WO2022116332A1 - 显示面板及其制作方法 - Google Patents

显示面板及其制作方法 Download PDF

Info

Publication number
WO2022116332A1
WO2022116332A1 PCT/CN2020/140385 CN2020140385W WO2022116332A1 WO 2022116332 A1 WO2022116332 A1 WO 2022116332A1 CN 2020140385 W CN2020140385 W CN 2020140385W WO 2022116332 A1 WO2022116332 A1 WO 2022116332A1
Authority
WO
WIPO (PCT)
Prior art keywords
anode
display panel
thin film
blocks
emitting device
Prior art date
Application number
PCT/CN2020/140385
Other languages
English (en)
French (fr)
Inventor
谢伟佳
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2022116332A1 publication Critical patent/WO2022116332A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/813Anodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals

Definitions

  • the present application relates to the technical field of display panels, and in particular, to a display panel and a manufacturing method thereof.
  • OLED display panels as a new generation of display technology, have the advantages of low power consumption, high color gamut, high brightness, high resolution, wide viewing angle, and high response speed, and are widely favored by the market.
  • OLED display panel installation and driving methods can be divided into passive matrix OLED (Passive Matrix OLED, PMOLED) and active matrix OLED (Active Matrix OLED, AMOLED) two categories.
  • PMOLED Passive Matrix OLED
  • AMOLED Active Matrix OLED
  • AMOLED has pixels arranged in an array, is an active display type, has high luminous efficacy, and is usually used as a high-definition large-size display device.
  • OLEDs can be divided into two structures according to different light emission directions: one is bottom emission type and the other is top emission type. The light emitted by the top emission OLED is emitted from the top of the device, and there is no shading of the pixel metal wiring, which can effectively improve the aperture ratio.
  • the existing top-emission OLED includes an array substrate, an anode, a light-emitting layer and a cathode arranged in sequence to form a plurality of pixel regions. If the cathode and anode in a certain pixel area are short-circuited due to various reasons such as manufacturing process, the pixel area will not emit light, and the display panel will appear as a dark spot.
  • the existing repair method is to find the short-circuit point, and use a laser to cut off the short-circuit point, so that the pixel area can be normally turned on. However, this repair method has high requirements for repair. If the laser energy is too large, the repair may not be completed, and even the surrounding pixels may be damaged.
  • each short-circuit point needs to be cut off one by one, which increases the repair workload and difficulty.
  • the cathode and anode of the repaired position may be re-lapped and a short circuit occurs, and the repair success rate is low.
  • the embodiments of the present application provide a display panel and a manufacturing method thereof, which can reduce the repair workload and repair difficulty when the cathode and anode are short-circuited, improve the repair success rate, and improve the yield rate of the display panel.
  • An embodiment of the present application provides a display panel, including an array substrate and an organic light-emitting device layer disposed on the array substrate; the array substrate includes a thin film transistor, and the organic light-emitting device layer includes a layer corresponding to the thin film transistor the anode; the anode includes a plurality of anode blocks spaced apart from each other, and the plurality of anode blocks are respectively electrically connected to the drain of the thin film transistor.
  • the organic light-emitting device layer further includes a plurality of anode wirings arranged in the same layer as the anode; the plurality of anode wirings are arranged in a one-to-one correspondence with the plurality of anode blocks, and each anode wiring One end is connected to its corresponding anode block, and the other end is connected to the drain of the thin film transistor.
  • the organic light-emitting device layer includes a light-emitting region and a non-light-emitting region; the anode is located in the light-emitting region, and the plurality of anode wirings are located in the non-light-emitting region.
  • the display panel further includes a flat layer disposed between the array substrate and the organic light-emitting device layer; via holes are opened in the flat layer, and the plurality of anode wirings pass through the via holes connected to the drain of the thin film transistor.
  • the organic light emitting device layer further includes a light emitting layer and a cathode sequentially arranged on the anode; each anode wiring is provided with a cutoff point when the corresponding anode block and the cathode are short-circuited.
  • shapes of different anode blocks are the same or different.
  • the sizes of different anode blocks are the same or different.
  • each of the anode blocks includes one or more combined shapes of rectangles, triangles and irregular polygons.
  • the plurality of anode blocks includes four anode blocks.
  • the plurality of anode wires are respectively connected to the drains of the thin film transistors through common metal wires.
  • Embodiments of the present application also provide a method for manufacturing a display panel, including:
  • an array substrate comprising thin film transistors; forming an organic light emitting device layer on the array substrate, the organic light emitting device layer comprising anodes arranged corresponding to the thin film transistors, the anodes comprising a plurality of anodes arranged at intervals
  • the anode blocks are respectively electrically connected with the drains of the thin film transistors.
  • the organic light-emitting device layer further includes a plurality of anode wirings arranged in the same layer as the anode; the plurality of anode wirings are arranged in a one-to-one correspondence with the plurality of anode blocks, and each anode wiring One end is connected to its corresponding anode block, and the other end is connected to the drain of the thin film transistor.
  • the organic light-emitting device layer includes a light-emitting region and a non-light-emitting region; the anode is located in the light-emitting region, and the plurality of anode wirings are located in the non-light-emitting region.
  • the method also includes:
  • a flat layer is formed between the array substrate and the organic light-emitting device layer; via holes are opened in the flat layer, so that the plurality of anode wires are connected to the drain electrodes of the thin film transistors through the via holes .
  • the organic light-emitting device layer further includes a light-emitting layer and a cathode sequentially disposed on the anode.
  • the method also includes:
  • shapes of different anode blocks are the same or different.
  • the sizes of different anode blocks are the same or different.
  • each of the anode blocks includes one or more combined shapes of rectangles, triangles and irregular polygons.
  • the plurality of anode blocks includes four anode blocks.
  • the plurality of anode wires are respectively connected to the drains of the thin film transistors through common metal wires.
  • the anodes are arranged as a plurality of anode blocks spaced apart from each other, and the plurality of anode blocks are respectively electrically connected with the drains of the thin film transistors, so that one or more short-circuit points appear between the anode blocks and the cathodes
  • the repair is realized by disconnecting the electrical connection between the anode block and the thin film transistor, so that only the area corresponding to the anode block is a dark area, and the dark area is actively small, which does not affect the overall display effect and reduces the repair work at the same time.
  • the amount and difficulty of repair can be improved, and the success rate of repair can be improved, thereby improving the yield rate of the display panel.
  • FIG. 1 is a schematic cross-sectional view of a display panel provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of an anode layer in a display panel provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of an anode layer when the cathode and anode are short-circuited in a display panel provided by an embodiment of the present application;
