WO2022113739A1 - 伝送線路及び電子機器 - Google Patents

伝送線路及び電子機器 Download PDF

Info

Publication number
WO2022113739A1
WO2022113739A1 PCT/JP2021/041331 JP2021041331W WO2022113739A1 WO 2022113739 A1 WO2022113739 A1 WO 2022113739A1 JP 2021041331 W JP2021041331 W JP 2021041331W WO 2022113739 A1 WO2022113739 A1 WO 2022113739A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow portion
transmission line
spacer
conductor layer
laminated body
Prior art date
Application number
PCT/JP2021/041331
Other languages
English (en)
French (fr)
Inventor
伸郎 池本
哲聡 奥田
恒亮 西尾
啓介 荒木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022565207A priority Critical patent/JPWO2022113739A1/ja
Priority to CN202190000851.XU priority patent/CN219979789U/zh
Publication of WO2022113739A1 publication Critical patent/WO2022113739A1/ja
Priority to US18/200,011 priority patent/US20230299452A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • H01P3/085Triplate lines
    • H01P3/087Suspended triplate lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/08Microstrips; Strip lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details

Definitions

  • the present invention relates to a transmission line and an electronic device through which a high frequency signal is transmitted.
  • This signal transmission line comprises a laminate, a signal conductor and a reinforcing conductor.
  • the laminated body has a structure in which a plurality of resin layers are laminated in the vertical direction.
  • the laminated body is provided with a hollow portion.
  • the signal conductor overlaps the hollow portion when viewed in the vertical direction.
  • the reinforcing conductor extends in the vertical direction in the hollow portion.
  • the upper end of the reinforcing conductor is in contact with the upper surface of the hollow portion.
  • the lower end of the reinforcing conductor is in contact with the lower surface of the hollow portion.
  • an object of the present invention is to provide a transmission line and an electronic device that can be easily bent.
  • the transmission line according to one embodiment of the present invention is One of the upward or downward directions is the first direction, and the other of the upward or downward directions is the second direction.
  • the transmission line is A laminated body having a structure in which a plurality of insulator layers are laminated in the vertical direction, A signal conductor layer provided on the laminated body and extending in the front-rear direction orthogonal to the vertical direction, and A first ground conductor layer provided in the laminated body and provided in the first direction of the signal conductor layer so as to overlap the signal conductor layer when viewed in the vertical direction. Equipped with The first hollow portion is provided in the laminated body, and the first hollow portion is provided in the laminated body.
  • the first hollow portion is a cavity in which the insulator layer does not exist.
  • the first hollow portion is located in the first direction from the signal conductor layer and is located in the second direction of the first ground conductor layer.
  • the first hollow portion overlaps with the first ground conductor layer when viewed in the vertical direction.
  • a first spacer facing the first hollow portion is provided in the laminated body, and the first spacer is provided on the laminated body.
  • the region overlapping the first spacer in the first hollow portion in the vertical direction is the first overlapping region.
  • the region in the first hollow portion that does not overlap with the first spacer in the vertical direction is the first non-overlapping region.
  • the vertical length of the first hollow portion in the first overlapping region is shorter than the vertical length of the first hollow portion in the first non-overlapping region.
  • the transmission line is One of the upward or downward directions is the first direction, and the other of the upward or downward directions is the second direction.
  • the transmission line is A laminated body having a structure in which a plurality of insulator layers are laminated in the vertical direction, A signal conductor layer provided on the laminated body and extending in the front-rear direction orthogonal to the vertical direction, and A first ground conductor layer provided in the laminated body and provided in the first direction of the signal conductor layer so as to overlap the signal conductor layer when viewed in the vertical direction. Equipped with The transmission line includes a first section and a second section. The first section is bent in the vertical direction in the second section with respect to the second section.
  • the radius of curvature of the first section is smaller than the radius of curvature of the second section.
  • the first hollow portion is provided in the laminated body, and the first hollow portion is provided in the laminated body.
  • the first hollow portion is located in the first direction of the signal conductor layer and is located in the second direction of the first ground conductor layer.
  • the first hollow portion is a cavity in which the insulator layer does not exist.
  • the first hollow portion overlaps with the first ground conductor layer when viewed in the vertical direction.
  • the first spacer facing the first hollow portion is provided in the laminated body.
  • the vertical length of the first spacer is equal to or less than the maximum value in the vertical direction of the first hollow portion.
  • the transmission line can be easily bent.
  • FIG. 1 is an exploded perspective view of the transmission line 10.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 3 is a cross-sectional view of the transmission line 10 when the transmission line 10 is bent with a large radius of curvature.
  • FIG. 4 is a cross-sectional view of the transmission line 10 of FIG.
  • FIG. 5 is a cross-sectional view of the transmission line 10 when the transmission line 10 is bent with a small radius of curvature.
  • FIG. 6 is a cross-sectional view of the transmission line 10 of FIG.
  • FIG. 7 is a left side view of the internal structure of the electronic device 1 provided with the transmission line 10.
  • FIG. 8 is an exploded perspective view of the transmission line 10a.
  • FIG. 9 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 10 is an exploded perspective view of the transmission line 10b.
  • FIG. 11 is a cross-sectional view taken along the line CC of FIG.
  • FIG. 12 is a cross-sectional view of the transmission line 10c.
  • FIG. 13 is a cross-sectional view of the transmission line 10d.
  • FIG. 14 is a cross-sectional view of the transmission line 10e.
  • FIG. 15 is a top view of the insulator layers 16a and 16f of the transmission line 10f.
  • FIG. 16 is a top view of the insulator layers 16a and 16f of the transmission line 10g.
  • FIG. 17 is a top view of the insulator layers 16a and 16f of the transmission line 10h.
  • FIG. 15 is a top view of the insulator layers 16a and 16f of the transmission line 10f.
  • FIG. 18 is a top view of the insulator layers 16a and 16f of the transmission line 10i.
  • FIG. 19 is a top view of the insulator layers 16a and 16f of the transmission line 10j.
  • FIG. 20 is a top view of the insulator layers 16a and 16f of the transmission line 10k.
  • FIG. 21 is an exploded perspective view of the transmission line 10l. 22 is a cross-sectional view taken along the line DD of FIG. 21.
  • FIG. 1 is an exploded perspective view of the transmission line 10.
  • reference numerals are given only to the representative interlayer connection conductors v1 and v2 among the plurality of interlayer connection conductors v1 and the plurality of interlayer connection conductors v2.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • the direction is defined as follows.
  • the stacking direction of the laminated body 12 of the transmission line 10 is defined as the vertical direction.
  • the direction in which the signal conductor layer 22 of the transmission line 10 extends is defined as the front-rear direction.
  • the line width direction of the signal conductor layer 22 is defined as the left-right direction.
  • the vertical direction is orthogonal to the front-back direction.
  • the left-right direction is orthogonal to the up-down direction and the front-back direction.
  • the upward direction is an example of the first direction.
  • the downward direction is an example of the second direction.
  • the end located in the first direction is the upper end.
  • the end located in the second direction is the lower surface.
  • the surface located in the first direction is the upper surface.
  • the surface located in the second direction is the lower surface.
  • the main surface located in the first direction is the upper main surface.
  • the main surface located in the second direction is the lower main surface.
  • the upward direction may be the second direction.
  • the downward direction may be
  • X is a component or member of the transmission line 10. Unless otherwise specified, each part of X is defined as follows in the present specification.
  • the front part of X means the front half of X.
  • the rear part of X means the rear half of X.
  • the left part of X means the left half of X.
  • the right part of X means the right half of X.
  • the upper part of X means the upper half of X.
  • the lower part of X means the lower half of X.
  • the front end of X means the front end of X.
  • the rear end of X means the rear end of X.
  • the left end of X means the left end of X.
  • the right end of X means the right end of X.
  • the upper end of X means the upper end of X.
  • the lower end of X means the lower end of X.
  • the front end portion of X means the front end portion of X and its vicinity.
  • the rear end portion of X means the rear end portion of X and its vicinity.
  • the left end portion of X means the left end portion of X and its vicinity.
  • the right end portion of X means the right end portion of X and its vicinity.
  • the upper end portion of X means the upper end portion of X and its vicinity.
  • the lower end portion of X means the lower end portion of X and its vicinity.
  • the transmission line 10 transmits a high frequency signal.
  • the transmission line 10 is used in an electronic device such as a smartphone to electrically connect two circuits.
  • the transmission line 10 includes a laminate 12, a signal conductor layer 22, a first ground conductor layer 24, a second ground conductor layer 26, signal terminals 28a and 28b, a plurality of interlayer connection conductors v1, and a plurality of layers. It includes an interlayer connecting conductor v2 and an interlayer connecting conductor v3 and v4.
  • the laminated body 12 has a plate shape. Therefore, the laminated body 12 has an upper main surface and a lower main surface.
  • the upper main surface and the lower main surface of the laminated body 12 have a rectangular shape having long sides extending in the front-rear direction. Therefore, the length of the laminated body 12 in the front-rear direction is longer than the length of the laminated body 12 in the left-right direction.
  • the laminated body 12 includes insulator layers 16a to 16f, 18a, 18b.
  • the laminated body 12 has a structure in which the insulator layers 16a to 16f, 18a, and 18b are laminated in the vertical direction.
  • the insulator layers 18a, 16a to 16f, 18b are arranged in this order from top to bottom.
  • the insulator layers 16a to 16f, 18a, 18b have the same rectangular shape as the laminated body 12 when viewed in the vertical direction.
  • the insulator layers 16a to 16f are flexible dielectric sheets.
  • the material of the insulator layers 16a to 16f is, for example, a thermoplastic resin.
  • the thermoplastic resin is, for example, a thermoplastic resin such as a liquid crystal polymer or PTFE (polytetrafluoroethylene).
  • the material of the insulator layers 16a to 16f may be polyimide.
  • the signal conductor layer 22 is provided on the laminated body 12.
  • the signal conductor layer 22 is provided on the upper main surface of the insulator layer 16d.
  • the signal conductor layer 22 is provided in the laminated body 12.
  • the signal conductor layer 22 has a linear shape.
  • the signal conductor layer 22 extends in the front-rear direction orthogonal to the vertical direction.
  • the signal conductor layer 22 is located at the center of the upper main surface of the insulator layer 16d in the left-right direction.
  • the first ground conductor layer 24 is provided on the laminated body 12.
  • the first ground conductor layer 24 is provided on the signal conductor layer 22 so as to overlap the signal conductor layer 22 when viewed in the vertical direction.
  • the first ground conductor layer 24 is provided on the upper main surface of the insulator layer 16a. Further, the first ground conductor layer 24 covers substantially the entire upper main surface of the insulator layer 16a.
  • the second ground conductor layer 26 is provided on the laminated body 12.
  • the second ground conductor layer 26 is provided under the signal conductor layer 22 so as to overlap the signal conductor layer 22 when viewed in the vertical direction.
  • the second ground conductor layer 26 is provided on the lower main surface of the insulator layer 16f. Further, the second ground conductor layer 26 covers substantially the entire lower main surface of the insulator layer 16f.
  • the signal conductor layer 22, the first ground conductor layer 24, and the second ground conductor layer 26 as described above have a stripline structure.
  • the plurality of interlayer conductors v1 and v2 electrically connect the first ground conductor layer 24 and the second ground conductor layer 26. More specifically, the plurality of interlayer connection conductors v1 and v2 penetrate the insulator layers 16a to 16e in the vertical direction. The upper ends of the plurality of interlayer conductors v1 and v2 are connected to the first ground conductor layer 24. The lower ends of the plurality of interlayer conductors v1 and v2 are connected to the second ground conductor layer 26.
  • the plurality of interlayer connection conductors v1 are provided on the left side of the signal conductor layer 22.
