WO2022114086A1 - 発光装置及び照明装置 - Google Patents

発光装置及び照明装置 Download PDF

Info

Publication number
WO2022114086A1
WO2022114086A1 PCT/JP2021/043284 JP2021043284W WO2022114086A1 WO 2022114086 A1 WO2022114086 A1 WO 2022114086A1 JP 2021043284 W JP2021043284 W JP 2021043284W WO 2022114086 A1 WO2022114086 A1 WO 2022114086A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
emitting device
recess
wavelength conversion
Prior art date
Application number
PCT/JP2021/043284
Other languages
English (en)
French (fr)
Inventor
徹 三宅
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to US18/038,451 priority Critical patent/US20240011621A1/en
Priority to JP2022565425A priority patent/JP7483936B2/ja
Priority to EP21898058.9A priority patent/EP4254524A1/en
Publication of WO2022114086A1 publication Critical patent/WO2022114086A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • This disclosure relates to a light emitting device and a lighting device.
  • a light emitting device in which a light emitting element located in an inner space surrounded by a frame is sealed by filling the inside of the frame with a resin (see, for example, Patent Document 1).
  • the light emitting device includes a substrate having a first surface, a light emitting element, and a wavelength conversion member 6.
  • the light emitting element is mounted on the first surface and emits excitation light.
  • the wavelength conversion member is located above at least a part of the first surface and the light emitting element, and converts the excitation light into illumination light.
  • the substrate has a recess having a second surface located below the first surface, a third surface connecting between the second surface and the first surface, and above the first surface. It has at least one of the protruding protrusions.
  • the wavelength conversion member contacts at least one of the second surface and at least a part of the convex portion.
  • the lighting device includes the light emitting device and a mounting plate on which the light emitting device is mounted.
  • FIG. 1 is a cross-sectional view taken along the line AA of FIG. It is an enlarged view of the part surrounded by the broken line of FIG.
  • sectional drawing which shows the structural example which the 2nd surface of a recess has a reverse taper shape.
  • sectional drawing which shows the structural example which the lower part of a concave part has a cavity shape.
  • sectional drawing which shows the angle between the 2nd surface and the 3rd surface which make up a concave part.
  • the light emitting device 10 includes an element substrate 2, a light emitting element 3, and a wavelength conversion member 6.
  • the element substrate 2 has a first surface 21, a concave portion 22, and a convex portion 26.
  • the light emitting element 3 is mounted on the first surface 21 of the element substrate 2.
  • the wavelength conversion member 6 is located on the light emitting element 3 and on the first surface 21 of the element substrate 2, and covers the upper surface and the side surface of the light emitting element 3.
  • the wavelength conversion member 6 converts the light emitted by the light emitting element 3 into light having a different wavelength.
  • the light emitting device 10 emits the light converted by the wavelength conversion member 6.
  • the upper part of the light emitting device 10 corresponds to the positive direction of the Z axis.
  • the light emitting element 3 emits light having a peak wavelength in a wavelength region of 360 nm or more and 430 nm or less.
  • the wavelength region of 360 nm or more and 430 nm or less is also referred to as a purple light region.
  • the wavelength conversion member 6 converts the light incident on the wavelength conversion member 6 from the light emitting element 3 into light having a peak wavelength in the wavelength region of 360 nm or more and 780 nm or less, and emits the converted light.
  • the wavelength region of 360 nm or more and 950 nm or less is also referred to as a visible light region.
  • the visible light region is assumed to include a purple light region.
  • Visible light is assumed to include purple light.
  • the wavelength conversion member 6 emits a peak wavelength region into a visible light region by being excited by the light emitted by the light emitting element 3.
  • the light emitted by the light emitting element 3 is also referred to as excitation light.
  • the light emitting element 3 included in the light emitting device 10 is also referred to as an excitation light emitting element.
  • the element substrate 2 is also simply referred to as a substrate.
  • the element substrate 2 may be formed of, for example, a material having an insulating property.
  • the element substrate 2 may be formed of, for example, a ceramic material such as aluminum oxide (alumina) orglasse, a glass ceramic material, or a composite material obtained by mixing a plurality of these materials.
  • the element substrate 2 may be formed of a polymer resin material or the like in which metal oxide fine particles capable of adjusting thermal expansion are dispersed.
  • the element substrate 2 may be configured to contain aluminum nitride or silicon carbide (silicon carbide). As a result, the thermal conductivity of the element substrate 2 can be improved, and the heat dissipation performance of the light emitting device 10 is improved.
  • the element substrate 2 has a first surface 21 that faces the positive direction of the Z axis.
  • the light emitting element 3 is mounted on the first surface 21 of the element substrate 2.
  • the element substrate 2 includes a first wiring 31 and a second wiring 32 for supplying power to the light emitting element 3.
  • the first wiring 31 extends in a direction intersecting the first surface 21 and is exposed in a plan view of the first surface 21.
  • the first wiring 31 may be flush with respect to the first surface 21, or may project upward from the first surface 21.
  • the first wiring 31 is also referred to as a via wiring.
  • the second wiring 32 extends in a direction along the first surface 21.
  • the first wiring 31 may extend to a surface (also referred to as a back surface) of the element substrate 2 facing the negative direction of the Z axis.
  • the second wiring 32 may be located on the back surface of the element substrate 2. Further, the second wiring 32 may be located both on the back surface of the element substrate 2 and inside the element substrate 2.
  • the first wiring 31 and the second wiring 32 may be formed of a conductive material such as tungsten, molybdenum, manganese, or copper.
  • a metal paste obtained by adding an organic solvent to tungsten powder is printed on a ceramic green sheet to be an element substrate 2 in a predetermined pattern, and a plurality of ceramic green sheets are laminated. And may be formed by firing.
  • the first wiring 31 and the second wiring 32 may include a plating layer such as nickel or gold formed on the surface thereof for oxidation prevention.
  • the first wiring 31 and the second wiring 32 are also referred to as power feeding wiring.
  • the element substrate 2 further includes a reflective film 40 located on the first surface 21.
  • the reflective film 40 is located on the first surface 21 so as to cover at least a part of the first surface 21.
  • the reflective film 40 may be formed of, for example, a material obtained by adding a white material such as titanium oxide to a material based on a silicone resin.
  • the reflective film 40 is not limited to this example, and may be formed so that the reflectance of the reflective film 40 is higher than the reflectance of the first surface 21.
  • the first surface 21 of the element substrate 2 has a recess 22.
  • the recess 22 is configured as a space partitioned by a second surface 23 and a third surface 24.
  • the recess 22 has an opening at the same height as the first surface 21, and is connected to the space above through the opening.
  • the recess 22 may be configured to include at least one hole.
  • the second surface 23 extends in a direction along the first surface 21 and is located in a direction in which the element substrate 2 enters the inside of the element substrate 2 rather than the first surface 21. That is, the second surface 23 is located below the first surface 21.
  • the third surface 24 connects between the first surface 21 and the second surface 23, and extends in a direction intersecting the first surface 21 and the second surface 23.
  • the recess 22 may have a plurality of third surfaces 24 when it has a rectangular shape or the like in a plan view. Further, in the case of a circular shape in a plan view, the third surface 24 may be a cylindrical shape.
  • the recess 22 may be covered with the reflective film 40 on at least a part of the third surface 24 facing the light emitting element 3.
  • the reflective film 40 may cover the third surface 24 to the extent that it connects to a part of the second surface 23 of the recess 22.
  • the wavelength conversion member 6 enters at least a part of the recess 22. Further, the wavelength conversion member 6 comes into contact with at least a part of the second surface 23. When the wavelength conversion member 6 enters the recess 22 and comes into contact with at least a part of the second surface 23, the contact area between the element substrate 2 and the wavelength conversion member 6 can be increased. As a result, the adhesion of the wavelength conversion member 6 to the element substrate 2 can be improved. That is, the wavelength conversion member 6 is less likely to be peeled off from the element substrate 2. Further, when the wavelength conversion member 6 comes into contact with at least a part of the third surface 24 of the recess 22, the wavelength conversion member 6 can come into contact with the element substrate 2 in at least two directions. As a result, even if the wavelength conversion member 6 receives an external force, it is difficult to peel off from the element substrate 2.
