WO2022116265A1 - 角钢塔螺栓紧固机器人 - Google Patents

角钢塔螺栓紧固机器人 Download PDF

Info

Publication number
WO2022116265A1
WO2022116265A1 PCT/CN2020/136342 CN2020136342W WO2022116265A1 WO 2022116265 A1 WO2022116265 A1 WO 2022116265A1 CN 2020136342 W CN2020136342 W CN 2020136342W WO 2022116265 A1 WO2022116265 A1 WO 2022116265A1
Authority
WO
WIPO (PCT)
Prior art keywords
crossbar
robot
moving
gear
guide rail
Prior art date
Application number
PCT/CN2020/136342
Other languages
English (en)
French (fr)
Inventor
李勇杰
万建成
张陵
胡春华
何成
游溢
赵飞
李明华
李燕雷
赵江涛
Original Assignee
国网新疆电力有限公司电力科学研究院
中国电力科学研究院有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网新疆电力有限公司电力科学研究院, 中国电力科学研究院有限公司, 国家电网有限公司 filed Critical 国网新疆电力有限公司电力科学研究院
Publication of WO2022116265A1 publication Critical patent/WO2022116265A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces

Definitions

  • the present application relates to a robot, for example, an angle steel tower bolt tightening robot.
  • the tower group construction requires a large amount of bolt tightening work and high torque accuracy requirements after the tower material is hoisted into place.
  • the tightness of the main material bolts of the angle steel tower plays an important role in the anti-vibration performance and overall structural stability of the tower.
  • angle steel tower bolts relies on manual operation with the help of simple tools or electric wrenches; after the line is put into operation, the tightening torque of the main material bolts of the angle steel tower should be regularly monitored to re-tighten the loose nuts with unqualified torque. Such re-tightening is also done by manual measurement.
  • the risk of workers in the high-altitude working environment is high; and such manual work may also have defects such as substandard tightening torque, poor consistency of tightening torque, and leaks, which undoubtedly bury a lot of safety for later operation. hidden danger.
  • the surface of the angle steel tower is complex, and the common obstacles are the nails, coupling plates and bolts for people to climb the tower; as well as the angle steel tower, the nails and bolts of the tower body.
  • Climbing robots are not suitable for climbing on complex surface steel structures such as angle steel towers, and cannot achieve effective obstacle-surmounting functions; no load capacity or limited load capacity, due to structural limitations, it is not suitable for angle steel tower bolt tightening operations; Its own structure and control system are complex, self-important, and the risk of high-altitude operation is high.
  • Climbing robots can be divided into foot type, wheel type, crawler type and serpentine attachment type.
  • a footed robot with a footed climbing structure can flexibly change directions and cross obstacles on the climbing surface.
  • Climbing robots generally range from two to eight feet.
  • the feet of the robot are equipped with vacuum suction cups, grasping mechanisms or magnetic adsorption. device.
  • the disadvantage of such robots is that the greater the number of feet, the corresponding increase in the weight, volume and complexity of the robot.
  • the biped robot has been widely studied and applied due to its advantages of flexible movement and simple control; the other is the four-degree-of-freedom biped wall-climbing robot RAMR1. Climb up.
  • One embodiment provides a 4-legged robot, NINJA, that utilizes a valve-controlled multiple sucker rod that enables the robot to attach to uneven surfaces.
  • Another embodiment provides a 6-legged climbing robot, each foot has 3 degrees of freedom, and has the functions of moving, obstacle-surmounting and turning; mechanism; because the robot adopts a high-power adsorption mechanism, the overall structure of the robot is large and the mass is 250Kg; the robot can carry heavier loads and has a strong ability to overcome obstacles, but it is slow and complicated to control. .
  • Another embodiment provides a double-arm electric tower climbing robot, but due to the complex system, the robot cannot achieve climbing and obstacle crossing of the angle steel tower, and cannot perform any effective operations.
  • a wheeled climbing robot that relies on the friction between the wheels and the wall to generate forward power, has fast driving speed and flexible movement; adopts negative pressure adsorption, has high movement speed and is easy to control; for example, the three-generation wheeled climbing robot provided by one embodiment Climbing robot prototypes (UT-PCR1, UT-PCR2 and UT-PCR3). Due to the special structure of the tower material, the contact area between the wheeled climbing robot and the tower surface is small, which greatly limits the load capacity, making it difficult for the robot to climb in a stable state, and it is not conducive to overcoming obstacles. Therefore, the wheeled climbing robot Not suitable for climbing angle steel towers.
  • the MINI Climber robot provided by an embodiment is composed of a suction cup, a vacuum pump and a sensor module, etc., and absorbs the wall through a built-in vacuum system. Although this type of robot can climb on a variety of surfaces and cross a variety of obstacles, the maximum obstacle height is 20mm, but it is insufficient in the complex structure of the tower.
  • Snake-shaped robots are a very active part of bionic robot research. Most of the prototypes have three-dimensional space movement capabilities such as raising their heads, climbing steps, and overcoming low obstacles. The functions of the snake-shaped robot prototypes developed in recent years are more targeted and diverse. , and some have been able to climb vertically to a height of several meters. During the climbing process, the snake-like robot is attached to the outer surface of the climbing object by winding, and then climbs up and down with a certain gait.
  • the CRS snake-shaped climbing robot provided by one embodiment can adopt a worm-like peristaltic gait along the equidistant helix direction, and transmit motion waves upward in the form of longitudinal waves through the ups and downs of some joints, while other parts of the joints are wrapped around. On the trunk, friction is created to counteract the overall gravity, and the climb always follows a fixed trajectory.
  • the snake robot prototype provided by another embodiment is based on orthogonal connections, and uses "adhesive" motion to complete obstacle crossing, and has the characteristics of good motion stability, strong ability to adapt to terrain, and large traction. Many degrees of freedom, difficult control and low speed. This robot structure is not suitable for non-circular structures such as angle steel towers.
  • the robot cannot effectively overcome obstacles, attach to the tower body of the angle steel tower, and climb fixed-point identification operations.
  • the present application provides an angle steel tower bolt tightening robot, the robot includes: a robot frame, and a robot frame arranged on the same side. an intermediate mechanism (7) and a clamping mechanism (1); the clamping mechanism (1) is connected to the robot frame through the intermediate mechanism (7);
  • the robot frame includes a fastening tool (503), a rail (2), a forefoot moving crossbar (3) and a rear foot moving crossbar (6) perpendicular to the rail (2) and perpendicular to the rail (2) And the middle moving crossbar (4) between the front foot moving crossbar (3) and the rear foot moving crossbar 6, the three crossbars can move up and down along the track (2), the camera (504) and the fastening tool (503) ) is fixed on the middle moving cross bar (4);
  • the front foot moving crossbar (3), the rear foot moving crossbar (6) and the middle moving crossbar (4) move up and down along the track (2), and the fastening tool (503) is fixed on the middle moving crossbar (4);
  • the intermediate mechanism (7) includes an annular guide rail (704) and an inclination electric push rod (106) connected with the annular guide rail (704), the annular guide rail (704) is vertically connected with the axis of the robot frame, and the The robot frame rotates along the annular guide rail (704), and the inclination electric push rod (106) is arranged to drive the robot frame away from or close to the angle steel under the support of the support assembly (104);
  • the clamping mechanism (1) has an opening and closing structure, and is configured to clamp the angle steel or release the angle steel.
  • Fig. 1 is the overall structure schematic diagram of the angle steel tower bolt fastening robot of the present application
  • Fig. 2 is the structural representation of the angle steel tower bolt fastening robot of the present application installed on the angle iron frame of the present application;
  • Fig. 3 is the structural representation of the telescopic movement mechanism of the angle steel tower bolt fastening robot of the present application
  • Fig. 4 is the structural schematic diagram of the operation assembly of the middle moving cross bar installed between the front foot moving cross bar and the rear foot moving cross bar of the angle steel tower bolt fastening robot of the present application;
  • Fig. 5 is the track structure schematic diagram of the angle steel tower bolt fastening robot of the present application.
  • FIG. 6 is a schematic diagram of the connection relationship between the forefoot moving crossbar and the track of the angle steel tower bolt fastening robot of the present application;
  • FIG. 7 is a schematic structural diagram of the front of the clamping mechanism of the angle steel tower bolt tightening robot of the present application.
  • Fig. 8 is the structural representation of the reverse side of the clamping mechanism of the angle steel tower bolt tightening robot of the present application
  • Fig. 9 is the structural representation of the rectangular connecting rod of the angle steel tower bolt fastening robot of the present application.
  • FIG. 10 is a schematic diagram of the connection relationship of the drive link of the angle steel tower bolt fastening robot of the present application.
  • Fig. 11 is the structural representation of the adjusting support device of the angle steel tower bolt fastening robot of the present application.
  • 12 is a schematic diagram of a state in which the forefoot clamping device of the angle steel tower bolt tightening robot of the present application moves forward;
  • FIG. 13 is a schematic diagram of the follow-up state of the rear foot clamping device of the angle steel tower bolt tightening robot of the present application.
  • FIG. 14 is a schematic diagram of the state of the track group of the angle steel tower bolt tightening robot of the present application following up;
  • 15 is a schematic diagram of the state of the gripping and loosening of the gripper of the clamping mechanism of the angle steel tower bolt tightening robot of the present application;
  • Fig. 16 is the schematic diagram of the state in which the inclination electric push rod of the angle steel tower bolt tightening robot of the present application drives the intermediate mechanism to move to lift the foot;
  • Fig. 17 is the position schematic diagram that the drive link of the angle steel tower bolt tightening robot of the present application drives the gear set to rotate along the annular guide rail;
  • 18 is a schematic diagram of the position of the operating plane in the process of switching the working plane along the horizontal direction of the tower rod by the angle steel tower bolt tightening robot of the present application;
  • 101 ring rail bracket; 102, jaw drive motor; 103, motor housing; 104, support assembly; 105, jaw; Turntable; 109, guide hole for claw; 110, electromagnet; 111, clamping part; 112, adjusting core; 113, positioning bolt; 114, upper positioning hole; 115, lower positioning hole;
  • Forefoot moving crossbar linkage gear 302.
  • Forefoot auxiliary moving crossbar 303.
  • Forefoot keyway connection 304.
  • Forefoot main moving crossbar stepping motor 305.
  • Forefoot moving crossbar chute 306.
  • Forefoot moving crossbar lug 301.
  • Forefoot moving crossbar linkage gear 302.
  • Forefoot auxiliary moving crossbar 303.
  • Forefoot keyway connection 304.
  • Forefoot main moving crossbar stepping motor 305.
  • Forefoot moving crossbar chute 306.
  • Forefoot moving crossbar lug 302.
  • Middle moving crossbar linkage gear 402, Middle moving crossbar screw; 403, Middle moving crossbar slide rail; 404, Middle moving crossbar screw drive; 405, Middle moving crossbar chute; 406, Middle moving crossbar stepper motor;