  • the plurality of interlayer connecting conductors v1 are arranged in a row at equal intervals in the front-rear direction.
  • the plurality of interlayer connection conductors v2 are provided on the right side of the signal conductor layer 22.
  • the plurality of interlayer connecting conductors v2 are arranged in a row at equal intervals in the front
  • the signal terminal 28a is provided on the upper main surface of the laminated body 12. More specifically, the signal terminal 28a is provided at the front end portion of the upper main surface of the insulator layer 16a. The signal terminal 28a overlaps with the front end portion of the signal conductor layer 22 when viewed in the vertical direction. The signal terminal 28a has a rectangular shape when viewed in the vertical direction. Further, the first ground conductor layer 24 is not in contact with the signal terminal 28a so that the signal terminal 28a is insulated from the first ground conductor layer 24.
  • the interlayer connection conductor v3 electrically connects the signal terminal 28a and the signal conductor layer 22. Specifically, the interlayer connecting conductor v3 penetrates the insulator layers 16a to 16c in the vertical direction. The upper end of the interlayer connection conductor v3 is connected to the signal terminal 28a. The lower end of the interlayer connection conductor v3 is connected to the front end portion of the signal conductor layer 22. As a result, the signal terminal 28a is electrically connected to the signal conductor layer 22. The high frequency signal is input / output to / from the signal conductor layer 22 via the signal terminal 28a.
  • the signal terminal 28b and the interlayer connecting conductor v4 have a structure symmetrical with respect to the signal terminal 28a and the interlayer connecting conductor v3. Therefore, the description of the signal terminal 28b and the interlayer connection conductor v4 will be omitted.
  • the signal conductor layer 22, the first ground conductor layer 24, the second ground conductor layer 26, and the signal terminals 28a and 28b as described above are provided on, for example, the upper main surface or the lower main surface of the insulator layers 16a to 16f. It is formed by etching a metal foil.
  • the metal foil is, for example, a copper foil.
  • the interlayer connection conductors v1 to v4 are, for example, via hole conductors.
  • the via hole conductor is produced by forming through holes in the insulator layers 16a to 16f, filling the through holes with a conductive paste, and sintering the conductive paste.
  • the interlayer connection conductors v1 to v4 may be, for example, through-hole conductors.
  • the through-hole conductor is produced by forming a through hole penetrating a part or all of the insulator layers 16a to 16f and plating the through hole.
  • the insulator layers 18a and 18b are protective layers. However, the materials of the insulator layers 18a and 18b are different from the materials of the insulator layers 16a to 16f.
  • the insulator layers 18a and 18b are resist layers. Therefore, the insulator layers 18a and 18b may be formed by attaching a resin sheet to the upper main surface of the insulator layer 16a and the lower main surface of the insulator layer 16f, or the liquid resin may be an insulator. It may be formed by being applied to the upper main surface of the layer 16a and the lower main surface of the insulator layer 16f and solidified. As shown in FIG. 1, the insulator layer 18a covers the first ground conductor layer 24.
  • the insulator layer 18a is provided with openings ha to hf.
  • the openings ha to hc are provided at the front end portion of the insulator layer 18a.
  • the openings hb, ha, and hc are arranged in this order from left to right.
  • the openings hd to hf are provided at the rear end portion of the insulator layer 18a.
  • the openings he, hd, and hf are arranged in this order from left to right.
  • At least a part of each of the signal terminals 28a and 28b is exposed to the outside from the transmission line 10 via the openings ha and hd.
  • a part of the first ground conductor layer 24 is exposed to the outside from the transmission line 10 via the openings hb, hc, he, and hf.
  • the first hollow portion Ha is provided in the laminated body 12.
  • the first hollow portion Ha is a cavity in which the insulator layers 16a to 16f do not exist.
  • the first hollow portion Ha is located above the signal conductor layer 22 and below the first ground conductor layer 24.
  • "the first hollow portion Ha is located above the signal conductor layer 22" means that the first hollow portion Ha is located directly above the signal conductor layer 22 and the first hollow portion Ha. Includes both cases where is located diagonally above the signal conductor layer 22.
  • the first hollow portion Ha When the first hollow portion Ha is located diagonally above the signal conductor layer 22, the first hollow portion Ha may overlap with the signal conductor layer 22 when viewed in the vertical direction, or may overlap with the signal conductor layer 22. It does not have to overlap. In the present embodiment, the first hollow portion Ha overlaps with the signal conductor layer 22 when viewed in the vertical direction. Further, in the present specification, "the first hollow portion Ha is located below the first ground conductor layer 24" means that the first hollow portion Ha is located directly below the first ground conductor layer 24. be. Therefore, the first hollow portion Ha overlaps with the first ground conductor layer 24 when viewed in the vertical direction.
  • the positional relationship between the two members will be described by taking as an example the positional relationship between the first hollow portion Ha and the signal conductor layer 22 and the positional relationship between the first hollow portion Ha and the first ground conductor layer 24.
  • the first hollow portion Ha includes through holes H1 to H3.
  • the through hole H1 penetrates the insulator layer 16b in the vertical direction.
  • the through hole H1 has a rectangular shape when viewed in the vertical direction.
  • the long side of the through hole H1 extends in the front-rear direction.
  • the through hole H1 is located at the center of the insulator layer 16b in the left-right direction when viewed in the vertical direction.
  • the through hole H1 overlaps with the signal conductor layer 22 when viewed in the vertical direction.
  • the through hole H1 does not overlap the front end portion of the signal conductor layer 22 and the rear end portion of the signal conductor layer 22.
  • the through hole H2 penetrates the insulator layer 16a in the vertical direction.
  • the through hole H2 has a rectangular shape when viewed in the vertical direction.
  • the long side of the through hole H2 extends in the front-rear direction.
  • the through hole H2 is located on the left side of the insulator layer 16a when viewed in the vertical direction.
  • the through hole H2 overlaps with the through hole H1 when viewed in the vertical direction. Therefore, the through hole H2 is connected to the through hole H1.
  • the through hole H2 does not overlap with the signal conductor layer 22 when viewed in the vertical direction.
  • the through hole H3 penetrates the insulator layer 16a in the vertical direction.
  • the through hole H3 has a rectangular shape when viewed in the vertical direction.
  • the long side of the through hole H3 extends in the front-rear direction.
  • the through hole H3 is located on the right side of the insulator layer 16a when viewed in the vertical direction.
  • the through hole H3 overlaps with the through hole H1 when viewed in the vertical direction. Therefore, the through hole H3 is connected to the through hole H1.
  • the through hole H3 does not overlap with the signal conductor layer 22 when viewed in the vertical direction.
  • the first spacer Pa facing the first hollow portion Ha is provided in the laminated body 12.
  • the surface of the first spacer Pa is a part of the inner peripheral surface of the first hollow portion Ha.
  • the inner peripheral surface of the first hollow portion Ha is the inner wall surface of the laminated body 12 forming the first hollow portion Ha.
  • the first spacer Pa projects downward from the upper surface SUa of the first hollow portion Ha.
  • the first spacer Pa has a lower surface facing downward.
  • the upper surface SUa is a surface located at the upper end of the first hollow portion Ha in a cross section orthogonal to the front-rear direction of the transmission line 10. For example, in FIG. 2, the upper surface SUa is the upper surface of the through hole H2 and the upper surface of the through hole H3.
  • the first spacer Pa is a portion of the laminated body 12 located above the through hole H1 and below the upper surface SUa of the laminated body 12.
  • the first hollow portion Ha exists on the left side of the first spacer Pa and on the right side of the first spacer Pa. More specifically, the through hole H2 is located to the left of the first spacer Pa.
  • the through hole H3 is located to the right of the first spacer Pa. Further, the cross-sectional shape of the first spacer Pa is unchanged regardless of the position in the front-rear direction of the cross-section orthogonal to the front-back direction.
  • the region overlapping the first spacer Pa in the first hollow portion Ha in the vertical direction is the first overlapping region A11.
  • the region that does not overlap with the first spacer Pa in the first hollow portion Ha in the vertical direction is the first non-overlapping region A12.
  • the vertical length h1 of the first hollow portion Ha in the first overlapping region A11 is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12.
  • the vertical length h1 of the first hollow portion Ha in the first overlapping region A11 is the vertical length of the upper end and the lower end of the first hollow portion Ha in the first overlapping region A11.
  • the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12 is the vertical length of the upper end and the lower end of the first hollow portion Ha in the first non-overlapping region A12.
  • the vertical length d1 from the lower end of the first spacer Pa to the lower surface SDa of the first hollow portion Ha is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12. ..
  • the length of the first spacer Pa in the vertical direction is shorter than the maximum value hamax in the vertical direction of the first hollow portion Ha.
  • the maximum value hamax is the length in the vertical direction from the upper end to the lower end of the first hollow portion Ha.
  • the second hollow portion Hb has a structure that is vertically symmetrical with the first hollow portion Ha.
  • the second hollow portion Hb is provided in the laminated body 12.
  • the second hollow portion Hb is a cavity in which the insulator layers 16a to 16f do not exist.
  • the second hollow portion Hb is located below the signal conductor layer 22 and above the second ground conductor layer 26. Therefore, the second hollow portion Hb overlaps with the second ground conductor layer 26 when viewed in the vertical direction.
  • the second hollow portion Hb includes through holes H4 to H6.
  • the through hole H4 penetrates the insulator layer 16e in the vertical direction.
  • the through hole H4 has a rectangular shape when viewed in the vertical direction.
  • the long side of the through hole H4 extends in the front-rear direction.
  • the through hole H4 is located at the center of the insulator layer 16e in the left-right direction when viewed in the vertical direction.
  • the through hole H4 overlaps with the signal conductor layer 22 when viewed in the vertical direction.
  • the through hole H4 does not overlap the front end portion of the signal conductor layer 22 and the rear end portion of the signal conductor layer 22.
  • the through hole H5 penetrates the insulator layer 16f in the vertical direction.
  • the through hole H5 has a rectangular shape when viewed in the vertical direction.
  • the long side of the through hole H5 extends in the front-rear direction.
  • the through hole H5 is located on the left side of the insulator layer 16f when viewed in the vertical direction.
  • the through hole H5 overlaps with the through hole H4. Therefore, the through hole H5 is connected to the through hole H4.
  • the through hole H5 does not overlap with the signal conductor layer 22 when viewed in the vertical direction.
  • the through hole H6 penetrates the insulator layer 16f in the vertical direction.
  • the through hole H6 has a rectangular shape when viewed in the vertical direction.
  • the long side of the through hole H6 extends in the front-rear direction.
  • the through hole H6 is located on the right side of the insulator layer 16f when viewed in the vertical direction.
  • the through hole H6 overlaps with the through hole H4. Therefore, the through hole H6 is connected to the through hole H4.
  • the through hole H6 does not overlap with the signal conductor layer 22 when viewed in the vertical direction.
  • the second spacer Pb facing the second hollow portion Hb is provided in the laminated body 12.
  • the surface of the second spacer Pb is a part of the inner peripheral surface of the second hollow portion Hb.
  • the second spacer Pb projects upward from the lower surface SDb of the second hollow portion Hb.
  • the second spacer Pb has an upper surface facing upward.
  • the lower surface SDb is a surface located at the lower end of the second hollow portion Hb in a cross section orthogonal to the front-rear direction of the transmission line 10.
  • the lower surface SDb is the lower surface of the through hole H5 and the lower surface of the through hole H6.
  • the second spacer Pb is a portion located below the through hole H4 in the laminated body 12 and above the lower surface SDb in the laminated body 12.
  • the second hollow portion Hb exists on the left side of the second spacer Pb and on the right side of the second spacer Pb. More specifically, the through hole H5 is located to the left of the second spacer Pb. The through hole H6 is located to the right of the second spacer Pb. Further, the cross-sectional shape of the second spacer Pb is unchanged regardless of the position in the front-rear direction of the cross-section orthogonal to the front-back direction.
