WO2022113405A1 - 回転電機、並びにそれを用いる電動車両用回転電機システム - Google Patents

回転電機、並びにそれを用いる電動車両用回転電機システム Download PDF

Info

Publication number
WO2022113405A1
WO2022113405A1 PCT/JP2021/021699 JP2021021699W WO2022113405A1 WO 2022113405 A1 WO2022113405 A1 WO 2022113405A1 JP 2021021699 W JP2021021699 W JP 2021021699W WO 2022113405 A1 WO2022113405 A1 WO 2022113405A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotary electric
electric machine
winding
slot
system winding
Prior art date
Application number
PCT/JP2021/021699
Other languages
English (en)
French (fr)
Inventor
大祐 郡
愼治 杉本
克彦 藤井
摂 土谷
水里 里
Original Assignee
株式会社日立インダストリアルプロダクツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立インダストリアルプロダクツ filed Critical 株式会社日立インダストリアルプロダクツ
Priority to AU2021386717A priority Critical patent/AU2021386717B2/en
Publication of WO2022113405A1 publication Critical patent/WO2022113405A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a rotary electric machine having a plurality of output systems, and a rotary electric machine system for an electric vehicle using the rotary electric machine.
  • a rotary electric machine system for power supply in an electric vehicle such as a dump truck
  • a rotary electric machine having two windings is applied instead of the main generator and the auxiliary generator in order to reduce the size and weight of the system. It is conceivable to do.
  • one winding is for the power supply of the traction motor that drives the vehicle body
  • the other winding is for the power supply of peripheral equipment such as a cooling device. It is necessary to provide the winding of.
  • Patent Document 1 The technique described in Patent Document 1 is known as a conventional technique relating to a rotary electric machine having two winding systems having different configurations.
  • the three-phase AC winding is connected in Y, and the magnitude of the voltage is greater than the induced voltage of the U-phase winding.
  • an intermediate tap is provided in the U-phase winding, and the other end of the single-phase AC winding and the intermediate tap are used as the output of the single-phase AC.
  • the present invention uses a rotary electric machine capable of improving efficiency without complicating the winding configuration while having two systems of three-phase AC windings having different configurations, and this rotary electric machine.
  • a rotary electric system for electric vehicles is provided.
  • the rotary electric machine includes a rotor and a stator having a three-phase AC winding, and the three-phase AC windings are independent of each other.
  • a first slot comprising a single system winding and a second system winding, comprising a plurality of first slots in which the first system winding is located and a plurality of second slots in which the second system winding is located.
  • the number of slots is equal to or greater than the number of slots in the second slot, and the first system winding is located on the inner diameter side of the second system winding in the stator.
  • the rotary electric machine system for an electric vehicle includes a rotary electric machine that supplies electric power to a main engine and an auxiliary machine mounted on the electric vehicle, and a prime mover that drives the rotary electric machine.
  • the rotary electric machine is the rotary electric machine according to the present invention, in which electric power is supplied from the first system winding to the main engine via the first power converter, and the second electric power is supplied from the second system winding. Power is supplied to the auxiliary equipment via the converter.
  • the rotary electric system for an electric vehicle includes a rotary electric machine for driving the electric vehicle and a battery for supplying electric power to the rotary electric machine via the first power converter.
  • the rotary electric machine is the rotary electric machine according to the present invention, in which electric power is supplied from the battery to the first system winding via the first power converter, and the second system winding to the second system winding. Regenerative power is charged to the battery via the power converter.
  • the rotary electric machine has two systems of three-phase AC windings having different configurations, the efficiency can be improved without complicating the winding configuration.
  • FIG. It is sectional drawing in the rotation axis direction of the rotary electric machine which is Example 1.
  • FIG. It is a partial cross-sectional view in the direction perpendicular to the rotation axis of the rotary electric machine of Example 1.
  • FIG. It is a development view of the stator of Example 1.
  • FIG. It is a development view of the stator of the rotary electric machine which is the modification 1.
  • FIG. It is a development view of a part of a stator of a rotary electric machine which is a modification 2.
  • FIG. It is a development view of the stator of Example 1 (FIG. 3 reprinted).
  • stator which shows the 2nd example of the step in the side wall in a slot. It is a developed view of the stator which shows the 3rd example of the step in the side wall in a slot. It is a development view of the stator which shows the 1st example of the winding composition of the 1st system winding, the 2nd system winding and the 3rd system winding. It is a development view of the stator which shows the 2nd example of the winding composition of the 1st system winding, the 2nd system winding and the 3rd system winding.
  • stator shows the 3rd example of the winding composition of the 1st system winding, the 2nd system winding and the 3rd system winding.
  • stator shows the 3rd example of the winding composition of the 1st system winding, the 2nd system winding and the 3rd system winding.
  • block diagram which shows the structure of the rotary electric machine system for the dump truck which is a 6th embodiment.
  • block diagram which shows the structure of the rotary electric machine system for the electric bus which is Example 7.
  • FIG. 1 is a cross-sectional view of the rotary electric machine according to the first embodiment of the present invention in the direction of the rotation axis.
  • the rotary electric machine of the first embodiment is a field winding type synchronous machine.
  • the rotary electric machine 100 of the first embodiment can be applied as a generator having an output of several thousand kVA and a rotation speed of several thousand min -1 , which is a power source for a large dump truck.
  • the rotary electric machine of the first embodiment is rotationally driven by a prime mover such as an engine.
  • the rotor 2 and the stator 3 are arranged in the frame 1.
  • a coil end 6 and a coil end 7 project from the axial ends of the rotor 2 and the stator 3, respectively.
  • the bearing 4 provided in the frame 1 is fixed to the rotor 2 and rotatably supports one end of the shaft 5 which is a rotation shaft.
  • the other end of the shaft 5 is connected to a prime mover (not shown) and supported by a bearing on the prime mover side.
  • the other end of the shaft 5 may be rotatably supported by a bearing included in the rotary electric machine 100.
  • An inflow port 8 into which the refrigerant 9 flows is arranged in the frame 1.
  • the refrigerant 9 is sent to the rotary electric machine 100 by a blower or the like (not shown).
  • the refrigerant 9 that has flowed into the frame 1 from the inflow port 8 flows to the right in FIG. 1, that is, in the direction of the rotation axis of the rotary electric machine 100, and flows out to the atmosphere outside the frame 1.
  • FIG. 2 is a partial cross-sectional view of the rotary electric machine 100 of the first embodiment shown in FIG. 1 in a direction perpendicular to the rotation axis.
  • the rotor 2 is composed of a rotor core 10, a field winding 11, a damper bar 12 (braking winding), and a rotor wedge 13.
  • the stator 3 is composed of a stator core 14, a first system winding 15 and a second system winding 16 which are three-phase AC windings, and a stator wedge 17.
  • the rotor 2 and the stator 3 face each other via the air gap 22.
  • the first system winding 15 is arranged in the first slot 18, and the second system winding 16 is arranged in the second slot 19.
  • the passage of the refrigerant 9 in the frame 1 is composed of a back duct 20, an axial duct 21, and an air gap 22.
  • the rear duct 20 and the axial duct 21 are provided at regular intervals in the circumferential direction.
  • the first slot 18 in which the first system winding 15 is arranged extends radially through the stator core 14 from the inner wall surface of the stator core 14 facing the surface of the rotor 2, and the radial direction is the depth direction. , It consists of a groove whose longitudinal direction is the rotation axis direction. Further, the second slot 19 in which the second system winding 16 is arranged is adjacent to the first slot 18 along the depth direction. In the first embodiment, as shown in FIG. 2, the portion where the first slot 18 extends in the depth direction is referred to as the second slot 19.
  • the plurality of first slots 18 and the plurality of second slots 19 are arranged at equal intervals along the circumferential direction of the stator core 14.
  • the slot spacing of the second slot 19 is larger than that of the first slot 18, and corresponds to two slots of the first slot 18 in the first embodiment. Therefore, the number of slots in the second slot 19 is smaller than that in the first slot 18, which is half that of the first slot 18 in the first embodiment. Therefore, in the first embodiment, of the first system winding 15 and the second system winding 16, the slot in which only the first system winding 15 is arranged and both windings deeper than this slot are provided.
  • the slots to be arranged are alternately arranged along the circumferential direction in the stator core 14.
  • the induced voltage of the second system winding 16 can be made smaller than that of the first system winding 15, as will be described later. Therefore, when the rotary electric machine 100 operates as a generator, the output voltage of the second system winding 16 can be made smaller than that of the first system winding 15.
  • Example 1 shown in FIG. 2 the number of slots in the second slot 19 is half that of the first slot 18, but the number of the second slots 19 is not limited to this, and the number of the second slots 19 is a desired characteristic (induced voltage, output). It can be set appropriately according to the voltage, etc.).
  • the second system winding 16 is provided so as to overlap the first system winding 15 in the depth direction of the slot as shown in FIG. Therefore, since the number of slots may be set for the first system winding 15 and a part of the number of slots may be used for the second system winding 16, the rotor may have two windings.
  • the slot configuration is not complicated.
  • the first system winding 15 and the second system winding 16 are independent without being electrically coupled. Therefore, when an external circuit is connected to each of the first system winding 15 and the second system winding 16, the circulating current can be suppressed, so that the efficiency decrease due to the circulating current can be prevented. Further, although the stator 3 includes the first system winding 15 and the second system winding 16, the winding configuration is not complicated.
  • FIG. 3 is a developed view showing the cross-sectional configuration of the stator 3 of the first embodiment shown in FIG. 2 in a straight line.
  • the air gap 22 (FIG. 2) is located on the lower side of FIG. 3, and the frame 1 (FIG. 2) is located on the upper side of FIG.
  • the first system winding 15 and the second system winding 16 are wound in a distributed winding.
  • the number of poles of the rotary electric machine 100 is 10 poles
  • the number of slots of the first slot 18 and the second slot 19 is 90 slots and 45 slots, respectively.
  • the first system winding 15 and the second system winding 16 are an upper coil (denoted as “upper” in FIG. 3) and a bottom coil arranged so as to be overlapped along the depth direction of the slot. (Indicated as "bottom” in FIG. 3).
