WO2022120660A1 - Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation - Google Patents

Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation Download PDF

Info

Publication number
WO2022120660A1
WO2022120660A1 PCT/CN2020/135019 CN2020135019W WO2022120660A1 WO 2022120660 A1 WO2022120660 A1 WO 2022120660A1 CN 2020135019 W CN2020135019 W CN 2020135019W WO 2022120660 A1 WO2022120660 A1 WO 2022120660A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
lithium
electrolyte
initiator
precursor solution
Prior art date
Application number
PCT/CN2020/135019
Other languages
English (en)
Chinese (zh)
Inventor
唐永炳
刘齐荣
陈琪琪
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2020/135019 priority Critical patent/WO2022120660A1/fr
Publication of WO2022120660A1 publication Critical patent/WO2022120660A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes

Definitions

  • the invention belongs to the technical field of energy storage devices, and in particular relates to an asymmetric solid electrolyte and a preparation method thereof, as well as a solid lithium battery and a preparation method thereof.
  • All-solid-state lithium batteries have the advantages of high safety, high energy density, high power density, and long cycle life, so they have become one of the next-generation energy storage systems with great development prospects.
  • Solid electrolyte is one of the key components that determines the performance of all-solid-state lithium batteries.
  • the solid electrolyte is non-flammable, has high thermal stability, and is non-volatile, bringing high safety. Second, it has good chemical/electrochemical stability. Despite the excellent properties of solid electrolytes, researchers have developed some solid electrolytes with high ionic conductivity above 1 ⁇ 10 -3 S/cm, but interfacial problems have always hindered their large-scale production and application.
  • ceramic electrolytes can suppress lithium dendrites, but the contact with electrodes is poor.
  • Polymer solid electrolytes and gel electrolytes can be in close contact with the positive electrode due to their good flexibility, but it is difficult to suppress lithium dendrites in the negative electrode. It is difficult for both ceramic electrolytes and polymer electrolytes to satisfy both anode and cathode requirements, which greatly limits their selectivity and operability. Given that each solid electrolyte has its own advantages and disadvantages, it is more meaningful to expand the application of solid electrolytes and make good use of each electrolyte to completely change its structure, rather than simple interface modification on the interface between solid electrolyte and electrode. .
  • solid electrolytes such as garnet type, sodium fast ion conductor type, and sulfide type have good ionic conductivity at room temperature and are regarded as one of the most promising solid electrolytes.
  • problems such as poor interfacial contact and/or insufficient interfacial electrochemical compatibility of solid electrolyte with Li anode lead to large interfacial resistance.
  • the electrolytes of existing solid-state lithium batteries usually use a single inorganic ceramic electrolyte, a polymer electrolyte, a gel electrolyte or an inorganic-organic hybrid composite solid-state electrolyte.
  • researchers have also modified the interface between the electrolyte and the electrode through various techniques, which has improved the performance of solid-state lithium batteries to a certain extent.
  • the mechanical stress brought about by the volume change of the positive electrode leads to the failure of the interfacial contact and the comprehensive function of inhibiting the growth of lithium dendrites, resulting in a large interfacial resistance, which makes it difficult to achieve stable long-term cycling, and ultimately leads to battery failure.
  • the purpose of the present invention is to design an asymmetric solid electrolyte for targeted modification of positive and negative electrodes, which is composed of a gel polymer electrolyte, an inorganic solid electrolyte and a polymer electrolyte, and adopts an in-situ polymerization process to in situ inside the battery.
  • Constructing a multi-layer electrolyte layer this targeted design not only inhibits the formation of lithium dendrites during the charging and discharging process of the lithium anode, but also effectively improves the interfacial contact and wettability between the electrolyte and the cathode, and to a certain extent, affects the volume change of the cathode.
  • the mechanical stress acts as a buffer to improve the coulombic efficiency, cycle stability and safety performance of the battery.