  • the region overlapping the second spacer Pb in the second hollow portion Hb in the vertical direction is the second overlapping region A21.
  • the region that does not overlap with the second spacer Pb in the second hollow portion Hb in the vertical direction is the second non-overlapping region A22.
  • the vertical length h3 of the second hollow portion Hb in the second overlapping region A21 is shorter than the vertical length h4 of the second hollow portion Hb in the second non-overlapping region A22.
  • the vertical length h3 of the second hollow portion Hb in the second overlapping region A21 is the vertical length of the upper end and the lower end of the second hollow portion Hb in the second overlapping region A21.
  • the vertical length h3 of the second hollow portion Hb in the second non-overlapping region A22 is the vertical length of the upper end and the lower end of the second hollow portion Hb in the second non-overlapping region A22.
  • the vertical length d2 from the upper end of the second spacer Pb to the upper surface SUb of the second hollow portion Hb is shorter than the vertical length h4 of the second hollow portion Hb in the second non-overlapping region A22. ..
  • the length of the second spacer Pb in the vertical direction is shorter than the maximum value hbmax in the vertical direction of the second hollow portion Hb.
  • the maximum value hbmax is the length in the vertical direction from the upper end to the lower end of the second hollow portion Hb.
  • FIG. 3 is a cross-sectional view of the transmission line 10 when the transmission line 10 is bent with a large radius of curvature.
  • FIG. 4 is a cross-sectional view of the transmission line 10 of FIG.
  • FIG. 5 is a cross-sectional view of the transmission line 10 when the transmission line 10 is bent with a small radius of curvature.
  • FIG. 6 is a cross-sectional view of the transmission line 10 of FIG. 3 and 5 are cross-sectional views orthogonal to each other in the left-right direction. 4 and 6 are cross sections orthogonal to each other in the front-rear direction.
  • the transmission line 10 is bent as shown in FIGS. 3 and 5. "The transmission line 10 is bent" means that the transmission line 10 is deformed and bent due to an external force applied to the transmission line 10.
  • the deformation may be elastic deformation, plastic deformation, elastic deformation and plastic deformation.
  • the lower end of the first spacer Pa is in contact with the lower surface SDa of the first hollow portion Ha.
  • the first spacer Pa suppresses the large deformation of the first hollow portion Ha.
  • the upper end of the second spacer Pb is in contact with the upper surface SUb of the second hollow portion Hb.
  • the second spacer Pb functions as a spacer that prevents the second hollow portion Hb from being deformed too much.
  • FIG. 7 is a left side view of the internal structure of the electronic device 1 provided with the transmission line 10.
  • the electronic device 1 is, for example, a mobile wireless communication terminal.
  • the electronic device 1 is, for example, a smartphone.
  • the transmission line 10 includes a first section A2 and a second section A1 and A3.
  • the first section A2 is a section in which the transmission line 10 is bent.
  • the second sections A1 and A3 are sections in which the transmission line 10 is not bent. That is, the radius of curvature of the first section is smaller than the radius of curvature of the second section. Therefore, the transmission line 10 may be bent also in the second sections A1 and A3.
  • the x-axis, y-axis, and z-axis in the electronic device 1 are defined as follows.
  • the x-axis is the anteroposterior direction in the second section A1.
  • the y-axis is the left-right direction in the second section A1.
  • the z-axis is the vertical direction in the second section A1.
  • the second section A1, the first section A2, and the second section A3 are arranged in this order in the positive direction of the x-axis.
  • the first section A2 is bent with respect to the second section A1 in the z-axis direction (vertical direction in the second section A1). Therefore, the vertical direction and the front-back direction differ depending on the position of the transmission line 10, as shown in FIG.
  • the second section A1 for example, the position of (1)
  • each of the vertical direction and the front-rear direction coincides with the z-axis direction and the x-axis direction.
  • the first section A2 for example, the position of (2) in which the laminated body 12 is bent, the vertical direction and the front-rear direction do not coincide with the z-axis direction and the x-axis direction, respectively.
  • the electronic device 1 includes a transmission line 10, connectors 32a, 32b, 102a, 102b, and circuit boards 100, 110.
  • the circuit boards 100 and 110 have a plate shape.
  • the circuit board 100 has main surfaces S5 and S6.
  • the main surface S5 is located on the negative direction side of the z-axis with respect to the main surface S6.
  • the circuit board 110 has main surfaces S11 and S12.
  • the main surface S11 is located on the negative direction side of the z-axis with respect to the main surface S12.
  • the circuit boards 100 and 110 include a wiring conductor layer, a ground conductor layer, electrodes and the like (not shown).
  • Each of the connectors 32a and 32b is mounted on the main surface (upper main surface) on the positive direction side of the z-axis of the second section A1 and the second section A3. More specifically, the connector 32a is mounted on the signal terminal 28a and the first ground conductor layer 24. The connector 32b is mounted on the signal terminal 28b and the first ground conductor layer 24.
  • Each of the connectors 102a and 102b is mounted on the main surface S5 of the circuit board 100 and the main surface S11 of the circuit board 110.
  • Each of the connectors 102a and 102b is connected to the connectors 32a and 32b.
  • the transmission line 10 electrically connects the circuit board 100 and the circuit board 110.
  • the vertical length of the first spacer Pa is equal to or less than the maximum value hamax in the vertical direction of the first hollow portion Ha. Is.
  • the maximum value hamax is the length in the vertical direction from the upper end to the lower end of the first hollow portion Ha.
  • the length of the second spacer Pb in the vertical direction is equal to or less than the maximum value hbmax in the vertical direction of the second hollow portion Hb.
  • the maximum value hbmax is the length in the vertical direction from the upper end to the lower end of the second hollow portion Hb.
  • the transmission line 10 can be easily bent. More specifically, when the transmission line 10 is bent, the first hollow portion Ha is deformed. Therefore, in order for the transmission line 10 to be easily bent, it is sufficient that the first hollow portion Ha is easily deformed. Therefore, in the transmission line 10, the vertical length h1 of the first hollow portion Ha in the first overlapping region A11 is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12. In this case, the lower end of the first spacer Pa is not in contact with the lower surface SDa of the first hollow portion Ha.
  • the transmission line 10 when the transmission line 10 is bent with a large radius of curvature, the lower end of the first spacer Pa is unlikely to come into contact with the lower surface SDa of the first hollow portion Ha. Therefore, the first spacer Pa is less likely to inhibit the deformation of the first hollow portion Ha.
  • the second spacer Pb also does not easily inhibit the deformation of the second hollow portion Hb for the same reason as the first spacer Pa. That is, it is difficult to prevent the transmission line 10 from being bent. From the above, according to the transmission line 10, the transmission line 10 can be easily bent.
  • the characteristic impedance generated in the signal conductor layer 22 changes from the desired characteristic impedance (for example, 50 ⁇ ). More specifically, when the transmission line 10 is bent, if the first hollow portion Ha is greatly deformed, the dielectric constant around the signal conductor layer 22 changes significantly. As a result, the characteristic impedance generated in the signal conductor layer 22 may change significantly from the desired characteristic impedance.
  • the vertical length h1 of the first hollow portion Ha in the first overlapping region A11 is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12. Therefore, when the transmission line 10 is bent with a small radius of curvature, the lower end of the first spacer Pa comes into contact with the lower surface SDa of the first hollow portion Ha. As a result, the first spacer Pa functions as a spacer that prevents the first hollow portion Ha from being deformed. As a result, the first hollow portion Ha is largely less likely to be deformed.
  • the second spacer Pb also prevents the second hollow portion Hb from being significantly deformed for the same reason as the first spacer Pa.
  • the term “large” here means that the amount of deformation without the first spacer Pa is larger than the amount of deformation with the first spacer Pa.
  • the amount of deformation is the length of the first hollow portion Ha in the vertical direction. From the above, according to the transmission line 10, it is suppressed that the characteristic impedance generated in the signal conductor layer 22 changes from the desired characteristic impedance.
  • the dielectric loss generated in the signal conductor layer 22 can be reduced. More specifically, the first hollow portion Ha is located above the signal conductor layer 22. The first hollow portion Ha is a hollow. Therefore, the dielectric constant in the first hollow portion Ha is lower than the dielectric constant in the insulator layers 16a to 16f. Similarly, the dielectric loss tangent in the first hollow portion Ha is lower than the dielectric loss tangent in the insulator layers 16a to 16f. As a result, the permittivity and the dielectric loss tangent around the first hollow portion Ha are lowered. For the same reason, the permittivity and dielectric loss tangent around the second hollow portion Hb become low. As a result, the dielectric loss generated in the signal conductor layer 22 is reduced.
  • FIG. 8 is an exploded perspective view of the transmission line 10a.
  • FIG. 9 is a cross-sectional view taken along the line BB of FIG.
  • the transmission line 10a is different from the transmission line 10 in that the cross-sectional structure of the first section A2 and the cross-sectional structure of the second sections A1 and A3 are different. More specifically, in the first section A2, the transmission line 10a has the cross-sectional structure of FIG. Therefore, in the first section A2, the first spacer Pa and the second spacer Pb are provided on the laminated body 12. On the other hand, in the second sections A1 and A3, the transmission line 10a has the cross-sectional structure of FIG. Therefore, in the second sections A1 and A3, the first spacer Pa and the second spacer Pb are not provided on the laminated body 12. Since the other structures of the transmission line 10a are the same as those of the transmission line 10, the description thereof will be omitted.
  • the transmission line 10a has the same effect as the transmission line 10. Further, the transmission line 10a can further reduce the dielectric loss generated in the signal conductor layer 22. More specifically, the transmission line 10a is not bent in the second sections A1 and A3. Therefore, the first spacer Pa and the second spacer Pb may not be provided on the laminated body 12 in the second sections A1 and A3. As a result, in the second sections A1 and A3, the volume of the first hollow portion Ha and the volume of the second hollow portion Hb become large. Therefore, in the second sections A1 and A3, the dielectric constant and the dielectric loss tangent around the signal conductor layer 22 become low. As a result, the dielectric loss generated in the signal conductor layer 22 is reduced in the second sections A1 and A3.
  • FIG. 10 is an exploded perspective view of the transmission line 10b.
  • FIG. 11 is a cross-sectional view taken along the line CC of FIG.
  • the transmission line 10b is different from the transmission line 10a in the structure of the first spacer Pa and the second spacer Pb. More specifically, in the first section A2, the transmission line 10b has the cross-sectional structure of FIG. In the first section A2, the first spacers PaL and PaR and the second spacers PbL and PbR are provided on the laminated body 12.
  • the first spacer PaL is provided on the upper left of the first hollow portion Ha. Therefore, in the cross section orthogonal to the front-rear direction, the first hollow portion Ha exists to the right of the first spacer PaL.
  • the first spacer PaR is provided on the upper right of the first hollow portion Ha.
  • the first hollow portion Ha exists on the left side of the first spacer PaR.
  • the second spacer PbL is provided at the lower left of the second hollow portion Hb. Therefore, in the cross section orthogonal to the front-rear direction, the second hollow portion Hb exists to the right of the second spacer PbL.
  • the second spacer PbL is provided at the lower right of the second hollow portion Hb. Therefore, in the cross section orthogonal to the front-rear direction, the second hollow portion Hb exists on the left side of the second spacer PbR. Since the other structures of the transmission line 10b are the same as those of the transmission line 10a, the description thereof will be omitted. According to the transmission line 10b, it has the same effect as that of the transmission line 10a.
  • FIG. 12 is a cross-sectional view of the transmission line 10c.