  • the wavelength conversion member 6 comes into direct contact with at least a part of the second surface 23. In other words, the wavelength conversion member 6 contacts at least a part of the second surface 23 without passing through the reflective film 40.
  • the heat generated when the excitation light is converted into the illumination light in the wavelength conversion member 6 is transmitted to the element substrate 2 and directed toward the back surface of the element substrate 2 (the surface on the negative direction side of the Z axis). Be dissipated.
  • the thickness of the element substrate 2 on the first surface 21 is represented by T1.
  • the thickness is the size of the element substrate 2 in the Z-axis direction.
  • the thickness of the element substrate 2 on the second surface 23 is represented by T2. Since T2 is thinner than T1, the second surface 23 is closer to the back surface than the first surface 21.
  • the thermal resistance from the second surface 23 to the back surface is smaller than the thermal resistance from the first surface 21 to the back surface.
  • the amount of heat dissipated from the wavelength conversion member 6 that has entered the second surface 23 to the back surface through the second surface 23 passes through the first surface 21 from the wavelength conversion member 6 located on the first surface 21. It can be larger than the amount of heat dissipated to the back surface. That is, when the wavelength conversion member 6 comes into contact with the second surface 23, heat is easily dissipated from the wavelength conversion member 6.
  • the thermal conductivity of the reflective film 40 is lower than the thermal conductivity of the element substrate 2 and the wavelength conversion member 6.
  • the amount of heat dissipated from the wavelength conversion member 6 to the element substrate 2 is larger when it is directly transmitted to the element substrate 2 without passing through the reflective film 40 than when it is transmitted to the element substrate 2 through the reflective film 40. .. Therefore, by connecting the wavelength conversion member 6 to at least a part of the second surface 23 without passing through the reflective film 40, heat is easily dissipated from the wavelength conversion member 6.
  • the element substrate 2 may be configured so that the depth of the recess 22 is smaller than the thickness of the element substrate 2 on the second surface 23.
  • the element substrate 2 may be configured so that the distance from the first surface 21 to the second surface 23 is smaller than the thickness of the element substrate 2 on the second surface 23.
  • the first surface 21 of the element substrate 2 has a convex portion 26 protruding upward from the first surface 21.
  • the convex portion 26 has a fourth surface 27 and a fifth surface 28.
  • the fourth surface 27 extends in a direction along the first surface 21 and is located in a direction away from the element substrate 2 than the first surface 21.
  • the fifth surface 28 extends in a direction intersecting the first surface 21 and the fourth surface 27 so as to connect the first surface 21 and the fourth surface 27.
  • the top (upper surface) of the convex portion 26 does not have to be flat.
  • the convex portion 26 may be configured such that the top portion (upper surface) thereof is a curved surface. Further, the portion of the top of the convex portion 26 near the light emitting element 3 may have an inclined surface. In such a case, the efficiency of upward light radiation can be improved.
  • the wavelength conversion member 6 comes into contact with at least a part of the convex portion 26.
  • the contact area between the element substrate 2 and the wavelength conversion member 6 can be increased.
  • the adhesion of the wavelength conversion member 6 to the element substrate 2 can be improved. That is, the wavelength conversion member 6 is less likely to be peeled off from the element substrate 2.
  • the wavelength conversion member 6 comes into contact with at least a part of the fifth surface 28 of the convex portion 26.
  • the wavelength conversion member 6 can come into contact with the element substrate 2 in at least two directions. As a result, even if the wavelength conversion member 6 receives an external force, it is difficult to peel off from the element substrate 2.
  • the convex portion 26 may be covered with the reflective film 40 at least a part of the fifth surface 28 located on the side close to the light emitting element 3.
  • the reflective film 40 covers at least a part of the fifth surface 28 located on the side of the convex portion 26 near the light emitting element 3, so that the excitation light or the illumination light that has entered the convex portion 26 is directed upward of the element substrate 2. It is reflected and is less likely to be absorbed by the convex portion 26. Further, the excitation light emitted from the side surface of the light emitting element 3 and the illumination light converted from the excitation light due to the reflection of the excitation light or the illumination light on the fifth surface 28 of the convex portion 26 do not have the convex portion 26. It is easier to move upward than in the case. As a result, the upward luminous efficiency can be improved.
  • the depth of the recess 22 from the first surface 21, that is, the distance from the first surface 21 to the second surface 22 is represented by H1.
  • the height of the convex portion 26 from the first surface 21, that is, the distance from the first surface 21 to the top of the convex portion 26 is represented by H2. It is assumed that H2 is smaller than H1. By doing so, the light traveling from the light emitting element 3 along the first surface 21 of the element substrate 2 is less likely to enter the convex portion 26. That is, it is possible to reduce the emission of the excitation light or the illumination light from the side of the light emitting device 10. As a result, the luminous efficiency at a wide angle can be improved.
  • the convex portion 26 may be located on the side farther from the concave portion 22 when viewed from the light emitting element 3. When a plurality of the concave portion 22 and the convex portion 26 are respectively located, the convex portion 26 is located on the side farther from the concave portion 22 when viewed from the light emitting element 3 in the relationship between the closest concave portion 22 and the convex portion 26. You may be doing it. Further, a plurality of concave portions 22 and a plurality of convex portions 26 may be arranged concentrically from the light emitting element 3. By doing so, the convex portion 26 is located far from the light emitting element 3, so that it becomes difficult to absorb the excitation light or the illumination light. As a result, the luminous efficiency can be improved.
  • the light emitting element 3 is an LED (Light Emission Diode).
  • An LED emits light to the outside by recombination of electrons and holes in a PN junction in which a P-type semiconductor and an N-type semiconductor are bonded.
  • the light emitting element 3 is not limited to the LED, and may be another light emitting device.
  • the light emitting element 3 is mounted on the first surface 21 of the element substrate 2.
  • the light emitting element 3 is electrically connected to the first surface 21 of the element substrate 2 and to the first wiring 31 via, for example, a brazing material or solder.
  • the first wiring 31 is installed as a set of two so as to be connected to the positive and negative electrodes of the light emitting element 3.
  • the light emitting element 3 is located on the first wiring 31 so as to cover at least a part of the first wiring 31 in the plan perspective of the first surface 21 of the element substrate 2.
  • the light emitting element 3 may be larger than the first wiring 31 in plan perspective.
  • the light emitting element 3 may be mounted on the element substrate 2 by flip-chip bonding.
  • the first wiring 31 and the brazing material, solder, or the like are located so as to be covered with the light emitting element 3 in the plan view of the first surface 21.
  • the excitation light emitted from the light emitting element 3 or the illumination light converted by the wavelength conversion member 6 is the first wiring 31 and the brazing material. Or, it becomes difficult to be incident on solder or the like. As a result, the excitation light or the illumination light is less likely to be absorbed by the first wiring 31, the brazing material, the solder, or the like. As a result, the luminous efficiency of the light emitting device 10 can be further improved.
  • the light emitting element 3 when the light emitting element 3 is mounted on the element substrate 2 by wire bonding, at least a part of the wire is not covered by the light emitting element 3. In this case, the excitation light or the illumination light may be absorbed by the wire.
  • the light emitting element 3 is mounted on the element substrate 2 by flip-chip bonding, so that the excitation light or the illumination light is less likely to be absorbed than the wire bonding as in the comparative example. As a result, the luminous efficiency of the light emitting device 10 can be further improved.
  • the number of light emitting elements 3 mounted on the first surface 21 of the element substrate 2 is one in FIG. 1 and the like, but is not particularly limited, and may be two or more. When the number of light emitting elements 3 is two or more, the light emitting elements 3 are positioned so as not to overlap each other in the plan view of the first surface 21.
  • the light emitting element 3 may include a translucent substrate and an optical semiconductor layer formed on the translucent substrate.
  • the translucent substrate contains a material on which an optical semiconductor layer can be grown by using, for example, a chemical vapor deposition method such as an organic metal vapor phase growth method or a molecular beam epitaxial growth method.
  • the translucent substrate may be formed of, for example, sapphire, gallium nitride, aluminum nitride, zinc oxide, zinc selenium, silicon carbide (silicon carbide), silicon (Si), zirconium dibodium or the like.
