WO2022118670A1 - 撮像装置、電子機器、製造方法 - Google Patents

撮像装置、電子機器、製造方法 Download PDF

Info

Publication number
WO2022118670A1
WO2022118670A1 PCT/JP2021/042527 JP2021042527W WO2022118670A1 WO 2022118670 A1 WO2022118670 A1 WO 2022118670A1 JP 2021042527 W JP2021042527 W JP 2021042527W WO 2022118670 A1 WO2022118670 A1 WO 2022118670A1
Authority
WO
WIPO (PCT)
Prior art keywords
image pickup
semiconductor chip
logic circuit
wafer
pickup apparatus
Prior art date
Application number
PCT/JP2021/042527
Other languages
English (en)
French (fr)
Inventor
智弘 大久保
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/254,425 priority Critical patent/US20240006450A1/en
Publication of WO2022118670A1 publication Critical patent/WO2022118670A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked

Definitions

  • CMOS Complementary Metal Oxide Semiconductor
  • CoW Chip on Wafer
  • non-defective products are sorted before the chip and wafer are connected, so test patterns for sorting non-defective products are arranged for each. This test pattern is placed in the area to be diced and is diced when the chips are fragmented from the wafer.
  • This technique was made in view of such a situation, and enables evaluation by a test pattern even after the chip is bonded to the wafer.
  • the image pickup device on one aspect of the present technology includes a first semiconductor chip, a second semiconductor chip laminated on the first semiconductor chip, and at least one side surface of the first semiconductor chip. At least one side surface of the second semiconductor chip is an image pickup device on the same surface.
  • the electronic device on one aspect of the present technology includes a first semiconductor chip, a second semiconductor chip laminated on the first semiconductor chip, and at least one side surface of the first semiconductor chip. At least one side surface of the second semiconductor chip is an electronic device including an image pickup device on the same surface and a processing unit for processing a signal from the image pickup device.
  • the second semiconductor chip is transferred to the wafer on which the first semiconductor chip is formed, and the second semiconductor chip is laminated on the wafer.
  • a manufacturing method that includes a step of dicing, and when the second semiconductor chip in which a region for pellet check is formed is transferred to the wafer and diced with the wafer, the region is also diced. be.
  • the electronic device on one aspect of the present technology is configured to include the image pickup device.
  • CoW Chip on Wafer
  • FIGS. 2 to 6 a process for manufacturing an image pickup device by CoW technology will be described.
  • a case where the logic circuit 21 is rearranged in the image pickup element 20 to generate an image pickup device will be described as an example.
  • a logic circuit 21 confirmed to be a good product is transferred to the image pickup device 20 on the wafer 11 after being electrically inspected, as shown in FIG. It becomes a state.
  • the state shown in FIG. 3 is a state in which the terminal 41 of the logic circuit 21 and the terminal 31 of the image pickup device 20 in the wafer 11 are aligned so as to be appropriately opposed to each other and connected by CuCu bonding. ..
  • a guard ring 32 is formed in the wiring layer of the image pickup device 20 of the image pickup device 61, and the guard ring 32 is inside the image pickup device 20 when dicing at the position D1 as shown in FIG. It is provided to protect the element formed in the above from the influence of dicing.
  • the logic circuit 21 is cut when the logic circuit 21 is fragmented, and then transferred to the wafer 11, after mounting on the wafer 11, the logic circuit 21 is mounted on the wafer 11.
  • the logic circuit 21 cannot be evaluated. After mounting the logic circuit 21 on the wafer 11, the characteristics of the logic circuit 21 may change, and there is a demand for evaluation even after CoW.
  • the characteristics of the logic circuit 21 can be evaluated even after CoW, but the chip size of the logic circuit 21 becomes large. There are problems such as hindering miniaturization and the inability to reduce costs.
  • a description of the CoW technique to which this technique is applied will be added with reference to FIGS. 8 and 9.
  • a plurality of image pickup devices 220 are formed on the wafer 101 by a semiconductor process. Further, on the image pickup element 220 formed on the wafer 101, a plurality of chips are formed on the wafer 102 by a semiconductor process, separated into individual pieces, and then electrically inspected to be confirmed to be non-defective chips.
  • a logic circuit 221 and a plurality of memory circuits 222 formed on the wafer 103 by a semiconductor process, separated into individual pieces, and then electrically inspected and confirmed to be non-defective chips are selected and re-selected. Have been placed.
  • the description will be continued by taking as an example the case where the semiconductor chip is the image pickup element 220, the logic circuit 221 and the memory circuit 222, but the semiconductor chip is not limited to these chips.
  • This technique can be applied to an apparatus having a process of laminating semiconductor chips and an apparatus manufactured by such a process.
  • the 1PC area 71 included in the logic circuit 221 is transferred to a position overlapping the scribed area when dicing the wafer 101. Therefore, when the wafer 101 is diced, the 1PC area 71 of the logic circuit 221 is also diced, and the individualized image pickup apparatus does not include the 1PC area 71. Therefore, it is possible to prevent the chip size from becoming large and prevent the image pickup device from being miniaturized.
  • the guard ring 242 of the logic circuit 221 is provided to protect the elements in the logic circuit 221 when the logic circuit 221 is separated from the wafer 102. Further, as will be described later, since the logic circuit 221 is transferred to the wafer 101 and then diced together with the wafer 101 again, a guard ring 242 is provided in order to protect the element and the like from the dicing at that time. There is.
  • the silicon (Si) constituting the wafer 102 is processed by a process such as dry etching or dicing. During this processing, there is a possibility that the silicon may be scratched due to silicon scraps, damage, etc., and the scratches may propagate. In order to prevent such a situation, a guard ring 242 is provided in the logic circuit 221.
  • the state shown in FIG. 11 is a state in which the terminal 241 of the logic circuit 221 and the terminal 231 of the image pickup device 220 in the wafer 101 are aligned so as to be appropriately opposed to each other and connected by CuCu bonding. ..
  • the appropriately opposed positions are positions where the 1PC region 71 included in the logic circuit 221 and the dicing region of the wafer 101 overlap.
  • an oxide film 251 that functions as an insulating film is formed, and a rearranged logic circuit 221 is embedded.
  • the support substrate 252 is bonded onto the formed oxide film 251.
  • a photodiode formed by a PN junction is formed on the image sensor 220 side, and a color filter and an on-chip lens are laminated to generate an image sensor 261 before individualization. ..
  • a guard ring 232 is formed in the wiring layer of the image pickup device 220 of the image pickup device 261a. As shown in FIG. 13, the guard ring 232 is inside the image pickup device 220 when dicing at the position D2. It is provided to protect the element formed in the above from the influence of dicing.
  • guard ring 242 formed in the logic circuit 221 is provided to protect the formed element in the logic circuit 221 from the influence of dicing when dicing at the position D2.
  • the guard ring 231 and the guard ring 241 are joined so as to be in a straight line.
  • the configuration is provided with a terminal for joining the guard ring 231 and the guard ring 242, but when this terminal part is also called a guard ring, the guard rings in different chips are connected to each other.
  • the image pickup apparatus 261a is configured.
  • the guard ring 231 and the guard ring 242 may be arranged so as to be located at different positions in the stacking direction. As will be described later as a fourth embodiment, a guard ring may not be connected.
  • the image pickup device 261a is configured such that an image pickup element 220 and a logic circuit 221 are laminated, a part of the logic circuit 221 is included in the oxide film 51, and a part of the logic circuit 221 is without the oxide film 51.
  • the image pickup device 261a shown in FIG. 14 has a structure in which a logic circuit 221a is laminated on an image pickup element 220a.
  • One surface of the image pickup element 220a and the logic circuit 221a is in a state where the end faces are aligned by dicing and, for example, a silicon substrate is exposed.
  • the exposed portion may be appropriately processed, such as forming an oxide film on the exposed portion after dicing instead of the exposed state of the silicon substrate.
  • the image sensor 220a and the end surface of the logic circuit 221a are located on at least one of the side surfaces of the image pickup device 261a.
  • at least one side surface of the image pickup device 220a and at least one side surface of the logic circuit 221a are on the same surface, and this same surface is one side surface of the image pickup device 261a. It is said that.
  • the wiring of the 1PC area 71 formed in the logic circuit 221a may remain.
  • the logic circuit 221a shown in FIG. 14 shows a state in which a part of the wiring formed in the 1PC region 71 remains on the left side of the guard ring 242 in the figure.
  • the logic circuit 221a is arranged at a position straddling the guard ring 232 formed in the image pickup element 220a.
  • the image pickup device 61 shown in FIG. 6 is formed in a state where the logic circuit 21 does not straddle the guard ring 32 formed in the image pickup element 20. Further, the logic circuit 21 is included in the oxide film 51 and is not arranged at a position where the end face is exposed.
  • the image pickup device 261a shown in FIG. 14 is positioned so as to straddle the guard ring 232 formed in the image pickup element 220a with respect to the image pickup device 61 shown in FIG.
  • the logic circuit 221a is arranged. Further, the end surface of the logic circuit 21 has a surface aligned with the end surface of the image pickup device 220a, and there is a surface exposed to the outside of the oxide film 251.
  • the logic circuit 221a is fragmented so as to include the 1PC region 71, transferred to the wafer 101, and then when the wafer 101 is diced, the 1PC region 71 of the logic circuit 221a is also diced.
  • the generated image pickup apparatus 261a has the above-mentioned configuration. That is, the generated image pickup apparatus 261a does not include the 1PC region 71.
  • the image pickup apparatus 261a in the manufacturing process, when the logic circuit 221a is individualized from the wafer 102, the first dicing is performed, and after being transferred to the wafer 101, the wafer 101 is individualized. At the same time as the wafer 101 is diced, a second dicing is performed. In this way, the logic circuit 221a is subject to two dicings, and by dicing, the image pickup apparatus 261a as described above is manufactured.
  • the logic circuit 221a included in the manufactured image pickup device 261a does not include the 1PC region 71, the logic circuit 221a is prevented from becoming large in size and does not hinder miniaturization. can do.
  • the logic circuit 221a When the logic circuit 221a is transferred to the wafer 101, the logic circuit 221a is transferred with the 1PC area 71, so that the logic circuit 221a can be evaluated even after the transfer.
  • FIGS. 15 to 17 The configuration and manufacture of the image pickup apparatus 261b according to the second embodiment will be described with reference to FIGS. 15 to 17.
  • the same parts as those of the image pickup apparatus 261a in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the 1PC region 71b of the logic circuit 221b of the image pickup device 261b in the second embodiment is different from the image pickup device 261a in the first embodiment in that the element 311 is included, and other parts are the same.
  • the logic circuit 221b is a logic circuit 221b determined to be a non-defective product, and is in a state of being transferred onto the image pickup element 220a of the wafer 101 in a state of including the 1PC area 71b.
  • the element 311 is formed in the 1PC region 71b of the logic circuit 221b.
  • This element 311 is, for example, an element such as a transistor, and is an element to be evaluated.
  • the 1PC region 71b provided in the logic circuit 221b can be configured to include the element 311.
  • the 1PC region 71b including the element 311 is located at the position D3 where dicing is performed, and is set as a dicing target region together with the wafer 101. As shown in FIG. 16, by applying dicing at the position D3, the wafer 101 is separated into pieces, and the image pickup apparatus 261b as shown in FIG. 17 is manufactured.
  • the element 311 is included in the 1PC region 71b included in the logic circuit 221b, and the dicing is executed including the element 311.
  • the image pickup device 261b in the second embodiment also has the logic circuit 221b subject to two dicings at the time of manufacture.
  • the state after the second dicing, that is, the image pickup device 216b has a structure in which the end faces of the image pickup element 220a and the logic circuit 221b are aligned and a part of the silicon substrate and wiring is exposed on the end faces. be.
  • the image pickup device 261b in the second embodiment has a logic circuit 221b arranged at a position straddling the guard ring 232 in the image pickup element 220a.
  • the image pickup apparatus 261b it is possible to prevent the size of the logic circuit 221b from becoming large and to prevent the logic circuit 221b from being miniaturized. Further, when the logic circuit 221b is transferred to the wafer 101, the logic circuit 221b is transferred with the 1PC region 71b, so that the logic circuit 221b can be evaluated after the transfer.
  • FIGS. 18 to 20 The configuration and manufacture of the image pickup apparatus 261c according to the third embodiment will be described with reference to FIGS. 18 to 20.
  • FIGS. 18 to 20 the same parts as those of the image pickup apparatus 261b in the second embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • FIG. 18 shows a state in which the logic circuit 221c is transferred to the image pickup device 220c of the wafer 101, the oxide film 251 is formed, and the support substrate 252 is laminated.
