first frosting degree is smaller than that of the second frosting degree;
  • the control unit is set to If the judging unit judges that the degree of frosting of the outdoor heat exchanger is the first degree of frosting, the air conditioner is controlled to defrost in the first defrosting manner, and if it is judged that the degree of frosting of the outdoor heat exchanger is The second defrosting degree is controlled to defrost the air conditioner in the second defrosting mode; the first defrosting mode and the second defrosting mode are that the four-way valve is not reversed for defrosting, and the The air conditioner keeps heating.
  • the determining unit determines that the degree of frost formation of the outdoor heat exchanger is the first degree of frost formation or the second degree of frost formation; including: when the heating operation time of the air conditioner reaches a first preset level When the temperature of the outdoor heat exchanger of the air conditioner is lower than the first preset temperature threshold, the frosting degree of the outdoor heat exchanger is determined to be the first frosting degree; when the heating operation time of the air conditioner is When the second preset time is reached and the temperature of the outdoor heat exchanger of the air conditioner is lower than the second preset temperature threshold, it is determined that the frosting degree of the outdoor heat exchanger is the second frosting degree; A preset time is shorter than the second preset time, and/or the first preset temperature threshold is greater than the second preset temperature threshold.
  • control unit controlling the air conditioner to defrost in a first defrosting manner or controlling the air conditioner to defrost in a second defrosting manner, includes: controlling the air conditioner to defrost in the first defrosting manner Or in the first stage of defrosting in the second defrosting mode, obtain the first temperature difference between the temperature of the target indoor heat exchanger and the temperature of the first indoor heat exchanger when entering the defrosting;
  • the interval in the two or more temperature difference intervals divided by the first method determines the speed reduction value of the indoor fan, so as to control the operation of the indoor fan according to the determined speed reduction value; wherein, in the same temperature difference interval, the first The rotation speed reduction value corresponding to the defrosting mode is smaller than the rotation speed reduction value corresponding to the second defrosting mode; and/or, when the air conditioner is controlled to defrost in the first defrosting mode or the second defrosting mode In the second stage, the second temperature difference between the current second indoor heat exchanger temperature and the target indoor heat exchanger temperature
  • the current rotational speed of the indoor fan is maintained unchanged; when the When the second temperature difference is less than or equal to the lower limit value of the set stability interval, reduce the preset rotational speed value every preset interval time until the rotational speed of the indoor fan drops to the preset rotational speed lower limit value; when the When the second temperature difference is greater than the upper limit of the set stability interval, the preset rotational speed value is increased at every preset interval until the rotational speed of the indoor fan reaches the set rotational speed value or the preset rotational speed upper limit .
  • the judging unit is further configured to: after the control unit controls the air conditioner to start defrosting in a first defrosting manner or a second defrosting manner, judging the temperature of the indoor heat exchanger Whether it is less than or equal to the first temperature value; the control unit is further configured to: when the judgment unit judges that the temperature of the indoor heat exchanger is less than or equal to the first temperature value, control the electric auxiliary heating device of the air conditioner to turn on; And/or, the judging unit is further configured to: after the control unit controls the air conditioner to start defrosting in the first defrosting mode or the second defrosting mode or after defrosting ends, determine that the indoor replacement is performed. Whether the temperature of the heater is greater than the second temperature value; the control unit is further configured to: when the judgment unit judges that the temperature of the indoor heat exchanger is greater than the second temperature value, control the electric auxiliary heating device of the air conditioner to turn off .
  • the first temperature value is determined according to the rotational speed of the indoor fan and the indoor ambient temperature
  • the second temperature value is determined according to the rotational speed of the indoor fan and the indoor ambient temperature
  • Under the temperature the first temperature value under the first defrosting mode is different and/or the second temperature value is different, and the first temperature value under the second defrosting mode is different and/or the The second temperature value is different; under the same indoor fan speed and indoor ambient temperature, the first temperature value in the first defrosting mode is greater than the first temperature value in the second defrosting mode ; the second temperature value under the first defrosting mode is greater than the second temperature value under the second defrosting mode; the first temperature value under the same internal fan speed and indoor ambient temperature less than the second temperature value.
  • Yet another aspect of the present disclosure provides a storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps of any one of the aforementioned methods.
  • Yet another aspect of the present disclosure provides an air conditioner, comprising a processor, a memory, and a computer program stored in the memory and executable on the processor, the processor implementing the steps of any one of the aforementioned methods when the processor executes the program.
  • an air conditioner which includes any one of the air conditioner defrost control devices described above.
  • different modes of non-reversing defrosting can be performed according to different degrees of frost formation, which can take into account the defrosting effect and room comfort; Determine the speed change of the indoor unit under different defrosting forms, and control the indoor fan in stages, through the first-stage wind speed reduction control and the second-stage closed-loop control of the indoor fan wind speed to avoid serious room temperature during defrosting. Decrease and affect the comfort; through the coordinated control of the internal fan and the electric auxiliary heat, the electric auxiliary heat on and off conditions are determined based on the windshield, the indoor ambient temperature and the defrosting method, and the user's comfort needs are taken into account while defrosting quickly.
  • the solution of the present disclosure can be implemented on the existing air conditioner without increasing the cost.
  • FIG. 1 is a method schematic diagram of an embodiment of an air conditioner defrosting control method provided by the present disclosure
  • FIG. 2 is a method schematic diagram of another embodiment of the air-conditioning defrosting control method provided by the present disclosure
  • Fig. 3 shows the judgment condition that the electric auxiliary heating device is turned on or off
  • FIG. 4 is a method schematic diagram of a specific embodiment of an air conditioner defrosting control method provided by the present disclosure
  • FIG. 5 is a structural block diagram of an embodiment of an air conditioner defrosting device provided by the present disclosure.
  • the optimized defrosting method includes hot gas defrosting, that is, the four-way valve is not reversed, and the high-temperature refrigerant of the indoor unit is directly sent to the outdoor unit through the opening of the air conditioner actuator, especially the electronic expansion valve, without throttling. Defrost.
  • control methods of non-reversing defrosting that is, the four-way valve is not reversed, and the outdoor unit is defrosted by adjusting the compressor frequency of the air conditioner, the opening of the electronic expansion valve and other actuators.
  • the electric auxiliary heat is usually turned on after the defrost starts, but the control of the electric auxiliary heat is generally based on the inner tube temperature to exit or exit after the defrost ends.
  • the control method is relatively simple, and the linkage effect of the indoor unit actuator is not better played, and the indoor temperature is not reduced as much as possible while defrosting quickly.
  • the present disclosure provides a defrosting control method and device.
  • the control of the fan and electric auxiliary heat in the indoor unit actuator can ensure the thermal comfort of the room while defrosting the external machine, and improve the comfort of the user using the air conditioner during the heating season.
  • FIG. 1 is a method schematic diagram of an embodiment of a defrosting control method for an air conditioner provided by the present disclosure. As shown in FIG. 1 , according to an embodiment of the present disclosure, the air conditioner defrosting control method includes at least step S110 and step S120.
  • Step S110 in the case of the air conditioner heating operation, when the air conditioner satisfies the defrosting condition, determine that the degree of frost formation of the outdoor heat exchanger is the first degree of frost formation or the second degree of frost formation.
  • the frosting degree of the outdoor heat exchanger is determined.
  • the frosting degree includes a first frosting degree and a second frosting degree.
  • the thickness of the frost layer of the first degree of frosting is smaller than the thickness of the frost layer of the second degree of frosting.
  • the first frosting degree is a thin frost
  • the second frosting degree is a thick frost.
  • the frosting degree of the outdoor heat exchanger is determined according to the current heating operation time of the air conditioner and the temperature of the outdoor heat exchanger.
  • the heating operation time is the interval time from the last defrost or the time when the device enters the defrost for the first time after the machine is turned on.
  • the first heating operation time of the air conditioner reaches a first preset time, and the temperature of the outdoor heat exchanger of the air conditioner is lower than the first preset temperature threshold, it is determined that the junction of the outdoor heat exchanger is The degree of frost is the first degree of frost formation, such as thin frost; the first heating operation time includes: the interval time from the start-up (if the start-up is not performed or defrosted) or the time since the last defrost (whichever is the case). defrosting mode) interval time.
  • the second heating operation time of the air conditioner reaches the second preset time, and the temperature of the outdoor heat exchanger of the air conditioner is lower than the second preset temperature threshold, it is determined that the frosting degree of the outdoor heat exchanger is the first 2.
  • the second heating operation time includes: the interval time from the start-up (in the case of no start-up or defrosting) or the interval time from the last defrosting performed in the second defrosting manner.
  • the first preset time is less than the second preset time
  • the first preset temperature threshold is greater than the second preset temperature threshold. Since the judging condition of the first frosting degree is satisfied first, the judging condition of the second frosting degree will be satisfied. In essence, the second heating operation time includes the first heating operation time.
  • Step S120 if it is determined that the degree of frosting of the outdoor heat exchanger is the first degree of frosting, control the air conditioner to defrost in the first defrosting manner, and if it is determined that the degree of frosting of the outdoor heat exchanger is the first degree of frosting.
  • the air conditioner is controlled to defrost in the second defrosting mode.
  • the first defrosting mode and the second defrosting mode are that the four-way valve does not reverse defrost, and the air conditioner maintains a heating state during defrosting. That is, when heating and defrosting, the four-way valve is not controlled to switch to the cooling mode, but the heating state is maintained.
  • the first defrosting method is thin frost defrosting
  • the second defrosting method is thick frost defrosting. For example, if it is judged that the degree of frost formation in the outdoor heat exchanger is at the level of thin frost, then perform thin frost defrosting, that is, the first defrosting method; Defrosting, that is, the second defrosting method.
  • the first defrosting manner is no longer defrosted. That is, after the number of defrosting in the first defrosting method reaches the preset number of times after the startup, the degree of frost formation of the outdoor heat exchanger is no longer determined to be the first degree of frost formation, and the degree of frost formation of the outdoor heat exchanger is directly determined. Whether the frosting degree is the second frosting degree, when it is judged that the frosting degree of the outdoor heat exchanger is the second frosting degree, the air conditioner is controlled to defrost in the second defrosting mode.
  • the non-reversing defrost control includes speed control of the interior fan.
  • the air volume of the indoor fan is reduced, the high pressure is increased, and the temperature of the outdoor heat exchanger is increased, which is more conducive to defrosting.
  • the non-reversing defrosting control further includes: controlling the operating frequency of the compressor to drop to a preset frequency, increasing the opening of the electronic expansion valve to the preset opening, and keeping the rotational speed of the outdoor fan unchanged or shutting down.
  • the defrost control is performed in two stages:
  • the air conditioner When controlling the air conditioner to defrost in the first defrosting mode or the second defrosting mode, enter the first stage first, and in the first stage in which the air conditioner is controlled to defrost in the first defrosting mode or the second defrosting mode , obtain the first temperature difference between the temperature of the target indoor heat exchanger and the temperature of the first indoor heat exchanger when entering the defrost; according to the first temperature difference ⁇ T1, in two or more temperature difference intervals divided according to the first method
  • the temperature difference interval in which the indoor fan is located determines the rotation speed reduction value of the indoor fan, so as to control the operation of the indoor fan according to the determined rotation speed reduction value.
  • the rotational speed reduction value includes a rotational speed value or a wind gear value of the internal fan that is reduced on the basis of the current rotational speed.
  • the first temperature difference between the target indoor heat exchanger temperature and the temperature of the first indoor heat exchanger when entering the defrost is in different temperature difference intervals corresponding to different reduction values of the rotational speed of the indoor fan.
  • Table 1 shows the fan speed control mode in the first stage after entering the defrosting stage.
  • the speed of the indoor fan is subjected to different down-winding processing.
  • the larger the ⁇ T1 the more the wind gear is lowered in the first stage. That is, ⁇ P1-1 ⁇ P1-2 ⁇ P1-3 ⁇ P1-4, and ⁇ P2-1 ⁇ P2-2 ⁇ P2-3 ⁇ P2-4.
  • ⁇ P When ⁇ P is defined by the wind gear, it can be the number of wind gears defined by Arabic numerals.
  • ⁇ P1-1 means that the wind gear is reduced by 1 gear on the basis of the original. It can also be the rotational speed.
  • the original wind gear corresponds to 1230 rpm, and when it is reduced by 200 rpm, it is 1030 rpm.