  • the thickness of the translucent substrate may be, for example, 50 ⁇ m or more and 1000 ⁇ m or less.
  • the optical semiconductor layer may include a first semiconductor layer formed on a translucent substrate, a light emitting layer formed on the first semiconductor layer, and a second semiconductor layer formed on the light emitting layer.
  • the first semiconductor layer, the light emitting layer, and the second semiconductor layer are, for example, a group III nitride semiconductor, a group III-V semiconductor such as gallium phosphorus or gallium arsenide, or a group III such as gallium nitride, aluminum nitride or indium nitride. It may be formed of a nitride semiconductor or the like.
  • the thickness of the first semiconductor layer may be, for example, 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the light emitting layer may be, for example, 25 nm or more and 150 nm or less.
  • the thickness of the second semiconductor layer may be, for example, 50 nm or more and 600 nm or less.
  • the wavelength conversion member 6 is located on the first surface 21 of the element substrate 2.
  • the wavelength conversion member 6 seals the light emitting element 3 by filling the space above the light emitting element 3.
  • the wavelength conversion member 6 may be formed by being applied in a paste state on the first surface 21 of the element substrate 2 and then cured.
  • the wavelength conversion member 6 may be formed by being attached to the first surface 21 of the element substrate 2 in the form of a sheet and then cured.
  • the excitation light emitted from the light emitting element 3 is directly incident on the wavelength conversion member 6.
  • the wavelength conversion member 6 converts purple light as incident excitation light into light having a peak wavelength included in a wavelength region of 360 nm or more and 780 nm or less, and emits the converted light.
  • the wavelength conversion member 6 may include a translucent member 60 having translucency and a phosphor 61.
  • the translucent member 60 may be formed of, for example, a light-transmitting insulating resin material such as a fluororesin, a silicone resin, an acrylic resin or an epoxy resin, or a light-transmitting glass material.
  • the refractive index of the translucent member 60 may be set to, for example, 1.4 or more and 1.6 or less.
  • the phosphor 61 is contained inside the translucent member 60.
  • the phosphor 61 may be substantially uniformly dispersed inside the translucent member 60.
  • the phosphor 61 converts the incident purple light into light having various peak wavelengths.
  • the phosphor 61 may convert the violet light into light specified in the spectrum having a peak wavelength in the wavelength region from, for example, 400 nm to 500 nm, that is, blue light.
  • the phosphor 61 is, for example, BaMgAl 10 O 17 : Eu, or (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu, (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : Materials such as Eu may be included.
  • the phosphor 61 may convert the violet light into light specified in the spectrum having a peak wavelength in the wavelength region from, for example, 450 nm to 550 nm, that is, blue-green light.
  • the phosphor 61 may contain a material such as (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu, Sr 4 Al 14 O 25 : Eu and the like.
  • the phosphor 61 may convert the violet light into light specified in the spectrum having a peak wavelength in the wavelength range from, for example, 500 nm to 600 nm, i.e. green light.
  • the phosphor 61 is, for example, SrSi 2 (O, Cl) 2 N 2 : Eu, (Sr, Ba, Mg) 2 SiO 4 : Eu 2+ , or ZnS: Cu, Al, Zn 2 SiO 4 : Mn. Etc. may be included.
  • the phosphor 61 may convert the violet light into light specified in the spectrum having a peak wavelength in the wavelength region from, for example, 600 nm to 700 nm, that is, red light.
  • the phosphor 61 contains a material such as, for example, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, SrCaClAlSiN 3 : Eu 2+ , CaAlSiN 3 : Eu, or CaAlSi (ON) 3 : Eu. good.
  • the phosphor 61 may convert the violet light into light specified in the spectrum having a peak wavelength in the wavelength region from, for example, 680 nm to 800 nm, that is, near infrared light. Near-infrared light may include light in the wavelength range from 680 to 2500 nm. In this case, the phosphor 61 may contain a material such as, for example, 3Ga 5 O 12 : Cr.
  • the combination of types of the phosphor 61 contained in the wavelength conversion member 6 is not particularly limited.
  • the phosphor 61 is not limited to the above-mentioned materials, and may contain various other materials.
  • the purple light incident on the wavelength conversion member 6 from the light emitting element 3 is converted into light having a different peak wavelength by the phosphor 61.
  • the peak wavelength of the converted light may be included in the visible light region.
  • the light converted by the combination of the phosphors 61 included in the wavelength conversion member 6 may have a plurality of peak wavelengths. For example, if the phosphor 61 contains a material that emits blue fluorescence, a material that emits blue-green fluorescence, and a material that emits green fluorescence, the converted light has the respective wavelengths of blue, blue-green, and green. As a peak wavelength. If the phosphor 61 contains only one material, the converted light has the peak wavelength of that material.
  • the phosphor 61 is not limited to these examples, and may contain various combinations of materials.
  • the color of the light emitted from the wavelength conversion member 6 is determined based on the type of material contained in the phosphor 61. That is, the converted light can have various spectra.
  • the light emitting device 10 can emit light having various spectra depending on the combination of materials contained in the phosphor 61.
  • the light emitting device 10 emits, for example, a spectrum of direct sunlight from the sun, a spectrum of sunlight reaching a predetermined depth in the sea, a spectrum of light emitted by a candle flame, a spectrum of light of a firefly, or the like. can.
  • the light emitting device 10 can emit light having various colors.
  • the light emitting device 10 can emit light having various color temperatures.
  • the element substrate 2 has at least one of the concave portion 22 and the convex portion 26 located on the first surface 21. Further, the wavelength conversion member 6 contacts at least one of at least a part of the second surface 23 and at least a part of the convex portion 26. By doing so, the wavelength conversion member 6 is less likely to be peeled off from the element substrate 2. Further, the wavelength conversion member 6 has a simple structure that is only located on the element substrate 2, and is less likely to be peeled off from the element substrate 2. As a result, the light emitting device 10 according to the present embodiment can maintain or improve reliability while simplifying the configuration.
  • the wavelength conversion member 6 is more difficult to peel off. Further, by locating at least one of the concave portion 22 and the convex portion 26 on the first surface 21, the luminous efficiency of the light emitting device 10 can be improved.
  • the recess 22 may be configured such that the area of the opening is smaller than the area of the second surface 23.
  • the recess 22 may be configured such that the length of the opening (L1) in the cross-sectional view is shorter than the length (L2) of the second surface 23 in the cross-sectional view.
  • the recess 22 may be configured so that the end portion of the opening of the recess 22 is located inside the end portion of the second surface 23 of the recess 22 in the plan view of the element substrate 2.
  • the recess 22 may be configured such that the angle ( ⁇ 1) between the second surface 23 and the third surface 24 that partitions the recess 22 is an acute angle.
  • the shape exemplified in FIG. 4 is also referred to as a reverse taper shape.
  • the recess 22 may be configured in at least two stages in a cross-sectional view.
  • the recess 22 is configured such that the area of the element substrate 2 in a plan view is smaller in the lower stage (the stage farther from the first surface 21) than in the upper stage (the stage closer to the first surface 21). It's okay.
  • the shape exemplified in FIG. 5 is also referred to as a cavity shape.
  • the wavelength conversion member 6 is less likely to be peeled off from the first surface 21 of the element substrate 2. That is, the adhesion of the wavelength conversion member 6 to the element substrate 2 can be improved.
  • the recess 22 may be configured so that the cross-sectional area of the space of the recess 22 is smaller than that of the second surface 23 in at least a part in the height direction between the first surface 21 and the second surface 23. That is, the space of the recess 22 may have a constricted shape in a cross-sectional view. Even with this configuration, the wavelength conversion member 6 is less likely to be peeled off from the first surface 21 of the element substrate 2.
  • the recess 22 has an angle ( ⁇ 2) between the third surface 24 and the second surface 23 located on the side far from the light emitting element 3 (the side in the positive direction of the Y axis in FIG. 6). It may be configured to have an obtuse angle.
  • the third surface 24 on the side farther from the light emitting element 3 is the third surface 24 connected to the light emitting element 3 among the plurality of third surfaces 24 in the cross-sectional view when the concave portion 22 is rectangular in the plan view. It is the third surface 24 at the position facing the above. Further, when the concave portion 22 has a circular shape in a plan view, it is a region of the third surface 24 at a position facing the region connected to the light emitting element 3.