  • the 1PC region 71c of the logic circuit 221c of the image pickup apparatus 261c according to the third embodiment includes a guard ring 351 for protecting the element 311 from the influence of dicing during dicing. It is different from the image pickup device 261b in the form.
  • the image sensor 220c is also different from the image pickup device 261b in the second embodiment in that the guard ring 352 is formed at a position corresponding to the guard ring 351 provided in the logic circuit 221c.
  • the state of the image pickup apparatus 261c shown in FIG. 18 corresponds to the state of the image pickup apparatus 261b shown in FIG.
  • the logic circuit 221c is a logic circuit 221c determined to be a non-defective product, and is in a state of being transferred onto the image pickup element 220c of the wafer 101 in a state of including the 1PC region 71c.
  • the element 311 and the guard ring 351 are formed in the 1PC region 71c of the logic circuit 221c.
  • a guard ring 351 is formed to protect the element 311 from the influence of the first dicing.
  • the first dicing is the dicing performed when the wafer 102 is separated into pieces to generate the logic circuit 221c.
  • the element 311 and the guard ring 351 may be included in the 1PC region 71c provided in the logic circuit 221c.
  • the guard ring 352 is also formed on the image pickup element 220c, but the guard ring 352 is diced at the time of dicing on the first day. Since it is not an area, in other words, it has nothing to do with dicing when the logic circuit 221b is separated and generated, so it is possible to configure it without providing it.
  • the terminal is also configured in the 1PC area 71 (dicing area) and the terminals are connected to each other, but the terminal may not be formed in the dicing area.
  • the 1PC region 71c including the element 311 and the guard ring 351 is located at the position D4 where dicing is performed, and when the wafer 101 is diced, it becomes a target region for dicing together with the wafer 101. Will be done.
  • the wafer 101 is separated into pieces, and the image pickup apparatus 261c as shown in FIG. 20 is generated.
  • the image pickup apparatus 261c has a configuration in which the element 311 and the guard ring 351 are included in the 1PC region 71c included in the logic circuit 221c before the wafer 101 is fragmented. And the guard ring 351 is also included in the dicing.
  • the image pickup device 261c in the third embodiment also has the logic circuit 221c subject to two dicings at the time of manufacture.
  • the state after the second dicing, that is, the image pickup device 216c has a structure in which the end faces of the image pickup element 220c and the logic circuit 221c are aligned and a part of the silicon substrate and wiring is exposed on the end faces. be.
  • FIGS. 21 to 23 The configuration and manufacture of the image pickup apparatus 261d according to the fourth embodiment will be described with reference to FIGS. 21 to 23.
  • the same parts as those of the image pickup apparatus 261a in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • FIG. 21 shows a state in which the logic circuit 221d is transferred to the image pickup device 220d of the wafer 101, the oxide film 251 is formed, and the support substrate 252 is laminated.
  • the guard ring 242d of the logic circuit 221d of the image pickup apparatus 261d in the fourth embodiment is formed shorter than the guard ring 242 (referred to as a guard ring 242a) of the logic circuit 221a of the image pickup apparatus 261a in the first embodiment. The point is different.
  • the guard ring 232d of the image pickup device 220d of the image pickup device 261d in the fourth embodiment is formed shorter than the guard ring 232 (referred to as a guard ring 232a) of the image pickup element 220a of the image pickup device 261a in the first embodiment. The point is different.
  • the image pickup apparatus 261d according to the fourth embodiment is formed so as not to connect the guard ring 242d formed in the logic circuit 221d and the guard ring 232d formed in the image pickup element 220d. Therefore, the guard ring 242d and the guard ring 232d are different from the first to third embodiments in that they are arranged at a predetermined interval. Also in the first to third embodiments, it is possible to configure the guard ring 232 and the guard ring 234 not to be connected.
  • the guard ring 232a and the guard ring 242a are connected as in the image pickup apparatus 261a of the first embodiment. do.
  • the guard ring 232d and the guard ring 242d are not connected as in the image pickup apparatus 261d of the fourth embodiment. ..
  • the 1PC area 71d is located at the position D5 where dicing is performed, and when the wafer 101 is diced, it is set as a dicing target area together with the wafer 101. As shown in FIG. 22, dicing is performed at the position D5 to separate the wafer 101 into individual pieces, and the image pickup device 261d as shown in FIG. 23 is generated.
  • the logic circuit 221d in the fourth embodiment is subject to two dicings at the time of manufacture.
  • the state after the second dicing, that is, the image pickup device 216d has a structure in which the end faces of the image pickup element 220d and the logic circuit 221d are aligned and a part of the silicon substrate and wiring is exposed on the end faces. be.
  • the image pickup device 261d in the fourth embodiment also has the logic circuit 221d arranged at a position straddling the guard ring 232d in the image pickup element 220d as in the image pickup device 261a in the first embodiment.
  • the image pickup apparatus 261d it is possible to prevent the size of the logic circuit 221d from becoming large and to prevent the logic circuit 221d from being miniaturized. Further, when the logic circuit 221d is transferred to the wafer 101, the logic circuit 221d is transferred with the 1PC area 71d, so that the logic circuit 221d can be evaluated after the transfer.
  • FIGS. 24 to 26 The configuration and manufacture of the image pickup apparatus 261e according to the fifth embodiment will be described with reference to FIGS. 24 to 26.
  • the same parts as those of the image pickup apparatus 261c in the third embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the logic circuit 221c and the chip 400 are laminated in a wafer state, and after being individualized, the logic circuit 221c and the chip 400 that are individualized and laminated are the image pickup element 220c of the wafer 101.
  • the oxide film 251 is formed and the support substrate 252 is laminated.
  • the image pickup apparatus 261e according to the fifth embodiment is different in that the image pickup apparatus 261e according to the third embodiment is further laminated with the chip 400, and is the same in other respects.
  • the chip 400 can be, for example, a memory circuit 222.
  • FIG. 24 shows a case where the logic circuit 221c is laminated on the image pickup element 220c and the chip 400 (for example, the memory circuit 222) is laminated on the logic circuit 221c, but the chip 400 (for example, the memory) is laminated on the image pickup element 220c.
  • the circuit 222) may be laminated and the logic circuit 221c may be laminated on the chip 400.
  • the chip 400 has a configuration including 1PC area 71e when it is transferred onto the logic circuit 221c.
  • the element 411 is arranged in the 1PC region 71e of the chip 400 shown in FIG. 24.
  • a guard ring 412 for protecting the element 411 from the influence of dicing during dicing is also formed in the 1PC region 71e.
  • a guard ring 413 is formed on the left side of the figure of the element 411 in the 1PC region 71e of the chip 400.
  • a plurality of wirings 414 are also formed on the chip 400. At least one of the plurality of wirings 414, the wiring 414, is connected to the wiring 416 in the logic circuit 221c via the wiring 415.
  • the 1PC area 71e included in the chip 400 has the same configuration as the 1PC area 71c included in the logic circuit 221c is shown, but the 1PC area 71e and the 1PC area 71c have different configurations. May be.
  • the image pickup apparatus 261e is configured to include the element 311 and the guard ring 351 in the 1PC region 71c included in the logic circuit 221c and is diced. At this time, dicing is executed including the element 311 and the guard ring 351.
  • the image pickup apparatus 261e is configured to include the element 411 and the guard ring 412 in the 1PC region 71e included in the chip 400, and is diced. At this time, dicing is executed including the element 411 and the guard ring 412.
  • the logic circuit 221e and the chip 400 are each subject to two dicings at the time of manufacture of the image pickup device 261e in the fifth embodiment.
  • the end faces of the image pickup element 220c, the logic circuit 221c, and the chip 400 are aligned, and the silicon substrate and a part of the wiring are exposed on the end faces. It has a structure like this.
  • FIGS. 27 to 29 The configuration and manufacture of the image pickup apparatus 261f according to the sixth embodiment will be described with reference to FIGS. 27 to 29.
  • the same parts as those of the image pickup apparatus 261e in the fifth embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
  • the image pickup device 261f shown in FIG. 27 is different in that the logic circuit 221c arranged in the second layer of the image pickup device 261e shown in FIG. 24 is laminated with a wafer instead of a chip. The points are similar.
  • the image pickup element 220c of the wafer 101 and the chip 511 of the wafer 501 are bonded by WoW (Wafer on Wafer) technology.
  • the chip 400 is bonded onto the chip 511 by CoW technology.
  • WoW technology is a technology for joining and stacking wafers in the state of wafers.
  • the image pickup apparatus 261f can be manufactured by using the WoW technique and the CoW technique.
  • Chip 511 has a configuration including 1PC area 71f.
  • the 1PC region 71f is configured to include the element 521 and the guard ring 522. As shown in FIG. 28, the 1PC region 71f including the element 521 and the guard ring 522 is located at the position D7 where dicing is performed, and when the wafer 101 and the wafer 501 are diced, the target of dicing together with the wafer 101 is It is considered to be an area.
  • the chip 400 is also transferred onto the wafer 501 in a state including the 1PC region 71e, and the 1PC region 71e is transferred so as to be located at the position D7 where dicing is performed.
  • the 1PC region 71e is also a target region for dicing together with the wafer 101 and the wafer 501.
  • the wafer in which the wafer 101 and the wafer 501 are laminated is separated into individual pieces, and the image pickup device 261f as shown in FIG. 29 is generated.
  • the structure is such that chips of the same size are laminated.
  • the chip 400 is a small chip with respect to the image pickup element 220f and the chip 511, and the image pickup device 261f is formed in a structure in which such chips 400 are laminated.
  • the image pickup device 261f is different from the image pickup device 261 in other embodiments in that the image pickup device 261f has a structure in which chips of the same size are laminated and smaller chips are laminated.
  • the image pickup apparatus 261f has a configuration in which the element 411 and the guard ring 412 are included in the 1PC region 71d included in the chip 400 before the wafer is fragmented, and this element is used during dicing. Dicing is performed including 411 and the guard ring 412.
  • the image pickup apparatus 261f it is possible to prevent the size of the chip 400 and the chip 511 from becoming large and to prevent the chip 400 and the chip 511 from becoming smaller.
  • the chip 400 is transferred to the wafer 501, the chip 400 is transferred with the 1PC region 71e, so that the chip 400 can be evaluated after the transfer.
  • the state shown in FIG. 30 shows a state in which the logic circuit 221 g separated from the wafer 102 is transferred to the image sensor 220 g formed on the wafer 101.
  • a terminal 231g is formed on the image pickup device 220g, and a terminal 241g is formed on the logic circuit 221g.
  • Bumps 611 are formed on the terminals 231g and 241g, and the image pickup element 220g and the logic circuit 221g are connected to each other.
  • An underfill 622 is filled in the portion where the bump 611 is formed, in other words, between the image pickup element 220 g and the logic circuit 221 g (gap).
  • the logic circuit 221g is separated from the wafer 102 in a state including the 1PC region 71g, and is transferred onto the image pickup element 220g of the wafer 101.
  • the element 311g is provided in the 1PC region 71g.
  • the 1PC region 71g including the element 311g is located at the position D8 where dicing is performed, and when the wafer 101 is diced, it is a region to be diced together with the wafer 101.
  • dicing is performed at the position D8 to separate the wafer 101 into individual pieces, and 261 g of the image pickup apparatus as shown in FIG. 32 is manufactured.
  • the image pickup device 261 g in the seventh embodiment also has the logic circuit 221 g subject to two dicings at the time of manufacture.
  • the state after the second dicing that is, the image pickup device 216 g, has a configuration in which the end faces of the image pickup element 220 g and the logic circuit 221 g are aligned, and the silicon substrate and a part of the wiring are exposed on the end faces. Has been done.
  • the image pickup device 261g in the seventh embodiment also has a logic circuit 221g arranged at a position straddling the guard ring 232g in the image pickup element 220g.
  • the logic circuit 221a confirmed to be a good product is transferred to the image pickup device 220h on the wafer 101 after being electrically inspected.
  • the transferred logic circuit 221a includes a 1PC region 71a.
  • the memory circuit 222h which has been confirmed to be a non-defective product after being electrically inspected, is transferred to the image pickup device 220h on the wafer 101.
  • the transferred memory circuit 222h includes a 1PC area 71h.
  • the guard ring 711 of the memory circuit 222h is provided to protect the elements in the memory circuit 222h when the memory circuit 222h is separated from the wafer 103.
  • the image pickup device 220g is a region to which the memory circuit 222g is transferred, and the guard ring 721 is formed at a position corresponding to the guard ring 711 of the memory circuit 222g.
  • the logic circuit 221a and the memory circuit 222h are each transferred to the wafer 101, the state as shown in FIG. 33 is obtained.
