WO2022120660A1 - Asymmetric solid electrolyte and preparation method therefor, and solid lithium battery and preparation method therefor - Google Patents
Asymmetric solid electrolyte and preparation method therefor, and solid lithium battery and preparation method therefor Download PDFInfo
- Publication number
- WO2022120660A1 WO2022120660A1 PCT/CN2020/135019 CN2020135019W WO2022120660A1 WO 2022120660 A1 WO2022120660 A1 WO 2022120660A1 CN 2020135019 W CN2020135019 W CN 2020135019W WO 2022120660 A1 WO2022120660 A1 WO 2022120660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- lithium
- electrolyte
- initiator
- precursor solution
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 73
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 43
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 41
- 239000007787 solid Substances 0.000 title claims abstract description 35
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 229920000642 polymer Polymers 0.000 claims abstract description 46
- 239000005518 polymer electrolyte Substances 0.000 claims abstract description 27
- 229910003480 inorganic solid Inorganic materials 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000011065 in-situ storage Methods 0.000 claims abstract description 15
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 15
- 229910052751 metal Inorganic materials 0.000 claims abstract description 5
- 239000002184 metal Substances 0.000 claims abstract description 5
- 150000001450 anions Chemical class 0.000 claims abstract description 3
- 239000003999 initiator Substances 0.000 claims description 70
- 239000000243 solution Substances 0.000 claims description 55
- 239000002243 precursor Substances 0.000 claims description 44
- 239000003792 electrolyte Substances 0.000 claims description 31
- -1 [phosphoric acid] Lithium aluminum titanium Chemical compound 0.000 claims description 25
- 238000003756 stirring Methods 0.000 claims description 22
- 239000000919 ceramic Substances 0.000 claims description 19
- 229910003002 lithium salt Inorganic materials 0.000 claims description 18
- 159000000002 lithium salts Chemical class 0.000 claims description 18
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 16
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 16
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 claims description 16
- 239000007774 positive electrode material Substances 0.000 claims description 16
- 239000002202 Polyethylene glycol Substances 0.000 claims description 15
- 229920001223 polyethylene glycol Polymers 0.000 claims description 15
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 claims description 13
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 13
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 claims description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 10
- 229910021525 ceramic electrolyte Inorganic materials 0.000 claims description 10
- 229910001416 lithium ion Inorganic materials 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- 239000000178 monomer Substances 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 9
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 8
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 8
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 150000001340 alkali metals Chemical class 0.000 claims description 8
- 239000011230 binding agent Substances 0.000 claims description 8
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 239000011118 polyvinyl acetate Substances 0.000 claims description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 claims description 8
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 claims description 7
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 claims description 7
- 229930040373 Paraformaldehyde Natural products 0.000 claims description 7
- 229920002873 Polyethylenimine Polymers 0.000 claims description 7
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229920006324 polyoxymethylene Polymers 0.000 claims description 7
- 150000003254 radicals Chemical class 0.000 claims description 7
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 claims description 6
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 6
- 125000002091 cationic group Chemical group 0.000 claims description 6
- 238000000227 grinding Methods 0.000 claims description 6
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 claims description 6
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 claims description 6
- 239000011135 tin Substances 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 5
- 239000002033 PVDF binder Substances 0.000 claims description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 5
- 239000002585 base Substances 0.000 claims description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 5
- 238000005245 sintering Methods 0.000 claims description 5
- VBHXIMACZBQHPX-UHFFFAOYSA-N 2,2,2-trifluoroethyl prop-2-enoate Chemical compound FC(F)(F)COC(=O)C=C VBHXIMACZBQHPX-UHFFFAOYSA-N 0.000 claims description 4
- OYKPJMYWPYIXGG-UHFFFAOYSA-N 2,2-dimethylbutane;prop-2-enoic acid Chemical class OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.CCC(C)(C)C OYKPJMYWPYIXGG-UHFFFAOYSA-N 0.000 claims description 4
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 239000002841 Lewis acid Substances 0.000 claims description 4
- 229910013872 LiPF Inorganic materials 0.000 claims description 4
- 101150058243 Lipf gene Proteins 0.000 claims description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 4
- 150000001342 alkaline earth metals Chemical class 0.000 claims description 4
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- 125000000129 anionic group Chemical group 0.000 claims description 4
- 238000010538 cationic polymerization reaction Methods 0.000 claims description 4
- 150000003949 imides Chemical class 0.000 claims description 4
- 230000000977 initiatory effect Effects 0.000 claims description 4
- 150000007517 lewis acids Chemical class 0.000 claims description 4
- ZQMHJBXHRFJKOT-UHFFFAOYSA-N methyl 2-[(1-methoxy-2-methyl-1-oxopropan-2-yl)diazenyl]-2-methylpropanoate Chemical compound COC(=O)C(C)(C)N=NC(C)(C)C(=O)OC ZQMHJBXHRFJKOT-UHFFFAOYSA-N 0.000 claims description 4
- 239000012038 nucleophile Substances 0.000 claims description 4
- 150000002894 organic compounds Chemical class 0.000 claims description 4
- 125000000864 peroxy group Chemical group O(O*)* 0.000 claims description 4
- LCDOENXNMQXGFS-UHFFFAOYSA-N phenoxybenzene;prop-2-enoic acid Chemical compound OC(=O)C=C.C=1C=CC=CC=1OC1=CC=CC=C1 LCDOENXNMQXGFS-UHFFFAOYSA-N 0.000 claims description 4
- 229920000671 polyethylene glycol diacrylate Polymers 0.000 claims description 4
- 229920001021 polysulfide Polymers 0.000 claims description 4
- 239000005077 polysulfide Substances 0.000 claims description 4
- 150000008117 polysulfides Polymers 0.000 claims description 4
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 4
- 229960000380 propiolactone Drugs 0.000 claims description 4
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 claims description 4
- 150000003512 tertiary amines Chemical class 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 229910052719 titanium Inorganic materials 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- 238000005303 weighing Methods 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 3
- 238000010539 anionic addition polymerization reaction Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 3
- 239000006258 conductive agent Substances 0.000 claims description 3
- 125000004386 diacrylate group Chemical group 0.000 claims description 3
- 239000011888 foil Substances 0.000 claims description 3
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 claims description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- 229920002755 poly(epichlorohydrin) Polymers 0.000 claims description 3
- 229920001281 polyalkylene Polymers 0.000 claims description 3
- 239000012966 redox initiator Substances 0.000 claims description 3
- 239000002002 slurry Substances 0.000 claims description 3
- 229910001251 solid state electrolyte alloy Inorganic materials 0.000 claims description 3
- ITMCEJHCFYSIIV-UHFFFAOYSA-N triflic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 claims description 3
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 claims description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 claims description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 claims description 2
- 229910005839 GeS 2 Inorganic materials 0.000 claims description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 2
- 229910015015 LiAsF 6 Inorganic materials 0.000 claims description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 claims description 2
- 229910013684 LiClO 4 Inorganic materials 0.000 claims description 2
- AUBNQVSSTJZVMY-UHFFFAOYSA-M P(=O)([O-])(O)O.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.[Li+] Chemical compound P(=O)([O-])(O)O.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.C(C(=O)O)(=O)F.[Li+] AUBNQVSSTJZVMY-UHFFFAOYSA-M 0.000 claims description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- KFDQGLPGKXUTMZ-UHFFFAOYSA-N [Mn].[Co].[Ni] Chemical compound [Mn].[Co].[Ni] KFDQGLPGKXUTMZ-UHFFFAOYSA-N 0.000 claims description 2
- ZRGUXTGDSGGHLR-UHFFFAOYSA-K aluminum;triperchlorate Chemical compound [Al+3].[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O.[O-]Cl(=O)(=O)=O ZRGUXTGDSGGHLR-UHFFFAOYSA-K 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 claims description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 claims description 2
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 claims description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 claims description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical group [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000007773 negative electrode material Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 2
- 229910052708 sodium Inorganic materials 0.000 claims description 2
- 239000011734 sodium Substances 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- 239000002203 sulfidic glass Substances 0.000 claims description 2
- 229910052718 tin Inorganic materials 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 239000003505 polymerization initiator Substances 0.000 claims 3
- 229910052791 calcium Inorganic materials 0.000 claims 2
- 239000011575 calcium Substances 0.000 claims 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims 1
- XVRTXFMDMTUHSY-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].C=1(O)C(O)=CC=CC1.C=1(O)C(O)=CC=CC1.C=1(O)C(O)=CC=CC1.[Li+].[Li+].[Li+] Chemical compound P(=O)([O-])([O-])[O-].C=1(O)C(O)=CC=CC1.C=1(O)C(O)=CC=CC1.C=1(O)C(O)=CC=CC1.[Li+].[Li+].[Li+] XVRTXFMDMTUHSY-UHFFFAOYSA-K 0.000 claims 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 claims 1
- 238000001354 calcination Methods 0.000 claims 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 claims 1
- 229910052732 germanium Inorganic materials 0.000 claims 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims 1
- 239000011572 manganese Substances 0.000 claims 1
- 229910052748 manganese Inorganic materials 0.000 claims 1
- 150000002739 metals Chemical class 0.000 claims 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 238000005498 polishing Methods 0.000 claims 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 claims 1
- 210000001787 dendrite Anatomy 0.000 abstract description 8
- 238000007599 discharging Methods 0.000 abstract description 3
- 230000010287 polarization Effects 0.000 abstract description 3
- 230000006399 behavior Effects 0.000 abstract 1
- 230000003139 buffering effect Effects 0.000 abstract 1
- 230000001351 cycling effect Effects 0.000 description 6
- XKTYXVDYIKIYJP-UHFFFAOYSA-N 3h-dioxole Chemical compound C1OOC=C1 XKTYXVDYIKIYJP-UHFFFAOYSA-N 0.000 description 5
- 239000002223 garnet Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011245 gel electrolyte Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KUDUQBURMYMBIJ-UHFFFAOYSA-N 2-prop-2-enoyloxyethyl prop-2-enoate Chemical compound C=CC(=O)OCCOC(=O)C=C KUDUQBURMYMBIJ-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 208000032953 Device battery issue Diseases 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- FVXHSJCDRRWIRE-UHFFFAOYSA-H P(=O)([O-])([O-])[O-].[Ge+2].[Al+3].[Li+].P(=O)([O-])([O-])[O-] Chemical compound P(=O)([O-])([O-])[O-].[Ge+2].[Al+3].[Li+].P(=O)([O-])([O-])[O-] FVXHSJCDRRWIRE-UHFFFAOYSA-H 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 239000011267 electrode slurry Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
Definitions
- the invention belongs to the technical field of energy storage devices, and in particular relates to an asymmetric solid electrolyte and a preparation method thereof, as well as a solid lithium battery and a preparation method thereof.
- All-solid-state lithium batteries have the advantages of high safety, high energy density, high power density, and long cycle life, so they have become one of the next-generation energy storage systems with great development prospects.
- Solid electrolyte is one of the key components that determines the performance of all-solid-state lithium batteries.
- the solid electrolyte is non-flammable, has high thermal stability, and is non-volatile, bringing high safety. Second, it has good chemical/electrochemical stability. Despite the excellent properties of solid electrolytes, researchers have developed some solid electrolytes with high ionic conductivity above 1 ⁇ 10 -3 S/cm, but interfacial problems have always hindered their large-scale production and application.
- ceramic electrolytes can suppress lithium dendrites, but the contact with electrodes is poor.