  • FIG. 4 is a schematic diagram of an anode layer after repairing a display panel according to an embodiment of the present application
  • FIG. 5 is a schematic flowchart of a method for fabricating a display panel according to an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature. In the description of this application, unless stated otherwise, “plurality” means two or more. Additionally, the term “comprising” and any variations thereof are intended to cover non-exclusive inclusion.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • installed should be understood in a broad sense, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; can be mechanical connection, can also be electrical connection; can be directly connected, can also be indirectly connected through an intermediate medium, can be internal communication between two elements.
  • an embodiment of the present application provides a display panel including an array substrate 1 and an organic light emitting device layer 2 disposed on the array substrate 1 .
  • the array substrate 1 includes a substrate 11 , a first metal layer 12 , a gate protection layer 13 , an active layer 14 , an etching barrier layer 15 and a second metal layer 16 which are arranged in sequence.
  • the substrate 11 may be a glass substrate.
  • the first metal layer 12 includes a plurality of gate electrodes 17 and metal traces (not shown in the figure), and the second metal layer 16 includes a plurality of source electrodes 18 , a plurality of drain electrodes 19 and metal traces (not shown in the figure) ), so that the array substrate 1 forms a plurality of thin film transistors 10 spaced apart from each other, and each thin film transistor 10 includes a gate electrode 17 , a source electrode 18 and a drain electrode 19 respectively.
  • the organic light emitting device layer 2 includes an anode layer 21 , a pixel defining layer 22 , a light emitting layer 23 and a cathode 24 which are arranged in sequence.
  • the anode layer 21 includes a plurality of anodes 24 corresponding to the plurality of thin film transistors 10 one-to-one
  • the pixel defining layer 22 is provided with pixel openings corresponding to the plurality of anodes 26
  • the light-emitting layer 23 includes a plurality of pixel openings.
  • a plurality of light emitting structures 25 are arranged in one-to-one correspondence, and each light emitting structure 25 is disposed on the anode 26 in its corresponding pixel opening, and the cathode 24 is a common electrode, covering the pixel defining layer 22 and the light emitting in each pixel opening. structure 25 to form a plurality of sub-pixels.
  • the light-emitting structures 25 are different, and the sub-pixels are also different.
  • the plurality of sub-pixels may include at least one of a white sub-pixel W, a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • Each light-emitting structure 25 emits light through the transparent cathode 24 above it to form the light-emitting area A of the organic light-emitting device layer 2, that is, the anode 26, the light-emitting structure 25 and the cathode 24 in the pixel opening are located in the light-emitting area A, and the organic light-emitting device layer
  • the other area of 2 is the non-light-emitting area C.
  • the anode 26 includes a plurality of anode blocks 261 spaced apart from each other.
  • the anode 26 is divided into a plurality of anode blocks 261, and there is a gap between adjacent anode blocks 261, the gap is extremely small, as long as the plurality of anode blocks 261 can be insulated from each other, the
  • the shape may be various shapes such as rectangle, triangle, irregular polygon, or a combination of various shapes such as rectangle, triangle, and irregular polygon.
  • the shapes and sizes of the anode blocks 261 may be the same or different, as long as the display effect is not affected, which is not specifically limited here.
  • the plurality of anode blocks 261 in the anode 26 are respectively electrically connected to the drains 19 of the thin film transistors 10 corresponding to the anodes 26 , that is, the plurality of anode blocks 261 in one anode 26 are electrically connected to the drains 19 of the same thin film transistor 10 . , so as to ensure that the multiple anode blocks 261 in one anode 26 input the same signal, thereby ensuring that the luminous brightness of the sub-pixel is the same.
  • the anode block 261 to which the short-circuit position belongs is detected, that is, the anode block 261 that is short-circuited with the cathode 24 is detected, and the connection between the anode block 261 and the drain electrode 19 of the thin film transistor 10 is disconnected. Electrical connection. Since the plurality of anode blocks 261 in the anode 26 are spaced apart from each other and are electrically connected to the thin film transistor 10, one of the anode blocks 261 is short-circuited with the cathode 24, which will not cause the other anode blocks 261 to be short-circuited with the cathode 24.
  • the electrical connection between the anode block 261 and the thin film transistor 10 will not affect the electrical connection between other anode blocks 261 and the thin film transistor 10 .
  • the area corresponding to the anode block 261 becomes a dark area, but the area of the dark area is very small, and the areas corresponding to other anode blocks 261 are displayed normally, so that It does not affect the overall display effect of the sub-pixel.
  • anode blocks 261 of an anode 26 the greater the number of anode blocks 261 of an anode 26, the smaller the impact on the display effect of the pixel after repair, but the greater the repair workload required when there are multiple short-circuit points, so the display effect is guaranteed. Under the premise of not being affected, the number of anode blocks 261 can be reduced as much as possible, so as to reduce the repair workload as much as possible.
  • one anode 26 may include four anode blocks 261 .
  • a small light-emitting area in the sub-pixel is sacrificed, and the sacrificed small light-emitting area does not affect the overall display effect of the sub-pixel, thereby realizing pixel repair, effectively reducing the repair workload and repair. Difficulty, and improve the success rate of repair.
  • the anode layer 21 further includes a plurality of anode wirings 27 arranged in a one-to-one correspondence with the plurality of anode blocks 261 , that is, the anode wirings 27 and the anodes 26 are arranged in the same layer, and each of the anodes 26 is arranged in the same layer.
  • Each anode block 261 corresponds to one anode wiring 27 .
  • One end of the anode wiring 27 is electrically connected to the corresponding anode block 261
  • the other end of the anode wiring 27 is electrically connected to the drain 19 of the thin film transistor 10 , so as to realize the electrical connection between the anode block 261 and the drain 19 of the thin film transistor 10 . sexual connection.
  • the anode traces 27 corresponding to the plurality of anode blocks 261 in the anode 26 can be connected to the drain of the thin film transistor 10 individually, or can be connected to the thin film transistor 10 through the common metal wire 28 That is, one anode 26 corresponds to one common metal wire 28, and the anode traces 27 corresponding to a plurality of anode blocks 261 in the anode 26 are all connected to the common metal wire 28 corresponding to the anode 26, and the common metal wire 28 simultaneously The drain of the thin film transistor 10 corresponding to the anode 26 is connected.
  • the arrangement of the common metal wire 28 can simplify the wiring path and reduce the wiring space required for the anode wiring 27 .
  • cut-off point between each anode block 261 and the drain of the thin film transistor 10 , and the cut-off point can be located at any position, as long as the cut-off point can make the corresponding anode block 261 and the drain of the thin film transistor 10 disconnected after being cut off Disconnect between them.
  • each anode wiring 27 is provided with a cut-off point when the corresponding anode block 261 and the cathode 24 are short-circuited.
  • the cutting point on the anode wiring 27 corresponding to the anode block 261 can be cut by laser, and the connection between the anode block 261 and the thin film transistor 10 can be disconnected, so as to ensure that other anode blocks 261 are not affected.
