WO2022121042A1 - 一种复合型乳液及其制备方法与应用 - Google Patents

一种复合型乳液及其制备方法与应用 Download PDF

Info

Publication number
WO2022121042A1
WO2022121042A1 PCT/CN2020/141677 CN2020141677W WO2022121042A1 WO 2022121042 A1 WO2022121042 A1 WO 2022121042A1 CN 2020141677 W CN2020141677 W CN 2020141677W WO 2022121042 A1 WO2022121042 A1 WO 2022121042A1
Authority
WO
WIPO (PCT)
Prior art keywords
surfactant
emulsion
composite emulsion
preparation
present
Prior art date
Application number
PCT/CN2020/141677
Other languages
English (en)
French (fr)
Inventor
贾康乐
郭永顺
麦裕良
庞浩
余龙飞
张磊
郑小珊
廖兵
Original Assignee
广东省科学院化工研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省科学院化工研究所 filed Critical 广东省科学院化工研究所
Publication of WO2022121042A1 publication Critical patent/WO2022121042A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/007Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents

Definitions

  • Composite emulsion is a kind of coarse dispersion system composed of a variety of immiscible internal phases, mainly including multi-layer emulsion, Janus emulsion and multiple emulsion.
  • the fields of transmission, optical lens and biological analysis have shown good application prospects, and have been paid more and more attention by researchers. It is one of the main research directions in the current emulsion field.
  • the preparation and structure control of the composite emulsion requires sophisticated equipment or changes in the content of each component in the system, which has problems such as cumbersome process, troublesome operation, and inability to prepare in large quantities, which will further affect the practical application, especially the composite emulsion.
  • Applications in the preparation of asymmetric materials are examples of asymmetric materials.
  • Microfluidics is a classic method to control the topology of composite emulsions, and it is also a relatively mature method for constructing composite emulsions. This technology can finely control the droplet size distribution, topology and composition of composite emulsions.
  • microfluidic technology has problems such as complex device, low preparation efficiency, and difficulty in large-scale preparation of composite emulsions, which limit its application in real life. Phase separation is also a common method of regulation.
  • the first technical problem to be solved by the present invention is: a composite emulsion, which has electrical responsiveness.
  • the second technical problem to be solved by the present invention is: the preparation method of the above-mentioned composite emulsion, which can realize the fine control and mass preparation of the emulsion.
  • the technical solution provided by the present invention is: a composite emulsion, comprising the following components: an electro-responsive surfactant, a fluorocarbon surfactant, an oil phase and water; wherein, the The electro-responsive surfactant, fluorocarbon surfactant, oil phase and water together form a stable emulsion.
  • the mass fraction of the fluorocarbon surfactant in the composite emulsion is 0.5-1%.
  • the mass fraction ratio of the electro-responsive surfactant, the fluorocarbon surfactant and the oil phase is about 1:1:50.
  • the electro-responsive surfactant is a ferrocene-based surfactant; preferably, the ferrocene-based surfactant is undecylferrocenyltrimethyl bromide ammonium chloride.
  • the structural formula of the undecylferrocenyltrimethylammonium bromide is as follows:
  • Ferrocene is hydrophobic in the reduced state, and hydrophilic when it is oxidized to an oxidized state.
  • the degree of oxidation of ferrocene varies with the time of action. This further leads to the change of the hydrophilicity and hydrophobicity of the surfactant, from hydrophobic to hydrophilic gradually, and the interfacial tension increases, which leads to the breaking of the balance of the interfacial tension between the two phases.
  • the morphology of the emulsion will change accordingly. .
  • the fluorocarbon surfactant is an aqueous ethoxylated nonionic fluorocarbon surfactant, a fluoropolyoxyethylene ether nonionic surfactant and a perfluoropolyether surfactant at least one of the agents.
  • the water-based ethoxylated non-ionic fluorocarbon surfactant is Zonyl FS-300.
  • the fluorine-containing polyoxyethylene ether nonionic surfactant is Capstone FS-30.
  • the perfluoropolyether surfactant is Krytox 157FSL.
  • the two oil phases in the system of the composite emulsion of the present invention are perfluoroalkanes and alkanes that are immiscible at room temperature, respectively, so the emulsifier needs to have fluorocarbon surfactants and hydrocarbon surfactants.
  • fluorocarbon surfactants help stabilize the oil phase of perfluoroalkanes
  • hydrocarbon surfactants help stabilize the oil phase of alkanes. If there is only one of these types, the interfacial tension cannot be changed by external stimuli. The balance between them realizes the regulation of the morphology of the composite emulsion.
  • the oil phase includes at least two of alkanes, perfluoroalkanes, silicone oils, perfluoropolyethers, vegetable oils and fats, functional monomers, and ionic liquids.
  • the oil phase may further include liquid paraffin.
  • the alkane includes at least one of n-hexane, n-heptane and n-octane.
  • the perfluoroalkane includes at least one of perfluoro-n-hexane, perfluoro-n-heptane, perfluoro-n-octane, methoxy-nonafluorobutane, and FC770.
  • the functional monomer includes at least one of an acrylate and a polymerizable silicon-containing monomer.
  • the molecular weight of the functional monomer is 100-20,000.
  • the fluoroacrylate comprises hexadecyl hexafluorodecyl-1,10-diacrylate.
  • the composite emulsion according to the embodiment of the present invention has at least the following beneficial effects: a stable composite emulsion is formed between two immiscible oil phases by using an electro-responsive surfactant and a fluorocarbon surfactant; The action time realizes the reversible control of the emulsion morphology without changing the composition of the emulsion; it has the advantages of convenience, simplicity, fine control and large-scale preparation, which provides a new method for the preparation of new asymmetric materials and the fine control of surface structure. a new method.
  • the technical scheme provided by the present invention is: a preparation method of the above-mentioned composite emulsion, comprising the following steps:
  • Precursor preparation mixing the electro-responsive surfactant aqueous solution with the fluorocarbon surfactant to obtain a precursor;
  • the above-mentioned preparation method further includes a preparation process of the electro-responsive surfactant, including the following steps:
  • the acylating agent is at least one of thionyl chloride, oxalyl chloride and phosphorus trichloride.
  • the reaction temperature in the acylation step is 40-70°C.
  • the reaction time in the acylation step is 3-8 h.
  • the Lewis acid is at least one of aluminum trichloride, ferric chloride and boron trifluoride.