  • the incident light is reflected by the third surface 24. Since the angle ( ⁇ 2) between the third surface 24 and the second surface 23 on the side far from the light emitting element 3 is an obtuse angle, the light incident from the light emitting element 3 is likely to be reflected upward. As a result, the amount of light emitted outward from the light emitting device 10 may increase. That is, the luminous efficiency of the light emitting device 10 can be improved.
  • the recess 22 may be formed in a groove shape surrounding the light emitting element 3 in the plan view of the element substrate 2.
  • the recess 22 may be interrupted in the middle without going around the light emitting element 3.
  • the recess 22 may be formed in a groove shape extending in one direction such as the X-axis direction or the Y-axis direction. Since the recess 22 is formed in a groove shape, the area where the wavelength conversion member 6 enters the recess 22 is increased. As a result, the adhesion of the wavelength conversion member 6 to the element substrate 2 can be improved.
  • the element substrate 2 may have at least the first layer 201 and the second layer 202.
  • the number of layers is not limited to two, and may be three or more. In other words, the element substrate 2 may include at least two layers. It is assumed that the boundary between the first layer 201 and the second layer 202 is exposed in the space of the recess 22. The boundary between the first layer 201 and the second layer 202 may have a minute gap.
  • the translucent member 60 that has entered the recess 22 may further have an intrusion portion 601 that has entered the gap between the boundary between the first layer 201 and the second layer 202. In other words, at least a part of the wavelength conversion member 6 may enter between adjacent layers of the element substrate 2.
  • the translucent member 60 has the intrusion portion 601
  • the wavelength conversion member 6 including the translucent member 60 is less likely to be peeled off from the element substrate 2 having the recess 22. That is, the adhesion of the wavelength conversion member 6 to the element substrate 2 can be improved.
  • the light emitting device 10 is configured to emit illumination light toward the upper side (positive direction of the Z axis) of the wavelength conversion member 6 located on the first surface 21 of the element substrate 2.
  • the light emitting device 10 may be configured to emit illumination light toward the side (X-axis direction or Y-axis direction) of the wavelength conversion member 6. By doing so, the luminous efficiency can be improved.
  • the light emitting device 10 may be formed by forming two or more light emitting devices 10 on the element substrate 2 and then separating them one by one by dicing the element substrate 2. Further, the light emitting device 10 may be formed by mounting a plurality of light emitting elements 3 on the element substrate 2, attaching or applying the wavelength conversion member 6, and then separating them one by one. The element substrate 2 may be separated so that one light emitting device 10 includes one light emitting element 3, or may be separated so as to include two or more light emitting elements 3.
  • the first surface 21 of the element substrate 2 may further have a second recess 29.
  • the second recess 29 is located below the light emitting element 3.
  • the second recess 29 is positioned so as to overlap the light emitting element 3 in the plan view of the first surface 21.
  • the depth of the second recess 29 may be shallower as shown in FIG. 9 or as shown in FIG. 10 as compared with the depth of the recess 22 located so as not to overlap the light emitting element 3. They may be the same or deeper as shown in FIG.
  • the presence of the second recess 29 allows the wavelength conversion member 6 to enter the second recess 29 at the bottom of the light emitting element 3.
  • the wavelength conversion member 6 serves as a bonding material when the light emitting element 3 and the element substrate 2 are bonded, and the bonding strength between the light emitting element 3 and the element substrate 2 is improved. If the depth of the second recess 29 is the same as the depth of the recess 22, when heat is applied to the wavelength conversion member 6 or the like, the stress load applied to each recess is not biased and the element substrate 2 is cracked. Etc. can be made less likely to occur. Further, when the depth of the second recess 29 is deeper than the depth of the recess 22, the amount of the bonding material at the position overlapping with the light emitting element 3 increases, and the bonding strength can be improved.
  • the bonding strength is improved and the possibility of the substrate being deformed is reduced as compared with the case where the depth is deep.
  • the bonding strength can be improved, and the light emitting element 3 can be stably mounted.
  • the lighting device 100 includes at least one light emitting device 10, and emits light emitted by the light emitting device 10 as illumination light.
  • the intensity of the light emitted by each light emitting device 10 may be controlled independently or may be controlled in association with each other.
  • the spectra of the light emitted by each light emitting device 10 may be the same or different from each other.
  • the lighting device 100 may control the spectrum of the combined light emitted by each light emitting device 10 by controlling the intensity of the light emitted by each light emitting device 10 in association with each other.
  • the light obtained by synthesizing the light emitted by each light emitting device 10 is also referred to as synthetic light.
  • the lighting device 100 may emit synthetic light as illumination light.
  • the lighting device 100 may select at least a part of the plurality of light emitting devices 10 to emit the lighting light.
  • the lighting device 100 may further include a mounting plate 110 on which the light emitting device 10 is mounted.
  • the lighting device 100 may further include a housing 120 having a groove-shaped portion for accommodating the mounting plate 110, and a pair of end plates 130 for closing the short side end portion of the housing 120.
  • the number of light emitting devices 10 mounted on the mounting plate 110 may be one or two or more.
  • the light emitting device 10 may be mounted on the mounting plate 110 so as to be lined up in a row, or may be mounted so as to be lined up in a grid pattern or a houndstooth pattern.
  • the light emitting device 10 is not limited to these patterns, and may be mounted on the mounting plate 110 in various arrangement patterns.
  • the mounting plate 110 may include a circuit board having a wiring pattern.
  • the circuit board may include, for example, a printed circuit board such as a rigid board, a flexible board, or a rigid flexible board.
  • the circuit board may include a drive circuit that controls the light emitting device 10.
  • the mounting plate 110 has a function of dissipating the heat generated by the light emitting device 10 to the outside.
  • the mounting plate 110 may be made of, for example, a metal material such as aluminum, copper or stainless steel, an organic resin material, or a composite material containing these.
  • the mounting plate 110 may have an elongated rectangular shape in a plan view.
  • the shape of the mounting plate 110 is not limited to this, and may be various other shapes.
  • the lighting device 100 may further include a mounting plate 110 housed inside the housing 120 and a lid 140 for sealing the light emitting device 10. Since the lid portion 140 is made of a translucent material, the illumination light emitted by the light emitting device 10 may be transmitted to the outside of the illumination device 100.
  • the lid portion 140 may be made of, for example, a resin material such as acrylic resin or glass.
  • the lid portion 140 may have an elongated rectangular shape in a plan view. The shape of the lid portion 140 is not limited to this, and may be various other shapes.
  • the lighting device 100 may further include a sealing member between the lid 140 and the housing 120. By doing so, it becomes difficult for water, dust, or the like to enter the inside of the housing 120. As a result, the reliability of the lighting device 100 can be improved regardless of the environment in which the lighting device 100 is installed.
  • the lighting device 100 may further include a hygroscopic agent inside the housing 120.
  • the descriptions such as “first” and “second” are identifiers for distinguishing the configuration.
  • the configurations distinguished by the descriptions such as “first” and “second” in the present disclosure can exchange numbers in the configurations.
  • the first surface 21 can exchange the second surface 23 with the identifiers "first” and “second”.
  • the exchange of identifiers takes place at the same time.
  • the configuration is distinguished.
  • the identifier may be deleted.
  • Configurations with the identifier removed are distinguished by a code. Based solely on the description of identifiers such as "1st” and “2nd” in the present disclosure, it shall not be used as an interpretation of the order of the configurations or as a basis for the existence of identifiers with smaller numbers.
  • the X-axis, the Y-axis, and the Z-axis are provided for convenience of explanation and may be interchanged with each other.
  • the configuration according to the present disclosure has been described using a Cartesian coordinate system composed of X-axis, Y-axis, and Z-axis.
  • the positional relationship of each configuration according to the present disclosure is not limited to being orthogonal.
  • Light emitting device 2 element substrate (21: 1st surface, 22: concave surface, 23: 2nd surface, 24: 3rd surface, 26: convex portion, 27: 4th surface, 28: 5th surface, 29: 2nd surface Recess, 201: 1st layer, 202: 2nd layer) 3 Light emitting element 6 Wavelength conversion member (60: translucent member, 61: phosphor, 601: intrusion part) 31 1st wiring 32 2nd wiring 40 Reflective layer 100 Lighting device (110: mounting plate, 120: housing, 130: end plate, 140: lid)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