  • the three phases of the first system winding 15 are described as U1, V1, W1, and the three phases of the second system winding are described as U2, V2, W2.
  • Each slot is marked with a number in parentheses as the slot number.
  • the positive and negative signs (+,-) indicate the direction in which the current flows (current polarity), and the direction toward the back side is indicated by "+” and the direction toward the front side is "-" with respect to the drawing. Indicated by.
  • the number of slots for each pole is the second. It is 3 for the one system winding 15 and 1.5 for the second system winding 16.
  • each phase winding (UUU, VVV, WWW) composed of three coils arranged continuously is repeatedly arranged in a constant phase order (UUU-VVV-WWW).
  • a phase winding composed of one coil and a phase winding composed of two coils are alternately arranged.
  • the number of slots for each pole that is, the number of coils for each phase and one pole becomes 2.5 on average.
  • a phase winding composed of one coil and a phase winding composed of two coils are arranged in a constant phase order.
  • the phase winding consisting of one coil (U, V, W) and the phase winding consisting of two coils (UU, VV, WW) have different number of coils, and the phase winding has a circumference of the stator 3.
  • the coils of two adjacent phase windings are repeatedly arranged in a fixed phase order so that they are uniformly distributed along the direction (U-VV-W-UU-V-WW). .
  • the number of slots (hereinafter referred to as “the number of crossings”) through which the crossover wire connecting the coils (upper bottom coil) in the slots to form a coil loop is passed is the first system winding. In 15, it is 7 (slot), and in the second system winding 16, it is 5 (slot).
  • the upper coil (1) and the bottom coil (7) of the first system winding 15 are connected by these crossovers, and the upper coil (1) and the bottom coil of the second system winding 16 are connected. (5) is connected.
  • the number of crossovers of the first system winding 15 is 7 (slots) because the crossover wire is passed to 7 slots from the upper coil (1) to the bottom coil (7).
  • the number of crossovers of the second system winding 16 is 5 (slots) because the crossover wire is passed to 5 slots from the upper coil (1) to the bottom coil (5).
  • the number of migrations is not limited to 7 and 5 described above, and can be set as appropriate.
  • the three-phase connection of the first system winding 15 and the second system winding 16 is a Y connection.
  • the number of parallel connections of the Y connection is 5 in parallel for the first system winding 15 and 10 in parallel for the second system winding 16.
  • the number of parallels can be appropriately set according to the specifications of the rotary electric machine.
  • the man-hours for winding the distributed winding can be reduced as compared with the case where both are the same number, so that the manufacturing cost can be reduced. According to the study of the present inventor, the winding man-hours can be reduced by 25% in the first embodiment.
  • the first embodiment is suitable when the induced electromotive force of the first system winding 15 is higher than the induced electromotive voltage of the second system winding 16.
  • the physique of the rotary electric machine depends on the magnitude of the induced electromotive force
  • the first system winding 15 having a large induced electromotive voltage is used among the first system winding 15 and the second system winding 16.
  • the field magnetic flux amount of the rotor 2 is set. Further, in order to make the induced electromotive force of the second system winding 16 smaller than that of the first system winding 15, the number of turns of the second system winding 16 is made smaller than that of the first system winding 15.
  • the second system winding 16 is maintained while maintaining the induced electromotive voltage of the first system winding 15.
  • the number of parallel circuits is increased, the number of turns is reduced, and the number of crossings is increased. It is effective to change the number of slots and reduce the number of slots.
  • the number of slots in the second slot 19 is made smaller than that in the first slot 18.
  • the first system winding 15 is located on the inner diameter side of the second system winding 16. That is, the first system winding 15 is arranged closer to the air gap 22 than the second system winding 16. Therefore, the magnetic flux interlinking the first system winding 15 is larger than that of the second system winding 16, so that the number of interlinking magnetic fluxes of the first system winding 15 and the second system winding 16 is large or small. It becomes easier to set the difference. Therefore, the induced electromotive voltage of the first system winding 15 and the second system winding 16 is surely different from that of the second system winding 16 so that the induced electromotive voltage of the first system winding 15 is larger than that of the second system winding 16. Can be set.
  • the first system winding 15 is arranged closer to the air gap 22 than the second system winding 16, the first system winding 15 extends in the depth direction in the first slot 18.
  • the second system winding 16 faces the inner wall surface of the two surfaces of the stator core 14 and extends in the depth direction in the second slot 19, the inner wall surface of the two surfaces of the stator core 14 and the bottom surface of the second slot 19. Facing one side of the stator core 14 to be. That is, the number of surfaces of the stator core 14 facing the winding is smaller in the first system winding 15 than in the second system winding 16.
  • the number of surfaces of the stator core 14 in the slot which becomes the discharge surface when corona discharge occurs, is that of the first system winding 15 having a larger induced electromotive force than that of the second system winding 16. Few. As a result, it is possible to suppress a decrease in the insulation life of the rotary electric machine due to the influence of the corona discharge.
  • a foamed coil having the same wire size and a different number of turns is molded in advance, and this foamed coil is fixed.
  • the efficiency of manufacturing the stator 3 provided with the first system winding 15 and the second system winding 16 is improved. Therefore, it is possible to reduce the manufacturing cost of a rotary electric machine having two windings having different configurations.
  • FIG. 4 is a developed view of a stator of a rotary electric machine which is a modification 1.
  • the number of slots in the first slot 18 is 90 slots as in the first embodiment, but the number of slots in the second slot 19 is smaller than that in the first embodiment (45 slots), and the number of slots is 30. be. Further, the number of slots for each pole and each phase is 3 in the first system winding 15 as in the first embodiment, and is 1 in the second system winding 16 less than in the first embodiment.
  • the position of the second slot 19 can be aligned with the position of the first slot 18. Therefore, where the positions of both slots coincide, the first slot 18 and the second slot 19 have a rectangular cross section similar to that of the first slot 18, and one continuous slot deeper than the first slot 18. Configure. As a result, two windings having different configurations can be efficiently attached to the stator core 14.
  • FIG. 5 is a development view of a part of the stator of the rotary electric machine which is the modification 2.
  • the number of slots in the first slot 18 is 90 slots as in the first embodiment, but the number of slots in the second slot 19 is larger than that in the first embodiment (45 slots), and the number of slots is 60. be. Further, the number of slots for each pole and each phase is 3 in the first system winding 15 which is the same as in the first embodiment, and is more than 2 in the second system winding 16 than in the first embodiment.
  • winding can be attached to the stator core in the second modification by changing the wire shape of the winding to a round wire or the like.
  • each position of the second slot 19 matches the first slot 18 as in the modified example 1 is represented by the equations (1) and (2).
  • P, N s1 and N s2 are the number of poles, the number of slots in the first slot 18, and the number of slots in the second slot 19, respectively.
  • each position of the second slot 19 is the first slot. Consistent with 18.
  • FIG. 6 is a development view of a stator of a rotary electric machine which is a modification 3.
  • the number of slots in the first slot 18 is 90 slots as in the first embodiment, but the number of slots in the second slot 19 is smaller than that in the first embodiment (45 slots), with 15 slots. be.
  • the first system winding 15 is wound in a distributed winding as in the first embodiment, but the second system winding 16 is wound in a concentrated winding.
  • the configuration of the stator in the first embodiment is not limited to the field winding type synchronous machine, but can be applied to a cage type inducer, a winding type inducer, a permanent magnet type synchronous machine, and the like.
  • FIG. 7 is a developed view showing the cross-sectional configuration of the stator of the rotary electric machine according to the second embodiment of the present invention by extending it in a straight line.
  • the configuration other than the stator is the same as that of the first embodiment. Similar to FIG. 3, the air gap 22 (FIG. 2) is located on the lower side of FIG. 7, and the frame 1 (FIG. 2) is located on the upper side of FIG. 7.
  • the position of the magnetic pole center by the U-phase winding of the first system winding 15 and the position of the magnetic pole center by the U-phase winding of the second system winding 16 are set. ,Match.
  • FIG. 8 is a development view of the stator of the above-mentioned Example 1 (FIG. 3 reprinted).
  • the windings are arranged so that the phase difference angle ⁇ in FIG. 8 becomes 0.
  • the windings of the first system winding 15 are arranged so as to be shifted by one slot without changing the second system winding 16 in FIG.
  • FIG. 9 shows a case where the magnetic pole centers of the first system winding 15 and the second system winding 16 differ by ⁇ in the phase difference angle, and the three-phase voltage is applied on the rotating coordinates. It is a representation figure.
  • is the phase difference angle between the d-axis of the rotating coordinate and the U phase (U 1 ) of the first system winding.
  • FIG. 10 shows dq conversion of the three-phase voltages of the first system winding 15 and the second system winding 16 shown in FIG. 9 with reference to the first system winding 15 based on the two-reaction theory. It is a figure which shows the direction of a q-axis voltage vector.
  • the d1 - q 1 -axis vector indicates the three-phase voltage of the first system winding 15
  • the d2-q 2 -axis vector indicates the three-phase voltage of the second system winding 16.
  • V d1 , V d2 , V q1 , V d2 , I d1 , I d2 , I q1 and I q2 are the d-axis voltage of the first system winding and d of the second system winding, respectively.
  • X d1 , X d2 , X q1 , X q2 , R 1 , R 2 , E 1 , E 2 , X d1 d2 and X d2 d1, and X q 1 q 2 and X q 2 q 1, respectively, are the d-axis of the first system winding.
  • the voltage of the first system winding 15 and the voltage of the second system winding 16 change when the parameter of one system changes, the parameter of the other system changes. Even without it, it will change. That is, the first system winding 15 and the second system winding 16 are independent as an electric circuit, but are magnetically coupled via mutual reactance.
  • FIG. 11 is a voltage vector diagram showing the voltage (V 1 ) of the first system winding whose dq axis voltage component is represented by the equation (3).
  • ⁇ 1 is the current phase angle
  • ⁇ 1 is the power factor angle
  • ⁇ 1 is the load angle.
  • the underlined voltage component in FIG. 11 is a parameter that depends on the mutual reactance between the coaxial cables. Note that V 01 is a voltage vector when mutual inductance does not occur.