  • the wind gear is not limited to 5 gears, and more gears can also be defined.
  • the rotational speed reduction value ⁇ P1 ( ⁇ P1-1, ⁇ P1-2, ⁇ P1-3, ⁇ P1-4) corresponding to the first defrosting mode in the same temperature difference interval is smaller than the second defrosting mode
  • the rotation speed reduction value ⁇ P2 ( ⁇ P2-1, ⁇ P2-2, ⁇ P2-3, ⁇ P2-4) corresponding to the mode. Due to the difference between the first defrosting method and the second defrosting method.
  • the second defrosting method is thick frost, and the defrosting time is long without commutation.
  • ⁇ P1-1 ⁇ P2-1 similarly, ⁇ P1-2 ⁇ P2-2; ⁇ P1-3 ⁇ P2- 3; ⁇ P1-4 ⁇ P2-4. This is to take into account the air temperature of the room while defrosting quickly.
  • the second temperature difference between the current second indoor heat exchanger temperature and the target indoor heat exchanger temperature is obtained;
  • the temperature difference interval in which the second temperature difference value is located in the two or more temperature difference intervals divided according to the second method determines the rotation speed adjustment mode of the indoor fan, so as to control the operation of the indoor fan according to the determined rotation speed adjustment mode.
  • the second temperature difference between the current second indoor heat exchanger temperature and the target indoor heat exchanger temperature is in different temperature difference intervals corresponding to different indoor fan speed adjustment modes.
  • the rotation speed adjustment method includes: reducing or increasing the preset rotation speed value every preset interval time, until the rotation speed of the indoor fan drops to the preset rotation speed lower limit value or reaches the preset rotation speed value or the preset rotation speed upper limit value.
  • Table 2 shows the fan speed control mode in the second stage after entering the defrosting stage.
  • the air volume is small, the high pressure rises, and the temperature of the outer pipe rises, which is more conducive to defrosting.
  • the preset interval time in the first defrosting mode is different from the preset interval time in the second defrosting mode.
  • the preset interval time corresponding to the first defrosting mode is t1
  • the preset interval time corresponding to the second defrosting mode is t2.
  • the second temperature difference value is in the set stable interval in the two or more temperature difference intervals divided according to the second manner, the current rotational speed of the indoor fan is maintained unchanged.
  • ⁇ Q is described in terms of rotational speed. Since the first downshift has been performed in the first stage, the second stage is more finely adjusted according to the real-time inner pipe temperature.
  • the preset rotational speed value When the second temperature difference value is less than or equal to the lower limit value of the set stability interval, reduce the preset rotational speed value every preset interval time until the rotational speed of the indoor fan drops to the preset rotational speed lower limit value;
  • the preset rotational speed value is increased every preset interval until the rotational speed of the indoor fan reaches the set rotational speed value or the preset rotational speed Upper limit.
  • the lower or higher preset rotational speed value corresponding to the temperature difference interval that is closer to the set stable interval is smaller, and the lower or higher value corresponding to the temperature difference interval farther from the set stable interval is smaller. The greater the preset rotational speed value is.
  • the preset rotational speed values that are decreased or increased at every preset interval are different.
  • the fan speed in the III interval does not change in real time, it needs to be adjusted in the other four temperature difference intervals.
  • the farther away from the III interval, the adjustment range of the I interval and the V interval is greater than the distance from the III interval.
  • the II interval and IV interval that is, ⁇ Q1 ⁇ Q2.
  • the rotation speed is changed every t1 time, and the reason why the interval time is not distinguished between the I zone and the II zone is that the first defrost mode is originally time. It is very short, considering the memory of the indoor unit controller, there is no need to add an additional control parameter.
  • the preset interval time between reducing or increasing the rotational speed of the indoor fan is different, and/or the decreasing or increasing speed is different.
  • the preset rotational speed values are different.
  • the time t2-1 between the I interval and the II interval is different from t2-2; t2-1 ⁇ t2-2; in this way, the speed of the indoor fan can be rapidly dynamically changed away from the III area. Adjustment, so as to adjust the inner tube temperature in time. Among them, 0 ⁇ t1 ⁇ t2-1 ⁇ t2-2 ⁇ 30s, 0 ⁇ Q2 ⁇ Q1 ⁇ 80rpm.
  • the indoor unit When reversing defrosting, the indoor unit is in a cooling state.
  • the common method is to stop the indoor fan and not turn on the auxiliary heat.
  • the common method is to stop the indoor fan and turn off the electric auxiliary heat.
  • the electric auxiliary heating control method of the present disclosure controls the opening and closing conditions of the electric auxiliary heat based on the temperature of the windshield, the inner pipe and the real-time indoor ring temperature.
  • FIG. 2 is a method schematic diagram of another embodiment of the air conditioner defrosting control method provided by the present disclosure. As shown in FIG. 2, according to an embodiment of the present disclosure, the air conditioner defrosting control method further includes steps S130 and S140.
  • Step S130 after controlling the air conditioner to start defrosting in the first defrosting mode or the second defrosting mode, when it is judged that the temperature of the indoor heat exchanger is less than or equal to the first temperature value, control the electric auxiliary heat of the air conditioner The device is turned on.
  • the first temperature value TON that is, the temperature value of the indoor heat exchanger that needs to be met when the electric auxiliary heating device is turned on.
  • the electric auxiliary heating device of the air conditioner is controlled. on.
  • the first temperature value TON is determined according to the rotational speed of the indoor fan and the indoor ambient temperature.
  • FIG. 3 shows the judgment conditions for turning on or off the electric auxiliary heating device.
  • the first temperature value in the first defrosting mode is different; under different rotational speeds of the indoor fan and indoor ambient temperature, the value of the first temperature in the second defrosting mode is different.
  • the first temperature values are different.
  • the first defrosting mode corresponds to The first temperature value is TON1 (TON1-1-n1, TON1-1-n2, ..., TON1-5-n1, TON1-5-n2), and the first temperature value corresponding to the second defrosting mode is TON2 (TON2 -1-n1, TON2-1-n2, ..., TON2-5-n1, TON2-5-n2). If the windshield of the inner fan is windshield 1 at this time, the inner ring of T is less than or equal to Tn1, and when the inner tube of T is less than or equal to TON1-1-n1, the electric auxiliary heat is turned on.
  • TON1-1-n1 represents the inner tube temperature value that needs to be met (less than or equal to) when the electric auxiliary heating device is turned on when the temperature range is T inner ring ⁇ Tn1 range in the first defrosting mode, windshield 1 and the temperature range.
  • the speed of the internal fan will affect the temperature of the inner pipe and the air outlet, and will also determine the air volume and heating capacity of the room. Therefore, from the perspective of comfort, different wind gears have different opening conditions for electric auxiliary heat; The higher the gear, the higher the first temperature value TON.
  • TON-1 includes TON1-1-n1 and TON1-1-n2 in the first defrosting mode, TON2-1-n1 and TON2-1-n2 in the second defrosting mode, and TON-2 includes the first defrosting mode TON1-2-n1 and TON1-2-n2, TON2-2-n1 and TON2-2-n2 in the second defrosting mode, ..., and so on.
  • the first temperature value in the first defrosting mode is higher than the first temperature value in the second defrosting mode, that is, TON1 ⁇ TON2,
  • the opening inner tube temperature of the first defrosting mode is higher than the inner tube temperature condition of the second defrosting mode. This is beneficial to the indoor room comfort of the second defrosting method with a longer defrosting time. Different defrosting methods in terms of power consumption and indoor room comfort can be uniformly taken into account.
  • the value range of the first temperature value TON includes 38°C to 55°C, TON ⁇ (38,55)°C.
  • Step S140 after controlling the air conditioner to start defrosting in the first defrosting mode or the second defrosting mode or after defrosting ends, when it is determined that the temperature of the indoor heat exchanger is greater than the second temperature value, control the air conditioner The electric auxiliary heating device is turned off.
  • the electric auxiliary heating device for controlling the air conditioner is turned off, and t3 ⁇ t4 ⁇ 15min.
  • the second temperature value TOFF is the temperature value of the indoor heat exchanger that needs to be met when the electric auxiliary heating device is turned off. Referring to Table 4, under different windshields (windshield 1, windshield 2, ..., windshield 5) and indoor ambient temperature (T inner ring ⁇ Tn1 or T inner ring>Tn1), the first defrost mode corresponds to the The second temperature value is TOFF1 (TOFF1-1-n1, TOFF1-1-n2, ..., TOFF1-5-n1, TOFF1-5-n2), and the second temperature value corresponding to the second defrosting mode is TOFF2 (TOFF2-1 -n1, TOFF2-1-n2, ..., TOFF2-5-n1, TOFF2-5-n2).
  • the second temperature value TOFF1 in the first defrosting mode is greater than the second temperature value in the second defrosting mode TOFF2. That is, TOFF1 ⁇ TOFF2.
  • the higher the indoor ambient temperature corresponds to the lower the second temperature value, that is, TOFF-n1 ⁇ TOFF-n2, TOFF-n1 such as TOFF1-1-n1, TOFF1-2-n1, TOFF2-1-n1, TOFF2-2-n1; TOFF-n2 for example, TOFF1-1-n2, TOFF1-2-n2, TOFF2-1-n2, TOFF2-2-n2).
  • the higher the rotational speed of the inner fan the higher the second temperature value TOFF, for example, TOFF-1 ⁇ TOFF-2 ⁇ TOFF-3 ⁇ TOFF-4 ⁇ TOFF-5.
  • the first temperature value is less than the second temperature value under the same rotation speed of the indoor fan and indoor ambient temperature, TON ⁇ TOFF.
  • the value range of the second temperature value TOFF includes: TOFF ⁇ (38,50)°C.
  • FIG. 4 is a method schematic diagram of a specific embodiment of the air conditioner defrosting control method provided by the present disclosure.
  • the air conditioner is running in the heating mode, and it is judged whether the air conditioner meets the defrosting conditions.
  • Determine the frost layer status of the air conditioner defrosting (thin frost defrosting or thick frost defrosting), if this defrosting belongs to thin frost defrosting, execute the first defrosting mode, and determine the operation of the air conditioner fan and electric auxiliary heat
  • the defrosting method is performed according to the first defrosting method.
  • the second defrosting method is performed, and it is determined that the air conditioner internal fan and electric auxiliary heating operation mode perform defrosting according to the second defrosting method.
  • the mode operates according to the second defrosting mode control method.
  • FIG. 5 is a structural block diagram of an embodiment of an air conditioner defrosting device provided by the present disclosure.
  • the control device 100 includes a determination unit 110 and a control unit 120 .
  • the determining unit 110 is configured to determine that the degree of frost formation of the outdoor heat exchanger is the first degree of frost formation or the second degree of frost formation when the air conditioner satisfies the defrosting condition under the condition of heating operation of the air conditioner .
  • the determining unit 110 determines whether the air conditioner meets the defrosting condition, and when determining that the air conditioner meets the defrosting condition, determines the degree of frosting of the outdoor heat exchanger.
  • the frosting degree includes a first frosting degree and a second frosting degree.
  • the thickness of the frost layer of the first degree of frosting is smaller than the thickness of the frost layer of the second degree of frosting.
  • the first frosting degree is a thin frost
  • the second frosting degree is a thick frost.
  • the judgment unit 110 judges the frosting degree of the outdoor heat exchanger according to the current heating operation time of the air conditioner and the temperature of the outdoor heat exchanger.
  • the heating operation time is the interval time from the last defrost or the time when the device enters the defrost for the first time after the machine is turned on.
  • the first heating operation time of the air conditioner reaches a first preset time, and the temperature of the outdoor heat exchanger of the air conditioner is lower than the first preset temperature threshold, it is determined that the junction of the outdoor heat exchanger is The degree of frost is the first degree of frost formation, such as thin frost; the first heating operation time includes: the interval time from the start-up (in the case of no start-up or defrosting) or the time since the last defrost (whichever defrosting mode) interval time.
  • the second heating operation time of the air conditioner reaches the second preset time, and the temperature of the outdoor heat exchanger of the air conditioner is lower than the second preset temperature threshold, it is determined that the frosting degree of the outdoor heat exchanger is the first 2. Degree of frosting.
  • the second heating operation time includes: the interval time from the start-up (in the case of no start-up or defrosting) or the interval time from the last defrosting performed in the second defrosting manner.