  • the transmission line 10c is different from the transmission line 10b in the structure of the first spacers PaL and PaR and the second spacers PbL and PbR. More specifically, in the cross section orthogonal to the front-rear direction, the first hollow portion Ha exists on the left and right of the first spacer PaL. In the cross section orthogonal to the front-rear direction, the first hollow portion Ha exists on the left and right of the first spacer PaR. In the cross section orthogonal to the front-rear direction, the second hollow portion Hb exists on the left and right of the second spacer PbL. In the cross section orthogonal to the front-rear direction, the second hollow portion Hb exists on the left and right of the second spacer PbR. Since the other structures of the transmission line 10c are the same as those of the transmission line 10b, the description thereof will be omitted. According to the transmission line 10c, it has the same effect as the transmission line 10b.
  • FIG. 13 is a cross-sectional view of the transmission line 10d.
  • the transmission line 10d is different from the transmission line 10a in the structure of the first spacer Pa and the second spacer Pb.
  • the first spacer Pa projects upward from the lower surface SDa of the first hollow portion Ha.
  • the vertical length d1 from the upper end of the first spacer Pa to the upper surface SUa of the first hollow portion is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12. Since the second spacer Pb has a structure vertically symmetrical to that of the first spacer Pa, the description thereof will be omitted. Since the other structures of the transmission line 10d are the same as those of the transmission line 10a, the description thereof will be omitted. According to the transmission line 10d, it has the same effect as the transmission line 10a.
  • FIG. 14 is a cross-sectional view of the transmission line 10e.
  • the transmission line 10e is different from the transmission line 10b in the structure of the first spacers PaL and PaR and the second spacers PbL and PbR. More specifically, the first spacer PaL is located on the left side of the first hollow portion Ha. The first spacer PaL projects to the right on the left surface of the first hollow portion Ha. The first spacer PaR is located on the right side of the first hollow portion Ha. The first spacer PaR projects to the left on the right surface of the first hollow portion Ha. In the cross section orthogonal to the front-rear direction, the first hollow portion Ha exists above the first spacers PaL and PaR and below the first spacers PaL and PaR.
  • the vertical length d11 from the upper surface of the first spacer PaL to the upper surface SUa of the first hollow portion Ha and the vertical length d12 from the lower surface of the first spacer PaL to the lower surface SDa of the first hollow portion Ha. Is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12.
  • the vertical length of the first hollow portion Ha in the first overlapping region A11 is shorter than the vertical length of the first hollow portion Ha in the first non-overlapping region A12.
  • the sum of the vertical length d13 from the upper surface of the first spacer PaL to the upper surface SUa of the first hollow portion Ha and the vertical length d14 from the lower surface of the first spacer PaL to the lower surface SDa of the first hollow portion Ha. Is shorter than the vertical length h2 of the first hollow portion Ha in the first non-overlapping region A12.
  • the vertical length of the second hollow portion Hb in the second overlapping region A21 is shorter than the vertical length of the second hollow portion Hb in the second non-overlapping region A22.
  • the second spacers PbL and PbR have a vertically symmetrical structure with the first spacers PaL and PaR, the description thereof will be omitted. Further, since the other structures of the transmission line 10e are the same as those of the transmission line 10b, the description thereof will be omitted.
  • the transmission line 10e has the same effect as the transmission line 10b.
  • FIG. 15 is a top view of the insulator layers 16a and 16f of the transmission line 10f.
  • the conductor layer is omitted.
  • the transmission line 10f is different from the transmission line 10b in the structure of the insulator layers 16a and 16f. More specifically, the insulator layer 16a has a mesh shape in the first section A2 when viewed in the vertical direction. As a result, the first spacer Pa has a mesh shape when viewed in the vertical direction. Similarly, the insulator layer 16f has a mesh shape in the first section A2 when viewed in the vertical direction. As a result, the second spacer Pb has a mesh shape when viewed in the vertical direction. Since the other structures of the transmission line 10f are the same as those of the transmission line 10b, the description thereof will be omitted. The transmission line 10f has the same effect as the transmission line 10b.
  • FIG. 16 is a top view of the insulator layers 16a and 16f of the transmission line 10g.
  • the conductor layer is omitted.
  • the transmission line 10g is different from the transmission line 10b in the structure of the insulator layers 16a and 16f. More specifically, the shapes of the first spacers PaL and PaR in the cross section orthogonal to the front-rear direction change periodically in the front-back direction. More specifically, the widths of the first spacers PaL and PaR in the left-right direction repeatedly increase and decrease in the front-back direction. As a result, the shape of the through hole H11 has a zigzag shape when viewed in the vertical direction. Since the second spacers PbL and PbR have a vertically symmetrical structure with the first spacers PaL and PaR, the description thereof will be omitted. Since the other structures of the transmission line 10g are the same as those of the transmission line 10b, the description thereof will be omitted. The transmission line 10g has the same effect as the transmission line 10b.
  • FIG. 17 is a top view of the insulator layers 16a and 16f of the transmission line 10h.
  • the conductor layer is omitted.
  • the transmission line 10h is different from the transmission line 10b in the structure of the insulator layers 16a and 16f. More specifically, a plurality of through holes H11 are provided in the insulator layer 16a. The plurality of through holes H11 are arranged in a row in the front-rear direction. The first spacer Pa is located between two adjacent through holes H11. As a result, the plurality of through holes H11 and the plurality of first spacers Pa are alternately arranged in the front-rear direction.
  • the cross section for defining the first overlapping region A11 is a cross section that passes through the first spacer Pa and does not pass through the through hole H11.
  • the cross section for defining the first non-overlapping region A12 is a cross section that does not pass through the first spacer Pa and passes through the through hole H11.
  • the cross section for defining the first overlapping region A11 does not have to coincide with the cross section for defining the first non-overlapping region A12.
  • the second spacer Pb has a vertically symmetrical structure with the first spacer Pa, the description thereof will be omitted. Since the other structures of the transmission line 10h are the same as those of the transmission line 10b, the description thereof will be omitted. The transmission line 10h has the same effect as the transmission line 10b.
  • FIG. 18 is a top view of the insulator layers 16a and 16f of the transmission line 10i.
  • the conductor layer is omitted.
  • the transmission line 10i is different from the transmission line 10b in the structure of the insulator layers 16a and 16f. More specifically, in the transmission line 10i, a plurality of first spacers PaL and PaR are provided in the through holes H11 provided in the insulator layer 16a.
  • the plurality of first spacers PaL and PaR have a rectangular shape when viewed in the vertical direction.
  • the plurality of first spacers PaL are arranged in a row in the front-rear direction at the left portion of the through hole H11.
  • the plurality of first spacers PaR are arranged in a row in the front-rear direction in the right portion of the through hole H11.
  • Each of the plurality of first spacers PaR overlaps with the plurality of first spacers PaL when viewed in the left-right direction.
  • the plurality of first spacers PaL and PaR as described above extend in the vertical direction.
  • the first hollow portion Ha exists around the plurality of first spacers PaL and PaR in the direction orthogonal to the vertical direction.
  • the second spacers PbL and PbR have a vertically symmetrical structure with the first spacers PaL and PaR, the description thereof will be omitted. Since the other structures of the transmission line 10i are the same as those of the transmission line 10b, the description thereof will be omitted.
  • the transmission line 10i has the same effect as the transmission line 10b.
  • FIG. 19 is a top view of the insulator layers 16a and 16f of the transmission line 10j.
  • the conductor layer is omitted.
  • the transmission line 10j is different from the transmission line 10i in the structure of the insulator layers 16a and 16f. More specifically, in the transmission line 10i, each of the plurality of first spacers PaR overlaps with the plurality of first spacers PaL when viewed in the left-right direction. On the other hand, in the transmission line 10j, each of the plurality of first spacers PaR does not overlap with the plurality of first spacers PaL when viewed in the left-right direction. Each of the plurality of first spacers PaR is located between the plurality of first spacers PaL when viewed in the left-right direction.
  • the transmission line 10j has the same effect as the transmission line 10i.
  • FIG. 20 is a top view of the insulator layers 16a and 16f of the transmission line 10k.
  • the conductor layer is omitted.
  • the transmission line 10k is different from the transmission line 10i in the shapes of the first spacers PaL and PaR and the shapes of the second spacers PbL and PbR. More specifically, the first spacers PaL and PaR have a circular shape when viewed in the vertical direction. Since the second spacers PbL and PbR have a vertically symmetrical structure with the first spacers PaL and PaR, the description thereof will be omitted. Since the other structures of the transmission line 10k are the same as those of the transmission line 10i, the description thereof will be omitted. The transmission line 10k has the same effect as the transmission line 10i.
  • FIG. 21 is an exploded perspective view of the transmission line 10l. 22 is a cross-sectional view taken along the line DD of FIG. 21.
  • the transmission line 10l is different from the transmission line 10b in the shapes of the first spacers PaL and PaR and the shapes of the second spacers PbL and PbR. More specifically, in the transmission line 10l, the sections A101 in which the widths w1 and w2 in the left-right direction of the first spacers PaL and PaR in the cross section orthogonal to the front-rear direction become larger toward the front direction and orthogonal to the front-back direction.
  • the widths w1 and w2 in the left-right direction of the first spacers PaL and PaR in the cross section have a section A102 in which the widths w1 and w2 become smaller in the front direction.
  • the sections A101 and A102 are located in the first section A2.
  • the section A101 is in contact with the second section A1.
  • the section A102 is in contact with the second section A3.
  • the second spacers PbL and PbR have a vertically symmetrical structure with the first spacers PaL and PaR, the description thereof will be omitted. Since the other structures of the transmission line 10l are the same as those of the transmission line 10b, the description thereof will be omitted.
  • the transmission line 10l has the same effect as the transmission line 10b. Further, in the transmission line 10l, the widths w1 and w2 in the left-right direction of the first spacers PaL and PaR change continuously. As a result, the characteristic impedance generated in the signal conductor layer 22 changes continuously in the sections A101 and A102. As a result, the high frequency signal is less likely to be reflected at the boundary between the first section A2 and the second section A1 and the boundary between the first section A2 and the second section A3.
  • the transmission line according to the present invention is not limited to the transmission lines 10, 10a to 10l, and can be changed within the scope of the gist thereof.
  • the configurations of the transmission lines 10, 10a to 10l may be arbitrarily combined.
  • the transmission lines 10, 10a to 10l may be provided with a plurality of signal conductor layers.
  • the plurality of signal conductor layers may form, for example, a differential transmission line. Further, the plurality of signal conductor layers may not be provided on the same insulator layer.
  • the signal terminals 28a and 28b may be provided on the lower main surface of the laminated body 12.
  • the transmission lines 10, 10a to 10l may be further provided with other circuits in addition to the stripline lines.
  • Electronic components may be mounted on the transmission lines 10, 10a to 10l in addition to the connectors 32a and 32b.
  • Electronic components are, for example, chip inductors, chip capacitors, and the like.
  • the second ground conductor layer 26 is not an essential configuration in the transmission lines 10, 10a to 10l.
  • the signal conductor layer 22 and the first ground conductor layer 24 form a microstrip line structure.
  • the material of one or more insulator layers among the plurality of insulator layers 16a to 16f may be a porous material.
  • the first hollow portion Ha does not have to overlap with the signal conductor layer 22 when viewed in the vertical direction, but it is preferable that the first hollow portion Ha overlaps with the signal conductor layer 22 in terms of signal characteristics.
  • first hollow portion HaL and the first hollow portion HaR may be provided.
  • second hollow portion HbL and the second hollow portion HbR may be provided.
  • first spacer PaL and the first spacer PaR may be provided.
  • second spacer PbL and the second spacer PbR may be provided.
  • the transmission line 10l may have only one of the section A101 or the section A102.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