  • 601 rear foot moving cross bar linkage gear; 602, rear foot pair moving cross bar; 603, rear foot keyway connecting part; 604, rear foot main moving cross bar stepping motor; 605, rear foot moving cross bar chute; 606 , the rear foot moves the cross bar lugs;
  • Embodiment 1 in conjunction with FIG. 1, the present application provides an angle steel tower bolt tightening robot.
  • the robot includes: a robot frame, an intermediate mechanism 7 and a clamping mechanism 1 arranged on the same side as the robot frame; the clamping mechanism 1 passes through the intermediate mechanism 7. Connect with the robot frame;
  • the robot frame includes a fastening tool 503, a track 2, a forefoot moving crossbar 3 and a rear foot moving crossbar 6 that are perpendicular to the track 2, and a forefoot moving crossbar 3 and a rearfoot moving crossbar 6 that are perpendicular to the track 2 and located between the forefoot moving crossbar 3 and the hindfoot moving crossbar 6.
  • the middle moving crossbar 4, the three crossbars can move up and down along the track 2, and the camera 504 and the fastening tool 503 are fixed on the middle moving crossbar 4;
  • the front foot moving cross bar 3, the rear foot moving cross bar 6 and the middle moving cross bar 4 move up and down along the track 2, and the fastening tool 503 is fixed on the middle moving cross bar 4;
  • the tightening tool 503 is an electric torque wrench (including a sleeve), which is used for tightening the bolts of the angle steel tower connecting plate.
  • the intermediate mechanism 7 includes an annular guide rail 704 and an inclination electric push rod 106 connected with the annular guide rail 704 .
  • the annular guide rail 704 is vertically connected to the axis of the robot frame, the robot frame rotates along the annular guide rail 704 , and the inclined angle electric push rod 106 is arranged on the support assembly 104 . Drive the robot frame away from or close to the angle steel under the support;
  • the clamping mechanism 1 has an opening and closing structure, and is configured to clamp the angle steel or release the angle steel.
  • the front foot moving crossbar 3 and the rear foot moving crossbar 6 both include the rear foot keyway connecting part 603, the auxiliary crossbar that moves synchronously on the track 2, and the main crossbar provided with a power drive mechanism; the main crossbar and the auxiliary crossbar are two.
  • the axis between them is on the same vertical plane perpendicular to the axis of the track 2, the channel between the main cross bar and the secondary cross bar is the channel connected with the intermediate mechanism 7, and the central axis of the rear foot keyway connecting part 603 It is perpendicular to the center axis of the secondary crossbar and is installed on the secondary crossbar.
  • the intermediate mechanism 7 also includes a built-in torque motor 706, a bell-shaped shell 705 with a connecting portion 710 connected to the clamping mechanism 1 through an electric push rod 106 at the top end, a rectangular link 708 and a plurality of gears, and the forefoot moves the crossbar. 3 and the rear foot moving cross bar 6 are respectively connected with the rectangular connecting rod 708;
  • the output shaft of the torque motor 706 is fixedly connected with the distal gear 701, the idler gear 702 and the fixed gear 703 in the fixed gear 703 with the opening, which are arranged on the inner axis of the rectangular connecting rod 708; the distal gear 701 is arranged in the rectangular connection.
  • the torque motor 706 drives the rectangular link 708 .
  • the inner side of the rectangular connecting rod 708 is provided with a gear connecting rod 712, the gear connecting rod 712 is connected with the idler gear 702, and the distal gear 701, the idler gear 702 and the fixed gear 703 mesh with each other.
  • the outer side of one end of the distal gear 701 on the inner axis of the rectangular connecting rod 708 is provided with a groove that matches the annular guide rail 704, so that the torque motor 706 drives the rectangular connecting rod 708 to move along the annular guide rail 704; the output of the torque motor 706
  • the axis is perpendicular to the axis of the crossbar.
  • the output shaft of the torque motor 706 is fixedly connected with the forefoot moving crossbar 3 and the rear foot moving crossbar 6 respectively, and is axially perpendicular to the forefoot moving crossbar 3 and the rearfoot moving crossbar 6 .
  • the middle moving cross bar 4 includes: a lead screw arranged in parallel with each other in the axial direction, two ends of the lead screw are connected to the screw drive, gear and slide rail 203 in sequence; 501 and a fastening tool driver 502;
  • Two ends of the tightening tool 503 are respectively fixedly connected with the tightening tool driving part 502 and the moving part 501 , the moving part 501 is movably connected with the lead screw, and the camera 504 is arranged inside the moving part 501 .
  • the clamping mechanism 1 includes a power member and a plurality of claws 105 , and the power member is connected with the plurality of claws 105 .
  • the power part includes a jaw drive motor 102, a motor housing 103, and a flat threaded turntable 108;
  • One side of the motor housing 103 is set as a baffle plate, the other side is set as a center plate, and the bottom of the baffle plate and the center plate is provided with an arc bottom plate;
  • a flat threaded turntable 108 is installed on the arc-shaped bottom plate on one side of the motor housing 103, and the other side is fixedly connected with the claw drive motor 102;
  • the plane threaded turntable 108 is provided with threads, and the jaws 105 are mounted on the threads.
  • the jaw 105 is L-shaped, and one end of the jaw 105 is provided with a limiting device;
  • a plurality of claw guide holes 109 are provided at the bottom of one side of the motor housing on which the plane threaded mounting plate 108 is installed, the claw 105 passes through the claw guide holes 109, and the limiting device is installed on the thread.
  • the clamping mechanism 1 further includes a V-shaped clamping portion 111 , an adjustment core 112 , a plurality of electromagnets 110 and a positioning pin 113 connected to the central axis of the electromagnets 110 ;
  • the multiple electromagnets 110 are connected vertically in the axial direction, one electromagnet 110 is connected to the center plate, and the vertical angles of the multiple electromagnets 110 are fixedly connected to the apex of the clamping portion 111 through the adjusting core 112 .
  • the angle steel tower bolt tightening robot also includes an electric push rod inclination bracket 107, a limit assembly and a plurality of annular guide rail brackets 101 with an F-shaped inclination angle.
  • the limit assembly includes a limit rod 709 and a limit plate 707, and the limit rod 709 Actively connected with the limit plate 707;
  • One end of the electric push rod inclination bracket 107 is movably connected with the electric inclination electric push rod 106, and the other end of the electric push rod inclination bracket 107 is attached to the center plate;
  • the limit rod 709 is V-shaped, and the apex of the limit rod 709 is connected with the center of the fixed gear 703 through the opening of the fixed gear 703;
  • One side of the plurality of limit plates 707 is movably connected to both ends of the limit rod 709, the other sides of the plurality of limit plates 707 are respectively fixedly connected to the annular guide rail bracket 101, and the other end of the annular guide rail bracket 101 (driving The end where the motor 102 is located (referring to the back of the casing) is disposed on both sides of the claw driving motor 102 and is movably connected with the motor casing 103 .
  • distal gear 701 , the idler gear 702 and the fixed gear 703 are named according to the position of the rectangular connecting rod 708 where the gears are located and the installation method.
  • the structural form of the climbing robot cannot adapt to the climbing of rigid structures with complex surface obstacles such as angle steel towers.
  • the tower climbing robot cannot effectively attach and lock any part of the angle steel tower body, and carry tools and implements for the tower body operation.
  • the application provides a technical solution for a single-layer reversible telescopic mechanism of a climbing robot for a power transmission line tower body.
  • the overall technical solution of the robot includes the following contents:
  • the single-layer reversible telescopic mechanism can realize the robot's independent two-way climbing along the angle steel.
  • the single-layer reversible telescopic mechanism consists of two rack guide rails and three moving bars with independent stepping motors. By cooperating with the clamping, loosening and lifting actions of the encircling foot, the robot's guide rail feeding, forefoot advancing and hindfoot following actions can be combined to realize the robot's climbing operation.
  • the design principle of the encircling foot is to clamp and fix the main material of the tower body through a support point and two clamping points to form a circular embrace. As shown in Figure 2, when the two clamping points extend synchronously, the diameter of the circle formed by the three points increases, and when the short arc of the two clamping points exceeds the width of the angle steel, the clamping mechanism can be smoothly separated from the angle steel.
  • the encircling foot is driven by the torque motor 706 to rotate the plane thread, and the plane thread drives the two clamping claws to expand and contract synchronously, so as to realize the function of clamping and releasing the main material of the tower body.
  • the inclination electric push rod 106 is set to lift the foot, and the adjustment support seat is mainly involved in the adjustment of the height of the front and rear feet when the two feet fall on the joint plate and the angle steel respectively during the robot climbing operation, thereby ensuring the working plane of the robot and the working plane of the main material. parallel.
  • the adjustment support seat is realized by the synergy of two orthogonal electromagnets 110.
  • the X-direction electromagnet 110 drives the center rod to move up and down, and the center rod is equipped with two pin holes; Provides strength support for the current position.
  • the rotation and plane positioning mechanism is mainly used to realize the identification and positioning of bolts.
  • the ring guide 704 cooperates with the gear set with a total rotation ratio of 3:1 to realize the movement of the rotation and plane positioning mechanism.
  • the trajectory is clockwise rotation of 270° and counterclockwise rotation. 90°, the scheme can be understood in conjunction with Figures 3 and 4.
  • the identification and positioning of all bolt positions on the two working surfaces can be realized by cooperating with video recognition in the three moving directions (X/Y/Z) of the plane scanning mechanism, as shown in Figure 5.
  • the present application can replace labor to realize the fastening construction of the main material bolts in the construction stage of angle steel tower assembly, and the measurement, recording and re-tightening of the main material bolts of the angle steel tower in the line transportation inspection stage.
  • the present application can greatly improve the operation efficiency of angle steel tower bolt fastening construction and transportation inspection, reduce the labor intensity of personnel, and greatly improve the operation safety while ensuring the construction quality.
  • the present application provides a self-climbing angle steel tower bolt tightening robot and a control method thereof.
  • the robot of the present application includes two rails 2 parallel to each other, an intermediate mechanism 7 and a connection with the rail 2 .
  • a robot framework composed of a forefoot moving crossbar 3 perpendicular to the intermediate mechanism 7, a middle moving crossbar and a rear foot moving crossbar 6;
  • One side of the robot frame is provided with an intermediate mechanism 7 , and the intermediate mechanism 7 is parallel to the forefoot moving crossbar 3 or the rear foot moving crossbar 6 through the shaft of the distal gear 701 .