  • the logic circuit 221a-1 and the memory circuit 222h-1 are transferred onto the image pickup element 220h-1 which is the image pickup device 261h-1
  • the logic circuit 221a-2 and the memory circuit 222h-2 are the image pickup device. It is transferred onto the image pickup element 220h-2 which becomes 261h-2.
  • the image pickup device 261h-1 and the image pickup device 261h-2 are individually separated.
  • the image pickup apparatus 261h as shown in FIG. 35 is generated.
  • the 1PC region 71a and the 1PC region 71h are laminated on the wafer 101 at the dicing position D9, when the wafer 101 is diced, the 1PC region 71a of the stacked logic circuit 221a and the 1PC region 71h of the memory circuit 222h are laminated. Is also diced.
  • the logic circuit 221a and the memory circuit 222h are laminated on the image pickup element 220h, respectively, and a part of the logic circuit 221a and the memory circuit 222h is contained in the oxide film 51, and a part of the image pickup device 51 has the oxide film 51. It is configured without any.
  • the image pickup device 261h shown in FIG. 35 has a structure in which a logic circuit 221a is laminated on an image pickup element 220h.
  • One surface of the image pickup device 220h and the logic circuit 221a (the surface on the right side in FIG. 35) is in a state where the end faces are aligned by dicing and, for example, a silicon substrate is exposed.
  • At least two surfaces are aligned with the end faces of the image pickup element 220h and the logic circuit 221a and the end faces of the image pickup element 220h and the memory circuit 221h as described above. It is a surface that has been removed.
  • the wiring of the 1PC area 71a formed in the logic circuit 221a may remain, or the wiring of the 1PC area 71h formed in the memory circuit 222h may remain.
  • the logic circuit 221a is arranged so as to straddle the guard ring 232 formed in the image pickup element 220h, and straddles the guard ring 721 formed in the image pickup element 220h.
  • the memory circuit 222h is arranged in the memory circuit 222h.
  • the image pickup apparatus 261h it is possible to prevent the size of the logic circuit 221a and the memory circuit 222h from becoming large and to prevent the miniaturization from being hindered. Further, when the logic circuit 221a is transferred to the wafer 101, the logic circuit 221a is transferred in a state where the logic circuit 221a has the 1PC region 71a. Therefore, the logic circuit 221a can be evaluated after the transfer. Similarly, when the memory circuit 221h is transferred to the wafer 101, the memory circuit 221h is transferred in a state where the memory circuit 221h has a 1PC area 71h. Therefore, the memory circuit 222h can be evaluated after the transfer.
  • the image pickup device described above can be applied to various electronic devices such as an image pickup device such as a digital still camera or a digital video camera, a mobile phone having an image pickup function, or another device having an image pickup function.
  • FIG. 36 is a block diagram showing a configuration example of an image pickup device as an electronic device to which the present technology is applied.
  • the image pickup device 1001 shown in FIG. 36 includes an optical system 1002, a shutter device 1003, an image pickup element 1004, a drive circuit 1005, a signal processing circuit 1006, a monitor 1007, and a memory 1008, and captures still images and moving images. It is possible.
  • the optical system 1002 is configured to have one or a plurality of lenses, and guides light (incident light) from a subject to the image pickup element 1004 to form an image on the light receiving surface of the image pickup element 1004.
  • the shutter device 1003 is arranged between the optical system 1002 and the image pickup element 1004, and controls the light irradiation period and the light shielding period to the image pickup element 1004 according to the control of the drive circuit 1005.
  • the image sensor 1004 is configured by a package including the above-mentioned image sensor.
  • the image pickup device 1004 accumulates signal charges for a certain period of time according to the light imaged on the light receiving surface via the optical system 1002 and the shutter device 1003.
  • the signal charge stored in the image pickup device 1004 is transferred according to the drive signal (timing signal) supplied from the drive circuit 1005.
  • the drive circuit 1005 outputs a drive signal for controlling the transfer operation of the image pickup element 1004 and the shutter operation of the shutter device 1003 to drive the image pickup element 1004 and the shutter device 1003.
  • the signal processing circuit 1006 performs various signal processing on the signal charge output from the image pickup device 1004.
  • the image (image data) obtained by performing signal processing by the signal processing circuit 1006 is supplied to the monitor 1007 and displayed, or supplied to the memory 1008 and stored (recorded).
  • any of the above-mentioned image pickup devices 261a to 261h can be applied to the optical system 1002 and the image pickup element 1004.
  • the technique according to the present disclosure can be applied to various products.
  • the techniques according to the present disclosure may be applied to an endoscopic surgery system.
  • FIG. 37 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
  • FIG. 37 illustrates how the surgeon (doctor) 11131 is performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image pickup device, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), etc., and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (light emission diode), and supplies the irradiation light for photographing the surgical site or the like to the endoscope 11100.
  • a light source such as an LED (light emission diode)
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by a combination of RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter in the image pickup device.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of the change of the light intensity to acquire an image in time division and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue, the surface layer of the mucous membrane is irradiated with light in a narrower band than the irradiation light (that is, white light) during normal observation.
  • narrow band imaging in which a predetermined tissue such as a blood vessel is photographed with high contrast, is performed.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating the excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrowband light and / or excitation light corresponding to such special light observation.
  • FIG. 38 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG. 37.
  • the camera head 11102 includes a lens unit 11401, an image pickup unit 11402, a drive unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicably connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup element constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to the 3D (dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the living tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the image pickup unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the image pickup unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and the focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the image pickup unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is configured by a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
  • the image pickup conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of the CCU11201 based on the acquired image signal. good.
  • the endoscope 11100 is equipped with a so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is configured by a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques.
  • the control unit 11413 detects a surgical tool such as forceps, a specific biological part, bleeding, mist when using the energy treatment tool 11112, etc. by detecting the shape, color, etc. of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgery support information and presenting it to the surgeon 11131, the burden on the surgeon 11131 can be reduced and the surgeon 11131 can surely proceed with the surgery.
  • the transmission cable 11400 connecting the camera head 11102 and CCU11201 is an electric signal cable corresponding to electric signal communication, an optical fiber corresponding to optical communication, or a composite cable thereof.
  • the technique according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 39 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (Interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 has a driving force generator for generating a driving force of a vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, turn signals or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle outside information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the out-of-vehicle information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the image pickup unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects a driver's state is connected to the vehicle interior information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether or not the driver has fallen asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generating device, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving that runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12030 based on the information outside the vehicle acquired by the vehicle outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the outside information detection unit 12030, and performs cooperative control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a head-up display.
  • FIG. 40 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the image pickup unit 12031 has image pickup units 12101, 12102, 12103, 12104, and 12105.
  • the image pickup units 12101, 12102, 12103, 12104, 12105 are provided at positions such as, for example, the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100.
  • the image pickup unit 12101 provided on the front nose and the image pickup section 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the image pickup units 12102 and 12103 provided in the side mirror mainly acquire images of the side of the vehicle 12100.
  • the image pickup unit 12104 provided in the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the image pickup unit 12105 provided on the upper part of the windshield in the vehicle interior is mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 40 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging range of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 can be obtained.
  • At least one of the image pickup units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera including a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative speed with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in advance in front of the preceding vehicle, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like that autonomously travels without relying on the driver's operation.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, electric poles, and other three-dimensional objects based on the distance information obtained from the image pickup units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that are visible to the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the image pickup units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging unit 12101 to 12104.
  • recognition of a pedestrian is, for example, a procedure for extracting feature points in an image captured by an image pickup unit 12101 to 12104 as an infrared camera, and a pattern matching process for a series of feature points showing the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 determines the square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the system represents the entire device composed of a plurality of devices.
  • the embodiment of the present technique is not limited to the above-described embodiment, and various changes can be made without departing from the gist of the present technique.
  • the present technology can also have the following configurations.
  • (1) The first semiconductor chip and A second semiconductor chip laminated on the first semiconductor chip is provided.
  • An image pickup device in which at least one side surface of the first semiconductor chip and at least one side surface of the second semiconductor chip are on the same surface.
  • (2) The first semiconductor chip contains a ring-shaped first structure.
  • the image pickup apparatus according to (1), wherein the second semiconductor chip is arranged at a position straddling the first structure on the first semiconductor chip.
  • the second semiconductor chip contains a ring-shaped second structure.
  • the image pickup apparatus according to (2), wherein the first structure and the second structure are arranged at substantially the same position in the stacking direction.
  • the image pickup apparatus wherein the third semiconductor chip is smaller than the first semiconductor chip.
  • the first semiconductor chip is a chip on which an image pickup device is formed.
  • the image pickup apparatus according to any one of (1) to (10) above, wherein the second semiconductor chip is a chip on which a logic circuit or a memory circuit is formed.
  • the first surface of the first semiconductor chip and the second surface of the second semiconductor chip on the same surface are the end faces at the time of dicing, according to any one of (1) to (11). Imaging device.
  • the imaging device (13) The imaging device according to (12) above, wherein the second surface is in a region for pellet checking.
  • the image pickup apparatus according to (12) above, wherein the second surface has a part of an element in the area for pellet check.
  • the first semiconductor chip and A second semiconductor chip laminated on the first semiconductor chip is provided. At least one side surface of the first semiconductor chip and at least one side surface of the second semiconductor chip are provided with an image pickup device on the same surface.
  • An electronic device including a processing unit that processes a signal from the image pickup device.
  • the second semiconductor chip is transferred to the wafer on which the first semiconductor chip is formed, and the second semiconductor chip is transferred. A step of dicing the wafer in a state where the second semiconductor chips are laminated is included. The second semiconductor chip in which the area for pellet check is formed is transferred to the wafer. A manufacturing method in which the region is also diced when diced with the wafer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Wire Bonding (AREA)
  • Dicing (AREA)