- Polymer solid electrolytes and gel electrolytes can be in close contact with the positive electrode due to their good flexibility, but it is difficult to suppress lithium dendrites in the negative electrode. It is difficult for both ceramic electrolytes and polymer electrolytes to satisfy both anode and cathode requirements, which greatly limits their selectivity and operability. Given that each solid electrolyte has its own advantages and disadvantages, it is more meaningful to expand the application of solid electrolytes and make good use of each electrolyte to completely change its structure, rather than simple interface modification on the interface between solid electrolyte and electrode. .
- solid electrolytes such as garnet type, sodium fast ion conductor type, and sulfide type have good ionic conductivity at room temperature and are regarded as one of the most promising solid electrolytes.
- problems such as poor interfacial contact and/or insufficient interfacial electrochemical compatibility of solid electrolyte with Li anode lead to large interfacial resistance.
- the electrolytes of existing solid-state lithium batteries usually use a single inorganic ceramic electrolyte, a polymer electrolyte, a gel electrolyte or an inorganic-organic hybrid composite solid-state electrolyte.
- researchers have also modified the interface between the electrolyte and the electrode through various techniques, which has improved the performance of solid-state lithium batteries to a certain extent.
- the mechanical stress brought about by the volume change of the positive electrode leads to the failure of the interfacial contact and the comprehensive function of inhibiting the growth of lithium dendrites, resulting in a large interfacial resistance, which makes it difficult to achieve stable long-term cycling, and ultimately leads to battery failure.
- the purpose of the present invention is to design an asymmetric solid electrolyte for targeted modification of positive and negative electrodes, which is composed of a gel polymer electrolyte, an inorganic solid electrolyte and a polymer electrolyte, and adopts an in-situ polymerization process to in situ inside the battery.
- Constructing a multi-layer electrolyte layer this targeted design not only inhibits the formation of lithium dendrites during the charging and discharging process of the lithium anode, but also effectively improves the interfacial contact and wettability between the electrolyte and the cathode, and to a certain extent, affects the volume change of the cathode.
- the mechanical stress acts as a buffer to improve the coulombic efficiency, cycle stability and safety performance of the battery.
- An asymmetric solid electrolyte including inorganic solid electrolyte, solid polymer electrolyte precursor solution and initiator, gel polymer electrolyte precursor solution and initiator, electrolyte lithium salt, said inorganic solid electrolyte, solid polymer electrolyte precursor
- the bulk solution, the initiator and the gel polymer electrolyte precursor solution and the initiator form a solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte multilayer structure.
- garnet type solid electrolytes with high ionic conductivity LLZO, LLZTO, LLZNO
- sodium superionic conductor type solid electrolytes [Lithium Aluminum Titanium Phosphate (LATP), Lithium Aluminum
- the solid electrolyte is a garnet type solid electrolyte.
- the solid polymer precursor solution and the precursor solution in the initiator are selected from methyl methacrylate (MMA), methacrylate (VMA), vinylene carbonate (VC), acrylonitrile ( AN), vinyl acetate (VAC), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), polyoxymethylene (POM), polyvinyl acetate (PVA), polyethylene oxide Amine (PEI), Polyethylene Succinate, Polyoxetane, Poly ⁇ -Propanolide, Polyepichlorohydrin, PolyN-propylaziridine, Polyalkylene Polysulfide, Polyethylene Vinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylate (PEGPEA), poly Ethylene glycol diacrylate (PEGDA), polyethylene glycol digly
- the solid polymer precursor solution is 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE).
- DOL 1,3-dioxolane
- PEGDE polyethylene glycol diglycidyl ether
- the initiator in the solid polymer precursor solution and the initiator is selected from commonly used free radical initiators, cationic initiators and anionic initiators.
- Free radical initiators are mainly azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator, etc.), peroxy initiators (dibenzamide peroxide (BPO) etc.) and redox initiators, etc.;
- the initiators of cationic polymerization mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 ); one or more of the initiators of anionic polymerization (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
- the solid polymer initiator is a cationic initiator LiPF 6 which can be decomposed to form PF 5 .
- the gel polymer precursor solution and the initiator are selected from methyl methacrylate (MMA), methacrylate (VMA), vinylene carbonate (VC) ), acrylonitrile (AN), vinyl acetate (VA C ), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), polyoxymethylene (POM), polyvinyl acetate ( PVA), polyethyleneimine (PEI), polyethylene succinate, polyoxetane, poly ⁇ -propanolide, polyepichlorohydrin, polyN-propylaziridine, poly Alkenyl polysulfide, polyvinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylic acid Esters (PEGPEA), Polyethylene Glycol Diacrylate (PEGDA), Polyethylene Glycol Diglycidyl
- the gel polymer precursor solution is vinylene carbonate (VC).
- the gel polymer precursor solution and the initiator in the initiator are selected from common free radical initiators, cationic initiators and anionic initiators.
- Free radical initiators are mainly azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator, etc.), peroxy initiators (dibenzamide peroxide (BPO) etc.) and redox initiators, etc.;
- the initiators of cationic polymerization mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 , etc.); one or more of the initiators of anionic polymerization (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
- the gel polymer initiator is BPO.
- the electrolyte lithium salt is selected from lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(trifluoromethanesulfonic acid)imide [LiN(CF 3 SO 2 ) 2 , LiTFSI] and their Derivatives, Lithium Perfluoroalkyl Phosphate [LiPF 3 (C 2 F 5 ) 3 , LiFAP], Lithium Tetrafluorooxalate Phosphate [LiPF 4 (C 2 O 4 )], Lithium Bisoxalate Borate (LiBOB), Tris(o- Hydroquinone) lithium phosphate (LTBP) and lithium sulfonated polysulfonamides, lithium hexafluorophosphate (LiPF 6 ), aluminum perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAs
- the electrolyte lithium salt is lithium bis(trifluoromethanesulfonic acid)imide LiTFSI, and the concentration range is 0.1-10 mol/L.
- the concentration of the electrolyte lithium salt is 1 mol/L.
- a method for preparing an asymmetric solid electrolyte comprising the following steps: Step 101: preparing an inorganic solid electrolyte layer: weighing an inorganic ceramic solid electrolyte powder, adding a binder and fully grinding it to uniformity, taking the ground powder and compressing it in a tablet machine , and further place the ceramic sheet in a muffle furnace at 600-1100 ° C for sintering, and polish the surface of the sintered ceramic sheet;
- Step 102 Preparation of solid polymer precursor solution: take the solid polymer monomer solvent to dissolve the lithium salt in the precursor solution, stir well; finally add the initiator to the above solution while stirring, and stir well for half an hour Until the solution is completely uniform, the above operations are carried out in the glove box;
- Step 103 Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box conduct;
- Step 104 drop the solid polymer precursor solution on the surface of the negative electrode, cover the inorganic ceramic electrolyte sheet, drop the gel polymer solid electrolyte on the ceramic sheet, cover the lithium iron phosphate positive electrode, and assemble the battery (the above assembly process can also be reversed).
- the above assembly process can also be reversed.
- a solid-state lithium battery includes a battery positive electrode current collector, a positive electrode material for a lithium ion battery, a negative electrode material for the lithium ion battery, an asymmetric solid electrolyte, and a battery casing for packaging.
- the positive current collector of the battery is selected from one of aluminum, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese, or an alloy thereof, or a composite of any one of them, or any one of them. alloy.
- the battery cathode current collector is aluminum foil.
- the positive electrode material of the lithium ion battery comprises one or more of lithium ion embedded positive electrode compound materials (lithium cobalt oxide, lithium iron phosphate, nickel cobalt manganese ternary material).
- lithium ion embedded positive electrode compound materials lithium cobalt oxide, lithium iron phosphate, nickel cobalt manganese ternary material.
- the positive electrode material of the lithium ion battery is a lithium iron phosphate positive electrode.
- a method for preparing a solid-state lithium battery step 101: preparing an inorganic solid-state electrolyte layer: weighing an inorganic ceramic solid-state electrolyte powder, dripping a binder (for example, PVA, etc.) and fully grinding until uniform, taking the ground powder and pressing it in a tablet machine.
- the ceramic sheet is further placed in a muffle furnace for sintering at 600-1100 °C, and the surface of the sintered ceramic sheet is polished and ground for use;
- Step 102 Dissolve the lithium salt in the precursor solution by taking the solid polymer monomer solvent, and stir it evenly; finally, add the initiator to the above solution while stirring, and stir fully for half an hour until the solution is completely uniform. Carry out in glove box; reserve;
- Step 103 Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box carry out; reserve;
- Step 104 Preparation of the positive electrode: Weigh the positive electrode active material, the conductive agent and the binder, add them into an appropriate solvent, and fully mix them into a uniform slurry to form a positive electrode active material layer; clean the positive electrode current collector, and then remove the positive electrode active material The layer is evenly coated on the surface of the positive electrode current collector, and the positive electrode active material layer is completely dried and then cut to obtain a battery positive electrode of the required size;
- Step 105 Preparation of the negative electrode: Cut the negative electrode into a circle with a diameter of 14 mm, and place it in a vacuum drying box for use.
- the negative electrode, the solid polymer precursor solution, the inorganic ceramic electrolyte sheet, the gel polymer precursor solution and the positive electrode are used to assemble, and then the solid-state battery is formed by in-situ polymerization by thermal initiation or other initiation methods.
- the present invention adopts the above technical scheme, and its beneficial effect is that the asymmetric solid electrolyte prepared by the present invention is composed of solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte.
- the asymmetric electrolyte has a multi-layer structure of "solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte"; the intermediate layer is an inorganic solid electrolyte, which limits the polarization behavior caused by anion transport during charge and discharge; it is in contact with the metal lithium anode.
- a solid polymer electrolyte with good electrochemical compatibility and physical contact performance with metal lithium prepared by in-situ polymerization process and high mechanical strength is used.
- the side in contact with the positive electrode is a gel polymer electrolyte formed based on in-situ polymerization. While improving the interface contact performance, the good flexibility of the gel polymer solid electrolyte can affect the volume change to a certain extent.
- the generated mechanical stress acts as a buffer to prevent the interface failure caused by the mechanical stress during the cycle; in addition, the interface contact layer adopts the in-situ polymerization process, which is conducive to the formation of tight interface conformal contact and avoids the formation of interface gaps and holes .
- Figure 3(c) The capacity-voltage diagram of the 10th, 50th, 100th, 150th, and 200th cycles of LFP/ASE/Li battery;
- an embodiment of the present invention provides a method for preparing a solid-state lithium battery.
- inorganic ceramic electrolyte LLZO To prepare inorganic ceramic electrolyte LLZO, weigh 0.6g of LLZO inorganic ceramic powder, add 2 drops of PVA binder dropwise for grinding, after grinding evenly, divide into two parts, press in an infrared tablet machine (pressure is 20MPa), and then Further put the ceramic sheet in a muffle furnace for high temperature sintering, first from room temperature to 150° at 3°C/min, holding for 1h, then 2°C/min to 550°, holding for 1h, and then 1°C/min to rise to 550° 1050 °C, heat preservation for 10h, and finally cool down naturally.
- the surface of the sintered LLZO ceramic sheet was polished to 1mm, and placed in a vacuum glove box for use.
- Preparation of gel polymer precursor solution Dissolve lithium salt 1mol/L LiTFSI and mass fraction of 1% BPO in 5mL of polymer monomer vinylene carbonate, stir vigorously for one day, and set aside.
- Lithium salt 1mol/L LiTFSI and an appropriate amount of initiator lithium hexafluorophosphate (LiPF 6 ) were dissolved in 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE) ), stir well to dissolve and set aside.
