WO2022121259A1 - 光纤及其制备方法 - Google Patents

光纤及其制备方法 Download PDF

Info

Publication number
WO2022121259A1
WO2022121259A1 PCT/CN2021/098336 CN2021098336W WO2022121259A1 WO 2022121259 A1 WO2022121259 A1 WO 2022121259A1 CN 2021098336 W CN2021098336 W CN 2021098336W WO 2022121259 A1 WO2022121259 A1 WO 2022121259A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
furnace
preparing
dehydroxylation
filament
Prior art date
Application number
PCT/CN2021/098336
Other languages
English (en)
French (fr)
Inventor
朱钱生
叶阳
丁春来
曹珊珊
刘志忠
薛济萍
薛驰
Original Assignee
中天科技光纤有限公司
江苏中天科技股份有限公司
江东科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中天科技光纤有限公司, 江苏中天科技股份有限公司, 江东科技有限公司 filed Critical 中天科技光纤有限公司
Priority to EP21901972.6A priority Critical patent/EP4091995A4/en
Publication of WO2022121259A1 publication Critical patent/WO2022121259A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02718Thermal treatment of the fibre during the drawing process, e.g. cooling
    • C03B37/02727Annealing or re-heating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/105Organic claddings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/60Optical fibre draw furnaces
    • C03B2205/90Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles
    • C03B2205/91Manipulating the gas flow through the furnace other than by use of upper or lower seals, e.g. by modification of the core tube shape or by using baffles by controlling the furnace gas flow rate into or out of the furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the technical field of optical communication, in particular to an optical fiber and a preparation method thereof.
  • optical fiber technology With the development of optical fiber technology, the demand for long-distance transmission of optical fiber is increasing. If the attenuation loss of the optical fiber is high, it is necessary to increase the relay station for signal enhancement in the process of long-distance communication transmission, which increases the operation cost. For this reason, it becomes very important to prepare optical fibers with smaller attenuation loss.
  • a method for preparing an optical fiber comprising the following steps: preparing a powder core rod; sequentially performing dehydroxylation and sintering treatment on the powder core rod to obtain a glass rod, wherein the dehydroxylation treatment comprises placing the powder core rod in a The dehydroxylation treatment is carried out in a dehydroxylation atmosphere including a fluorine-containing gas, and the hydroxyl (-OH) content of the glass rod is less than 5 ppm; an outer cladding is formed on the surface of the glass rod to obtain an optical fiber preform; the optical fiber preform is drawn into a wire. Filaments, the filaments are subjected to thermal insulation annealing treatment; the surface of the filaments is coated with resin, and then subjected to ultraviolet curing to obtain an optical fiber.
  • the fluorine-containing gas includes at least one of SiF 4 , CF 4 , and C 2 F 6 .
  • the dehydroxylation atmosphere further includes a carrier gas
  • the carrier gas includes at least one of N 2 , He, and Ar
  • the volume ratio of the fluorine-containing gas to the carrier gas is 1: (9-35).
  • the method for preparing an optical fiber further includes the following step: screening the thermally annealed filament with a screening strain of 2%.
  • the tension value of the wire drawing fluctuates up and down by no more than 0.5%.
  • the optical fiber preform is drawn into filaments in a drawing furnace, and the furnace mouth, the center position and the bottom of the furnace shell are respectively provided with air inlets.
  • the inert gas is introduced into the wire drawing furnace through the air inlet, so that the thermal field in all parts of the wire drawing furnace is kept consistent and stable.
  • the total flow rate of the inert gas in the drawing furnace is maintained at 10-50L, and the flow rate of the inert gas introduced from the furnace mouth, the center position of the furnace shell and the bottom of the drawing furnace is (1 to 3): (1 to 2.5): 1.
  • the filaments are subjected to thermal annealing treatment in a holding furnace, and the temperature of the holding furnace satisfies the following formula: Wherein T in is the temperature when the filament enters the holding furnace, T out is the temperature when the filament leaves the holding furnace, T ⁇ is the ambient temperature, K is the thermal conductivity, L is the moving distance of the filament, and V is the drawing speed.
  • the resin is an acrylic resin or a silicone resin.
  • the present invention also provides an optical fiber prepared by the above-mentioned preparation method of the optical fiber, the attenuation coefficient of the optical fiber at the wavelength of 1310nm is 0.33dB/km, and the attenuation coefficient at the wavelength of 1383nm is 0.28dB/km.
  • the hydroxyl content of the glass rod is made less than 5 ppm through dehydroxylation treatment;
  • the cooling rate of the filament after drawing is reduced by thermal insulation annealing treatment, thereby reducing the fictive temperature T f to reduce the attenuation coefficient; and through thermal insulation annealing treatment, the internal stress of the optical fiber is completely released, and the internal structure of the optical fiber is improved. uniformity, which in turn reduces Rayleigh scattering to lower the attenuation coefficient.
  • An embodiment of the present invention provides a method for preparing an optical fiber, which includes the following steps:
  • Step S1 prepare a powder core rod.
  • the powder core rod includes a core layer and an inner cladding layer whose main component is silicon dioxide.
  • the inner cladding layer is a depressed structure of the refractive index of the cladding layer.