Abstract

本技術は、所望のタイミングで、チップを評価できるようにする撮像装置、電子機器、製造方法に関する。 第1の半導体チップと、第1の半導体チップに積層されている第2の半導体チップとを備え、第1の半導体チップの側面の少なくとも1面と、第2の半導体チップの側面の少なくとも1面は、同一面にある。第1の半導体チップは、リング状の第1の構造物を内包し、第2の半導体チップは、第1の半導体チップ上の、第1の構造物を跨ぐ位置に配置されている。本技術は、例えば複数の半導体チップが積層された撮像装置に適用できる。

Description

撮像装置、電子機器、製造方法
 本技術は撮像装置、電子機器、製造方法に関し、例えば、複数のチップを含む撮像装置に適用して好適な撮像装置、電子機器、製造方法に関する。
 従来、デジタルスチルカメラやデジタルビデオカメラなどの撮像機能を備えた電子機器においては、例えば、CCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどの固体撮像素子が使用されている。また、近年、固体撮像素子の小型化および高機能化が進められており、積層型のCMOSイメージセンサが広く採用されている。
 例えば、撮像装置の構成を小型化するための技術として、固体撮像素子と、信号処理回路やメモリ回路などの回路とをウェハの状態で接合するWoW(Wafer on Wafer)により積層する技術が提案されている(例えば、特許文献1参照)。
特開2014-099582号公報
 しかしながら、WoWの場合、積層するウェハのチップが同じサイズであれば良いが、ウェハに構成される各チップサイズが違うと、サイズを一番大きなチップサイズに合わせなければならず、回路毎の理収が悪くなりコストアップとなる可能性があった。
 そこで、ウェハから良品チップをピックアップして他のウェハ上に移載するCoW(Chip on Wafer)が提案されている。CoWではチップとウェハの接続前に良品選別を行うため、それぞれに良品選別用のテストパターンが配置されている。このテストパターンは、ダイシングされる領域に配置され、ウェハからチップが個片化されるときに、ダイシングされる。
 CoWによりウェハ上にチップを接合した後にも、チップ側のテストパターンを評価したいという要望があるが、テストパターンは、ウェハに積層される前にダイシングされているため、そのような要望に答えることができない。
 本技術は、このような状況に鑑みてなされたものであり、チップをウェハに接合した後にもテストパターンによる評価を行えるようにするものである。
 本技術の一側面の撮像装置は、第1の半導体チップと、前記第1の半導体チップに積層されている第2の半導体チップとを備え、前記第1の半導体チップの側面の少なくとも1面と、前記第2の半導体チップの側面の少なくとも1面は、同一面にある撮像装置である。
 本技術の一側面の電子機器は、第1の半導体チップと、前記第1の半導体チップに積層されている第2の半導体チップとを備え、前記第1の半導体チップの側面の少なくとも1面と、前記第2の半導体チップの側面の少なくとも1面は、同一面にある撮像装置を備え、前記撮像装置からの信号を処理する処理部を備える電子機器である。
 本技術の一側面の製造方法は、第1の半導体チップが形成されているウェハに、第2の半導体チップを移載し、前記第2の半導体チップが積層されている状態で、前記ウェハのダイシングを行う工程を含み、ペレットチェックのための領域が形成されている前記第2の半導体チップが、前記ウェハに移載され、前記ウェハとダイシングされるとき、前記領域もダイシングされる製造方法である。
 本技術の一側面の撮像装置においては、第1の半導体チップと、第1の半導体チップに積層されている第2の半導体チップとが備えられ、第1の半導体チップの側面の少なくとも1面と、第2の半導体チップの側面の少なくとも1面は、同一面にある。
 本技術の一側面の電子機器においては、前記撮像装置が含まれる構成とされている。
 本技術の一側面の製造方法においては、第1の半導体チップが形成されているウェハに、第2の半導体チップが移載され、第2の半導体チップが積層されている状態で、ウェハのダイシングが行われる。ペレットチェックのための領域が形成されている第2の半導体チップが、ウェハに移載され、ウェハとダイシングされるとき、領域もダイシングされる。
 なお、撮像装置は、独立した装置であっても良いし、1つの装置を構成している内部ブロックであっても良い。
CoWについて説明するための図である。 CoWでの撮像装置の製造工程について説明するための図である。 CoWでの撮像装置の製造工程について説明するための図である。 CoWでの撮像装置の製造工程について説明するための図である。 CoWでの撮像装置の製造工程について説明するための図である。 CoWでの撮像装置の製造工程について説明するための図である。 1PC領域を含むチップ構成について説明するための図である。 CoWについて説明するための図である。 1PC領域を含むチップ構成について説明するための図である。 第1の実施の形態における撮像装置の構成について説明するための図である。 第1の実施の形態における撮像装置の構成について説明するための図である。 第1の実施の形態における撮像装置の構成について説明するための図である。 第1の実施の形態における撮像装置の構成について説明するための図である。 第1の実施の形態における撮像装置の構成について説明するための図である。 第2の実施の形態における撮像装置の構成について説明するための図である。 第2の実施の形態における撮像装置の構成について説明するための図である。 第2の実施の形態における撮像装置の構成について説明するための図である。 第3の実施の形態における撮像装置の構成について説明するための図である。 第3の実施の形態における撮像装置の構成について説明するための図である。 第3の実施の形態における撮像装置の構成について説明するための図である。 第4の実施の形態における撮像装置の構成について説明するための図である。 第4の実施の形態における撮像装置の構成について説明するための図である。 第4の実施の形態における撮像装置の構成について説明するための図である。 第5の実施の形態における撮像装置の構成について説明するための図である。 第5の実施の形態における撮像装置の構成について説明するための図である。 第5の実施の形態における撮像装置の構成について説明するための図である。 第6の実施の形態における撮像装置の構成について説明するための図である。 第6の実施の形態における撮像装置の構成について説明するための図である。 第6の実施の形態における撮像装置の構成について説明するための図である。 第7の実施の形態における撮像装置の構成について説明するための図である。 第7の実施の形態における撮像装置の構成について説明するための図である。 第7の実施の形態における撮像装置の構成について説明するための図である。 第8の実施の形態における撮像装置の構成について説明するための図である。 第8の実施の形態における撮像装置の構成について説明するための図である。 第8の実施の形態における撮像装置の構成について説明するための図である。 電子機器の一例を示す図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
 以下に、本技術を実施するための形態(以下、実施の形態という)について説明する。
 <撮像装置の製造について>
 本技術を適用した撮像装置を製造する際に適用されるCoW(Chip on Wafer)技術について説明する。CoWは、ロジック基板の良品チップをピックアップしてセンサ基板に接合する技術である。
 図1は、ウェハ11上の撮像素子20に、個片化され、良品チップであることが確認されたロジック回路21とメモリ回路22が直接形成されるようにした撮像装置の製造方法を説明する図である。
 ウェハ11には、半導体プロセスにより複数の撮像素子20が形成されている。またウェハ11に形成された撮像素子20上には、半導体プロセスによりウェハ12上に形成され、個片化された後、それぞれ電気的な検査がなされ、良品チップであることが確認された複数のロジック回路21と、半導体プロセスによりウェハ13上に形成され、個片化された後、それぞれ電気的な検査がなされ、良品チップであることが確認された複数のメモリ回路22とが選択されて再配置されている。
 すなわち、良品チップであることが確認されたロジック回路21とメモリ回路22とが、撮像素子20上に再配置される。この後、ウェハ12がダイシングされることにより、個片化された撮像装置が生成される。
 図2乃至6を参照し、CoW技術により撮像装置を製造する際の工程について説明する。図2乃至6では、撮像素子20にロジック回路21が再配置され、撮像装置が生成される場合を例に挙げて説明する。
 図2に示すように、ウェハ11上の撮像素子20に、電気的な検査が行われた後、良品であることが確認されたロジック回路21が移載されることで、図3に示すような状態になる。
 図2,図3では、ロジック回路21-1が、撮像装置61-1となる撮像素子20-1上に移載され、ロジック回路22-2が、撮像装置61-2となる撮像素子20―2上に移載される例を示している。以下の説明において、ロジック回路21-1、ロジック回路21-2を個々に区別する必要がない場合、単にロジック回路21と記述する。他の部分も同様に記述する。
 図3に示した状態は、ロジック回路21の端子41と、ウェハ11における撮像素子20の端子31とが適切に対向する位置となるように位置合わせがなされ、CuCu接合により接続された状態である。
 ロジック回路21には、端子41の他に、ガードリング42も形成されている。このガードリング42は、ウェハ12からロジック回路21がダイシングされることで個片化されるときに、ロジック回路21内に形成されている素子が、ダイシングによる影響を受けないようにするために設けられている。
 次の工程として、図4に示すように、絶縁膜として機能する酸化膜51が成膜され、再配置されたロジック回路21が埋め込まれる。成膜された酸化膜51上に、支持基板52が接合される。
 図5に示すように、位置D1においてダイシングが施されることにより、撮像装置61-1と撮像装置61-2にそれぞれ個片化される。個片化されることで、図6に示したような撮像装置61が生成される。
 撮像装置61の撮像素子20の配線層には、ガードリング32が形成されているが、このガードリング32は、図5に示したように、位置D1においてダイシングされるときに、撮像素子20内に形成されている素子をダイシングによる影響から守るために設けられている。
 撮像装置61は、撮像素子20にロジック回路21が積層され、ロジック回路21が、酸化膜51に内包された状態で構成されている。
 ところで、例えば、ウェハ12(図1)が形成されたとき、ウェハ12の状態で、ペレットチェックと称される測定が行われ、良品チップであるか否かが確認される。ペレットチェックは、例えば、ウェハ12に形成されているロジック回路21に含まれるトランジスタ等の素子を単体で特性を評価するものである。一般的には、適宜の場所に評価用のトランジスタ等の素子が形成され、そのトランジスタ等の素子の測定が可能なるように形成した測定用電極パッドにプローブ針を当てて特性の測定が行われる。
 ペレットチェックのために形成されている領域を、1PC領域71とする。この1PC領域71は、図7のAに示すように、ロジック回路21毎に所定の位置に形成されている。ロジック回路21が個片化される前、すなわちウェハ12の状態のときには、図7のAの上図に示すように、ロジック回路21毎に1PC領域71が、ロジック回路21の近傍に形成されている。
 1PC領域71には、例えば、素子を単体で評価するための測定用の電極パッドや、ダミートランジスタなどが配置されている。図7のAに示した構成では、ロジック回路21となる領域外に、1PC領域71が形成されている。この1PC領域71は、個片化されるとき、ダイシングされる領域とされる。よって、図7のAの下図に示したように、1PC領域71がない状態のロジック回路21がウェハ11に移載される。
 または、図7のBの上図に示したように、ロジック回路21となる領域内に1PC領域71が形成されているようにすることもできる。この場合、ウェハ12からロジック回路21が個片化されるとき、1PC領域71を含む状態のロジック回路21が個片化される。よって、図7のBの下図に示すように、1PC領域71を含むロジック回路21がウェハ11に移載される。
 図7のAに示したように、1PC領域71をダイシング領域に配置し、ロジック回路21を個片化するときに切断してから、ウェハ11に移載する場合、ウェハ11に搭載した後に、ロジック回路21の評価が行えないことになる。ロジック回路21をウェハ11に搭載した後に、ロジック回路21の特性が変化する可能性があり、CoW後にも、評価が行えるようにしたいという要望がある。
 図7のBのように、ロジック回路21内に、1PC領域71を形成することで、CoW後にも、ロジック回路21の特性を評価することはできるが、ロジック回路21のチップサイズが大きくなり、小型化を阻害される、コストを下げられないといったような課題がある。
 チップサイズを大きくすることなく、CoW後にもロジック回路21の評価を行うことができる撮像装置や、撮像装置の製造方法について、以下に説明する。なお、ここでは、ロジック回路21を例に挙げて説明したが、メモリ回路22や、他のチップであっても、同様である。
 <本技術を適用した撮像装置の構成、製造について>
 図8、図9を参照し、本技術を適用したCoW技術について説明を加える。ウェハ101には、半導体プロセスにより複数の撮像素子220が形成されている。またウェハ101に形成された撮像素子220上には、半導体プロセスによりウェハ102上に形成され、個片化された後、それぞれ電気的な検査がなされ、良品チップであることが確認された複数のロジック回路221と、半導体プロセスによりウェハ103上に形成され、個片化された後、それぞれ電気的な検査がなされ、良品チップであることが確認された複数のメモリ回路222とが選択されて再配置されている。
 すなわち、良品チップであることが確認されたロジック回路221とメモリ回路222とが、撮像素子220上に再配置される。この後、ウェハ101がダイシングされることにより、個片化された撮像装置が生成される。
 ここでは、半導体チップが撮像素子220、ロジック回路221、およびメモリ回路222である場合を例に挙げて説明を続けるが、半導体チップは、これらのチップに限定される記載ではない。本技術は、半導体チップを積層する工程を有する装置や、そのような工程により製造される装置に対して適用できる。
 ウェハ102に形成されるロジック回路221は、図9の上図に示すように、1PC領域71を含む構成とされる。また、1PC領域71を含む状態で、ウェハ102からロジック回路221は個片化される。個片化された1PC領域71を含むロジック回路221は、ウェハ101の撮像素子220上に移載される。1PC領域71を含むロジック回路221がウェハ101に移載されるため、移載後も、ロジック回路221の評価を行うことができる。