  • V 1 is ahead of V 01 in phase. That is, the power factor angle is increased due to the mutual reactance between the coaxial cables, so that the power factor is reduced.
  • the phase difference angle ⁇ (FIG. 8) between the position of the magnetic pole center 23 due to the U-phase winding of the first system winding 15 and the position of the magnetic pole center 24 due to the U-phase winding of the second system winding 16 is set.
  • the generation of mutual reactance between the coaxials can be suppressed and the decrease in the power factor can be suppressed. Therefore, it is possible to prevent a decrease in the efficiency of the rotary electric machine while providing the first system winding 15 and the second system winding 16.
  • the first system winding 15 and the second system winding are wound by matching the magnetic poles of the first system winding 15 and the second system winding 16. It is possible to prevent a decrease in the efficiency of the rotary electric machine provided with the wire 16.
  • FIG. 12 is a developed view of a stator of a rotary electric machine according to a third embodiment of the present invention.
  • the configuration other than the stator is the same as that of the first embodiment. Similar to FIG. 3, the air gap 22 (FIG. 2) is located on the lower side of FIG. 12, and the frame 1 (FIG. 2) is located on the upper side of FIG.
  • the shapes of all the slots provided in the stator 3 are the same. That is, in the illustrated stator cross section, the cross-sectional shape of all the slots in which the windings are arranged is a rectangular shape having the same depth.
  • the configurations of the first system winding 15 and the second system winding 16 are the same as those in the above-mentioned Example 1 (FIG. 3). Therefore, in the slot in which only the first system winding 15 is arranged among the first system winding 15 and the second system winding 16, the hole portion 25 is located on the outer diameter side of the first system winding 15. Will be located.
  • the cooling refrigerant 9 uses the rear duct 20, the axial duct 21, and the air gap 22 as passages in the axial direction of the rotary electric machine. It flows. Further, in the third embodiment, the hole portion 25 in the slot in which only the first system winding 15 is arranged serves as a passage for the refrigerant 9. As a result, the first system winding 15 comes into direct contact with the refrigerant 9 flowing through the pores 25. Therefore, the heat transfer area of the stator core 14 increases.
  • the cooling performance of the stator 3 is improved, so that the temperature rise of the first system winding 15 can be surely suppressed. Further, since the first system winding 15 can be efficiently cooled by the refrigerant passing through the hole 25, when the insulation type having a large allowable temperature rise is applied as the insulation type of the winding, the rotary electric machine uses the rear duct 20 and the rear duct 20. It is not necessary to have the axial duct 21. In this case, the configuration of the rotary electric machine is simplified.
  • the side wall of the stator core 14 has a step in the slot between the first slot 18 and the second slot 19.
  • the configurations of the first system winding 15 and the second system winding 16 are the same as those in the first embodiment (FIG. 3). Further, as in the first embodiment, the position of the second slot 19 coincides with the position of the first slot 18.
  • FIG. 13 is a developed view of a stator showing a first example of a step on a side wall in a slot.
  • the slot width of the first slot 18 is larger than that of the second slot 19.
  • the number of turns of the first system winding 15 can be increased to increase the difference in the induced electromotive force between the first system winding 15 and the second system winding 16.
  • the stator can be easily or efficiently manufactured by applying the manufacturing method of inserting the foamed coil into the slot.
  • FIG. 14 is a developed view of a stator showing a second example of a step on a side wall in a slot.
  • the slot width of the second slot 19 is larger than that of the first slot 18.
  • the size of the strands and the number of parallel wires can be increased to reduce the current density of the second system winding 16.
  • FIG. 15 is a developed view of a stator showing a third example of a step on a side wall in a slot.
  • a step that narrows the slot width and a step that widens the slot width are continuous between the first slot 18 and the second slot 19. That is, between the first slot 18 and the second slot 19, the inner wall surface of the slot of the stator core 14 has a convex portion 26 protruding in the circumferential direction, that is, in the direction of narrowing the slot width.
  • the convex portion 26 serves as a stopper for the second system winding 16, it is possible to prevent the second system winding 16 from falling off to the inner diameter side. Further, since the first system winding 15 and the second system winding 16 are arranged at intervals by the convex portion 26, the first system winding 15 and the second system winding 16 are short-circuited in the slot. Can be prevented.
  • the stator core having the slot shape shown in FIG. 15 can be manufactured by integrally molding an electromagnetic steel plate.
  • the fifth embodiment further includes a third system winding 27 in addition to the first system winding 15 and the second system winding 16.
  • the configurations of the first system winding 15 and the second system winding 16 are the same as those in the first embodiment (FIG. 3). Further, as in the first embodiment, the position of the second slot 19 coincides with the position of the first slot 18.
  • FIG. 16 is a development view of the stator 3 showing a first example of the winding configuration of the first system winding 15, the second system winding 16, and the third system winding 27.
  • the configurations of the first system winding 15 and the second system winding 16 are the same as those of the above-mentioned modification 1 (FIG. 4) of the first embodiment, but further.
  • the third system winding 27 is arranged so as to overlap the second system winding 16 along the depth direction of the slot.
  • the position of the third system winding 27 coincides with the position of the second system winding 16 and the first system winding 15. Therefore, the number of slots of the third system winding 27 is the same as that of the second system winding 16.
  • FIG. 17 is a development view of the stator 3 showing a second example of the winding configuration of the first system winding 15, the second system winding 16, and the third system winding 27.
  • the number of slots of the third system winding 27 is the same as that of the first example (FIG. 16) described above, but the number of slots of the second system winding 16 is the second. It is the same as the one-system winding 15.
  • FIG. 18 is a development view of the stator 3 showing a third example of the winding configuration of the first system winding 15, the second system winding 16, and the third system winding 27.
  • the number of slots of the second system winding 16 and the third system winding 27 is 2/3 and 1 / of the number of slots of the first system winding 15, respectively. It is 3.
  • the first system winding 15, the second system winding 16 and the third system winding 27 are not electrically connected to each other and are independent of each other.
  • the first system winding 15, the second system winding 16, and the third system winding 27 are arranged in this order from the inner diameter side to the outer diameter side of the stator, but the present invention is limited to this. Instead, the first and second to nth system windings (n (integer) ⁇ 3) may be sequentially arranged.
  • the number of slots of the i-th system winding (1 ⁇ i (integer) ⁇ n) is N si , "N s1 ⁇ N s2 ⁇ N s3 ⁇ ... ⁇ N sn ". The number of slots is set.
  • a stator having three or more windings can be configured.
  • FIG. 19 is a block diagram showing a configuration of a rotary electric machine system for a dump truck according to a sixth embodiment of the present invention.
  • the rotating shaft of the rotary electric machine 100 As shown in FIG. 19, the rotating shaft of the rotary electric machine 100 according to any one of the above-described Examples 1 to 5 is directly connected to the rotating shaft of the engine 200 which is a prime mover via a coupling 31.
  • the rotary electric machine 100 When the rotary electric machine 100 is rotated by the engine 200, the rotary electric machine 100 generates three-phase AC power.
  • the three-phase AC power output by the first system winding 15 and the second system winding 16 included in the rotary electric machine 100 is supplied to the power converter 201a and the power converter 201b, respectively.
  • the power converter 201a converts the three-phase AC power from the first system winding 15 into power, and supplies the converted power to the drive rotary electric machine 300 which is the main engine for rotationally driving the wheels of the dump truck. Further, the power converter 201b converts the three-phase AC power from the second system winding 16 into electric power, and supplies the converted electric power to the blower 301 that sends the refrigerant 9 for cooling the rotary electric machine 100 to the rotary electric machine 100.
  • one rotary electric machine 100 can supply electric power for driving the drive rotary electric machine 300 and the blower 301. Therefore, the rotary electric system for the dump truck can be made smaller or lighter.
  • the electric power from the second system winding 16 is not limited to the blower 301, and may be supplied as electric power for driving other electric auxiliary machines.
  • FIG. 20 is a block diagram showing a configuration of a rotary electric machine system for an electric bus according to a seventh embodiment of the present invention.
  • the rotating shaft of the rotary electric machine 100 is directly connected to the speed reducer 202 via the coupling 31.
  • the switch 205 When running an electric bus, the switch 205 connects the battery 204 to the power converter 203a.
  • the power converter 203a converts the DC power from the battery 204 into power and supplies the three-phase AC power to the first system winding 15 of the rotary electric machine 100.
  • the rotary electric machine 100 operates as an electric machine, and the power of the rotary electric machine 100 is transmitted to the wheels via the speed reducer 202.
  • the switch 205 connects the battery 204 to the power converter 203b.
  • the power converter 203b converts the regenerated power from the second system winding 16 of the rotating electric machine 100 in the regenerated state into power, and outputs DC power. This DC power is charged in the battery 204.
  • the charging of the battery by the regenerative power can be controlled accurately.
  • the present invention is not limited to the above-described embodiment, but includes various modifications.
  • the above-mentioned examples have been described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the described configurations.
  • stator configuration in each embodiment can be applied to various rotary electric machines such as a field winding type synchronous machine, a cage type inducer, a winding type inducer, and a permanent magnet type synchronous machine.
  • rotary electric machine in each embodiment can be applied to various devices and systems that utilize the output (generated power and rotational driving force) of the rotary electric machine.
  • the rotary electric system according to the above-mentioned Examples 6 and 7 may be applied not only to a dump truck or an electric bus but also to another electric vehicle, an electric ship, or the like. Further, the rotary electric machine system according to the seventh embodiment may be applied to an elevator (particularly, a high-speed / large-capacity elevator). In this case, the rotary electric machine 100 is applied to the hoisting machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Windings For Motors And Generators (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