  • a plurality of anode wirings 27 are located in the non-light-emitting area C, and the common metal lines 28 are also located in the non-light-emitting area C. Since the anode wiring 27 is located in the non-light-emitting area C, when repairing, cutting the anode wiring 27 in the non-light-emitting area C can avoid damage to the film layer in the light-emitting area A, reduce the difficulty of repair, and avoid the occurrence of There is a technology in which the cathode and anode are re-lapped after the short-circuit point is cut off, so as to improve the repair reliability.
  • the display panel further includes a flat layer 3 disposed between the array substrate 1 and the organic light emitting device layer 2, that is, the flat layer 3 is located on the second metal layer 16 in the array substrate 1, and the organic light emitting device layer
  • the anode layer 21 in 2 is located on the flat layer 3 , that is, the flat layer 3 is provided between the drain 19 of the thin film transistor 10 and the corresponding anode 26 .
  • a via hole 29 may be opened in the flat layer 3 above the drain 19 of the thin film transistor 10 .
  • the anode traces 27 corresponding to the plurality of anode blocks 261 in the anode 26 can be individually connected to the drain 19 of the thin film transistor 10 through the via hole 29, or the common metal wire 28 can pass through the via hole after the common metal wire 28 is connected together. 29 is connected to the drain 19 of the thin film transistor 10 .
  • the anode 26 in each sub-pixel includes four anode blocks 261 , and a cathode-anode short circuit occurs in one red sub-pixel R, so that the entire red sub-pixel R cannot emit light.
  • the short-circuit point D is located at the anode block 261 in the upper left corner of the red sub-pixel R, and the cutting point Q on the anode wiring 27 corresponding to the anode block 261 is cut by laser, and the anode block 261 is disconnected from the thin film transistor.
  • 10 electrical connection only the area where the anode block 261 is located cannot emit light, while the area where other anode blocks 261 are located returns to normal light emission, as shown in FIG.
  • the light-emitting area ensures that the overall display effect of the sub-pixels is not affected.
  • the anode 26 can be set as a plurality of anode blocks 261 spaced apart from each other, and the plurality of anode blocks 261 are respectively electrically connected to the drain electrode 19 of the thin film transistor 10 , so as to be located between the anode block 261 and the cathode 24 .
  • the repair is realized by disconnecting the connection between the anode block 261 and the thin film transistor 10, so that only the area corresponding to the anode block 261 is a dark area, and the area of the dark area is very small and does not It affects the overall display effect, reduces the repair workload and repair difficulty, and improves the repair success rate, thereby improving the yield rate of the display panel.
  • an embodiment of the present application further provides a method for manufacturing a display panel, including:
  • a substrate 11 is provided, and a first metal layer 12 , a gate protection layer 13 , an active layer 14 , an etching barrier layer 15 and a second metal layer 16 are sequentially formed on the substrate 11 to form an array substrate 1 .
  • the substrate 11 may be a glass substrate.
  • the first metal layer 12 includes a plurality of gate electrodes 17 and metal traces (not shown in the figure), and the second metal layer 16 includes a plurality of source electrodes 18 , a plurality of drain electrodes 19 and metal traces (not shown in the figure) ), so that the array substrate 1 includes a plurality of thin film transistors 10 spaced apart from each other, and each thin film transistor 10 includes a gate electrode 17 , a source electrode 18 and a drain electrode 19 respectively.
  • An organic light-emitting device layer is formed on the array substrate, the organic light-emitting device layer includes an anode corresponding to the thin film transistor, the anode includes a plurality of anode blocks spaced apart from each other, and the plurality of anode blocks are respectively connected to the anode.
  • the drains of the thin film transistors are electrically connected.
  • an anode layer 21 , a pixel defining layer 22 , a light-emitting layer 23 and a cathode 24 are sequentially formed on the array substrate 1 to form the organic light-emitting device layer 2 .
  • the anode layer 21 includes a plurality of anodes 24 corresponding to the plurality of thin film transistors 10 one-to-one
  • the pixel defining layer 22 is provided with pixel openings corresponding to the plurality of anodes 26
  • the light-emitting layer 23 includes a plurality of pixel openings.
  • a plurality of light emitting structures 25 are arranged in one-to-one correspondence, and each light emitting structure 25 is disposed on the anode 26 in its corresponding pixel opening, and the cathode 24 is a common electrode, covering the pixel defining layer 22 and the light emitting in each pixel opening. structure 25, so that the organic light emitting device layer 2 includes a plurality of sub-pixels.
  • the anode 26 includes a plurality of anode blocks 261 spaced apart from each other.
  • the anode 26 is divided into a plurality of anode blocks 261 with gaps between adjacent anode blocks 261 .
  • the plurality of anode blocks 261 in the anode 26 are respectively electrically connected to the drains 19 of the thin film transistors 10 corresponding to the anodes 26 .
  • the anode layer 21 further includes a plurality of anode wirings 27 arranged in a one-to-one correspondence with the plurality of anode blocks 261 .
  • One end of the anode wiring 27 is electrically connected to the corresponding anode block 261 , and the other end of the anode wiring 27 is connected to the thin film transistor 10 .
  • the drain 19 of the thin film transistor 10 is electrically connected, so as to realize the electrical connection between the anode block 261 and the drain 19 of the thin film transistor 10 .
  • the anode 26 is located in the light-emitting region A of the organic light-emitting device layer 2 , and the plurality of anode wirings 27 are located in the non-light-emitting region C of the organic light-emitting device layer 2 .
  • the method also includes:
  • a via hole is opened in the flat layer, so that the plurality of anode wires are connected to the drain electrode of the thin film transistor through the via hole.
  • the flat layer 3 is first formed on the array substrate 1, and then the organic light emitting device layer 2 is formed on the flat layer 3, so that the flat layer 3 is located on the second metal layer 16 and the anode layer 21. between.
  • a via hole 29 may be opened in the flat layer 3 above the drain 19 of the thin film transistor 10 .
  • the anode traces 27 corresponding to the plurality of anode blocks 261 in the anode 26 may be individually connected to the drain electrodes 19 of the thin film transistor 10 through the via holes 29 .
  • the method also includes:
  • the anode block 261 to which the short-circuit position belongs is detected, that is, the anode block 261 that is short-circuited with the cathode 24 is detected, and the anode block 261 is disconnected from the thin film transistor 10
  • the electrical connection of the drain 19 After disconnecting the electrical connection between the anode block 261 and the thin film transistor 10, the area corresponding to the anode block 261 becomes a dark area, but the area of the dark area is very small, and the areas corresponding to other anode blocks 261 are displayed normally, so that It does not affect the overall display effect of the sub-pixel.
  • the anode can be set as a plurality of anode blocks spaced apart from each other, and the plurality of anode blocks are respectively electrically connected to the drain of the thin film transistor, so that when one or more short-circuit points occur between the anode block and the cathode,
  • the repair is realized by disconnecting the connection between the anode block and the thin film transistor, so that only the area corresponding to the anode block is a dark area, and the dark area is actively small, which does not affect the overall display effect, and reduces the repair workload and repair difficulty at the same time. , improve the repair success rate, and then improve the yield rate of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请公开了一种显示面板及其制作方法。所述显示面板包括阵列基板以及设于所述阵列基板上的有机发光器件层;所述阵列基板包括薄膜晶体管,所述有机发光器件层包括与所述薄膜晶体管对应设置的阳极;所述阳极包括多个相互间隔设置的阳极块,多个阳极块分别与所述薄膜晶体管的漏极电性连接。