 ロジック回路221がウェハ101に移載されるとき、ロジック回路221に含まれる1PC領域71が、ウェハ101をダイシングするときのスクライブされる領域と重なる位置に移載される。よって、ウェハ101がダイシングされるとき、ロジック回路221の1PC領域71もダイシングされ、個片化された撮像装置には、1PC領域71は含まれない構成となる。よって、チップサイズが大きくなるようなことを防ぎ、撮像装置の小型化を阻害するようなこと防ぐことができる。
 図10乃至14を参照し、図9を参照して説明したCoW技術により撮像装置を製造する際の工程についてさらに説明を加える。製造される撮像装置を、第1の実施の形態における撮像装置とし、撮像装置261aと記載する。ここでは、ロジック回路221がウェハ101に移載される場合を例に挙げて説明を行う。
 図10に示すように、ウェハ101上の撮像素子220に、電気的な検査が行われた後、良品であることが確認されたロジック回路221が移載される。この移載されるロジック回路221には、1PC領域71が含まれる。図10では、ロジック回路221の右側が1PC領域71とされている。1PC領域71は、ガードリング242の外側(図中右側)に設けられている。
 ロジック回路221のガードリング242は、ロジック回路221がウェハ102から個片化されるときに、ロジック回路221内の素子を保護するために設けられている。また、後述するように、ロジック回路221は、ウェハ101に移載された後、再度ウェハ101とともにダイシングされるため、そのときのダイシングからも素子などを守るために、ガードリング242は設けられている。
 ロジック回路221をウェハ102から個片化するとき、ウェハ102を構成するシリコン(Si)が、ドライエッチングやダイシング等の工程で加工される。この加工時に、シリコン屑やダメージ等により、シリコンに傷が生じたりする可能性が有り、この傷が、伝搬してしまう可能性がある。このようなことを防ぐためにガードリング242が、ロジック回路221内に設けられている。
 ガードリング242は、ロジック回路221に内包され、リング状に形成された構造物であり、そのリング内に位置する素子などを保護する構成とされている。例えば、図9において点線で示した部分は、ガードリングに該当し、ガードリングは、チップ(ロジック回路221など)の周辺部にリング状に形成されている。ガードリング242は、例えば、Al(アルミニウム)などの金属膜や、シリコン酸化膜(SiO2)等の絶縁膜で形成される。ここでは、ガードリング242を例に挙げて説明したが、他のガードリング、例えばガードリング232等に対しても同様である。
 ロジック回路221がウェハ101に移載されると、図11に示すような状態になる。図11では、ロジック回路221-1が、撮像装置261-1となる撮像素子220-1上に移載され、ロジック回路221-2が、撮像装置261-2となる撮像素子220―2上に移載される。
 図11に示した状態は、ロジック回路221の端子241と、ウェハ101における撮像素子220の端子231とが適切に対向する位置となるように位置合わせがなされ、CuCu接合により接続された状態である。ここで、適切に対向する位置とは、ロジック回路221に含まれる1PC領域71と、ウェハ101のダイシング領域とが重なる位置である。
 次の工程として、図12に示すように、絶縁膜として機能する酸化膜251が成膜され、再配置されたロジック回路221が埋め込まれる。成膜された酸化膜251上に、支持基板252が接合される。
 図示はしないが、この後、撮像素子220側に、PN接合によるフォトダイオードが形成されたり、カラーフィルタやオンチップレンズが積層されたりすることで、個片化前の撮像装置261が生成される。
 図13に示すように、位置D2においてダイシングが施されることにより、撮像装置261-1と撮像装置261-2にそれぞれ個片化される。ダイシングされる位置D2に、1PC領域71がウェハ101に積層されているため、ウェハ101がダイシングされるとき、積層されたロジック回路221もダイシングされる。個片化されることで、図14に示したような撮像装置261aが製造される。
 撮像装置261aの撮像素子220の配線層には、ガードリング232が形成されているが、このガードリング232は、図13に示したように、位置D2においてダイシングされるときに、撮像素子220内に形成されている素子をダイシングによる影響から守るために設けられている。
 同様に、ロジック回路221に形成されているガードリング242は、位置D2においてダイシングされるときに、ロジック回路221内の形成されている素子をダイシングによる影響から守るために設けられている。
 図14に示した撮像装置261aにおいては、ガードリング231とガードリング241が一直線上になるように接合されている例を示している。ガードリング231とガードリング242を接合するための端子が備えられた構成を示しているが、この端子の部分もガードリングと称した場合、異なるチップ内にあるガードリング同士が接続された状態になるように、撮像装置261aは構成されている。
 このように、ガードリング231とガードリング242は、積層方向(図中縦方向)において、略同一の位置となるように配置され、接続されている。
 ガードリング231とガードリング242は、積層方向において、異なる位置に位置するように配置されていても良い。第4の実施の形態として後述するように、ガードリングが接続されていない構成とすることもできる。
 撮像装置261aは、撮像素子220とロジック回路221が積層され、ロジック回路221の一部は、酸化膜51に内包され、一部は、酸化膜51がない状態で構成されている。
 図14に示した撮像装置261aは、撮像素子220aにロジック回路221aが積層された構造とされている。撮像素子220aとロジック回路221aの一面は、ダイシングにより端面が揃えられ、例えばシリコン基板が露出している状態である。なお、シリコン基板が露出した状態ではなく、ダイシング後に、露出している部分に酸化膜を形成するなど、適宜、露出している部分を加工しても良い。
 撮像装置261aの側面のうち、少なくとも1面には、撮像素子220aとロジック回路221aの端面(図14では、図中右側の面)が位置している構成とされている。換言すると、撮像素子220aの側面のうち、少なくとも1面と、ロジック回路221aの側面のうちの少なくとも1面は、同一面にあり、この同一面は、撮像装置261aの側面の1面である構成とされている。
 ダイシングの仕方、位置によっては、ロジック回路221aに形成されていた1PC領域71の配線が残る場合もある。図14に示したロジック回路221aには、ガードリング242の図中左側に、1PC領域71内に形成されていた配線の一部が残っている状態を示した。
 上記したようにして撮像装置261aを形成することで、撮像素子220a内に形成されたガードリング232を跨ぐような位置に、ロジック回路221aは配置される。
 図6に示した撮像装置61を比較のために再度参照する。図6に示した撮像装置61は、撮像素子20内に形成されたガードリング32上に、ロジック回路21が跨がる部分はない状態で形成されている。またロジック回路21は、酸化膜51に内包され、端面が露出するような位置には配置されていない。
 図6に示した撮像装置61に対して、図14に示した撮像装置261aは、撮像素子220a内に形成されたガードリング232を跨ぐような位置であり、ガードリング232の図中上側に、ロジック回路221aが配置されている。またロジック回路21の端面は、撮像素子220aの端面と揃っている面を有し、酸化膜251外に露出している面がある。
 このように、ロジック回路221aの一部に1PC領域71を含む状態で個片化し、ウェハ101に移載し、その後、ウェハ101をダイシングするとき、ロジック回路221aの1PC領域71もダイシングすることで生成された撮像装置261aは、上記したような構成を有する。すなわち、生成された撮像装置261aには、1PC領域71は含まれていない構成とされる。
 上記したような撮像装置261aは、製造工程において、ロジック回路221aは、ウェハ102から個片化されるときに1回目のダイシングが行われ、ウェハ101に移載された後、ウェハ101が個片化されるときに、ウェハ101がダイシングされると同時に2回目のダイシングが行われる。このように、ロジック回路221aは、2回のダイシングの対象となり、ダイシングされることで、上記したような撮像装置261aが製造される。
 製造された撮像装置261aに含まれるロジック回路221aは、1PC領域71を含まないため、ロジック回路221aのサイズが大きくなるようなことを防ぎ、小型化することを阻害することがない撮像装置261aとすることができる。
 ロジック回路221aを、ウェハ101に移載するとき、ロジック回路221aに1PC領域71がある状態で移載するため、移載後にも、ロジック回路221aの評価を行うこともできる。
 <第2の実施の形態における撮像装置>
 図15乃至図17を参照し、第2の実施の形態における撮像装置261bの構成、製造について説明する。図15乃至図17において、第1の実施の形態における撮像装置261aと同様の部分には、同一の符号を付し、その説明は適宜省略する。
 図15は、ロジック回路221bが、ウェハ101の撮像素子220aに移載され、酸化膜251が成膜され、支持基板252が積層された状態を示している。図15に示した撮像装置261bの状態は、図12に示した撮像装置261aの状態に該当する。
 以下に説明する実施の形態においては、製造途中の撮像装置261の状態として、1つの撮像装置261とダイシング領域(1PC領域71)を図示して説明するが、図12を参照して説明した場合と同じく、製造途中においては、ウェハ101上に形成されている複数の撮像素子220が存在し、その複数の撮像素子220上にそれぞれロジック回路221が移載されている状態である。
 第2の実施の形態における撮像装置261bのロジック回路221bの1PC領域71bには、素子311が含まれる点が、第1の実施の形態における撮像装置261aと異なり、他の部分は同一である。
 ロジック回路221bは、良品と判定されたロジック回路221bであり、1PC領域71bを含む状態で、ウェハ101の撮像素子220a上に移載された状態である。
 ロジック回路221bの1PC領域71bには、素子311が形成されている。この素子311は、例えば、トランジスタなどの素子であり、評価対象とされている素子である。このように、ロジック回路221bに設けられている1PC領域71bには、素子311が含まれている構成とすることができる。
 この素子311が含まれる1PC領域71bは、図16に示すように、ダイシングが行われる位置D3に位置し、ウェハ101と一緒にダイシングの対象領域とされる。図16に示すように、位置D3においてダイシングが施されることにより、ウェハ101が個片化され、図17に示したような撮像装置261bが製造される。
 第2の実施の形態におけるウェハ101がダイシングされる前は、ロジック回路221bに含まれる1PC領域71bに、素子311が含まれる構成とされ、この素子311も含めてダイシングが実行される。
 第2の実施の形態における撮像装置261bも、第1の実施の形態における撮像装置261aと同じく、製造時に、ロジック回路221bは、2回のダイシングの対象とされる。2回目のダイシングが行われた後の状態、すなわち撮像装置216bは、撮像素子220aとロジック回路221bの端面が揃い、シリコン基板や配線の一部が、その端面に露出しているような構造である。
 第2の実施の形態における撮像装置261bも、第1の実施の形態における撮像装置261aと同じく、撮像素子220a内のガードリング232を跨ぐ位置に、ロジック回路221bが配置されている。
 第2の実施の形態における撮像装置261bにおいても、ロジック回路221bのサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。また、ロジック回路221bを、ウェハ101に移載するとき、ロジック回路221bに1PC領域71bがある状態で移載するため、移載後に、ロジック回路221bの評価を行うこともできる。
 <第3の実施の形態における撮像装置>
 図18乃至図20を参照し、第3の実施の形態における撮像装置261cの構成、製造について説明する。図18乃至図20において、第2の実施の形態における撮像装置261bと同様の部分には、同一の符号を付し、その説明は適宜省略する。
 図18は、ロジック回路221cが、ウェハ101の撮像素子220cに移載され、酸化膜251が成膜され、支持基板252が積層された状態を示している。第3の実施の形態における撮像装置261cのロジック回路221cの1PC領域71cには、素子311を、ダイシングのときにダイシングの影響から守るためのガードリング351が含まれる点が、第2の実施の形態における撮像装置261bと異なる。
 撮像素子220cもロジック回路221cに設けられたガードリング351に対応する位置に、ガードリング352が形成されている点が、第2の実施の形態における撮像装置261bと異なる。
 図18に示した撮像装置261cの状態は、図15に示した撮像装置261bの状態に該当する。ロジック回路221cは、良品と判定されたロジック回路221cであり、1PC領域71cを含む状態で、ウェハ101の撮像素子220c上に移載された状態である。
 ロジック回路221cの1PC領域71cには、素子311とガードリング351が形成されている。この素子311を1回目のダイシング時の影響から保護するためにガードリング351が形成されている。1回目のダイシングとは、ウェハ102から個片化して、ロジック回路221cを生成するときに行われるダイシングのことである。
 このように、ロジック回路221cに設けられている1PC領域71cに、素子311とガードリング351が含まれる構成としても良い。
 なお、図18に示した撮像装置261cの構成例においては、撮像素子220cにもガードリング352が形成されている例を示したが、ガードリング352は、1日目のダイシング時には、ダイシングされる領域ではないため、換言すれば、ロジック回路221bが個片化されて生成されるときのダイシングには関係がないため、設けない構成とすることも可能である。
 上述した実施の形態においては、1PC領域71(ダイシング領域)にも端子を構成し、端子同士を接続する構成を示したが、ダイシング領域には端子を形成しない構成としてもよい。端子を構成し、端子同士を接続することで、ロジック回路221と撮像素子220の接続を強固のものとすることができるという利点は得られる。
 素子311とガードリング351が含まれる1PC領域71cは、図19に示すように、ダイシングが行われる位置D4に位置し、ウェハ101がダイシングされるときに、ウェハ101と一緒にダイシングの対象領域とされる。図19に示すように、位置D4においてダイシングが施されることにより、ウェハ101が個片化され、図20に示したような撮像装置261cが生成される。
 第3の実施の形態における撮像装置261cは、ウェハ101が個片化される前は、ロジック回路221cに含まれる1PC領域71cに、素子311とガードリング351が含まれる構成とされ、この素子311とガードリング351も含めてダイシングが実行される。