  • the first preset time is less than the second preset time
  • the first preset temperature threshold is greater than the second preset temperature threshold. Since the judging condition of the first frosting degree is satisfied first, the judging condition of the second frosting degree will be satisfied. In essence, the second heating operation time includes the first heating operation time.
  • the control unit 120 is configured to control the air conditioner to defrost in a first defrosting manner if the judging unit 110 judges that the degree of frosting of the outdoor heat exchanger is the first degree of frosting; If the degree of frosting of the heater is the second degree of frosting, the air conditioner is controlled to defrost in a second defrosting manner.
  • the first defrosting mode and the second defrosting mode are that the four-way valve does not reverse defrost, and the air conditioner maintains a heating state during defrosting. That is, when heating and defrosting, the four-way valve is not controlled to switch to the cooling mode, but the heating state is maintained.
  • the first defrosting method is thin frost defrosting
  • the second defrosting method is thick frost defrosting. For example, if it is judged that the degree of frost formation in the outdoor heat exchanger is at the level of thin frost, then perform thin frost defrosting, that is, the first defrosting method; Defrosting, that is, the second defrosting method.
  • the first defrosting manner is no longer defrosted. That is, after the number of defrosting in the first defrosting method reaches the preset number of times after the startup, the degree of frost formation of the outdoor heat exchanger is no longer determined to be the first degree of frost formation, and the degree of frost formation of the outdoor heat exchanger is directly determined. Whether the frosting degree is the second frosting degree, when it is judged that the frosting degree of the outdoor heat exchanger is the second frosting degree, the air conditioner is controlled to defrost in the second defrosting mode.
  • the non-reversing defrost control includes rotational speed control of the interior fan.
  • the air volume of the indoor fan is reduced, the high pressure is increased, and the temperature of the outdoor heat exchanger is increased, which is more conducive to defrosting.
  • the non-reversing defrosting control further includes: controlling the operating frequency of the compressor to drop to a preset frequency, increasing the opening of the electronic expansion valve to the preset opening, and keeping the rotational speed of the outdoor fan unchanged or shutting down.
  • defrost control is performed in two stages:
  • the air conditioner When controlling the air conditioner to defrost in the first defrosting mode or the second defrosting mode, enter the first stage first, and in the first stage in which the air conditioner is controlled to defrost in the first defrosting mode or the second defrosting mode , obtain the first temperature difference between the temperature of the target indoor heat exchanger and the temperature of the first indoor heat exchanger when entering the defrost; according to the first temperature difference ⁇ T1, in two or more temperature difference intervals divided according to the first method
  • the temperature difference interval in which the indoor fan is located determines the rotation speed reduction value of the indoor fan, so as to control the operation of the indoor fan according to the determined rotation speed reduction value.
  • the rotational speed reduction value includes a rotational speed value or a wind gear value of the internal fan that is reduced on the basis of the current rotational speed.
  • the first temperature difference between the target indoor heat exchanger temperature and the temperature of the first indoor heat exchanger when entering the defrost is in different temperature difference intervals corresponding to different reduction values of the rotational speed of the indoor fan.
  • Table 1 shows the fan speed control mode in the first stage after entering the defrosting stage.
  • the speed of the indoor fan is subjected to different down-winding processing.
  • the larger the ⁇ T1 the more the wind gear is lowered in the first stage. That is, ⁇ P1-1 ⁇ P1-2 ⁇ P1-3 ⁇ P1-4, and ⁇ P2-1 ⁇ P2-2 ⁇ P2-3 ⁇ P2-4.
  • ⁇ P When ⁇ P is defined by the wind gear, it can be the number of wind gears defined by Arabic numerals.
  • ⁇ P1-1 means that the wind gear is reduced by 1 gear on the basis of the original. It can also be the rotational speed.
  • the original wind speed corresponds to 1230 rpm, and when it is reduced by 200 rpm, it is 1030 rpm.
  • the wind gear is not limited to 5 gears, and more gears can also be defined.
  • the rotational speed reduction value ⁇ P1 ( ⁇ P1-1, ⁇ P1-2, ⁇ P1-3, ⁇ P1-4) corresponding to the first defrosting mode in the same temperature difference interval is smaller than the second defrosting mode
  • the rotation speed reduction value ⁇ P2 ( ⁇ P2-1, ⁇ P2-2, ⁇ P2-3, ⁇ P2-4) corresponding to the mode. Due to the difference between the first defrosting method and the second defrosting method.
  • the second defrosting method is thick frost, and the defrosting time is long without commutation.
  • ⁇ P1-1 ⁇ P2-1 similarly, ⁇ P1-2 ⁇ P2-2; ⁇ P1-3 ⁇ P2- 3; ⁇ P1-4 ⁇ P2-4. This is to take into account the air temperature of the room while defrosting quickly.
  • the second temperature difference between the current second indoor heat exchanger temperature and the target indoor heat exchanger temperature is obtained;
  • the temperature difference interval in which the second temperature difference value is located in the two or more temperature difference intervals divided according to the second method determines the rotation speed adjustment mode of the indoor fan, so as to control the operation of the indoor fan according to the determined rotation speed adjustment mode.
  • the second temperature difference between the current second indoor heat exchanger temperature and the target indoor heat exchanger temperature is in different temperature difference ranges corresponding to different indoor fan speed adjustment methods.
  • the rotation speed adjustment method includes: reducing or increasing the preset rotation speed value every preset interval time, until the rotation speed of the indoor fan drops to the preset rotation speed lower limit value or reaches the preset rotation speed value or the preset rotation speed upper limit value.
  • Table 2 shows the fan speed control mode in the second stage after entering the defrosting stage.
  • the air volume is small, the high pressure rises, and the temperature of the outer pipe rises, which is more conducive to defrosting.
  • the preset interval time in the first defrosting mode is different from the preset interval time in the second defrosting mode.
  • the preset interval time corresponding to the first defrosting mode is t1
  • the preset interval time corresponding to the second defrosting mode is t2.
  • the second temperature difference value is in the set stable interval in the two or more temperature difference intervals divided according to the second manner, the current rotational speed of the indoor fan is maintained unchanged.
  • ⁇ Q is described in terms of rotational speed. Since the first downshift has been performed in the first stage, the second stage is more finely adjusted according to the real-time inner pipe temperature.
  • the preset rotational speed value When the second temperature difference value is less than or equal to the lower limit value of the set stability interval, reduce the preset rotational speed value every preset interval time until the rotational speed of the indoor fan drops to the preset rotational speed lower limit value;
  • the preset rotational speed value is increased every preset interval until the rotational speed of the indoor fan reaches the set rotational speed value or the preset rotational speed Upper limit.
  • the lower or higher preset rotational speed value corresponding to the temperature difference interval that is closer to the set stable interval is smaller, and the lower or higher value corresponding to the temperature difference interval farther from the set stable interval is smaller. The greater the preset rotational speed value is.
  • the preset rotational speed values that are decreased or increased at every preset interval are different.
  • the fan speed in the III interval does not change in real time, it needs to be adjusted in the other four temperature difference intervals.
  • the farther away from the III interval, the adjustment range of the I interval and the V interval is greater than the distance from the III interval.
  • the II interval and IV interval that is, ⁇ Q1 ⁇ Q2.
  • the rotation speed is changed every t1 time, and the reason why the interval time is not distinguished between the I zone and the II zone is that the first defrost mode is originally time. It is very short, considering the memory of the indoor unit controller, there is no need to add an additional control parameter.
  • the preset interval time between reducing or increasing the rotational speed of the indoor fan is different, and/or the decreasing or increasing speed is different.
  • the preset rotational speed values are different.
  • the time t2-1 between the I interval and the II interval is different from t2-2; t2-1 ⁇ t2-2; in this way, the speed of the indoor fan can be rapidly dynamically changed away from the III area. Adjustment, so as to adjust the inner tube temperature in time. Among them, 0 ⁇ t1 ⁇ t2-1 ⁇ t2-2 ⁇ 30s, 0 ⁇ Q2 ⁇ Q1 ⁇ 80rpm.
  • the indoor unit When reversing defrosting, the indoor unit is in a cooling state.
  • the common method is to stop the indoor fan and not turn on the auxiliary heat.
  • the common method is to stop the indoor fan and turn off the electric auxiliary heat.
  • the electric auxiliary heating control method of the present disclosure controls the opening and closing conditions of the electric auxiliary heat based on the temperature of the windshield, the inner pipe and the real-time indoor ring temperature.
  • the judging unit 110 is further configured to: after the control unit 120 controls the air conditioner to start defrosting in a first defrosting manner or a second defrosting manner, judging the indoor Whether the temperature of the heat exchanger is less than or equal to the first temperature value; the control unit 120 is further configured to: when the judgment unit judges that the temperature of the indoor heat exchanger is less than or equal to the first temperature value, control the electric auxiliary of the air conditioner Thermal unit is on.
  • the first temperature value TON that is, the temperature value of the indoor heat exchanger that needs to be met when the electric auxiliary heating device is turned on.
  • the electric auxiliary heating device of the air conditioner is controlled. on.
  • the first temperature value TON is determined according to the rotational speed of the indoor fan and the indoor ambient temperature.
  • FIG. 3 shows the judgment conditions for turning on or off the electric auxiliary heating device.
  • the first temperature value in the first defrosting mode is different; under different rotational speeds of the indoor fan and indoor ambient temperature, the value of the first temperature in the second defrosting mode is different.
  • the first temperature values are different.
  • the first defrosting mode corresponds to The first temperature value is TON1 (TON1-1-n1, TON1-1-n2, ..., TON1-5-n1, TON1-5-n2), and the first temperature value corresponding to the second defrosting mode is TON2 (TON2 -1-n1, TON2-1-n2, ..., TON2-5-n1, TON2-5-n2). If the windshield of the inner fan is windshield 1 at this time, the inner ring of T is less than or equal to Tn1, and when the inner tube of T is less than or equal to TON1-1-n1, the electric auxiliary heat is turned on.
  • TON1-1-n1 represents the inner tube temperature value that needs to be met (less than or equal to) when the electric auxiliary heating device is turned on when the temperature range is T inner ring ⁇ Tn1 range in the first defrosting mode, windshield 1 and the temperature range.
  • the speed of the internal fan will affect the temperature of the inner pipe and the air outlet, and will also determine the air volume and heating capacity of the room. Therefore, from the perspective of comfort, different wind gears have different opening conditions for electric auxiliary heat; The higher the gear, the higher the first temperature value TON.
  • TON-1 includes TON1-1-n1 and TON1-1-n2 in the first defrosting mode, TON2-1-n1 and TON2-1-n2 in the second defrosting mode, and TON-2 includes the first defrosting mode TON1-2-n1 and TON1-2-n2, TON2-2-n1 and TON2-2-n2 in the second defrosting mode, ..., and so on.
  • the first temperature value in the first defrosting mode is higher than the first temperature value in the second defrosting mode, that is, TON1 ⁇ TON2,
  • the opening inner tube temperature of the first defrosting mode is higher than the inner tube temperature condition of the second defrosting mode. This is beneficial to the indoor room comfort of the second defrosting method with a longer defrosting time. Different defrosting methods in terms of power consumption and indoor room comfort can be uniformly taken into account.
  • the value range of the first temperature value TON includes 38°C to 55°C, TON ⁇ (38,55)°C.
  • the judging unit 110 is further configured to: after the control unit 120 controls the air conditioner to start defrosting in the first defrosting mode or the second defrosting mode or after defrosting ends, determine the indoor replacement Whether the temperature of the heat exchanger is greater than the second temperature value; the control unit 120 is further configured to: when the judgment unit judges that the temperature of the indoor heat exchanger is greater than the second temperature value, control the electric auxiliary heating device of the air conditioner to turn off .
  • the electric auxiliary heating device for controlling the air conditioner is turned off, and t3 ⁇ t4 ⁇ 15min.
  • the second temperature value TOFF is the temperature value of the indoor heat exchanger that needs to be met when the electric auxiliary heating device is turned off. Referring to Table 4, under different windshields (windshield 1, windshield 2, ..., windshield 5) and indoor ambient temperature (T inner ring ⁇ Tn1 or T inner ring>Tn1), the first defrost mode corresponds to the The second temperature value is TOFF1 (TOFF1-1-n1, TOFF1-1-n2, ..., TOFF1-5-n1, TOFF1-5-n2), and the second temperature value corresponding to the second defrosting mode is TOFF2 (TOFF2-1 -n1, TOFF2-1-n2, ..., TOFF2-5-n1, TOFF2-5-n2).