発光装置は、第1面を有する基板と、第1面の上に実装されており、励起光を射出する発光素子と、第1面の少なくとも一部と発光素子との上に位置し、励起光を照明光に変換する波長変換部材とを備える。基板は、第1面より下に位置する第2面と、第2面と第1面との間を接続する第3面とを有する凹部、及び、第1面から上に突出する凸部のうち少なくとも一方を有する。波長変換部材は、第2面の少なくとも一部、及び、凸部の少なくとも一部のうち少なくとも一方に接触する。

Description

発光装置及び照明装置 関連出願へのクロスリファレンス
 本出願は、日本国特許出願2020-196995号(2020年11月27日出願)の優先権を主張するものであり、当該出願の開示全体を、ここに参照のために取り込む。
 本開示は、発光装置及び照明装置に関する。
 枠体で囲まれた内側の空間内に位置する発光素子を、枠体内に樹脂を充填することによって封止した発光装置が知られている(例えば、特許文献1参照)。
特開2019-117729号公報
 本開示の一実施形態に係る発光装置は、第1面を有する基板と、発光素子と、波長変換部材6とを備える。前記発光素子は、前記第1面の上に実装されており、励起光を射出する。前記波長変換部材は、前記第1面の少なくとも一部と前記発光素子との上に位置し、前記励起光を照明光に変換する。前記基板は、前記第1面より下に位置する第2面と、前記第2面と前記第1面との間を接続する第3面とを有する凹部、及び、前記第1面から上に突出する凸部のうち少なくとも一方を有する。前記波長変換部材は、前記第2面の少なくとも一部、及び、前記凸部の少なくとも一部のうち少なくとも一方に接触する。
 本開示の一実施形態に係る照明装置は、前記発光装置と、前記発光装置が実装された実装板とを備える。
一実施形態に係る発光装置の構成例を示す平面図である。 図1のA-A断面図である。 図2の破線囲み部の拡大図である。 凹部の第2面が逆テーパ形状を有する構成例を示す断面図である。 凹部の下方がキャビティ形状を有する構成例を示す断面図である。 凹部を構成する第2面と第3面とがなす角度を示す断面図である。 凹部が溝状に構成されている例の平面図である。 基板が第1層と第2層とを含む構成例の断面図である。 凹部より浅い第2凹部が発光素子の下方に位置する構成例の断面図である。 凹部と同じ深さの第2凹部が発光素子の下方に位置する構成例の断面図である。 凹部より深い第2凹部が発光素子の下方に位置する構成例の断面図である。 一実施形態に係る照明装置の構成例を示す斜視図である。
(発光装置10の構成例)
 図1、図2、及び図3に示されるように、発光装置10は、素子基板2と、発光素子3と、波長変換部材6とを備える。素子基板2は、第1面21と、凹部22と、凸部26とを有する。発光素子3は、素子基板2の第1面21の上に実装されている。波長変換部材6は、発光素子3の上及び素子基板2の第1面21の上に位置し、発光素子3の上面及び側面を覆っている。波長変換部材6は、発光素子3が射出する光を異なる波長の光に変換する。発光装置10は、波長変換部材6で変換された光を射出する。図1等において、発光装置10の上方は、Z軸の正の方向に対応する。
 発光素子3は、360nm以上かつ430nm以下の波長領域にピーク波長を有する光を射出する。360nm以上かつ430nm以下の波長領域は、紫色光領域とも称される。
 波長変換部材6は、発光素子3から波長変換部材6に入射してきた光を、360nm以上かつ780nm以下の波長領域にピーク波長を有する光に変換し、変換した光を射出する。360nm以上かつ950nm以下の波長領域は、可視光領域とも称される。可視光領域は、紫色光領域を含むとする。可視光は、紫色光を含むとする。波長変換部材6は、発光素子3が射出する光によって励起されることによって、可視光領域にピーク波長領域を射出する。発光素子3が射出する光は、励起光とも称される。発光装置10が備える発光素子3は、励起光発光素子とも称される。
 以下、発光装置10の各構成が説明される。
 素子基板2は、単に基板とも称される。素子基板2は、例えば、絶縁性を有する材料で形成されてよい。素子基板2は、例えば、酸化アルミニウム(アルミナ)若しくはムライト等のセラミック材料、ガラスセラミック材料、又は、これらの材料のうち複数の材料を混合した複合系材料等で形成されてよい。素子基板2は、熱膨張を調整することが可能な金属酸化物微粒子を分散させた高分子樹脂材料等で形成されてもよい。素子基板2は、窒化アルミニウムまたは炭化ケイ素(シリコンカーバイド)を含んで構成されてもよい。これにより、素子基板2の熱伝導率を向上させることでき、発光装置10の放熱性能が向上する。
 素子基板2は、Z軸の正の方向を向く第1面21を有する。素子基板2の第1面21に、発光素子3が実装されている。素子基板2は、発光素子3に給電する第1配線31と第2配線32とを備える。第1配線31は、第1面21に交差する方向に延び、第1面21の平面視において露出している。第1配線31は、第1面21に対して面一であってもよいし、第1面21から上方に突出していてもよい。第1配線31は、ビア配線とも称される。第2配線32は、第1面21に沿う方向に延びている。第1配線31は、素子基板2のZ軸の負の方向を向く面(裏面ともいう)まで延びていてもよい。この場合には、第2配線32は、素子基板2の裏面に位置していてもよい。また、第2配線32は、素子基板2の裏面および素子基板2の内部の両方に位置していてもよい。第1配線31及び第2配線32は、例えば、タングステン、モリブデン、マンガン、又は銅等の導電材料で形成されてよい。第1配線31及び第2配線32は、例えば、タングステンの粉末に有機溶剤が添加された金属ペーストを、素子基板2となるセラミックグリーンシートに所定パターンで印刷し、複数のセラミックグリーンシートを積層して、焼成することにより形成されてよい。第1配線31及び第2配線32は、その表面に酸化防止のために形成された、例えばニッケル又は金等のめっき層を含んでよい。第1配線31及び第2配線32は、給電配線とも称される。
 素子基板2は、第1面21の上に位置する反射膜40を更に備える。反射膜40は、第1面21の少なくとも一部を覆うように、第1面21の上に位置する。反射膜40は、例えば、シリコーン樹脂ベースの材料に酸化チタン等の白色材料を添加した材料で形成されてよい。反射膜40は、この例に限られず、反射膜40の反射率が第1面21の反射率よりも高くなるように、形成されてよい。第1面21の上に反射膜40が位置することによって、発光素子3から射出される励起光、及び、波長変換部材6で変換される照明光が第1面21で吸収されにくくなる。その結果、励起光及び照明光が発光装置10の外部へ高効率で射出され得る。
 素子基板2の第1面21は、凹部22を有する。凹部22は、第2面23と第3面24とによって区画されている空間として構成されている。凹部22は、第1面21と同じ高さに開口を有し、開口を通じて上方の空間とつながっている。凹部22は、少なくとも1つの穴部を含んで構成されてよい。
 第2面23は、第1面21に沿う方向に広がり、第1面21よりも素子基板2の内部に入り込む方向に位置する。つまり、第2面23は、第1面21より下に位置する。第3面24は、第1面21と第2面23との間を接続しており、第1面21及び第2面23に交差する方向に広がる。凹部22は、平面視において矩形状等の場合に、第3面24を複数有していてもよい。また、平面視において円形状の場合には、第3面24が円筒形であってもよい。
 凹部22は、第3面24のうち発光素子3に対向する面の少なくとも一部において、反射膜40によって覆われてよい。反射膜40は、凹部22の第2面23の一部に接続する範囲まで第3面24を覆ってもよい。反射膜40が凹部22の第3面24を覆うことによって、凹部22に進入した励起光又は照明光が素子基板2の上方に向けて反射され、凹部22で吸収されにくくなる。
 波長変換部材6は、凹部22の中の少なくとも一部に入り込む。また、波長変換部材6は、第2面23の少なくとも一部に接触する。波長変換部材6が凹部22の中に入り込んで第2面23の少なくとも一部に接触することによって、素子基板2と波長変換部材6との接触面積が大きくなり得る。その結果、素子基板2に対する波長変換部材6の密着性が向上し得る。つまり、波長変換部材6が素子基板2から剥がれにくくなる。また、波長変換部材6が凹部22の第3面24の少なくとも一部に接触することによって、波長変換部材6は、素子基板2に対して少なくとも2方向の面で接触できる。その結果、波長変換部材6が外力を受けても素子基板2から剥がれにくくなる。
 波長変換部材6は、第2面23の少なくとも一部に直接接触する。言い換えれば、波長変換部材6は、第2面23の少なくとも一部に反射膜40を介さずに接触する。ここで、波長変換部材6において励起光が照明光に変換される際に生じた熱は、素子基板2に伝わって素子基板2の裏面(Z軸の負の方向の側の面)に向けて放散される。第1面21における素子基板2の厚みは、T1で表されている。厚みとは、Z軸方向の素子基板2の大きさのことである。第2面23における素子基板2の厚みは、T2で表されている。T2がT1よりも薄いことによって、第2面23は、第1面21よりも裏面に近づいている。第2面23が第1面21よりも裏面に近づいていることによって、第2面23から裏面までの熱抵抗は、第1面21から裏面までの熱抵抗よりも小さい。その結果、第2面23に入り込んだ波長変換部材6から第2面23を通って裏面に放散される熱量は、第1面21の上に位置する波長変換部材6から第1面21を通って裏面に放散される熱量よりも大きくなり得る。つまり、波長変換部材6が第2面23に接触することによって波長変換部材6から熱が放散されやすくなる。
 また、反射膜40の熱伝導率は、素子基板2及び波長変換部材6の熱伝導率より低いとする。この場合、波長変換部材6から素子基板2に放散される熱量は、反射膜40を介して素子基板2に伝わる場合よりも、反射膜40を介さずに素子基板2に直接伝わる場合において大きくなる。したがって、波長変換部材6が第2面23の少なくとも一部に反射膜40を介さずに接続することによって、波長変換部材6から熱が放散されやすくなる。
 素子基板2は、凹部22の深さが第2面23における素子基板2の厚みよりも小さくなるように構成されてよい。言い換えれば、素子基板2は、第1面21から第2面23までの距離が第2面23における素子基板2の厚みよりも小さくなるように構成されてよい。このようにすることで、凹部22における素子基板2の厚みが他の部分における素子基板2の厚みの半分以上となる。その結果、凹部22による素子基板2の厚みの減少が素子基板2の強度に影響を及ぼしにくくなる。
 素子基板2の第1面21は、第1面21から上に突出する凸部26を有する。凸部26は、第4面27と第5面28とを有する。第4面27は、第1面21に沿う方向に広がり、第1面21よりも素子基板2から離れる方向に位置する。第5面28は、第1面21と第4面27とを接続するように、第1面21及び第4面27に交差する方向に広がる。凸部26の頂部(上面)は平坦でなくてもよい。凸部26は、その頂部(上面)が曲面になっているように構成されてもよい。また、凸部26の頂部の発光素子3に近い部分が傾斜面を有していてもよい。このような場合には、上方への光の放射の効率を向上させることができる。