本発明は伝送線路である。第1中空部が積層体に設けられている。第1中空部は、信号導体層より上に位置し、かつ、第1グランド導体層の下に位置している。第1中空部は、上下方向に見て、第1グランド導体層と重なっている。第1中空部に面する第1スペーサが積層体に設けられている。前後方向に直交する断面において、第1中空部における第1スペーサと上下方向に重なる領域が第1重複領域である。前後方向に直交する断面において、第1中空部における第1スペーサと上下方向に重ならない領域が第1非重複領域である。第1重複領域における第1中空部の上下方向の長さは、第1非重複領域における第1中空部の上下方向の長さより短い。

Description

伝送線路及び電子機器
 本発明は、高周波信号が伝送される伝送線路及び電子機器に関する。
 従来の伝送線路に関する発明としては、例えば、特許文献1に記載の信号伝送線路が知られている。この信号伝送線路は、積層体、信号導体及び補強用導体を備えている。積層体は、複数の樹脂層が上下方向に積層された構造を有している。積層体には、中空部が設けられている。信号導体は、上下方向に見て、中空部と重なっている。補強用導体は、中空部内において、上下方向に延びている。補強用導体の上端は、中空部の上面に接している。補強用導体の下端は、中空部の下面に接している。
特許第6330977号
 ところで、特許文献1に記載の信号伝送線路をより容易に折り曲げたいという要望がある。
 そこで、本発明の目的は、容易に折り曲げることができる伝送線路及び電子機器を提供することである。
 本発明の一形態に係る伝送線路は、
 上方向又は下方向の一方が第1方向であり、上方向又は下方向の他方が第2方向であり、
 伝送線路は、
 複数の絶縁体層が上下方向に積層された構造を有している積層体と、
 前記積層体に設けられており、かつ、上下方向に直交する前後方向に延びている信号導体層と、
 前記積層体に設けられており、かつ、上下方向に見て、前記信号導体層と重なるように、前記信号導体層の前記第1方向に設けられている第1グランド導体層と、
 を備えており、
 第1中空部が前記積層体に設けられており、
 前記第1中空部は、前記絶縁体層が存在しない空洞であり、
 前記第1中空部は、前記信号導体層より前記第1方向に位置し、かつ、前記第1グランド導体層の前記第2方向に位置しており、
 前記第1中空部は、上下方向に見て、前記第1グランド導体層と重なっており、
 前記第1中空部に面する第1スペーサが前記積層体に設けられており、
 前後方向に直交する断面において、前記第1中空部における前記第1スペーサと上下方向に重なる領域が第1重複領域であり、
 前後方向に直交する断面において、前記第1中空部における前記第1スペーサと上下方向に重ならない領域が第1非重複領域であり、
 前記第1重複領域における前記第1中空部の上下方向の長さは、前記第1非重複領域における前記第1中空部の上下方向の長さより短い。
 本発明の一形態に係る伝送線路は、
 上方向又は下方向の一方が第1方向であり、上方向又は下方向の他方が第2方向であり、
 伝送線路は、
 複数の絶縁体層が上下方向に積層された構造を有している積層体と、
 前記積層体に設けられており、かつ、上下方向に直交する前後方向に延びている信号導体層と、
 前記積層体に設けられており、かつ、上下方向に見て、前記信号導体層と重なるように、前記信号導体層の前記第1方向に設けられている第1グランド導体層と、
 を備えており、
 前記伝送線路は、第1区間及び第2区間を含んでおり、
 前記第1区間は、前記第2区間における上下方向に前記第2区間に対して折り曲げられており、
 前記第1区間の曲率半径は、前記第2区間の曲率半径より小さく、
 第1中空部が前記積層体に設けられており、
 前記第1中空部は、前記信号導体層の前記第1方向に位置し、かつ、前記第1グランド導体層より前記第2方向に位置しており、
 前記第1中空部は、前記絶縁体層が存在しない空洞であり、
 前記第1中空部は、上下方向に見て、前記第1グランド導体層と重なっており、
 前記第1区間において、前記第1中空部に面する第1スペーサが前記積層体に設けられており、
 前記第1区間において、前記第1スペーサの上下方向の長さは、前記第1中空部の上下方向の最大値以下である。
 本発明に係る伝送線路及び電子機器によれば、伝送線路を容易に折り曲げることができる。
図1は、伝送線路10の分解斜視図である。 図2は、図1のA-Aにおける断面図である。 図3は、大きな曲率半径で伝送線路10が折り曲げられたときの伝送線路10の断面図である。 図4は、図3の伝送線路10の断面図である。 図5は、小さな曲率半径で伝送線路10が折り曲げられたときの伝送線路10の断面図である。 図6は、図5の伝送線路10の断面図である。 図7は、伝送線路10を備える電子機器1の内部構造の左面図である。 図8は、伝送線路10aの分解斜視図である。 図9は、図8のB-Bにおける断面図である。 図10は、伝送線路10bの分解斜視図である。 図11は、図10のC-Cにおける断面図である。 図12は、伝送線路10cの断面図である。 図13は、伝送線路10dの断面図である。 図14は、伝送線路10eの断面図である。 図15は、伝送線路10fの絶縁体層16a,16fの上面図である。 図16は、伝送線路10gの絶縁体層16a,16fの上面図である。 図17は、伝送線路10hの絶縁体層16a,16fの上面図である。 図18は、伝送線路10iの絶縁体層16a,16fの上面図である。 図19は、伝送線路10jの絶縁体層16a,16fの上面図である。 図20は、伝送線路10kの絶縁体層16a,16fの上面図である。 図21は、伝送線路10lの分解斜視図である。 図22は、図21のD-Dにおける断面図である。
(実施形態)
[伝送線路の構造]
 以下に、本発明の実施形態に係る伝送線路10の構造について図面を参照しながら説明する。図1は、伝送線路10の分解斜視図である。なお、図1では、複数の層間接続導体v1及び複数の層間接続導体v2の内の代表的な層間接続導体v1,v2にのみ参照符号を付した。図2は、図1のA-Aにおける断面図である。
 本明細書において、方向を以下のように定義する。伝送線路10の積層体12の積層方向を上下方向と定義する。また、伝送線路10の信号導体層22が延びている方向を前後方向と定義する。また、信号導体層22の線幅方向を左右方向と定義する。上下方向は、前後方向に直交する。左右方向は、上下方向及び前後方向に直交する。なお、上方向は、第1方向の一例である。下方向は、第2方向の一例である。この場合、第1方向に位置する端は、上端である。第2方向に位置する端は、下面である。第1方向に位置する面は、上面である。第2方向に位置する面は、下面である。第1方向に位置する主面は、上主面である。第2方向に位置する主面は、下主面である。なお、上方向は、第2方向であってもよい。下方向は、第1方向であってもよい。
 以下では、Xは、伝送線路10の部品又は部材である。本明細書において、特に断りのない場合には、Xの各部について以下のように定義する。Xの前部とは、Xの前半分を意味する。Xの後部とは、Xの後半分を意味する。Xの左部とは、Xの左半分を意味する。Xの右部とは、Xの右半分を意味する。Xの上部とは、Xの上半分を意味する。Xの下部とは、Xの下半分を意味する。Xの前端とは、Xの前方向の端を意味する。Xの後端とは、Xの後方向の端を意味する。Xの左端とは、Xの左方向の端を意味する。Xの右端とは、Xの右方向の端を意味する。Xの上端とは、Xの上方向の端を意味する。Xの下端とは、Xの下方向の端を意味する。Xの前端部とは、Xの前端及びその近傍を意味する。Xの後端部とは、Xの後端及びその近傍を意味する。Xの左端部とは、Xの左端及びその近傍を意味する。Xの右端部とは、Xの右端及びその近傍を意味する。Xの上端部とは、Xの上端及びその近傍を意味する。Xの下端部とは、Xの下端及びその近傍を意味する。
 まず、図1を参照しながら、伝送線路10の構造について説明する。伝送線路10は、高周波信号を伝送する。伝送線路10は、スマートフォン等の電子機器において、2つの回路を電気的に接続するために用いられる。伝送線路10は、図1に示すように、積層体12、信号導体層22、第1グランド導体層24、第2グランド導体層26、信号端子28a,28b、複数の層間接続導体v1、複数の層間接続導体v2及び層間接続導体v3,v4を備えている。
 積層体12は、板形状を有している。従って、積層体12は、上主面及び下主面を有している。積層体12の上主面及び下主面は、前後方向に延びる長辺を有する長方形状を有している。従って、積層体12の前後方向の長さは、積層体12の左右方向の長さより長い。
 積層体12は、図1に示すように、絶縁体層16a~16f,18a,18bを含んでいる。積層体12は、絶縁体層16a~16f,18a,18bが上下方向に積層された構造を有している。絶縁体層18a,16a~16f,18bは、上から下へとこの順に並んでいる。絶縁体層16a~16f,18a,18bは、上下方向に見て、積層体12と同じ長方形状を有している。絶縁体層16a~16fは、可撓性を有する誘電体シートである。絶縁体層16a~16fの材料は、例えば、熱可塑性樹脂である。熱可塑性樹脂は、例えば、液晶ポリマー、PTFE(ポリテトラフロオロエチレン)等の熱可塑性樹脂である。絶縁体層16a~16fの材料は、ポリイミドであってもよい。
 信号導体層22は、図1に示すように、積層体12に設けられている。本実施形態では、信号導体層22は、絶縁体層16dの上主面に設けられている。これにより、信号導体層22は、積層体12内に設けられている。信号導体層22は、線形状を有している。信号導体層22は、上下方向に直交する前後方向に延びている。信号導体層22は、絶縁体層16dの上主面の左右方向の中央に位置している。
 第1グランド導体層24は、図1に示すように、積層体12に設けられている。第1グランド導体層24は、上下方向に見て、信号導体層22と重なるように、信号導体層22の上に設けられている。第1グランド導体層24は、絶縁体層16aの上主面に設けられている。また、第1グランド導体層24は、絶縁体層16aの上主面の略全面を覆っている。
 第2グランド導体層26は、図1に示すように、積層体12に設けられている。第2グランド導体層26は、上下方向に見て、信号導体層22と重なるように、信号導体層22の下に設けられている。第2グランド導体層26は、絶縁体層16fの下主面に設けられている。また、第2グランド導体層26は、絶縁体層16fの下主面の略全面を覆っている。以上のような信号導体層22、第1グランド導体層24及び第2グランド導体層26は、ストリップライン構造を有している。
 複数の層間接続導体v1,v2は、第1グランド導体層24と第2グランド導体層26とを電気的に接続している。より詳細には、複数の層間接続導体v1,v2は、絶縁体層16a~16eを上下方向に貫通している。複数の層間接続導体v1,v2の上端は、第1グランド導体層24に接続されている。複数の層間接続導体v1,v2の下端は、第2グランド導体層26に接続されている。複数の層間接続導体v1は、信号導体層22の左に設けられている。複数の層間接続導体v1は、前後方向において等間隔に一列に並んでいる。複数の層間接続導体v2は、信号導体層22の右に設けられている。複数の層間接続導体v2は、前後方向において等間隔に一列に並んでいる。
 信号端子28aは、積層体12の上主面に設けられている。より詳細には、信号端子28aは、絶縁体層16aの上主面の前端部に設けられている。信号端子28aは、上下方向に見て、信号導体層22の前端部と重なっている。信号端子28aは、上下方向に見て、長方形状を有している。また、信号端子28aが第1グランド導体層24と絶縁されるように、第1グランド導体層24が信号端子28aと接していない。
 層間接続導体v3は、信号端子28aと信号導体層22とを電気的に接続している。具体的には、層間接続導体v3は、絶縁体層16a~16cを上下方向に貫通している。層間接続導体v3の上端は、信号端子28aに接続されている。層間接続導体v3の下端は、信号導体層22の前端部に接続されている。これにより、信号端子28aは、信号導体層22と電気的に接続されている。高周波信号は、信号端子28aを介して、信号導体層22に入出力する。
 なお、信号端子28b及び層間接続導体v4は、信号端子28a及び層間接続導体v3と前後対称な構造を有する。従って、信号端子28b及び層間接続導体v4の説明を省略する。
 以上のような信号導体層22、第1グランド導体層24、第2グランド導体層26及び信号端子28a,28bは、例えば、絶縁体層16a~16fの上主面又は下主面に設けられた金属箔にエッチングが施されることにより形成されている。金属箔は、例えば、銅箔である。また、層間接続導体v1~v4は、例えば、ビアホール導体である。ビアホール導体は、絶縁体層16a~16fに貫通孔を形成し、貫通孔に導電性ペーストを充填し、導電性ペーストを焼結させることにより作製される。層間接続導体v1~v4は、例えば、スルーホール導体であってもよい。スルーホール導体は、絶縁体層16a~16fの一部又は全部を貫通する貫通孔を形成し、貫通孔にメッキを施すことにより作製される。
 絶縁体層18a,18bは、保護層である。ただし、絶縁体層18a,18bの材料は、絶縁体層16a~16fの材料と異なる。絶縁体層18a,18bは、レジスト層である。従って、絶縁体層18a,18bは、樹脂シートが絶縁体層16aの上主面及び絶縁体層16fの下主面に貼り付けられることにより形成されてもよいし、液体状の樹脂が絶縁体層16aの上主面及び絶縁体層16fの下主面に塗布され、固化されることにより形成されてもよい。絶縁体層18aは、図1に示すように、第1グランド導体層24を覆っている。ただし、絶縁体層18aには、開口ha~hfが設けられている。開口ha~hcは、絶縁体層18aの前端部に設けられている。開口hb,ha,hcは、左から右へとこの順に並んでいる。開口hd~hfは、絶縁体層18aの後端部に設けられている。開口he,hd,hfは、左から右へとこの順に並んでいる。そして、信号端子28a,28bの少なくとも一部分のそれぞれは、開口ha,hdを介して伝送線路10から外部に露出している。第1グランド導体層24の一部分は、開口hb,hc,he,hfを介して伝送線路10から外部に露出している。
 次に、図1ないし図3を参照しながら第1中空部Ha及び第2中空部Hbについて説明する。第1中空部Haが積層体12に設けられている。第1中空部Haは、絶縁体層16a~16fが存在しない空洞である。第1中空部Haは、信号導体層22より上に位置し、かつ、第1グランド導体層24の下に位置している。本明細書において、「第1中空部Haが信号導体層22より上に位置する」とは、第1中空部Haが信号導体層22の真上に位置する場合、及び、第1中空部Haが信号導体層22の斜め上に位置する場合の両方を含む。第1中空部Haが信号導体層22の斜め上に位置する場合には、第1中空部Haは、上下方向に見て、信号導体層22と重なっていてもよいし、信号導体層22と重なっていなくてもよい。本実施形態では、第1中空部Haは、上下方向に見て、信号導体層22と重なっている。また、本明細書において、「第1中空部Haが第1グランド導体層24の下に位置している」とは、第1中空部Haが第1グランド導体層24の真下に位置する場合である。従って、第1中空部Haは、上下方向に見て、第1グランド導体層24と重なっている。なお、第1中空部Haと信号導体層22との位置関係、及び、第1中空部Haと第1グランド導体層24との位置関係を例に挙げて2つの部材の位置関係について説明を行ったが、例示した部材以外の位置関係についても上記定義を適用することが可能である。また、上下方向以外の方向に対しても、上記定義を適用することが可能である。
 第1中空部Haは、貫通孔H1~H3を含んでいる。貫通孔H1は、絶縁体層16bを上下方向に貫通している。貫通孔H1は、上下方向に見て、長方形状を有している。貫通孔H1の長辺は、前後方向に延びている。貫通孔H1は、上下方向に見て、絶縁体層16bの左右方向の中央に位置している。これにより、貫通孔H1は、上下方向に見て、信号導体層22と重なっている。ただし、貫通孔H1は、信号導体層22の前端部及び信号導体層22の後端部とは重なっていない。