Description

显示面板及其制作方法 技术领域
本申请涉及显示面板技术领域,尤其涉及一种显示面板及其制作方法。
背景技术
有机发光二极管(OLED)显示面板,作为新一代显示技术,具有低功耗、高色域、高亮度、高分辨率、宽视角、高响应速度等优点,广泛受到市场的青睐。OLED显示面板安装驱动方式可以分为无源矩阵型OLED(Passive Matrix OLED,PMOLED)和有源矩阵型OLED(Active Matrix OLED,AMOLED)两大类。其中,AMOLED具有呈阵列式排布的像素,属于主动显示类型,发光效能高,通常用作高清晰度的大尺寸显示装置。OLED按照光出射方向的不同,可以分为两种结构:一种是底发射型,一种是顶发射型。顶发射型OLED所发出的光是从器件的顶部出射,没有像素金属走线的遮光,能有效提高开口率。
现有的顶发射型OLED包括依次设置的阵列基板、阳极、发光层和阴极,以构成多个像素区。若由于制程等各种原因导致某个像素区中的阴阳极短路,则该像素区不会发光,显示面板上表现为暗点。现有的修复方法是找到短路点,并采用镭射激光切断短路点,使该像素区正常启亮。但这种修复方法对修复的要求较高,若激光能量过大,可能无法完成修复,甚至损伤到周围的像素。另外,若短路点较多,则需要逐一切断每个短路点,增加修复工作量和修复难度。在信赖性测试时,已修复过的位置阴阳极可能又重新搭接出现短路,修复成功率较低。
技术问题
本申请实施例提供一种显示面板及其制作方法,能够降低阴阳极短路时的修复工作量和修复难度,提高修复成功率,提高显示面板的良率。
技术解决方案
本申请实施例提供了一种显示面板,包括阵列基板以及设于所述阵列基板上的有机发光器件层;所述阵列基板包括薄膜晶体管,所述有机发光器件层包括与所述薄膜晶体管对应设置的阳极;所述阳极包括多个相互间隔设置的阳极块,多个阳极块分别与所述薄膜晶体管的漏极电性连接。
进一步地,所述有机发光器件层还包括与所述阳极同层设置的多个阳极走线;所述多个阳极走线与所述多个阳极块一一对应设置,且每个阳极走线的一端与其对应的阳极块连接,另一端与所述薄膜晶体管的漏极连接。
进一步地,所述有机发光器件层包括发光区和非发光区;所述阳极位于所述发光区,所述多个阳极走线位于所述非发光区。
进一步地,所述显示面板还包括设于所述阵列基板与所述有机发光器件层之间的平坦层;所述平坦层中开设有过孔,所述多个阳极走线通过所述过孔与所述薄膜晶体管的漏极连接。
进一步地,所述有机发光器件层还包括依次设于所述阳极上的发光层和阴极;每个阳极走线上设有其对应的阳极块与所述阴极短路时的切断点。
进一步地,不同所述阳极块的形状相同或不同。
进一步地,不同所述阳极块的大小相同或不同。
进一步地,每个所述阳极块的形状包括矩形、三角形和不规则多边形中的一个或多个组合形状。
进一步地,所述多个阳极块包括四个阳极块。
进一步地,所述多个阳极走线分别通过公共金属线与所述薄膜晶体管的漏极连接。
本申请实施例还提供了一种显示面板的制作方法,包括:
形成阵列基板,所述阵列基板包括薄膜晶体管;在所述阵列基板上形成有机发光器件层,所述有机发光器件层包括与所述薄膜晶体管对应设置的阳极,所述阳极包括多个相互间隔设置的阳极块,多个阳极块分别与所述薄膜晶体管的漏极电性连接。
进一步地,所述有机发光器件层还包括与所述阳极同层设置的多个阳极走线;所述多个阳极走线与所述多个阳极块一一对应设置,且每个阳极走线的一端与其对应的阳极块连接,另一端与所述薄膜晶体管的漏极连接。
进一步地,所述有机发光器件层包括发光区和非发光区;所述阳极位于所述发光区,所述多个阳极走线位于所述非发光区。
进一步地,所述方法还包括:
在所述阵列基板与所述有机发光器件层之间形成平坦层;在所述平坦层中开设过孔,使所述多个阳极走线通过所述过孔与所述薄膜晶体管的漏极连接。
进一步地,所述有机发光器件层还包括依次设于所述阳极上的发光层和阴极。
所述方法还包括:
在所述多个阳极块中的任一阳极块与所述阴极短路时,切断所述任一阳极块对应的阳极走线。
进一步地,不同所述阳极块的形状相同或不同。
进一步地,不同所述阳极块的大小相同或不同。
进一步地,每个所述阳极块的形状包括矩形、三角形和不规则多边形中的一个或多个组合形状。
进一步地,所述多个阳极块包括四个阳极块。
进一步地,所述多个阳极走线分别通过公共金属线与所述薄膜晶体管的漏极连接。
有益效果
本申请的有益效果为:将阳极设置为多个相互间隔的阳极块,且多个阳极块分别与薄膜晶体管的漏极电性连接,以在阳极块与阴极之间出现一个或多个短路点时,通过断开该阳极块与薄膜晶体管之间的电性连接实现修复,仅使该阳极块对应的区域为暗区,且该暗区面积极小,不影响整体显示效果,同时降低修复工作量和修复难度,提高修复成功率,进而提高显示面板的良率。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的显示面板的截面示意图;
图2为本申请实施例提供的显示面板中阳极层的结构示意图;
图3为本申请实施例提供的显示面板中阴阳极发生短路时的阳极层示意图;
图4为本申请实施例提供的显示面板修复后的阳极层示意图;
图5为本申请实施例提供的显示面板的制作方法的流程示意图。