 第3の実施の形態における撮像装置261cも、第1の実施の形態における撮像装置261aと同じく、製造時に、ロジック回路221cは、2回のダイシングの対象とされる。2回目のダイシングが行われた後の状態、すなわち撮像装置216cは、撮像素子220cとロジック回路221cの端面が揃い、シリコン基板や配線の一部が、その端面に露出しているような構造である。
 第3の実施の形態における撮像装置261cも、第1の実施の形態における撮像装置261aと同じく、撮像素子220c内のガードリング232を跨ぐ位置に、ロジック回路221cが配置されている。
 第3の実施の形態における撮像装置261cにおいても、ロジック回路221cのサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。また、ロジック回路221cを、ウェハ101に移載するとき、ロジック回路221cに1PC領域71cがある状態で移載するため、移載後に、ロジック回路221cの評価を行うこともできる。
 <第4の実施の形態における撮像装置>
 図21乃至図23を参照し、第4の実施の形態における撮像装置261dの構成、製造について説明する。図21乃至図23において、第1の実施の形態における撮像装置261aと同様の部分には、同一の符号を付し、その説明は適宜省略する。
 図21は、ロジック回路221dが、ウェハ101の撮像素子220dに移載され、酸化膜251が成膜され、支持基板252が積層された状態を示している。
 第4の実施の形態における撮像装置261dのロジック回路221dのガードリング242dは、第1の実施の形態における撮像装置261aのロジック回路221aのガードリング242(ガードリング242aとする)よりも短く形成されている点が異なる。
 第4の実施の形態における撮像装置261dの撮像素子220dのガードリング232dは、第1の実施の形態における撮像装置261aの撮像素子220aのガードリング232(ガードリング232aとする)よりも短く形成されている点が異なる。
 第4の実施の形態における撮像装置261dは、ロジック回路221d内に形成されているガードリング242dと、撮像素子220d内に形成されているガードリング232dを接続しないように形成されている点、換言すれば、ガードリング242dとガードリング232dは、所定の間隔を有して配置されている点が、第1乃至第3の実施の形態と異なる。なお、第1乃至第3の実施の形態においても、ガードリング232とガードリング234が接続されない構成とすることも可能である。
 例えば、ロジック回路221のウェルと撮像素子220のウェルを同電位とする構成の場合、第1の実施の形態の撮像装置261aのように、ガードリング232aとガードリング242aが接続されている構成とする。一方で、ロジック回路221のウェルと撮像素子220のウェルを異なる電位とする構成の場合、第4の実施の形態の撮像装置261dのように、ガードリング232dとガードリング242dが接続されない構成とする。
 図21に示した撮像装置261dの状態は、図12に示した撮像装置261aの状態に該当する。ロジック回路221dは、良品と判定されたロジック回路221dであり、1PC領域71dを含む状態で、ウェハ101の撮像素子220d上に移載された状態である。
 1PC領域71dは、図22に示すように、ダイシングが行われる位置D5に位置し、ウェハ101がダイシングされるときに、ウェハ101と一緒にダイシングの対象領域とされる。図22に示すように、位置D5においてダイシングが施されることにより、ウェハ101が個片化され、図23に示したような撮像装置261dが生成される。
 第4の実施の形態における撮像装置261dは、ウェハ101が個片化される前は、ロジック回路221dに1PC領域71dが含まれる構成とされ、この1PC領域71dも含めてダイシングされる。
 第4の実施の形態における撮像装置261dも、第1の実施の形態における撮像装置261aと同じく、製造時に、ロジック回路221dは、2回のダイシングの対象とされる。2回目のダイシングが行われた後の状態、すなわち撮像装置216dは、撮像素子220dとロジック回路221dの端面が揃い、シリコン基板や配線の一部が、その端面に露出しているような構造である。
 第4の実施の形態における撮像装置261dも、第1の実施の形態における撮像装置261aと同じく、撮像素子220d内のガードリング232dを跨ぐ位置に、ロジック回路221dが配置されている。
 第4の実施の形態における撮像装置261dにおいても、ロジック回路221dのサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。また、ロジック回路221dを、ウェハ101に移載するとき、ロジック回路221dに1PC領域71dがある状態で移載するため、移載後に、ロジック回路221dの評価を行うこともできる。
 <第5の実施の形態における撮像装置>
 図24乃至図26を参照し、第5の実施の形態における撮像装置261eの構成、製造について説明する。図24乃至図26において、第3の実施の形態における撮像装置261cと同様の部分には、同一の符号を付し、その説明は適宜省略する。
 図24は、ロジック回路221cとチップ400が、ウェハの状態で積層され、個片化された後、その個片化され、積層されているロジック回路221cとチップ400が、ウェハ101の撮像素子220cに移載され、酸化膜251が成膜され、支持基板252が積層された状態を示している。第5の実施の形態における撮像装置261eは、第3の実施の形態における撮像装置261cの構成に、さらにチップ400が積層された構成とされている点が異なり、他の点は同様である。
 チップ400は、例えば、メモリ回路222とすることができる。図24では、撮像素子220c上にロジック回路221cが積層され、ロジック回路221c上にチップ400(例えばメモリ回路222)が積層されている場合を示したが、撮像素子220c上にチップ400(例えばメモリ回路222)が積層され、チップ400上にロジック回路221cが積層されている構成でも良い。
 チップ400は、ロジック回路221cと同じく、ロジック回路221c上に移載されたときには、1PC領域71eを含んだ構成とされている。図24に示したチップ400の1PC領域71eには、素子411が配置されている。この素子411を、ダイシングのときにダイシングの影響から守るためのガードリング412も、1PC領域71eには形成されている。チップ400の1PC領域71e内の素子411の図中左側には、ガードリング413が形成されている。
 チップ400には、複数の配線414も形成されている。複数の配線414のうちの少なくとも1つの配線414は、配線415を介して、ロジック回路221c内の配線416と接続されている。
 ここでは、チップ400に含まれる1PC領域71eは、ロジック回路221cに含まれる1PC領域71cと同様の構成を有している場合を示したが、1PC領域71eと1PC領域71cは、異なる構成であっても良い。
 素子411とガードリング412が含まれる1PC領域71eは、図25に示すように、ダイシングが行われる位置D6に位置し、ウェハ101がダイシングされるとき、ウェハ101と一緒にダイシングの対象領域とされる。図25に示すように、位置D6においてダイシングが施されることにより、ウェハ101が個片化され、図26に示したような撮像装置261eが生成される。
 第5の実施の形態における撮像装置261eは、ウェハ101が個片化される前は、ロジック回路221cに含まれる1PC領域71cに、素子311とガードリング351が含まれる構成とされ、ダイシングされるとき、この素子311とガードリング351も含めてダイシングが実行される。
 第5の実施の形態における撮像装置261eは、ウェハ101が個片化される前は、チップ400に含まれる1PC領域71eに、素子411とガードリング412が含まれる構成とされ、ダイシングがされるとき、この素子411とガードリング412も含めてダイシングが実行される。
 第5の実施の形態における撮像装置261eも、第1の実施の形態における撮像装置261aと同じく、製造時に、ロジック回路221eとチップ400は、それぞれ2回のダイシングの対象とされる。2回目のダイシングが行われた後の状態、すなわち撮像装置216eは、撮像素子220c、ロジック回路221c、およびチップ400の端面が揃い、シリコン基板や配線の一部が、その端面に露出しているような構造である。
 第5の実施の形態における撮像装置261eも、第1の実施の形態における撮像装置261aと同じく、撮像素子220c内のガードリング232を跨ぐ位置に、ロジック回路221cが配置されている。チップ400も、撮像素子220c内のガードリング232を跨ぐ位置に配置されている。
 第5の実施の形態における撮像装置261eにおいても、ロジック回路221cやチップ400のサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。また、ロジック回路221cやチップ400を、ウェハ101に移載するとき、ロジック回路221cに1PC領域71cがある状態で移載するため、また、チップ400に1PC領域71eがある状態で移載するため、移載後に、ロジック回路221cやチップ400の評価を行うこともできる。
 <第6の実施の形態における撮像装置>
 図27乃至図29を参照し、第6の実施の形態における撮像装置261fの構成、製造について説明する。図27乃至図29において、第5の実施の形態における撮像装置261eと同様の部分には、同一の符号を付し、その説明は適宜省略する。
 図27に示した撮像装置261fは、図24に示した撮像装置261eの2層目に配置されているロジック回路221cをチップではなく、ウェハで積層した構成とされている点が異なり、他の点は同様である。
 図27に示した撮像装置261fは、WoW(Wafer on Wafer)技術により、ウェハ101の撮像素子220cと、ウェハ501のチップ511が接合される。ウェハ同士が接合された後、そのチップ511の上にチップ400が、CoW技術により接合される。WoW技術は、ウェハの状態で接合して積層する技術である。
 ウェハ501のチップ511は、例えば、ロジック回路221やメモリ回路222とすることができる。そのようなチップ511が複数形成されているウェハ501と撮像素子220cが、WoW技術によりウェハの状態で接合され、積層構造とされる。その後、ウェハから個片化されたチップ400が移載される。
 このように、撮像装置261fは、WoW技術とCoW技術を用いて製造されるようにすることも可能である。
 チップ511は、1PC領域71fを含む構成である。1PC領域71fは、素子521とガードリング522を含む構成とされている。素子521とガードリング522が含まれる1PC領域71fは、図28に示すように、ダイシングが行われる位置D7に位置し、ウェハ101とウェハ501がダイシングされるとき、ウェハ101と一緒にダイシングの対象領域とされる。
 チップ400も、1PC領域71eを含む状態で、ウェハ501上に移載され、1PC領域71eは、ダイシングが行われる位置D7に位置するように移載される。1PC領域71eも、ウェハ101とウェハ501がダイシングされるとき、ウェハ101とウェハ501とともに、ダイシングの対象領域とされる。
 図28に示すように、位置D7においてダイシングが施されることにより、ウェハ101とウェハ501が積層されたウェハが個片化され、図29に示したような撮像装置261fが生成される。
 撮像装置261fの撮像素子220fとチップ511は、ウェハ101とウェハ501が積層された後にダイシングされるため、同程度の大きさのチップが積層された構造となっている。撮像素子220fとチップ511に対して、チップ400は小さいチップであり、そのようなチップ400が積層された構造に撮像装置261fはなっている。
 撮像装置261fは、同程度の大きさのチップが積層され、さらに小さいチップが積層された構造となっている点が、他の実施の形態における撮像装置261と異なる。
 第6の実施の形態における撮像装置261fは、ウェハが個片化される前は、ウェハ501のチップ511に含まれる1PC領域71fに、素子521とガードリング522が含まれる構成とされ、ダイシング時には、この素子521とガードリング522も含めてダイシングが実行される。
 第5の実施の形態における撮像装置261fは、ウェハが個片化される前は、チップ400に含まれる1PC領域71dに、素子411とガードリング412が含まれる構成とされ、ダイシング時には、この素子411とガードリング412も含めてダイシングが実行される。
 第6の実施の形態における撮像装置261fも、第1の実施の形態における撮像装置261aと同じく、製造時に、チップ400は、2回のダイシングの対象とされる。2回目のダイシングが行われた後の状態、すなわち撮像装置216fの状態では、撮像素子220c、チップ511、およびチップ400の端面が揃い、シリコン基板や配線の一部が、その端面に露出しているような構成とされている。
 第6の実施の形態における撮像装置261fも、第1の実施の形態における撮像装置261aと同じく、撮像素子220e内のガードリング232を跨ぐ位置に、チップ400が配置されている。チップ511は、ウェハ501の状態でウェハ101と積層されているため、チップ511も、撮像素子220c内のガードリング232を跨ぐ位置に配置されている。
 第6の実施の形態における撮像装置261fにおいても、チップ400やチップ511のサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。
 ウェハ501とウェハ101を積層するとき、ウェハ501に1PC領域71fがある状態で積層するため、ウェハ501に形成されているチップ511を、積層後でも評価を行うこともできる。
 同様に、チップ400を、ウェハ501に移載するとき、チップ400に1PC領域71eがある状態で移載するため、移載後に、チップ400の評価を行うこともできる。
 <第7の実施の形態における撮像装置>
 図30乃至図32を参照し、第7の実施の形態における撮像装置261gの構成、製造について説明する。第7の実施の形態における撮像装置261gは、バンプによりロジック回路221と撮像素子220が接続される点が、他の実施の形態と異なる。
 図30に示した状態は、ウェハ101に形成された撮像素子220gに、ウェハ102から個片化されたロジック回路221gが移載された状態を示している。撮像素子220gには、端子231gが形成され、ロジック回路221gには、端子241gが形成されている。端子231gと端子241gにバンプ611が形成され、撮像素子220gとロジック回路221gが接続される。バンプ611が形成されている部分、換言すれば、撮像素子220gとロジック回路221gとの間(隙間)には、アンダーフィル622が充填されている。
 ロジック回路221gは、1PC領域71gを含む状態でウェハ102から個片化され、ウェハ101の撮像素子220g上に移載される。1PC領域71gには、素子311gが設けられている。この素子311gが含まれる1PC領域71gは、図31に示すように、ダイシングが行われる位置D8に位置し、ウェハ101がダイシングされるとき、ウェハ101と一緒にダイシングされる領域とされる。図31に示すように、位置D8においてダイシングが施されることにより、ウェハ101が個片化され、図32に示したような撮像装置261gが製造される。