  • the second temperature value TOFF1 in the first defrosting mode is greater than the second temperature value in the second defrosting mode TOFF2. That is, TOFF1 ⁇ TOFF2.
  • the higher the indoor ambient temperature corresponds to the lower the second temperature value, that is, TOFF-n1 ⁇ TOFF-n2, TOFF-n1 such as TOFF1-1-n1, TOFF1-2-n1, TOFF2-1-n1, TOFF2-2-n1; TOFF-n2 for example, TOFF1-1-n2, TOFF1-2-n2, TOFF2-1-n2, TOFF2-2-n2);
  • the higher the rotational speed of the inner fan the higher the second temperature value TOFF, for example, TOFF-1 ⁇ TOFF-2 ⁇ TOFF-3 ⁇ TOFF-4 ⁇ TOFF-5.
  • the first temperature value is less than the second temperature value under the same rotation speed of the indoor fan and indoor ambient temperature, TON ⁇ TOFF.
  • the value range of the second temperature value TOFF includes: TOFF ⁇ (38,50)°C.
  • the present disclosure also provides a storage medium corresponding to the air conditioner defrosting control method, on which a computer program is stored, and when the program is executed by a processor, the steps of any one of the aforementioned methods are implemented.
  • the present disclosure also provides an air conditioner corresponding to the air conditioner defrosting control method, comprising a processor, a memory, and a computer program stored in the memory and running on the processor, the processor implements any of the foregoing when executing the program. a step of the method.
  • the present disclosure also provides an air conditioner corresponding to the air conditioner defrost control device, comprising any of the air conditioner defrost control devices described above.
  • each functional unit may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the disclosed technical content may be implemented in other manners.
  • the device embodiments described above are only illustrative, for example, the division of the units may be a logical function division, and there may be other division methods in actual implementation, for example, multiple units or components may be combined or Integration into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of units or modules, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separated, and the components as control devices may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solutions of the present disclosure can be embodied in the form of software products in essence, or the parts that contribute to related technologies, or all or part of the technical solutions, and the computer software products are stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage medium includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fluid Mechanics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本公开提供一种空调化霜控制方法、装置、存储介质及空调,所述方法包括:在所述空调制热运行的情况下,当所述空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度;若判断所述室外换热器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜;所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。本公开提供的方案能够根据不同的结霜程度进行不同方式的不换向化霜,能够兼顾化霜效果和房间舒适性。

Description

一种空调化霜控制方法、装置、存储介质及空调
本公开要求于2020年12月11日提交中国专利局、申请号为202011459033.4、发明名称为“一种空调化霜控制方法、装置、存储介质及空调”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及控制领域,尤其涉及一种空调化霜控制方法、装置、存储介质及空调。
背景技术
热泵型空调器在寒冷季节时能够为室内提供热量。当热泵型空调运行一段时间后,往往室外机换热器会结霜,影响空调的换热效率,恶劣天气下,霜层的厚度甚至会覆盖室外机,严重影响用户使用空调的舒适性,通常需要空调化霜进行解决该问题。
现有的化霜方式主要判断室外机结霜到比较厚的程度后,严重影响室内制热量时,从制热模式转到制冷模式,使压缩机高温气体直接进入室外机,从而实现化霜。但是这种方式会在化霜开始前的一段时间内,室内制热量下降明显。化霜过程中更是无法向室内输出热量,使得室内温度下降,化霜时间越长,舒适性会越差。
发明内容
本公开的主要目的在于克服上述相关技术的缺陷,提供一种空 调化霜控制方法、装置、存储介质及空调,以解决相关技术中空调室外机化霜时无法兼顾房内舒适性的问题。
本公开一方面提供了一种空调化霜控制方法,包括:在所述空调制热运行的情况下,当所述空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度;若判断所述室外换热器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜;所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。
在一些实施方式中,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度,包括:当所述空调的制热运行时间达到第一预设时间,且所述空调的室外换热器温度低于第一预设温度阈值时,判断所述室外换热器的结霜程度为第一结霜程度;当所述空调的制热运行时间达到第二预设时间,且所述空调的室外换热器温度低于第二预设温度阈值时,判断所述室外换热器的结霜程度为第二结霜程度;其中,所述第一预设时间小于所述第二预设时间,和/或,所述第一预设温度阈值大于所述第二预设温度阈值。
在一些实施方式中,控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;根据所述第一温度差值在按照第一方式划分的两个以上温差区间中所处的区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风 机的运行;其中,在相同的温差区间所述第一化霜方式对应的所述转速降低值小于所述第二化霜方式对应的所述转速降低值;和/或,在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行;所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值;其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同。
在一些实施方式中,当所述第二温度差值在所述按照第二方式划分的两个以上温差区间中的设定稳定区间时,维持所述内风机当前的转速不变;当所述第二温度差值小于等于所述设定稳定区间的下限值时,每隔预设间隔时间降低预设转速值,直到所述内风机的转速降至预设转速下限值;当所述第二温度差值大于所述设定稳定区间的上限值时,每隔预设间隔时间升高预设转速值,直到所述内风机的转速达到设定转速值或预设转速上限值。
在一些实施方式中,还包括:在控制所述空调以第一化霜方式或第二化霜方式化霜开始后,当判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启;和/或,在控制所述空调以第一化霜方式或第二化霜方式化霜开始后或化霜结束后,当判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭。
在一些实施方式中,所述第一温度值根据内风机转速及室内环 境温度确定,和/或所述第二温度值根据内风机转速及室内环境温度确定;在不同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值不同和/或所述第二温度值不同,所述第二化霜方式下的所述第一温度值不同和/或所述第二温度值不同;在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值大于所述第二化霜方式下的所述第一温度值;所述第一化霜方式下的所述第二温度值大于所述第二化霜方式下的所述第二温度值;在相同的内风机转速及室内环境温度下所述第一温度值小于所述第二温度值。
本公开另一方面提供了一种空调化霜控制装置,包括:判断单元,被设置为在所述空调制热运行的情况下,当所述空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度;控制单元,被设置为若所述判断单元判断所述室外换热器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜;所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。
在一些实施方式中,所述判断单元,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;包括:当所述空调的制热运行时间达到第一预设时间,且所述空调的室外换热器温度低于第一预设温度阈值时,判断所述室外换热器的结霜程度为第一结霜程度;当所述空调的制热运行时间达到第二预设时间,且所述空调的室外换热器温度低于第二预设温度阈值时,判断所述室外换热器的结霜程度为第二结霜程度;其中,所述第一预设时间小于所述第二 预设时间,和/或,所述第一预设温度阈值大于所述第二预设温度阈值。
在一些实施方式中,所述控制单元,控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;根据所述第一温度差值在按照第一方式划分的两个以上温差区间中所处的区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行;其中,在相同的温差区间所述第一化霜方式对应的所述转速降低值小于所述第二化霜方式对应的所述转速降低值;和/或,在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行;所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值;其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同。
在一些实施方式中,当所述第二温度差值在所述按照第二方式划分的两个以上温差区间中的设定稳定区间时,维持所述内风机当前的转速不变;当所述第二温度差值小于等于所述设定稳定区间的下限值时,每隔预设间隔时间降低预设转速值,直到所述内风机的转速降至预设转速下限值;当所述第二温度差值大于所述设定稳定区间的上限值时,每隔预设间隔时间升高预设转速值,直到所述内 风机的转速达到设定转速值或预设转速上限值。
在一些实施方式中,所述判断单元,还被设置为:在所述控制单元控制所述空调以第一化霜方式或第二化霜方式化霜开始后,判断所述室内换热器温度是否小于等于第一温度值;所述控制单元,还被设置为:当所述判断单元判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启;和/或,所述判断单元,还被设置为:在所述控制单元控制所述空调以第一化霜方式或第二化霜方式化霜开始后或化霜结束后,判断所述室内换热器温度是否大于第二温度值;所述控制单元,还被设置为:当所述判断单元判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭。
在一些实施方式中,所述第一温度值根据内风机转速及室内环境温度确定,和/或所述第二温度值根据内风机转速及室内环境温度确定;在不同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值不同和/或所述第二温度值不同,所述第二化霜方式下的所述第一温度值不同和/或所述第二温度值不同;在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值大于所述第二化霜方式下的所述第一温度值;所述第一化霜方式下的所述第二温度值大于所述第二化霜方式下的所述第二温度值;在相同的内风机转速及室内环境温度下所述第一温度值小于所述第二温度值。