  • the forefoot moving crossbar 3 , the rear foot moving crossbar 6 and the middle moving crossbar 4 are arranged on the track 2 , so that the three crossbars can move on the track 2 .
  • the track 2 includes: a track plug 201, a rack 202 and a slide rail 203, the rack 202 and the slide rail 203 are axially connected in parallel with the axis in a vertical plane, and the track plug 201 is provided at both ends of the slide rail 203;
  • Forefoot moving crossbar 3 includes: forefoot moving crossbar linkage gear 301, forefoot auxiliary moving crossbar 302, forefoot keyway connecting part 303, forefoot main moving crossbar stepping motor 304, forefoot moving crossbar chute 305, and forefoot moving crossbar.
  • the rod support lugs 306, the main crossbar (corresponding to 301) and the auxiliary crossbar (corresponding to 302) are arranged in parallel, and the two ends of the main crossbar and the auxiliary crossbar are sequentially connected to the forefoot moving crossbar linkage gear 301, the forefoot moving crossbar support
  • the ear 306, the forefoot keyway connecting part 303 and the forefoot moving crossbar chute 305, one end of the main crossbar and the auxiliary crossbar are connected to the forefoot main moving crossbar stepping motor 304;
  • the middle moving crossbar 4 includes: the middle moving crossbar linkage gear link 401, the middle moving crossbar screw 402, the middle moving crossbar slide rail 403, the middle moving crossbar screw drive 404, the middle moving crossbar chute 405, and The middle moving crossbar stepping motor 406;
  • the rear foot moving cross bar 6 includes: a rear foot moving cross bar linkage gear 601, a rear foot auxiliary moving cross bar 602, a rear foot keyway connecting part 603, a rear foot main moving cross bar stepping motor 604, and a rear foot moving cross bar chute 605, and the rear foot moving crossbar support lugs 606, the main crossbar and the auxiliary crossbar are arranged in parallel, and the two ends of the main crossbar and the auxiliary crossbar are sequentially connected to the hindfoot moving crossbar linkage gear 601 and the rearfoot moving crossbar support lugs 606.
  • the rear foot keyway connecting part 603 and the rear foot moving cross bar chute 605, one end of the main cross bar and the auxiliary cross bar are connected to the rear foot main moving cross bar stepping motor 604;
  • the operating assembly 5 is arranged on the middle moving crossbar 4, and the operating assembly 5 includes: a moving part 501, a fastening tool driving part 502, a fastening tool 503, a camera 504, the moving part 501 is arranged on the middle moving crossbar 4, and the camera 504 is installed on the in the moving part 501;
  • the intermediate mechanism 7 includes: a distal gear 701, an idler gear 702, a fixed gear 703, an annular guide rail 704, a bell-shaped housing 705, a torque motor 706, a limit plate 707, a rectangular link 708, and a limit rod 709;
  • the limiting plate 707 includes: a connecting part 710, a moving end 711, a gear connecting rod 712, and a fixed end 713;
  • the connecting part 710, the moving end 711, and the fixed end 713 are connected in sequence, and the gear connecting rod 712 is vertically installed on the moving end 711;
  • the clamping mechanism 1 includes: an annular guide rail bracket 101, a jaw drive motor 102, a motor housing 103, a support assembly 104, a jaw 105, an electric inclination push rod 106, an electric push rod inclination frame 107, a plane threaded turntable 108, Claw guide hole 109, electromagnet 110, clamping part 111, adjusting core 112, positioning bolt 113;
  • the positioning bolt 113 includes: an upper positioning hole 114 and a lower positioning hole 115, which are configured to move the magnet;
  • This application consists of three parts.
  • the present application provides power for the plane thread turntable 108 through the jaw drive motor 102, so that the plane thread turntable 108 rotates. Since the limiting device of the jaw 105 is installed in the flat thread turntable 108, the jaw 105 is driven to expand and contract, and the holding Climb the tower body of the tight transmission line tower.
  • the electric push rod inclination bracket 107 arranged on the side of the plane threaded turntable 108 supports the inclination electric push rod 106, and the inclination electric push rod 106 pushes the mechanism to lift,
  • the cross bar set on the guide rail is moved by a stepping motor, and can be translated on the tower body of the transmission line tower.
  • the inclination electric push rod 106 is lifted first, and the horizontal rod is then translated, irrespective of the positioning bolt 113 .
  • the middle moving cross bar 4 arranged on the guide rail, under the power provided by the stepping motor, the middle moving cross bar 4 can be translated on the guide rail, and the bolts are monitored and controlled by the camera 504 arranged on the middle moving cross bar 4. Record and rotate the ring guide 704 by the motor, so that the gear on the rectangular link 708 set on the ring guide 704 rotates, and the gear drives the cross bar on the guide to offset, and the bolt condition can be checked longitudinally.
  • the climbing robot provided by the present application can realize autonomous climbing of the main material of the angle steel tower, tower body attachment and working position locking, bolt identification, positioning and automatic tightening operations.
  • This application provides an angle steel tower bolt tightening robot, the robot includes: a robot frame, an intermediate mechanism 7 and a clamping mechanism 1 arranged on the same side as the robot frame;
  • the robot frame is connected;
  • the robot frame includes a track 2, a forefoot moving crossbar 3 and a hindfoot moving crossbar 6 vertically arranged with the track 2, and a forefoot moving crossbar 3 and a hindfoot moving crossbar 3 perpendicular to the track 2 and located in the forefoot moving
  • the middle moving crossbar 4 between the crossbars 6, the front foot moving crossbar 3, the rear foot moving crossbar 6 and the middle moving crossbar 4 move up and down along the track 2, and the fastening tool 503 is fixed on the middle moving crossbar 4;
  • the mechanism 7 includes an annular guide rail 704 and an inclination electric push rod 106 connected to the annular guide rail 704.
  • the annular guide rail 704 is vertically connected to the axis of the robot frame, and the robot frame rotates along the annular guide rail 704.
  • the push rod 106 drives the robot frame away from or close to the angle steel under the support of the support assembly 104; the clamping mechanism 1 has an opening and closing structure, and is set to clamp the angle steel or release the angle steel; the application realizes that the robot automatically climbs on the power transmission tower. Climb and inspect transmission towers.
  • the clamping mechanism 1 of the robot of the present application which is arranged on the cross bar to move forward and backward, the L-shaped jaws 105 with reinforcements symmetrically arranged on the plane threaded turntable 108 are driven by the jaw drive motor 102, forming a human-like structure.
  • the double-arm L-shaped clips can easily achieve climbing on the tower with the help of the intermediate mechanism 7.
  • the climbing robot provided by this application through the intermediate mechanism 7 set between the cross bar and the clamping mechanism 1, makes the robot not only can move conveniently along the horizontal direction of the tower according to the required position, but also can conveniently move along the vertical direction (vertical) of the tower. Climbing in the direction of ), at the same time, it also drives the middle crossbar to move the required position along the horizontal and vertical directions of the tower, so that the camera 504, the moving part 501, the fastening tool 503 and the fastening tool carried on the middle crossbar The tool driver 502 is moved to the required position, so as to operate the position where the tower rod needs to be operated.
  • the axial direction of the torque motor 706 of the driving mechanism in the intermediate mechanism 7 of the present application is perpendicular to the axial direction of the cross bar in the robot frame, by controlling the distance between the annular guide rail 704 and the distal gear 701
  • the diameter ratio can effectively control the movement along the horizontal direction of the tower, and at the same time, it can also effectively control the load and safety of the robot.
  • the torque motor 706 in the axial direction of the cross bar in the robot frame can not only ensure that the clamping force of the clamping mechanism 1 is satisfied by means of the provided torque motor 706, but also make the robot have a function similar to the soft waist of the human body, so as to ensure that the robot has a function similar to the soft waist of the human body to ensure horizontal movement.
  • the climbing robot provided by the present application drives the middle cross bar to rotate through the rotation and positioning of the intermediate mechanism 7 so that the operating platform faces the waiting surface of the transmission tower, and realizes the operation without changing the movement route of the robot.
  • the platform can be switched between the two working surfaces of the angle steel tower which are perpendicular to each other; with the scanning device, the identification and positioning of the to-be-operated point on the angle steel tower can be realized, the structure is simple, and the positioning accuracy is high.
  • the robot frame provided by this application which is composed of a crossbar, an intermediate mechanism 7 and a clamping mechanism 1, provides a safe, convenient and reliable environment for the positioning, operation and fixation of the middle moving crossbar set on the robot frame. .
  • the control of the movement of the telescopic moving structure provided by this application can realize the autonomous two-way climbing of the robot along the angle steel, the structure is simple, the control is convenient, and the problems of complex structure, self-weight and complex control system of the climbing robot are solved; and the load Strong ability, can load a variety of operating tools for angle steel tower bolt tightening and maintenance.
  • the clamping device of the climbing robot provided by this application is clamped on the edges of the two right-angled sides of the angle iron through the L-shaped jaws 105 with a strong member.
  • the structure is simple and the contact area is small, which solves the need for the clamping device of the climbing robot.
  • a large area is clamped on the two right-angle surfaces of the angle iron, resulting in poor adaptability of the screw area at the connecting plate position of the angle steel tower and limited clamping range, which realizes the problem of obstacle positions on the connecting plate and foot nails of the angle steel tower. Effective clamping, large clamping range;
  • the driving device of the jaws 105 provided by the application drives the plane threaded turntable 108 to rotate through the intermediate mechanism 7, and drives the jaws 105 to grasp and release the angle steel, which solves the problem that the robot falls off the iron tower after the power is turned off, and realizes the The power-off self-locking of the climbing robot, the control is simple, and the structure is safe and reliable.
  • the present application can replace manual labor to realize the fastening construction of main material bolts in the construction stage of angle steel tower assembly, and the measurement, recording and re-tightening of the fastening torque of main material bolts of angle steel towers in the line transportation inspection stage.
  • the present application can greatly improve the operation efficiency of angle steel tower bolt fastening construction and transportation inspection, reduce the labor intensity of personnel, and greatly improve the operation safety while ensuring the construction quality.
  • Embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may be employed on one or more computer-usable storage media (including disk storage, portable Compact Disc Read Only Memory (CD-ROM), optical storage, etc.) having computer-usable program code embodied therein The form of an implemented computer program product.
  • CD-ROM Compact Disc Read Only Memory
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flows of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)