  • the reaction temperature in the Friedel-Crafts acylation step is -10-10°C.
  • the reaction time in the Friedel-Crafts acylation step is 8-12 h.
  • the reduction system is at least one of zinc amalgam (Zn-Hg) and AlCl 3 /NaBH 4 .
  • the tool used for the emulsification is one of a high-speed shearing machine and a vortex meter.
  • the rotational speed of the high-speed shearing machine is 10,000-15,000 rpm, and the high-speed shearing time is 2-4 minutes.
  • the rotational speed of the vortex meter is 4000-10000 rpm, and the oscillation time is 3-5 min.
  • the standing time is 10-30 min.
  • a working electrode, a reference electrode and an auxiliary electrode need to be selected for the electrical response process.
  • the working electrode is a platinum electrode or a glassy carbon electrode.
  • the reference electrode is one of a calomel electrode, a silver-silver chloride and a mercury-mercury oxide electrode.
  • the auxiliary electrode is a platinum electrode or a glassy carbon electrode.
  • the voltage is 0 ⁇ 1.2V.
  • the voltage acting time is 1-30 h.
  • the technical solution provided by the present invention is: an application of the above-mentioned composite emulsion in the asymmetric preparation process.
  • the application of the composite emulsion according to the embodiment of the present invention has at least the following beneficial effects: the present invention realizes the reversible regulation of the emulsion morphology by controlling the electric action time without changing the composition of the emulsion; it has the advantages of convenience, simplicity, fine regulation and large scale. The advantages of batch preparation, etc., realize the preparation of new asymmetric materials and the fine control of surface structure.
  • Fig. 2 is the change diagram of FTMA molecular structure under the action of electricity in Example 2;
  • Fig. 3 is the ultraviolet spectrogram before and after FTMA oxidation in embodiment two;
  • Fig. 4 is the surface tension before and after FTMA oxidation in embodiment two;
  • Figure 5 is the CV diagram of 1mM FTMA in 0.2M Li 2 SO 4 aqueous solution at room temperature in Example 2;
  • Fig. 6 is the ultraviolet spectrum of mixed surfactant under different redox time in embodiment three;
  • Fig. 7 is mixed surfactant color change under different redox time in embodiment three;
  • Example 8 is a schematic diagram of an electrochemical response device in Example 4.
  • Fig. 9 is the variation process of the morphology of the composite emulsion with electro-oxidation time in Example 4.
  • Fig. 10 is the change process of the morphology of the composite emulsion with electroreduction time in Example 4.
  • Figure 11 is a topography diagram of Comparative Example 1;
  • FIG. 12 is a topography diagram of Comparative Example 2.
  • test methods used in the examples are conventional methods unless otherwise specified; the materials, reagents, etc. used, unless otherwise specified, can be obtained from commercial sources.
  • Embodiment one of the present invention is: the synthesis of undecylferrocenyl trimethylammonium bromide (FTMA):
  • Embodiment 2 Determination of basic properties of undecylferrocenyl trimethyl ammonium bromide:
  • UV-Vis Spectrum The UV-Vis absorption spectra of undecylferrocenyltrimethylammonium bromide before and after chemical oxidation were measured using a UV-2450 UV/Vis spectrophotometer from Pgeneral. The test results are shown in Figure 3.
  • the oxidation peak potential is 0.429V
  • the reduction potential is 0.360V
  • the ratio of peak voltage is 1.19
  • the peak potential difference is 69mV, which is also the amount of electron transfer in the electrooxidation-reduction reaction; indicating the electrooxidation of FTMA Reduction is a reversible process with good electrochemical reversible transformation performance.
  • FTMA Due to the ferrocene group contained in FTMA, it has a behavior that can respond to electro-redox.
  • the electro-oxidation reaction can transform FTMA from a surface-active state to a state with weak or no surface activity, while the electro-reduction reaction can To achieve a reversible transition of this state, redox transitions can be observed using cyclic voltammetry.
  • the UV spectra of the mixed surfactants under different oxidation times (0h, 1h, 3h, 6h, 10h, 15h, 18h and 21h) and reduction times (1h, 3h, 6h, 10h, 11h, 16h and 18h) are shown in Figure 6.
  • the colors of the mixed surfactants under different oxidation times (0h, 1h, 3h, 6h, 10h, 15h, 18h and 21h) and reduction times (1h, 3h, 6h, 10h, 11h, 16h and 18h) are shown in Figure 7 shown.
  • the ferrocene group in the divalent state before being oxidized has a characteristic absorption peak at 440nm.
  • the absorption peak gradually weakens to disappear, and at the same time, an absorption peak occurs at 626nm and gradually increases to remain unchanged. After electroreduction, the absorption peak at 626 nm will gradually weaken to disappear, and the characteristic absorption peak will reappear at 440 nm. This also indicates that the mixed surfactant composed of FTMA has redox reversible properties.
  • n-hexane and perfluoro-n-hexane as two immiscible oil phases, put 0.5mL of n-hexane and 0.5mL of perfluoro-n-hexane in a vial, heat them to mix them into one phase, and then add 0.5 wt.
  • the surfactant aqueous solution of %FTMA and 0.5wt% Zonyl FS-300 was sheared and emulsified by a vortex mixer at 4000 rpm for 3 min, and allowed to stand for 30 min.
  • FIG 8 The schematic diagram of the chemical response device is shown in Figure 8, and the morphology of the emulsion under different oxidation times (0h, 1h, 3h, 6h, 10h, 15h, 18h and 21h) is shown in Figure 9; Figure 10 shows the morphologies of the emulsions at different reduction times (1h, 3h, 6h, 10h, 11h, 16h and 18h).
  • Comparative Example 1 An emulsion: put 0.5 mL of n-hexane and 0.5 mL of perfluoro-n-hexane in a vial, heat to mix them into one phase, then add 0.5 wt% FTMA surfactant aqueous solution, and use a vortex mixer. Shear and emulsify at 4000 rpm for 3 min, and let stand for 30 min to form an emulsion. The morphology is shown in Figure 11.
  • Comparative example 2 an emulsion: put 0.5 mL of n-hexane and 0.5 mL of perfluoro-n-hexane in a vial, heat them to mix them into one phase, and then add 0.5 wt% Zonyl FS-300 surfactant aqueous solution, Using a vortex mixer, shear and emulsify at 4000 rpm for 3 min, and let it stand for 30 min to form an emulsion. The morphology is shown in Figure 12.
  • the composite emulsion provided by the present invention forms a stable composite emulsion from two immiscible oil phases through the electro-responsive surfactant and the fluorocarbon surfactant;
  • the reversible control of the emulsion morphology does not require changing the composition of the emulsion, and has the advantages of convenience, simplicity, fine control, and large-scale preparation. This provides a new method for the preparation of new asymmetric materials and the fine control of surface structure. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Colloid Chemistry (AREA)