本公开又一方面提供了一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现前述任一所述方法的步骤。
本公开再一方面提供了一种空调,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述处理器执行所 述程序时实现前述任一所述方法的步骤。
本公开再一方面提供了一种空调,包括前述任一所述的空调化霜控制装置。
根据本公开的技术方案,根据不同的结霜程度进行不同方式的不换向化霜,能够兼顾化霜效果和房间舒适性;在不换向化霜的化霜方式下,基于空调的结霜情况,确定不同化霜形式下室内机的转速变化,且根据对内风机进行分阶段控制,通过第一阶段的降风速控制和第二阶段的内风机风速闭环控制,避免化霜期间房间温度严重下降而影响舒适性;通过内风机和电辅热协同控制,电辅热开启关闭条件基于风档、室内环境温度和化霜方式确定,在快速化霜的同时兼顾用户对舒适性的需求。同时,本公开方案可不增加成本的在现有空调器上实现。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本公开的一部分,本公开的示意性实施例及其说明被设置为解释本公开,并不构成对本公开的不当限定。在附图中:
图1是本公开提供的空调化霜控制方法的一实施例的方法示意图;
图2是本公开提供的空调化霜控制方法另一实施例的方法示意图;
图3示出了电辅热装置开启或关闭的判断条件;
图4是本公开提供的空调化霜控制方法的一具体实施例的方法示意图;
图5是本公开提供的空调化霜装置的一实施例的结构框图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合本公开具体实施例及相应的附图对本公开技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
空调器在制热模式下,最大的问题就是制热期间化霜的问题,现有常用的化霜方法有四通阀换向化霜,但是这种方式极大降低了房间内的温度,从而引起用户不舒适的感觉。优化的化霜方法有热气化霜,也就是四通阀不换向,通过空调执行器,尤其是电子膨胀阀开度开大,将室内机的高温冷媒不经过节流,直接到室外机进行化霜。
目前,有一些不换向化霜的控制方法,即四通阀不进行换向,通过调节空调的压缩机频率、电子膨胀阀开度等其他执行器进行室 外机化霜。在不换向化霜时,常常是在化霜开始后开启电辅热,但对于电辅热的控制,一般都是基于内管温进行退出或者在化霜结束后退出。控制方法较为简单,没有更好的发挥室内机执行器的联动作用,在快速化霜的同时,尽量不降低室内温度。
本公开提供一种化霜控制方法和装置。针对不换向的化霜时,室内机执行器内风机和电辅热的控制。可以在外机化霜的同时,保证房间热舒适性,提高用户制热季节使用空调的舒适性。
图1是本公开提供的空调化霜控制方法的一实施例的方法示意图。如图1所示,根据本公开的一个实施例,所述空调化霜控制方法至少包括步骤S110和步骤S120。
步骤S110,在所述空调制热运行的情况下,当所述空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度。
具体地,空调在制热模式下运行时,判断空调是否满足化霜条件,当判断所述空调满足化霜条件时,判断室外换热器的结霜程度。所述结霜程度包括第一结霜程度和第二结霜程度。所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度。例如,所述第一结霜程度为薄霜,所述第二结霜程度为厚霜。
在一种具体实施方式中,根据所述空调当前的制热运行时间和室外换热器温度判断所述室外换热器的结霜程度。所述制热运行时间,即距上一次化霜的间隔时间或者开机后第一次进入化霜的时间。
具体地,当所述空调的第一制热运行时间达到第一预设时间,且所述空调的室外换热器温度低于第一预设温度阈值时,判断所述室外换热器的结霜程度为第一结霜程度,例如为薄霜;所述第一制热运行时间包括:距开机的间隔时间(开机未进行或化霜的情况下) 或者距上一次化霜(无论哪种化霜方式)的间隔时间。当所述空调的第二制热运行时间达到第二预设时间,且所述空调的室外换热器温度低于第二预设温度阈值,判断所述室外换热器的结霜程度为第二结霜程度。所述第二制热运行时间,包括:距开机的间隔时间(开机未进行或化霜的情况下)或者距上一次以第二化霜方式进行化霜的间隔时间。其中,所述第一预设时间小于所述第二预设时间,所述第一预设温度阈值大于所述第二预设温度阈值。由于先满足第一结霜程度的判断条件,才会满足第二结霜程度的判断条件,实质上,第二制热运行时间中包含第一制热运行时间。
步骤S120,若判断所述室外换热器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜。
所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。即,制热化霜时不控制四通阀换向切换至制冷模式,而是保持制热状态。所述第一化霜方式即薄霜化霜,所述第二化霜方式即厚霜化霜。例如,若判断室外换热器的结霜程度为薄霜程度,则进行薄霜化霜,即第一化霜方式;若判断室外换热器的结霜程度为厚霜程度,则进行厚霜化霜,即第二化霜方式。在一些实施方式中,在以第一化霜方式化霜的次数达到预设次数后,不再以所述第一化霜方式化霜。即,在开机后以第一化霜方式化霜的次数达到预设次数后,不再判断所述室外换热器的结霜程度为第一结霜程度,直接判断所述室外换热器的结霜程度是否为第二结霜程度,在判断所述室外换热器的结霜程度为第二结霜程度时,控制所述空调以第二化霜方式化霜。
在一些具体实施方式中,不换向化霜控制包括内风机的转速控 制。内风机风量减小、高压升高、室外换热器温度升高,更有利于化霜。但是一直降低内风机风档甚至停止内风机的情况下,又会导致空调向室内输出的热量减小甚至没有热量输入,导致房间温度严重下降,影响舒适性。在一些实施方式中,不换向化霜控制还包括:控制压缩机的运行频率下降至预设频率,电子膨胀阀开度增大至预设开度,外风机转速不变或停机。
在一种具体实施方式中,在控制所述空调以第一化霜方式或第二化霜方式进入化霜后,分两个阶段进行化霜控制:
在控制所述空调以第一化霜方式或第二化霜方式化霜时,先进入第一阶段,在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;根据所述第一温度差值△T1在按照第一方式划分的两个以上温差区间中所处的温差区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行。所述转速降低值包括内风机在当前转速基础上降低的转速值或风档值。目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值处于不同的温差区间对应不同的内风机转速降低值。
例如,表1示出了进入化霜后的第一阶段内风机转速控制方式。
Figure PCTCN2021112226-appb-000001
表1
根据△T1所处的温差区间,对内风机转速进行不同的降风档处理,△T1=T 目标内管温1-T 进入化霜时刻的内管温;△T1越小,说明内管温越高,此 时对内风机可以小幅度降风档,在热量提供给外机的同时,也能提供较高的出风温度。△T1越大,说明内管温在进入第一化霜方式时,就已经不高了,此时要更多地降低风档,才能使出风温度满足舒适性。同理,在第二化霜方式中,也是相同的道理,△T1越大,在第一阶段中,风档降低越多。即,ΔP1-1≤ΔP1-2≤ΔP1-3≤ΔP1-4,ΔP2-1≤ΔP2-2≤ΔP2-3≤ΔP2-4。
ΔP以风档来定义时,可以为阿拉伯数字定义的风档数,比如ΔP1-1说明风档在原有的基础上降低1档,比如原来是超强档,降低1档就是高风档;ΔP也可以为转速,比如ΔP1-1为200rpm时,原来的风档对应的是1230rpm,则降低200rpm时是1030rpm。此外,风档不限于5档,也可以定义更多档。
在一些实施方式中,在相同的温差区间所述第一化霜方式对应的所述转速降低值ΔP1(ΔP1-1、ΔP1-2、ΔP1-3、ΔP1-4)小于所述第二化霜方式对应的所述转速降低值ΔP2(ΔP2-1、ΔP2-2、ΔP2-3、ΔP2-4)。由于第一化霜方式和第二化霜方式的区别。第二化霜方式是厚霜,不换向化霜时间长,在相同的△T1区间中,ΔP1-1≤ΔP2-1;同样的,ΔP1-2≤ΔP2-2;ΔP1-3≤ΔP2-3;ΔP1-4≤ΔP2-4。这是为了在快速化霜的同时,也考虑到房间出风温度的问题。
在以第一化霜方式化霜的情况下,在进入所述第一阶段的时间达到第一预设化霜时间时,进入所述第二阶段;在以第二化霜方式化霜的情况下,在进入所述第一阶段的时间达到第二预设化霜时间时,进入所述第二阶段,所述第一预设化霜时间小于等于所述第二预设化霜时间,其中,t 化霜1≤t 化霜2
在经过第一阶段初步降低内风机转速控制后,内风机的控制进 入第二阶段闭环控制,此时根据当前的第二室内换热器温度与目标室内换热器温度的第二温度差值△T2分区间进行控制。△T2=T 实时内管 -T 目标内管温2
在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行。当前的第二室内换热器温度与目标室内换热器温度的第二温度差值处于不同的温差区间对应不同的内风机转速调节方式。
所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值。
例如,表2示出了进入化霜后的第二阶段内风机转速控制方式。
Figure PCTCN2021112226-appb-000002
表2
△T2越小,说明内管温越小,此时为了保证房间的舒适性,需 要继续降低内风机转速,降低的方式具体可以为每隔一段时间降低一定的转速,直到下限值;内机风量小,高压升高,外管温升高,更有利于化霜。△T2越大,说明内管温越高,此时可以升高内风机转速,提高空调向房间的制热量输出,提升房间的舒适性,直到上限值。
其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同。例如参考表2,第一化霜方式对应的预设间隔时间为t1,第二化霜方式对应的预设间隔时间为t2。
当所述第二温度差值在按照第二方式划分的两个以上温差区间中的设定稳定区间时,维持所述内风机当前的转速不变。例如,参考表2所示,ΔQ以转速来进行说明,由于第一阶段中已经进行过初次的降风档,则在第二阶段中是根据实时内管温进行的更加精细的调节。第一化霜方式中,Ⅲ区属于稳定区域,这个区域表明△T2=T 实时内管温-T 目标内管温2处于一个比较合适的范围,实时内管温接近目标内管温,因此转速不需要进行实时的变化。
当所述第二温度差值小于等于所述设定稳定区间的下限值时,每隔预设间隔时间降低预设转速值,直到所述内风机的转速降至预设转速下限值;当所述第二温度差值大于所述设定稳定区间的上限值时,每隔预设间隔时间升高预设转速值,直到所述内风机的转速达到设定转速值或预设转速上限值。其中,距离所述设定稳定区间越近的温差区间所对应的降低或升高的所述预设转速值越小,距离所述设定稳定区间越远的温差区间所对应的降低或升高的所述预设转速值越大。在第一化霜方式下,所述第二温度差值处于不同的温差区间时,每隔预设间隔时间降低或升高的所述预设转速值不同。
例如,参考表2,除了Ⅲ区间的内风机转速不进行实时变化, 处于其他四个温差区间都需进行调节,距离Ⅲ区间越远的Ⅰ区间和Ⅴ区间的调节幅度要大于距离Ⅲ区间较近的Ⅱ区间和Ⅳ区间;也就是ΔQ1≥ΔQ2。
在第一次化霜方式中的除了Ⅲ区间的其他四个区间中,每隔t1时间进行转速的变化,Ⅰ区间和Ⅱ区间不进行间隔时间的区分的原因是,第一化霜方式本来时间就很短,考虑到室内机控制器的内存,不需要额外增加一个控制参数。
在第二化霜方式下,所述第二温度差值处于不同的温差区间时,降低或升高所述内风机转速所间隔的所述预设间隔时间不同,和/或降低或升高的所述预设转速值不同。
参考表2,在第二化霜方式中,Ⅰ区间和Ⅱ区间的时间t2-1不同于t2-2;t2-1≤t2-2;这样可以在远离Ⅲ区对内风机转速进行快速的动态调整,从而及时调整内管温。其中,0≤t1≤t2-1≤t2-2≤30s,0≤ΔQ2≤ΔQ1≤80rpm。
在换向化霜时,室内机是制冷状态,常用方法是内风机停止,辅热不开启。在不换向化霜时,为了将室内机的热量传递至室外机,常用的方法是内风机停止,电辅热关闭。还有一些方案是将电辅热开启,内风机反转,这样能加快化霜,但是完全忽略了化霜期间用户的舒适性。
本公开的电辅热控制方法是基于风档和内管温以及实时的室内环温度对电辅热的开启条件和关闭条件进行控制。
图2是本公开提供的空调化霜控制方法的另一实施例的方法示意图。如图2所示,根据本公开的一个实施例,所述空调化霜控制方法还包括步骤S130和步骤S140。
步骤S130,在控制所述空调以第一化霜方式或第二化霜方式化 霜开始后,当判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启。
所述第一温度值TON,即电辅热装置开启需满足的室内换热器温度值,当判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启。所述第一温度值TON根据内风机转速及室内环境温度确定。图3示出了电辅热装置开启或关闭的判断条件。
在不同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值不同;在不同的内风机转速及室内环境温度下,所述第二化霜方式下的所述第一温度值不同。例如,参考表3,不同的风档(风档1、风档2、…、风档5)和室内环境温度下(T内环≤Tn1或T内环>Tn1),第一化霜方式对应的第一温度值为TON1(TON1-1-n1、TON1-1-n2、…、TON1-5-n1、TON1-5-n2),第二化霜方式对应的第一温度值为TON2(TON2-1-n1、TON2-1-n2、…、TON2-5-n1、TON2-5-n2)。如果此时内风机风档是风档1,T内环≤Tn1,当T内管≤TON1-1-n1时,电辅热开启。
Figure PCTCN2021112226-appb-000003
表3
TON1-1-n1代表第一化霜方式下,风档1,温度区间为T内环≤Tn1区间时,开启电辅热装置需满足(小于等于)的内管温度值。
内风机转速(风档)的高低会影响内管温和出风温度,同时也会决定着房间风量和制热量的大小,因此从舒适性考虑,不同的风档,电辅热开启条件不同;风档越高,第一温度值TON越高。
房间内实际温度的高低会影响人对相同温度的风的实际热舒适感受不同,因此为了最优的化霜效果和热舒适性效果,以及从电辅热的可靠性和总的空调耗电量考虑,不同的房间温度,设置不同的电辅热开启条件。相同的出风温度下,内环温度低时,人体实际感受偏冷。因此,内环温度越高,第一温度值越低,TON-n1≥TON-n2。第一化霜方式和第二化霜方式中都是这样。Tn1∈(20,28)℃。
风档1≥风档2≥风档3≥风档4≥风档5,TON-1≥TON-2≥TON-3≥TON-4≥TON-5,第一化霜方式和第二化霜方式中,都是这样。TON-1包括第一化霜方式下TON1-1-n1和TON1-1-n2,第二化霜方式下TON2-1-n1和TON2-1-n2,TON-2包括第一化霜方式下TON1-2-n1和TON1-2-n2,第二化霜方式下TON2-2-n1和TON2-2-n2,…,以此类推。