 貫通孔H2は、絶縁体層16aを上下方向に貫通している。貫通孔H2は、上下方向に見て、長方形状を有している。貫通孔H2の長辺は、前後方向に延びている。貫通孔H2は、上下方向に見て、絶縁体層16aの左部に位置している。貫通孔H2は、上下方向に見て、貫通孔H1と重なっている。従って、貫通孔H2は、貫通孔H1と繋がっている。貫通孔H2は、上下方向に見て、信号導体層22と重なっていない。
 貫通孔H3は、絶縁体層16aを上下方向に貫通している。貫通孔H3は、上下方向に見て、長方形状を有している。貫通孔H3の長辺は、前後方向に延びている。貫通孔H3は、上下方向に見て、絶縁体層16aの右部に位置している。貫通孔H3は、上下方向に見て、貫通孔H1と重なっている。従って、貫通孔H3は、貫通孔H1と繋がっている。貫通孔H3は、上下方向に見て、信号導体層22と重なっていない。
 第1中空部Haが以上の構造を有することにより、第1中空部Haに面する第1スペーサPaが積層体12に設けられている。第1スペーサPaの表面は、第1中空部Haの内周面の一部である。第1中空部Ha内周面とは、第1中空部Haを形成している積層体12の内側壁面である。第1スペーサPaは、第1中空部Haの上面SUaから下方向に突出している。第1スペーサPaは、下方向を向く下面を有している。上面SUaは、伝送線路10の前後方向に直交する断面における第1中空部Haの上端に位置する面である。例えば、図2では、上面SUaは、貫通孔H2の上面及び貫通孔H3の上面である。第1スペーサPaは、積層体12において貫通孔H1の上に位置し、かつ、積層体12において上面SUaより下に位置する部分である。前後方向に直交する断面において、第1スペーサPaの左及び第1スペーサPaの右には、第1中空部Haが存在している。より詳細には、貫通孔H2は、第1スペーサPaの左に位置している。貫通孔H3は、第1スペーサPaの右に位置している。また、前後方向に直交する断面の前後方向の位置に関わらず、第1スペーサPaの断面形状は、不変である。
 ここで、前後方向に直交する断面において、第1中空部Haにおける第1スペーサPaと上下方向に重なる領域が第1重複領域A11である。前後方向に直交する断面において、第1中空部Haにおける第1スペーサPaと上下方向に重ならない領域が第1非重複領域A12である。第1重複領域A11における第1中空部Haの上下方向の長さh1は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。第1重複領域A11における第1中空部Haの上下方向の長さh1とは、第1重複領域A11における第1中空部Haの上端と下端との上下方向の長さである。第1非重複領域A12における第1中空部Haの上下方向の長さh2とは、第1非重複領域A12における第1中空部Haの上端と下端との上下方向の長さである。換言すれば、第1スペーサPaの下端から第1中空部Haの下面SDaまでの上下方向の長さd1は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。前後方向に直交する断面において、第1スペーサPaの上下方向の長さは、第1中空部Haの上下方向の最大値hamaxより短い。最大値hamaxは、第1中空部Haの上端から下端までの上下方向の長さである。
 第2中空部Hbは、第1中空部Haと上下対称な構造を有している。第2中空部Hbが積層体12に設けられている。第2中空部Hbは、絶縁体層16a~16fが存在しない空洞である。第2中空部Hbは、信号導体層22より下に位置し、かつ、第2グランド導体層26の上に位置している。従って、第2中空部Hbは、上下方向に見て、第2グランド導体層26と重なっている。
 第2中空部Hbは、貫通孔H4~H6を含んでいる。貫通孔H4は、絶縁体層16eを上下方向に貫通している。貫通孔H4は、上下方向に見て、長方形状を有している。貫通孔H4の長辺は、前後方向に延びている。貫通孔H4は、上下方向に見て、絶縁体層16eの左右方向の中央に位置している。これにより、貫通孔H4は、上下方向に見て、信号導体層22と重なっている。ただし、貫通孔H4は、信号導体層22の前端部及び信号導体層22の後端部とは重なっていない。
 貫通孔H5は、絶縁体層16fを上下方向に貫通している。貫通孔H5は、上下方向に見て、長方形状を有している。貫通孔H5の長辺は、前後方向に延びている。貫通孔H5は、上下方向に見て、絶縁体層16fの左部に位置している。貫通孔H5は、貫通孔H4と重なっている。従って、貫通孔H5は、貫通孔H4と繋がっている。貫通孔H5は、上下方向に見て、信号導体層22と重なっていない。
 貫通孔H6は、絶縁体層16fを上下方向に貫通している。貫通孔H6は、上下方向に見て、長方形状を有している。貫通孔H6の長辺は、前後方向に延びている。貫通孔H6は、上下方向に見て、絶縁体層16fの右部に位置している。貫通孔H6は、貫通孔H4と重なっている。従って、貫通孔H6は、貫通孔H4と繋がっている。貫通孔H6は、上下方向に見て、信号導体層22と重なっていない。
 第2中空部Hbが以上の構造を有することにより、第2中空部Hbに面する第2スペーサPbが積層体12に設けられている。第2スペーサPbの表面は、第2中空部Hbの内周面の一部である。第2スペーサPbは、第2中空部Hbの下面SDbから上方向に突出している。第2スペーサPbは、上方向を向く上面を有している。下面SDbは、伝送線路10の前後方向に直交する断面における第2中空部Hbの下端に位置する面である。例えば、図2では、下面SDbは、貫通孔H5の下面及び貫通孔H6の下面である。第2スペーサPbは、積層体12において貫通孔H4の下に位置し、かつ、積層体12において下面SDbより上に位置する部分である。前後方向に直交する断面において、第2スペーサPbの左及び第2スペーサPbの右には、第2中空部Hbが存在している。より詳細には、貫通孔H5は、第2スペーサPbの左に位置している。貫通孔H6は、第2スペーサPbの右に位置している。また、前後方向に直交する断面の前後方向の位置に関わらず、第2スペーサPbの断面形状は、不変である。
 ここで、前後方向に直交する断面において、第2中空部Hbにおける第2スペーサPbと上下方向に重なる領域が第2重複領域A21である。前後方向に直交する断面において、第2中空部Hbにおける第2スペーサPbと上下方向に重ならない領域が第2非重複領域A22である。第2重複領域A21における第2中空部Hbの上下方向の長さh3は、第2非重複領域A22における第2中空部Hbの上下方向の長さh4より短い。第2重複領域A21における第2中空部Hbの上下方向の長さh3とは、第2重複領域A21における第2中空部Hbの上端と下端との上下方向の長さである。第2非重複領域A22における第2中空部Hbの上下方向の長さh3とは、第2非重複領域A22における第2中空部Hbの上端と下端との上下方向の長さである。換言すれば、第2スペーサPbの上端から第2中空部Hbの上面SUbまでの上下方向の長さd2は、第2非重複領域A22における第2中空部Hbの上下方向の長さh4より短い。前後方向に直交する断面において、第2スペーサPbの上下方向の長さは、第2中空部Hbの上下方向の最大値hbmaxより短い。最大値hbmaxは、第2中空部Hbの上端から下端までの上下方向の長さである。
 次に、伝送線路10の折り曲げについて図面を参照しながら説明する。図3は、大きな曲率半径で伝送線路10が折り曲げられたときの伝送線路10の断面図である。図4は、図3の伝送線路10の断面図である。図5は、小さな曲率半径で伝送線路10が折り曲げられたときの伝送線路10の断面図である。図6は、図5の伝送線路10の断面図である。図3及び図5は、左右方向に直交する断面図である。図4及び図6は、前後方向に直交する断面である。
 伝送線路10は、図3及び図5に示すように、折り曲げられる。「伝送線路10が折り曲げられる」とは、伝送線路10に外力が加えられることにより伝送線路10が変形して曲がっていることを意味する。変形は、弾性変形でもよいし、塑性変形でもよいし、弾性変形及び塑性変形でもよい。
 図3及び図4に示すように、伝送線路10が大きな曲率半径で折り曲げられた場合、第1スペーサPaの下端は、第1中空部Haの下面SDaには接していない。第2スペーサPbの上端は、第2中空部Hbの上面SUbには接していない。
 図5及び図6に示すように、伝送線路10が小さな曲率半径で折り曲げられた場合、第1スペーサPaの下端は、第1中空部Haの下面SDaに接している。これにより、第1スペーサPaは、第1中空部Haが大きく変形することを抑制する。第2スペーサPbの上端は、第2中空部Hbの上面SUbに接している。これにより、第2スペーサPbは、第2中空部Hbが変形しすぎることを抑制するスペーサとして機能する。
[電子機器の構造]
 次に、伝送線路10を備える電子機器1の構造について図面を参照しながら説明する。図7は、伝送線路10を備える電子機器1の内部構造の左面図である。電子機器1は、例えば、携帯無線通信端末である。電子機器1は、例えば、スマートフォンである。
 伝送線路10は、第1区間A2及び第2区間A1,A3を含んでいる。第1区間A2は、伝送線路10が折り曲げられる区間である。第2区間A1,A3は、伝送線路10が折り曲げられない区間である。すなわち、第1区間の曲率半径は、第2区間の曲率半径より小さい。従って、第2区間A1,A3においても伝送線路10が折り曲げられてもよい。そして、電子機器1におけるx軸、y軸及びz軸を以下の様に定義する。x軸は、第2区間A1での前後方向である。y軸は、第2区間A1での左右方向である。z軸は、第2区間A1での上下方向である。第2区間A1、第1区間A2及び第2区間A3は、x軸の正方向に向かってこの順に並んでいる。
 図7に示すように、第1区間A2は、z軸方向(第2区間A1における上下方向)に第2区間A1に対して折り曲げられている。従って、上下方向及び前後方向は、図7に示すように、伝送線路10の位置によって異なる。積層体12が折り曲げられていない第2区間A1(例えば、(1)の位置)では、上下方向及び前後方向のそれぞれは、z軸方向及びx軸方向と一致する。一方、積層体12が折り曲げられている第1区間A2(例えば、(2)の位置)では、上下方向及び前後方向のそれぞれは、z軸方向及びx軸方向と一致しない。
 電子機器1は、図7に示すように、伝送線路10、コネクタ32a,32b,102a,102b、回路基板100,110を備えている。
 回路基板100,110は、板形状を有している。回路基板100は、主面S5,S6を有している。主面S5は、主面S6よりz軸の負方向側に位置する。回路基板110は、主面S11,S12を有している。主面S11は、主面S12よりz軸の負方向側に位置する。回路基板100,110は、図示しない配線導体層やグランド導体層、電極等を含んでいる。
 コネクタ32a,32bのそれぞれは、第2区間A1及び第2区間A3のz軸の正方向側の主面(上主面)に実装されている。より詳細には、コネクタ32aは、信号端子28a及び第1グランド導体層24に実装される。コネクタ32bは、信号端子28b及び第1グランド導体層24に実装される。
 コネクタ102a,102bのそれぞれは、回路基板100の主面S5及び回路基板110の主面S11に実装されている。コネクタ102a,102bのそれぞれは、コネクタ32a,32bに接続されている。これにより、伝送線路10は、回路基板100と回路基板110とを電気的に接続している。
 以上のような電子機器1では、図4又は図6に示すように、第1区間A2において、第1スペーサPaの上下方向の長さは、第1中空部Haの上下方向の最大値hamax以下である。最大値hamaxは、第1中空部Haの上端から下端までの上下方向の長さである。同様に、第1区間A2において、第2スペーサPbの上下方向の長さは、第2中空部Hbの上下方向の最大値hbmax以下である。最大値hbmaxは、第2中空部Hbの上端から下端までの上下方向の長さである。
[効果]
 伝送線路10によれば、伝送線路10を容易に折り曲げることができる。より詳細には、伝送線路10が折り曲げられると、第1中空部Haが変形する。そのため、伝送線路10を容易に折り曲げることができるためには、第1中空部Haが変形しやすければよい。そこで、伝送線路10では、第1重複領域A11における第1中空部Haの上下方向の長さh1は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。この場合、第1スペーサPaの下端は、第1中空部Haの下面SDaに接していない。そのため、伝送線路10が大きな曲率半径で折り曲げられたときに、第1スペーサPaの下端が第1中空部Haの下面SDaに接しにくい。従って、第1スペーサPaが第1中空部Haの変形を阻害しにくくなる。なお、第2スペーサPbも、第1スペーサPaと同じ理由により、第2中空部Hbの変形を阻害しにくい。すなわち、伝送線路10が折り曲げられることが阻害されにくい。以上より、伝送線路10によれば、伝送線路10を容易に折り曲げることができる。
 伝送線路10によれば、信号導体層22に発生する特性インピーダンスが所望の特性インピーダンス(例えば、50Ω)から変化することが抑制される。より詳細には、伝送線路10が折り曲げられた際に、第1中空部Haが大きく変形すると、信号導体層22の周囲の誘電率が大きく変化する。その結果、信号導体層22に発生する特性インピーダンスが所望の特性インピーダンスから大きく変化する可能性がある。
 そこで、伝送線路10では、第1重複領域A11における第1中空部Haの上下方向の長さh1は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。そのため、伝送線路10が小さな曲率半径で折り曲げられたときに、第1スペーサPaの下端が第1中空部Haの下面SDaに接する。これにより、第1スペーサPaは、第1中空部Haが変形することを妨げるスペーサとして機能する。その結果、第1中空部Haが大きく変形しにくくなる。なお、第2スペーサPbも、第1スペーサPaと同じ理由により、第2中空部Hbが大きく変形することを妨げる。これにより、信号導体層22の周囲の誘電率が大きく変化することが抑制される。ここでの「大きく」とは、第1スペーサPaが無かった場合の変形量が、第1スペーサPaがある場合の変形量と比較して大きいことを意図する。変形量とは、第1中空部Haの上下方向の長さのことである。以上より、伝送線路10によれば、信号導体層22に発生する特性インピーダンスが所望の特性インピーダンスから変化することが抑制される。
 伝送線路10では、信号導体層22に発生する誘電損失を低減できる。より詳細には、第1中空部Haは、信号導体層22より上に位置している。第1中空部Haは、空洞である。従って、第1中空部Haにおける誘電率は、絶縁体層16a~16fにおける誘電率より低い。同様に、第1中空部Haにおける誘電正接は、絶縁体層16a~16fにおける誘電正接より低い。これにより、第1中空部Haの周囲の誘電率及び誘電正接が低くなる。同じ理由により、第2中空部Hbの周囲の誘電率及び誘電正接が低くなる。その結果、信号導体層22に発生する誘電損失が低減される。
(第1変形例)
 次に、第1変形例に係る伝送線路10aについて図面を参照しながら説明する。図8は、伝送線路10aの分解斜視図である。図9は、図8のB-Bにおける断面図である。
 伝送線路10aは、第1区間A2の断面構造と第2区間A1,A3の断面構造とが異なる点において伝送線路10と相違する。より詳細には、第1区間A2では、伝送線路10aは、図2の断面構造を有する。従って、第1区間A2では、第1スペーサPa及び第2スペーサPbが積層体12に設けられている。一方、第2区間A1,A3では、伝送線路10aは、図9の断面構造を有する。従って、第2区間A1,A3では、第1スペーサPa及び第2スペーサPbが積層体12に設けられていない。伝送線路10aのその他の構造は、伝送線路10と同じであるので説明を省略する。