  • the core layer is fabricated by an axial vapor deposition process, and the inner cladding layer is fabricated by an improved chemical vapor deposition process.
  • Step S2 Dehydroxylation and sintering of the powder core rod are performed in sequence to obtain a glass rod, wherein the dehydroxylation treatment includes placing the powder core rod in a dehydroxylation atmosphere including a fluorine-containing gas to perform dehydroxylation treatment,
  • the hydroxyl (-OH) content of the glass rod is less than 5 ppm.
  • the fluorine-containing gas includes at least one of SiF 4 , CF 4 , and C 2 F 6 .
  • the dehydroxylation atmosphere further includes a carrier gas, and the carrier gas includes at least one of N 2 , He, and Ar.
  • the volume ratio of the fluorine-containing gas and the carrier gas is 1:(9-35).
  • Step S3 forming an outer coating on the surface of the glass rod to obtain an optical fiber preform.
  • an outer coating can be formed on the surface of the glass rod by an axial vapor deposition process or an external vapor deposition process, and then sintered to obtain a transparent optical fiber preform.
  • the outer layer is prepared by an external vapor deposition process.
  • the external vapor deposition process is to place the above-completed glass rod on the external vapor deposition machine for deposition, after reaching the target weight or rod diameter, the deposition is completed, and then sintering is performed to prepare the powder rod into a transparent glass rod, that is, An optical fiber preform was prepared.
  • the production of the outer cladding can also be performed using high purity quartz sleeves for melting.
  • Step S4 drawing the optical fiber preform into filaments, and subjecting the filaments to thermal insulation annealing treatment.
  • the tension of wire drawing is affected by the process parameters, wire drawing power and other data of the whole preparation method, and is maintained at a suitable stable value F 0 .
  • the tension should not be too small, otherwise it will aggravate the formation of Si-OH; the tension should not be too large, because the tension will increase the inhomogeneity of the internal structure of the fiber and increase the Rayleigh scattering, so there is a corresponding minimum attenuation coefficient.
  • the tension value F 0 During the drawing process, the tension value of the drawing should not fluctuate by more than 0.5%, so that the drawing tension during the drawing process is as stable as possible.
  • the tension of wire drawing is determined by adjusting various process parameters in the wire drawing process (including wire drawing speed, temperature of wire drawing furnace, coating pressure when coating resin on filament surface, coating on filament surface The power of the curing furnace when the coated resin is cured, etc.), so that the obtained optical fiber satisfies the following parameters: the attenuation coefficient at the wavelength of 1310nm is 0.325 ⁇ 0.335dB/km, and the attenuation coefficient at the wavelength of 1383nm is 0.275 ⁇ 0.285dB/km, The cut-off wavelength of the optical cable is 1200-1250 nm, and the various bending losses of the optical fiber meet the ITU-TG.657B3 standard.
  • the drawing tension value at this time is set as the preset drawing tension value F 0 .
  • the upper limit is 0.995g
  • the lower limit is 1.005g.
  • the control of wire drawing tension can be realized by controlling the temperature in the wire drawing furnace and controlling the speed of wire drawing.
  • this embodiment adopts the method of controlling the drawing speed to control the drawing tension. Specifically, when the wire-drawing tension reaches the lower limit of 0.995g, the wire-drawing speed is increased; on the contrary, when the wire-drawing tension reaches the upper limit of 1.005g, the wire-drawing speed is reduced.
  • the wire drawing speed that changes per second shall not be higher than 1m/min.
  • step S4 includes: sending the optical fiber preform into a drawing furnace for melting and drawing into filaments, and sending the filaments into a holding furnace for thermal insulation annealing treatment.
  • the inert gas is introduced into the drawing furnace by means of multiple air inlets, so that the thermal field in the drawing furnace is consistent and stable, thereby reducing the uneven thermal field during the melting process of the optical fiber preform.
  • the internal stress of the fiber increases.
  • the inert gas is helium, argon or a mixture of the two in any proportion.
  • a three-way air inlet mode is adopted, and the three air inlets are respectively located at the furnace mouth of the wire drawing furnace, the central position of the furnace shell of the wire drawing furnace and the bottom of the wire drawing furnace, and the total flow rate of the inert gas in the wire drawing furnace is Maintained at 10-50L, the flow ratio of the inert gas introduced from the furnace mouth of the wire drawing furnace, the central position of the furnace shell of the wire drawing furnace and the bottom of the wire drawing furnace is (1-3):(1-2.5):1.
  • the fictive temperature T f is defined as the temperature at which the glass transitions from the softened state to the solidified state.
  • the value of T f represents the degree of annealing of the filament during the cooling process. The lower the value, the more complete the annealing, the lower the Rayleigh scattering coefficient caused by the rearrangement of molecules and atoms, and the closer the attenuation coefficient is to the theoretical limit. .
  • the cooling rate of the filaments is reduced by subjecting the filaments to thermal annealing treatment.
  • the holding furnace is located at the bottom of the drawing furnace, and the filaments from the drawing furnace directly enter the holding furnace for heat preservation and annealing treatment.