 図30乃至32に示した撮像装置261gは、酸化膜251や支持基板252がない構造を示した。このように、酸化膜251や支持基板252がない構造の撮像装置261gであっても良いし、図示はしていないが、酸化膜251や支持基板252が備えられている撮像装置261gであっても良い。
 第7の実施の形態における撮像装置261gは、ウェハ101が個片化される前は、ロジック回路221gに1PC領域71gが含まれ、その1PC領域71gに、素子311gが含まれる構成とされ、ウェハ101がダイシングされるとき、この素子311gも含めた1PC領域71gもダイシングされる。
 第7の実施の形態における撮像装置261gも、第1の実施の形態における撮像装置261aと同じく、製造時に、ロジック回路221gは、2回のダイシングの対象とされる。2回目のダイシングが行われた後の状態、すなわち撮像装置216gは、撮像素子220gとロジック回路221gの端面が揃い、シリコン基板や配線の一部が、その端面に露出しているような構成とされている。
 第7の実施の形態における撮像装置261gも、第1の実施の形態における撮像装置261aと同じく、撮像素子220g内のガードリング232gを跨ぐ位置に、ロジック回路221gが配置されている。
 第7の実施の形態における撮像装置261gにおいても、ロジック回路221gのサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。また、ロジック回路221gを、ウェハ101に移載するとき、ロジック回路221gに1PC領域71gがある状態で移載するため、移載後に、ロジック回路221gの評価を行うこともできる。
 <第8の実施の形態における撮像装置>
 図33乃至図35を参照し、第8の実施の形態における撮像装置261hの構成、製造について説明する。
 第1乃至第7の実施の形態においては、ウェハ101にロジック回路221を移載する例を挙げて説明した。第8の実施の形態は、ウェハ101にロジック回路221とメモリ回路222を移載する点が、第1乃至第7の実施の形態と異なる。第1の実施の形態における撮像装置261aと、同様の部分には同様の符号を付し、その説明は適宜省略する。
 図33に示すように、ウェハ101上の撮像素子220hに、電気的な検査が行われた後、良品であることが確認されたロジック回路221aが移載される。この移載されるロジック回路221aには、1PC領域71aが含まれている。同様に、ウェハ101上の撮像素子220hに、電気的な検査が行われた後、良品であることが確認されたメモリ回路222hが移載される。この移載されるメモリ回路222hには、1PC領域71hが含まれている。
 メモリ回路222hのガードリング711は、メモリ回路222hがウェハ103から個片化されるときに、メモリ回路222h内の素子を保護するために設けられている。図33に示した例では、撮像素子220gには、メモリ回路222gが移載される領域であり、メモリ回路222gのガードリング711に対応する位置に、ガードリング721が形成されている。
 ロジック回路221aとメモリ回路222hがそれぞれウェハ101に移載されると、図33に示すような状態になる。図33では、ロジック回路221a-1とメモリ回路222h-1が、撮像装置261h-1となる撮像素子220h-1上に移載され、ロジック回路221a-2とメモリ回路222h-2が、撮像装置261h-2となる撮像素子220h―2上に移載される。以下の説明において、メモリ回路222h-1、メモリ回路222h-2を個々に区別する必要がない場合、単にメモリ回路222hと記述する。
 図34に示すように、位置D9においてダイシングが施されることにより、撮像装置261h-1と撮像装置261h-2にそれぞれ個片化される。個片化されることで、図35に示したような撮像装置261hが生成される。
 ダイシングされる位置D9に、1PC領域71aと1PC領域71hがウェハ101に積層されているため、ウェハ101がダイシングされるとき、積層されたロジック回路221aの1PC領域71aとメモリ回路222hの1PC領域71hもダイシングされる。
 撮像装置261hは、撮像素子220h上に、ロジック回路221aとメモリ回路222hがそれぞれ積層され、ロジック回路221aとメモリ回路222hの一部はそれぞれ酸化膜51に内包され、一部は、酸化膜51がない状態で構成されている。
 図35に示した撮像装置261hは、撮像素子220hにロジック回路221aが積層された構造とされている。撮像素子220hとロジック回路221aの一面(図35では右側の面)は、ダイシングにより端面が揃えられ、例えばシリコン基板が露出している状態である。
 図35に示した撮像装置261hは、撮像素子220hにメモリ回路222hも積層された構造とされている。撮像素子220hとメモリ回路222hの一面は、ダイシングにより端面が揃えられ、例えばシリコン基板が露出している状態である。
 図35に示した撮像装置261hの側面のうち、少なくとも2面は、上記したように、撮像素子220hとロジック回路221aの端面が揃えられた面と、撮像素子220hとメモリ回路221hの端面が揃えられた面となっている。
 ダイシングの仕方、位置によっては、ロジック回路221aに形成されていた1PC領域71aの配線が残っていたり、メモリ回路222hに形成されていた1PC領域71hの配線が残っていたりする。
 上記したように撮像装置261hを形成することで、撮像素子220h内に形成されたガードリング232を跨ぐように、ロジック回路221aは配置され、撮像素子220h内に形成されたガードリング721を跨ぐように、メモリ回路222hは配置される。
 第8の実施の形態における撮像装置261hにおいても、ロジック回路221aやメモリ回路222hのサイズが大きくなるようなことを防ぎ、小型化することを阻害することがないようにすることができる。また、ロジック回路221aを、ウェハ101に移載するとき、ロジック回路221aに1PC領域71aがある状態で移載するため、移載後に、ロジック回路221aの評価を行うこともできる。同様にメモリ回路221hを、ウェハ101に移載するとき、メモリ回路221hに1PC領域71hがある状態で移載するため、移載後に、メモリ回路222hの評価を行うこともできる。
 上述した第1乃至第8の実施の形態は、適宜組み合わせて実施することが可能であり、組み合わせた実施の形態も、本技術の適用範囲内である。
 <電子機器への適用例>
 上述した撮像装置は、例えば、デジタルスチルカメラやデジタルビデオカメラなどの撮像装置、撮像機能を備えた携帯電話機、または、撮像機能を備えた他の機器といった各種の電子機器に適用することができる。
 図36は、本技術を適用した電子機器としての撮像装置の構成例を示すブロック図である。図36に示される撮像装置1001は、光学系1002、シャッタ装置1003、撮像素子1004、駆動回路1005、信号処理回路1006、モニタ1007、およびメモリ1008を備えて構成され、静止画像および動画像を撮像可能である。
 光学系1002は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を撮像素子1004に導き、撮像素子1004の受光面に結像させる。
 シャッタ装置1003は、光学系1002および撮像素子1004の間に配置され、駆動回路1005の制御に従って、撮像素子1004への光照射期間および遮光期間を制御する。
 撮像素子1004は、上述した撮像素子を含むパッケージにより構成される。撮像素子1004は、光学系1002およびシャッタ装置1003を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。撮像素子1004に蓄積された信号電荷は、駆動回路1005から供給される駆動信号(タイミング信号)に従って転送される。
 駆動回路1005は、撮像素子1004の転送動作、および、シャッタ装置1003のシャッタ動作を制御する駆動信号を出力して、撮像素子1004およびシャッタ装置1003を駆動する。
 信号処理回路1006は、撮像素子1004から出力された信号電荷に対して各種の信号処理を施す。信号処理回路1006が信号処理を施すことにより得られた画像(画像データ)は、モニタ1007に供給されて表示されたり、メモリ1008に供給されて記憶(記録)されたりする。
 このように構成されている撮像装置1001においても、光学系1002、および撮像素子1004に、上述した撮像装置261a乃至261hのいずれかを適用することができる。
 <内視鏡手術システムへの応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、内視鏡手術システムに適用されてもよい。
 図37は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図37では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(light emitting diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図38は、図37に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 <移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図39は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図39に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(Interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12030に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図39の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図40は、撮像部12031の設置位置の例を示す図である。
 図40では、撮像部12031として、撮像部12101、12102、12103、12104、12105を有する。
 撮像部12101、12102、12103、12104、12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102、12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。車室内のフロントガラスの上部に備えられる撮像部12105は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図40には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 本明細書において、システムとは、複数の装置により構成される装置全体を表すものである。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 なお、本技術は以下のような構成も取ることができる。
(1)
 第1の半導体チップと、
 前記第1の半導体チップに積層されている第2の半導体チップと
 を備え、
 前記第1の半導体チップの側面の少なくとも1面と、前記第2の半導体チップの側面の少なくとも1面は、同一面にある
 撮像装置。
(2)
 前記第1の半導体チップは、リング状の第1の構造物を内包し、
 前記第2の半導体チップは、前記第1の半導体チップ上の、前記第1の構造物を跨ぐ位置に配置されている
 前記(1)に記載の撮像装置。
(3)
 前記第2の半導体チップは、リング状の第2の構造物を内包し、
 前記第1の構造物と前記第2の構造物は、積層方向において略同一の位置に配置されている
 前記(2)に記載の撮像装置。
(4)
 前記第1の構造物と前記第2の構造物は、ガードリングである
 前記(3)に記載の撮像装置。
(5)
 前記第1の構造物と前記第2の構造物は、接続されている
 前記(3)または(4)に記載の撮像装置。
(6)
 前記第1の構造物と前記第2の構造物は、所定の間隔を有して配置されている
 前記(3)または(4)に記載の撮像装置。
(7)
 前記第1の半導体チップと前記第2の半導体チップは、バンプで接続されている
 前記(1)乃至(6)のいずれかに記載の撮像装置。
(8)
 前記第2の半導体チップ上に、さらに第3の半導体チップが積層されている
 前記(1)乃至(7)のいずれかに記載の撮像装置。
(9)
 前記第1の半導体チップ上に、さらに第3の半導体チップが積層されている
 前記(1)乃至(7)のいずれかに記載の撮像装置。
(10)
 前記第1の半導体チップと前記第2の半導体チップは、同程度の大きさであり、
 第3の半導体チップは、前記第1の半導体チップよりも小さい
 前記(8)に記載の撮像装置。
(11)
 前記第1の半導体チップは、撮像素子が形成されているチップであり、
 前記第2の半導体チップは、ロジック回路またはメモリ回路が形成されているチップである
 前記(1)乃至(10)のいずれかに記載の撮像装置。
(12)
 前記同一面にある前記第1の半導体チップの第1の面と前記第2の半導体チップの第2の面は、ダイシング時の端面である
 前記(1)乃至(11)のいずれかに記載の撮像装置。
(13)
 前記第2の面は、ペレットチェックのための領域内にある
 前記(12)に記載の撮像装置。
(14)
 前記第2の面には、ペレットチェックのための領域内にある素子の一部がある
 前記(12)に記載の撮像装置。
(15)
 第1の半導体チップと、
 前記第1の半導体チップに積層されている第2の半導体チップと
 を備え、
 前記第1の半導体チップの側面の少なくとも1面と、前記第2の半導体チップの側面の少なくとも1面は、同一面にある
 撮像装置を備え、
 前記撮像装置からの信号を処理する処理部を備える
 電子機器。
(16)
 第1の半導体チップが形成されているウェハに、第2の半導体チップを移載し、
 前記第2の半導体チップが積層されている状態で、前記ウェハのダイシングを行う
 工程を含み、
 ペレットチェックのための領域が形成されている前記第2の半導体チップが、前記ウェハに移載され、
 前記ウェハとダイシングされるとき、前記領域もダイシングされる
 製造方法。
 101,102,103 ウェハ, 220 撮像素子, 221 ロジック回路, 231 端子, 232 ガードリング, 241 端子, 242 ガードリング, 251 酸化膜, 252 支持基板, 261 撮像装置, 311 素子, 351,352 ガードリング, 400 チップ, 411 素子, 412,413 ガードリング, 414,415,416 配線, 501 ウェハ, 511 チップ, 521 素子, 522 ガードリング, 611 バンプ, 622 アンダーフィル, 711,721 ガードリング