Abstract

本发明公开了一种复合型乳液及其制备方法与应用,该乳液包括以下组分:电响应性表面活性剂、氟碳型表面活性剂、油相和水;其通过电响应性表面活性剂与氟碳型表面活性剂使两种不相溶的油相形成了稳定的复合型乳液;通过控制电作用时间实现了乳液形貌可逆调控,不需要改变乳液成份比,具有方便、简单、可精细调控和大批量制备等优点。

Description

一种复合型乳液及其制备方法与应用 技术领域
本发明属于乳液制备技术领域,具体涉及一种复合型乳液及其制备方法与应用。
背景技术
复合型乳液是一类由多种不相混溶的内相所构成的粗分散体系,主要包含多层乳液、Janus乳液和多重乳液,因其独特的结构特征,在材料、食品、化妆品、药物传递、光学透镜及生物分析等领域展现出良好的应用前景,并越来越受到研究者的重视,是当前乳液领域主要研究的方向之一。相关技术中,复合型乳液的制备及结构调控需通过精细的设备或改变体系内各成分含量,存在过程繁琐、操作麻烦且不能大批量制备等问题,进一步会影响实际的应用,尤其影响复合乳液在不对称材料制备方面的应用。
微流体法是调控复合型乳液拓扑结构的经典方法,也是目前构建复合型乳液较为成熟的方法,该技术能够对复合型乳液的液滴尺寸分布、拓扑结构以及组成成分进行精细调控。但微流体技术存在装置复杂、制备效率低、难以大规模制备复合乳液等问题,这些弊端限制了其在实际生活中的应用。相分离法也是调控的常用方法。其主要是通过刺激诱导相分离和质量转移诱导相分离使含有多个成分的均相液滴发生相分离形成微分散相小液滴,这些小液滴发生聚集最终将初始的普通乳液重塑成形貌更复杂的复合型乳液,该方法需要体系具有特定的分子结构,所以该方法需要在特定的条件下才可实现。一步高速剪切法凭借其操作简便且能大规模制备复合型乳液的优点而备受关注,但该方法的调节过程仍不便捷,需要改变体系的成分含量才能实现。
因此,需要开发一种复合型乳液及其制备方法,该方法可实现乳液的精细调控及大批量制备。
发明内容
本发明要解决的第一个技术问题是:一种复合型乳液,该乳液具有电响应性。
本发明要解决的第二个技术问题是:上述复合型乳液的制备方法,该方法能实现对乳液的精细调控及大批量制备。
本发明要解决的第三个技术问题是:上述复合型乳液的应用。
为解决上述第一个技术问题,本发明提供的技术方案为:一种复合型乳液,包括以下组分:电响应性表面活性剂、氟碳型表面活性剂、油相和水;其中,所述电响应性表面活性剂、氟碳型表面活性剂、油相和水一起形成稳定的乳液。
根据本发明的一些实施方式,所述电响应性表面活性剂在所述复合型乳液中的质量分数为0.01~0.6%。
根据本发明的一些实施方式,所述氟碳型表面活性剂在所述复合型乳液中的质量分数为0.5~1%。
根据本发明的一些实施方式,所述油相在所述复合型乳液中的质量分数为10~70%。
根据本发明的一些实施方式,所述电响应性表面活性剂、氟碳型表面活性剂和油相的质量分数之比约为1:1:50。
根据本发明的一些实施方式,所述电响应性表面活性剂为二茂铁基表面活性剂;优选地,所述二茂铁基表面活性剂为十一烷基二茂铁基三甲基溴化铵。
根据本发明的一些实施方式,所述十一烷基二茂铁基三甲基溴化铵的结构式如下:
Figure PCTCN2020141677-appb-000001
二茂铁在还原态时为疏水,当氧化变为氧化态时为亲水,当电作用于含二茂铁表面活性剂水溶液中时,随着作用时间不同,二茂铁的氧化程度不同,进一步导致该表面活性剂的亲疏水性发生改变,由疏水逐步变为亲水,界面张力增大,从而导致两相界面张力平衡打破,为形成稳定的平衡状态,乳液的形貌会随之发生变化。
根据本发明的一些实施方式,所述氟碳型表面活性剂为水性乙氧基类非离子型氟碳表面活性剂、含氟聚氧乙烯醚类非离子表面活性剂和全氟聚醚表面活性剂中的至少一种。
根据本发明的一些实施方式,所述水性乙氧基类非离子型氟碳表面活性剂为Zonyl FS-300。
根据本发明的一些实施方式,所述含氟聚氧乙烯醚类非离子表面活性剂为Capstone FS-30。
根据本发明的一些实施方式,所述全氟聚醚表面活性剂为Krytox 157FSL。