  • An asymmetric solid electrolyte including inorganic solid electrolyte, solid polymer electrolyte precursor solution and initiator, gel polymer electrolyte precursor solution and initiator, electrolyte lithium salt, said inorganic solid electrolyte, solid polymer electrolyte precursor
  • the bulk solution, the initiator and the gel polymer electrolyte precursor solution and the initiator form a solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte multilayer structure.
  • garnet type solid electrolytes with high ionic conductivity LLZO, LLZTO, LLZNO
  • sodium superionic conductor type solid electrolytes [Lithium Aluminum Titanium Phosphate (LATP), Lithium Aluminum
  • the solid electrolyte is a garnet type solid electrolyte.
  • the solid polymer precursor solution and the precursor solution in the initiator are selected from methyl methacrylate (MMA), methacrylate (VMA), vinylene carbonate (VC), acrylonitrile ( AN), vinyl acetate (VAC), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), polyoxymethylene (POM), polyvinyl acetate (PVA), polyethylene oxide Amine (PEI), Polyethylene Succinate, Polyoxetane, Poly ⁇ -Propanolide, Polyepichlorohydrin, PolyN-propylaziridine, Polyalkylene Polysulfide, Polyethylene Vinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylate (PEGPEA), poly Ethylene glycol diacrylate (PEGDA), polyethylene glycol digly
  • the solid polymer precursor solution is 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE).
  • DOL 1,3-dioxolane
  • PEGDE polyethylene glycol diglycidyl ether
  • the initiator in the solid polymer precursor solution and the initiator is selected from commonly used free radical initiators, cationic initiators and anionic initiators.
  • Free radical initiators are mainly azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator, etc.), peroxy initiators (dibenzamide peroxide (BPO) etc.) and redox initiators, etc.;
  • the initiators of cationic polymerization mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 ); one or more of the initiators of anionic polymerization (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
  • the solid polymer initiator is a cationic initiator LiPF 6 which can be decomposed to form PF 5 .
  • the gel polymer precursor solution and the initiator are selected from methyl methacrylate (MMA), methacrylate (VMA), vinylene carbonate (VC) ), acrylonitrile (AN), vinyl acetate (VA C ), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), polyoxymethylene (POM), polyvinyl acetate ( PVA), polyethyleneimine (PEI), polyethylene succinate, polyoxetane, poly ⁇ -propanolide, polyepichlorohydrin, polyN-propylaziridine, poly Alkenyl polysulfide, polyvinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylic acid Esters (PEGPEA), Polyethylene Glycol Diacrylate (PEGDA), Polyethylene Glycol Diglycidyl
  • the gel polymer precursor solution is vinylene carbonate (VC).
  • the gel polymer precursor solution and the initiator in the initiator are selected from common free radical initiators, cationic initiators and anionic initiators.
  • Free radical initiators are mainly azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator, etc.), peroxy initiators (dibenzamide peroxide (BPO) etc.) and redox initiators, etc.;
  • the initiators of cationic polymerization mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 , etc.); one or more of the initiators of anionic polymerization (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
  • the gel polymer initiator is BPO.
  • the electrolyte lithium salt is selected from lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(trifluoromethanesulfonic acid)imide [LiN(CF 3 SO 2 ) 2 , LiTFSI] and their Derivatives, Lithium Perfluoroalkyl Phosphate [LiPF 3 (C 2 F 5 ) 3 , LiFAP], Lithium Tetrafluorooxalate Phosphate [LiPF 4 (C 2 O 4 )], Lithium Bisoxalate Borate (LiBOB), Tris(o- Hydroquinone) lithium phosphate (LTBP) and lithium sulfonated polysulfonamides, lithium hexafluorophosphate (LiPF 6 ), aluminum perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAs
  • the electrolyte lithium salt is lithium bis(trifluoromethanesulfonic acid)imide LiTFSI, and the concentration range is 0.1-10 mol/L.
  • the concentration of the electrolyte lithium salt is 1 mol/L.
  • a method for preparing an asymmetric solid electrolyte comprising the following steps: Step 101: preparing an inorganic solid electrolyte layer: weighing an inorganic ceramic solid electrolyte powder, adding a binder and fully grinding it to uniformity, taking the ground powder and compressing it in a tablet machine , and further place the ceramic sheet in a muffle furnace at 600-1100 ° C for sintering, and polish the surface of the sintered ceramic sheet;
  • Step 102 Preparation of solid polymer precursor solution: take the solid polymer monomer solvent to dissolve the lithium salt in the precursor solution, stir well; finally add the initiator to the above solution while stirring, and stir well for half an hour Until the solution is completely uniform, the above operations are carried out in the glove box;