Abstract

本申请涉及一种角钢塔螺栓紧固机器人,机器人包括:机器人构架、与机器人构架同侧设置的中间机构和夹持机构;夹持机构通过中间机构与机器人构架连接,机器人构架包括轨道、与轨道垂直设置的前足和后足移动横杆以及与轨道垂直且位于前足和后足移动横杆之间的中移动横杆,前足移动横杆、后足移动横杆和中移动横杆沿导轨上下运动,紧固工具固定在中移动横杆上,中间机构包括环形导轨和与环形导轨连接的倾角电推杆,环形导轨与机器人构架轴线垂直连接,机器人构架沿环形导轨旋转,倾角电推杆在支撑组件的支撑下带动机器人构架远离或靠近角钢,夹持机构具有开合结构,设置为夹紧角钢或释放角钢。

Description

角钢塔螺栓紧固机器人
本申请要求在2020年12月03日提交中国专利局、申请号为202011405744.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种机器人,例如涉及一种角钢塔螺栓紧固机器人。
背景技术
作为输电线路工程施工中的分部工程之一的组塔施工,在塔材吊装就位后,螺栓紧固工作量大,扭矩精度要求高。而角钢塔的主材螺栓的紧固性对铁塔的防振动性能和整体结构稳定具有重要作用。
角钢塔螺栓的紧固依靠借助简单工具或电动扳手作业的人工操作;线路投运后,还需对角钢塔主材螺栓的紧固扭矩作定期监测,以对扭矩不合格的松动螺母复紧,这样的复紧也由人工测量完成。高空作业环境下的工作人员风险较高;而这样的人工作业还可能存在紧固力矩不达标、紧固力矩一致性差的缺陷以及漏紧的情况,这无疑给后期运行埋下很大的安全隐患。
角钢塔表面复杂,常见的障碍物有供人员攀爬铁塔用的脚钉、联板和螺栓等;以及角钢塔、塔身脚钉和螺栓。攀爬机器人不适合于在角钢塔这种表面复杂的钢结构攀爬,无法实现有效的越障功能;无负载能力或负载能力有限,由于结构形式的限制,不适合角钢塔螺栓紧固作业;自身结构及控制系统复杂,自重大,且高空作业风险高。
攀爬机器人可分为足式、轮式、履带式和蛇形附着式等机构形式。
(1)足式攀爬机器人
采用足式攀爬结构的足式机器人,可在攀爬表面灵活变向和跨越障碍,攀爬机器人一般为两足到八足不等,机器人的足端装配真空吸盘、抓取机构或者磁吸附装置。此类机器人的弊端是足的数量越多,机器人的重量、体积和控制的复杂程度相应随之增加。其中的两足式机器人以其运动灵活和控制简单的优点得到了广泛研究和应用;另一类是四自由度的双足爬壁机器人RAMR1,足端采用真空吸盘,可以在较为光洁平整的平面上攀爬。
一种实施方式提供了一种4足机器人NINJA,该机器人利用一种阀控式多抽油杆,使得该机器人能吸附在不平坦的表面上。另一种实施方式提供的6足攀爬机器人,每个足具有3个自由度,具有移动、越障和转向功能;攀爬机器 人的足端安装用以吸附在铁磁质墙壁表面的电磁吸附机构;由于此机器人采用了大功率的吸附机构,所以该机器人的整体结构尺寸较大,质量达250Kg;该机器人可以携带较重的负载,具有较强的越障能力,但步履缓慢且控制复杂。
另一种实施方式提供一种双臂式电力铁塔攀爬机器人,但该机器人由于系统复杂,无法实现角钢塔的攀爬与越障,无法进行任何有效作业。
(2)轮式攀爬机器人
依靠轮子和壁面之间的摩擦力产生前进动力的轮式攀爬机器人,行驶速度快,移动灵活;采用负压吸附,运动速度高、且易于控制;例如一种实施方式提供的三代轮式攀爬机器人样机(UT-PCR1、UT-PCR2及UT-PCR3)。由于塔材特殊结构,轮式攀爬机器人与塔面的接触面积较小,大大限制了负载能力,使得机器人很难维持在稳定状态下攀爬,也不利于越障,因此轮式攀爬机器人并不适合角钢塔的攀爬。
(3)履带式攀爬机器人
一种实施方式提供的MINI Climber机器人,由吸盘及真空泵和传感器模块等组成,通过内置真空系统吸附墙壁。虽然该类机器人能够在多种表面上攀爬并可跨越多种障碍物,最大越障高度为20mm,但在结构复杂的塔杆显得力不从心。
(4)蛇形攀爬机器人
蛇形机器人是仿生机器人研究中很活跃的一支,大部分样机已具备抬头、爬台阶和翻越低障碍等三维空间运动能力,近几年研制的蛇形机器人样机功能更加具有针对性和多样性,有的已经能够垂直攀爬到数米高度。在攀爬过程中,蛇形机器人通过缠绕附着在攀爬对象的外表面,然后采用一定的步态上下攀爬。一种实施方式提供的CRS蛇形攀爬机器人,可沿等距螺旋线方向,采用尺蠖般的蠕动步态,以纵波的形式通过部分关节的起伏向上传递运动波,其它部分的关节则缠绕在树干上,产生摩擦力以抵消整体重力,攀爬始终沿着一条固定的轨迹。另一种实施方式提供的蛇形机器人样机基于正交连接,采用“粘附式”运动完成障碍的跨越,具有运动稳定性好、适应地形能力强和牵引力大等特点,但该蛇形机器人的自由度多,控制困难且速度低。这种机器人结构并不适合角钢塔这种非圆形的结构。
相关技术中机器人不能有效越障、在角钢塔塔身附着及定点识别作业的攀爬。
发明内容
针对相关技术无法通过机器人在输电线路塔上进行攀爬,以及无法检查螺栓的情况,本申请提供了一种角钢塔螺栓紧固机器人,所述机器人包括:机器人构架、与机器人构架同侧设置的中间机构(7)和夹持机构(1);所述夹持机构(1)通过中间机构(7)与机器人构架连接;
机器人构架包括紧固工具(503)、轨道(2)、与所述轨道(2)垂直设置的前足移动横杆(3)和后足移动横杆(6)以及与所述轨道(2)垂直且位于所述前足移动横杆(3)和后足移动横杆6间的中移动横杆(4),三个横杆可以沿轨道(2)上下运动,摄像头(504)和紧固工具(503)固定在中移动横杆(4)上;
所述前足移动横杆(3)、后足移动横杆(6)和中移动横杆(4)沿轨道(2)上下运动,紧固工具(503)固定在中移动横杆(4)上;
所述中间机构(7)包括环形导轨(704)和与所述环形导轨(704)连接的倾角电推杆(106),所述环形导轨(704)与所述机器人构架轴线垂直连接,所述机器人构架沿环形导轨(704)旋转,所述倾角电推杆(106)设置为在支撑组件(104)的支撑下带动所述机器人构架远离或靠近角钢;
所述夹持机构(1)具有开合结构,设置为夹紧角钢或释放角钢。
附图说明
图1是本申请的角钢塔螺栓紧固机器人的整体结构示意图;
图2是本申请的安装在角铁架上的本申请的角钢塔螺栓紧固机器人的结构示意图;
图3是本申请的角钢塔螺栓紧固机器人的伸缩移动机构的结构示意图;
图4是本申请的角钢塔螺栓紧固机器人安装在前足移动横杆和后足移动横杆间的中移动横杆的操作组件的结构示意图;
图5是本申请的角钢塔螺栓紧固机器人的轨道结构示意图;
图6是本申请的角钢塔螺栓紧固机器人的前足移动横杆和轨道连接关系示意图;
图7是本申请的角钢塔螺栓紧固机器人的夹持机构的正面的结构示意图;
图8是本申请的角钢塔螺栓紧固机器人的夹持机构的反面的结构示意图;
图9是本申请的角钢塔螺栓紧固机器人的矩形连杆的结构示意图;
图10是本申请的角钢塔螺栓紧固机器人的驱动连杆的连接关系示意图;
图11是本申请的角钢塔螺栓紧固机器人的调整支撑装置的结构示意图;
图12是本申请的角钢塔螺栓紧固机器人的前足夹持装置向前移动的状态的示意图;
图13是本申请的角钢塔螺栓紧固机器人的后足夹持装置的跟进的状态的示意图;
图14是本申请的角钢塔螺栓紧固机器人的轨道组跟进的状态的示意图;
图15是本申请的角钢塔螺栓紧固机器人的夹持机构的卡爪抓紧和放松的状态示意图;
图16是本申请的角钢塔螺栓紧固机器人的倾角电推杆带动中间机构运动以抬足的状态的示意图;
图17是本申请的角钢塔螺栓紧固机器人的驱动连杆带动齿轮组沿环形导轨旋转的位置示意图;
图18是本申请的角钢塔螺栓紧固机器人沿塔杆水平方向切换工作面过程中操作平面的所在位置示意图;
图中;1、夹持机构;2、轨道;3、前足移动横杆;4、中移动横杆;5、操作组件;6、后足移动横杆;7、中间机构;8、塔杆角铁;
101、环形导轨托架;102、卡爪驱动电机;103、电机壳体;104、支撑组件;105、卡爪;106、倾角电推杆;107、电推杆倾角架;108、平面螺纹转盘;109、卡爪导向孔;110、电磁铁;111、卡紧部;112、调整芯;113、定位栓;114、上定位孔;115、下定位孔;
201、轨道堵头;202、齿条;203、滑轨;
301、前足移动横杆联动齿轮;302、前足副移动横杆;303、前足键槽连接部;304、前足主移动横杆步进电机;305、前足移动横杆滑槽;306、前足移动横杆支耳;
401、中间移动横杆联动齿轮;402、中间移动横杆丝杠;403、中间移动横杆滑轨;404、中间移动横杆丝杠驱动;405、中间移动横杆滑槽;406、中间移动横杆步进电机;