- DOL 1,3-dioxolane
- PEGDE polyethylene glycol diglycidyl ether
- lithium iron phosphate positive electrode To prepare lithium iron phosphate positive electrode, weigh 0.8 g of positive electrode active material, 0.1 g of conductive agent, and 0.1 g of binder in a ratio of 8:1:1, and add appropriate N-methylpyrrolidone (NMP) dropwise to mix and grind to form a uniform slurry Clean the aluminum foil of the positive electrode current collector, and then evenly coat the lithium iron phosphate positive electrode slurry on the surface of the positive electrode current collector to make a positive electrode active material layer. After the material layer is completely dried, take it out and cut it into 10mm discs, and put them in a vacuum drying box for future use.
- NMP N-methylpyrrolidone
- Preparation of lithium negative electrode Cut the lithium sheet into a 14mm diameter circle and put it in a vacuum drying oven for later use.
- Battery assembly with asymmetric solid electrolyte In a glove box protected by an inert gas, the prepared negative electrode, solid polymer precursor solution, inorganic ceramic electrolyte, gel polymer precursor solution, and positive electrode were tightly stacked in sequence, and then the The above-mentioned stacked parts are encapsulated into a button-type case, and then in-situ polymerization is realized at 80° C. to complete the battery assembly.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Disclosed are an asymmetric solid electrolyte and a preparation method therefor, and a solid lithium battery and a preparation method therefor. The asymmetric solid electrolyte has a multi-layer structure of "solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte", wherein a middle layer is an inorganic solid electrolyte, which limits polarization behaviors caused by anion transport during the charging and discharging processes; one side, which is in contact with a metal lithium negative electrode, is a solid polymer electrolyte which is prepared by means of an in-situ polymerization process, has good electrochemical compatibility and physical contact performance with the metal lithium and has high mechanical strength, such that on the one hand, the generation of lithium dendrites is inhibited by means of the high mechanical strength, and on the other hand, the interface performance is improved; and one side, which is in contact with a positive electrode, is a gel polymer electrolyte formed on the basis of in-situ polymerization, which gel polymer solid electrolyte has a buffering effect on the mechanical stress caused by volume change to a certain extent due to good flexibility, such that the problem of interface failure caused by mechanical stress during a cycle process is prevented.
Description
本发明属于储能器件技术领域,具体涉及一种非对称固态电解质及其制备方法以及一种固态锂电池及其制备方法。The invention belongs to the technical field of energy storage devices, and in particular relates to an asymmetric solid electrolyte and a preparation method thereof, as well as a solid lithium battery and a preparation method thereof.
全固态锂电池具有高安全性、高能量密度、高功率密度、长循环寿命等优点,因而成为极具发展前景的下一代储能系统之一。固体电解质是决定全固态锂电池性能的关键元件之一。固态电解质不易燃,热稳定性高,不挥发,带来高安全性。其次,具有良好的化学/电化学稳定性。尽管固态电解质具有优异的性能,研究人员已经开发出一些固体电解质具有1×10
-3S/cm以上的高离子导电率,但界面问题始终阻碍了其大规模生产和应用。陶瓷电解质的高机械强度可以抑制锂枝晶,但与电极的接触性差,聚合物固态电解质和凝胶电解质由于良好的柔韧性可以与正极紧密接触,但难以抑制负极锂枝晶。无论是陶瓷电解质还是聚合物电解质都很难同时满足负极和正极要求,这极大地限制了它们的选择性和可操作性。鉴于每种固态电解质都有其优点和缺点,所以要扩展固态电解质的应用,利用好每一种电解质,使其结构发生彻底的变革,比对固态电解质与电极界面进行简单的界面修饰更有意义。
All-solid-state lithium batteries have the advantages of high safety, high energy density, high power density, and long cycle life, so they have become one of the next-generation energy storage systems with great development prospects. Solid electrolyte is one of the key components that determines the performance of all-solid-state lithium batteries. The solid electrolyte is non-flammable, has high thermal stability, and is non-volatile, bringing high safety. Second, it has good chemical/electrochemical stability. Despite the excellent properties of solid electrolytes, researchers have developed some solid electrolytes with high ionic conductivity above 1 × 10 -3 S/cm, but interfacial problems have always hindered their large-scale production and application. The high mechanical strength of ceramic electrolytes can suppress lithium dendrites, but the contact with electrodes is poor. Polymer solid electrolytes and gel electrolytes can be in close contact with the positive electrode due to their good flexibility, but it is difficult to suppress lithium dendrites in the negative electrode. It is difficult for both ceramic electrolytes and polymer electrolytes to satisfy both anode and cathode requirements, which greatly limits their selectivity and operability. Given that each solid electrolyte has its own advantages and disadvantages, it is more meaningful to expand the application of solid electrolytes and make good use of each electrolyte to completely change its structure, rather than simple interface modification on the interface between solid electrolyte and electrode. .
就无机固态电解质而言,石榴石型、钠快离子导体型、硫化物型等固态电解质具有良好的室温离子导电性,被看作最有前途的固态电解质之一。然而,固态电解质与锂负极差的界面接触与/或界面电化学兼容性不足等问题导致大的界面电阻。目前,美国化学会(American Chemical Society)中文献(doi:10.1021/acsami.6b00831.)、自然材料中文献(Nature Materials,10.1038/NMAT4821.)、能源环境科学(Energy Environ.Sci.)中文献(doi:10.1039/c8ee00540k.)、电化学协会(Electrochemical Society.)中文献(10.1149/1945-7111/ab856f)分别报道了Au、Al
2O
3、少量的液体电解质、凝胶电解质等来改善石榴石型固态电解质与电极界面,在一定程度上确实改善了界面接触,降低了界面电阻。但是,循环过程中产生的机械应力会导致体积膨胀造成电解质断裂,以及高电流密度下锂枝晶仍会刺穿固态电解质等问题仍会导致电池短路或失败。为了同时满足正负极对固态电解质的要求,先进材料文献(doi:10.1021/jacs.9b03517)报道了一种具有靶向修饰的非对称结构固态电解质的设计。这种双功能改性陶瓷电解质结合了各自的优势,使锂金属电池具有良好的循环稳定性。但是该电池在循环过程中电压极化逐渐增大,循环时间较短。此外,所报道的多层固态电解质更多关注正负极界面电化学问题,而没考虑界面接触性以及循环过程中正极的体积变化带来的界面应力/应变问题。
As far as inorganic solid electrolytes are concerned, solid electrolytes such as garnet type, sodium fast ion conductor type, and sulfide type have good ionic conductivity at room temperature and are regarded as one of the most promising solid electrolytes. However, problems such as poor interfacial contact and/or insufficient interfacial electrochemical compatibility of solid electrolyte with Li anode lead to large interfacial resistance. At present, the literature in the American Chemical Society (doi: 10.1021/acsami.6b00831.), the literature in the natural materials (Nature Materials, 10.1038/NMAT4821.), the literature in the energy environment science (Energy Environ.Sci.) ( doi: 10.1039/c8ee00540k.), the Electrochemical Society (Electrochemical Society.) literature (10.1149/1945-7111/ab856f) respectively reported Au, Al 2 O 3 , a small amount of liquid electrolyte, gel electrolyte, etc. to improve garnet The interface between the solid electrolyte and the electrode can indeed improve the interface contact and reduce the interface resistance to a certain extent. However, problems such as volume expansion resulting in electrolyte fracture due to mechanical stress during cycling, and lithium dendrites piercing through the solid-state electrolyte at high current densities can still lead to short-circuit or failure of the battery. In order to simultaneously meet the requirements of positive and negative electrodes for solid electrolytes, the Advanced Materials Literature (doi: 10.1021/jacs.9b03517) reported the design of an asymmetrically structured solid electrolyte with targeted modifications. This bifunctional modified ceramic electrolyte combines the advantages of each to enable lithium metal batteries with good cycling stability. However, the voltage polarization of the battery gradually increased during the cycle, and the cycle time was short. In addition, the reported multilayer solid electrolytes pay more attention to the electrochemical problems of the positive and negative interfaces, but do not consider the interfacial contact and the interfacial stress/strain caused by the volume change of the positive electrode during cycling.
现有的固态锂电池的电解质通常使用单一的无机陶瓷电解质、聚合物电解质、凝胶电解 质或者无机-有机混合的复合固态电解质。近年来研究人员也通过各种技术对电解质与电极界面进行修饰,在一定程度上改善了固态锂电池的各项性能,但是在实际的运用过程中,上述的固态电解质很难同时满足循环过程中正极体积变化带来的机械应力导致界面接触失效,以及抑制锂枝晶生长的综合功能,导致界面电阻较大,难以实现稳定的长循环,最终导致电池失败。The electrolytes of existing solid-state lithium batteries usually use a single inorganic ceramic electrolyte, a polymer electrolyte, a gel electrolyte or an inorganic-organic hybrid composite solid-state electrolyte. In recent years, researchers have also modified the interface between the electrolyte and the electrode through various techniques, which has improved the performance of solid-state lithium batteries to a certain extent. The mechanical stress brought about by the volume change of the positive electrode leads to the failure of the interfacial contact and the comprehensive function of inhibiting the growth of lithium dendrites, resulting in a large interfacial resistance, which makes it difficult to achieve stable long-term cycling, and ultimately leads to battery failure.
发明内容SUMMARY OF THE INVENTION
有鉴于此,本发明的目的在于设计针对正负极靶向修饰的非对称固态电解质,由凝胶聚合物电解质、无机固态电解质以及聚合物电解质组成,并且采用原位聚合工艺在电池内部原位构筑多层电解质层,这种靶向设计不仅抑制锂负极在充放电过程中锂枝晶的产生,而且有效改善电解质与正极的界面接触和润湿性,并一定程度上对正极体积变化产生的机械应力起缓冲作用,提高电池的库伦效率与循环稳定性、安全性能。In view of this, the purpose of the present invention is to design an asymmetric solid electrolyte for targeted modification of positive and negative electrodes, which is composed of a gel polymer electrolyte, an inorganic solid electrolyte and a polymer electrolyte, and adopts an in-situ polymerization process to in situ inside the battery. Constructing a multi-layer electrolyte layer, this targeted design not only inhibits the formation of lithium dendrites during the charging and discharging process of the lithium anode, but also effectively improves the interfacial contact and wettability between the electrolyte and the cathode, and to a certain extent, affects the volume change of the cathode. The mechanical stress acts as a buffer to improve the coulombic efficiency, cycle stability and safety performance of the battery.
一种非对称固态电解质,包括无机固态电解质、固态聚合物电解质前驱体溶液及引发剂、凝胶聚合物电解质前驱体溶液及引发剂、电解质锂盐,所述无机固态电解质、固态聚合物电解质前驱体溶液及引发剂和凝胶聚合物电解质前驱体溶液及引发剂组成固态聚合物电解质/无机固态电解质/凝胶聚合物电解质多层结构。An asymmetric solid electrolyte, including inorganic solid electrolyte, solid polymer electrolyte precursor solution and initiator, gel polymer electrolyte precursor solution and initiator, electrolyte lithium salt, said inorganic solid electrolyte, solid polymer electrolyte precursor The bulk solution, the initiator and the gel polymer electrolyte precursor solution and the initiator form a solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte multilayer structure.