在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值高于所述第二化霜方式下的所述第一温度值,即TON1≥TON2,第一化霜方式的开启内管温高于第二化霜方式的内管温条件。这样有利于化霜时间较长的第二化霜方式的室内房间舒适性。在耗电量和室内房间舒适性方面不同的化霜方式下可以统一兼顾。第一温度值TON的取值范围包括38℃~55℃,TON∈(38,55)℃。
步骤S140,在控制所述空调以第一化霜方式或第二化霜方式化 霜开始后或化霜结束后,当判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭。
在一些实施方式中,第一化霜方式中,化霜结束后的t3时间后,第二化霜方式中,化霜结束后的t4时间后,当判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭,t3≤t4≤15min。
Figure PCTCN2021112226-appb-000004
表4
所述第二温度值TOFF,即电辅热装置关闭需满足的室内换热器温度值。参考表4,不同的风档(风档1、风档2、…、风档5)和室内环境温度下(T内环≤Tn1或T内环>Tn1),第一化霜方式对应的第二温度值为TOFF1(TOFF1-1-n1、TOFF1-1-n2、…、TOFF1-5-n1、TOFF1-5-n2),第二化霜方式对应的第二温度值为TOFF2(TOFF2-1-n1、TOFF2-1-n2、…、TOFF2-5-n1、TOFF2-5-n2)。
在一些实施方式中,在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第二温度值TOFF1大于所述第二化霜方式下的所述第二温度值TOFF2。即,TOFF1≥TOFF2。
在一些实施方式中,在相同的内风机转速下,室内环境温度越高对应的所述第二温度值越低,即,TOFF-n1≥TOFF-n2,TOFF-n1例如TOFF1-1-n1、TOFF1-2-n1、TOFF2-1-n1、TOFF2-2-n1;TOFF-n2例如,TOFF1-1-n2、TOFF1-2-n2、TOFF2-1-n2、TOFF2-2-n2)。
在一些实施方式中,内风机转速越高,第二温度值TOFF越高,例如,TOFF-1≥TOFF-2≥TOFF-3≥TOFF-4≥TOFF-5。
在一些实施方式中,在相同的内风机转速及室内环境温度下所述第一温度值小于所述第二温度值,TON<TOFF。第二温度值TOFF的取值范围包括:TOFF∈(38,50)℃。
为清楚说明本公开技术方案,下面再以一个具体实施例对本公开提供的空调化霜控制方法的执行流程进行描述。
图4是本公开提供的空调化霜控制方法的一具体实施例的方法示意图。如图4所示,空调在制热模式下运行,判断空调是否满足化霜条件,若满足化霜条件,则判断空调本次化霜形式为不换向化霜,根据所满足的化霜条件判断本次空调化霜的霜层状态(薄霜化霜还是厚霜化霜),若本次化霜属于薄霜化霜,则执行第一化霜方式,确定空调内风机、电辅热运行方式按照第一化霜方式执行化霜,若本次化霜属于厚霜化霜,则执行第二化霜方式,确定空调内风机、电辅热运行方式按照第二化霜方式执行化霜。判断空调是否满足相应的化霜结束条件,若确定满足化霜结束条件,则确定空调内风机、电辅热运行方式按照第一化霜方式控制方法运行,或者确定空调内风机、电辅热运行方式按照第二化霜方式控制方法运行。
图5是本公开提供的空调化霜装置的一实施例的结构框图。如图5所示,所述控制装置100包括判断单元110和控制单元120。
判断单元110被设置为在所述空调制热运行的情况下,当所述 空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度。
具体地,空调在制热模式下运行时,判断单元110判断空调是否满足化霜条件,当判断所述空调满足化霜条件时,判断室外换热器的结霜程度。所述结霜程度包括第一结霜程度和第二结霜程度。所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度。例如,所述第一结霜程度为薄霜,所述第二结霜程度为厚霜。
在一种具体实施方式中,判断单元110根据所述空调当前的制热运行时间和室外换热器温度判断所述室外换热器的结霜程度。所述制热运行时间,即距上一次化霜的间隔时间或者开机后第一次进入化霜的时间。
具体地,当所述空调的第一制热运行时间达到第一预设时间,且所述空调的室外换热器温度低于第一预设温度阈值时,判断所述室外换热器的结霜程度为第一结霜程度,例如为薄霜;所述第一制热运行时间包括:距开机的间隔时间(开机未进行或化霜的情况下)或者距上一次化霜(无论哪种化霜方式)的间隔时间。当所述空调的第二制热运行时间达到第二预设时间,且所述空调的室外换热器温度低于第二预设温度阈值,判断所述室外换热器的结霜程度为第二结霜程度。所述第二制热运行时间,包括:距开机的间隔时间(开机未进行或化霜的情况下)或者距上一次以第二化霜方式进行化霜的间隔时间。其中,所述第一预设时间小于所述第二预设时间,所述第一预设温度阈值大于所述第二预设温度阈值。由于先满足第一结霜程度的判断条件,才会满足第二结霜程度的判断条件,实质上,第二制热运行时间中包含第一制热运行时间。
控制单元120被设置为若所述判断单元110判断所述室外换热 器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜。
所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。即,制热化霜时不控制四通阀换向切换至制冷模式,而是保持制热状态。所述第一化霜方式即薄霜化霜,所述第二化霜方式即厚霜化霜。例如,若判断室外换热器的结霜程度为薄霜程度,则进行薄霜化霜,即第一化霜方式;若判断室外换热器的结霜程度为厚霜程度,则进行厚霜化霜,即第二化霜方式。在一些实施方式中,在以第一化霜方式化霜的次数达到预设次数后,不再以所述第一化霜方式化霜。即,在开机后以第一化霜方式化霜的次数达到预设次数后,不再判断所述室外换热器的结霜程度为第一结霜程度,直接判断所述室外换热器的结霜程度是否为第二结霜程度,在判断所述室外换热器的结霜程度为第二结霜程度时,控制所述空调以第二化霜方式化霜。
在一些具体实施方式中,不换向化霜控制包括内风机的转速控制。内风机风量减小、高压升高、室外换热器温度升高,更有利于化霜。但是一直降低内风机风档甚至停止内风机的情况下,又会导致空调向室内输出的热量减小甚至没有热量输入,导致房间温度严重下降,影响舒适性。在一些实施方式中,不换向化霜控制还包括:控制压缩机的运行频率下降至预设频率,电子膨胀阀开度增大至预设开度,外风机转速不变或停机。
在一种具体实施方式中,控制单元120在控制所述空调以第一化霜方式或第二化霜方式进入化霜后,分两个阶段进行化霜控制:
在控制所述空调以第一化霜方式或第二化霜方式化霜时,先进 入第一阶段,在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;根据所述第一温度差值△T1在按照第一方式划分的两个以上温差区间中所处的温差区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行。所述转速降低值包括内风机在当前转速基础上降低的转速值或风档值。目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值处于不同的温差区间对应不同的内风机转速降低值。
例如,表1示出了进入化霜后的第一阶段内风机转速控制方式。
Figure PCTCN2021112226-appb-000005
表1
根据△T1所处的温差区间,对内风机转速进行不同的降风档处理,△T1=T 目标内管温1-T 进入化霜时刻的内管温;△T1越小,说明内管温越高,此时对内风机可以小幅度降风档,在热量提供给外机的同时,也能提供较高的出风温度。△T1越大,说明内管温在进入第一化霜方式时,就已经不高了,此时要更多地降低风档,才能使出风温度满足舒适性。同理,在第二化霜方式中,也是相同的道理,△T1越大,在第一阶段中,风档降低越多。即,ΔP1-1≤ΔP1-2≤ΔP1-3≤ΔP1-4,ΔP2-1≤ΔP2-2≤ΔP2-3≤ΔP2-4。
ΔP以风档来定义时,可以为阿拉伯数字定义的风档数,比如ΔP1-1说明风档在原有的基础上降低1档,比如原来是超强档,降低1档就是高风档;ΔP也可以为转速,比如ΔP1-1为200rpm时, 原来的风档对应的是1230rpm,则降低200rpm时是1030rpm。此外,风档不限于5档,也可以定义更多档。
在一些实施方式中,在相同的温差区间所述第一化霜方式对应的所述转速降低值ΔP1(ΔP1-1、ΔP1-2、ΔP1-3、ΔP1-4)小于所述第二化霜方式对应的所述转速降低值ΔP2(ΔP2-1、ΔP2-2、ΔP2-3、ΔP2-4)。由于第一化霜方式和第二化霜方式的区别。第二化霜方式是厚霜,不换向化霜时间长,在相同的△T1区间中,ΔP1-1≤ΔP2-1;同样的,ΔP1-2≤ΔP2-2;ΔP1-3≤ΔP2-3;ΔP1-4≤ΔP2-4。这是为了在快速化霜的同时,也考虑到房间出风温度的问题。
在以第一化霜方式化霜的情况下,在进入所述第一阶段的时间达到第一预设化霜时间时,进入所述第二阶段;在以第二化霜方式化霜的情况下,在进入所述第一阶段的时间达到第二预设化霜时间时,进入所述第二阶段,所述第一预设化霜时间小于等于所述第二预设化霜时间。
在经过第一阶段初步降低内风机转速控制后,内风机的控制进入第二阶段闭环控制,此时根据当前的第二室内换热器温度与目标室内换热器温度的第二温度差值△T2分区间进行控制。△T2=T 实时内管 -T 目标内管温2
在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行。当前的第二室内换热器温度与目标室内换热器温度的第二温度差值处于不同的温差区 间对应不同的内风机转速调节方式。
所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值。
例如,表2示出了进入化霜后的第二阶段内风机转速控制方式。
Figure PCTCN2021112226-appb-000006
表2
△T2越小,说明内管温越小,此时为了保证房间的舒适性,需要继续降低内风机转速,降低的方式具体可以为每隔一段时间降低一定的转速,直到下限值;内机风量小,高压升高,外管温升高,更有利于化霜。△T2越大,说明内管温越高,此时可以升高内风机转速,提高空调向房间的制热量输出,提升房间的舒适性,直到上限值。
其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同。例如参考表2,第一化霜方式对应的预设间隔时间为t1,第二化霜方式对应的预设间隔时间为t2。
当所述第二温度差值在按照第二方式划分的两个以上温差区间中的设定稳定区间时,维持所述内风机当前的转速不变。例如,参 考表2所示,ΔQ以转速来进行说明,由于第一阶段中已经进行过初次的降风档,则在第二阶段中是根据实时内管温进行的更加精细的调节。第一化霜方式中,Ⅲ区属于稳定区域,这个区域表明△T2=T 实时内管温-T 目标内管温2处于一个比较合适的范围,实时内管温接近目标内管温,因此转速不需要进行实时的变化。
当所述第二温度差值小于等于所述设定稳定区间的下限值时,每隔预设间隔时间降低预设转速值,直到所述内风机的转速降至预设转速下限值;当所述第二温度差值大于所述设定稳定区间的上限值时,每隔预设间隔时间升高预设转速值,直到所述内风机的转速达到设定转速值或预设转速上限值。其中,距离所述设定稳定区间越近的温差区间所对应的降低或升高的所述预设转速值越小,距离所述设定稳定区间越远的温差区间所对应的降低或升高的所述预设转速值越大。在第一化霜方式下,所述第二温度差值处于不同的温差区间时,每隔预设间隔时间降低或升高的所述预设转速值不同。
例如,参考表2,除了Ⅲ区间的内风机转速不进行实时变化,处于其他四个温差区间都需进行调节,距离Ⅲ区间越远的Ⅰ区间和Ⅴ区间的调节幅度要大于距离Ⅲ区间较近的Ⅱ区间和Ⅳ区间;也就是ΔQ1≥ΔQ2。
在第一次化霜方式中的除了Ⅲ区间的其他四个区间中,每隔t1时间进行转速的变化,Ⅰ区间和Ⅱ区间不进行间隔时间的区分的原因是,第一化霜方式本来时间就很短,考虑到室内机控制器的内存,不需要额外增加一个控制参数。
在第二化霜方式下,所述第二温度差值处于不同的温差区间时,降低或升高所述内风机转速所间隔的所述预设间隔时间不同,和/或降低或升高的所述预设转速值不同。
参考表2,在第二化霜方式中,Ⅰ区间和Ⅱ区间的时间t2-1不同于t2-2;t2-1≤t2-2;这样可以在远离Ⅲ区对内风机转速进行快速的动态调整,从而及时调整内管温。其中,0≤t1≤t2-1≤t2-2≤30s,0≤ΔQ2≤ΔQ1≤80rpm。
在换向化霜时,室内机是制冷状态,常用方法是内风机停止,辅热不开启。在不换向化霜时,为了将室内机的热量传递至室外机,常用的方法是内风机停止,电辅热关闭。还有一些方案是将电辅热开启,内风机反转,这样能加快化霜,但是完全忽略了化霜期间用户的舒适性。
本公开的电辅热控制方法是基于风档和内管温以及实时的室内环温度对电辅热的开启条件和关闭条件进行控制。
根据本公开的另一实施例,所述判断单元110还被设置为:在所述控制单元120控制所述空调以第一化霜方式或第二化霜方式化霜开始后,判断所述室内换热器温度是否小于等于第一温度值;所述控制单元120还被设置为:当所述判断单元判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启。
所述第一温度值TON,即电辅热装置开启需满足的室内换热器温度值,当判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启。所述第一温度值TON根据内风机转速及室内环境温度确定。图3示出了电辅热装置开启或关闭的判断条件。
在不同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值不同;在不同的内风机转速及室内环境温度下,所述第二化霜方式下的所述第一温度值不同。例如,参考表3,不同的风档(风档1、风档2、…、风档5)和室内环境温度下(T内环 ≤Tn1或T内环>Tn1),第一化霜方式对应的第一温度值为TON1(TON1-1-n1、TON1-1-n2、…、TON1-5-n1、TON1-5-n2),第二化霜方式对应的第一温度值为TON2(TON2-1-n1、TON2-1-n2、…、TON2-5-n1、TON2-5-n2)。如果此时内风机风档是风档1,T内环≤Tn1,当T内管≤TON1-1-n1时,电辅热开启。
Figure PCTCN2021112226-appb-000007
表3
TON1-1-n1代表第一化霜方式下,风档1,温度区间为T内环≤Tn1区间时,开启电辅热装置需满足(小于等于)的内管温度值。
内风机转速(风档)的高低会影响内管温和出风温度,同时也会决定着房间风量和制热量的大小,因此从舒适性考虑,不同的风档,电辅热开启条件不同;风档越高,第一温度值TON越高。
房间内实际温度的高低会影响人对相同温度的风的实际热舒适感受不同,因此为了最优的化霜效果和热舒适性效果,以及从电辅热的可靠性和总的空调耗电量考虑,不同的房间温度,设置不同的电辅热开启条件。相同的出风温度下,内环温度低时,人体实际感受偏冷。因此,内环温度越高,第一温度值越低,TON-n1≥TON-n2。第一化霜方式和第二化霜方式中都是这样。Tn1∈(20,28)℃。
风档1≥风档2≥风档3≥风档4≥风档5,TON-1≥TON-2≥ TON-3≥TON-4≥TON-5,第一化霜方式和第二化霜方式中,都是这样。TON-1包括第一化霜方式下TON1-1-n1和TON1-1-n2,第二化霜方式下TON2-1-n1和TON2-1-n2,TON-2包括第一化霜方式下TON1-2-n1和TON1-2-n2,第二化霜方式下TON2-2-n1和TON2-2-n2,…,以此类推。