  • the temperature of the holding furnace satisfies the following formula: Wherein T in is the temperature when the filament enters the holding furnace, T out is the temperature when the filament leaves the holding furnace, T ⁇ is the ambient temperature, K is the thermal conductivity, L is the moving distance of the filament, and V is the drawing speed. Under certain drawing conditions, L and V are known, the ambient temperature is constant, K is a fixed value, and Tin is known, so that the T out temperature can be calculated and set.
  • setting the temperature t x of the holding furnace and determining the matching temperature zone length L x can ensure that the internal stress of the filament is completely released during the holding and annealing process, improve the uniformity of the internal structure of the optical fiber, and then Reduce Rayleigh scattering.
  • Step S5 coating resin on the surface of the filament, and then curing to obtain an optical fiber.
  • the Young's modulus of the resin is less than 0.7 MPa.
  • the cured resin is used as the coating layer of the optical fiber to protect the optical fiber, reduce the structural defects generated during the drawing process, and reduce the attenuation of the optical fiber.
  • the resin is acrylic resin or silicone resin.
  • the viscosity of the acrylic resin is 2000-5000cps, and the viscosity of the silicone resin is 3000-8000cps.
  • the viscosity of the acrylic resin or silicone resin should not be too small, which will cause the coating to sag and the curing effect is not good; of course, it should not be too large, because the viscosity is large, the fluidity is poor, and heating treatment is required, but in fact The heating temperature should not be too high, and if the coating is applied at a high viscosity, on the one hand, the adhesion is not good, and the curing time is long, and internal stress is easily generated after curing, which is not conducive to the performance of the optical fiber, such as the attenuation characteristics will be deteriorated.
  • the coating layer includes an inner coating and an outer coating overlying the inner coating.
  • the material of the inner coating meets the following requirements: the elastic modulus is less than or equal to 0.7Mpa; at 25°C, the viscosity of the coating is 3500-7500mPa ⁇ s, the density is 0.95-1.3g/cm 3 , and the elongation at break is ⁇ 140%.
  • the material of the outer coating meets the following requirements: elastic modulus ⁇ 550Mpa; at 25°C, the viscosity of the coating is 3500 ⁇ 7500mPa ⁇ s, the density is 0.95 ⁇ 1.3g/cm 3 , and the elongation at break is ⁇ 5%.
  • the diameter of the optical fiber after coating to form the inner coating is 180 to 200 ⁇ m
  • the diameter of the optical fiber after coating to form the outer coating is 235 to 255 ⁇ m
  • the thickness ratio of the inner coating to the outer coating is (1:0.67) ⁇ ( 1:1.15).
  • the instant viscosity of the material of the inner coating layer and the material of the outer coating layer during coating is 1500-3000 mPa ⁇ s
  • the temperature of coating the inner coating layer and the outer coating layer is 28-60°C.
  • the optical fiber coated with the inner coating or the outer coating is subjected to UV curing or LED curing through a curing furnace, wherein an inert gas is introduced into the curing furnace for oxygen isolation, and the oxygen content in the curing furnace is less than 50ppm.
  • the inert gas is helium, argon or a mixture of the two in any ratio.
  • the number of curing furnaces is 4-8, and the gas flow rate in each curing furnace is 10-25L.
  • the preparation method further comprises the following steps:
  • Step S41 After step S4 and before step S5, screen the thermally annealed fibrils with a screening strain of 2% to improve the strength of the produced optical fiber.
  • Step S6 After the optical fiber is formed, an automatic take-up device is used to wind up the optical fiber on the optical fiber reel.
  • the optical fiber prepared by the above preparation method includes a core layer, an inner cladding layer, an outer cladding layer and a coating layer in sequence from the inside to the outside, wherein the coating layer includes an acrylic resin coating layer or a silicone resin coating layer.
  • the optical fiber is a single-mode optical fiber or a multi-mode optical fiber.
  • the optical fiber performance test parameters are shown in the table below.
  • the attenuation coefficient of the optical fiber of the present invention at the wavelength of 1310 nm reaches 0.33 dB/km, and the attenuation coefficient at the wavelength of 1383 nm reaches 0.28 dB/km, and it meets the requirement of 2% screening strain, making it suitable for long-term use in harsh environments. distance transmission.
  • the mode field diameter of the fiber is 8.58.5 ⁇ m, allowing it to be incorporated into the trunk for signal transmission.
  • the hydroxyl content of the glass rod is less than 5 ppm by dehydroxylation treatment;
  • the formation of thereby reducing the content of hydroxyl groups in the fiber, thereby reducing the attenuation coefficient of the fiber.
  • the cooling rate of the filament after drawing is reduced by thermal insulation annealing treatment, thereby reducing the fictive temperature T f to reduce the attenuation coefficient; and through thermal insulation annealing treatment, the internal stress of the optical fiber is completely released, and the internal structure of the optical fiber is improved. uniformity, which in turn reduces Rayleigh scattering to lower the attenuation coefficient.
  • the use of resin-coated filaments reduces the structural defects of the optical fibers during the drawing process, thereby reducing the attenuation coefficient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