优选的,所述无机固态电解质选自离子导电率高的石榴石型固态电解质(LLZO、LLZTO、LLZNO)、钠超离子导体型固态电解质[磷酸钛铝锂(LATP)、磷酸锗铝锂(LAGP)]、锂超离子导体型固态电解质、硫化物固态电解质(LiS-GeS
2,Li
2S-B
2S
3,Li
2S-P
2S
5)、钙钛矿型固态电解质(ABO
3(A=Ca,Sr or La;B=Al,Ti))、硫银锗矿型无机固态电解质中的一种或几种。
Preferably, the inorganic solid electrolyte is selected from garnet type solid electrolytes with high ionic conductivity (LLZO, LLZTO, LLZNO), sodium superionic conductor type solid electrolytes [Lithium Aluminum Titanium Phosphate (LATP), Lithium Aluminum Germanium Phosphate (LAGP) )], lithium superion conductor solid electrolyte, sulfide solid electrolyte (LiS-GeS 2 , Li 2 SB 2 S 3 , Li 2 SP 2 S 5 ), perovskite solid electrolyte (ABO 3 (A=Ca, One or more of Sr or La; B=Al, Ti)) and arginite-type inorganic solid-state electrolytes.
优选的,所述固态电解质为石榴石型固态电解质。Preferably, the solid electrolyte is a garnet type solid electrolyte.
优选的,所述固态聚合物前驱体溶液以及引发剂中的前聚体溶液选自甲基丙烯酸甲酯(MMA)、甲基丙烯酸酯(VMA)、碳酸亚乙烯酯(VC)、丙烯腈(AN)、醋酸乙烯酯(VAC)、苯乙烯(ST)、聚氧化乙烯(PEO)、聚氧化乙烯(PPO)、聚氧化亚甲基(POM)、聚乙酸乙烯酯(PVA)、聚乙烯亚胺(PEI)、聚乙烯丁二酸酯、聚氧杂环丁烷、聚β-丙醇酸内酯、聚表氯醇、聚N-丙基氮杂环丙烷、聚烯化多硫、聚偏氟乙烯(PVDF)、丙烯酸甲酯(MA)、丙烯酰胺(AM)、2-羟基丙烯酸甲酯、三氟乙基丙烯酸酯(TFMA)、聚乙二醇苯醚丙烯酸酯(PEGPEA)、聚乙二醇二丙烯酸酯(PEGDA)、聚乙二醇二缩水甘油醚(PEGDE)、乙氧基化三甲基丙烷三丙烯酸(ETPTA)、聚氰基聚乙烯醇(PVA-CN)、1,3-二氧戊环(DOL)、四氢呋喃(THF)、聚乙烯醇缩甲醛(PVFM)中的一种或几种。Preferably, the solid polymer precursor solution and the precursor solution in the initiator are selected from methyl methacrylate (MMA), methacrylate (VMA), vinylene carbonate (VC), acrylonitrile ( AN), vinyl acetate (VAC), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), polyoxymethylene (POM), polyvinyl acetate (PVA), polyethylene oxide Amine (PEI), Polyethylene Succinate, Polyoxetane, Polyβ-Propanolide, Polyepichlorohydrin, PolyN-propylaziridine, Polyalkylene Polysulfide, Polyethylene Vinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylate (PEGPEA), poly Ethylene glycol diacrylate (PEGDA), polyethylene glycol diglycidyl ether (PEGDE), ethoxylated trimethylpropane triacrylic acid (ETPTA), polycyanopolyvinyl alcohol (PVA-CN), 1, One or more of 3-dioxolane (DOL), tetrahydrofuran (THF) and polyvinyl formal (PVFM).
优选的,所述固态聚合物前聚体溶液为1,3-二氧戊环(DOL)和聚乙二醇二环氧甘油醚(PEGDE)。Preferably, the solid polymer precursor solution is 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE).
优选的,所述固态聚合物前驱体溶液以及引发剂中的引发剂选自常用的自由基引发剂、阳离子引发剂和阴离子引发剂。自由基引发剂主要偶氮类引发剂(偶氮二异丁腈(AIBN),偶氮二异丁酸二甲酯引发剂等)、过氧类引发剂(过氧化二苯甲酰胺(BPO)等)和氧化还原类引发剂等;阳离子聚合的引发剂主要包括质子酸和Lewis酸(主要包括BF
3、PF
5、AlCl
3、Al(CF
3SO
3)
3、Sn(CF
3SO
3)
2);阴离子聚合的引发剂(主要有碱金属、碱金属和碱土金属的有机化合物、三级胺等碱类、给电子体或亲核试剂)中的一种或几种。
Preferably, the initiator in the solid polymer precursor solution and the initiator is selected from commonly used free radical initiators, cationic initiators and anionic initiators. Free radical initiators are mainly azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator, etc.), peroxy initiators (dibenzamide peroxide (BPO) etc.) and redox initiators, etc.; the initiators of cationic polymerization mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 ); one or more of the initiators of anionic polymerization (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
优选的,所述固态聚合物引发剂为阳离子引发剂LiPF
6可分解形成PF
5。
Preferably, the solid polymer initiator is a cationic initiator LiPF 6 which can be decomposed to form PF 5 .
优选的,所述凝胶聚合物前驱体溶液以及引发剂,所述凝胶聚合物前驱体溶液选自甲基丙烯酸甲酯(MMA)、甲基丙烯酸酯(VMA)、碳酸亚乙烯酯(VC)、丙烯腈(AN)、醋酸乙烯酯(VA
C)、苯乙烯(ST)、聚氧化乙烯(PEO)、聚氧化乙烯(PPO)、聚氧化亚甲基(POM)、聚乙酸乙烯酯(PVA)、聚乙烯亚胺(PEI)、聚乙烯丁二酸酯、聚氧杂环丁烷、聚β-丙醇酸内酯、聚表氯醇、聚N-丙基氮杂环丙烷、聚烯化多硫、聚偏氟乙烯(PVDF)、丙烯酸甲酯(MA)、丙烯酰胺(AM)、2-羟基丙烯酸甲酯、三氟乙基丙烯酸酯(TFMA)、聚乙二醇苯醚丙烯酸酯(PEGPEA)、聚乙二醇二丙烯酸酯(PEGDA)、聚乙二醇二缩水甘油醚(PEGDE)、乙氧基化三甲基丙烷三丙烯酸(ETPTA)、聚氰基聚乙烯醇(PVA-CN)、1,3-二氧戊环(DOL)、四氢呋喃(THF)、聚乙烯醇缩甲醛(PVFM)、碳酸丙烯酯、碳酸乙烯酯、碳酸二乙酯、氟代碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯、乙二醇二甲醚、二乙二醇二甲醚、二甲基砜、二甲醚中的一种或几种。
Preferably, the gel polymer precursor solution and the initiator are selected from methyl methacrylate (MMA), methacrylate (VMA), vinylene carbonate (VC) ), acrylonitrile (AN), vinyl acetate (VA C ), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), polyoxymethylene (POM), polyvinyl acetate ( PVA), polyethyleneimine (PEI), polyethylene succinate, polyoxetane, polyβ-propanolide, polyepichlorohydrin, polyN-propylaziridine, poly Alkenyl polysulfide, polyvinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate (TFMA), polyethylene glycol phenyl ether acrylic acid Esters (PEGPEA), Polyethylene Glycol Diacrylate (PEGDA), Polyethylene Glycol Diglycidyl Ether (PEGDE), Ethoxylated Trimethylpropane Triacrylic Acid (ETPTA), Polycyanopolyvinyl Alcohol (PVA) -CN), 1,3-dioxolane (DOL), tetrahydrofuran (THF), polyvinyl formal (PVFM), propylene carbonate, ethylene carbonate, diethyl carbonate, fluoroethylene carbonate, carbonic acid One or more of dimethyl ether, methyl ethyl carbonate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dimethyl sulfone and dimethyl ether.
优选的,所述凝胶聚合物前聚体溶液为碳酸亚乙烯酯(VC)。Preferably, the gel polymer precursor solution is vinylene carbonate (VC).
优选的,所述凝胶聚合物前驱体溶液以及引发剂中的引发剂选自常用的自由基引发剂、阳离子引发剂和阴离子引发剂。自由基引发剂主要偶氮类引发剂(偶氮二异丁腈(AIBN),偶氮二异丁酸二甲酯引发剂等)、过氧类引发剂(过氧化二苯甲酰胺(BPO)等)和氧化还原类引发剂等;阳离子聚合的引发剂主要包括质子酸和Lewis酸(主要包括BF
3、PF
5、AlCl
3、Al(CF
3SO
3)
3、Sn(CF
3SO
3)
2等);阴离子聚合的引发剂(主要有碱金属、碱金属和碱土金属的有机化合物、三级胺等碱类、给电子体或亲核试剂)中的一种或几种。
Preferably, the gel polymer precursor solution and the initiator in the initiator are selected from common free radical initiators, cationic initiators and anionic initiators. Free radical initiators are mainly azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator, etc.), peroxy initiators (dibenzamide peroxide (BPO) etc.) and redox initiators, etc.; the initiators of cationic polymerization mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 , etc.); one or more of the initiators of anionic polymerization (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
优选的,所述凝胶聚合物引发剂为BPO。Preferably, the gel polymer initiator is BPO.
优选的,所述电解质锂盐选自三氟甲基磺酸锂(LiCF
3SO
3)、二(三氟甲基磺酸)亚胺锂[LiN(CF
3SO
2)
2、LiTFSI]及其衍生物、全氟烷基磷酸锂[LiPF
3(C
2F
5)
3、LiFAP]、四氟草酸磷酸锂[LiPF
4(C
2O
4)]、双草酸硼酸锂(LiBOB)、三(邻苯二酚)磷酸锂(LTBP)以及磺化聚磺胺锂盐、六氟磷酸锂(LiPF
6)、高氯酸铝(LiClO
4)、四氟硼酸锂(LiBF
4)、六氟砷酸锂(LiAsF
6)中的一种或几种。
Preferably, the electrolyte lithium salt is selected from lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(trifluoromethanesulfonic acid)imide [LiN(CF 3 SO 2 ) 2 , LiTFSI] and their Derivatives, Lithium Perfluoroalkyl Phosphate [LiPF 3 (C 2 F 5 ) 3 , LiFAP], Lithium Tetrafluorooxalate Phosphate [LiPF 4 (C 2 O 4 )], Lithium Bisoxalate Borate (LiBOB), Tris(o- Hydroquinone) lithium phosphate (LTBP) and lithium sulfonated polysulfonamides, lithium hexafluorophosphate (LiPF 6 ), aluminum perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ) one or more of them.
优选的,所述电解质锂盐为二(三氟甲基磺酸)亚胺锂LiTFSI,且浓度范围为0.1–10mol/L。Preferably, the electrolyte lithium salt is lithium bis(trifluoromethanesulfonic acid)imide LiTFSI, and the concentration range is 0.1-10 mol/L.
优选的,所述电解质锂盐的浓度为1mol/L。Preferably, the concentration of the electrolyte lithium salt is 1 mol/L.