本发明的实施方式
这里所公开的具体结构和功能细节仅仅是代表性的,并且是用于描述本申请的示例性实施例的目的。但是本申请可以通过许多替换形式来具体实现,并且不应当被解释成仅仅受限于这里所阐述的实施例。
在本申请的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
这里所使用的术语仅仅是为了描述具体实施例而不意图限制示例性实施例。除非上下文明确地另有所指,否则这里所使用的单数形式“一个”、“一项”还意图包括复数。还应当理解的是,这里所使用的术语“包括”和/或“包含”规定所陈述的特征、整数、步骤、操作、单元和/或组件的存在,而不排除存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
下面结合附图和实施例对本申请作进一步说明。
如图1所示,本申请实施例提供了一种显示面板,包括阵列基板1以及设于阵列基板1上的有机发光器件层2。阵列基板1包括依次设置的衬底11、第一金属层12、栅极保护层13、有源层14、蚀刻阻挡层15和第二金属层16。其中,衬底11可以为玻璃基板。第一金属层12包括多个栅极17和金属走线(图中未示出),第二金属层16包括多个源极18、多个漏极19和金属走线(图中未示出),以使阵列基板1形成多个相互间隔设置的薄膜晶体管10,每个薄膜晶体管10分别包括一个栅极17、一个源极18和一个漏极19。
有机发光器件层2包括依次设置的阳极层21、像素界定层22、发光层23和阴极24。其中,阳极层21包括与多个薄膜晶体管10一一对应设置的多个阳极24,像素界定层22中开设有与多个阳极26一一对应的像素开口,发光层23包括与多个像素开口一一对应设置的多个发光结构25,且每个发光结构25设于其对应的像素开口中的阳极26上,阴极24为公共电极,覆盖在像素界定层22以及每个像素开口中的发光结构25上,以形成多个子像素。发光结构25不同,构成的子像素也不同,多个子像素可以包括白色子像素W、红色子像素R、绿色子像素G和蓝色子像素B中的至少一个。每个发光结构25通过其上方的透明阴极24射出光线,以形成有机发光器件层2的发光区A,即像素开口中的阳极26、发光结构25和阴极24位于发光区A,有机发光器件层2的其他区域为非发光区C。
结合图2所示,阳极26包括多个相互间隔设置的阳极块261。在每个阳极26中,阳极26分为多个阳极块261,且相邻阳极块261之间具有间隙,该间隙极小,只要能保证多个阳极块261相互绝缘即可,阳极块261的形状可以为矩形、三角形、不规则多边形等各种形状,或者矩形、三角形、不规则多边形等各种形状的组合形状。阳极块261之间的形状和大小可以相同,也可以不同,只要能保证不影响显示效果即可,在此不做具体限定。
阳极26中的多个阳极块261分别与阳极26对应的薄膜晶体管10的漏极19电性连接,即一个阳极26中的多个阳极块261与同一个薄膜晶体管10的漏极19电性连接,以保证一个阳极26中的多个阳极块261输入相同的信号,进而保证该子像素的发光亮度相同。
在显示面板的某个位置发生阴阳极短路时,检测该短路位置所属的阳极块261,即检测与阴极24发生短路的阳极块261,断开该阳极块261与薄膜晶体管10的漏极19的电性连接。由于阳极26中的多个阳极块261相互间隔,且分别与薄膜晶体管10电性连接,因此其中一个阳极块261与阴极24发生短路,不会导致其他阳极块261与阴极24短路,断开该阳极块261与薄膜晶体管10的电性连接,不会影响到其他阳极块261与薄膜晶体管10的电性连接。在断开该阳极块261与薄膜晶体管10的电性连接后,该阳极块261对应的区域变为暗区,但该暗区的面积极小,同时其他阳极块261对应的区域正常显示,从而不影响该子像素整体显示效果。
需要说明的是,一个阳极26的阳极块261的数量越多,修复后对该像素的显示效果影响越小,但具有多个短路点时所需要的修复工作量越大,因此在保证显示效果不受影响的前提下,可以尽可能减少阳极块261的数量,以尽可能减少修复工作量。优选地,一个阳极26可以包括四个阳极块261。
本实施例在阴阳极发生短路时,通过牺牲子像素中的一小块发光区,且牺牲的小块发光区不对子像素整体显示效果产生影响,从而实现像素修复,有效降低修复工作量和修复难度,且提高修复成功率。
进一步地,如图2所示,阳极层21还包括与多个阳极块261一一对应设置的多个阳极走线27,即阳极走线27与阳极26同层设置,且阳极26中的每个阳极块261对应一个阳极走线27。阳极走线27的一端与对应的阳极块261电性连接,阳极走线27的另一端与薄膜晶体管10的漏极19电性连接,从而实现阳极块261与薄膜晶体管10的漏极19的电性连接。
需要说明的是,在每个阳极26中,阳极26中的多个阳极块261对应的阳极走线27可以各自单独与薄膜晶体管10的漏极连接,也可以通过公共金属线28与薄膜晶体管10的漏极连接,即一个阳极26对应一个公共金属线28,阳极26中的多个阳极块261对应的阳极走线27均与该阳极26对应的公共金属线28连接,该公共金属线28同时与该阳极26对应的薄膜晶体管10的漏极连接。公共金属线28的设置可以简化布线路径,减少阳极走线27所需的布线空间。