  • Step 103 Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box conduct;
  • Step 104 drop the solid polymer precursor solution on the surface of the negative electrode, cover the inorganic ceramic electrolyte sheet, drop the gel polymer solid electrolyte on the ceramic sheet, cover the lithium iron phosphate positive electrode, and assemble the battery (the above assembly process can also be reversed).
  • the above assembly process can also be reversed.
  • a solid-state lithium battery includes a battery positive electrode current collector, a positive electrode material for a lithium ion battery, a negative electrode material for the lithium ion battery, an asymmetric solid electrolyte, and a battery casing for packaging.
  • the positive current collector of the battery is selected from one of aluminum, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese, or an alloy thereof, or a composite of any one of them, or any one of them. alloy.
  • the battery cathode current collector is aluminum foil.
  • the positive electrode material of the lithium ion battery comprises one or more of lithium ion embedded positive electrode compound materials (lithium cobalt oxide, lithium iron phosphate, nickel cobalt manganese ternary material).
  • lithium ion embedded positive electrode compound materials lithium cobalt oxide, lithium iron phosphate, nickel cobalt manganese ternary material.
  • the positive electrode material of the lithium ion battery is a lithium iron phosphate positive electrode.
  • a method for preparing a solid-state lithium battery step 101: preparing an inorganic solid-state electrolyte layer: weighing an inorganic ceramic solid-state electrolyte powder, dripping a binder (for example, PVA, etc.) and fully grinding until uniform, taking the ground powder and pressing it in a tablet machine.
  • the ceramic sheet is further placed in a muffle furnace for sintering at 600-1100 °C, and the surface of the sintered ceramic sheet is polished and ground for use;
  • Step 102 Dissolve the lithium salt in the precursor solution by taking the solid polymer monomer solvent, and stir it evenly; finally, add the initiator to the above solution while stirring, and stir fully for half an hour until the solution is completely uniform. Carry out in glove box; reserve;
  • Step 103 Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box carry out; reserve;
  • Step 104 Preparation of the positive electrode: Weigh the positive electrode active material, the conductive agent and the binder, add them into an appropriate solvent, and fully mix them into a uniform slurry to form a positive electrode active material layer; clean the positive electrode current collector, and then remove the positive electrode active material The layer is evenly coated on the surface of the positive electrode current collector, and the positive electrode active material layer is completely dried and then cut to obtain a battery positive electrode of the required size;
  • Step 105 Preparation of the negative electrode: Cut the negative electrode into a circle with a diameter of 14 mm, and place it in a vacuum drying box for use.
  • the negative electrode, the solid polymer precursor solution, the inorganic ceramic electrolyte sheet, the gel polymer precursor solution and the positive electrode are used to assemble, and then the solid-state battery is formed by in-situ polymerization by thermal initiation or other initiation methods.
  • the present invention adopts the above technical scheme, and its beneficial effect is that the asymmetric solid electrolyte prepared by the present invention is composed of solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte.
  • the asymmetric electrolyte has a multi-layer structure of "solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte"; the intermediate layer is an inorganic solid electrolyte, which limits the polarization behavior caused by anion transport during charge and discharge; it is in contact with the metal lithium anode.
  • a solid polymer electrolyte with good electrochemical compatibility and physical contact performance with metal lithium prepared by in-situ polymerization process and high mechanical strength is used.
  • the side in contact with the positive electrode is a gel polymer electrolyte formed based on in-situ polymerization. While improving the interface contact performance, the good flexibility of the gel polymer solid electrolyte can affect the volume change to a certain extent.
  • the generated mechanical stress acts as a buffer to prevent the interface failure caused by the mechanical stress during the cycle; in addition, the interface contact layer adopts the in-situ polymerization process, which is conducive to the formation of tight interface conformal contact and avoids the formation of interface gaps and holes .