本发明复合型乳液的体系中的两种油相分别为室温下不相溶的全氟烷烃和烷烃,所以乳 化剂需要有氟碳型表面活性剂和碳氢型表面活性剂,根据相似相溶原理,氟碳型表面活性剂有助于稳定全氟烷烃油相,而碳氢型表面活性剂有助于稳定烷烃类油相,若只有其中一种类型的,就无法通过外界刺激改变界面张力之间的平衡实现复合型乳液形貌的调控。
根据本发明的一些实施方式,所述油相包括烷烃、全氟烷烃、硅油、全氟聚醚、植物油脂、功能性单体和离子液体中的至少两种。
根据本发明的一些实施方式,所述油相还可以包括液体石蜡。
根据本发明的一些实施方式,所述烷烃包括正己烷、正庚烷和正辛烷中的至少一种。
根据本发明的一些实施方式,所述全氟烷烃包括全氟正己烷、全氟正庚烷、全氟正辛烷、甲氧基-九氟代丁烷、FC770中的至少一种。
根据本发明的一些实施方式,所述功能性单体包括丙烯酸酯和可聚合的含硅单体中的至少一种。
根据本发明的一些实施方式,所述功能性单体的分子量为100~20000。
根据本发明的一些实施方式,所述丙烯酸酯为乙氧基化三羟甲基丙烷三丙烯酸酯(ETPTA)、1,6-己二醇二丙烯酸酯和氟代丙烯酸酯中的至少一种。
根据本发明的一些实施方式,所述氟代丙烯酸酯包括十六氟代癸基-1,10-二丙烯酸酯。
根据本发明实施方式的复合型乳液,至少具备如下有益效果:通过电响应性表面活性剂与氟碳型表面活性剂使两种不相溶的油相形成了稳定的复合型乳液;通过控制电作用时间实现了乳液形貌可逆调控,不需要通过改变乳液成份;具有方便、简单、可精细调控和大批量制备等优点,这为新型的不对称材料的制备及表面结构的精细化调控提供一种新的方法。
为解决上述第二个技术问题,本发明提供的技术方案为:一种上述复合型乳液的制备方法,包括以下步骤:
S1、前驱体制备:将所述电响应性表面活性剂水溶液与所述氟碳型表面活性剂混合,得前驱体;
S2、乳液制备:将所述油相添加至所述前驱体中,乳化后静置,即得所述复合型乳液;
S3、电响应:在电压作用下,调控复合型乳液的形貌。
根据本发明的一些实施方法,上述制备方法还包括所述电响应性表面活性剂的制备过程,包括如下步骤:
Figure PCTCN2020141677-appb-000002
(1)酰化:将11-溴十一烷酸与酰化剂反应,得化合物Ⅰ;
(2)付克酰基化:将化合物Ⅰ添加至二茂铁和路易斯酸中,反应得化合物Ⅱ;
(3)羰基还原:将还原体系添加至化合物Ⅱ中,反应得化合物Ⅲ;
(4)铵化:将化合物Ⅲ添加至三甲胺水溶液中,得FTMA。
根据本发明的一些实施方式,所述酰化剂为二氯亚砜、草酰氯和三氯化磷中的至少一种。
根据本发明的一些实施方式,所述11-溴十一烷酸与所述酰化剂的摩尔比为1:2~10。
根据本发明的一些实施方式,所述酰化步骤中反应温度为40~70℃。
根据本发明的一些实施方式,所述酰化步骤中反应时间为3~8h。
根据本发明的一些实施方式,所述的路易斯酸为三氯化铝、三氯化铁和三氟化硼中的至少一种。
根据本发明的一些实施方式,所述付克酰基化步骤中反应温度为-10~10℃。
根据本发明的一些实施方式,所述付克酰基化步骤中反应时间为8~12h。
根据本发明的一些实施方式,所述的还原体系为锌汞齐(Zn-Hg)和AlCl 3/NaBH 4中的至少一种。
根据本发明的一些实施方式,所述的羰基还原步骤中反应温度为70~90℃。
根据本发明的一些实施方式,所述的乳化所用的工具为高速剪切机和漩涡仪中的一种。
根据本发明的一些实施方式,所述高速剪切机的转速为10000~15000rpm,高速剪切时间为2~4min。
根据本发明的一些实施方式,所述漩涡仪的转速4000~10000rpm,振荡时间为3~5min。
根据本发明的一些实施方式,所述静置的时间为10~30min。
根据本发明的一些实施方式,所述的电响应过程需选用工作电极、参比电极和辅助电极。
根据本发明的一些实施方式,所述工作电极为铂电极或玻碳电极。
根据本发明的一些实施方式,所述参比电极为甘汞电极、银-氯化银和汞-氧化汞电极中的一种。
根据本发明的一些实施方式,所述辅助电极为铂电极或玻碳电极。
根据本发明的一些实施方式,所述电压为0~1.2V。
根据本发明的一些实施方式,所述电压作用的时间为1~30h。
根据本发明实施方式的复合型乳液制备方法,至少具备如下有益效果:该方法装置简单、制备步骤少和实现了大批量制备复合型乳液,是可以放大的工艺,适用于大规模生产。