501、移动件;502、紧固工具驱动件;503、紧固工具;504、摄像头;
601、后足移动横杆联动齿轮;602、后足副移动横杆;603、后足键槽连接部;604、后足主移动横杆步进电机;605、后足移动横杆滑槽;606、后足移动横杆支耳;
701、远端齿轮;702、惰轮;703、固定齿轮;704、环形导轨;705、钟罩形壳;706、扭矩电机;707、限位板;708、矩形连杆;709、限位杆;710、连接部;711、移动端;712、齿轮连接杆;713、固定端。
具体实施方式
下面结合附图对本申请的实施方式进行说明。
实施例1,结合图1本申请提供了一种角钢塔螺栓紧固机器人,机器人包括:机器人构架、与机器人构架同侧设置的中间机构7和夹持机构1;夹持机构1通过中间机构7与机器人构架连接;
机器人构架包括紧固工具503、轨道2、与轨道2垂直设置的前足移动横杆3和后足移动横杆6以及与轨道2垂直且位于前足移动横杆3和后足移动横杆6间的中移动横杆4,三个横杆可以沿轨道2上下运动,摄像头504和紧固工具503固定在中移动横杆4上;
所述前足移动横杆3、所述后足移动横杆6和所述中移动横杆4沿所述轨道2上下运动,所述紧固工具503固定在所述中移动横杆4上;
紧固工具503为电动扭矩扳手(含套筒),用于角钢塔联板螺栓的紧固作业。
中间机构7包括环形导轨704和与环形导轨704连接的倾角电推杆106,环形导轨704与机器人构架轴线垂直连接,机器人构架沿环形导轨704旋转,倾角电推杆106设置为在支撑组件104的支撑下带动机器人构架远离或靠近角钢;
夹持机构1具有开合结构,设置为夹紧角钢或释放角钢。
前足移动横杆3和后足移动横杆6均包括后足键槽连接部603、在轨道2上同步移动的副横杆和设有动力驱动机构的主横杆;主横杆和副横杆两者间的轴心在垂直于轨道2的轴心的同一竖直面上,主横杆和副横杆两者间的通道为与中间机构7连接的通道,后足键槽连接部603的中轴垂直于副横杆的中轴并安装在副横杆上。
中间机构7还包括内置有扭矩电机706、顶端设有通过倾角电推杆106与夹 持机构1连接的连接部710的钟罩形壳705、矩形连杆708和多个齿轮,前足移动横杆3和后足移动横杆6分别与矩形连杆708连接;
扭矩电机706的输出轴与设于矩形连杆708的内侧轴线上的远端齿轮701、惰轮702和带有开口的固定齿轮703中的固定齿轮703固定连接;远端齿轮701设置于矩形连杆708的内侧轴线上的另一端;远端齿轮701的轴穿过后足键槽连接部603。其中,扭矩电机706驱动矩形连杆708。
矩形连杆708的内侧设有齿轮连接杆712,齿轮连接杆712与惰轮702连接,远端齿轮701、惰轮702和固定齿轮703三者相互啮合。
矩形连杆708的内侧轴线上的远端齿轮701的一端的外侧设有与环形导轨704相配合的凹槽,以形成扭矩电机706带动矩形连杆708沿环形导轨704移动;扭矩电机706的输出轴与横杆轴向垂直。扭矩电机706的输出轴分别与前足移动横杆3和后足移动横杆6固定连接,并与前足移动横杆3和后足移动横杆6轴向垂直。
中移动横杆4包括:轴向彼此平行设置的丝杠、丝杠的两端依次连接丝杠驱动、齿轮和滑轨203;位于该中移动横杆4的一端的步进电机、摄像头504、移动件501和紧固工具驱动件502;
紧固工具503的两端分别与紧固工具驱动件502和移动件501固定连接,移动件501与丝杠活动连接,摄像头504设置于移动件501内部。
夹持机构1包括动力件和多个卡爪105,动力件与多个卡爪105连接。
动力件包括卡爪驱动电机102,电机壳体103,和平面螺纹转盘108;
电机壳体103的一侧设置为挡板,另一侧设置为圆心板,挡板与圆心板的底部设置有弧形底板;
电机壳体103的一侧的弧形底板上安装平面螺纹转盘108,另一侧与卡爪驱动电机102固定连接;
平面螺纹转盘108上设有螺纹,卡爪105安装于螺纹上。
卡爪105呈L型,卡爪105的一端点设有限位装置;
电机壳体安装平面螺纹装盘108的一侧的底部设有多个卡爪导向孔109,卡爪105穿过卡爪导向孔109,限位装置安装于螺纹上。
夹持机构1还包括呈V字形的卡紧部111、调整芯112、多个电磁铁110和与电磁铁110中轴连接的定位栓113;
多个电磁铁110轴向垂直连接,其中一个电磁铁110与圆心板连接,多个电磁铁110的垂直角穿过调整芯112与卡紧部111的顶点固定连接。
角钢塔螺栓紧固机器人还包括电推杆倾角架107、限位组件和多个倾角呈F形的环形导轨托架101,限位组件包括限位杆709和限位板707,限位杆709与限位板707活动连接;
电推杆倾角架107的一端与倾角电推杆106活动连接,电推杆倾角架107的另一端与圆心板贴合;
限位杆709呈V字型,限位杆709的顶点通过固定齿轮703的开口与固定齿轮703的圆心连接;
多个限位板707的一侧与限位杆709的两端活动连接,多个限位板707的另一侧分别与环形导轨托架101固定连接,环形导轨托架101的另一端(驱动电机102所在端,指壳体背面)设置于卡爪驱动电机102的两侧且与电机壳体103活动连接。
本申请中,远端齿轮701、惰轮702和固定齿轮703根据齿轮所在矩形连杆708位置及安装方式所命名。
实施例2
为实现一种可自主攀爬、塔身附着及作业位置锁紧、螺栓识别、定位及全自动紧固作业的机器人技术及产品,本申请解决了以下技术问题:
(1)攀爬机器人的结构形式无法适应角钢塔这类带有复杂表面障碍物的刚结构体攀爬。
(2)铁塔攀爬机器人无法实现在角钢塔塔身任意部位的有效附着、锁紧,并携带工器具进行塔身部位作业。
(3)铁塔攀爬机器人足部结构复杂、控制难度大,无法实现在角钢塔的联板和脚钉等表面有障碍物的位置实现有效夹持,机械自锁性差,在外载荷作用或失电情况下容易松脱,安全性差。
(4)尚无可实现角钢塔联板位置的双面螺栓识别及定位的机构。
本申请提供了一种用于输电线路铁塔塔身的攀爬机器人的单层可换向式伸缩机构的技术方案,机器人整体技术方案,结合图2,包括以下内容:
(1)单层可换向式伸缩机构
通过单层可换向式伸缩机构,可实现机器人沿角钢的自主双向攀爬,单层可换向式伸缩机构中由两根齿条导轨和三根带有独立步进电机的运动横杆组成,通过配合环抱式足部的卡紧、松开和抬起动作,可组合出机器人的导轨给进、前足迈进和后足跟随的动作,进而实现机器人的攀爬作业。
(2)环抱式足部
环抱式足部的设计原理是通过一个支持点和两个卡紧点构成圆型环抱对塔体主材进行卡紧固定。如图2当两个卡紧点同步外伸时,3点构成的圆直径增加,两个卡紧点的短弧超过角钢宽度时,卡紧机构可顺利的从角钢固定上脱离。
环抱式足部由扭矩电机706驱动平面螺纹转动,平面螺纹带动两个卡紧爪同步伸缩,实现塔体主材的卡紧和释放功能。倾角电推杆106设置为抬足运动,调节支撑座主要参与机器人攀爬作业中双足分别落在联板及角钢位置时,对前后足高度的调整,进而保证机器人作业平面与主材作业平面平行。调节支撑座通过两个正交的电磁铁110协同作用实现,X向电磁铁110驱动中心杆上下移动,中心杆上配有2个销子孔;Y向电磁铁110驱动侧面销轴插拔,为当前位置提供强度支撑。
(3)旋转及平面定位机构
旋转及平面定位机构主要用于实现螺栓的识别与定位,通过环形导轨704配合总转动比3:1的齿轮组,实现旋转及平面定位机构的运动,轨迹为顺时针旋转270°,逆时针自转90°,可以结合图3和图4理解方案。
在切换工作面完成后,通过在平面扫描机构的三个运动方向(X/Y/Z)上配合视频识别,实现两个工作面上所有螺栓位置的识别及定位,结合图5。
(1)通过单层可换向式伸缩机构,极大简化了攀爬机器人自身结构复杂、自重大和控制系统复杂的问题,并可适应角钢塔这种表面复杂的钢结构攀爬,并且负载能力强,可实现角钢塔螺栓紧固作业需求。
(2)通过对环抱式足部的设计,解决了机械夹持式足部结构复杂、控制难度大的问题,并且夹持范围大,可适应大截面角钢塔及联板位置的夹持,自锁性好,结构安全可靠,控制简单。
(3)通过旋转及平面定位机构设计,配合视频识别技术,解决了角钢塔联板位置的螺栓定位与识别的技术难点,结构简单,且定位精度高。
本申请可以代替人工,实现角钢塔组立施工阶段的主材螺栓的紧固施工、线路运检阶段的角钢塔主材螺栓紧固力矩的测量、记录与复紧。本申请可大幅提高角钢塔螺栓紧固施工与运检测试的作业效率,降低人员劳动强度,在保证施工质量的同时,大幅提高作业安全性。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,所描述的实施例是本申请一部分实施例,而不是全部的实施例。