  • Figure 3(c) The capacity-voltage diagram of the 10th, 50th, 100th, 150th, and 200th cycles of LFP/ASE/Li battery;
  • an embodiment of the present invention provides a method for preparing a solid-state lithium battery.
  • inorganic ceramic electrolyte LLZO To prepare inorganic ceramic electrolyte LLZO, weigh 0.6g of LLZO inorganic ceramic powder, add 2 drops of PVA binder dropwise for grinding, after grinding evenly, divide into two parts, press in an infrared tablet machine (pressure is 20MPa), and then Further put the ceramic sheet in a muffle furnace for high temperature sintering, first from room temperature to 150° at 3°C/min, holding for 1h, then 2°C/min to 550°, holding for 1h, and then 1°C/min to rise to 550° 1050 °C, heat preservation for 10h, and finally cool down naturally.
  • the surface of the sintered LLZO ceramic sheet was polished to 1mm, and placed in a vacuum glove box for use.
  • Preparation of gel polymer precursor solution Dissolve lithium salt 1mol/L LiTFSI and mass fraction of 1% BPO in 5mL of polymer monomer vinylene carbonate, stir vigorously for one day, and set aside.
  • Lithium salt 1mol/L LiTFSI and an appropriate amount of initiator lithium hexafluorophosphate (LiPF 6 ) were dissolved in 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE) ), stir well to dissolve and set aside.
  • DOL 1,3-dioxolane
  • PEGDE polyethylene glycol diglycidyl ether
  • lithium iron phosphate positive electrode To prepare lithium iron phosphate positive electrode, weigh 0.8 g of positive electrode active material, 0.1 g of conductive agent, and 0.1 g of binder in a ratio of 8:1:1, and add appropriate N-methylpyrrolidone (NMP) dropwise to mix and grind to form a uniform slurry Clean the aluminum foil of the positive electrode current collector, and then evenly coat the lithium iron phosphate positive electrode slurry on the surface of the positive electrode current collector to make a positive electrode active material layer. After the material layer is completely dried, take it out and cut it into 10mm discs, and put them in a vacuum drying box for future use.
  • NMP N-methylpyrrolidone
  • Preparation of lithium negative electrode Cut the lithium sheet into a 14mm diameter circle and put it in a vacuum drying oven for later use.
  • Battery assembly with asymmetric solid electrolyte In a glove box protected by an inert gas, the prepared negative electrode, solid polymer precursor solution, inorganic ceramic electrolyte, gel polymer precursor solution, and positive electrode were tightly stacked in sequence, and then the The above-mentioned stacked parts are encapsulated into a button-type case, and then in-situ polymerization is realized at 80° C. to complete the battery assembly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne un électrolyte solide asymétrique et son procédé de préparation, ainsi qu'une batterie au lithium à électrolyte solide et son procédé de préparation. L'électrolyte solide asymétrique a une structure multicouche « électrolyte polymère solide/électrolyte solide inorganique/électrolyte polymère gel » dont une couche intermédiaire est un électrolyte solide inorganique, qui limite les comportements de polarisation provoqués par le transport d'anions pendant les processus de charge et de décharge; un côté qui est en contact avec une électrode négative en lithium métallique est un électrolyte polymère solide qui est préparé au moyen d'un procédé de polymérisation in situ, présente une bonne compatibilité électrochimique et de bonnes performances de contact physique avec le lithium métallique et présente une résistance mécanique élevée, de telle sorte que, d'une part, la génération de dendrites de lithium est empêchée au moyen de la résistance mécanique élevée, et d'autre part, les performances de l'interface sont améliorées; et un côté qui est en contact avec une électrode positive est un électrolyte polymère gel formé sur la base d'une polymérisation in situ, lequel électrolyte solide polymère gel a un effet tampon sur la contrainte mécanique provoquée par une variation de volume dans une certaine mesure en raison de sa bonne flexibilité, de telle sorte que le problème de défaillance d'interface provoquée par une contrainte mécanique pendant un processus cyclique est empêché.
PCT/CN2020/135019 2020-12-09 2020-12-09 Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation WO2022120660A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135019 WO2022120660A1 (fr) 2020-12-09 2020-12-09 Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135019 WO2022120660A1 (fr) 2020-12-09 2020-12-09 Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation

Publications (1)

Publication Number Publication Date
WO2022120660A1 true WO2022120660A1 (fr) 2022-06-16

Family

ID=81972918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135019 WO2022120660A1 (fr) 2020-12-09 2020-12-09 Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation

Country Status (1)

Country Link
WO (1) WO2022120660A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914539A (zh) * 2022-06-28 2022-08-16 肇庆小鹏汽车有限公司 固态/半固体电解质及其制备方法和应用
CN115241541A (zh) * 2022-08-04 2022-10-25 中国人民解放军军事科学院防化研究院 一种原位热聚合固态锂硫电池的制备方法
CN115275362A (zh) * 2022-07-29 2022-11-01 中国地质大学(武汉) 含有异质离子凝胶缓冲层的固态电解质及其制备和应用
CN115498254A (zh) * 2022-08-01 2022-12-20 吉林省东驰新能源科技有限公司 一种半互穿网络聚合物电解质及其制备方法和应用
CN116404247A (zh) * 2023-06-09 2023-07-07 西北工业大学 一种pe基聚合物固态电解质及其制备方法和应用
CN116396323A (zh) * 2023-04-13 2023-07-07 四川启睿克科技有限公司 偶氮苯类电解质、合成方法及应用与固态电池及制备方法
CN118016982A (zh) * 2024-04-09 2024-05-10 宁波容百新能源科技股份有限公司 一种固态电解质膜、制备方法及锂离子电池
CN118431547A (zh) * 2024-07-02 2024-08-02 蜂巢能源科技股份有限公司 一种复合型固态电解质及其制备方法和应用
WO2024164517A1 (fr) * 2023-02-10 2024-08-15 惠州锂威新能源科技有限公司 Séparateur de batterie contenant de l'acide de lewis, matériau de revêtement d'électrode négative, batterie à électrolyte solide et procédés de préparation associés

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260257A1 (en) * 2012-04-02 2013-10-03 Samsung Corning Precision Materials Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
CN105470576A (zh) * 2014-08-29 2016-04-06 比亚迪股份有限公司 一种高压锂电池电芯及其制备方法、锂离子电池
CN110828883A (zh) * 2018-08-08 2020-02-21 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
CN111952663A (zh) * 2020-07-29 2020-11-17 青岛大学 一种界面修饰的固态石榴石型电池及其制备方法
CN112038694A (zh) * 2020-09-14 2020-12-04 浙江大学 一种三明治结构的三层复合电解质及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130260257A1 (en) * 2012-04-02 2013-10-03 Samsung Corning Precision Materials Co., Ltd. Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same
CN105470576A (zh) * 2014-08-29 2016-04-06 比亚迪股份有限公司 一种高压锂电池电芯及其制备方法、锂离子电池
CN110828883A (zh) * 2018-08-08 2020-02-21 比亚迪股份有限公司 一种锂离子电池及其制备方法和电动车辆
CN111952663A (zh) * 2020-07-29 2020-11-17 青岛大学 一种界面修饰的固态石榴石型电池及其制备方法
CN112038694A (zh) * 2020-09-14 2020-12-04 浙江大学 一种三明治结构的三层复合电解质及其制备方法和应用