为解决上述第三个技术问题,本发明提供的技术方案为:一种上述复合型乳液的在不对称制备过程中的应用。
根据本发明实施方式的复合型乳液的应用,至少具备如下有益效果:本发明通过控制电作用时间实现了乳液形貌可逆调控,不需要通过改变乳液成份;具有方便、简单、可精细调控和大批量制备等优点,实现了新型的不对称材料的制备及表面结构的精细化调控。
附图说明
图1为实施例一制得FTMA的氢核磁共振氢谱图;
图2为实施例二中电作用下FTMA分子结构变化图;
图3为实施例二中FTMA氧化前后的紫外光谱图;
图4为实施例二中FTMA氧化前后的表面张力;
图5为实施例二中室温下1mM FTMA在0.2M Li 2SO 4水溶液的CV图;
图6为实施例三中不同氧化还原时间下混合表面活性剂的紫外光谱;
图7为实施例三中不同氧化还原时间下混合表面活性剂颜色变化;
图8为实施例四中电化学响应装置示意图;
图9为实施例四中复合型乳液的形貌随电氧化时间变化过程;
图10为实施例四中复合型乳液的形貌随电还原时间变化过程;
图11为对比例一的形貌图;
图12为对比例二的形貌图。
具体实施方式
为详细说明本发明的技术内容、所实现目的及效果,以下结合实施方式并配合附图予以说明。实施例中所使用的试验方法如无特殊说明,均为常规方法;所使用的材料、试剂等,如无特殊说明,均可从商业途径得到的试剂和材料。
本发明的实施例一为:十一烷基二茂铁基三甲基溴化铵(FTMA)的合成:
S1、称取(6g,22.8mM)11-溴十一酸于100ml的圆底烧瓶中,慢慢倒入约30mL的SOCl 2,先在磁力搅拌器上搅拌溶解,然后将圆底烧瓶放入温度为60℃的油浴锅中,搅拌反应3h后,将反应所得的粗产品旋干,接着将其用真空泵抽吸约0.5h,最终可得到化合物Ⅰ。
S2、称取(8g,42.8mM)的二茂铁、(5.5g,41.8mM)的无水AlCl 3于三口圆底烧瓶中,将三口烧瓶先密封好架在磁力搅拌器上的NaCl冰水浴中,在通N 2的情况下,慢慢滴入无水DCM(二氯甲烷)约50mL。持续通N 2,然后将化合物Ⅰ溶解在无水DCM中,用滴液漏斗以每秒1滴的速度缓慢滴入,约0.5h滴完,在冰水浴中搅拌0.5h;接着将三口圆底烧瓶转移到35℃的油浴锅中,连接好回流冷凝管,在N 2保护下搅拌反应14h。取反应液点小板确认反应进行程度,确认反应完成后;将三口圆底烧瓶中混合物倒入200mL的冰水锥形瓶中,用二氯甲烷萃取,有机层用水洗3-4次。将有机层旋干,用硅胶进行旋样,用硅胶柱层析纯化产物(洗脱剂为石油醚与乙酸乙酯混合洗脱剂,石油醚与乙酸乙酯的体积比为9:1),最后得化合物Ⅱ。
S3、将(4g,9.22mM)的化合物Ⅱ添加至(50cm 3)乙醇/(40cm 3)HCl溶液中,接着在混合溶液中加入锌汞齐。在通N 2的情况下,在80℃下搅拌反应4h,取反应液点小板确认反应进行程度,确认反应完成后,用抽滤漏斗分离锌汞齐和溶液,并用二氯甲烷清洗掉附着在锌汞齐上的粗产品,将有机相旋干,洗脱纯化,最后得到化合物Ⅲ。
S4、在通N 2的情况下,在混有50cm 3三甲胺水溶液的20ml乙醇溶液中加入(3g,12.3mM)化合物Ⅲ,将混合物在50℃下搅拌24h,旋干,用硅胶进行旋样,用硅胶柱层析纯化产物(洗脱剂为乙酸乙酯与甲醇混合溶液,乙酸乙酯与甲醇的体积比为1:10),得到化合物十一烷基二茂铁基三甲基溴化铵(FTMA),经真空干燥后为黄色固体状。
对十一烷基二茂铁基三甲基溴化铵的结构和纯度进行测定。称取十一烷基二茂铁基三甲 基溴化铵(FTMA)放置在核磁管中,用氘代试剂CDCl 3溶解;用Bruker Avance 400核磁共振仪在25℃下进行1H NMR测试(400MHz);测试结果如图1所示。
从图1中十一烷基二茂铁基三甲基溴化铵(FTMA)的氢核磁共振谱图可以看出,各氢的化学位移与目标产物相符,说明获得了最终产品且产品达到很高的纯度。
1H NMR(400MHz,CDCl 3)δ4.10-4.00(m,9H),3.54-3.49(m,0H),3.41(s,1H),2.32-2.26(m,0H),1.72(s,0H),1.39-1.17(m,2H)。
实施例二:十一烷基二茂铁基三甲基溴化铵基本性能测定:
表面活性剂FTMA氧化还原前后分子结构变化如图2所示。