本发明提供一种光纤的制备方法,包括以下步骤:制备粉末体芯棒;将所述粉末体芯棒依序进行脱羟基、烧结处理得到玻璃棒,其中脱羟基处理包括将所述粉末体芯棒置于包括含氟气体的脱羟基气氛中进行脱羟基处理,所述玻璃棒的羟基含量小于5ppm;在所述玻璃棒表面形成外包层得到光纤预制棒;将所述光纤预制棒拉丝成纤丝,将所述纤丝进行保温退火处理;在所述纤丝表面涂覆树脂,然后进行紫外固化,得到光纤。本发明还提供采用上述光纤的制备方法制得的光纤。

Description

光纤及其制备方法 技术领域
本发明涉及光通信技术领域,尤其涉及一种光纤及其制备方法。
背景技术
随着光纤技术的发展,光纤的长距离传输的需求越来越大。若光纤的衰减损耗较高,则在长距离通信传输的过程中需要增加中继站进行信号的增强,增加了运营成本。为此,制备衰减损耗更小的光纤变得十分重要。
发明内容
有鉴于此,有必要提供一种能够解决上述技术问题的光纤。
一种光纤的制备方法,包括以下步骤:制备粉末体芯棒;将所述粉末体芯棒依序进行脱羟基、烧结处理得到玻璃棒,其中脱羟基处理包括将所述粉末体芯棒置于包括含氟气体的脱羟基气氛中进行脱羟基处理,所述玻璃棒的羟基(-OH)含量小于5ppm;在所述玻璃棒表面形成外包层得到光纤预制棒;将所述光纤预制棒拉丝成纤丝,将所述纤丝进行保温退火处理;在所述纤丝表面涂覆树脂,然后进行紫外固化,得到光纤。
在一可选的实施方式中,所述含氟气体包含SiF 4、CF 4、C 2F 6中的至少一种。
在一可选的实施方式中,所述脱羟基气氛还包括载气,所述载气包括N 2、He、Ar中的至少一种,所述含氟气体和所述 载气的体积比为1:(9~35)。
在一可选的实施方式中,所述光纤的制备方法还包括以下步骤:将经过保温退火处理的纤丝以2%的筛选应变进行筛选。
在一可选的实施方式中,在拉丝过程中,拉丝的张力值上下波动不超过0.5%。
在一可选的实施方式中,所述光纤预制棒在拉丝炉中拉丝成纤丝,所述拉丝炉的炉口、炉壳的中心位置以及底部分别开设有进气口,在拉丝过程中,惰性气体通过所述进气口通入所述拉丝炉中,使拉丝炉内各处的热场保持一致并稳定。
在一可选的实施方式中,所述拉丝炉内的惰性气体的流量总量维持在10~50L,从拉丝炉的炉口、炉壳的中心位置以及底部通入的惰性气体的流量比例为(1~3):(1~2.5):1。
在一可选的实施方式中,所述纤丝在保温炉中进行保温退火处理,所述保温炉的温度满足以下公式:
Figure PCTCN2021098336-appb-000001
其中T in为纤丝进入保温炉时的温度,T out为纤丝出保温炉时的温度,T 为环境温度,K为导热率,L为纤丝移动距离,V为拉丝速度。
在一可选的实施方式中,所述树脂为丙烯酸树脂或有机硅树脂。
本发明还提供一种光纤,所述光纤采用上述光纤的制备方法制得,所述光纤在1310nm波长的衰减系数为0.33dB/km,在1383nm波长的衰减系数为0.28dB/km。
本发明实施方式提供的光纤的制备方法中,一方面通过脱羟基处理,使得玻璃棒的羟基含量小于5ppm;另一方面通过控制拉丝张力,使其保持在一合适的稳定值,控制拉丝过程中Si-O-H的形成,从而减少光纤中羟基的含量,进而减少光纤 的衰减系数。另外,通过对纤丝进行保温退火处理来降低拉丝后纤丝的冷却速度,进而降低假想温度T f,以降低衰减系数;且通过保温退火处理,使光纤内部应力完全释放,提高光纤内部结构的均匀性,进而降低瑞利散射,以降低衰减系数。
具体实施方式
本发明一实施方式提供一种光纤的制备方法,其包括以下步骤:
步骤S1:制备粉末体芯棒。
所述粉末体芯棒包括主要成分为二氧化硅的芯层和内包层。所述内包层为包层折射率的下陷结构。本实施方式中,所述芯层采用轴向气相沉积工艺制成,所述内包层采用改进的化学气相沉积工艺制成。
步骤S2:将所述粉末体芯棒依序进行脱羟基、烧结处理得到玻璃棒,其中脱羟基处理包括将所述粉末体芯棒置于包括含氟气体的脱羟基气氛中进行脱羟基处理,所述玻璃棒的羟基(-OH)含量小于5ppm。
所述含氟气体包含SiF 4、CF 4、C 2F 6中的至少一种。所述脱羟基气氛还包括载气,所述载气包括N 2、He、Ar中的至少一种。所述含氟气体和所述载气的体积比为1:(9~35)。脱羟基处理时,处理温度控制在300~1300℃,将含氟气体和载气按照预设流量比通入形成脱羟基气氛,处理时间控制在1~40h。