一种非对称固态电解质的制备方法,包括以下步骤:步骤101:制备无机固态电解质层:称量无机陶瓷固态电解质粉末,加入粘结剂充分研磨至均匀,取研磨粉末在压片机进行压片,进一步将陶瓷片放在马弗炉中在600-1100℃下进行烧结,将烧结好的陶瓷片表面进行抛光打磨;A method for preparing an asymmetric solid electrolyte, comprising the following steps: Step 101: preparing an inorganic solid electrolyte layer: weighing an inorganic ceramic solid electrolyte powder, adding a binder and fully grinding it to uniformity, taking the ground powder and compressing it in a tablet machine , and further place the ceramic sheet in a muffle furnace at 600-1100 ° C for sintering, and polish the surface of the sintered ceramic sheet;
步骤102:固态聚合物前躯体溶液的制备:取固态聚合物单体溶剂将锂盐溶解在前驱体溶液中,充分搅拌均匀;最后将引发剂边搅拌边加入到上述溶液中,充分搅拌半小时至溶液完全均匀,以上操作均在手套箱中进行;Step 102: Preparation of solid polymer precursor solution: take the solid polymer monomer solvent to dissolve the lithium salt in the precursor solution, stir well; finally add the initiator to the above solution while stirring, and stir well for half an hour Until the solution is completely uniform, the above operations are carried out in the glove box;
步骤103:凝胶聚合物前躯体溶液的制备:称量凝胶聚合物单体溶剂,加入锂盐,充分搅拌至溶解;加入引发剂,充分搅拌至溶液完全均匀,以上操作均在手套箱中进行;Step 103: Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box conduct;
步骤104:在负极表面上滴加固态聚合物前驱体溶液,上面覆盖无机陶瓷电解质片,陶瓷片上滴加凝胶聚合物固态电解质,上方覆盖磷酸铁锂正极,组装电池(上述组装过程也可以反向进行,或先使用前驱体溶液先滴加在正负极表面,然后在将无机陶瓷片放置于中间),在电池内部原位聚合形成非对称固态电解质。Step 104: drop the solid polymer precursor solution on the surface of the negative electrode, cover the inorganic ceramic electrolyte sheet, drop the gel polymer solid electrolyte on the ceramic sheet, cover the lithium iron phosphate positive electrode, and assemble the battery (the above assembly process can also be reversed). To carry out, or first use the precursor solution dropwise on the surface of the positive and negative electrodes, and then place the inorganic ceramic sheet in the middle), in-situ polymerization in the battery to form an asymmetric solid electrolyte.
一种固态锂电池,包含电池正极集流体、锂离子电池的正极材料、锂离子电池的负极材料、非对称固态电解质、以及用于封装的电池壳体。A solid-state lithium battery includes a battery positive electrode current collector, a positive electrode material for a lithium ion battery, a negative electrode material for the lithium ion battery, an asymmetric solid electrolyte, and a battery casing for packaging.
优选的,所述电池正极集流体选自铝、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其合金或其中任意一种金属的复合物或其中任意一种的合金。Preferably, the positive current collector of the battery is selected from one of aluminum, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese, or an alloy thereof, or a composite of any one of them, or any one of them. alloy.
优选的,所述电池正极集流体为铝箔。Preferably, the battery cathode current collector is aluminum foil.
优选的,所述锂离子电池的正极材料包含锂离子嵌入式正极化合物材料(钴酸锂、磷酸铁锂、镍钴锰三元材料)中的一种或几种。Preferably, the positive electrode material of the lithium ion battery comprises one or more of lithium ion embedded positive electrode compound materials (lithium cobalt oxide, lithium iron phosphate, nickel cobalt manganese ternary material).
优选的,所述锂离子电池的正极材料为磷酸铁锂正极。Preferably, the positive electrode material of the lithium ion battery is a lithium iron phosphate positive electrode.
一种固态锂电池的制备方法,步骤101:制备无机固态电解质层:称量无机陶瓷固态电解质粉末,滴加粘结剂(例如PVA等)充分研磨至均匀,取研磨粉末在压片机进行压片,再进一步将陶瓷片放在马弗炉中在600-1100℃下进行烧结,将烧结好的陶瓷片表面进行抛光打磨后备用;A method for preparing a solid-state lithium battery, step 101: preparing an inorganic solid-state electrolyte layer: weighing an inorganic ceramic solid-state electrolyte powder, dripping a binder (for example, PVA, etc.) and fully grinding until uniform, taking the ground powder and pressing it in a tablet machine. The ceramic sheet is further placed in a muffle furnace for sintering at 600-1100 ℃, and the surface of the sintered ceramic sheet is polished and ground for use;
步骤102:取固态聚合物单体溶剂将锂盐溶解在前驱体溶液中,充分搅拌均匀;最后将引发剂边搅拌边加入到上述溶液中,充分搅拌半小时至溶液完全均匀,以上操作均在手套箱中进行;备用;Step 102: Dissolve the lithium salt in the precursor solution by taking the solid polymer monomer solvent, and stir it evenly; finally, add the initiator to the above solution while stirring, and stir fully for half an hour until the solution is completely uniform. Carry out in glove box; reserve;
步骤103:凝胶聚合物前躯体溶液的制备:称量凝胶聚合物单体溶剂,加入锂盐,充分 搅拌至溶解;加入引发剂,充分搅拌至溶液完全均匀,以上操作均在手套箱中进行;备用;Step 103: Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box carry out; reserve;
步骤104:制备正极:称取正极活性材料、导电剂以及粘结剂,加入适当溶剂中充分混合成均匀浆料制成正极活性材料层;将正极集流体清洗干净,然后将所述正极活性材料层均匀涂覆于正极集流体表面,待所述正极活性材料层完全干燥后进行裁切,得所需尺寸的电池正极;Step 104: Preparation of the positive electrode: Weigh the positive electrode active material, the conductive agent and the binder, add them into an appropriate solvent, and fully mix them into a uniform slurry to form a positive electrode active material layer; clean the positive electrode current collector, and then remove the positive electrode active material The layer is evenly coated on the surface of the positive electrode current collector, and the positive electrode active material layer is completely dried and then cut to obtain a battery positive electrode of the required size;
步骤105:制备负极:将负极裁成直径为14mm的圆片,并放在真空干燥箱内备用。Step 105: Preparation of the negative electrode: Cut the negative electrode into a circle with a diameter of 14 mm, and place it in a vacuum drying box for use.
利用所述负极、固态聚合物前躯体溶液、无机陶瓷电解质片、凝胶聚合物前驱体溶液以及正极进行组装,然后利用热引发或其它引发方式进行原位聚合构成固态电池。The negative electrode, the solid polymer precursor solution, the inorganic ceramic electrolyte sheet, the gel polymer precursor solution and the positive electrode are used to assemble, and then the solid-state battery is formed by in-situ polymerization by thermal initiation or other initiation methods.
本发明采用上述技术方案,其有益效果在于:本发明所制备的非对称固态电解质由固态聚合物电解质/无机固态电解质/凝胶聚合物电解质组成。非对称电解质具有“固态聚合物电解质/无机固态电解质/凝胶聚合物电解质”多层结构;中间层是无机固态电解质,限制充放电过程中阴离子传输导致的极化行为;与金属锂负极接触一侧是采用原位聚合工艺制备的与金属锂具有良好电化学兼容性以及物理接触性能、且具有高机械强度的固态聚合物电解质,一方面高机械强度抑制锂枝晶的产生,同时改善界面性能,提升界面兼容性;与正极接触一侧是采用基于原位聚合形成的凝胶聚合物电解质,在改善界面接触性能的同时,凝胶聚合物固态电解质良好的柔韧性在一定程度上对体积变化产生的机械应力起缓冲作用,防止循环过程中的机械应力导致的界面失效问题;此外,界面接触层都采用原位聚合工艺,有利于形成紧密的界面共形接触,避免界面间隙与孔洞的形成。The present invention adopts the above technical scheme, and its beneficial effect is that the asymmetric solid electrolyte prepared by the present invention is composed of solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte. The asymmetric electrolyte has a multi-layer structure of "solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte"; the intermediate layer is an inorganic solid electrolyte, which limits the polarization behavior caused by anion transport during charge and discharge; it is in contact with the metal lithium anode. On the other hand, a solid polymer electrolyte with good electrochemical compatibility and physical contact performance with metal lithium prepared by in-situ polymerization process and high mechanical strength is used. , to improve the interface compatibility; the side in contact with the positive electrode is a gel polymer electrolyte formed based on in-situ polymerization. While improving the interface contact performance, the good flexibility of the gel polymer solid electrolyte can affect the volume change to a certain extent. The generated mechanical stress acts as a buffer to prevent the interface failure caused by the mechanical stress during the cycle; in addition, the interface contact layer adopts the in-situ polymerization process, which is conducive to the formation of tight interface conformal contact and avoids the formation of interface gaps and holes .
1)针对固态电解质面临的循环过程正极界面机械应力导致的接触失效、以及锂枝晶、界面接触性差、电化学兼容性不足等问题,提出基于原位聚合法构筑非对称多层固态电解质;1) In view of the contact failure caused by the mechanical stress at the positive interface during the cycling process, as well as the problems of lithium dendrites, poor interfacial contact, and insufficient electrochemical compatibility, an asymmetric multilayer solid electrolyte based on an in-situ polymerization method is proposed;
2)原位聚合形成具有高强度的固态聚合物电解质在提升与锂金属负极界面接触性能、电化学兼容性的同时,能够有效抑制锂枝晶的生长;3)原位聚合构筑的凝胶聚合物电解质一方面能够提升正极/电解质界面的接触性能以及良好的电化学兼容性,同时可以容纳充放电过程中正极材料体积变化带来的机械应力/应变,从而赋予循环过程中正极/电解质界面良好的稳定性能。2) In situ polymerization to form a solid polymer electrolyte with high strength can effectively inhibit the growth of lithium dendrites while improving the interface contact performance and electrochemical compatibility with lithium metal negative electrodes; 3) Gel polymerization constructed by in situ polymerization On the one hand, the physical electrolyte can improve the contact performance of the cathode/electrolyte interface and good electrochemical compatibility, and at the same time, it can accommodate the mechanical stress/strain caused by the volume change of the cathode material during the charging and discharging process, thereby endowing the cathode/electrolyte interface during cycling. stable performance.
图1(a)不同电流密度下LFP/ASE/Li电池的充放电曲线(ASE代表非对称固态电解质);Figure 1(a) The charge-discharge curves of LFP/ASE/Li batteries at different current densities (ASE stands for asymmetric solid electrolyte);
图2(b)LFP/ASE/Li电池倍率性能图;Figure 2(b) Rate performance diagram of LFP/ASE/Li battery;
图3(c)LFP/ASE/Li电池第10、50、100、150、200圈容量电压图;Figure 3(c) The capacity-voltage diagram of the 10th, 50th, 100th, 150th, and 200th cycles of LFP/ASE/Li battery;
图4(d)LFP/ASE/Li循环性能图。Figure 4(d) Cyclic performance plot of LFP/ASE/Li.
请参看图1至图4,本发明实施例提供了一种固态锂电池的制备方法。Referring to FIGS. 1 to 4 , an embodiment of the present invention provides a method for preparing a solid-state lithium battery.
具体实施例1Specific Example 1
制备无机陶瓷电解质LLZO,称量0.6g LLZO无机陶瓷粉末,滴加2滴粘结剂PVA进行研磨,研磨均匀后,均分成两份,在红外压片机进行压片(压强为20MPa),再进一步将陶瓷片放在马弗炉中进行高温烧结,先从室温以3℃/min升至150°,保温1h,再2℃/min升至550°,保温1h,再1℃/min升至1050℃,保温10h,最后自然降温。将烧结好的LLZO陶瓷片表面进行抛光打磨至1mm,放入真空手套箱内备用。To prepare inorganic ceramic electrolyte LLZO, weigh 0.6g of LLZO inorganic ceramic powder, add 2 drops of PVA binder dropwise for grinding, after grinding evenly, divide into two parts, press in an infrared tablet machine (pressure is 20MPa), and then Further put the ceramic sheet in a muffle furnace for high temperature sintering, first from room temperature to 150° at 3°C/min, holding for 1h, then 2°C/min to 550°, holding for 1h, and then 1°C/min to rise to 550° 1050 ℃, heat preservation for 10h, and finally cool down naturally. The surface of the sintered LLZO ceramic sheet was polished to 1mm, and placed in a vacuum glove box for use.
制备凝胶聚合物前躯体溶液液:将锂盐1mol/L LiTFSI和质量分数为1%BPO溶解在5mL聚合物单体碳酸亚乙烯酯中,剧烈搅拌一天,备用。Preparation of gel polymer precursor solution: Dissolve lithium salt 1mol/L LiTFSI and mass fraction of 1% BPO in 5mL of polymer monomer vinylene carbonate, stir vigorously for one day, and set aside.