每个阳极块261与薄膜晶体管10的漏极之间均设有切断点,该切断点可以位于任意位置,只要保证切断点在被切断之后能够使对应的阳极块261与薄膜晶体管10的漏极之间断开连接即可。
例如,每个阳极走线27上设有其对应的阳极块261与阴极24短路时的切断点,该切断点可以位于阳极走线27的任意位置,以便在阳极块261与阴极24发生短路时,能够采用激光对该阳极块261对应的阳极走线27上的切断点进行切割,断开该阳极块261与薄膜晶体管10的连接,以保证其他阳极块261不受影响。
多个阳极走线27位于非发光区C,公共金属线28也位于非发光区C。由于阳极走线27位于非发光区C,在修复时,对非发光区C中的阳极走线27进行切割,能够避免对发光区A中的膜层造成损伤,降低修复难度,也避免了现有技术在切断短路点后阴阳极又重新搭接的情况,提高修复可靠性。
进一步地,显示面板还包括设于所述阵列基板1与所述有机发光器件层2之间的平坦层3,即平坦层3位于阵列基板1中的第二金属层16上,有机发光器件层2中的阳极层21位于平坦层3上,即薄膜晶体管10的漏极19与对应的阳极26之间设有平坦层3。为了实现阳极26与薄膜晶体管10的漏极19的电性连接,可以在薄膜晶体管10的漏极19上方的平坦层3中开设过孔29。阳极26中的多个阳极块261对应的阳极走线27可以各自单独通过过孔29与薄膜晶体管10的漏极19连接,也可以共同连接公共金属线28后,使公共金属线28通过过孔29与薄膜晶体管10的漏极19连接。
例如,如图3所示,每个子像素中的阳极26包括四个阳极块261,一个红色子像素R中出现阴阳极短路,导致该红色子像素R整体无法发光。通过检测发现短路点D位于该红色子像素R左上角的阳极块261处,使用镭射对该阳极块261对应的阳极走线27上的切断点Q进行切割,断开该阳极块261与薄膜晶体管10的电性连接,仅使该阳极块261所在的区域无法发光,而其他阳极块261所在的区域恢复正常发光,如图4所示,实现修复,以尽可能多的保留子像素中可正常发光的区域,保证子像素整体显示效果不受影响。
综上,本申请实施例能够将阳极26设置为多个相互间隔的阳极块261,且多个阳极块261分别与薄膜晶体管10的漏极19电性连接,以在阳极块261与阴极24之间出现一个或多个短路点时,通过断开该阳极块261与薄膜晶体管10之间的连接实现修复,仅使该阳极块261对应的区域为暗区,且该暗区面积极小,不影响整体显示效果,同时降低修复工作量和修复难度,提高修复成功率,进而提高显示面板的良率。
如图5所示,本申请实施例还提供一种显示面板的制作方法,包括:
501、形成阵列基板,所述阵列基板包括薄膜晶体管。
如图1所示,提供衬底11,依次在衬底11上形成第一金属层12、栅极保护层13、有源层14、蚀刻阻挡层15和第二金属层16,构成阵列基板1。其中,衬底11可以为玻璃基板。第一金属层12包括多个栅极17和金属走线(图中未示出),第二金属层16包括多个源极18、多个漏极19和金属走线(图中未示出),以使阵列基板1包括多个相互间隔设置的薄膜晶体管10,每个薄膜晶体管10分别包括一个栅极17、一个源极18和一个漏极19。
502、在所述阵列基板上形成有机发光器件层,所述有机发光器件层包括与所述薄膜晶体管对应设置的阳极,所述阳极包括多个相互间隔设置的阳极块,多个阳极块分别与所述薄膜晶体管的漏极电性连接。
如图1所示,在阵列基板1上依次形成阳极层21、像素界定层22、发光层23和阴极24,以构成有机发光器件层2。其中,阳极层21包括与多个薄膜晶体管10一一对应设置的多个阳极24,像素界定层22中开设有与多个阳极26一一对应的像素开口,发光层23包括与多个像素开口一一对应设置的多个发光结构25,且每个发光结构25设于其对应的像素开口中的阳极26上,阴极24为公共电极,覆盖在像素界定层22以及每个像素开口中的发光结构25上,以使有机发光器件层2包括多个子像素。
结合图2所示,阳极26包括多个相互间隔设置的阳极块261。在每个阳极26中,阳极26分为多个阳极块261,且相邻阳极块261之间具有间隙。阳极26中的多个阳极块261分别与阳极26对应的薄膜晶体管10的漏极19电性连接。
阳极层21还包括与多个阳极块261一一对应设置的多个阳极走线27,阳极走线27的一端与对应的阳极块261电性连接,阳极走线27的另一端与薄膜晶体管10的漏极19电性连接,从而实现阳极块261与薄膜晶体管10的漏极19的电性连接。其中,阳极26位于有机发光器件层2的发光区A,多个阳极走线27位于有机发光器件层2的非发光区C。
进一步地,所述方法还包括:
在所述阵列基板与所述有机发光器件层之间形成平坦层;
在所述平坦层中开设过孔,使所述多个阳极走线通过所述过孔与所述薄膜晶体管的漏极连接。
需要说明的是,在形成阵列基板1后,先在阵列基板1上形成平坦层3,再在平坦层3上形成有机发光器件层2,使平坦层3位于第二金属层16与阳极层21之间。为了实现阳极26与薄膜晶体管10的漏极19的电性连接,可以在薄膜晶体管10的漏极19上方的平坦层3中开设过孔29。阳极26中的多个阳极块261对应的阳极走线27可以各自单独通过过孔29与薄膜晶体管10的漏极19连接。
进一步地,所述方法还包括:
在所述多个阳极块中的任一阳极块与所述阴极短路时,切断所述任一阳极块对应的阳极走线。
需要说明的是,在显示面板的某个位置发生阴阳极短路时,检测该短路位置所属的阳极块261,即检测与阴极24发生短路的阳极块261,断开该阳极块261与薄膜晶体管10的漏极19的电性连接。在断开该阳极块261与薄膜晶体管10的电性连接后,该阳极块261对应的区域变为暗区,但该暗区的面积极小,同时其他阳极块261对应的区域正常显示,从而不影响该子像素整体显示效果。
本申请实施例能够将阳极设置为多个相互间隔的阳极块,且多个阳极块分别与薄膜晶体管的漏极电性连接,以在阳极块与阴极之间出现一个或多个短路点时,通过断开该阳极块与薄膜晶体管之间的连接实现修复,仅使该阳极块对应的区域为暗区,且该暗区面积极小,不影响整体显示效果,同时降低修复工作量和修复难度,提高修复成功率,进而提高显示面板的良率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,包括阵列基板以及设于所述阵列基板上的有机发光器件层;所述阵列基板包括薄膜晶体管,所述有机发光器件层包括与所述薄膜晶体管对应设置的阳极;
    所述阳极包括多个相互间隔设置的阳极块,多个阳极块分别与所述薄膜晶体管的漏极电性连接。
  2. 如权利要求1所述的显示面板,其中,所述有机发光器件层还包括与所述阳极同层设置的多个阳极走线;
    所述多个阳极走线与所述多个阳极块一一对应设置,且每个阳极走线的一端与其对应的阳极块连接,另一端与所述薄膜晶体管的漏极连接。
  3. 如权利要求2所述的显示面板,其中,所述有机发光器件层包括发光区和非发光区;
    所述阳极位于所述发光区,所述多个阳极走线位于所述非发光区。
  4. 如权利要求2所述的显示面板,其中,所述显示面板还包括设于所述阵列基板与所述有机发光器件层之间的平坦层;
    所述平坦层中开设有过孔,所述多个阳极走线通过所述过孔与所述薄膜晶体管的漏极连接。
  5. 如权利要求2所述的显示面板,其中,所述有机发光器件层还包括依次设于所述阳极上的发光层和阴极;
    每个阳极走线上设有其对应的阳极块与所述阴极短路时的切断点。
  6. 如权利要求1所述的显示面板,其中,不同所述阳极块的形状相同或不同。
  7. 如权利要求1所述的显示面板,其中,不同所述阳极块的大小相同或不同。
  8. 如权利要求1所述的显示面板,其中,每个所述阳极块的形状包括矩形、三角形和不规则多边形中的一个或多个组合形状。
  9. 如权利要求1所述的显示面板,其中,所述多个阳极块包括四个阳极块。
  10. 如权利要求2所述的显示面板,其中,所述多个阳极走线分别通过公共金属线与所述薄膜晶体管的漏极连接。
  11. 一种显示面板的制作方法,包括:
    形成阵列基板,所述阵列基板包括薄膜晶体管;
    在所述阵列基板上形成有机发光器件层,所述有机发光器件层包括与所述薄膜晶体管对应设置的阳极,所述阳极包括多个相互间隔设置的阳极块,多个阳极块分别与所述薄膜晶体管的漏极电性连接。
  12. 如权利要求11所述的显示面板的制作方法,其中,所述有机发光器件层还包括与所述阳极同层设置的多个阳极走线;
    所述多个阳极走线与所述多个阳极块一一对应设置,且每个阳极走线的一端与其对应的阳极块连接,另一端与所述薄膜晶体管的漏极连接。
  13. 如权利要求12所述的显示面板的制作方法,其中,所述有机发光器件层包括发光区和非发光区;
    所述阳极位于所述发光区,所述多个阳极走线位于所述非发光区。
  14. 如权利要求13所述的显示面板的制作方法,其中,所述方法还包括:
    在所述阵列基板与所述有机发光器件层之间形成平坦层;
    在所述平坦层中开设过孔,使所述多个阳极走线通过所述过孔与所述薄膜晶体管的漏极连接。
  15. 如权利要求12所述的显示面板的制作方法,其中,所述有机发光器件层还包括依次设于所述阳极上的发光层和阴极;
    所述方法还包括:
    在所述多个阳极块中的任一阳极块与所述阴极短路时,切断所述任一阳极块对应的阳极走线。
  16. 如权利要求11所述的显示面板的制作方法,其中,不同所述阳极块的形状相同或不同。
  17. 如权利要求11所述的显示面板的制作方法,其中,不同所述阳极块的大小相同或不同。
  18. 如权利要求11所述的显示面板的制作方法,其中,每个所述阳极块的形状包括矩形、三角形和不规则多边形中的一个或多个组合形状。
  19. 如权利要求11所述的显示面板的制作方法,其中,所述多个阳极块包括四个阳极块。
  20. 如权利要求12所述的显示面板的制作方法,其中,所述多个阳极走线分别通过公共金属线与所述薄膜晶体管的漏极连接。
PCT/CN2020/140385 2020-12-02 2020-12-28 显示面板及其制作方法 WO2022116332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011405376.2A CN112420962A (zh) 2020-12-02 2020-12-02 显示面板及其制作方法
CN202011405376.2 2020-12-02