構成が異なる二系統の三相交流巻線を有しながらも、巻線の構成を複雑化することなく、効率を向上することができる回転電機が開示される。この回転電機は、回転子(2)と、三相交流巻線を有する固定子(3)と、を備えるものであって、三相交流巻線は、互いに独立している第一系統巻線(15)と第二系統巻線(16)とを含み、第一系統巻線(15)が位置する複数の第一スロット(18)と、第二系統巻線(16)が位置する複数の第二スロット(19)と、を備え、第一スロット(18)のスロット数は、第二スロット(19)のスロット数以上であり、第一系統巻線(15)は、固定子(3)において、第二系統巻線(16)よりも内径側に位置する。

Description

回転電機、並びにそれを用いる電動車両用回転電機システム
 本発明は、複数の出力系統を備える回転電機、並びに、この回転電機を用いる電動車両用回転電機システムに関する。
 自動車用の電動システム(例えば、電動パワーステアリングシステム)や風力発電システムでは、異常が発生しても運転を継続できるように、冗長性を有するシステムが要求されている。このようなシステムでは、一台の回転電機において二系統の巻線を設け、各巻線が独立した電源もしくは電力変換器に接続される。二系統の巻線の各々は同じ構成(巻数など)を有し、システム出力の50%ずつを担う。これにより、一方の系統に異常が生じても、通常よりも出力は低減するが、他方の系統によって、システムを停止することなく運転を継続することができる。
 一方、ダンプトラックなどの電動車両における電源供給用の回転電機システムにおいては、システムの小型軽量化のために、主発電機および副発電機に代えて、二系統の巻線を有する回転電機を適用することが考えられる。この場合、一方の巻線は、車体を駆動するトラクションモータの電源用であり、他方の巻線は冷却装置などの周辺機器の電源用となるため、一台の回転電機に構成の異なる二系統の巻線を設ける必要がある。
 構成の異なる二系統の巻線を有する回転電機に関する従来技術として、特許文献1に記載の技術が知られている。本技術では、交流発電機において単相交流と三相交流の同時出力を可能にするために、三相交流巻線をY結線にして、U相巻線の誘起電圧に対し、電圧の大きさが1/2、位相差が180°になる単相交流巻線の一端を、Y結線の中性点に接続する。さらに、U相巻線に中間タップを設け、単相交流巻線の他端と中間タップを単相交流の出力とする。
特開2015-201918号公報
 上記従来技術では、中性点を介してシステムにおける三相電気回路と単相交流電気回路に、三相不平衡に伴う循環電流が流れ、システムの効率を低下させる。また、三相交流巻線の構成が複雑になり、製造コストが増加する。さらに、従来技術を、上述のような電動車両用回転電機システムに適用する場合、二系統の巻線がともに三相交流巻線ではあるが、同様の問題が発生する。
 そこで、本発明は、構成が異なる二系統の三相交流巻線を有しながらも、巻線の構成を複雑化することなく、効率を向上することができる回転電機、ならびにこの回転電機を用いる電動車両用回転電機システムを提供する。
 上記課題を解決するために、本発明による回転電機は、回転子と、三相交流巻線を有する固定子と、を備えるものであって、三相交流巻線は、互いに独立している第一系統巻線と第二系統巻線とを含み、第一系統巻線が位置する複数の第一スロットと、第二系統巻線が位置する複数の第二スロットと、を備え、第一スロットのスロット数は、第二スロットのスロット数以上であり、第一系統巻線は、固定子において、第二系統巻線よりも内径側に位置する。
 また、上記課題を解決するために、本発明による電動車両用回転電機システムは、電動車両に搭載される主機および補機に電力を供給する回転電機と、回転電機を駆動する原動機と、を備えるものであって、回転電機は、上記本発明による回転電機であり、第一系統巻線から第一の電力変換器を介して主機に電力が供給され、第二系統巻線から第二の電力変換器を介して補機に電力が供給される。
 また、上記課題を解決するために、本発明による電動車両用回転電機システムは、電動車両を駆動する回転電機と、第一の電力変換器を介して回転電機に電力を供給する電池と、を備えるものであって、回転電機は、上記本発明による回転電機であり、電池から第一の電力変換器を介して第一系統巻線に電力が供給され、第二系統巻線から第二の電力変換器を介して電池に回生電力が充電される。
 本発明によれば、回転電機が、構成が異なる二系統の三相交流巻線を有しながらも、巻線の構成を複雑化することなく、効率を向上することができる。
 上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
実施例1である回転電機の回転軸方向の断面図である。 実施例1の回転電機の回転軸に垂直な方向における部分断面図である。 実施例1の固定子の展開図である。 変形例1である回転電機の固定子の展開図である。 変形例2である回転電機の固定子の一部の展開図である。 変形例3である回転電機の固定子の展開図である。 実施例2である回転電機の固定子の展開図である。 実施例1の固定子の展開図である(図3再掲)。 各相巻線による磁極中心が位相差角でαだけ相違している場合の三相電圧を、回転座標上で表した図である。 第一系統巻線および第二系統巻線の三相電圧を、第一系統巻線を基準にして、dq変換する場合のd-q軸電圧ベクトルの方向を示す図である。 式(3)によってdq軸電圧成分が表される第一系統巻線の電圧(V)を表す電圧ベクトル図である。 実施例3である回転電機の固定子の展開図である。 スロット内の側壁における段差の第一例を示す固定子の展開図である。 スロット内の側壁における段差の第二例を示す固定子の展開図である。 スロット内の側壁における段差の第三例を示す固定子の展開図である。 第一系統巻線、第二系統巻線および第三系統巻線の巻線構成の第一例を示す、固定子の展開図である。 第一系統巻線、第二系統巻線および第三系統巻線の巻線構成の第二例を示す、固定子の展開図である。 第一系統巻線、第二系統巻線および第三系統巻線の巻線構成の第三例を示す、固定子の展開図である。 実施例6であるダンプトラック用の回転電機システムの構成を示すブロック図であるである。 実施例7である電動バス用の回転電機システムの構成を示すブロック図である。
 以下、本発明の実施形態について、下記の実施例1~7により、図面を用いながら説明する。各図において、参照番号が同一のものは同一の構成要件あるいは類似の機能を備えた構成要件を示している。
 図1は、本発明の実施例1である回転電機の回転軸方向の断面図である。なお、本実施例1の回転電機は、界磁巻線型の同期機である。
 本実施例1の回転電機100は、大型ダンプトラック用の電源となる、出力が数千kVA、回転速度が数千min-1の発電機として適用できる。なお、本実施例1の回転電機は、エンジンなどの原動機によって回転駆動される。
 図1に示すように、フレーム1内に、回転子2および固定子3が配置される。回転子2および固定子3の軸方向端部には、それぞれ、コイルエンド6およびコイルエンド7が突出する。フレーム1に設けられる軸受4は、回転子2に固定されて回転軸となるシャフト5の一端部を回転可能に支持する。シャフト5の他端部は、図示しない原動機に接続され、原動機側の軸受によって支持されている。なお、シャフト5の他端部は、回転電機100が備える軸受によって回転可能に支持されてもよい。
 フレーム1には冷媒9が流入する流入口8が配置される。冷媒9は、図示しないブロアなどにより、回転電機100へ送り込まれる。流入口8からフレーム1内に流入した冷媒9は、図1における右方向、すなわち回転電機100の回転軸方向に流れ、フレーム1外の大気中へ流出する。
 図2は、図1に示した本実施例1の回転電機100の回転軸に垂直な方向における部分断面図である。
 図2に示すように、回転子2は、回転子鉄心10、界磁巻線11、ダンパーバー12(制動巻線)、回転子楔13で構成される。固定子3は、固定子鉄心14、三相交流巻線である第一系統巻線15および第二系統巻線16、固定子楔17で構成される。回転子2および固定子3は、エアギャップ22を介して対向している。第一系統巻線15は第一スロット18内に配置され、第二系統巻線16は第二スロット19内に配置される。フレーム1内における冷媒9の通路は、背面ダクト20、アキシャルダクト21、エアギャップ22で構成される。背面ダクト20とアキシャルダクト21は、周方向に一定の間隔で設けられる。
 第一系統巻線15が配置される第一スロット18は、回転子2の表面に対向する固定子鉄心14の内壁面から固定子鉄心14内を径方向に延び、径方向を深さ方向とし、回転軸方向を長手方向とする溝からなる。また、第二系統巻線16が配置される第二スロット19は、深さ方向に沿って、第一スロット18に隣接する。なお、本実施例1では、図2に示すように、第一スロット18が深さ方向に延びた部分を第二スロット19としている。