 波長変換部材6は、凸部26の少なくとも一部に接触する。波長変換部材6が凸部26に接触することによって、素子基板2と波長変換部材6との接触面積が大きくなり得る。その結果、素子基板2に対する波長変換部材6の密着性が向上し得る。つまり、波長変換部材6が素子基板2から剥がれにくくなる。また、波長変換部材6は、凸部26の第5面28の少なくとも一部に接触する。波長変換部材6が凸部26の第5面28の少なくとも一部に接触することによって、波長変換部材6は、素子基板2に対して少なくとも2方向の面で接触できる。その結果、波長変換部材6が外力を受けても素子基板2から剥がれにくくなる。
 凸部26は、発光素子3に近い側に位置する第5面28の少なくとも一部において、反射膜40によって覆われてよい。反射膜40が凸部26の発光素子3に近い側に位置する第5面28の少なくとも一部を覆うことによって、凸部26に進入した励起光又は照明光が素子基板2の上方に向けて反射され、凸部26で吸収されにくくなる。また、凸部26の第5面28で励起光又は照明光が反射することによって、発光素子3の側面から射出される励起光及びその励起光が変換された照明光は、凸部26が無い場合よりも上方に進みやすくなる。その結果、上方への発光効率が向上し得る。
 図3において、凹部22の第1面21からの深さ、つまり第1面21から第2面22までの距離は、H1で表される。凸部26の第1面21からの高さ、つまり第1面21から凸部26の頂部までの距離は、H2で表される。H2は、H1よりも小さいとする。このようにすることで、発光素子3から素子基板2の第1面21に沿って進む光は、凸部26に進入しにくくなる。つまり、励起光又は照明光が発光装置10の側方から放射されることを低減することができる。その結果、広角での発光効率が向上し得る。
 凸部26は、発光素子3から見て凹部22よりも遠い側に位置してよい。凹部22と凸部26とがそれぞれ複数位置している場合には、最近接の凹部22と凸部26の関係において、凸部26は、発光素子3から見て凹部22よりも遠い側に位置しているとしてもよい。また、発光素子3から同心円状に複数の凹部22および複数の凸部26が並んでいてもよい。このようにすることで、凸部26は、発光素子3から遠くに位置することによって、励起光又は照明光を吸収しにくくなる。その結果、発光効率が向上し得る。
 本実施形態において、発光素子3は、LED(Light Emission Diode)であるとする。LEDは、P型半導体とN型半導体とが接合されたPN接合中で、電子と正孔とが再結合することによって、外部へと光を発光する。発光素子3は、LEDに限られず、他の発光デバイスであってもよい。
 発光素子3は、素子基板2の第1面21の上に実装される。発光素子3は、素子基板2の第1面21に、第1配線31に、例えば、ろう材又は半田等を介して、電気的に接続される。第1配線31は、発光素子3の正及び負それぞれの電極に接続するように、2つを1組として設置されている。発光素子3は、素子基板2の第1面21の平面透視において、第1配線31の少なくとも一部を覆うように第1配線31の上に位置する。発光素子3は、平面透視において第1配線31よりも大きくてもよい。
 発光素子3は、素子基板2にフリップチップ接合で実装されてよい。発光素子3がフリップチップ接合で実装される場合、第1配線31と、ろう材又は半田等とは、第1面21の平面視において、発光素子3に覆われるように位置する。第1配線31及びろう材又は半田等が発光素子3に覆われることによって、発光素子3から射出される励起光、又は、波長変換部材6で変換された照明光が第1配線31及びろう材又は半田等に入射しにくくなる。これによって、励起光又は照明光が第1配線31及びろう材又は半田等で吸収されにくくなる。その結果、発光装置10の発光効率がより一層高められ得る。
 比較例として、発光素子3がワイヤボンディングで素子基板2に実装される場合、ワイヤの少なくとも一部は、発光素子3に覆われない。この場合、励起光又は照明光がワイヤに吸収され得る。本実施形態に係る発光装置10は、発光素子3が素子基板2にフリップチップ接合で実装されることによって、比較例のようにワイヤボンディングされるよりも励起光又は照明光が吸収されにくくなる。その結果、発光装置10の発光効率がより一層高められ得る。
 素子基板2の第1面21上に実装される発光素子3の個数は、図1等において1個であるが、特に限定されるものではなく、2個以上であってもよい。発光素子3の個数が2個以上である場合、各発光素子3は、第1面21の平面視において互いに重ならないように位置する。
 発光素子3は、透光性基体と、透光性基体上に形成される光半導体層とを含んでよい。透光性基体は、例えば、有機金属気相成長法、又は分子線エピタキシャル成長法等の化学気相成長法を用いて、その上に光半導体層を成長させることが可能な材料を含む。透光性基体は、例えば、サファイア、窒化ガリウム、窒化アルミニウム、酸化亜鉛、セレン化亜鉛、炭化ケイ素(シリコンカーバイド)、シリコン(Si)、又は二ホウ化ジルコニウム等で形成されてよい。透光性基体の厚みは、例えば、50μm以上1000μm以下であってよい。
 光半導体層は、透光性基体上に形成される第1半導体層と、第1半導体層上に形成される発光層と、発光層上に形成される第2半導体層とを含んでよい。第1半導体層、発光層、及び第2半導体層は、例えば、III族窒化物半導体、ガリウム燐若しくはガリウムヒ素等のIII-V族半導体、又は、窒化ガリウム、窒化アルミニウム若しくは窒化インジウム等のIII族窒化物半導体等で形成されてよい。
 第1半導体層の厚みは、例えば、1μm以上5μm以下であってよい。発光層の厚みは、例えば、25nm以上150nm以下であってよい。第2半導体層の厚みは、例えば、50nm以上600nm以下であってよい。
 波長変換部材6は、素子基板2の第1面21の上に位置している。波長変換部材6は、発光素子3の上の空間を満たすことによって、発光素子3を封止する。波長変換部材6は、素子基板2の第1面21の上にペーストの状態で塗布された後に硬化することによって形成されてよい。波長変換部材6は、素子基板2の第1面21の上にシートの状態で貼り付けられた後に硬化することによって形成されてもよい。
 発光素子3から射出された励起光は、波長変換部材6に直接入射する。波長変換部材6は、入射してきた励起光としての紫色光を、360nm以上かつ780nm以下の波長領域に含まれるピーク波長を有する光に変換し、変換した光を射出する。
 波長変換部材6は、透光性を有する透光部材60と、蛍光体61とを備えてよい。
 透光部材60は、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂若しくはエポキシ樹脂等の光透過性を有する絶縁樹脂材料、又は光透過性を有するガラス材料、等で形成されてよい。透光部材60の屈折率は、例えば、1.4以上1.6以下に設定されていてよい。
 蛍光体61は、透光部材60の内部に含有されているとする。蛍光体61は、透光部材60の内部で略均一に分散されていてよい。蛍光体61は、入射してきた紫色光を種々のピーク波長を有する光に変換する。
 蛍光体61は、紫色光を、例えば400nmから500nmまでの波長領域内にピーク波長を有するスペクトルで特定される光、つまり青色の光に変換してよい。この場合、蛍光体61は、例えば、BaMgAl1017:Eu、又は(Sr,Ca,Ba)10(POCl:Eu,(Sr,Ba)10(POCl:Eu等の材料を含んでよい。
 蛍光体61は、紫色光を、例えば450nmから550nmまでの波長領域内にピーク波長を有するスペクトルで特定される光、つまり青緑色の光に変換してよい。この場合、蛍光体61は、例えば、(Sr,Ba,Ca)(POCl:Eu,SrAl1425:Eu等の材料を含んでよい。
 蛍光体61は、紫色光を、例えば500nmから600nmまでの波長領域内にピーク波長を有するスペクトルで特定される光、つまり緑色の光に変換してよい。この場合、蛍光体61は、例えば、SrSi(O,Cl):Eu、(Sr,Ba,Mg)SiO:Eu2+、又はZnS:Cu,Al、ZnSiO:Mn等の材料を含んでよい。
 蛍光体61は、紫色光を、例えば600nmから700nmまでの波長領域内にピーク波長を有するスペクトルで特定される光、つまり赤色の光に変換してよい。この場合、蛍光体61は、例えば、YS:Eu、Y:Eu、SrCaClAlSiN:Eu2+、CaAlSiN:Eu、又はCaAlSi(ON):Eu等の材料を含んでよい。
 蛍光体61は、紫色光を、例えば680nmから800nmまでの波長領域内にピーク波長を有するスペクトルで特定される光、つまり近赤外光に変換してよい。近赤外光は、680から2500nmまでの波長領域の光を含んでよい。この場合、蛍光体61は、例えば、3Ga12:Cr等の材料を含んでよい。
 波長変換部材6が含有する蛍光体61の種類の組み合わせは、特に限定されない。蛍光体61は、上述の材料に限られず、他の種々の材料を含んでもよい。
 上述したように、発光素子3から波長変換部材6に入射した紫色光は、蛍光体61によって異なるピーク波長を有する光に変換される。変換された光のピーク波長は、可視光領域に含まれ得る。波長変換部材6に含まれる蛍光体61の組み合わせによって、変換された光は、複数のピーク波長を有し得る。例えば、蛍光体61が青色の蛍光を放射する材料、青緑色の蛍光を放射する材料、及び緑色の蛍光を放射する材料を含む場合、変換された光は、青色、青緑色及び緑色それぞれの波長をピーク波長として有する。蛍光体61が1種類の材料のみを含む場合、変換された光は、その材料のピーク波長を有する。蛍光体61は、これらの例に限られず、種々の組み合わせの材料を含んでもよい。波長変換部材6から放射される光の色彩は、蛍光体61に含まれる材料の種類に基づいて決定される。つまり、変換された光は、種々のスペクトルを有し得る。
 本実施形態に係る発光装置10は、蛍光体61に含まれる材料の組み合わせによって、種々のスペクトルを有する光を射出できる。発光装置10は、例えば、太陽からの直射日光のスペクトル、海中の所定の深さまで到達した日光のスペクトル、ろうそくの炎が発する光のスペクトル、又は、蛍の光のスペクトル等を有する光等を射出できる。言い換えれば、発光装置10は、種々の色を有する光を射出できる。また、発光装置10は、種々の色温度を有する光を射出できる。
 以上述べてきたように、本実施形態に係る発光装置10において、素子基板2は、第1面21に位置する凹部22及び凸部26の少なくとも一方を有する。また、波長変換部材6は、第2面23の少なくとも一部、及び、凸部26の少なくとも一部のうち少なくとも一方に接触する。このようにすることで、波長変換部材6が素子基板2から剥がれにくくなる。また、波長変換部材6は、素子基板2の上に位置するだけの簡易な構成で、素子基板2からはがれにくくなる。その結果、本実施形態に係る発光装置10は、構成を簡易化しつつ信頼性を維持又は向上できる。また、素子基板2が凹部22及び凸部26を両方とも有することによって、波長変換部材6がより一層剥がれにくくなる。また、第1面21に凹部22及び凸部26の少なくとも一方が位置することによって、発光装置10の発光効率が向上し得る。