在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值高于所述第二化霜方式下的所述第一温度值,即TON1≥TON2,第一化霜方式的开启内管温高于第二化霜方式的内管温条件。这样有利于化霜时间较长的第二化霜方式的室内房间舒适性。在耗电量和室内房间舒适性方面不同的化霜方式下可以统一兼顾。第一温度值TON的取值范围包括38℃~55℃,TON∈(38,55)℃。
进一步地,所述判断单元110还被设置为:在所述控制单元120控制所述空调以第一化霜方式或第二化霜方式化霜开始后或化霜结束后,判断所述室内换热器温度是否大于第二温度值;所述控制单元120还被设置为:当所述判断单元判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭。
在一些实施方式中,第一化霜方式中,化霜结束后的t3时间后,第二化霜方式中,化霜结束后的t4时间后,当判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭,t3≤t4≤15min。
Figure PCTCN2021112226-appb-000008
Figure PCTCN2021112226-appb-000009
表4
所述第二温度值TOFF,即电辅热装置关闭需满足的室内换热器温度值。参考表4,不同的风档(风档1、风档2、…、风档5)和室内环境温度下(T内环≤Tn1或T内环>Tn1),第一化霜方式对应的第二温度值为TOFF1(TOFF1-1-n1、TOFF1-1-n2、…、TOFF1-5-n1、TOFF1-5-n2),第二化霜方式对应的第二温度值为TOFF2(TOFF2-1-n1、TOFF2-1-n2、…、TOFF2-5-n1、TOFF2-5-n2)。
在一些实施方式中,在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第二温度值TOFF1大于所述第二化霜方式下的所述第二温度值TOFF2。即,TOFF1≥TOFF2。
在一些实施方式中,在相同的内风机转速下,室内环境温度越高对应的所述第二温度值越低,即,TOFF-n1≥TOFF-n2,TOFF-n1例如TOFF1-1-n1、TOFF1-2-n1、TOFF2-1-n1、TOFF2-2-n1;TOFF-n2例如,TOFF1-1-n2、TOFF1-2-n2、TOFF2-1-n2、TOFF2-2-n2);
在一些实施方式中,内风机转速越高,第二温度值TOFF越高,例如,TOFF-1≥TOFF-2≥TOFF-3≥TOFF-4≥TOFF-5。
在一些实施方式中,在相同的内风机转速及室内环境温度下所述第一温度值小于所述第二温度值,TON<TOFF。第二温度值TOFF的取值范围包括:TOFF∈(38,50)℃。
本公开还提供对应于所述空调化霜控制方法的一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现前述任一所述方法的步骤。
本公开还提供对应于所述空调化霜控制方法的一种空调,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程 序,所述处理器执行所述程序时实现前述任一所述方法的步骤。
本公开还提供对应于所述空调化霜控制装置的一种空调,包括前述任一所述的空调化霜控制装置。
据此,本公开提供的方案,根据不同的结霜程度进行不同方式的不换向化霜,能够兼顾化霜效果和房间舒适性;在不换向化霜的化霜方式下,基于空调的结霜情况,确定不同化霜形式下室内机的转速变化,且根据对内风机进行分阶段控制,通过第一阶段的降风速控制和第二阶段的内风机风速闭环控制,避免化霜期间房间温度严重下降而影响舒适性;通过内风机和电辅热协同控制,电辅热开启关闭条件基于风档、室内环境温度和化霜方式确定,在快速化霜的同时兼顾用户对舒适性的需求。同时,本公开方案可不增加成本的在现有空调器上实现。
本文中所描述的功能可在硬件、由处理器执行的软件、固件或其任何组合中实施。如果在由处理器执行的软件中实施,那么可将功能作为一或多个指令或代码存储于计算机可读媒体上或经由计算机可读媒体予以传输。其它实例及实施方案在本公开及所附权利要求书的范围及精神内。举例来说,归因于软件的性质,上文所描述的功能可使用由处理器、硬件、固件、硬连线或这些中的任何者的组合执行的软件实施。此外,各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在本公开所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合 或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为控制装置的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本公开的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的权利要求范围之内。

Claims (18)

  1. 一种空调化霜控制方法,包括:
    在所述空调制热运行的情况下,当所述空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度;
    若判断所述室外换热器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜;
    所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。
  2. 根据权利要求1所述的方法,其中,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;包括:
    当所述空调的第一制热运行时间达到第一预设时间,且所述空调的室外换热器温度低于第一预设温度阈值时,判断所述室外换热器的结霜程度为第一结霜程度;所述第一制热运行时间包括:距开机的间隔时间或者距上一次化霜的间隔时间;
    当所述空调的第二制热运行时间达到第二预设时间,且所述空调的室外换热器温度低于第二预设温度阈值时,判断所述室外换热器的结霜程度为第二结霜程度;所述第二制热运行时间,包括:距开机的间隔时间或者距上一次以第二化霜方式进行化霜的间隔时间;
    其中,所述第一预设时间小于所述第二预设时间,所述第一预设温度阈值大于所述第二预设温度阈值。
  3. 根据权利要求1或2所述的方法,其中,
    控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;
    根据所述第一温度差值在按照第一方式划分的两个以上温差区间中所处的区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行;
    其中,在相同的温差区间所述第一化霜方式对应的所述转速降低值小于所述第二化霜方式对应的所述转速降低值。
  4. 根据权利要求1或2所述的方法,其中,
    控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;
    根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行;
    所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值;其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同;
    其中,在以第一化霜方式化霜的情况下,在进入所述第一阶段的时间达到第一预设化霜时间时,进入所述第二阶段;在以第二化 霜方式化霜的情况下,在进入所述第一阶段的时间达到第二预设化霜时间时,进入所述第二阶段,所述第一预设化霜时间小于等于所述第二预设化霜时间。
  5. 根据权利要求1或2所述的方法,其中,
    控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;
    根据所述第一温度差值在按照第一方式划分的两个以上温差区间中所处的区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行;
    其中,在相同的温差区间所述第一化霜方式对应的所述转速降低值小于所述第二化霜方式对应的所述转速降低值;
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;
    根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行;
    所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值;其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同;
    其中,在以第一化霜方式化霜的情况下,在进入所述第一阶段的时间达到第一预设化霜时间时,进入所述第二阶段;在以第二化霜方式化霜的情况下,在进入所述第一阶段的时间达到第二预设化霜时间时,进入所述第二阶段,所述第一预设化霜时间小于等于所述第二预设化霜时间。
  6. 根据权利要求3-5任一项所述的方法,其中,
    当所述第二温度差值在所述按照第二方式划分的两个以上温差区间中的设定稳定区间时,维持所述内风机当前的转速不变;
    当所述第二温度差值小于等于所述设定稳定区间的下限值时,每隔预设间隔时间降低预设转速值,直到所述内风机的转速降至预设转速下限值;
    当所述第二温度差值大于所述设定稳定区间的上限值时,每隔预设间隔时间升高预设转速值,直到所述内风机的转速达到设定转速值或预设转速上限值。
  7. 根据权利要求1-6任一项所述的方法,其中,还包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜开始后,当判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启;
    和/或,
    在控制所述空调以第一化霜方式或第二化霜方式化霜开始后或化霜结束后,当判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭。
  8. 根据权利要求7所述的方法,其中,
    所述第一温度值根据内风机转速及室内环境温度确定,和/或所述第二温度值根据内风机转速及室内环境温度确定;
    在不同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值不同和/或所述第二温度值不同,所述第二化霜方式下的所述第一温度值不同和/或所述第二温度值不同;
    在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值大于所述第二化霜方式下的所述第一温度值;所述第一化霜方式下的所述第二温度值大于所述第二化霜方式下的所述第二温度值;
    在相同的内风机转速及室内环境温度下所述第一温度值小于所述第二温度值。
  9. 一种空调化霜控制装置,包括:
    判断单元,被设置为在所述空调制热运行的情况下,当所述空调满足化霜条件时,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;其中,所述第一结霜程度的霜层厚度小于所述第二结霜程度的霜层厚度;
    控制单元,被设置为若所述判断单元判断所述室外换热器的结霜程度为第一结霜程度,则控制所述空调以第一化霜方式化霜,若判断所述室外换热器的结霜程度为第二结霜程度,则控制所述空调以第二化霜方式化霜;
    所述第一化霜方式和所述第二化霜方式为四通阀不换向化霜,化霜时所述空调保持制热状态。
  10. 根据权利要求9所述的装置,其中,所述判断单元,判断所述室外换热器的结霜程度为第一结霜程度或第二结霜程度;包括:
    当所述空调的第一制热运行时间达到第一预设时间,且所述空调的室外换热器温度低于第一预设温度阈值时,判断所述室外换热器的结霜程度为第一结霜程度;所述第一制热运行时间包括:距开 机的间隔时间或者距上一次化霜的间隔时间;
    当所述空调的第二制热运行时间达到第二预设时间,且所述空调的室外换热器温度低于第二预设温度阈值时,判断所述室外换热器的结霜程度为第二结霜程度;所述第二制热运行时间,包括:距开机的间隔时间或者距上一次以第二化霜方式进行化霜的间隔时间;
    其中,所述第一预设时间小于所述第二预设时间,所述第一预设温度阈值大于所述第二预设温度阈值。
  11. 根据权利要求9或10所述的装置,其中,所述控制单元,控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;
    根据所述第一温度差值在按照第一方式划分的两个以上温差区间中所处的区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行;
    其中,在相同的温差区间所述第一化霜方式对应的所述转速降低值小于所述第二化霜方式对应的所述转速降低值。
  12. 根据权利要求9或10所述的装置,其中,所述控制单元,控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二温度差值;
    根据所述第二温度差值在按照第二方式划分的两个以上温差区 间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行;
    所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值;其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同;
    其中,在以第一化霜方式化霜的情况下,在进入所述第一阶段的时间达到第一预设化霜时间时,进入所述第二阶段;在以第二化霜方式化霜的情况下,在进入所述第一阶段的时间达到第二预设化霜时间时,进入所述第二阶段,所述第一预设化霜时间小于等于所述第二预设化霜时间。
  13. 根据权利要求9或10所述的装置,其中,所述控制单元,控制所述空调以第一化霜方式化霜或控制所述空调以第二化霜方式化霜,包括:
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第一阶段,获取目标室内换热器温度与进入化霜时的第一室内换热器温度的第一温度差值;
    根据所述第一温度差值在按照第一方式划分的两个以上温差区间中所处的区间确定内风机转速降低值,以根据确定的所述转速降低值控制所述内风机的运行;
    其中,在相同的温差区间所述第一化霜方式对应的所述转速降低值小于所述第二化霜方式对应的所述转速降低值;
    在控制所述空调以第一化霜方式或第二化霜方式化霜的第二阶段,获取当前的第二室内换热器温度与目标室内换热器温度的第二 温度差值;
    根据所述第二温度差值在按照第二方式划分的两个以上温差区间中所处的温差区间确定内风机的转速调节方式,以根据确定的所述转速调节方式控制所述内风机的运行;
    所述转速调节方式,包括:每隔预设间隔时间降低或升高预设转速值,直到所述内风机的转速降至预设转速下限值或达到设定转速值或预设转速上限值;其中,所述第一化霜方式下的所述预设间隔时间与所述第二化霜方式下的所述预设间隔时间不同;