 複数の第一スロット18および複数の第二スロット19は、固定子鉄心14の周方向に沿って、等間隔に配置される。第二スロット19のスロット間隔は、第一スロット18よりも大きく、本実施例1では第一スロット18の2スロット分に相当する。したがって、第二スロット19のスロット数は、第一スロット18よりも少なく、本実施例1では第一スロット18の半分となる。このため、本実施例1では、第一系統巻線15および第二系統巻線16の内、第一系統巻線15のみが配置されるスロットと、このスロットよりも深くて両方の巻線が配置されるスロットとが、固定子鉄心14において周方向に沿って、交互に並ぶ。
 第二スロット19のスロット数は、第一スロット18よりも少ないため、後述するように、第二系統巻線16の誘起電圧を第一系統巻線15よりも小さくすることができる。したがって、回転電機100が発電機として動作する場合、第二系統巻線16の出力電圧を第一系統巻線15よりも小さくすることができる。
 なお、図2に示す実施例1では、第二スロット19のスロット数が第一スロット18の半分であるが、これに限らず、第二スロット19の個数は、所望の特性(誘起電圧、出力電圧など)に応じて、適宜設定できる。
 第二系統巻線16は、図2に示すようにスロットの深さ方向に、第一系統巻線15に重ねて設けられる。このため、第一系統巻線15に対してスロット数を設定し、そのスロット数の一部を第二系統巻線16に用いればよいので、二系統の巻線を有しながらも、回転子のスロットの構成が複雑化しない。
 また、固定子3において、第一系統巻線15と第二系統巻線16は、電気的に結合することなく、独立している。したがって、第一系統巻線15と第二系統巻線16の各々に外部回路を接続した場合に循環電流を抑制できるので、循環電流による効率低下を防止できる。さらに、固定子3は、第一系統巻線15と第二系統巻線16を備えながらも、巻線の構成が複雑化しない。
 図3は、図2に示す本実施例1の固定子3の断面構成を直線状に延ばして示す展開図である。図3の下側に、エアギャップ22(図2)が位置し、図3の上側に、フレーム1(図2)が位置する。
 第一系統巻線15および第二系統巻線16は、分布巻で巻かれている。なお、本実施例1では、回転電機100の極数は10極であり、第一スロット18および第二スロット19のスロット数が、それぞれ90スロットおよび45スロットである。
 図3に示すように、第一系統巻線15および第二系統巻線16は、スロットの深さ方向に沿って重ねて配置される上コイル(図3中「上」と記す)および底コイル(図3中「底」と記す)から構成される。
 なお、第一系統巻線15の三相はU1,V1,W1と記し、第二系統巻線の三相はU2,V2,W2と記す。各スロットには、スロット番号として括弧付き数字を記す。また、正負の符号(+,-)は、電流が流れる方向(電流極性)を示しており、図面に対して、奥側へ向かう方向を「+」で示し、手前側へ向かう方向を「-」で示す。
 前述の極数(10)およびスロット数(第一スロット:90,第二スロット:45)により、本実施例1では、毎極毎相スロット数(=スロット数/極数/相数)は第一系統巻線15では3、第二系統巻線16では1.5となる。
 すなわち、第一系統巻線15では、一相一極分のコイル数が3個となる。このため、図3に示すように、連続して配置される3個のコイルからなる各相巻線(UUU,VVV,WWW)が、一定の相順で繰り返し配置される(UUU-VVV-WWW…)。
 また、第二系統巻線16では、各相について、1個のコイルからなる相巻線と2個のコイルからなる相巻線が交互に配置される。これにより、毎極毎相スロット数すなわち一相一極分のコイル数が平均で2.5となる。また、固定子3において、1個のコイルからなる相巻線と2個のコイルからなる相巻線が、一定の相順で配置される。なお、1個のコイルからなる相巻線(U,V,W)と2個のコイルからなる相巻線(UU,VV,WW)が、コイル数の異なる相巻線が固定子3の周方向に沿って一様に分布するように、隣接する二つの相巻線のコイル数が互いに異なるようにして、一定の相順で繰り返し配置される(U-VV-W-UU-V-WW…)。
 図3の実施例1において、スロット内のコイル(上底コイル)を接続してコイルループを形成する渡り線が渡されるスロット数(以下、「渡り数」と記す)は、第一系統巻線15では7(スロット)であり、第二系統巻線16では5(スロット)である。これらの渡り線により、例えば、図3においては、第一系統巻線15の上コイル(1)と底コイル(7)が接続され、第二系統巻線16の上コイル(1)と底コイル(5)が接続される。第一系統巻線15の渡り数は、渡り線が上コイル(1)から底コイル(7)までの7スロットに渡されるので、7(スロット)である。第二系統巻線16の渡り数は、渡り線が上コイル(1)から底コイル(5)までの5スロットに渡されるので、5(スロット)である。なお、渡り数は、前述の7および5に限らず、適宜設定できる。
 本実施例1では、第一系統巻線15および第二系統巻線16の三相結線はY結線である。また、Y結線の並列接続数は、第一系統巻線15では5並列、第二系統巻線16では10並列である。なお、並列数は、回転電機の仕様に応じて、適宜設定できる。
 本実施例1のように第二スロット数を第一スロット数より小さくすることにより、両者を同数とする場合よりも、分布巻きの巻き工数を低減できるので、製造コストを低減できる。なお、本発明者の検討によれば、本実施例1では巻き工数を25%低減することができる。
 さらに、以下に述べるように、本実施例1は、第一系統巻線15の誘導起電圧が第二系統巻線16の誘導起電圧より高い場合に好適である。
 回転電機の体格は誘導起電圧の大きさに依存するので、本実施例1では、第一系統巻線15および第二系統巻線16の内、誘導起電圧が大きな第一系統巻線15に合わせて回転子2の界磁磁束量が設定される。また、第二系統巻線16の誘導起電圧を第一系統巻線15よりも小さくするために、第二系統巻線16のターン数を第一系統巻線15よりも小さくする。
 ところで、界磁磁束量は、上述のように、第一系統巻線15に合わせているため、第二系統巻線16に対しては多すぎることになる。したがって、第二系統巻線16の誘導起電圧を第一系統巻線15よりも小さな所定値に設定するには、第一系統巻線15の誘導起電圧を維持しながら第二系統巻線16の誘導起電圧を下げるための何らかの手段を要する。
 本発明者の検討によれば、第一系統巻線15の誘導起電圧を維持したまま第二系統巻線16の誘導起電圧を下げる手段として、並列回路数の増加、ターン数低減、渡り数の変更、スロット数低減が有効である。なお、本発明者の検討によれば、並列回路数の増加、ターン数低減、渡り数変更では誘導起電圧の低減が難しい場合でも、スロット数低減は有効であり、第一系統巻線15の誘導起電圧と第二系統巻線の誘導起電圧の差が大きいほど、スロット低減の効果は高くなる。そこで、本実施例1では、第二スロット19のスロット数を、第一スロット18よりも小さくしている。
 また、本実施例1では、固定子3において、第一系統巻線15は第二系統巻線16よりも内径側に位置する。すなわち、第一系統巻線15は、第二系統巻線16よりも、エアギャップ22の近くに配置されている。したがって、第一系統巻線15を鎖交する磁束は、第二系統巻線16よりも大きくなるので、第一系統巻線15と第二系統巻線16とで、鎖交磁束数に大小の差を設定しやすくなる。このため、第一系統巻線15と第二系統巻線16とで、第一系統巻線15の誘導起電圧が第二系統巻線16よりも大きくなるように、誘導起電圧に確実に差を設定することができる。
 さらに、第一系統巻線15は、第二系統巻線16よりも、エアギャップ22の近くに配置されているので、第一系統巻線15は、第一スロット18内において深さ方向に延びる固定子鉄心14の二面の内壁面に対向し、第二系統巻線16は、第二スロット19内において深さ方向に延びる固定子鉄心14の二面の内壁面および第二スロット19の底面となる固定子鉄心14の一面に対向する。すなわち、固定子鉄心14における巻線との対向面の面数は、第一系統巻線15が、第二系統巻線16よりも少ない。したがって、コロナ放電が起きる場合に放電面となる、スロット内における固定子鉄心14の鉄心面の面数は、第二系統巻線16よりも誘導起電圧が大きい第一系統巻線15の方が少ない。これにより、コロナ放電の影響による回転電機の絶縁寿命の低下を抑制することができる。
 ところで、第一系統巻線15と第二系統巻線16とで、巻線の素線寸法を同じにして、ターン数を変えたフォームドコイルを予め成型しておき、このフォームドコイルを固定子鉄心14の内径側(エアギャップ22側)からスロットに挿入することにより、第一系統巻線15および第二系統巻線16を備える固定子3の製作の効率が向上する。したがって、構成の異なる二系統の巻線を有する回転電機の製造コストを低減することができる。
 次に、本実施例1の変形例について説明する。
 図4は、変形例1である回転電機の固定子の展開図である。
 本変形例1において、第一スロット18のスロット数は前述の実施例1と同じく90スロットであるが、第二スロット19のスロット数は、実施例1(45スロット)よりも少なく、30スロットである。また、毎極毎相スロット数は、第一系統巻線15では、実施例1と同じく3であり、第二系統巻線16では、実施例1よりも少なく、1である。