紫外-可见光谱采用Pgeneral公司UV-2450型紫外/可见光分光光度计测量十一烷基二茂铁基三甲基溴化铵化学氧化前后的紫外吸收光谱,测试结果如图3所示。
从图3得知,氧化前二茂铁基表面活性剂水溶液在还原态时二茂铁的吸收峰位移在440nm处有明显的特征峰,氧化后还原态二茂铁特征峰消失,氧化态二茂铁特征峰在628nm处出现,说明FTMA在电氧化和还原过程中分子结构发生了变化。
表面张力测试采用Krüss型K100表面张力仪,测试温度:25.0℃左右,测试结果取20次的平均值。配制10mmol/L FTMA溶液。然后,稀释为一系列浓度的表面活性剂溶液,在室温条件下用Wilhelmy板法测定其表面张力,将所得的数据绘制成曲线,曲线拐点附近的切线所交的点即为所求的CMC值。同理,可以得到氧化后的FTMA +的表面张力及CMC值。为了避免FTMA被空气所氧化,配置溶液所用的超纯水预先使用高纯N 2通入0.5h,用于充分除氧。通过对FTMA和FTMA +的表面张力随浓度对数的变化曲线测试结果如图4所示。
从图4中得知:FTMA溶液的表面张力随着浓度的增加而降低,达到一定值后会趋于平缓,在曲线的拐点附近切线交点处为临界胶束浓度(CMC)值,可得到还原态的FTMA的临界胶束浓度为0.1mmol/L,与之对应的表面张力为47.4mN/m。在电化学氧化之后,二茂铁基团内的Fe 2+会被氧化成Fe 3+,CMC变为2mmol/L,表面张力略有上升,这是因为氧化后原来疏水的二茂铁变为亲水,从而导致CMC及对应的表面张力都增加。
利用电化学工作站(ZENNIUM PRO)来测量FTMA溶液的循环伏安曲线图,电化学工作站为三电极体系:1.5cm 2的铂片电极作为工作电极,0.25cm 2的铂片电极作为对电极,饱和甘汞电极作为参比电极,加入pH=2,0.2M Li 2SO 4水溶液作为电解质。测试前,通高纯氮 除氧30分钟,扫描范围:0~+0.8V,扫描速度10mV/s。1mM FTMA在0.2M Li 2SO 4水溶液的CV图(扫描速率为10mV/s)测试结果如图5所示。
从图5中得知:氧化峰电位为0.429V,还原电位为0.360V,峰电压之比为1.19,峰电位差为69mV,这也是电氧化还原反应中电子转移的量;说明FTMA的电氧化还原是一个可逆过程且具有良好的电化学可逆变换性能。
由于FTMA内含有二茂铁基团,它具有能够响应电氧化还原的行为,电氧化反应可以将FTMA从具有表面活性的状态转变成表面活性较弱或无表面活性的状态,而电还原反应能实现这种状态的可逆转变,利用循环伏安曲线可以对氧化还原转变进行观察。
实施例三:混合表面活性剂在不同氧化还原时间下的宏观现象变化及分子结构变化:
混合表面活性剂在通氮气30分钟后置于放有工作电极的玻璃池中。用恒电势法在+0.6V(vs SCE)反应21h,FTMA会被氧化成FTMA +,反应过程中,电解池需要不断的通入N 2并搅拌以混合均匀。同样的在+0.0V(vs SCE)反应15h,FTMA +会重新还原成FTMA。选用0.5wt%FTMA和0.5wt%Zonyl FS-300为混合表面活性剂,利用恒电势法对其进行电氧化还原。不同氧化时间(0h、1h、3h、6h、10h、15h、18h和21h)和还原时间(1h、3h、6h、10h、11h、16h和18h)下混合表面活性剂的紫外光谱如图6所示;不同氧化时间(0h、1h、3h、6h、10h、15h、18h和21h)和还原时间(1h、3h、6h、10h、11h、16h和18h)下混合表面活性剂的颜色如图7所示。
从图7中得知未氧化前处于二价态的二茂铁基团在440nm处具有特征吸收峰,随着电氧化的进行,二茂铁基团会转变成三价态,在440nm处的吸收峰会逐渐减弱至消失,同时,在626nm处会产生吸收峰并逐渐增大至不变。在电还原之后,在626nm处的吸收峰则会逐渐减弱至消失,而440nm会重新出现特征吸收峰。这也表明,由FTMA组成的混合表面活性剂是具有氧化还原的可逆性能。
从图8中得知在氧化及还原的过程中,混合表面活性剂溶液的颜色也逐渐发生变化,在氧化过程中,溶液由刚开始的黄色慢慢转变为深蓝色,当还原时,深蓝色又可以恢复为初始的黄色。
实施例四:电响应性复合型乳液的制备:
挑选正己烷和全氟正己烷为两种不相溶的油相,将0.5mL正己烷和0.5mL全氟正己烷 置于小瓶内,加热使其两者混为一相,然后加入含有0.5wt%FTMA和0.5wt%Zonyl FS-300的表面活性剂水溶液,利用旋涡混合仪在4000rpm下剪切乳化3min,静置30min,待乳化层形成后,利用电化学工作站在0.6V下进行氧化,电化学响应装置示意图如图8所示,不同氧化时间(0h、1h、3h、6h、10h、15h、18h和21h)下乳液的形貌如图9所示;然后在+0.0V下进行还原,不同还原时间(1h、3h、6h、10h、11h、16h和18h)下乳液的形貌如图10所示。
从图9中得知,随着氧化时间的不断增加,乳液的形貌由原先的F/H/W型,逐渐变为形态各异的Janus乳液。
从图10中得知后,氧化后乳液的结构通过电还原恢复,说明乳液的形貌具有电响应性且具有可逆性。
对比例一:一种乳液:将0.5mL正己烷和0.5mL全氟正己烷置于小瓶内,加热使其两者混为一相,然后加入0.5wt%FTMA表面活性剂水溶液,利用旋涡混合仪在4000rpm下剪切乳化3min,静置30min,形成乳液,形貌如图11所示。
对比例二:一种乳液:将0.5mL正己烷和0.5mL全氟正己烷置于小瓶内,加热使其两者混为一相,然后加入0.5wt%Zonyl FS-300的表面活性剂水溶液,利用旋涡混合仪在4000rpm下剪切乳化3min,静置30min,形成乳液,形貌如图12所示。
从图11和图12中得知,单一的两种表面活性剂都能形成不同结构特征的乳液,但并不能实现通过电来调控复合型乳液的形貌,需要两者结合才能实现。
综上所述,本发明提供的复合型乳液通过电响应性表面活性剂与氟碳型表面活性剂使两种不相溶的油相形成了稳定的复合型乳液;通过控制电作用时间实现了乳液形貌可逆调控,不需要通过改变乳液成份,具有方便、简单、可精细调控和大批量制备等优点,这为新型的不对称材料的制备及表面结构的精细化调控提供一种新的方法。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种复合型乳液,其特征在于:包括以下组分:电响应性表面活性剂、氟碳型表面活性剂、油相和水;其中,所述电响应性表面活性剂、氟碳型表面活性剂、油相和水一起形成稳定的乳液。
  2. 根据权利要求1所述的一种复合型乳液,其特征在于:所述电响应性表面活性剂为二茂铁基表面活性剂;优选地,所述二茂铁基表面活性剂为十一烷基二茂铁基三甲基溴化铵。
  3. 根据权利要求1所述的一种复合型乳液,其特征在于:所述氟碳型表面活性剂为水性乙氧基类非离子型氟碳表面活性剂、含氟聚氧乙烯醚类非离子表面活性剂和全氟聚醚表面活性剂中的至少一种。
  4. 根据权利要求1所述的一种复合型乳液,其特征在于:所述油相为烷烃、全氟烷烃、硅油、全氟聚醚、植物油脂、功能性单体和离子液体中的至少两种。
  5. 一种制备如权利要求1至4所述的复合型乳液的方法,其特征在于:包括以下步骤:
    S1、前驱体制备:将所述电响应性表面活性剂水溶液与所述氟碳型表面活性剂混合,得前驱体;
    S2、乳液制备:将所述油相添加至所述前驱体中,乳化后静置,即得所述复合型乳液;
    S3、电响应:在电压作用下,调控复合型乳液的形貌。
  6. 根据权利要求5所述的方法,其特征在于:所述乳化过程中转速为4000~15000rpm,乳化时间2~5min。
  7. 根据权利要求5所述的方法,其特征在于:所述静置的时间为10~30min。
  8. 根据权利要求5所述的方法,其特征在于:所述电压为0~1.2V。
  9. 根据权利要求5所述的方法,其特征在于:所述电压作用的时间为1~30h。
  10. 一种如权利要求1至4任一项所述的复合型乳液在不对称材料制备过程中的应用。
PCT/CN2020/141677 2020-12-10 2020-12-30 一种复合型乳液及其制备方法与应用 WO2022121042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011435686.9A CN112755911B (zh) 2020-12-10 2020-12-10 一种复合型乳液及其制备方法与应用
CN202011435686.9 2020-12-10