制备固态聚合物前躯体溶液液:将锂盐1mol/L LiTFSI和适量引发剂六氟磷酸锂(LiPF
6)溶解在1,3-二氧戊环(DOL)和聚乙二醇二环氧甘油醚(PEGDE)中,充分搅拌溶解,备用。
Preparation of solid polymer precursor solution: Lithium salt 1mol/L LiTFSI and an appropriate amount of initiator lithium hexafluorophosphate (LiPF 6 ) were dissolved in 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE) ), stir well to dissolve and set aside.
制备磷酸铁锂正极,按8:1:1比例分别称取正极活性材料0.8g、导电剂0.1g、粘结剂0.1g,滴加适当N-甲基吡咯烷酮(NMP)充分混合研磨成均匀浆料;将正极集流体铝箔清洗干净,然后将所述磷酸铁锂正极浆液均匀涂覆于正极集流体表面制成正极活性材料层,立马放入真空干燥箱60℃干燥12h,待所述正极活性材料层完全干燥后取出裁剪成10mm的圆片,并放在真空干燥箱内备用。To prepare lithium iron phosphate positive electrode, weigh 0.8 g of positive electrode active material, 0.1 g of conductive agent, and 0.1 g of binder in a ratio of 8:1:1, and add appropriate N-methylpyrrolidone (NMP) dropwise to mix and grind to form a uniform slurry Clean the aluminum foil of the positive electrode current collector, and then evenly coat the lithium iron phosphate positive electrode slurry on the surface of the positive electrode current collector to make a positive electrode active material layer. After the material layer is completely dried, take it out and cut it into 10mm discs, and put them in a vacuum drying box for future use.
制备锂负极:将锂片裁成直径为14mm的圆片,并放在真空干燥箱内备用。Preparation of lithium negative electrode: Cut the lithium sheet into a 14mm diameter circle and put it in a vacuum drying oven for later use.
具有非对称固态电解质电池组装:在惰性气体保护的手套箱中,将上述制备好的负极、固态聚合物前驱体溶液、无机陶瓷电解质、凝胶聚合物前躯体溶液、正极依次紧密堆叠,然后将上述堆叠部分封装入扣式壳体,然后在80℃条件下实现原位聚合,完成电池组装。Battery assembly with asymmetric solid electrolyte: In a glove box protected by an inert gas, the prepared negative electrode, solid polymer precursor solution, inorganic ceramic electrolyte, gel polymer precursor solution, and positive electrode were tightly stacked in sequence, and then the The above-mentioned stacked parts are encapsulated into a button-type case, and then in-situ polymerization is realized at 80° C. to complete the battery assembly.
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。What is disclosed above is only the preferred embodiment of the present invention, of course, it cannot limit the scope of the right of the present invention. Those of ordinary skill in the art can understand that all or part of the process of realizing the above-mentioned embodiment can be made according to the claims of the present invention. The equivalent changes of the invention still belong to the scope covered by the invention.
Claims (21)
- 一种非对称固态电解质,其特征在于:包括无机固态电解质、固态聚合物电解质前驱体溶液及引发剂、凝胶聚合物电解质前驱体溶液及引发剂、电解质锂盐,所述无机固态电解质、固态聚合物电解质前驱体溶液及引发剂和凝胶聚合物电解质前驱体溶液及引发剂组成固态聚合物电解质/无机固态电解质/凝胶聚合物电解质多层结构。An asymmetric solid electrolyte, characterized in that it includes an inorganic solid electrolyte, a solid polymer electrolyte precursor solution and an initiator, a gel polymer electrolyte precursor solution and an initiator, and an electrolyte lithium salt, the inorganic solid electrolyte, solid The polymer electrolyte precursor solution and the initiator and the gel polymer electrolyte precursor solution and the initiator form a solid polymer electrolyte/inorganic solid electrolyte/gel polymer electrolyte multilayer structure.
- 如权利要求1所述的非对称固态电解质,其特征在于:所述无机固态电解质选自离子导电率高的石榴石型固态电解质(LLZO、LLZTO、LLZNO)、钠超离子导体型固态电解质[磷酸钛铝锂(LATP)、磷酸锗铝锂(LAGP)]、锂超离子导体型固态电解质、硫化物固态电解质(LiS-GeS 2,Li 2S-B 2S 3,Li 2S-P 2S 5)、钙钛矿型固态电解质(ABO 3(A=Ca,Sr or La;B=Al,Ti))、硫银锗矿型无机固态电解质中的一种或几种。 The asymmetric solid-state electrolyte according to claim 1, wherein the inorganic solid-state electrolyte is selected from the group consisting of garnet-type solid-state electrolytes (LLZO, LLZTO, LLZNO) with high ionic conductivity, sodium superionic conductor-type solid-state electrolytes [phosphoric acid] Lithium aluminum titanium (LATP), lithium aluminum germanium phosphate (LAGP)], lithium superion conductor type solid electrolyte, sulfide solid electrolyte (LiS-GeS 2 , Li 2 SB 2 S 3 , Li 2 SP 2 S 5 ), calcium One or more of titanite-type solid electrolytes (ABO 3 (A=Ca, Sr or La; B=Al, Ti)) and arginite-type inorganic solid electrolytes.
- 如权利要求2所述的非对称固态电解质,其特征在于:所述固态电解质为石榴石型固态电解质。The asymmetric solid-state electrolyte according to claim 2, wherein the solid-state electrolyte is a garnet-type solid-state electrolyte.
- 如权利要求1所述的非对称固态电解质,其特征在于:所述固态聚合物前驱体溶液以及引发剂(2)中的前聚体溶液选自甲基丙烯酸甲酯(MMA)、甲基丙烯酸酯(VMA)、碳酸亚乙烯酯(VC)、丙烯腈(AN)、醋酸乙烯酯(VAC)、苯乙烯(ST)、聚氧化乙烯(PEO)、聚氧化乙烯(PPO)、聚氧化亚甲基(POM)、聚乙酸乙烯酯(PVA)、聚乙烯亚胺(PEI)、聚乙烯丁二酸酯、聚氧杂环丁烷、聚β-丙醇酸内酯、聚表氯醇、聚N-丙基氮杂环丙烷、聚烯化多硫、聚偏氟乙烯(PVDF)、丙烯酸甲酯(MA)、丙烯酰胺(AM)、2-羟基丙烯酸甲酯、三氟乙基丙烯酸酯(TFMA)、聚乙二醇苯醚丙烯酸酯(PEGPEA)、聚乙二醇二丙烯酸酯(PEGDA)、聚乙二醇二缩水甘油醚(PEGDE)、乙氧基化三甲基丙烷三丙烯酸(ETPTA)、聚氰基聚乙烯醇(PVA-CN)、1,3-二氧戊环(DOL)、四氢呋喃(THF)、聚乙烯醇缩甲醛(PVFM)中的一种或几种。The asymmetric solid electrolyte according to claim 1, wherein the solid polymer precursor solution and the precursor solution in the initiator (2) are selected from methyl methacrylate (MMA), methacrylic acid Ester (VMA), Vinylene Carbonate (VC), Acrylonitrile (AN), Vinyl Acetate (VAC), Styrene (ST), Polyethylene Oxide (PEO), Polyethylene Oxide (PPO), Polymethylene Oxide Base (POM), Polyvinyl Acetate (PVA), Polyethyleneimine (PEI), Polyethylene Succinate, Polyoxetane, Polyβ-Propanolide, Polyepichlorohydrin, Polyethylene N-propylaziridine, polyalkylene polysulfide, polyvinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl acrylate ( TFMA), Polyethylene Glycol Phenyl Ether Acrylate (PEGPEA), Polyethylene Glycol Diacrylate (PEGDA), Polyethylene Glycol Diglycidyl Ether (PEGDE), Ethoxylated Trimethylpropane Triacrylic Acid (ETPTA) ), one or more of polycyanopolyvinyl alcohol (PVA-CN), 1,3-dioxolane (DOL), tetrahydrofuran (THF), and polyvinyl formal (PVFM).
- 如权利要求4所述的非对称固态电解质,其特征在于:所述固态聚合物前聚体溶液为1,3-二氧戊环(DOL)和聚乙二醇二环氧甘油醚(PEGDE)。The asymmetric solid electrolyte according to claim 4, wherein the solid polymer precursor solution is 1,3-dioxolane (DOL) and polyethylene glycol diglycidyl ether (PEGDE) .
- 如权利要求1所述的非对称固态电解质,其特征在于:所述固态聚合物前驱体溶液以及引发剂中的引发剂选自常用的自由基引发剂、阳离子引发剂和阴离子引发剂,自由基引发剂主要偶氮类引发剂(偶氮二异丁腈(AIBN),偶氮二异丁酸二甲酯引发剂)、过氧类引发剂(过氧化二苯甲酰胺(BPO))和氧化还原类引发剂;阳离子聚合的引发剂主要包括质子酸和Lewis酸(主要包括BF 3、PF 5、AlCl 3、Al(CF 3SO 3) 3、Sn(CF 3SO 3) 2);阴离子聚合的引发剂(主要有碱金属、碱金属和碱土金属的有机化合物、三级胺等碱类、给电子体或亲核试剂)中的一种或几种。 The asymmetric solid electrolyte according to claim 1, wherein the initiator in the solid polymer precursor solution and the initiator is selected from commonly used free radical initiators, cationic initiators and anionic initiators. The main initiators are azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator), peroxy initiators (dibenzamide peroxide (BPO)) and oxidative Reduction initiators; cationic polymerization initiators mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 ); anionic polymerization One or more of the initiators (mainly organic compounds of alkali metals, alkali metals and alkaline earth metals, bases such as tertiary amines, electron donors or nucleophiles).
- 如权利要求6所述的非对称固态电解质,其特征在于:所述固态聚合物引发剂为阳离 子引发剂LiPF 6可分解形成PF 5。 The asymmetric solid electrolyte according to claim 6, wherein the solid polymer initiator is a cationic initiator LiPF 6 which can be decomposed to form PF 5 .