 第一スロット18および第二スロット19のスロットピッチ角度(=360/スロット数)は、それぞれ4度および12度である。これにより、第二スロット19の位置を第一スロット18の位置に合わせることができる。したがって、両スロットの位置が一致する箇所において、第一スロット18と第二スロット19は、第一スロット18と同様の矩形状断面を有しかつ第一スロット18よりも深い連続した一つのスロットを構成する。これにより、構成の異なる二系統の巻線を固定子鉄心14へ効率的に取り付けることができる。
 図5は、変形例2である回転電機の固定子の一部の展開図である。
 本変形例2において、第一スロット18のスロット数は前述の実施例1と同じく90スロットであるが、第二スロット19のスロット数は、実施例1(45スロット)よりも多く、60スロットである。また、毎極毎相スロット数は、第一系統巻線15では、実施例1と同じ3であり、第二系統巻線16では、実施例1よりも多く、2である。
 第一スロット18および第二スロット19のスロットピッチ角度(=360/スロット数)は、それぞれ4度および6度である。このため、図5に示すように、第二スロット19の位置は、ある個所で第一スロット18の位置に一致しても、隣接する個所では第一スロット18の位置からずれる。
 なお、本変形例2における固定子鉄心への巻線取り付けは、巻線の素線形状を丸線などにすれば可能である。
 本発明者の検討によれば、変形例1のように、第二スロット19の各々の位置が第一スロット18に一致する条件は、式(1)および(2)で表される。なお、式中、P、Ns1およびNs2は、それぞれ、極数、第一スロット18のスロット数および第二スロット19のスロット数である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 本発明者の検討によれば、Ns1に対するNs2を設定する正の整数(自然数)Nに対してkの値が正の整数になれば、第二スロット19の各々の位置が第一スロット18に一致する。例えば、P=10かつNs1=90の場合、N=2,3で、kは整数(それぞれ、3,2)となる。そこで、実施例1では、N=2としてNs2=45とし、変形例1では、N=3として、Ns2=30としている。
 図6は、変形例3である回転電機の固定子の展開図である。
 本変形例3において、第一スロット18のスロット数は前述の実施例1と同じく90スロットであるが、第二スロット19のスロット数は、実施例1(45スロット)よりも少なく、15スロットである。
 第一スロット18および第二スロット19のスロットピッチ角度(=360/スロット数)は、それぞれ4度および24度である。また、式(1)および式(2)においけるN=6であり、k=1である。したがって、図6に示すように、第二スロット19の位置を第一スロット18の位置に合わせることができる。
 また、本変形例3では、第一系統巻線15は、実施例1と同様に、分布巻きで巻かれているが、第二系統巻線16は、集中巻きで巻かれている。
 上述の実施例1によれば、巻線の構成を複雑化することなく、構成の異なる二系統の巻線を有する回転電機を実現することができる。
 なお、本実施例1における固定子の構成は、界磁巻線型の同期機に限らず、かご型誘導機、巻線型誘導機、永久磁石式同期機などにも適用できる。
 図7は、本発明の実施例2である回転電機の固定子の断面構成を直線状に延ばして示す展開図である。なお、固定子以外の構成は実施例1と同様である。図3と同様に、図7の下側に、エアギャップ22(図2)が位置し、図7の上側に、フレーム1(図2)が位置する。
 図7に示すように、本実施例2においては、第一系統巻線15のU相巻線による磁極中心の位置と、第二系統巻線16のU相巻線による磁極中心の位置とが、一致している。
 図8は、前述の実施例1の固定子の展開図である(図3再掲)。
 図8に示すように、前述の実施例1では、第一系統巻線15のU相巻線による磁極中心23の位置と第二系統巻線16のU相巻線による磁極中心24の位置とが、互いに、位相差角αだけ相違している。
 したがって、本実施例2では、図8における位相差角αが0になるように、巻線が配置されている。具体的には、図8における第二系統巻線16は変えずに、第一系統巻線15の巻線が1スロット分ずらして配置されている。
 次に、本実施例2の電気的特性について説明する。
 図9は、第一系統巻線15と第二系統巻線16とで、各相巻線による磁極中心が位相差角でαだけ相違している場合について、三相電圧を、回転座標上で表した図である。
 図9中、θは回転座標のd軸と、第一系統巻線U相(U)との位相差角である。
 図10は、図9に示す第一系統巻線15および第二系統巻線16の三相電圧を、第一系統巻線15を基準にして、二反作用理論に基づきdq変換する場合のd-q軸電圧ベクトルの方向を示す図である。
 図10において、d-q軸ベクトルが第一系統巻線15の三相電圧を示し、d-q軸ベクトルが第二系統巻線16の三相電圧を示している。
 d軸電圧とq軸電圧は直交するため、d-q軸間の相互インダクタンスは無視することができるが、同図に示すように、位相差角αで配置される二系統の三相交流巻線の場合、同軸間(d-d軸間、q-q軸間)の相互インダクタンス(Md1d2,Md2d1,Mq1q2,Mq2q1)が発生する。相互インダクタンスに「2π×周波数」を乗じて得られる相互リアクタンスXを用いると、式(3)のような電圧方程式が得られる。
Figure JPOXMLDOC01-appb-M000003
 式(3)において、Vd1,Vd2,Vq1,Vd2,Id1,Id2,Iq1並びにIq2は、それぞれ、第一系統巻線のd軸電圧、第二系統巻線のd軸電圧、第一系統巻線のq軸電圧、第二系統巻線のq軸電圧、第一系統巻線のd軸電流、第二系統巻線のd軸電流、第一系統巻線のq軸電流、並びに第二系統巻線のq軸電流である。また、Xd1,Xd2,Xq1,Xq2,R,R,E,E,Xd1d2とXd2d1,並びにXq1q2とXq2q1は、それぞれ、第一系統巻線のd軸リアクタンス、第二系統巻線のd軸リアクタンス、第一系統巻線のq軸リアクタンス、第二系統巻線のq軸リアクタンス、第一系統巻線の巻線抵抗、第二系統巻線の巻線抵抗、第一系統巻線の誘導起電圧、第二系統巻線の誘導起電圧、d軸間(d-d軸間)の相互リアクタンス、並びにq軸間(q-q軸間)の相互リアクタンスである。
 電圧方程式における四つの式の各々に相互リアクタンスが含まれるため、第一系統巻線15の電圧と第二系統巻線16の電圧は、一方系統のパラメータが変化すると、他方系統のパラメータに変化が無くても、変化してしまう。すなわち、第一系統巻線15と第二系統巻線16は、電気回路としては独立しているが、相互リアクタンスを介して磁気結合している。
 図11は、式(3)によってdq軸電圧成分が表される第一系統巻線の電圧(V)を表す電圧ベクトル図である。
 図11中、βは電流位相角であり、φは力率角であり、δは負荷角である。また、図11中でアンダーラインを付した電圧成分が、同軸間の相互リアクタンスに依存するパラメータである。なお、V01は相互インダクタンスが発生しない場合の電圧ベクトルである。
 図11が示すように、同軸間の相互リアクタンスにより、VはV01より位相が進んでいる。すなわち、同軸間の相互リアクタンスにより力率角が大きくなるため、力率が低下している。
 したがって、第一系統巻線15のU相巻線による磁極中心23の位置と第二系統巻線16のU相巻線による磁極中心24の位置との間の位相差角α(図8)を、本実施例2のように0にすることで、同軸間の相互リアクタンスの発生が抑制され、力率の低下を抑制することができる。したがって、第一系統巻線15と第二系統巻線16を備えながらも、回転電機の効率の低下を防止することができる。
 上述のように、本実施例2によれば、このことから、第一系統巻線15と第二系統巻線16とで磁極を一致させることにより、第一系統巻線15と第二系統巻線16を備える回転電機の効率の低下を防止することができる。
 図12は、本発明の実施例3である回転電機の固定子の展開図である。なお、固定子以外の構成は、実施例1と同様である。図3と同様に、図12の下側に、エアギャップ22(図2)が位置し、図12の上側に、フレーム1(図2)が位置する。
 図12に示すように、本実施例3では、固定子3に設けられる全スロットの形状が同一である。すなわち、図示の固定子断面において、巻線が配置される全スロットの断面形状が、同じ深さの矩形状である。
 なお、本実施例3において、第一系統巻線15および第二系統巻線16の構成は前述の実施例1(図3)と同様である。このため、第一系統巻線15および第二系統巻線16の内、第一系統巻線15のみが配置されるスロットにおいては、第一系統巻線15の外径側に、空孔部25が位置することになる。
 前述の実施例1(図1,2)と同様に、本実施例3においても、冷却用の冷媒9は、背面ダクト20、アキシャルダクト21、エアギャップ22を通路として、回転電機の軸方向に流れる。さらに、本実施例3では、第一系統巻線15のみが配置されるスロット内の空孔部25が冷媒9の通路となる。これにより、第一系統巻線15は、空孔部25を流れる冷媒9と直接接触する。したがって、固定子鉄心14の伝熱面積が増加する。