Publications (1)

Publication Number Publication Date
WO2022121042A1 true WO2022121042A1 (zh) 2022-06-16

Family

ID=75693496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141677 WO2022121042A1 (zh) 2020-12-10 2020-12-30 一种复合型乳液及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN112755911B (zh)
WO (1) WO2022121042A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114397229B (zh) * 2021-12-24 2023-12-05 广东省科学院化工研究所 一种重金属响应的复合乳液及其制备方法与应用
CN116410614A (zh) * 2023-03-27 2023-07-11 华中科技大学 一种具有温度响应性的全内反射结构色液滴及其制备与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016070016A1 (en) * 2014-10-31 2016-05-06 Massachusetts Institute Of Technology Compositions and methods for forming emulsions
CN106589001A (zh) * 2016-12-06 2017-04-26 江南大学 一种二茂铁基双重刺激响应型表面活性剂
CN107413279A (zh) * 2017-06-28 2017-12-01 江南大学 一种具有氧化还原刺激响应性能的复合乳化剂
CN107522752A (zh) * 2017-08-31 2017-12-29 扬州大学 一种以二茂铁基类氧化还原可逆的表面活性剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104761686B (zh) * 2015-03-20 2017-06-13 成都理工大学 一种含碳氢和碳氟疏水链的高分子表面活性剂的制备方法
CN107475309B (zh) * 2017-09-22 2020-11-06 江南大学 一种氧化还原刺激响应型Pickering乳状液中酶催化有机化学反应的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016070016A1 (en) * 2014-10-31 2016-05-06 Massachusetts Institute Of Technology Compositions and methods for forming emulsions
CN106589001A (zh) * 2016-12-06 2017-04-26 江南大学 一种二茂铁基双重刺激响应型表面活性剂
CN107413279A (zh) * 2017-06-28 2017-12-01 江南大学 一种具有氧化还原刺激响应性能的复合乳化剂
CN107522752A (zh) * 2017-08-31 2017-12-29 扬州大学 一种以二茂铁基类氧化还原可逆的表面活性剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BO CHUNLING, ET AL.: "Application of ferrocene structure in oxidation-reduction switching surfactants", CHINA CLEANING INDUSTRY, no. 2, 28 February 2019 (2019-02-28), pages 81 - 85, XP055939037, ISSN: 1672-2701, DOI: 10.16054/j.cnki.cci.2019.02.010 *
YONGSHUN GUO, KANGLE JIA, LINJIA HUANG, YULIANG MAI, WU WEN, YANXIONG FANG: "Research progress on the regulation and application of complexemulsion topological structure", FINE CHEMICALS, vol. 37, no. 5, 31 May 2020 (2020-05-31), pages 865 - 875, XP055939023, ISSN: 1003-5214, DOI: 10.13550/j.jxhg.20190818 *

Also Published As

Publication number Publication date
CN112755911B (zh) 2022-03-15
CN112755911A (zh) 2021-05-07

Similar Documents

Publication Publication Date Title
WO2022121042A1 (zh) 一种复合型乳液及其制备方法与应用
Lade et al. On the nanoparticle synthesis in microemulsions: detailed characterization of an applied reaction mixture
CN113881052B (zh) 一种超支化改性纳米材料及其制备方法和在稠油降粘剂中的应用
CN107879348B (zh) 一种单分散二氧化硅纳米球的制备方法
CN109722233A (zh) 核-壳结构的非离子型纳米微乳液体系及其制备与应用
Gong et al. Effects of oxyethylene groups on the adsorption behavior and application performance of long alkyl chain phosphate surfactants
CN110585991B (zh) 一种羧酸盐表面活性剂与纳米颗粒稳定的双相转变乳液
CN101327413B (zh) 含阴、非离子基团的富马酸型可聚合乳化剂及其制备方法
CN113292984B (zh) 具有CO2/双响应型表面活性剂的Pickering乳状液及制备方法
Huang et al. Preparation of stable inverse emulsions of hydroxyethyl methacrylate and their stability evaluation by centrifugal coefficient
CN103450474B (zh) 一种利用微乳液法制备纳米材料的方法
Tai et al. Synthesis and properties of novel alkyl sulfate gemini surfactants
Smith et al. Dispersion of titanium dioxide pigments by alkyl polyglycoside surfactants in aqueous solution
CN100412177C (zh) 一种掺质二氧化钛电流变液及其制备方法
CN109722256A (zh) 一种液晶组合物及其应用
CN103553873B (zh) 一种亚环戊基环己基类化合物及其制备方法和应用
CN103936911B (zh) 哑铃状Janus胶体粒子的制备方法
CN106298271B (zh) 一种纳米二氧化锰-聚吡咯复合电容材料的可控制备方法
CN101851418A (zh) 烷基萘磺酸掺杂聚苯胺的制备方法
Aydogan et al. Interfacial and bulk properties of the new fluorocarbon− hydrocarbon hybrid unsymmetrical bolaform Surfactant
CN109722253A (zh) 一种向列相液晶组合物及其应用
CN1583830A (zh) 一种利用苯胺单体直接制备聚苯胺溶液的方法
CN102633301B (zh) 无机纳米材料、有机纳米材料、杂化纳米材料及其制备方法
Rharbi et al. Characterizing aqueous micellar Triton X-100 solutions of a fluorescent model triglyceride
CN105965032A (zh) 四元离子液体微乳液中电化学制备Ag-Pd纳米合金的方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03.11.2023)