步骤S3:在所述玻璃棒表面形成外包层得到光纤预制棒。
具体的,可采用轴向气相沉积工艺或外部气相沉积工艺在所述玻璃棒的表面形成外包层,然后通过烧结,得到透明的光纤预制棒。本实施方式中,外包层采用外部气相沉积工艺制备而成。其中,外部气相沉积工艺是将上述完成的玻璃棒放置在 外部气相沉积机台上进行沉积,达到目标重量或棒径后,沉积结束,再进行烧结,将粉末棒制备成透明的玻璃棒,即制得光纤预制棒。在其他实施方式中,外包层的生产也可以使用高纯石英套管进行融缩。
步骤S4:将所述光纤预制棒拉丝成纤丝,将所述纤丝进行保温退火处理。
拉丝的张力受整个制备方法的工艺参数、拉丝功率等数据的影响,维持在一合适的稳定值F 0。在拉丝过程中,张力不宜过小,否则会加剧Si-O-H的形成;张力也不宜过大,张力过大会导致光纤内部结构的不均匀性加剧增加瑞利散射,因此对应于最小衰减系数有一对应的张力值F 0。在拉丝过程中,拉丝的张力值上下波动不超过0.5%,以使拉丝过程中的拉丝张力尽量稳定。
在一些实施方式中,通过以下方法确定拉丝的张力:调整拉丝工艺中的各个工艺参数(包括拉丝速度、拉丝炉的温度、在纤丝表面涂覆树脂时的涂覆压力、对纤丝表面涂覆的树脂进行固化时固化炉的功率等),使得制得的光纤满足以下参数:在1310nm波长的衰减系数为0.325~0.335dB/km,在1383nm波长的衰减系数为0.275~0.285dB/km,光缆的截止波长为1200~1250nm,光纤的各项弯曲损耗满足ITU-TG.657B3标准,将此时的拉丝张力值设定为预设拉丝张力值F 0。在一些实施方式中,拉丝张力值上下波动时的上限为0.995g,下限为1.005g。
拉丝张力的控制可通过控制拉丝炉内的温度和控制拉丝的速度两种方式实现。为保证拉丝炉内环境的稳定性并满足光纤2%筛选应变要求,本实施方式采用控制拉丝的速度的方式来控制拉丝张力。具体的,当拉丝张力达到下限0.995g时,提高拉丝速度;相反,当拉丝张力达到上限1.005g时,降低拉 丝速度。调节拉丝速度时,每秒变化的拉丝速度不得高于1m/min。
具体的,步骤S4包括:将所述光纤预制棒送入拉丝炉中熔融拉丝成纤丝,将纤丝送入保温炉中进行保温退火处理。拉丝过程中,采用多路进气方式向所述拉丝炉中通入惰性气体,使拉丝炉内各处的热场保持一致并稳定,从而减小光纤预制棒熔融过程中因热场不均导致的光纤内应力增加。所述惰性气体为氦气、氩气或者二者任意比例混合的混合气体。在一具体实施方式中,采用三路进气方式,三个进气口分别位于拉丝炉的炉口、拉丝炉的炉壳的中心位置以及拉丝炉的底部,拉丝炉内惰性气体的流量总量维持在10~50L,从拉丝炉的炉口、拉丝炉的炉壳的中心位置以及拉丝炉的底部通入的惰性气体的流量比例为(1~3):(1~2.5):1。
纤丝在拉丝炉内形成后逐渐由炉温冷却至室温,玻璃黏度由低变高,在这个过程中,纤丝的假想温度T f对光纤的衰减的影响至关重要。假想温度T f定义为玻璃从软化态到凝固态转变的温度。T f数值的高低代表了纤丝在冷却过程中的退火程度,其数值越低,表示退火越完全,由分子和原子重排造成的瑞利散射系数越低,衰减系数越接近于理论极限值。在拉丝过程中,假定温度T f受到冷却速度的影响,其满足以下公式:
Figure PCTCN2021098336-appb-000002
其中a 1和a 2是和光纤的材料相关的常数,q是冷却的速度(单位为K/s),q 0=1K/s,T g为玻璃转化温度。由上述公式可知,降低冷却速度是降低假想温度的有效办法。本发明中,通过将纤丝进行保温退火处理来降低纤丝的冷却速度。
保温炉位于拉丝炉的底部,从拉丝炉中出来的纤丝直接进 入保温炉中进行保温退火处理。保温炉的温度满足以下公式:
Figure PCTCN2021098336-appb-000003
其中T in为纤丝进入保温炉时的温度,T out为纤丝出保温炉时的温度,T 为环境温度,K为导热率,L为纤丝移动距离,V为拉丝速度。在一定拉丝条件下,L和V为已知,环境温度为常数,K为定值,Tin为已知,从而可计算出T out温度进行设定。根据上述公式,设定保温炉温度t x,并且确定与之相匹配的温区长度L x,即可保证纤丝在保温退火过程中其内部应力完全释放,提高光纤内部结构的均匀性,进而降低瑞利散射。
步骤S5:在所述纤丝表面涂覆树脂,然后进行固化,得到光纤。所述树脂的杨氏模量小于0.7MPa。固化后的树脂作为光纤的涂覆层,用于保护光纤,减少拉丝过程中产生的结构缺陷,降低光纤的衰减。