 本実施例3によれば、固定子3の冷却性能が向上するので、第一系統巻線15の温度上昇を確実に抑えることができる。また、空孔部25を通る冷媒により効率的に第一系統巻線15が冷却できるので、巻線の絶縁種別として許容温度上昇が大きな絶縁種別を適用する場合、回転電機は、背面ダクト20およびアキシャルダクト21を有さずともよい。この場合、回転電機の構成が簡略化される。
 次に、本発明の実施例4である回転電機について、図13~15を用いて説明する。
 本実施例4は、第一スロット18と第二スロット19の間のスロット内において、固定子鉄心14の側壁が段差を有する。なお、第一系統巻線15および第二系統巻線16の構成は実施例1(図3)と同様である。また、実施例1と同様に、第二スロット19の位置は第一スロット18の位置と一致している。
 図13は、スロット内の側壁における段差の第一例を示す固定子の展開図である。
 図13に示すように、第一例においては、第一スロット18のスロット幅が第二スロット19よりも大きい。
 図13に示すスロット形状によれば、第一系統巻線15のターン数を増やして、第一系統巻線15と第二系統巻線16とで誘導起電圧の差を大きくすることができる。
 なお、第一例においても、実施例1と同様に、フォームドコイルをスロットに挿入する製造方法を適用して、容易にもしくは効率的に固定子を製作できる。
 図14は、スロット内の側壁における段差の第二例を示す固定子の展開図である。
 図14に示すように、第二例においては、第二スロット19のスロット幅が第一スロット18よりも大きい。
 図14に示すスロット形状によれば、素線のサイズや並列数を大きくして、第二系統巻線16の電流密度を小さくすることができる。
 図15は、スロット内の側壁における段差の第三例を示す固定子の展開図である。
 図15に示すように、第三例においては、第一スロット18と第二スロット19との間において、スロット幅を狭めるような段差およびスロット幅を広げるような段差が連続している。すなわち、第一スロット18と第二スロット19との間において、固定子鉄心14のスロットにおける内壁面が、周方向すなわちスロット幅を狭める方向に突出する凸部26を有する。
 図15に示すスロット形状によれば、凸部26が第二系統巻線16のストッパーとなるので、内径側への第二系統巻線16の脱落を防止できる。また、凸部26によって、第一系統巻線15と第二系統巻線16とが間隔をあけて配置されるので、スロット内における第一系統巻線15と第二系統巻線16との短絡が防止できる。
 なお、図15に示すスロット形状を有する固定子鉄心は、電磁鋼鈑の一体成型により製作できる。
 次に、本発明の実施例5である回転電機について、図16~18を用いて説明する。
 本実施例5は、第一系統巻線15および第二系統巻線16に加えて、さらに第三系統巻線27を備える。第一系統巻線15および第二系統巻線16の構成は実施例1(図3)と同様である。また、実施例1と同様に、第二スロット19の位置は第一スロット18の位置と一致している。
 図16は、第一系統巻線15、第二系統巻線16および第三系統巻線27の巻線構成の第一例を示す、固定子3の展開図である。
 図16に示すように、第一例においては、第一系統巻線15および第二系統巻線16の構成は、前述の実施例1の変形例1(図4)と同様であるが、さらに、第二系統巻線16の外形側に、スロットの深さ方向に沿って第二系統巻線16に重ねて、第三系統巻線27が配置されている。第三系統巻線27の位置は、第二系統巻線16および第一系統巻線15の位置に一致している。したがって、第三系統巻線27のスロット数は、第二系統巻線16と同じである。
 図17は、第一系統巻線15、第二系統巻線16および第三系統巻線27の巻線構成の第二例を示す、固定子3の展開図である。
 図17に示すように、第二例においては、第三系統巻線27のスロット数は、前述の第一例(図16)と同じであるが、第二系統巻線16のスロット数が第一系統巻線15と同じである。
 図18は、第一系統巻線15、第二系統巻線16および第三系統巻線27の巻線構成の第三例を示す、固定子3の展開図である。
 図18に示すように、第三例においては、第二系統巻線16および第三系統巻線27のスロット数は、第一系統巻線15のスロット数の、それぞれ、2/3および1/3である。
 なお、本実施例5の回転電機において、第一系統巻線15、第二系統巻線16および第三系統巻線27は、互いに電気的に接続されず、独立している。
 本実施例5では、第一系統巻線15、第二系統巻線16、第三系統巻線27、この順に、固定子の内径側から外径側に向かって配置されるが、これに限らず、第一、第二~第n系統巻線(n(整数)≧3)が順次配置されてもよい。この場合、第i系統巻線(1≦i(整数)≦n)のスロット数をNsiとすると、「Ns1≧Ns2≧Ns3≧…≧Nsn」となるように、各巻線のスロット数が設定される。
 本実施例5によれば、3系統以上の巻線を備える固定子を構成することができる。
 図19は、本発明の実施例6であるダンプトラック用の回転電機システムの構成を示すブロック図である。
 図19に示すように、前述の実施例1~5のいずれかによる回転電機100の回転軸は、カップリング31を介して原動機であるエンジン200の回転軸に直結されている。エンジン200によって、回転電機100が回転されると、回転電機100は三相交流電力を発生する。
 回転電機100が備える第一系統巻線15および第二系統巻線16が出力する三相交流電力は、それぞれ、電力変換器201aおよび電力変換器201bに供給される。
 電力変換器201aは、第一系統巻線15からの三相交流電力を電力変換し、変換された電力をダンプトラックの車輪を回転駆動する主機となる駆動用回転電機300に供給する。また、電力変換器201bは、第二系統巻線16からの三相交流電力を電力変換し、変換された電力を、回転電機100を冷却する冷媒9を回転電機100送るブロア301に供給する。
 本実施例6によれば、一台の回転電機100で、駆動用回転電機300およびブロア301を駆動するための電力を供給できる。このため、ダンプトラック用の回転電機システムを小型化もしくは軽量化できる。
 なお、第二系統巻線16からの電力は、ブロア301に限らず、他の電動補機を駆動するための電力として供給されてもよい。
 図20は、本発明の実施例7である電動バス用の回転電機システムの構成を示すブロック図である。
 図20に示すように、前述の実施例1~5のいずれかによる回転電機100の回転軸は、カップリング31を介して減速機202に直結されている。
 電動バスを走行させる場合、切り替え器205は、電池204を電力変換器203aに接続する。電力変換器203aは、電池204からの直流電力を電力変換して、回転電機100の第一系統巻線15に三相交流電力を供給する。これにより、回転電機100は、電動機として動作し、回転電機100の動力が減速機202を介して車輪に伝達される。
 また、電動バスが停車する場合、切り替え器205は、電池204を電力変換器203bに接続する。電力変換器203bは、回生状態にある回転電機100の第二系統巻線16からの回生電力を電力変換して、直流電力を出力する。この直流電力が、電池204に充電される。
 本実施例7によれば、第一系統巻線15とは独立した第二系統巻線16を用いるので、回生電力による電池の充電を精度よく制御できる。
 なお、本発明は前述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、各実施例の構成の一部について、他の構成の追加・削除・置き換えをすることが可能である。
 例えば、各実施例における固定子の構成は、界磁巻線型の同期機、かご型誘導機、巻線型誘導機、永久磁石式同期機など、種々の回転電機に適用できる。
 また、各実施例における回転電機は、回転電機の出力(発電電力や回転駆動力)を利用する種々の装置やシステムに適用することができる。
 また、上記実施例6および7による回転電機システムは、ダンプトラックや電動バスに限らず、他の電動車両、電動船舶などに適用してもよい。また、上記実施例7による回転電機システムは、エレベータ(特に、高速・大容量エレベータ)に適用してもよい。この場合、回転電機100は巻上機に適用される。
1…フレーム、2…回転子、3…固定子、4…軸受、5…シャフト、6,7…コイルエンド、8…流入口、9…冷媒、10…回転子鉄心、11…界磁巻線、12…ダンパーバー、13…回転子楔、14…固定子鉄心、15…第一系統巻線、16…第二系統巻線、17…固定子楔、18…第一スロット、19…第二スロット、20…背面ダクト、21…アキシャルダクト、22…エアギャップ、23,24…磁極中心、25…空孔部、26…凸部、27…第三系統巻線、31…カップリング、100…回転電機、200…エンジン、201a,201b…電力変換器、202…減速機、203a,203b…電力変換器、204…電池、205…切り替え器、300…駆動用回転電機、301…ブロア