Claims (16)

  1.  第1の半導体チップと、
     前記第1の半導体チップに積層されている第2の半導体チップと
     を備え、
     前記第1の半導体チップの側面の少なくとも1面と、前記第2の半導体チップの側面の少なくとも1面は、同一面にある
     撮像装置。
  2.  前記第1の半導体チップは、リング状の第1の構造物を内包し、
     前記第2の半導体チップは、前記第1の半導体チップ上の、前記第1の構造物を跨ぐ位置に配置されている
     請求項1に記載の撮像装置。
  3.  前記第2の半導体チップは、リング状の第2の構造物を内包し、
     前記第1の構造物と前記第2の構造物は、積層方向において略同一の位置に配置されている
     請求項2に記載の撮像装置。
  4.  前記第1の構造物と前記第2の構造物は、ガードリングである
     請求項3に記載の撮像装置。
  5.  前記第1の構造物と前記第2の構造物は、接続されている
     請求項3に記載の撮像装置。
  6.  前記第1の構造物と前記第2の構造物は、所定の間隔を有して配置されている
     請求項3に記載の撮像装置。
  7.  前記第1の半導体チップと前記第2の半導体チップは、バンプで接続されている
     請求項1に記載の撮像装置。
  8.  前記第2の半導体チップ上に、さらに第3の半導体チップが積層されている
     請求項1に記載の撮像装置。
  9.  前記第1の半導体チップ上に、さらに第3の半導体チップが積層されている
     請求項1に記載の撮像装置。
  10.  前記第1の半導体チップと前記第2の半導体チップは、同程度の大きさであり、
     第3の半導体チップは、前記第1の半導体チップよりも小さい
     請求項8に記載の撮像装置。
  11.  前記第1の半導体チップは、撮像素子が形成されているチップであり、
     前記第2の半導体チップは、ロジック回路またはメモリ回路が形成されているチップである
     請求項1に記載の撮像装置。
  12.  前記同一面にある前記第1の半導体チップの第1の面と前記第2の半導体チップの第2の面は、ダイシング時の端面である
     請求項1に記載の撮像装置。
  13.  前記第2の面は、ペレットチェックのための領域内にある
     請求項12に記載の撮像装置。
  14.  前記第2の面には、ペレットチェックのための領域内にある素子の一部がある
     請求項12に記載の撮像装置。
  15.  第1の半導体チップと、
     前記第1の半導体チップに積層されている第2の半導体チップと
     を備え、
     前記第1の半導体チップの側面の少なくとも1面と、前記第2の半導体チップの側面の少なくとも1面は、同一面にある
     撮像装置を備え、
     前記撮像装置からの信号を処理する処理部を備える
     電子機器。
  16.  第1の半導体チップが形成されているウェハに、第2の半導体チップを移載し、
     前記第2の半導体チップが積層されている状態で、前記ウェハのダイシングを行う
     工程を含み、
     ペレットチェックのための領域が形成されている前記第2の半導体チップが、前記ウェハに移載され、
     前記ウェハとダイシングされるとき、前記領域もダイシングされる
     製造方法。
PCT/JP2021/042527 2020-12-04 2021-11-19 撮像装置、電子機器、製造方法 WO2022118670A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/254,425 US20240006450A1 (en) 2020-12-04 2021-11-19 Imaging device, electronic device, and manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-201544 2020-12-04
JP2020201544A JP2022089275A (ja) 2020-12-04 2020-12-04 撮像装置、電子機器、製造方法

Publications (1)

Publication Number Publication Date
WO2022118670A1 true WO2022118670A1 (ja) 2022-06-09

Family

ID=81853546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042527 WO2022118670A1 (ja) 2020-12-04 2021-11-19 撮像装置、電子機器、製造方法

Country Status (3)

Country Link
US (1) US20240006450A1 (ja)
JP (1) JP2022089275A (ja)
WO (1) WO2022118670A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178496A (ja) * 2011-02-28 2012-09-13 Sony Corp 固体撮像装置、電子機器、半導体装置、固体撮像装置の製造方法
JP2013089871A (ja) * 2011-10-20 2013-05-13 Sony Corp 固体撮像素子ウエハ、固体撮像素子の製造方法、および固体撮像素子
JP2016163011A (ja) * 2015-03-05 2016-09-05 ソニー株式会社 半導体装置および製造方法、並びに電子機器
WO2016143553A1 (ja) * 2015-03-11 2016-09-15 ソニー株式会社 固体撮像装置および製造方法、半導体ウェハ、並びに電子機器
WO2019087764A1 (ja) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012178496A (ja) * 2011-02-28 2012-09-13 Sony Corp 固体撮像装置、電子機器、半導体装置、固体撮像装置の製造方法
JP2013089871A (ja) * 2011-10-20 2013-05-13 Sony Corp 固体撮像素子ウエハ、固体撮像素子の製造方法、および固体撮像素子
JP2016163011A (ja) * 2015-03-05 2016-09-05 ソニー株式会社 半導体装置および製造方法、並びに電子機器
WO2016143553A1 (ja) * 2015-03-11 2016-09-15 ソニー株式会社 固体撮像装置および製造方法、半導体ウェハ、並びに電子機器
WO2019087764A1 (ja) * 2017-10-30 2019-05-09 ソニーセミコンダクタソリューションズ株式会社 裏面照射型の固体撮像装置、および裏面照射型の固体撮像装置の製造方法、撮像装置、並びに電子機器

Also Published As

Publication number Publication date
US20240006450A1 (en) 2024-01-04
JP2022089275A (ja) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2018135261A1 (ja) 固体撮像素子、電子装置、および、固体撮像素子の製造方法
JP2019047237A (ja) 撮像装置、および電子機器、並びに撮像装置の製造方法
WO2019171879A1 (ja) 撮像装置
WO2021193266A1 (ja) 固体撮像装置
WO2020246323A1 (ja) 撮像装置
WO2019065295A1 (ja) 撮像素子およびその製造方法、並びに電子機器
WO2020195564A1 (ja) 撮像装置
WO2019188131A1 (ja) 半導体装置および半導体装置の製造方法
WO2021186907A1 (ja) 固体撮像装置及びその製造方法、並びに電子機器
WO2018142834A1 (ja) 電子部品、カメラモジュール及び電子部品の製造方法
WO2021049302A1 (ja) 撮像装置、電子機器、製造方法
WO2022118670A1 (ja) 撮像装置、電子機器、製造方法
JP2019029979A (ja) 半導体装置、電子機器、製造方法
WO2020100697A1 (ja) 固体撮像素子、固体撮像装置及び電子機器
JP7422676B2 (ja) 撮像装置
JP7504802B2 (ja) 固体撮像素子、固体撮像装置及び電子機器
US20230048188A1 (en) Light-receiving device
WO2023079842A1 (ja) 固体撮像装置、撮像システム及び撮像処理方法
WO2023013393A1 (ja) 撮像装置
WO2023162496A1 (ja) 撮像装置
WO2022209128A1 (ja) 半導体装置
WO2021261234A1 (ja) 固体撮像装置およびその製造方法、並びに電子機器
WO2022130987A1 (ja) 固体撮像装置およびその製造方法
WO2020017205A1 (ja) 撮像素子および電子機器
WO2020116088A1 (ja) 半導体装置および撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21900425

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18254425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21900425

Country of ref document: EP

Kind code of ref document: A1