(発光装置10の他の実施形態)
 凹部22は、開口の面積が第2面23の面積よりも小さくなるように構成されてよい。例えば、図4に示されるように、凹部22は、断面視における開口の長さ(L1)が断面視における第2面23の長さ(L2)よりも短くなるように構成されてよい。また、凹部22は、素子基板2の平面視において、凹部22の開口の端部が凹部22の第2面23の端部よりも内側に位置するように構成されてよい。また、凹部22は、凹部22を区画する第2面23と第3面24との角度(θ1)が鋭角となるように構成されてよい。図4に例示される形状は、逆テーパ形状とも称される。
 また、図5に示されるように、凹部22は、断面視において、少なくとも2段に構成されてよい。凹部22は、素子基板2の平面視における面積が上段(第1面21から見て近い方の段)よりも下段(第1面21から見て遠い方の段)において小さくなるように構成されてよい。図5に例示される形状は、キャビティ形状とも称される。
 図4及び図5に例示される構成を有する凹部22に波長変換部材6が入り込むことによって波長変換部材6は、素子基板2の第1面21から剥がれにくくなる。つまり、素子基板2に対する波長変換部材6の密着性が向上し得る。また、凹部22は、第1面21から第2面23までの間の高さ方向の少なくとも一部において、凹部22の空間の断面積が第2面23より小さくなるように構成されてよい。つまり、凹部22の空間は、断面視においてくびれ形状を有してよい。このように構成されることによっても、波長変換部材6は、素子基板2の第1面21から剥がれにくくなる。
 図6に示されるように、凹部22は、発光素子3から遠い側(図6においてY軸の正の方向の側)に位置する第3面24と第2面23との角度(θ2)が鈍角となるように構成されてよい。発光素子3から遠い側の第3面24は、凹部22が平面視において、矩形状である場合には、断面視において、複数の第3面24のうち発光素子3と接続する第3面24と対向する位置の第3面24のことである。また、凹部22が平面視において、円形状の場合には、断面視において、第3面24のうち発光素子3と接続する領域と対向する位置の領域のことである。図6に例示される構成を有する凹部22に発光素子3から励起光又は照明光が入射する場合、入射した光は第3面24で反射する。発光素子3から遠い側の第3面24と第2面23との角度(θ2)が鈍角であることによって、発光素子3の方から入射した光は、上方に向けて反射されやすくなる。その結果、発光装置10から外方に射出される光が増加し得る。つまり、発光装置10の発光効率が向上し得る。
 図7に示されるように、凹部22は、素子基板2の平面視において発光素子3を囲む溝状に形成されていてもよい。凹部22は、発光素子3を一周せずに途中で途切れていてもよい。凹部22は、例えばX軸方向又はY軸方向等の一方向に延びる溝状に形成されていてもよい。凹部22が溝状に形成されていることによって、波長変換部材6が凹部22に入り込む面積が広がる。その結果、素子基板2に対する波長変換部材6の密着性が向上し得る。
 図8に示されるように、素子基板2は、少なくとも第1層201と第2層202とを有してよい。層数は、2層に限られず3層以上であってもよい。言い換えれば、素子基板2は、少なくとも2つの層を含んでよい。第1層201と第2層202との境界は、凹部22の空間に露出しているとする。第1層201と第2層202との境界は、微小な隙間を有し得る。凹部22に入り込んだ透光部材60は、第1層201と第2層202との境界の隙間に入り込んだ侵入部601を更に有してよい。言い換えれば、波長変換部材6の少なくとも一部は、素子基板2の隣り合う層の間に入り込んでいてよい。透光部材60が侵入部601を有することによって、透光部材60を含む波長変換部材6は、凹部22を有する素子基板2から剥がれにくくなる。つまり、素子基板2に対する波長変換部材6の密着性が向上し得る。
 発光装置10は、素子基板2の第1面21の上に位置する波長変換部材6の上方(Z軸の正の方向)に向けて照明光を射出するように構成される。発光装置10は、波長変換部材6の側方(X軸方向又はY軸方向)に向けて照明光を射出するように構成されてもよい。このようにすることで、発光効率が向上し得る。
 発光装置10は、素子基板2の上に2つ以上形成された後、素子基板2をダイシングすることによって1つずつ分離されて形成されてもよい。また、発光装置10は、素子基板2の上に複数の発光素子3を実装し、波長変換部材6を貼り付けたり塗布したりした後に1つずつ分離されることによって形成されてもよい。素子基板2は、1つの発光装置10が1つの発光素子3を含むように分離されてもよいし、2つ以上の発光素子3を含むように分離されてもよい。
 図9、図10及び図11に示されるように、素子基板2の第1面21は、第2凹部29を更に有してよい。第2凹部29は、発光素子3の下部に位置する。言い換えれば、第2凹部29は、第1面21の平面視において発光素子3と重なるように位置する。第2凹部29の深さは、発光素子3と重ならないように位置している凹部22の深さと比較して、図9に示されるように浅くてもよいし、図10に示されるように同じであってもよいし、図11に示されるように深くてもよい。第2凹部29があることにより、波長変換部材6が発光素子3の下部の第2凹部29に入り込むことができる。このため、波長変換部材6が、発光素子3と素子基板2とを接合するときの接合材なり、発光素子3と素子基板2との接合強度が向上する。第2凹部29の深さが、凹部22の深さと同じであれば、波長変換部材6等に熱が加わった場合に、それぞれの凹部にかかる応力の負荷が偏らずに、素子基板2にクラック等を生じ難くすることができる。また、第2凹部29の深さが、凹部22の深さよりも深い場合には、発光素子3と重なる位置での接合材の量が増えることになり、接合強度を向上させることができる。また、第2凹部29の深さが、凹部22の深さよりも浅い場合であれば、接合強度を向上させつつ、深さが深い場合に比較して基板が変形する可能性を低減させつつ、接合強度を向上させることができ、発光素子3を安定して実装することができる。
(照明装置100の構成例)
 図12に示されるように、一実施形態に係る照明装置100は、少なくとも1つの発光装置10を備え、発光装置10が射出する光を照明光として射出する。照明装置100は、複数の発光装置10を備える場合、各発光装置10が射出する光の強度を独立に制御してもよいし、関連づけて制御してもよい。各発光装置10が射出する光のスペクトルは、同じであってもよいし、互いに異なっていてもよい。照明装置100は、各発光装置10が射出する光の強度を関連づけて制御することによって、各発光装置10が射出する光を合成した光のスペクトルを制御してもよい。各発光装置10が射出する光を合成した光は、合成光とも称される。照明装置100は、合成光を照明光として射出してもよい。照明装置100は、複数の発光装置10の少なくとも一部を選択して照明光を射出させてもよい。
 照明装置100は、発光装置10が実装された実装板110をさらに備えてよい。照明装置100は、実装板110を収容する溝状の部分を有する筐体120と、筐体120の短辺側の端部を塞ぐ一対の端板130とをさらに備えてよい。実装板110に実装されている発光装置10の数は、1つであってもよいし、2つ以上であってもよい。発光装置10は、実装板110において、一列に並ぶように実装されてもよいし、格子状又は千鳥格子状に並ぶように実装されてもよい。発光装置10は、これらのパターンに限られず、種々の配列パターンで実装板110に実装されてよい。
 実装板110は、配線パターンを有する回路基板を含んでもよい。回路基板は、例えば、リジッド基板、フレキシブル基板又はリジッドフレキシブル基板等のプリント基板を含んでよい。回路基板は、発光装置10を制御する駆動回路を含んでもよい。
 実装板110は、発光装置10が発する熱を外部に放散させる機能を有している。実装板110は、例えば、アルミニウム、銅若しくはステンレス鋼等の金属材料、有機樹脂材料、又はこれらを含む複合材料等で構成されてよい。
 実装板110は、平面視において細長い長方形状を有してよい。実装板110の形状は、これに限られず他の種々の形状であってもよい。
 照明装置100は、筐体120の内部に収容されている実装板110及び発光装置10を封止する蓋部140をさらに備えてよい。蓋部140は、透光性を有する材料で構成されることによって、発光装置10が射出する照明光を照明装置100の外部に透過してよい。蓋部140は、例えば、アクリル樹脂等の樹脂材料又はガラス等によって構成されてよい。蓋部140は、平面視において細長い長方形状を有してよい。蓋部140の形状は、これに限られず他の種々の形状であってもよい。照明装置100は、蓋部140と筐体120との間にシーリング部材をさらに備えてもよい。このようにすることで、筐体120の内部に水又は塵埃等が侵入しにくくなる。その結果、照明装置100が設置される環境にかかわらず、照明装置100の信頼性が向上しうる。照明装置100は、筐体120の内部に吸湿剤をさらに備えてもよい。
 本開示に係る実施形態について説明する図は模式的なものである。図面上の寸法比率等は、現実のものとは必ずしも一致していない。
 本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、本開示は上述の実施形態に限定されるものではない。また、当業者であれば本開示に基づき種々の変形又は改変を行うことが可能であることに留意されたい。従って、これらの変形又は改変は本開示の範囲に含まれることに留意されたい。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。その他、本開示の趣旨を逸脱しない範囲での変更が可能である。
 本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1面21は、第2面23と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。
 本開示において、X軸、Y軸、及びZ軸は、説明の便宜上設けられたものであり、互いに入れ替えられてよい。本開示に係る構成は、X軸、Y軸、及びZ軸によって構成される直交座標系を用いて説明されてきた。本開示に係る各構成の位置関係は、直交関係にあると限定されるものではない。
 10 発光装置
 2 素子基板(21:第1面、22:凹部、23:第2面、24:第3面、26:凸部、27:第4面、28:第5面、29:第2凹部、201:第1層、202:第2層)
 3 発光素子
 6 波長変換部材(60:透光部材、61:蛍光体、601:侵入部)
 31 第1配線
 32 第2配線
 40 反射層
 100 照明装置(110:実装板、120:筐体、130:端板、140:蓋部)