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114914539A (zh) * 2022-06-28 2022-08-16 肇庆小鹏汽车有限公司 固态/半固体电解质及其制备方法和应用
CN115275362A (zh) * 2022-07-29 2022-11-01 中国地质大学(武汉) 含有异质离子凝胶缓冲层的固态电解质及其制备和应用
CN115275362B (zh) * 2022-07-29 2023-06-23 中国地质大学(武汉) 含有异质离子凝胶缓冲层的固态电解质及其制备和应用
CN115498254A (zh) * 2022-08-01 2022-12-20 吉林省东驰新能源科技有限公司 一种半互穿网络聚合物电解质及其制备方法和应用
CN115241541A (zh) * 2022-08-04 2022-10-25 中国人民解放军军事科学院防化研究院 一种原位热聚合固态锂硫电池的制备方法
CN115241541B (zh) * 2022-08-04 2024-04-05 中国人民解放军军事科学院防化研究院 一种原位热聚合固态锂硫电池的制备方法
WO2024164517A1 (fr) * 2023-02-10 2024-08-15 惠州锂威新能源科技有限公司 Séparateur de batterie contenant de l'acide de lewis, matériau de revêtement d'électrode négative, batterie à électrolyte solide et procédés de préparation associés
CN116396323A (zh) * 2023-04-13 2023-07-07 四川启睿克科技有限公司 偶氮苯类电解质、合成方法及应用与固态电池及制备方法
CN116396323B (zh) * 2023-04-13 2024-05-14 四川启睿克科技有限公司 偶氮苯类电解质、合成方法及应用与固态电池及制备方法
CN116404247A (zh) * 2023-06-09 2023-07-07 西北工业大学 一种pe基聚合物固态电解质及其制备方法和应用
CN118016982A (zh) * 2024-04-09 2024-05-10 宁波容百新能源科技股份有限公司 一种固态电解质膜、制备方法及锂离子电池
CN118431547A (zh) * 2024-07-02 2024-08-02 蜂巢能源科技股份有限公司 一种复合型固态电解质及其制备方法和应用

Similar Documents

Publication Publication Date Title
WO2022120660A1 (fr) Électrolyte solide asymétrique et son procédé de préparation, et batterie au lithium à électrolyte solide et son procédé de préparation
CN108493486B (zh) 一种原位聚合固态电池的制备方法
KR102378583B1 (ko) 리튬-함유 복합체의 코팅층을 구비한 세퍼레이터, 이를 포함하는 리튬 이차전지 및 상기 이차전지의 제조방법
CN112242560A (zh) 一种固态锂电池及其电极-隔膜层界面改善方法和应用
CN114614079B (zh) 一种非对称固态电解质及其制备方法以及一种固态锂电池及其制备方法
CN110212160A (zh) 一种固态电池用离子传输层及其制备方法和固态电池
US20150333385A1 (en) Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode
CN108615941B (zh) 一种防热失控的添加剂及其在二次锂金属电池中的应用
CN111934020B (zh) 一种耐高压全固态锂电池界面层及其原位制备方法和应用
CN109841836B (zh) 一种凝胶复合锂金属电极及其制备方法和应用
CN102694158A (zh) 一种含硅锂负极、其制备方法及包含该负极的锂硫电池
KR20200102613A (ko) 전기화학 소자 및 이의 제조방법
CN109786869B (zh) 一种含有受阻胺结构的聚合物在二次锂电池中的应用
US11881580B2 (en) Flame-resistant bipolar electrodes, bipolar lithium batteries, and manufacturing method
JP2023513248A (ja) 表面改質電極、調製方法および電気化学セルにおける使用
JP2003242964A (ja) 非水電解質二次電池
JP2015088437A (ja) 非水系二次電池のプリドープ方法及びプリドープ方法により得られる電池
Zhang et al. Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries
CN111370791A (zh) 一种锂硫电池化成方法及该化成方法制备的锂硫电池
CN114335700A (zh) 一种固态电解质膜及其制备方法、二次电池以及制备方法
De Luna et al. All-solid lithium-sulfur batteries: Present situation and future progress
Bai et al. In-situ-polymerized 1, 3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries
CN113745636A (zh) 一种固态锂电池及其制备方法
WO2023108322A1 (fr) Électrolyte solide présentant un gradient mécanique et son procédé de préparation et application associée
WO2001089023A1 (fr) Batterie secondaire au lithium contenant un electrolyte polymere fibreux tres mince et procede de fabrication correspondant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964600

Country of ref document: EP

Kind code of ref document: A1