- 如权利要求1所述的非对称固态电解质,其特征在于:所述凝胶聚合物前驱体溶液以及引发剂,所述凝胶聚合物前驱体溶液选自甲基丙烯酸甲酯(MMA)、甲基丙烯酸酯(VMA)、碳酸亚乙烯酯(VC)、丙烯腈(AN)、醋酸乙烯酯(VA C)、苯乙烯(ST)、聚氧化乙烯(PEO)、聚氧化乙烯(PPO)、聚氧化亚甲基(POM)、聚乙酸乙烯酯(PVA)、聚乙烯亚胺(PEI)、聚乙烯丁二酸酯、聚氧杂环丁烷、聚β-丙醇酸内酯、聚表氯醇、聚N-丙基氮杂环丙烷、聚烯化多硫、聚偏氟乙烯(PVDF)、丙烯酸甲酯(MA)、丙烯酰胺(AM)、2-羟基丙烯酸甲酯、三氟乙基丙烯酸酯(TFMA)、聚乙二醇苯醚丙烯酸酯(PEGPEA)、聚乙二醇二丙烯酸酯(PEGDA)、聚乙二醇二缩水甘油醚(PEGDE)、乙氧基化三甲基丙烷三丙烯酸(ETPTA)、聚氰基聚乙烯醇(PVA-CN)、1,3-二氧戊环(DOL)、四氢呋喃(THF)、聚乙烯醇缩甲醛(PVFM)、碳酸丙烯酯、碳酸乙烯酯、碳酸二乙酯、氟代碳酸乙烯酯、碳酸二甲酯、碳酸甲乙酯、乙二醇二甲醚、二乙二醇二甲醚、二甲基砜、二甲醚中的一种或几种。 The asymmetric solid electrolyte according to claim 1, wherein the gel polymer precursor solution and the initiator are selected from the group consisting of methyl methacrylate (MMA), methyl methacrylate (MMA), methyl methacrylate (MMA), and an initiator. vinyl acetate (VMA), vinylene carbonate (VC), acrylonitrile (AN), vinyl acetate (VA C ), styrene (ST), polyethylene oxide (PEO), polyethylene oxide (PPO), poly Oxymethylene (POM), Polyvinyl Acetate (PVA), Polyethyleneimine (PEI), Polyethylene Succinate, Polyoxetane, Polyβ-Propanolide, Polyepichloride Alcohol, polyN-propylaziridine, polyalkylene polysulfide, polyvinylidene fluoride (PVDF), methyl acrylate (MA), acrylamide (AM), 2-hydroxymethyl acrylate, trifluoroethyl Acrylate (TFMA), Polyethylene Glycol Phenyl Ether Acrylate (PEGPEA), Polyethylene Glycol Diacrylate (PEGDA), Polyethylene Glycol Diglycidyl Ether (PEGDE), Ethoxylated Trimethylpropane Tris Acrylic acid (ETPTA), polycyanopolyvinyl alcohol (PVA-CN), 1,3-dioxolane (DOL), tetrahydrofuran (THF), polyvinyl formal (PVFM), propylene carbonate, ethylene carbonate , one of diethyl carbonate, fluoroethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dimethyl sulfone, dimethyl ether or several.
- 如权利要求8所述的非对称固态电解质,其特征在于:所述凝胶聚合物前聚体溶液为碳酸亚乙烯酯(VC)。The asymmetric solid electrolyte of claim 8, wherein the gel polymer precursor solution is vinylene carbonate (VC).
- 如权利要求8所述的非对称固态电解质,其特征在于:所述凝胶聚合物前驱体溶液以及引发剂中的引发剂选自常用的自由基引发剂、阳离子引发剂和阴离子引发剂,自由基引发剂主要偶氮类引发剂(偶氮二异丁腈(AIBN),偶氮二异丁酸二甲酯引发剂)、过氧类引发剂(过氧化二苯甲酰胺(BPO))和氧化还原类引发剂;阳离子聚合的引发剂主要包括质子酸和Lewis酸(主要包括BF 3、PF 5、AlCl 3、Al(CF 3SO 3) 3、Sn(CF 3SO 3) 2);阴离子聚合的引发剂(碱金属、碱金属和碱土金属的有机化合物、三级胺碱类、给电子体或亲核试剂)中的一种或几种。 The asymmetric solid electrolyte according to claim 8, wherein the initiator in the gel polymer precursor solution and the initiator is selected from commonly used free radical initiators, cationic initiators and anionic initiators, free radicals The main initiators are azo initiators (azobisisobutyronitrile (AIBN), dimethyl azobisisobutyrate initiator), peroxy initiators (dibenzamide peroxide (BPO)) and Redox initiators; cationic polymerization initiators mainly include protonic acid and Lewis acid (mainly including BF 3 , PF 5 , AlCl 3 , Al(CF 3 SO 3 ) 3 , Sn(CF 3 SO 3 ) 2 ); anion One or more of the polymerization initiators (organic compounds of alkali metals, alkali metals and alkaline earth metals, tertiary amine bases, electron donors or nucleophiles).
- 如权利要求10所述的非对称固态电解质,其特征在于:所述凝胶聚合物引发剂为BPO。The asymmetric solid electrolyte of claim 10, wherein the gel polymer initiator is BPO.
- 如权利要求1所述的非对称固态电解质,其特征在于:所述电解质锂盐选自三氟甲基磺酸锂(LiCF 3SO 3)、二(三氟甲基磺酸)亚胺锂[LiN(CF 3SO 2) 2、LiTFSI]及其衍生物、全氟烷基磷酸锂[LiPF 3(C 2F 5) 3、LiFAP]、四氟草酸磷酸锂[LiPF 4(C 2O 4)]、双草酸硼酸锂(LiBOB)、三(邻苯二酚)磷酸锂(LTBP)以及磺化聚磺胺锂盐、六氟磷酸锂(LiPF 6)、高氯酸铝(LiClO 4)、四氟硼酸锂(LiBF 4)、六氟砷酸锂(LiAsF 6)中的一种或几种。 The asymmetric solid electrolyte according to claim 1, wherein the electrolyte lithium salt is selected from lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(trifluoromethanesulfonate)imide [ LiN(CF 3 SO 2 ) 2 , LiTFSI] and its derivatives, Lithium Perfluoroalkyl Phosphate [LiPF 3 (C 2 F 5 ) 3 , LiFAP], Lithium Tetrafluorooxalate Phosphate [LiPF 4 (C 2 O 4 ) ], lithium bis-oxalate borate (LiBOB), lithium tris(catechol) phosphate (LTBP) and lithium sulfonated polysulfonamides, lithium hexafluorophosphate (LiPF 6 ), aluminum perchlorate (LiClO 4 ), lithium tetrafluoroborate ( One or more of LiBF 4 ) and lithium hexafluoroarsenate (LiAsF 6 ).
- 如权利要求12所述的非对称固态电解质,其特征在于:所述电解质锂盐为二(三氟甲基磺酸)亚胺锂LiTFSI,且浓度范围为0.1–10mol/L。The asymmetric solid electrolyte according to claim 12, wherein the electrolyte lithium salt is lithium bis(trifluoromethanesulfonic acid)imide LiTFSI, and the concentration is in the range of 0.1-10 mol/L.
- 如权利要求13所述的非对称固态电解质,其特征在于:所述电解质锂盐的浓度为 1mol/L。The asymmetric solid electrolyte according to claim 13, wherein the concentration of the electrolyte lithium salt is 1 mol/L.
- 一种如权利要求1所述的非对称固态电解质的制备方法,其特征在于:包括以下步骤:1. The preparation method of asymmetric solid electrolyte as claimed in claim 1, is characterized in that: comprises the following steps:步骤101:制备无机固态电解质层:称量无机陶瓷固态电解质粉末,加入粘结剂充分研磨至均匀,取研磨粉末在压片机进行压片,进一步将陶瓷片放在马弗炉中在600-1100℃下进行煅烧烧结,将烧结好的陶瓷片表面进行抛光打磨;Step 101: Preparation of the inorganic solid electrolyte layer: weighing the inorganic ceramic solid electrolyte powder, adding a binder and fully grinding until uniform, taking the ground powder and compressing it in a tablet machine, and further placing the ceramic tablet in a muffle furnace at 600- calcining and sintering at 1100 °C, and polishing the surface of the sintered ceramic sheet;步骤102:固态聚合物前躯体溶液的制备:取固态聚合物单体溶剂将锂盐溶解在前驱体溶液中,充分搅拌均匀;最后将引发剂边搅拌边加入到上述溶液中,充分搅拌半小时至溶液完全均匀,以上操作均在手套箱中进行;Step 102: Preparation of solid polymer precursor solution: take the solid polymer monomer solvent to dissolve the lithium salt in the precursor solution, stir well; finally add the initiator to the above solution while stirring, and stir well for half an hour Until the solution is completely uniform, the above operations are carried out in the glove box;步骤103:凝胶聚合物前躯体溶液的制备:称量凝胶聚合物单体溶剂,加入锂盐,充分搅拌至溶解;加入引发剂,充分搅拌至溶液完全均匀,以上操作均在手套箱中进行;Step 103: Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box conduct;步骤104:在负极表面上滴加固态聚合物前驱体溶液,上面覆盖无机陶瓷电解质片,陶瓷片上滴加凝胶聚合物固态电解质,上方覆盖磷酸铁锂正极,组装电池(上述组装过程也可以反向进行,或先使用前驱体溶液先滴加在正负极表面,然后在将无机陶瓷片放置于中间),在电池内部原位聚合形成非对称固态电解质。Step 104: drop the solid polymer precursor solution on the surface of the negative electrode, cover the inorganic ceramic electrolyte sheet, drop the gel polymer solid electrolyte on the ceramic sheet, cover the lithium iron phosphate positive electrode, and assemble the battery (the above assembly process can also be reversed). To carry out, or first use the precursor solution dropwise on the surface of the positive and negative electrodes, and then place the inorganic ceramic sheet in the middle), in-situ polymerization in the battery to form an asymmetric solid electrolyte.
- 一种包含如权利要求1所述的非对称固态电解质的固态锂电池,其特征在于:包括电池正极集流体、锂离子电池的正极材料、锂离子电池的负极材料、非对称固态电解质、以及用于封装的电池壳体。A solid-state lithium battery comprising the asymmetric solid-state electrolyte according to claim 1, characterized in that: comprising a battery positive electrode current collector, a positive electrode material for a lithium-ion battery, a negative electrode material for a lithium-ion battery, an asymmetric solid-state electrolyte, and a in the encapsulated battery case.
- 如权利要求16所述的固态锂电池,其特征在于:所述电池正极集流体选自铝、钒、铜、铁、锡、锌、镍、钛、锰中的一种或其合金或其中任意一种金属的复合物或其中任意一种的合金。The solid-state lithium battery according to claim 16, wherein the battery cathode current collector is selected from one of aluminum, vanadium, copper, iron, tin, zinc, nickel, titanium, manganese or its alloy or any of them A composite of metals or an alloy of any of them.
- 如权利要求17所述的固态锂电池,其特征在于:所述电池正极集流体为铝箔。The solid-state lithium battery according to claim 17, wherein the positive current collector of the battery is an aluminum foil.
- 如权利要求16所述的固态锂电池,其特征在于:所述锂离子电池的正极材料包含锂离子嵌入式正极化合物材料(钴酸锂、磷酸铁锂、镍钴锰三元材料)中的一种或几种。The solid-state lithium battery according to claim 16, wherein the positive electrode material of the lithium ion battery comprises one of lithium ion embedded positive electrode compound materials (lithium cobalt oxide, lithium iron phosphate, nickel cobalt manganese ternary material). species or several.
- 如权利要求19所述的固态锂电池,其特征在于:所述锂离子电池的正极材料为磷酸铁锂正极。The solid-state lithium battery according to claim 19, wherein the positive electrode material of the lithium ion battery is a lithium iron phosphate positive electrode.