所述树脂为丙烯酸树脂或有机硅树脂。所述丙烯酸树脂的粘度为2000-5000cps,所述有机硅树脂的粘度为3000-8000cps。所述丙烯酸树脂或有机硅树脂的粘度均不宜太小,会导致涂覆涂料流挂,固化效果不好;当然也不宜太大,粘度大,流动性就差,需要加温处理,而实际上加热温度又不宜太高,且若在较大粘度下涂覆,一方面粘附力不好,固化时间长,固化后易产生内应力,不利于光纤的性能,如衰减特性会变差。
在一些实施方式中,所述涂覆层包括内涂层和包覆于所述内涂层上的外涂层。内涂层的材料满足以下要求:弹性模量≦0.7Mpa;25℃时,涂料的黏度为3500~7500mPa·s,密度为0.95~1.3g/cm 3,断裂伸长率≧140%。外涂层的材料满足以下要求:弹性模量≧550Mpa;25℃时,涂料的黏度为3500~7500mPa·s,密度为0.95~1.3g/cm 3,,断裂伸长率≧5%。涂覆 形成内涂层后的光纤的直径为180~200μm,涂覆形成外涂层后的光纤的直径为235~255μm,内涂层和外涂层的厚度比为(1:0.67)~(1:1.15)。内涂层的材料和外涂层的材料在涂覆时的即时黏度为1500~3000mPa·s,在涂覆内涂层和外涂层时的温度为28~60℃。
通过固化,使内涂层材料和外涂层材料由液体转化为固态,良好的固化效果可以有效提升光纤的强度。具体的,将表面涂覆有内涂层或外涂层的光纤通过固化炉进行UV固化或LED固化,其中固化炉内通入惰性气体进行氧气隔绝,固化炉内的氧气含量小于50ppm。在一些实施方式中,惰性气体为氦气、氩气或二者任意比例混合的混合气体。在一些实施方式中,固化炉的个数为4~8个,每个固化炉内的气体流量为10~25L。经固化后,内涂层的固化度为85%~95%,外涂层的固化度为92%~100%。
在具体实施方式中,所述制备方法还包括以下步骤:
步骤S41:在步骤S4之后且在步骤S5之前,以2%的筛选应变筛选经保温退火处理的纤丝,以提高制得的光纤的强度。
步骤S6:所述光纤成型之后采用自动收线装置收绕于光纤盘上。
采用上述制备方法制得的光纤,由内至外依次包括芯层、内包层、外包层以及涂覆层,其中涂覆层包括丙烯酸树脂涂覆层或有机硅树脂涂覆层。所述光纤为单模光纤或多模光纤。光纤性能测试参数如下表所示。
表1
Figure PCTCN2021098336-appb-000004
Figure PCTCN2021098336-appb-000005
表2
Figure PCTCN2021098336-appb-000006
表3
Figure PCTCN2021098336-appb-000007
表4
Figure PCTCN2021098336-appb-000008
表5
Figure PCTCN2021098336-appb-000009
表6
Figure PCTCN2021098336-appb-000010
Figure PCTCN2021098336-appb-000011
表7
Figure PCTCN2021098336-appb-000012
表8
Figure PCTCN2021098336-appb-000013
表9
Figure PCTCN2021098336-appb-000014
由上述性能可知,本发明光纤在1310nm波长的衰减系数达到0.33dB/km,在1383nm波长的衰减系数达到0.28dB/km,且其满足2%筛选应变要求,使其能够适用于恶劣环境的长距离传输。另外,光纤的模场直径为8.58.5μm,使其可并入干线进行信号传输。
本发明的光纤的制备方法中,一方面通过脱羟基处理,使得玻璃棒的羟基含量小于5ppm;另一方面通过控制拉丝张力, 使其保持在一合适的稳定值,控制拉丝过程中Si-O-H的形成,从而减少光纤中羟基的含量,进而减少光纤的衰减系数。另外,通过对纤丝进行保温退火处理来降低拉丝后纤丝的冷却速度,进而降低假想温度T f,以降低衰减系数;且通过保温退火处理,使光纤内部应力完全释放,提高光纤内部结构的均匀性,进而降低瑞利散射,以降低衰减系数。再者,采用树脂涂覆纤丝,减少了光纤在拉丝过程中产生的结构缺陷,从而降低衰减系数。
以上所揭露的仅为本发明较佳实施方式而已,当然不能以此来限定本发明,因此依本发明所作的等同变化,仍属本发明所涵盖的范围。