 伝送線路10aは、伝送線路10と同じ作用効果を奏する。また、伝送線路10aは、信号導体層22に発生する誘電損失をより低減できる。より詳細には、伝送線路10aは、第2区間A1,A3において折り曲げられない。従って、第1スペーサPa及び第2スペーサPbは、第2区間A1,A3において積層体12に設けられていなくてもよい。これにより、第2区間A1,A3において、第1中空部Haの体積及び第2中空部Hbの体積が大きくなる。そのため、第2区間A1,A3において、信号導体層22の周囲の誘電率及び誘電正接が低くなる。その結果、第2区間A1,A3において、信号導体層22に発生する誘電損失が低減される。
(第2変形例)
 次に、第2変形例に係る伝送線路10bについて図面を参照しながら説明する。図10は、伝送線路10bの分解斜視図である。図11は、図10のC-Cにおける断面図である。
 伝送線路10bは、第1スペーサPa及び第2スペーサPbの構造において伝送線路10aと相違する。より詳細には、第1区間A2では、伝送線路10bは、図11の断面構造を有する。第1区間A2では、第1スペーサPaL,PaR及び第2スペーサPbL,PbRが積層体12に設けられている。第1スペーサPaLは、第1中空部Haの左上に設けられている。そのため、前後方向に直交する断面において、第1スペーサPaLの右には、第1中空部Haが存在する。第1スペーサPaRは、第1中空部Haの右上に設けられている。そのため、前後方向に直交する断面において、第1スペーサPaRの左には、第1中空部Haが存在する。第2スペーサPbLは、第2中空部Hbの左下に設けられている。そのため、前後方向に直交する断面において、第2スペーサPbLの右には、第2中空部Hbが存在する。第2スペーサPbLは、第2中空部Hbの右下に設けられている。そのため、前後方向に直交する断面において、第2スペーサPbRの左には、第2中空部Hbが存在する。伝送線路10bのその他の構造は、伝送線路10aと同じであるので説明を省略する。伝送線路10bによれば、伝送線路10aと同じ作用効果を奏する。
(第3変形例)
 次に、第3変形例に係る伝送線路10cについて図面を参照しながら説明する。図12は、伝送線路10cの断面図である。
 伝送線路10cは、第1スペーサPaL,PaR及び第2スペーサPbL,PbRの構造において伝送線路10bと相違する。より詳細には、前後方向に直交する断面において、第1スペーサPaLの左及び右には、第1中空部Haが存在する。前後方向に直交する断面において、第1スペーサPaRの左及び右には、第1中空部Haが存在する。前後方向に直交する断面において、第2スペーサPbLの左及び右には、第2中空部Hbが存在する。前後方向に直交する断面において、第2スペーサPbRの左及び右には、第2中空部Hbが存在する。伝送線路10cのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10cによれば、伝送線路10bと同じ作用効果を奏する。
(第4変形例)
 次に、第4変形例に係る伝送線路10dについて図面を参照しながら説明する。図13は、伝送線路10dの断面図である。
 伝送線路10dは、第1スペーサPa及び第2スペーサPbの構造において伝送線路10aと相違する。第1スペーサPaは、第1中空部Haの下面SDaから上方向に突出している。第1スペーサPaの上端から第1中空部の上面SUaまでの上下方向の長さd1は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。第2スペーサPbは、第1スペーサPaと上下対称な構造を有するので、説明を省略する。伝送線路10dのその他の構造は、伝送線路10aと同じであるので説明を省略する。伝送線路10dによれば、伝送線路10aと同じ作用効果を奏する。
(第5変形例)
 次に、第5変形例に係る伝送線路10eについて図面を参照しながら説明する。図14は、伝送線路10eの断面図である。
 伝送線路10eは、第1スペーサPaL,PaR及び第2スペーサPbL,PbRの構造において伝送線路10bと相違する。より詳細には、第1スペーサPaLは、第1中空部Haの左面に位置している。そして、第1スペーサPaLは、第1中空部Haの左面において右方向に突出している。第1スペーサPaRは、第1中空部Haの右面に位置している。そして、第1スペーサPaRは、第1中空部Haの右面において左方向に突出している。前後方向に直交する断面において、第1スペーサPaL,PaRの上及び第1スペーサPaL,PaRの下には、第1中空部Haが存在している。これにより、第1スペーサPaLの上面から第1中空部Haの上面SUaまでの上下方向の長さd11と第1スペーサPaLの下面から第1中空部Haの下面SDaまでの上下方向の長さd12との合計は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。これにより、第1重複領域A11における第1中空部Haの上下方向の長さは、第1非重複領域A12における第1中空部Haの上下方向の長さより短い。第1スペーサPaLの上面から第1中空部Haの上面SUaまでの上下方向の長さd13と第1スペーサPaLの下面から第1中空部Haの下面SDaまでの上下方向の長さd14との合計は、第1非重複領域A12における第1中空部Haの上下方向の長さh2より短い。これにより、第2重複領域A21における第2中空部Hbの上下方向の長さは、第2非重複領域A22における第2中空部Hbの上下方向の長さより短い。
 なお、第2スペーサPbL,PbRは、第1スペーサPaL,PaRと上下対称な構造を有するので説明を省略する。また、伝送線路10eのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10eは、伝送線路10bと同じ作用効果を奏する。
(第6変形例)
 次に、第6変形例に係る伝送線路10fについて図面を参照しながら説明する。図15は、伝送線路10fの絶縁体層16a,16fの上面図である。図15において、導体層については省略した。
 伝送線路10fは、絶縁体層16a,16fの構造において、伝送線路10bと相違する。より詳細には、絶縁体層16aは、上下方向に見て、第1区間A2においてメッシュ形状を有している。これにより、第1スペーサPaは、上下方向に見て、メッシュ形状を有している。同様に、絶縁体層16fは、上下方向に見て、第1区間A2においてメッシュ形状を有している。これにより、第2スペーサPbは、上下方向に見て、メッシュ形状を有している。伝送線路10fのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10fは、伝送線路10bと同じ作用効果を奏する。
(第7変形例)
 次に、第7変形例に係る伝送線路10gについて図面を参照しながら説明する。図16は、伝送線路10gの絶縁体層16a,16fの上面図である。図16において、導体層については省略した。
 伝送線路10gは、絶縁体層16a,16fの構造において伝送線路10bと相違する。より詳細には、前後方向に直交する断面における第1スペーサPaL,PaRの形状は、前後方向において周期的に変化している。より詳細には、第1スペーサPaL,PaRの左右方向の幅は、前後方向において増減を繰り返している。これにより、貫通孔H11の形状は、上下方向に見て、ジグザグ形状を有している。なお、第2スペーサPbL,PbRは、第1スペーサPaL,PaRと上下対称な構造を有しているので、説明を省略する。伝送線路10gのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10gは、伝送線路10bと同じ作用効果を奏する。
(第8変形例)
 次に、第8変形例に係る伝送線路10hについて図面を参照しながら説明する。図17は、伝送線路10hの絶縁体層16a,16fの上面図である。図17において、導体層については省略した。
 伝送線路10hは、絶縁体層16a,16fの構造において伝送線路10bと相違する。より詳細には、複数の貫通孔H11が絶縁体層16aに設けられている。複数の貫通孔H11は、前後方向に一列に並んでいる。そして、第1スペーサPaは、隣り合う2つの貫通孔H11の間に位置している。これにより、複数の貫通孔H11及び複数の第1スペーサPaは、前後方向に交互に並んでいる。
 ここで、伝送線路10hにおいて、第1重複領域A11を定義するための断面は、第1スペーサPaを通過し、かつ、貫通孔H11を通過しない断面である。第1非重複領域A12を定義するための断面は、第1スペーサPaを通過せず、かつ、貫通孔H11を通過する断面である。このように、第1重複領域A11を定義するための断面は、第1非重複領域A12を定義するための断面と一致していなくてもよい。
 なお、第2スペーサPbは、第1スペーサPaと上下対称な構造を有しているので、説明を省略する。伝送線路10hのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10hは、伝送線路10bと同じ作用効果を奏する。
(第9変形例)
 次に、第9変形例に係る伝送線路10iについて図面を参照しながら説明する。図18は、伝送線路10iの絶縁体層16a,16fの上面図である。図18において、導体層については省略した。
 伝送線路10iは、絶縁体層16a,16fの構造において伝送線路10bと相違する。より詳細には、伝送線路10iでは、複数の第1スペーサPaL,PaRが、絶縁体層16aに設けられている貫通孔H11内に設けられている。複数の第1スペーサPaL,PaRは、上下方向に見て、長方形状を有している。そして、複数の第1スペーサPaLは、貫通孔H11の左部において前後方向に一列に並んでいる。複数の第1スペーサPaRは、貫通孔H11の右部において前後方向に一列に並んでいる。複数の第1スペーサPaRのそれぞれは、左右方向に見て、複数の第1スペーサPaLと重なっている。以上のような複数の第1スペーサPaL,PaRは、上下方向に延びている。そして、上下方向に直交する方向において複数の第1スペーサPaL,PaRの周囲には、第1中空部Haが存在している。
 なお、第2スペーサPbL,PbRは、第1スペーサPaL,PaRと上下対称な構造を有しているので、説明を省略する。伝送線路10iのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10iは、伝送線路10bと同じ作用効果を奏する。
(第10変形例)
 次に、第10変形例に係る伝送線路10jについて図面を参照しながら説明する。図19は、伝送線路10jの絶縁体層16a,16fの上面図である。図19において、導体層については省略した。
 伝送線路10jは、絶縁体層16a,16fの構造において伝送線路10iと相違する。より詳細には、伝送線路10iでは、複数の第1スペーサPaRのそれぞれは、左右方向に見て、複数の第1スペーサPaLと重なっている。一方、伝送線路10jでは、複数の第1スペーサPaRのそれぞれは、左右方向に見て、複数の第1スペーサPaLと重なっていない。複数の第1スペーサPaRのそれぞれは、左右方向に見て、複数の第1スペーサPaLの間に位置している。
 なお、第2スペーサPbL,PbRは、第1スペーサPaL,PaRと上下対称な構造を有しているので、説明を省略する。伝送線路10jのその他の構造は、伝送線路10iと同じであるので説明を省略する。伝送線路10jは、伝送線路10iと同じ作用効果を奏する。
(第11変形例)
 次に、第11変形例に係る伝送線路10kについて図面を参照しながら説明する。図20は、伝送線路10kの絶縁体層16a,16fの上面図である。図20において、導体層については省略した。
 伝送線路10kは、第1スペーサPaL,PaRの形状及び第2スペーサPbL,PbRの形状において伝送線路10iと相違する。より詳細には、第1スペーサPaL,PaRは、上下方向に見て、円形状を有している。なお、第2スペーサPbL,PbRは、第1スペーサPaL,PaRと上下対称な構造を有しているので、説明を省略する。伝送線路10kのその他の構造は、伝送線路10iと同じであるので説明を省略する。伝送線路10kは、伝送線路10iと同じ作用効果を奏する。
(第12変形例)
 次に、第12変形例に係る伝送線路10lについて図面を参照しながら説明する。図21は、伝送線路10lの分解斜視図である。図22は、図21のD-Dにおける断面図である。
 伝送線路10lは、第1スペーサPaL,PaRの形状及び第2スペーサPbL,PbRの形状において、伝送線路10bと相違する。より詳細には、伝送線路10lは、前後方向に直交する断面における第1スペーサPaL,PaRの左右方向の幅w1,w2が、前方向に行くにしたがって大きくなる区間A101、及び、前後方向に直交する断面における前記第1スペーサPaL,PaRの左右方向の幅w1,w2が、前方向に行くにしたがって小さくなる区間A102を有している。区間A101,A102は、第1区間A2に位置している。区間A101は、第2区間A1に接している。区間A102は、第2区間A3に接している。
 なお、第2スペーサPbL,PbRは、第1スペーサPaL,PaRと上下対称な構造を有しているので、説明を省略する。伝送線路10lのその他の構造は、伝送線路10bと同じであるので説明を省略する。伝送線路10lは、伝送線路10bと同じ作用効果を奏する。また、伝送線路10lでは、第1スペーサPaL,PaRの左右方向の幅w1,w2が、連続的に変化する。これにより、信号導体層22に発生する特性インピーダンスは、区間A101,A102において連続的に変化するようになる。その結果、高周波信号は、第1区間A2と第2区間A1との境界、及び、第1区間A2と第2区間A3との境界において反射しにくくなる。
(その他の実施形態)
 本発明に係る伝送線路は、伝送線路10,10a~10lに限らず、その要旨の範囲内において変更可能である。なお、伝送線路10,10a~10lの構成を任意に組み合わせてもよい。
 なお、伝送線路10,10a~10lは、複数本の信号導体層を備えていてもよい。この場合、複数本の信号導体層は、例えば、差動伝送線路を形成していてもよい。また、複数本の信号導体層は、同じ絶縁体層上に設けられていなくてもよい。
 なお、伝送線路10,10a~10lにおいて、信号端子28a,28bは、積層体12の下主面に設けられてもよい。
 なお、伝送線路10,10a~10lは、ストリップライン線路に加えて、他の回路を更に備えていてもよい。
 なお、伝送線路10,10a~10lには、コネクタ32a,32b以外に電子部品が実装されてもよい。電子部品は、例えば、チップインダクタやチップコンデンサ等である。
 なお、伝送線路10,10a~10lにおいて、第2グランド導体層26は、必須の構成ではない。この場合、信号導体層22及び第1グランド導体層24は、マイクロストリップライン構造を構成する。
 なお、伝送線路10,10a~10lにおいて、複数の絶縁体層16a~16fの内の1以上の絶縁体層の材料は多孔質材料であってもよい。
 なお、伝送線路10,10a~10lにおいて、第1中空部Haは、上下方向に見て、信号導体層22と重なっていなくてもよいが、重なっている方が、信号特性上好ましい。
 なお、伝送線路10eにおいて、第1中空部HaL又は第1中空部HaRのいずれか一方のみが設けられていてもよい。同様に、第2中空部HbL又は第2中空部HbRのいずれか一方のみが設けられていてもよい。
 なお、伝送線路10eにおいて、第1スペーサPaL又は第1スペーサPaRのいずれか一方のみが設けられていてもよい。同様に、第2スペーサPbL又は第2スペーサPbRいずれか一方のみが設けられていてもよい。
 なお、伝送線路10lは、区間A101又は区間A102のいずれか一方のみを有していてもよい。
1:電子機器
10,10a~10l:伝送線路
12:積層体
16a~16f,18a,18b:絶縁体層
22:信号導体層
24:第1グランド導体層
26:第2グランド導体層
A1,A3:第2区間
A101,A102:区間
A11:第1重複領域
A12:第1非重複領域
A21:第2重複領域
A22:第2非重複領域
A2:第1区間
H1~H6,H11:貫通孔
Ha,HaL,HaR:第1中空部
Hb,HbL,HbR:第2中空部
Pa,PaL,PaR:第1スペーサ
Pb,PbL,PbR:第2スペーサ
SDa,SDb:下面
SUa,SUb:上面