Claims (14)

  1.  第1面を有する基板と、
     前記第1面の上に実装されており、励起光を射出する発光素子と、
     前記第1面の少なくとも一部と前記発光素子との上に位置し、前記励起光を照明光に変換する波長変換部材と
    を備え、
     前記基板は、前記第1面より下に位置する第2面と、前記第2面と前記第1面との間を接続する第3面とを有する凹部、及び、前記第1面から上に突出する凸部のうち少なくとも一方を有し、
     前記波長変換部材は、前記第2面の少なくとも一部、及び、前記凸部の少なくとも一部のうち少なくとも一方に接触する、
    発光装置。
  2.  前記第1面の少なくとも一部を覆う反射膜を更に備え、
     前記波長変換部材は、前記基板が前記凹部を有する場合、前記第2面の少なくとも一部に前記反射膜を介さずに接触する、請求項1に記載の発光装置。
  3.  前記反射膜は、前記第3面の少なくとも一部を覆う、請求項2に記載の発光装置。
  4.  前記凸部の前記第1面からの高さは、前記凹部の前記第1面からの深さよりも小さい、請求項1から3までのいずれか一項に記載の発光装置。
  5.  前記凹部の前記第1面からの深さは、前記第2面における前記基板の厚みよりも小さい、請求項1から4までのいずれか一項に記載の発光装置。
  6.  前記凹部は、前記発光素子を囲む溝状に形成されている、請求項1から5までのいずれか一項に記載の発光装置。
  7.  前記凹部は、少なくとも1つの穴部を含む、請求項1から6までのいずれか一項に記載の発光装置。
  8.  前記第2面の面積は、前記凹部の開口の面積よりも広い、請求項1から7までのいずれか一項に記載の発光装置。
  9.  前記第2面と前記第3面との角度は、鋭角である、請求項8に記載の発光装置。
  10.  前記凹部の前記発光素子から遠い側の前記第3面と前記第2面との角度は、鈍角である、請求項1から7までのいずれか一項に記載の発光装置。
  11.  前記基板は、少なくとも2つの層を含み、
     前記波長変換部材の少なくとも一部は、前記基板の隣り合う層の間に入り込んでいる、請求項1から10までのいずれか一項に記載の発光装置。
  12.  前記基板は、前記凹部及び前記凸部を有している、請求項1から11までのいずれか一項に記載の発光装置。
  13.  前記凸部は、前記発光素子から見て前記凹部よりも遠い側に位置している、請求項12に記載の発光装置。
  14.  請求項1から13までのいずれか一項に記載の発光装置と、前記発光装置が実装された実装板とを備える、照明装置。
PCT/JP2021/043284 2020-11-27 2021-11-25 発光装置及び照明装置 WO2022114086A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/038,451 US20240011621A1 (en) 2020-11-27 2021-11-25 Light emission device and illumination apparatus
JP2022565425A JP7483936B2 (ja) 2020-11-27 2021-11-25 発光装置及び照明装置
EP21898058.9A EP4254524A1 (en) 2020-11-27 2021-11-25 Light emitting apparatus and illumination apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-196995 2020-11-27
JP2020196995 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022114086A1 true WO2022114086A1 (ja) 2022-06-02

Family

ID=81754346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/043284 WO2022114086A1 (ja) 2020-11-27 2021-11-25 発光装置及び照明装置

Country Status (4)

Country Link
US (1) US20240011621A1 (ja)
EP (1) EP4254524A1 (ja)
JP (1) JP7483936B2 (ja)
WO (1) WO2022114086A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188358A (ja) * 1998-12-22 2000-07-04 Rohm Co Ltd 半導体装置
JP2004207621A (ja) * 2002-12-26 2004-07-22 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2004228531A (ja) * 2003-01-27 2004-08-12 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2007123481A (ja) * 2005-10-27 2007-05-17 Kyocera Corp 発光素子用配線基板ならびに発光装置
JP2008047617A (ja) * 2006-08-11 2008-02-28 Kyocera Corp 電子部品搭載用基板および電子装置、ならびに電子装置の製造方法
JP2008147270A (ja) * 2006-12-07 2008-06-26 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2013045888A (ja) * 2011-08-24 2013-03-04 Toyoda Gosei Co Ltd 発光装置及びその製造方法
JP2015041722A (ja) * 2013-08-23 2015-03-02 株式会社東芝 半導体発光装置
JP2019046932A (ja) * 2017-08-31 2019-03-22 日亜化学工業株式会社 発光装置及びその製造方法
JP2019117729A (ja) 2017-12-27 2019-07-18 京セラ株式会社 照明装置および照明モジュール

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277349A (ja) 2007-04-25 2008-11-13 Kyocera Corp 発光素子搭載用基体、及びその製造方法、ならびに発光装置
CN202721174U (zh) * 2010-12-27 2013-02-06 松下电器产业株式会社 发光装置及灯
KR101346706B1 (ko) * 2011-10-04 2013-12-31 우리이앤엘 주식회사 발광소자
KR101957701B1 (ko) * 2012-11-14 2019-03-14 삼성전자주식회사 발광소자 패키지 및 그 제조방법
JP2015233060A (ja) 2014-06-09 2015-12-24 オー・ジー株式会社 光源、バックライト装置及び表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000188358A (ja) * 1998-12-22 2000-07-04 Rohm Co Ltd 半導体装置
JP2004207621A (ja) * 2002-12-26 2004-07-22 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2004228531A (ja) * 2003-01-27 2004-08-12 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2007123481A (ja) * 2005-10-27 2007-05-17 Kyocera Corp 発光素子用配線基板ならびに発光装置
JP2008047617A (ja) * 2006-08-11 2008-02-28 Kyocera Corp 電子部品搭載用基板および電子装置、ならびに電子装置の製造方法
JP2008147270A (ja) * 2006-12-07 2008-06-26 Nichia Chem Ind Ltd 発光装置及びその製造方法
JP2013045888A (ja) * 2011-08-24 2013-03-04 Toyoda Gosei Co Ltd 発光装置及びその製造方法
JP2015041722A (ja) * 2013-08-23 2015-03-02 株式会社東芝 半導体発光装置
JP2019046932A (ja) * 2017-08-31 2019-03-22 日亜化学工業株式会社 発光装置及びその製造方法
JP2019117729A (ja) 2017-12-27 2019-07-18 京セラ株式会社 照明装置および照明モジュール

Also Published As

Publication number Publication date
JP7483936B2 (ja) 2024-05-15
JPWO2022114086A1 (ja) 2022-06-02
EP4254524A1 (en) 2023-10-04
US20240011621A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US8115217B2 (en) Systems and methods for packaging light-emitting diode devices
CN101479860B (zh) 发光二极管封装、发射器封装及用于发光的方法
JP5482378B2 (ja) 発光装置
KR101170407B1 (ko) 무기 하우징을 갖는 발광 소자
TWI392121B (zh) 發光二極體元件的外殼,以及發光二極體元件
JP5393802B2 (ja) 発光装置
JP2010272847A5 (ja)
KR20200055862A (ko) 발광 모듈 및 이를 포함하는 자동자 조명 장치
KR20110016949A (ko) 고체 조명 컴포넌트
KR20190010478A (ko) 발광 장치, 집적형 발광 장치 및 발광 모듈
JP2019079873A (ja) 発光モジュールおよび集積型発光モジュール
JP2006074036A (ja) 半導体発光装置およびその製作方法
KR20130112577A (ko) 발광 다이오드 조명 장치
TWI798266B (zh) 發光裝置
JP7096504B2 (ja) 発光装置
WO2022114086A1 (ja) 発光装置及び照明装置
WO2022025065A1 (ja) 発光装置及び照明装置
WO2022004564A1 (ja) 発光装置及び照明装置
JP2014160811A (ja) 発光装置
WO2023054199A1 (ja) 発光装置及び照明装置
JP7089181B2 (ja) 発光装置
JP7027161B2 (ja) 照明装置および照明モジュール
JP6920618B2 (ja) 発光装置
JP7274013B2 (ja) 照明装置および照明モジュール
JP7042683B2 (ja) 照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21898058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022565425

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18038451

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021898058

Country of ref document: EP

Effective date: 20230627