Claims (10)

  1. 一种光纤的制备方法,其特征在于,包括以下步骤:
    制备粉末体芯棒;
    将所述粉末体芯棒依序进行脱羟基、烧结处理得到玻璃棒,其中脱羟基处理包括将所述粉末体芯棒置于包括含氟气体的脱羟基气氛中进行脱羟基处理,所述玻璃棒的羟基含量小于5ppm;
    在所述玻璃棒表面形成外包层得到光纤预制棒;
    将所述光纤预制棒拉丝成纤丝,将所述纤丝进行保温退火处理;
    在所述纤丝表面涂覆树脂,然后进行紫外固化,得到光纤。
  2. 如权利要求1所述的光纤的制备方法,其特征在于,所述含氟气体包含SiF 4、CF 4、C 2F 6中的至少一种。
  3. 如权利要求1所述的光纤的制备方法,其特征在于,所述脱羟基气氛还包括载气,所述载气包括N 2、He、Ar中的至少一种,所述含氟气体和所述载气的体积比为1:(9~35)。
  4. 如权利要求1所述的光纤的制备方法,其特征在于,还包括以下步骤:将经过保温退火处理的纤丝以2%的筛选应变进行筛选。
  5. 如权利要求1所述的光纤的制备方法,其特征在于,在拉丝过程中,拉丝的张力值上下波动不超过0.5%。
  6. 如权利要求1所述的光纤的制备方法,其特征在于,所述光纤预制棒在拉丝炉中拉丝成纤丝,所述拉丝炉的炉口、炉壳的中心位置以及底部分别开设有进气口,在拉丝过程中,惰性气体通过所述进气口通入所述拉丝炉中,使拉丝炉内各处的热场保持一致并稳定。
  7. 如权利要求6所述的光纤的制备方法,其特征在于,所 述拉丝炉内的惰性气体的流量总量维持在10~50L,从拉丝炉的炉口、炉壳的中心位置以及底部通入的惰性气体的流量比例为(1~3):(1~2.5):1。
  8. 如权利要求1所述的光纤的制备方法,其特征在于,所述纤丝在保温炉中进行保温退火处理,所述保温炉的温度满足以下公式:
    Figure PCTCN2021098336-appb-100001
    其中T in为纤丝进入保温炉时的温度,T out为纤丝出保温炉时的温度,T 为环境温度,K为导热率,L为纤丝移动距离,V为拉丝速度。
  9. 如权利要求1所述的光纤的制备方法,其特征在于,所述树脂为丙烯酸树脂或有机硅树脂。
  10. 一种光纤,其特征在于,所述光纤采用权利要求1-9中任一所述的光纤的制备方法制得,所述光纤在1310nm波长的衰减系数为0.33dB/km,在1383nm波长的衰减系数为0.28dB/km。
PCT/CN2021/098336 2020-12-07 2021-06-04 光纤及其制备方法 WO2022121259A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21901972.6A EP4091995A4 (en) 2020-12-07 2021-06-04 OPTICAL FIBER AND ASSOCIATED PREPARATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011429117.3A CN112499961A (zh) 2020-12-07 2020-12-07 光纤及其制备方法
CN202011429117.3 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022121259A1 true WO2022121259A1 (zh) 2022-06-16

Family

ID=74970075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098336 WO2022121259A1 (zh) 2020-12-07 2021-06-04 光纤及其制备方法

Country Status (3)