Claims (16)

  1.  上方向又は下方向の一方が第1方向であり、上方向又は下方向の他方が第2方向であり、
     伝送線路は、
     複数の絶縁体層が上下方向に積層された構造を有している積層体と、
     前記積層体に設けられており、かつ、上下方向に直交する前後方向に延びている信号導体層と、
     前記積層体に設けられており、かつ、上下方向に見て、前記信号導体層と重なるように、前記信号導体層の前記第1方向に設けられている第1グランド導体層と、
     を備えており、
     第1中空部が前記積層体に設けられており、
     前記第1中空部は、前記絶縁体層が存在しない空洞であり、
     前記第1中空部は、前記信号導体層より前記第1方向に位置し、かつ、前記第1グランド導体層の前記第2方向に位置しており、
     前記第1中空部は、上下方向に見て、前記第1グランド導体層と重なっており、
     前記第1中空部に面する第1スペーサが前記積層体に設けられており、
     前後方向に直交する断面において、前記第1中空部における前記第1スペーサと上下方向に重なる領域が第1重複領域であり、
     前後方向に直交する断面において、前記第1中空部における前記第1スペーサと上下方向に重ならない領域が第1非重複領域であり、
     前記第1重複領域における前記第1中空部の上下方向の長さは、前記第1非重複領域における前記第1中空部の上下方向の長さより短い、
     伝送線路。
  2.  前記第1スペーサは、前記第1中空部の前記第1方向に位置する面から前記第2方向に突出しており、
     前記第1スペーサの前記第2方向に位置する端から前記第1中空部の前記第2方向に位置する面までの上下方向の長さは、前記第1非重複領域における前記第1中空部の上下方向の長さより短い、
     請求項1に記載の伝送線路。
  3.  前記第1スペーサは、前記第1中空部の前記第2方向に位置する面から前記第1方向に突出しており、
     前記第1スペーサの前記第1方向に位置する端から前記第1中空部の前記第1方向に位置する面までの上下方向の長さは、前記第1非重複領域における前記第1中空部の上下方向の長さより短い、
     請求項1に記載の伝送線路。
  4.  前後方向に直交する断面において、前記第1スペーサの左及び前記第1スペーサの右には、前記第1中空部が存在している、
     請求項2又は請求項3に記載の伝送線路。
  5.  前後方向に直交する断面において、前記第1スペーサの右又は左のいずれか一方には、前記第1中空部が存在する、
     請求項2又は請求項3に記載の伝送線路。
  6.  前記第1スペーサは、前記第1中空部の左面に位置しており、又は、前記第1中空部の右面に位置している、
     前後方向に直交する断面において、前記第1スペーサの上及び前記第1スペーサの下には、前記第1中空部が存在している、
     請求項1に記載の伝送線路。
  7.  前記第1スペーサの上面から前記第1中空部の上面までの上下方向の長さと前記第1スペーサの下面から前記第1中空部の下面までの上下方向の長さとの合計は、前記第1非重複領域における前記第1中空部の上下方向の長さより短い、
     請求項6に記載の伝送線路。
  8.  前後方向に直交する断面において、前記第1スペーサの上下方向の長さは、前記第1中空部の上下方向の長さの最大値より短い、
     請求項1ないし請求項7のいずれかに記載の伝送線路。
  9.  前後方向に直交する断面の前後方向の位置に関わらず、前記第1スペーサの断面形状は、不変である、
     請求項1ないし請求項8のいずれかに記載の伝送線路。
  10.  前後方向に直交する断面における前記第1スペーサの形状は、前後方向において周期的に変化している、
     請求項1ないし請求項8のいずれかに記載の伝送線路。
  11.  前記第1スペーサは、上下方向に見て、メッシュ形状を有している、
     請求項1ないし請求項8のいずれかに記載の伝送線路。
  12.  前記第1スペーサは、上下方向に延びており、
     上下方向に直交する方向において前記第1スペーサの周囲には、前記第1中空部が存在している、
     請求項1ないし請求項4のいずれかに記載の伝送線路。
  13.  前記伝送線路は、前後方向に直交する断面における前記第1スペーサの左右方向の幅が、前方向に行くにしたがって大きくなる区間、又は、前後方向に直交する断面における前記第1スペーサの左右方向の幅が、前方向に行くにしたがって小さくなる区間を有している、
     請求項1に記載の伝送線路。
  14.  前記伝送線路は、
     前記積層体に設けられており、かつ、上下方向に見て、前記信号導体層と重なるように、前記信号導体層の前記第2方向に設けられている第2グランド導体層と、
     を更に備えており、
     第2中空部が前記積層体に設けられており、
     前記第2中空部は、前記絶縁体層が存在しない空洞であり、
     前記第2中空部は、前記信号導体層より前記第2方向に位置し、かつ、前記第2グランド導体層の前記第1方向に位置しており、
     前記第2中空部は、上下方向に見て、前記第2グランド導体層と重なっており、
     前記第2中空部に面する第2スペーサが前記積層体に設けられており、
     前後方向に直交する断面において、前記第2中空部と上下方向に重なる領域が第2重複領域であり、前記第2中空部と上下方向に重ならない領域が第2非重複領域であり、
     前記第2重複領域における前記第2中空部の上下方向の長さは、前記第2非重複領域における前記第2中空部の上下方向の長さより短い、
     請求項1ないし請求項13のいずれかに記載の伝送線路。
  15.  上方向又は下方向の一方が第1方向であり、上方向又は下方向の他方が第2方向であり、
     伝送線路は、
     複数の絶縁体層が上下方向に積層された構造を有している積層体と、
     前記積層体に設けられており、かつ、上下方向に直交する前後方向に延びている信号導体層と、
     前記積層体に設けられており、かつ、上下方向に見て、前記信号導体層と重なるように、前記信号導体層の前記第1方向に設けられている第1グランド導体層と、
     を備えており、
     前記伝送線路は、第1区間及び第2区間を含んでおり、
     前記第1区間は、前記第2区間における上下方向に前記第2区間に対して折り曲げられており、
     前記第1区間の曲率半径は、前記第2区間の曲率半径より小さく、
     第1中空部が前記積層体に設けられており、
     前記第1中空部は、前記信号導体層の前記第1方向に位置し、かつ、前記第1グランド導体層より前記第2方向に位置しており、
     前記第1中空部は、前記絶縁体層が存在しない空洞であり、
     前記第1中空部は、上下方向に見て、前記第1グランド導体層と重なっており、
     前記第1区間において、前記第1中空部に面する第1スペーサが前記積層体に設けられており、
     前記第1区間において、前記第1スペーサの上下方向の長さは、前記第1中空部の上下方向の最大値以下である、
     伝送線路。
  16.  請求項1ないし請求項15のいずれかに記載の伝送線路を、
     備えている、
     電子機器。
PCT/JP2021/041331 2020-11-30 2021-11-10 伝送線路及び電子機器 WO2022113739A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022565207A JPWO2022113739A1 (ja) 2020-11-30 2021-11-10
CN202190000851.XU CN219979789U (zh) 2020-11-30 2021-11-10 传输线路以及电子设备
US18/200,011 US20230299452A1 (en) 2020-11-30 2023-05-22 Transmission line and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-198384 2020-11-30
JP2020198384 2020-11-30
JP2021-064252 2021-04-05
JP2021064252 2021-04-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/200,011 Continuation US20230299452A1 (en) 2020-11-30 2023-05-22 Transmission line and electronic device

Publications (1)

Publication Number Publication Date
WO2022113739A1 true WO2022113739A1 (ja) 2022-06-02

Family

ID=81755914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041331 WO2022113739A1 (ja) 2020-11-30 2021-11-10 伝送線路及び電子機器

Country Status (3)

Country Link
US (1) US20230299452A1 (ja)
JP (1) JPWO2022113739A1 (ja)
WO (1) WO2022113739A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200545A (ja) * 1987-02-16 1988-08-18 Nec Corp 高周波用混成集積回路
WO2017130731A1 (ja) * 2016-01-27 2017-08-03 株式会社村田製作所 信号伝送線路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63200545A (ja) * 1987-02-16 1988-08-18 Nec Corp 高周波用混成集積回路
WO2017130731A1 (ja) * 2016-01-27 2017-08-03 株式会社村田製作所 信号伝送線路

Also Published As

Publication number Publication date
US20230299452A1 (en) 2023-09-21
JPWO2022113739A1 (ja) 2022-06-02

Similar Documents

Publication Publication Date Title
JP3982511B2 (ja) フラット型ケーブル製造方法
JP5842850B2 (ja) フラットケーブルおよび電子機器
JP5967290B2 (ja) 高周波伝送線路
US10225928B2 (en) Flexible board and electronic device
WO2014115607A1 (ja) 伝送線路、および電子機器
JP2014086655A (ja) フレキシブル基板
WO2022113739A1 (ja) 伝送線路及び電子機器
US20230291086A1 (en) Transmission line and electronic device
WO2022113591A1 (ja) 伝送線路及び電子機器
CN219979789U (zh) 传输线路以及电子设备
CN216852529U (zh) 传输线路
JP7355256B2 (ja) 伝送線路及び電子機器
CN220306489U (zh) 传输线路以及电子设备
US9583809B2 (en) High-frequency signal line
US20230282955A1 (en) Transmission line and electronic device
WO2022270294A1 (ja) 多層基板、多層基板モジュール及び電子機器
WO2020121984A1 (ja) 電子機器、および、フラットケーブル
WO2022138355A1 (ja) 多層基板及び多層基板の製造方法
WO2022118810A1 (ja) 伝送線路及び電子機器
WO2022070807A1 (ja) 伝送線路及び電子機器
WO2017199824A1 (ja) 多層基板、および、電子機器
WO2023085177A1 (ja) 多層基板
CN206236772U (zh) 传输线路构件
JP7409508B2 (ja) 回路基板
US20230328884A1 (en) Multilayer substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897713

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202190000851.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2022565207

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897713

Country of ref document: EP

Kind code of ref document: A1