    其中,在以第一化霜方式化霜的情况下,在进入所述第一阶段的时间达到第一预设化霜时间时,进入所述第二阶段;在以第二化霜方式化霜的情况下,在进入所述第一阶段的时间达到第二预设化霜时间时,进入所述第二阶段,所述第一预设化霜时间小于等于所述第二预设化霜时间。
  14. 根据权利要求11-13任一项所述的装置,其中,
    当所述第二温度差值在所述按照第二方式划分的两个以上温差区间中的设定稳定区间时,维持所述内风机当前的转速不变;
    当所述第二温度差值小于等于所述设定稳定区间的下限值时,每隔预设间隔时间降低预设转速值,直到所述内风机的转速降至预设转速下限值;
    当所述第二温度差值大于所述设定稳定区间的上限值时,每隔预设间隔时间升高预设转速值,直到所述内风机的转速达到设定转速值或预设转速上限值。
  15. 根据权利要求9-14任一项所述的装置,其中,
    所述判断单元,还被设置为:在所述控制单元控制所述空调以第一化霜方式或第二化霜方式化霜开始后,判断所述室内换热器温 度是否小于等于第一温度值;
    所述控制单元,还被设置为:当所述判断单元判断所述室内换热器温度小于等于第一温度值时,控制所述空调的电辅热装置开启;
    和/或,
    所述判断单元,还被设置为:在所述控制单元控制所述空调以第一化霜方式或第二化霜方式化霜开始后或化霜结束后,判断所述室内换热器温度是否大于第二温度值;
    所述控制单元,还被设置为:当所述判断单元判断所述室内换热器温度大于第二温度值时,控制所述空调的电辅热装置关闭。
  16. 根据权利要求15所述的装置,其中,
    所述第一温度值根据内风机转速及室内环境温度确定,和/或所述第二温度值根据内风机转速及室内环境温度确定;
    在不同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值不同和/或所述第二温度值不同,所述第二化霜方式下的所述第一温度值不同和/或所述第二温度值不同;
    在相同的内风机转速及室内环境温度下,所述第一化霜方式下的所述第一温度值大于所述第二化霜方式下的所述第一温度值;所述第一化霜方式下的所述第二温度值大于所述第二化霜方式下的所述第二温度值;
    在相同的内风机转速及室内环境温度下所述第一温度值小于所述第二温度值。
  17. 一种存储介质,其上存储有计算机程序,所述程序被处理器执行时实现权利要求1-8任一所述方法的步骤。
  18. 一种空调,包括处理器、存储器以及存储在存储器上可在处理器上运行的计算机程序,所述处理器执行所述程序时实现权利 要求1-8任一所述方法的步骤,或者包括如权利要求9-16任一所述的空调化霜控制装置。
PCT/CN2021/112226 2020-12-11 2021-08-12 一种空调化霜控制方法、装置、存储介质及空调 WO2022121350A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011459033.4A CN112628941B (zh) 2020-12-11 2020-12-11 一种空调化霜控制方法、装置、存储介质及空调
CN202011459033.4 2020-12-11

Publications (1)

Publication Number Publication Date
WO2022121350A1 true WO2022121350A1 (zh) 2022-06-16

Family

ID=75312247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112226 WO2022121350A1 (zh) 2020-12-11 2021-08-12 一种空调化霜控制方法、装置、存储介质及空调

Country Status (2)

Country Link
CN (1) CN112628941B (zh)
WO (1) WO2022121350A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388534A (zh) * 2022-08-12 2022-11-25 宁波奥克斯电气股份有限公司 定频热泵空调的化霜控制方法、装置及空调器
CN115493251A (zh) * 2022-11-01 2022-12-20 宁波奥克斯电气股份有限公司 一种空调化霜控制方法、装置、空调及存储介质
CN115614925A (zh) * 2022-10-12 2023-01-17 宁波奥克斯电气股份有限公司 一种空调器及其控制方法、装置和可读存储介质
CN115807995A (zh) * 2022-12-08 2023-03-17 珠海格力电器股份有限公司 一种空调制热控制方法、装置、设备及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112628941B (zh) * 2020-12-11 2022-02-18 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调
CN114353286B (zh) * 2021-12-02 2023-05-05 珠海格力电器股份有限公司 空调除霜控制方法
CN114893866B (zh) * 2022-06-21 2023-07-21 珠海格力电器股份有限公司 一种化霜控制方法、装置及空调
CN115654661A (zh) * 2022-08-19 2023-01-31 珠海格力电器股份有限公司 空调器防冻结控制方法及空调器
CN115638509B (zh) * 2022-11-09 2024-06-11 宁波奥克斯电气股份有限公司 一种空调控制方法、装置、空调及存储介质
CN118687240A (zh) * 2023-03-23 2024-09-24 广东美的制冷设备有限公司 空调器的控制方法、空调器以及存储介质
CN118687241A (zh) * 2023-03-23 2024-09-24 广东美的制冷设备有限公司 空调器的控制方法、空调器以及存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991458B1 (ko) * 2009-08-04 2010-11-04 동화윈 (주) 증발기 냉각핀
CN104596032A (zh) * 2014-12-31 2015-05-06 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN105003982A (zh) * 2015-08-04 2015-10-28 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN107606725A (zh) * 2017-09-11 2018-01-19 广东美的制冷设备有限公司 蓄热化霜控制方法、控制装置和空调器
CN108954602A (zh) * 2018-05-07 2018-12-07 珠海格力电器股份有限公司 空调系统及空调系统的控制方法
CN111023450A (zh) * 2019-11-25 2020-04-17 宁波奥克斯电气股份有限公司 一种节能化霜的控制方法、控制装置、存储介质及空调
CN111174371A (zh) * 2019-12-31 2020-05-19 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
CN112628941A (zh) * 2020-12-11 2021-04-09 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4751825A (en) * 1986-12-04 1988-06-21 Carrier Corporation Defrost control for variable speed heat pumps
JP5528119B2 (ja) * 2008-01-21 2014-06-25 三菱電機株式会社 ヒートポンプ装置及びこのヒートポンプ装置を搭載した空気調和機又は給湯器
AU2010253331B2 (en) * 2009-05-29 2013-04-11 Daikin Industries, Ltd. Air conditioner
CN103363601B (zh) * 2012-04-09 2016-03-23 珠海格力电器股份有限公司 热泵式空气调节装置
CN102853502B (zh) * 2012-09-29 2014-12-31 广东美的制冷设备有限公司 一种热泵空调机组的化霜控制方法
CN104613593B (zh) * 2014-12-26 2017-06-27 广东美的制冷设备有限公司 空调器及其电加热控制方法
CN104764171B (zh) * 2015-04-27 2017-10-27 珠海格力电器股份有限公司 空调器及其控制方法和装置
JP6323431B2 (ja) * 2015-10-30 2018-05-16 ダイキン工業株式会社 空気調和機
WO2017138108A1 (ja) * 2016-02-10 2017-08-17 三菱電機株式会社 空気調和装置
CN107166673B (zh) * 2017-06-19 2019-12-27 广东美的暖通设备有限公司 空调器室外风机的控制方法和控制系统
CN108386980B (zh) * 2018-03-05 2020-06-02 奥克斯空调股份有限公司 一种空调化霜控制方法及装置
CN108592299B (zh) * 2018-05-03 2020-09-29 广东美的暖通设备有限公司 化霜控制方法及系统
CN111076363A (zh) * 2019-12-24 2020-04-28 珠海格力电器股份有限公司 空调的控制方法、装置、空调系统、存储介质和处理器
CN111174372B (zh) * 2019-12-31 2020-12-04 珠海格力电器股份有限公司 一种空调控制方法、装置、存储介质及空调

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991458B1 (ko) * 2009-08-04 2010-11-04 동화윈 (주) 증발기 냉각핀
CN104596032A (zh) * 2014-12-31 2015-05-06 广东美的制冷设备有限公司 空调器及其除霜控制方法
CN105003982A (zh) * 2015-08-04 2015-10-28 珠海格力电器股份有限公司 一种空调系统及其控制方法
CN107606725A (zh) * 2017-09-11 2018-01-19 广东美的制冷设备有限公司 蓄热化霜控制方法、控制装置和空调器
CN108954602A (zh) * 2018-05-07 2018-12-07 珠海格力电器股份有限公司 空调系统及空调系统的控制方法
CN111023450A (zh) * 2019-11-25 2020-04-17 宁波奥克斯电气股份有限公司 一种节能化霜的控制方法、控制装置、存储介质及空调
CN111174371A (zh) * 2019-12-31 2020-05-19 珠海格力电器股份有限公司 一种空调的控制方法、装置、存储介质及空调
CN112628941A (zh) * 2020-12-11 2021-04-09 珠海格力电器股份有限公司 一种空调化霜控制方法、装置、存储介质及空调

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115388534A (zh) * 2022-08-12 2022-11-25 宁波奥克斯电气股份有限公司 定频热泵空调的化霜控制方法、装置及空调器
CN115614925A (zh) * 2022-10-12 2023-01-17 宁波奥克斯电气股份有限公司 一种空调器及其控制方法、装置和可读存储介质
CN115493251A (zh) * 2022-11-01 2022-12-20 宁波奥克斯电气股份有限公司 一种空调化霜控制方法、装置、空调及存储介质
CN115493251B (zh) * 2022-11-01 2024-06-11 宁波奥克斯电气股份有限公司 一种空调化霜控制方法、装置、空调及存储介质
CN115807995A (zh) * 2022-12-08 2023-03-17 珠海格力电器股份有限公司 一种空调制热控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN112628941B (zh) 2022-02-18
CN112628941A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022121350A1 (zh) 一种空调化霜控制方法、装置、存储介质及空调
WO2022121351A1 (zh) 一种空调化霜控制方法、装置、存储介质及空调
CN107514743B (zh) 一种空调器控制方法、控制装置及空调器
US10101054B2 (en) Variable refrigerant flow air conditioning system with dual control over temperature and humidity and control method thereof
CN105972772B (zh) 空调器的除霜控制方法及装置
CN111561761B (zh) 一种延缓空调系统结霜的控制方法
CN109028465B (zh) 空调器除霜控制方法
WO2012046850A1 (ja) 空気調和機
CN108168018B (zh) 空调器制热控制方法
CN112880131A (zh) 用于空调系统除霜控制的方法及装置、空调系统
WO2016016918A1 (ja) 空気調和装置
CN113865059B (zh) 多联机空调器制热运行控制方法
CN113669864A (zh) 一种热泵型四管式空调系统及具有其空调器的控制方法
WO2021135677A1 (zh) 用于自动切换冷水机组的运行模式的控制方法
CN107631438B (zh) 高湿制热工况下空调的控制方法及系统
CN113847657A (zh) 一种空调系统的控制装置、方法和空调系统
WO2023165126A1 (zh) 空调除菌的控制方法、控制系统、电子设备和存储介质
WO2022160766A1 (zh) 用于空调除霜控制的方法及装置、空调
CN114413416B (zh) 一种多联机空调除霜控制方法、存储介质及多联机空调
CN113375290B (zh) 空调器及其控制方法
CN110701747B (zh) 一种空调系统的控制方法
CN208124689U (zh) 一种空调系统
JP3380384B2 (ja) 空気調和機の制御装置
US20240003577A1 (en) Heat recovery multi-split system and operation method therefor
WO2021223501A1 (zh) 用于空调机组的自清洁控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21902060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21902060

Country of ref document: EP

Kind code of ref document: A1