本申请提供了一种可自主攀爬的角钢塔螺栓紧固机器人及其控制方法,结合图6至图18,本申请的机器人包括由两条相互平行的轨道2和中间机构7以及与轨道2和中间机构7垂直的前足移动横杆3、中间移动横杆和后足移动横杆 6组成的机器人构架;
该机器人构架的一侧设置中间机构7,该中间机构7通过远端齿轮701的轴与所述前足移动横杆3或后足移动横杆6相互平行。
实施例3
本申请通过前足移动横杆3、后足移动横杆6和中移动横杆4设置在轨道2上,实现三个横杆可在轨道2上进行移动。
轨道2包括:轨道堵头201,齿条202和滑轨203,齿条202和滑轨203轴向平行连接且轴线处于竖直平面内,轨道堵头201设置于滑轨203两端;
前足移动横杆3包括:前足移动横杆联动齿轮301,前足副移动横杆302,前足键槽连接部303,前足主移动横杆步进电机304,前足移动横杆滑槽305,和前足移动横杆支耳306,主横杆(可对应301)和副横杆(可对应302)平行设置,主横杆和副横杆的两端依次连接前足移动横杆联动齿轮301、前足移动横杆支耳306、前足键槽连接部303和前足移动横杆滑槽305,主横杆和副横杆的一端连接前足主移动横杆步进电机304;
中移动横杆4包括:中间移动横杆联动齿轮连杆401,中间移动横杆丝杠402,中间移动横杆滑轨403,中间移动横杆丝杠驱动404,中间移动横杆滑槽405,和中间移动横杆步进电机406;
后足移动横杆6包括:后足移动横杆联动齿轮601,后足副移动横杆602,后足键槽连接部603,后足主移动横杆步进电机604,后足移动横杆滑槽605,和后足移动横杆支耳606,主横杆和副横杆平行设置,主横杆和副横杆的两端依次连接后足移动横杆联动齿轮601、后足移动横杆支耳606、后足键槽连接部603和后足移动横杆滑槽605,主横杆和副横杆的一端连接后足主移动横杆步进电机604;
操作组件5设置在中移动横杆4上,操作组件5包括:移动件501,紧固工具驱动件502,紧固工具503,摄像头504,移动件501设置于中移动横杆4上,摄像头504安装于移动件501内;
中间机构7包括:远端齿轮701,惰轮702,固定齿轮703,环形导轨704,钟罩形壳705,扭矩电机706,限位板707,矩形连杆708,和限位杆709;
限位板707包括:连接部710,移动端711,齿轮连接杆712,固定端713;
连接部710、移动端711,固定端713依次连接,齿轮连接杆712垂直安装于移动端711上;
夹持机构1包括:环形导轨托架101,卡爪驱动电机102,电机壳体103, 支撑组件104,卡爪105,倾角电推杆106,电推杆倾角架107,平面螺纹转盘108,卡爪导向孔109,电磁铁110,卡紧部111,调整芯112,定位栓113;
定位栓113包括:上定位孔114和下定位孔115,设置为对磁铁进行移动;
本申请包括三部分。
1、本申请通过卡爪驱动电机102为平面螺纹转盘108提供动力,使平面螺纹转盘108进行旋转,由于卡爪105的限位装置安装在平面螺纹转盘108中,带动卡爪105进行伸缩,抱紧输电线路塔的塔身进行攀爬。
2、由于卡爪105可以进行伸缩,当卡爪105收缩时,设置在平面螺纹转盘108边侧的电推杆倾角架107,支撑倾角电推杆106,倾角电推杆106推动机构抬起,设置在导轨上的横杆通过步进电机进行移动,可以在输电线路塔的塔身进行平移。倾角电推杆106先抬起,横杆再平移,与定位栓113无关。
3、通过设置在导轨上的中移动横杆4,在步进电机提供动力作用下,中移动横杆4可以在导轨上进行平移,并通过设置在中移动横杆4上的摄像头504对螺栓进行监控和记录,并通过电机对环形导轨704进行旋转,使设置在环形导轨704上的矩形连杆708上的齿轮进行转动,通过齿轮带动导轨上的横杆进行偏移,可以纵向查看螺栓情况。
综上所述,本申请提供的攀爬机器人可实现角钢塔主材自主攀爬、塔身附着及作业位置锁紧、螺栓识别、定位及全自动紧固作业。
1、本申请提供了一种角钢塔螺栓紧固机器人,所述机器人包括:机器人构架、与机器人构架同侧设置的中间机构7和夹持机构1;所述夹持机构1通过中间机构7与机器人构架连接;机器人构架包括轨道2、与所述轨道2垂直设置的前足移动横杆3和后足移动横杆6以及与所述轨道2垂直且位于所述前足移动横杆3和后足移动横杆6间的中移动横杆4,所述前足移动横杆3、后足移动横杆6和中移动横杆4沿轨道2上下运动,紧固工具503固定在中移动横杆4上;所述中间机构7包括环形导轨704和与所述环形导轨704连接的倾角电推杆106,所述环形导轨704与所述机器人构架的轴线垂直连接,所述机器人构架沿环形导轨704旋转,所述倾角电推杆106在支撑组件104支撑下带动所述机器人构架远离或靠近角钢;所述夹持机构1具有开合结构,设置为夹紧角钢或释放角钢;本申请实现了机器人自动在输电杆塔上攀爬并检测输电杆塔情况。
2、由于本申请的机器人中的设于前后移动横杆的夹持机构1,利用卡爪驱动电机102驱动对称设于平面螺纹转盘108上的具有加强件的L形卡爪105,形成类似人的双手臂的L型卡夹,借助中间机构7可方便实现在塔杆上的攀爬。
3、本申请提供的攀爬机器人,通过横杆与夹持机构1间设置的中间机构7 使得此机器人既可以方便实现沿杆塔水平方向按所需要的位置移动,又可方便沿杆塔纵向(竖向)方向攀爬,在此同时也带动了中间横杆沿杆塔水平方向以及纵向进行所需要的位置移动,从而使中间横杆上携带的摄像头504、移动件501、紧固工具503和紧固工具驱动件502移动至所需要的位置,实现对塔杆需要进行操作的部位进行操作。
4、由于本申请所述中间机构7中的驱动机构扭矩电机706的轴向与所述机器人构架中的横杆轴向垂直设置、通过控制所述环形导轨704与所述远端齿轮701间的直径比来对沿塔杆水平方向的移动进行有效控制的同时,还能对机器人的负重和安全性进行有效控制。
5、由于所述中间机构7的后端与所述夹持机构1间通过倾角电推杆106连接,而所述中间机构7与所述夹持机构1又分别设有轴向垂直于所述机器人构架中的横杆轴向的扭矩电机706,不仅可以借助设置的扭矩电机706确保满足夹持机构1的夹持力,还使所述机器人具有类似人体柔软腰部的功能,以确保沿塔杆水平方向的移动。
6、由于本申请的中间机构7的前端通过所述矩形连杆708中的远端齿轮701的轴与所述横杆间的位于同一竖直面的通道或键槽连接,通过所述矩形连杆708的远端齿轮701的轴或键这样的键槽连接方式不仅可以使得本申请的机器人确保安全,而且还能满足所需负重和灵活性。
7、本申请提供的攀爬机器人,通过所述中间机构7的旋转定位带动中间横杆旋转以使操作平台正对输电铁塔的待作业面,在不改变机器人运动路线的情况下,实现了操作平台在角钢塔相互垂直的两个工作业面之间的切换;配合扫描装置可实现对角钢塔上待作业点的识别与定位,结构简单,且定位精度高。
8、本申请提供的由横杆、中间机构7与夹持机构1组成的机器人构架为设于所述机器人构架的中间移动横杆的定位、操作、固定提供了一个安全、方便且可靠的环境。
9、本申请提供的控制伸缩移动结构的移动可实现机器人的沿角钢的自主双向攀爬,结构简单,控制方便,解决了攀爬机器人自身结构复杂、自重大以及控制系统复杂的问题;并且负载能力强,可负载多种操作工具进行角钢塔螺栓紧固作业及检修。
10、本申请提供的攀爬机器人的夹持装置通过带坚强件L型卡爪105卡接在角铁两个直角边的边缘,结构简单,接触面积小,解决了攀爬机器人夹持装置需大面积夹持在角铁两直角面,导致的对角钢塔联板位置螺钉区的适应性差、夹持范围有限的问题,实现了在角钢塔的联板、脚钉等表面有障碍物位置的有 效夹持,夹持范围大;
11、本申请提供的卡爪105驱动装置通过所述中间机构7驱动平面螺纹转盘108转动,带动卡爪105对角钢的抓紧和释放,解决了机器人断电后从铁塔上脱落的问题,实现了攀爬机器人的断电自锁,控制简单,以及结构安全可靠。
本申请可以代替人工,实现角钢塔组立施工阶段的主材螺栓的紧固施工、线路运检阶段的角钢塔主材螺栓的紧固力矩的测量、记录与复紧。本申请可大幅提高角钢塔螺栓紧固施工与运检测试的作业效率,降低人员劳动强度,在保证施工质量的同时,大幅提高作业安全性。本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括磁盘存储器、便携式紧凑磁盘只读存储器(Compact Disc Read Only Memory,CD-ROM)、光学存储器等上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。