- 一种如权利要求16所述的固态锂电池的制备方法,其特征在于:步骤101:制备无机固态电解质层:称量无机陶瓷固态电解质粉末,滴加粘结剂(例如PVA等)充分研磨至均匀,取研磨粉末在压片机进行压片,再进一步将陶瓷片放在马弗炉中在600-1100℃下进行烧结,将烧结好的陶瓷片表面进行抛光打磨后备用;A method for preparing a solid-state lithium battery as claimed in claim 16, characterized in that: step 101: preparing an inorganic solid-state electrolyte layer: weighing the inorganic ceramic solid-state electrolyte powder, dripping a binder (for example, PVA, etc.) Evenly, take the grinding powder and press it in a tablet press, and then put the ceramic sheet in a muffle furnace for sintering at 600-1100 ° C, and polish and polish the surface of the sintered ceramic sheet for later use;步骤102:取固态聚合物单体溶剂将锂盐溶解在前驱体溶液中,充分搅拌均匀;最后将引发剂边搅拌边加入到上述溶液中,充分搅拌半小时至溶液完全均匀,以上操作均在手套箱 中进行;备用;Step 102: Dissolve the lithium salt in the precursor solution by taking the solid polymer monomer solvent, and stir it evenly; finally, add the initiator to the above solution while stirring, and stir fully for half an hour until the solution is completely uniform. Carry out in glove box; reserve;步骤103:凝胶聚合物前躯体溶液的制备:称量凝胶聚合物单体溶剂,加入锂盐,充分搅拌至溶解;加入引发剂,充分搅拌至溶液完全均匀,以上操作均在手套箱中进行;备用;Step 103: Preparation of gel polymer precursor solution: weigh the gel polymer monomer solvent, add lithium salt, stir until dissolved; add initiator, stir until the solution is completely uniform, the above operations are all in the glove box carry out; reserve;步骤104:制备正极:称取正极活性材料、导电剂以及粘结剂,加入适当溶剂中充分混合成均匀浆料制成正极活性材料层;将正极集流体清洗干净,然后将所述正极活性材料层均匀涂覆于正极集流体表面,待所述正极活性材料层完全干燥后进行裁切,得所需尺寸的电池正极;Step 104: Preparation of the positive electrode: Weigh the positive electrode active material, the conductive agent and the binder, add them into an appropriate solvent, and fully mix them into a uniform slurry to form a positive electrode active material layer; clean the positive electrode current collector, and then remove the positive electrode active material The layer is evenly coated on the surface of the positive electrode current collector, and the positive electrode active material layer is completely dried and then cut to obtain a battery positive electrode of the required size;步骤105:制备负极:将负极裁成直径为14mm的圆片,并放在真空干燥箱内备用;Step 105: Prepare the negative electrode: cut the negative electrode into a disc with a diameter of 14mm, and place it in a vacuum drying box for use;利用所述负极、固态聚合物前躯体溶液、无机陶瓷电解质片、凝胶聚合物前驱体溶液以及正极进行组装,然后利用热引发或其它引发方式进行原位聚合构成固态电池。The negative electrode, the solid polymer precursor solution, the inorganic ceramic electrolyte sheet, the gel polymer precursor solution and the positive electrode are used to assemble, and then the solid-state battery is formed by in-situ polymerization by thermal initiation or other initiation methods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/135019 WO2022120660A1 (en) | 2020-12-09 | 2020-12-09 | Asymmetric solid electrolyte and preparation method therefor, and solid lithium battery and preparation method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/135019 WO2022120660A1 (en) | 2020-12-09 | 2020-12-09 | Asymmetric solid electrolyte and preparation method therefor, and solid lithium battery and preparation method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022120660A1 true WO2022120660A1 (en) | 2022-06-16 |
Family
ID=81972918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/135019 WO2022120660A1 (en) | 2020-12-09 | 2020-12-09 | Asymmetric solid electrolyte and preparation method therefor, and solid lithium battery and preparation method therefor |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022120660A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114914539A (en) * | 2022-06-28 | 2022-08-16 | 肇庆小鹏汽车有限公司 | Solid/semisolid electrolyte and preparation method and application thereof |
CN115117442A (en) * | 2022-07-28 | 2022-09-27 | 华中科技大学 | Single-ion gel polymer electrolyte, preparation and application thereof |
CN115241541A (en) * | 2022-08-04 | 2022-10-25 | 中国人民解放军军事科学院防化研究院 | Preparation method of in-situ thermal polymerization solid lithium-sulfur battery |
CN115275362A (en) * | 2022-07-29 | 2022-11-01 | 中国地质大学(武汉) | Solid electrolyte containing heterogeneous ionic gel buffer layer and preparation and application thereof |
CN115498254A (en) * | 2022-08-01 | 2022-12-20 | 吉林省东驰新能源科技有限公司 | Semi-interpenetrating network polymer electrolyte and preparation method and application thereof |
CN116404247A (en) * | 2023-06-09 | 2023-07-07 | 西北工业大学 | PE-based polymer solid electrolyte and preparation method and application thereof |
CN116396323A (en) * | 2023-04-13 | 2023-07-07 | 四川启睿克科技有限公司 | Azobenzene electrolyte, synthesis method, application and solid-state battery and preparation method |
CN118016982A (en) * | 2024-04-09 | 2024-05-10 | 宁波容百新能源科技股份有限公司 | Solid electrolyte membrane, preparation method and lithium ion battery |
CN118431547A (en) * | 2024-07-02 | 2024-08-02 | 蜂巢能源科技股份有限公司 | Composite solid electrolyte and preparation method and application thereof |
WO2024164517A1 (en) * | 2023-02-10 | 2024-08-15 | 惠州锂威新能源科技有限公司 | Battery separator containing lewis acid, negative electrode coating material, solid-state battery, and preparation methods therefor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130260257A1 (en) * | 2012-04-02 | 2013-10-03 | Samsung Corning Precision Materials Co., Ltd. | Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same |
CN105470576A (en) * | 2014-08-29 | 2016-04-06 | 比亚迪股份有限公司 | High voltage lithium battery cell and preparation method therefor, and lithium ion battery |
CN110828883A (en) * | 2018-08-08 | 2020-02-21 | 比亚迪股份有限公司 | Lithium ion battery, preparation method thereof and electric vehicle |
CN111952663A (en) * | 2020-07-29 | 2020-11-17 | 青岛大学 | Interface-modified solid-state garnet type battery and preparation method thereof |
CN112038694A (en) * | 2020-09-14 | 2020-12-04 | 浙江大学 | Three-layer composite electrolyte with sandwich structure and preparation method and application thereof |
-
2020
- 2020-12-09 WO PCT/CN2020/135019 patent/WO2022120660A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130260257A1 (en) * | 2012-04-02 | 2013-10-03 | Samsung Corning Precision Materials Co., Ltd. | Electrolyte for lithium ion secondary battery and lithium ion secondary battery comprising the same |
CN105470576A (en) * | 2014-08-29 | 2016-04-06 | 比亚迪股份有限公司 | High voltage lithium battery cell and preparation method therefor, and lithium ion battery |
CN110828883A (en) * | 2018-08-08 | 2020-02-21 | 比亚迪股份有限公司 | Lithium ion battery, preparation method thereof and electric vehicle |
CN111952663A (en) * | 2020-07-29 | 2020-11-17 | 青岛大学 | Interface-modified solid-state garnet type battery and preparation method thereof |
CN112038694A (en) * | 2020-09-14 | 2020-12-04 | 浙江大学 | Three-layer composite electrolyte with sandwich structure and preparation method and application thereof |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114914539A (en) * | 2022-06-28 | 2022-08-16 | 肇庆小鹏汽车有限公司 | Solid/semisolid electrolyte and preparation method and application thereof |
CN115117442A (en) * | 2022-07-28 | 2022-09-27 | 华中科技大学 | Single-ion gel polymer electrolyte, preparation and application thereof |
CN115275362A (en) * | 2022-07-29 | 2022-11-01 | 中国地质大学(武汉) | Solid electrolyte containing heterogeneous ionic gel buffer layer and preparation and application thereof |
CN115275362B (en) * | 2022-07-29 | 2023-06-23 | 中国地质大学(武汉) | Solid electrolyte containing heterogeneous ionic gel buffer layer and preparation and application thereof |
CN115498254A (en) * | 2022-08-01 | 2022-12-20 | 吉林省东驰新能源科技有限公司 | Semi-interpenetrating network polymer electrolyte and preparation method and application thereof |
CN115241541A (en) * | 2022-08-04 | 2022-10-25 | 中国人民解放军军事科学院防化研究院 | Preparation method of in-situ thermal polymerization solid lithium-sulfur battery |
CN115241541B (en) * | 2022-08-04 | 2024-04-05 | 中国人民解放军军事科学院防化研究院 | Preparation method of in-situ thermal polymerization solid-state lithium sulfur battery |
WO2024164517A1 (en) * | 2023-02-10 | 2024-08-15 | 惠州锂威新能源科技有限公司 | Battery separator containing lewis acid, negative electrode coating material, solid-state battery, and preparation methods therefor |
CN116396323B (en) * | 2023-04-13 | 2024-05-14 | 四川启睿克科技有限公司 | Azobenzene electrolyte, synthesis method, application and solid-state battery and preparation method |
CN116396323A (en) * | 2023-04-13 | 2023-07-07 | 四川启睿克科技有限公司 | Azobenzene electrolyte, synthesis method, application and solid-state battery and preparation method |
CN116404247A (en) * | 2023-06-09 | 2023-07-07 | 西北工业大学 | PE-based polymer solid electrolyte and preparation method and application thereof |
CN118016982A (en) * | 2024-04-09 | 2024-05-10 | 宁波容百新能源科技股份有限公司 | Solid electrolyte membrane, preparation method and lithium ion battery |
CN118431547A (en) * | 2024-07-02 | 2024-08-02 | 蜂巢能源科技股份有限公司 | Composite solid electrolyte and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022120660A1 (en) | Asymmetric solid electrolyte and preparation method therefor, and solid lithium battery and preparation method therefor | |
CN108493486B (en) | Preparation method of in-situ polymerization solid-state battery | |
KR102378583B1 (en) | Separator Having Coating Layer of Lithium-Containing Composite, and Lithium Secondary Battery Comprising the Separator and Preparation Method Thereof | |
CN112242560A (en) | Solid-state lithium battery and electrode-diaphragm layer interface improvement method and application thereof | |
CN114614079B (en) | Asymmetric solid electrolyte and preparation method thereof, and solid lithium battery and preparation method thereof | |
CN108615941B (en) | Additive for preventing thermal runaway and application thereof in secondary lithium metal battery | |
US20150333385A1 (en) | Method for manufacturing a lithiated metal-carbon composite electrode, lithiated metal-carbon composite electrode manufactured thereby, and electrochemical device including the electrode | |
CN111934020B (en) | High-pressure-resistant all-solid-state lithium battery interface layer and in-situ preparation method and application thereof | |
CN109841836B (en) | Gel composite lithium metal electrode and preparation method and application thereof | |
CN102694158A (en) | Silicon-containing lithium cathode, preparation method thereof and lithium sulfur battery with silicon-containing lithium cathode | |
CN109786869B (en) | Application of polymer containing hindered amine structure in secondary lithium battery | |
US11881580B2 (en) | Flame-resistant bipolar electrodes, bipolar lithium batteries, and manufacturing method | |
JP2023513248A (en) | Surface-modified electrodes, methods of preparation and use in electrochemical cells | |
JP2003242964A (en) | Non-aqueous electrolyte secondary battery | |
JP2015088437A (en) | Pre-doping method of nonaqueous secondary battery and battery obtained by pre-doping method | |
Zhang et al. | Functional polyethylene glycol-based solid electrolytes with enhanced interfacial compatibility for room-temperature lithium metal batteries | |
CN111370791A (en) | Formation method of lithium-sulfur battery and lithium-sulfur battery prepared by formation method | |
CN114335700A (en) | Solid electrolyte membrane and preparation method thereof, secondary battery and preparation method | |
WO2023108322A1 (en) | Solid electrolyte having mechanical gradient and preparation method therefor and application thereof | |
Bai et al. | In-situ-polymerized 1, 3-dioxolane solid-state electrolyte with space-confined plasticizers for high-voltage and robust Li/LiCoO2 batteries | |
De Luna et al. | All-solid lithium-sulfur batteries: Present situation and future progress | |
CN113745636A (en) | Solid-state lithium battery and preparation method thereof | |
CN114497716B (en) | Solid electrolyte with mechanical gradient and preparation method and application thereof | |
WO2001089023A1 (en) | A lithium secondary battery comprising a super fine fibrous polymer electrolyte and its fabrication method | |
KR20200067434A (en) | Method for preparing negative electrode of lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20964600 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20964600 Country of ref document: EP Kind code of ref document: A1 |