Publications (1)

Publication Number Publication Date
WO2022116332A1 true WO2022116332A1 (zh) 2022-06-09

Family

ID=74830198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140385 WO2022116332A1 (zh) 2020-12-02 2020-12-28 显示面板及其制作方法

Country Status (2)

Country Link
CN (1) CN112420962A (zh)
WO (1) WO2022116332A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113257883B (zh) * 2021-07-07 2021-09-24 北京京东方技术开发有限公司 显示基板及其制备方法、显示装置
CN114464761B (zh) * 2022-01-20 2023-12-01 武汉华星光电半导体显示技术有限公司 一种有机发光装置的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140092490A (ko) * 2012-12-29 2014-07-24 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
CN104952903A (zh) * 2014-03-25 2015-09-30 三星显示有限公司 显示装置、制造显示装置的方法以及修复显示装置的方法
CN107507926A (zh) * 2017-08-30 2017-12-22 深圳市华星光电半导体显示技术有限公司 Oled像素结构及其修复方法
CN109713019A (zh) * 2019-01-17 2019-05-03 深圳市华星光电技术有限公司 Oled显示面板及其制作方法
CN209859955U (zh) * 2019-07-15 2019-12-27 昆山国显光电有限公司 显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109315049B (zh) * 2016-05-11 2021-10-08 株式会社日本有机雷特显示器 显示装置和电子设备
CN109003996B (zh) * 2018-07-27 2021-07-09 上海天马微电子有限公司 显示面板、显示面板的检修方法及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140092490A (ko) * 2012-12-29 2014-07-24 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
CN104952903A (zh) * 2014-03-25 2015-09-30 三星显示有限公司 显示装置、制造显示装置的方法以及修复显示装置的方法
CN107507926A (zh) * 2017-08-30 2017-12-22 深圳市华星光电半导体显示技术有限公司 Oled像素结构及其修复方法
CN109713019A (zh) * 2019-01-17 2019-05-03 深圳市华星光电技术有限公司 Oled显示面板及其制作方法
CN209859955U (zh) * 2019-07-15 2019-12-27 昆山国显光电有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN112420962A (zh) 2021-02-26

Similar Documents

Publication Publication Date Title
US10276641B2 (en) Display panel and display device
US20170250236A1 (en) Display panel, fabrication method and electronic device
US20210359246A1 (en) Oled display panel and manufacturing method thereof
KR100642490B1 (ko) 유기전계발광 소자 및 그 제조방법
CN100590880C (zh) 透射型有机电致发光显示器件及其制造方法
KR100642491B1 (ko) 유기전계발광 소자
CN107507926B (zh) Oled像素结构及其修复方法
KR101158873B1 (ko) 유기전계발광 표시장치
US20190156740A1 (en) Display panel, manufacturing method thereof, maintenance method thereof and display device
KR20040008322A (ko) 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
WO2021056752A1 (zh) 显示面板以及显示装置
CN108922867A (zh) 显示面板及其制作方法
US20230180527A1 (en) Display substrate and display apparatus
US20220037615A1 (en) Display substrate, manufacturing method thereof and display panel
WO2022116332A1 (zh) 显示面板及其制作方法
KR101649227B1 (ko) 유기발광 표시장치의 제조방법 및 이에 이용되는 유기발광 표시 기판
US20210233971A1 (en) Display substrate and display apparatus
KR101001423B1 (ko) 유기전계발광 소자 및 그 제조방법
WO2021114421A1 (zh) 显示面板及其制作方法
US8198624B2 (en) Organic light emitting device
CN110867474B (zh) Oled显示面板
CN107565054B (zh) Oled像素结构及其修复方法
WO2021027160A1 (zh) 显示面板及其制作方法
CN110828524B (zh) 驱动背板及其制备方法、显示面板及其修复方法
WO2021138929A1 (zh) 一种显示面板及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964177

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964177

Country of ref document: EP

Kind code of ref document: A1