Claims (11)

  1. 一种角钢塔螺栓紧固机器人,所述机器人包括:机器人构架、与所述机器人构架同侧设置的中间机构(7)和夹持机构(1);所述夹持机构(1)通过中间机构(7)与所述机器人构架连接;
    其中,所述机器人构架包括紧固工具(503)、轨道(2)、与所述轨道(2)垂直设置的前足移动横杆(3)和后足移动横杆(6)以及与所述轨道(2)垂直且位于所述前足移动横杆(3)和所述后足移动横杆(6)之间的中移动横杆(4);
    所述前足移动横杆(3)、所述后足移动横杆(6)和所述中移动横杆(4)沿所述轨道(2)上下运动,所述紧固工具(503)固定在所述中移动横杆(4)上;
    所述中间机构(7)包括环形导轨(704)和与所述环形导轨(704)连接的倾角电推杆(106),所述环形导轨(704)与所述机器人构架轴线垂直连接,所述机器人构架沿所述环形导轨(704)旋转,所述倾角电推杆(106)设置为在支撑组件(104)的支撑下带动所述机器人构架远离或靠近角钢;
    所述夹持机构(1)具有开合结构,设置为夹紧所述角钢或释放所述角钢。
  2. 如权利要求1所述的机器人,其中,所述前足移动横杆(3)和所述后足移动横杆(6)均包括后足键槽连接部(603)、在所述轨道(2)上同步移动的副横杆和设有动力驱动机构的主横杆;所述主横杆和所述副横杆两者间的轴心在垂直于所述轨道(2)的轴心的同一竖直面上,所述主横杆和所述副横杆两者间的通道为与所述中间机构(7)连接的通道,所述后足键槽连接部(603)的中轴垂直于所述副横杆的中轴并安装在所述副横杆上。
  3. 如权利要求2所述的机器人,其中,所述中间机构(7)还包括扭矩电机(706)、顶端设有通过所述倾角电推杆(106)与夹持机构(1)连接的连接部(710)的钟罩形壳(705)、矩形连杆(708)和多个齿轮,所述前足移动横杆(3)和所述后足移动横杆(6)分别与所述矩形连杆(708)连接;
    扭矩电机(706)的输出轴与设于矩形连杆(708)的内侧轴线上的远端齿轮(701)、惰轮(702)和带有开口的固定齿轮(703)中的所述固定齿轮(703)固定连接;所述远端齿轮(701)设置于所述矩形连杆(708)的内侧轴线上的第一端;所述远端齿轮(701)的轴穿过所述后足键槽连接部(603)。
  4. 如权利要求3所述的机器人,其中,所述矩形连杆(708)的内侧设有齿轮连接杆(712),所述齿轮连接杆(712)与所述惰轮(702)连接,所述远端齿轮(701)、所述惰轮(702)和所述固定齿轮(703)三者相互啮合。
  5. 如权利要求4所述的机器人,其中,
    所述矩形连杆(708)的内侧轴线上的远端齿轮(701)的一端的外侧设有与所述环形导轨(704)相配合的凹槽,以形成所述扭矩电机(706)带动所述矩形连杆(708)沿所述环形导轨(704)移动;所述扭矩电机(706)的输出轴与所述横杆轴向垂直。
  6. 如权利要求1所述的机器人,其中,所述中移动横杆(4)包括:轴向彼此平行设置的丝杠、所述丝杠的两端依次连接丝杠驱动、齿轮和滑轨(203);位于所述中移动横杆(4)的一端的步进电机、摄像头504、移动件(501)和紧固工具驱动件(502);
    所述紧固工具(503)的两端分别与所述紧固工具驱动件(502)和所述移动件(501)固定连接,所述移动件(501)与所述丝杠活动连接,所述摄像头(504)设置于所述移动件(501)内部。
  7. 如权利要求5所述的机器人,其中,所述夹持机构(1)包括动力件和多个卡爪(105),所述动力件与多个卡爪(105)连接。
  8. 如权利要求7所述的机器人,其中,所述动力件包括卡爪驱动电机(102),电机壳体(103),和平面螺纹转盘(108);
    所述电机壳体(103)的一侧设置为挡板,所述电机壳体(103)的另一侧设置为圆心板,所述挡板与所述圆心板的底部设置有弧形底板;
    所述电机壳体(103)的一侧的弧形底板上安装所述平面螺纹转盘(108),所述电机壳体(103)的另一侧与所述卡爪驱动电机(102)固定连接;
    所述平面螺纹转盘(108)上设有螺纹,所述多个卡爪(105)安装于所述螺纹上。
  9. 如权利要求8所述的机器人,其中,所述多个卡爪(105)呈L型,所述卡爪(105)的一端点设有限位装置;
    所述电机壳体安装所述平面螺纹装盘(108)的一侧的底部设有多个卡爪导向孔(109),所述卡爪(105)穿过所述卡爪导向孔(109),所述限位装置安装于所述螺纹上。
  10. 如权利要求9所述的机器人,其中,所述夹持机构(1)还包括呈V字形的卡紧部(111)、调整芯(112)、多个电磁铁(110)和与多个电磁铁(110)的中轴连接的定位栓(113);
    所述多个电磁铁(110)在轴向上垂直连接,其中一个电磁铁(110)与所述圆心板连接,所述多个电磁铁(110)垂直穿过所述调整芯(112)与所述卡紧部(111)的顶点固定连接。
  11. 如权利要求8所述的机器人,还包括电推杆倾角架(107)、限位组件和多个倾角呈F形的环形导轨托架(101),所述限位组件包括限位杆(709)和多个限位板(707);
    所述电推杆倾角架(107)的一端与所述倾角电推杆(106)活动连接,所述电推杆倾角架(107)的另一端与所述圆心板贴合;
    所述限位杆(709)呈V字型,所述限位杆(709)的顶点通过固定齿轮(703)的开口与所述固定齿轮(703)的圆心连接;
    所述多个限位板(707)的一侧与所述限位杆(709)的两端活动连接,所述多个限位板(707)的另一侧分别与所述环形导轨托架(101)接触,所述环形导轨托架(101)的另一端设置于卡爪驱动电机(102)的两侧且与所述电机壳体(103)活动连接。
PCT/CN2020/136342 2020-12-03 2020-12-15 角钢塔螺栓紧固机器人 WO2022116265A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011405744.3 2020-12-03
CN202011405744.3A CN112873217A (zh) 2020-12-03 2020-12-03 一种角钢塔螺栓紧固机器人