Country Link
EP (1) EP4091995A4 (zh)
CN (1) CN112499961A (zh)
WO (1) WO2022121259A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282890A (zh) * 2022-11-22 2023-06-23 北京斐博光电科技有限公司 一种光纤拉丝塔光纤拉锥方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112499961A (zh) * 2020-12-07 2021-03-16 中天科技光纤有限公司 光纤及其制备方法
CN113716862B (zh) * 2021-09-01 2023-03-21 中天科技光纤有限公司 光纤的制备方法及其装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270522A1 (en) * 2001-06-26 2003-01-02 FITEL USA CORPORATION (a Delaware Corporation) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration
CN106116138A (zh) * 2016-05-18 2016-11-16 中天科技光纤有限公司 一种小直径低损耗弯曲不敏感单模光纤的拉丝涂覆工艺
CN110040942A (zh) * 2018-01-16 2019-07-23 中天科技集团有限公司 粉末体脱羟处理方法及石英玻璃的制备方法
CN111348826A (zh) * 2020-04-29 2020-06-30 上海煜志科技有限公司 光纤拉丝炉
CN211078920U (zh) * 2019-08-30 2020-07-24 中天科技精密材料有限公司 粉末棒烧结设备
CN111929764A (zh) * 2020-08-18 2020-11-13 中天科技光纤有限公司 光纤及光纤制备方法
CN112499961A (zh) * 2020-12-07 2021-03-16 中天科技光纤有限公司 光纤及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000073224A1 (fr) * 1999-05-27 2000-12-07 Sumitomo Electric Industries, Ltd. Dispositif de production et procede pour fibre optique
CN102583997B (zh) * 2004-11-29 2015-03-11 古河电气工业株式会社 光纤母材、光纤母材的制造方法以及光纤的制造方法
CN101533122B (zh) * 2009-04-27 2010-08-04 中天科技光纤有限公司 高强度大盘长海底光缆用单模光纤的制备方法
CN102998743B (zh) * 2013-01-05 2015-04-01 中天科技光纤有限公司 适应于长距离通信传输的低损耗单模光纤及其制备方法
CN107357004B (zh) * 2017-07-04 2020-04-21 长飞光纤光缆股份有限公司 一种低衰减单模光纤及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1270522A1 (en) * 2001-06-26 2003-01-02 FITEL USA CORPORATION (a Delaware Corporation) Method for fabricating optical fiber from preforms, using control of the partial pressure of oxygen during preform dehydration
CN106116138A (zh) * 2016-05-18 2016-11-16 中天科技光纤有限公司 一种小直径低损耗弯曲不敏感单模光纤的拉丝涂覆工艺
CN110040942A (zh) * 2018-01-16 2019-07-23 中天科技集团有限公司 粉末体脱羟处理方法及石英玻璃的制备方法
CN211078920U (zh) * 2019-08-30 2020-07-24 中天科技精密材料有限公司 粉末棒烧结设备
CN111348826A (zh) * 2020-04-29 2020-06-30 上海煜志科技有限公司 光纤拉丝炉
CN111929764A (zh) * 2020-08-18 2020-11-13 中天科技光纤有限公司 光纤及光纤制备方法
CN112499961A (zh) * 2020-12-07 2021-03-16 中天科技光纤有限公司 光纤及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Optical Fiber Cables Preparation, 1st Edition", 31 August 2011, XIDIAN UNIVERSITY PRESS, CN, ISBN: 978-7-5606-2601-7, article ZHANG, SEN: "Influence and Control of Optical Fiber Tension over Optical Fiber Performance", pages: 46 - 49, XP009538169 *
See also references of EP4091995A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116282890A (zh) * 2022-11-22 2023-06-23 北京斐博光电科技有限公司 一种光纤拉丝塔光纤拉锥方法

Also Published As

Publication number Publication date
CN112499961A (zh) 2021-03-16
EP4091995A4 (en) 2024-02-21
EP4091995A1 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2022121259A1 (zh) 光纤及其制备方法
GB2423517A (en) Apparatus for drawing and annealing an optical fibre
WO2020248553A1 (zh) 用于制造超低衰减光纤的光纤预制棒、方法及光纤
CN109298482A (zh) 一种低衰减和低弯曲损耗的大有效面积单模光纤
US5305414A (en) Low loss glass and optical fibers therefrom
US9533915B2 (en) Method and apparatus for processing optical fiber under microgravity conditions
CN103323908A (zh) 一种单模光纤及其制造方法
WO2000073224A1 (fr) Dispositif de production et procede pour fibre optique
JP2006058494A (ja) 光ファイバ素線及びその製造方法
US6792187B2 (en) Ca-Al-Si oxide glasses and optical components containing the same
JP2003512988A (ja) ナノ結晶ガラスセラミックファイバの製造方法
RU2335465C2 (ru) Способ вытяжки оптического волокна без оболочки, способ изготовления оптического волокна и оптическое волокно
CN209514124U (zh) 光纤
KR20000051960A (ko) 오.에이치.차단층을 구비한 광섬유 모재 및 그 제조방법
CN104854047A (zh) 光纤制造方法和光纤
US20170203996A1 (en) Manufacturing method for optical fiber
CN113582534A (zh) 光纤的制备方法及其装置
CN112441737B (zh) 光纤的制备方法、粉末棒烧结设备
WO2020119244A1 (zh) 光纤及其制备方法
CN113716862B (zh) 光纤的制备方法及其装置
US20020194881A1 (en) Method of manufacturing optical fiber
JP2021500292A (ja) ハロゲンをドープしたシリカの製造方法
CN110922048B (zh) 一种全固态锗酸盐玻璃复合光子晶体光纤及其制备方法
CN113461322A (zh) 光纤及光纤预制棒的制造方法
JPH0281004A (ja) 光ファイバおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21901972

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021901972

Country of ref document: EP

Effective date: 20220817

NENP Non-entry into the national phase

Ref country code: DE