Publications (1)

Publication Number Publication Date
WO2022116265A1 true WO2022116265A1 (zh) 2022-06-09

Family

ID=76043196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136342 WO2022116265A1 (zh) 2020-12-03 2020-12-15 角钢塔螺栓紧固机器人

Country Status (2)

Country Link
CN (1) CN112873217A (zh)
WO (1) WO2022116265A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954711A (zh) * 2022-06-19 2022-08-30 郜光亮 线塔攀爬机器人
CN115180038A (zh) * 2022-06-24 2022-10-14 永康市光明送变电工程有限公司 一种用机器人攀爬避雷针的方式
CN115202355A (zh) * 2022-07-21 2022-10-18 国网安徽省电力有限公司 电力杆塔作业平台的控制方法及系统
CN115722860A (zh) * 2022-11-30 2023-03-03 国家石油天然气管网集团有限公司 管道快速夹持装置及其焊接、切割机器人
CN116766245A (zh) * 2023-08-18 2023-09-19 中铁建工集团有限公司 一种用于夹持螺栓球节点自动组装的机械手
CN116766221A (zh) * 2023-04-27 2023-09-19 金华送变电工程有限公司 一种攀爬输电钢管杆布置防坠安措机器人
CN117140571A (zh) * 2023-11-01 2023-12-01 哈尔滨学院 一种工业机器人夹头及机器人

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022267507A1 (zh) * 2021-06-21 2022-12-29 国网安徽省电力有限公司 一种螺栓复紧装置及应用该装置的攀爬机器人
CN113649796A (zh) * 2021-06-21 2021-11-16 国网安徽省电力有限公司 一种具备在线螺栓复紧功能的检修机器人
CN114799845B (zh) * 2022-04-30 2024-04-09 国网河南省电力公司平顶山供电公司 一种输电铁塔螺栓紧固机器人
CN114802516B (zh) * 2022-05-31 2023-04-11 电子科技大学 一种角钢塔塔身螺栓紧固机器人
CN115042893B (zh) * 2022-06-13 2023-07-18 北京航空航天大学 基于mems加工实现的微型爬行机器人
CN115870997B (zh) * 2022-12-06 2024-01-05 江苏盐电阀门有限公司 一种用于控制深海阀门的水下机器人

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219490A (ja) * 1987-03-06 1988-09-13 Res Dev Corp Of Japan 自律型配管メンテナンスロボツト
JP2001009764A (ja) * 1999-06-29 2001-01-16 Chugoku Electric Power Co Inc:The 鉄塔移動ロボット
CN102001089A (zh) * 2010-10-08 2011-04-06 四川大学 关节式铁塔攀爬机器人
CN104129447A (zh) * 2014-07-08 2014-11-05 南京工程学院 一种输电塔攀爬机器人及其对输电塔巡检方式
CN108927813A (zh) * 2018-07-25 2018-12-04 沈阳航空航天大学 一种多功能攀爬平台
CN208248332U (zh) * 2018-05-16 2018-12-18 沈阳特种设备检测研究院 一种新型攀爬机器人机构
CN109572849A (zh) * 2019-01-28 2019-04-05 山东建筑大学 一种输电杆塔用机器人夹持机构及攀爬机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63219490A (ja) * 1987-03-06 1988-09-13 Res Dev Corp Of Japan 自律型配管メンテナンスロボツト
JP2001009764A (ja) * 1999-06-29 2001-01-16 Chugoku Electric Power Co Inc:The 鉄塔移動ロボット
CN102001089A (zh) * 2010-10-08 2011-04-06 四川大学 关节式铁塔攀爬机器人
CN104129447A (zh) * 2014-07-08 2014-11-05 南京工程学院 一种输电塔攀爬机器人及其对输电塔巡检方式
CN208248332U (zh) * 2018-05-16 2018-12-18 沈阳特种设备检测研究院 一种新型攀爬机器人机构
CN108927813A (zh) * 2018-07-25 2018-12-04 沈阳航空航天大学 一种多功能攀爬平台
CN109572849A (zh) * 2019-01-28 2019-04-05 山东建筑大学 一种输电杆塔用机器人夹持机构及攀爬机器人

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114954711B (zh) * 2022-06-19 2023-11-03 嘉兴夏橙光电科技有限公司 线塔攀爬机器人
CN114954711A (zh) * 2022-06-19 2022-08-30 郜光亮 线塔攀爬机器人
CN115180038B (zh) * 2022-06-24 2023-08-22 永康市光明送变电工程有限公司 一种用机器人攀爬避雷针的方式
CN115180038A (zh) * 2022-06-24 2022-10-14 永康市光明送变电工程有限公司 一种用机器人攀爬避雷针的方式
CN115202355B (zh) * 2022-07-21 2023-02-28 国网安徽省电力有限公司 电力杆塔作业平台的控制方法及系统
CN115202355A (zh) * 2022-07-21 2022-10-18 国网安徽省电力有限公司 电力杆塔作业平台的控制方法及系统
CN115722860A (zh) * 2022-11-30 2023-03-03 国家石油天然气管网集团有限公司 管道快速夹持装置及其焊接、切割机器人
CN116766221A (zh) * 2023-04-27 2023-09-19 金华送变电工程有限公司 一种攀爬输电钢管杆布置防坠安措机器人
CN116766221B (zh) * 2023-04-27 2024-01-05 金华送变电工程有限公司 一种攀爬输电钢管杆布置防坠安措机器人
CN116766245A (zh) * 2023-08-18 2023-09-19 中铁建工集团有限公司 一种用于夹持螺栓球节点自动组装的机械手
CN116766245B (zh) * 2023-08-18 2023-10-24 中铁建工集团有限公司 一种用于夹持螺栓球节点自动组装的机械手
CN117140571A (zh) * 2023-11-01 2023-12-01 哈尔滨学院 一种工业机器人夹头及机器人
CN117140571B (zh) * 2023-11-01 2024-02-06 哈尔滨学院 一种工业机器人夹头及机器人

Also Published As

Publication number Publication date
CN112873217A (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
WO2022116265A1 (zh) 角钢塔螺栓紧固机器人
CN112722102A (zh) 一种用于输电线路铁塔塔身攀爬机器人的环抱式足部
CN209007569U (zh) 一种冲床六轴搬运机器人本体
WO2017175771A1 (ja) 組立式走行台車
CN104875178A (zh) 一种危险品搬运用机械手臂
CN111673720A (zh) 用于落水管立体交叉管道攀爬机器人结构及运动规划方法
CN207808961U (zh) 一种机器人减震结构
CN111300374A (zh) 适用于不同输电线路的移动装置、机器人及其爬坡方式
WO2023184801A1 (zh) 爬壁清洗机器人
CN105619375B (zh) 一种多功能救援机器人及其使用方法
CN206357237U (zh) 一种双液压缸推动搬运机器人
CN112719865B (zh) 一种旋转加平面扫描定位机构
CN209354877U (zh) 一种停车场专用监控灵活的摄像头
CN112658555A (zh) 一种焊接机械手
WO2024036997A1 (zh) 换电设备及换电站
CN112338489A (zh) 一种钢梁垂直拼接辅助平衡装置及其使用方法
CN207860312U (zh) 一种辅助吸附单元及包含其的爬壁机器人
CN208268643U (zh) 一种管道机器人橡胶磁吸单元行走机构及其管道机器人
CN217167053U (zh) 一种钢结构厂房加工焊接装置
CN106625775B (zh) 一种装卸硅棒用转动机构
CN106737679B (zh) 硅棒自动装卸结构
CN112722101A (zh) 一种用于输电线路铁塔塔身攀爬机器人的伸缩机构
CN105799661A (zh) 电池取放装置
CN113147940A (zh) 水下船壁爬行机器人
CN105711674B (zh) 一种外墙清洁及维护多足机器人腿部机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20964110

Country of ref document: EP

Kind code of ref document: A1