Claims (15)

  1.  回転子と、
     三相交流巻線を有する固定子と、
    を備える回転電機において、
     前記三相交流巻線は、互いに独立している第一系統巻線と第二系統巻線とを含み、
     前記第一系統巻線が位置する複数の第一スロットと、
     前記第二系統巻線が位置する複数の第二スロットと、
    を備え、
     前記第一スロットのスロット数は、前記第二スロットのスロット数以上であり、
     前記第一系統巻線は、前記固定子において、前記第二系統巻線よりも内径側に位置することを特徴とする回転電機。
  2.  請求項1に記載の回転電機において、
     前記第一系統巻線の誘導起電圧が前記第二系統巻線の誘導起電圧よりも大きいことを特徴とする回転電機。
  3.  請求項1に記載の回転電機において、
     前記第二スロットの位置が前記第一スロットの位置と一致することを特徴とする回転電機。
  4.  請求項3に記載の回転電機おいて、
     前記回転電機の極数をPとし、前記第一スロットのスロット数をNs1とする場合、整数Nに対し、Ns1/(P×N×3(相数)×0.5)の値が整数であり、前記第二スロットのスロット数が、Ns1/Nであることを特徴とする回転電機。
  5.  請求項1に記載の回転電機において、
     前記第一系統巻線による磁極の位置と前記第二系統巻線による磁極の位置とが一致していることを特徴とする回転電機。
  6.  請求項1に記載の回転電機において、
     前記複数の第一スロットは、前記第一系統巻線の外径側に空孔部を有する前記第一スロットを含むことを特徴とする回転電機。
  7.  請求項3に記載の回転電機において、
     前記第一スロットと前記第二スロットとの間において、前記固定子の側壁が段差を有することを特徴とする回転電機。
  8.  請求項7に記載の回転電機において、
     前記第二スロットの幅が前記第一スロットよりも小さくなるように、前記段差が構成されていることを特徴とする回転電機。
  9.  請求項7に記載の回転電機において、
     前記第二スロットの幅が前記第一スロットよりも大きくなるように、前記段差が構成されていることを特徴とする回転電機。
  10.  請求項7に記載の回転電機において、
     前記第一スロットと前記第二スロットとの間において、前記固定子の前記側壁が突出するように、前記段差が構成されていることを特徴とする回転電機。
  11.  請求項1に記載の回転電機において、
     前記三相交流巻線は、さらに、第三ないし第n系統巻線(n(整数)≧3)を有し、前記第一系統巻線ないし前記第n系統巻線が、順に、前記固定子の内径側から外径側に向かって配置されていることを特徴とする回転電機。
  12.  電動車両に搭載される主機および補機に電力を供給する回転電機と、
     前記回転電機を駆動する原動機と、
    を備える電動車両用回転電機システムにおいて、
     前記回転電機は、請求項1に記載の回転電機であり、
     前記第一系統巻線から第一の電力変換器を介して前記主機に電力が供給され、
     前記第二系統巻線から第二の電力変換器を介して前記補機に電力が供給されることを特徴とする電動車両用回転電機システム。
  13.  請求項12に記載の電動車両用回転電機システムにおいて、
     前記電動車両がダンプトラックであり、
     前記主機が駆動用回転電機であり、
     前記補機が冷却用ブロアであることを特徴とする電動車両用回転電機システム。
  14.  電動車両を駆動する回転電機と、
     第一の電力変換器を介して前記回転電機に電力を供給する電池と、
    を備える電動車両用回転電機システムにおいて、
     前記回転電機は、請求項1に記載の回転電機であり、
     前記電池から前記第一の電力変換器を介して前記第一系統巻線に電力が供給され、
     前記第二系統巻線から第二の電力変換器を介して前記電池に回生電力が充電されることを特徴とする電動車両用回転電機システム。
  15.  請求項14に記載の回転電機システムにおいて、
     前記電動車両が電動バスであることを特徴とする回転電機システム。
PCT/JP2021/021699 2020-11-26 2021-06-08 回転電機、並びにそれを用いる電動車両用回転電機システム WO2022113405A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2021386717A AU2021386717B2 (en) 2020-11-26 2021-06-08 Rotary electric machine and electric vehicle rotary electric machine system using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020196015A JP7488754B2 (ja) 2020-11-26 2020-11-26 回転電機、並びにそれを用いる電動車両用回転電機システム
JP2020-196015 2020-11-26

Publications (1)

Publication Number Publication Date
WO2022113405A1 true WO2022113405A1 (ja) 2022-06-02

Family

ID=81754220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021699 WO2022113405A1 (ja) 2020-11-26 2021-06-08 回転電機、並びにそれを用いる電動車両用回転電機システム

Country Status (3)

Country Link
JP (1) JP7488754B2 (ja)
AU (1) AU2021386717B2 (ja)
WO (1) WO2022113405A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445062B1 (ja) 2023-06-08 2024-03-06 正成 齋藤 単体で動力と発電を同時に行う機能を持つ電動モータ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289406A (ja) * 1995-04-11 1996-11-01 Toyota Motor Corp シリーズハイブリッド車の補機バッテリ充電装置
JPH08331705A (ja) * 1995-06-02 1996-12-13 Toyota Motor Corp モータ駆動装置および電気自動車
CN107332412A (zh) * 2017-06-20 2017-11-07 江苏大学 一种定子方形的无轴承异步电机
JP2017204902A (ja) * 2016-05-09 2017-11-16 日産自動車株式会社 電力変換装置および電動車両の制御装置
JP2020028199A (ja) * 2018-08-15 2020-02-20 日立オートモティブシステムズ株式会社 固定子、回転電機、自動車用電動補機装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08284906A (ja) * 1995-04-18 1996-11-01 Ishikawajima Constr Mach Co 油圧シリンダのピストン位置検出装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289406A (ja) * 1995-04-11 1996-11-01 Toyota Motor Corp シリーズハイブリッド車の補機バッテリ充電装置
JPH08331705A (ja) * 1995-06-02 1996-12-13 Toyota Motor Corp モータ駆動装置および電気自動車
JP2017204902A (ja) * 2016-05-09 2017-11-16 日産自動車株式会社 電力変換装置および電動車両の制御装置
CN107332412A (zh) * 2017-06-20 2017-11-07 江苏大学 一种定子方形的无轴承异步电机
JP2020028199A (ja) * 2018-08-15 2020-02-20 日立オートモティブシステムズ株式会社 固定子、回転電機、自動車用電動補機装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7445062B1 (ja) 2023-06-08 2024-03-06 正成 齋藤 単体で動力と発電を同時に行う機能を持つ電動モータ

Also Published As

Publication number Publication date
JP7488754B2 (ja) 2024-05-22
AU2021386717B2 (en) 2024-03-21
JP2022084270A (ja) 2022-06-07
AU2021386717A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US7455133B2 (en) Electric four-wheel drive vehicle and control unit for same
CN106253618B (zh) 用于永磁电机转子的表面凹槽图案
US20060202582A1 (en) Synchronous motor and electric driving system
KR101015916B1 (ko) 전기 모터
JP5742850B2 (ja) 回転電機システム
JP3633494B2 (ja) 回転電機
US8629636B2 (en) Alternating-current electric motor of a combined electric device for powering and charging
US7482724B2 (en) Ipm electric rotating machine
JP2002262534A (ja) 回転電機及びそれを搭載した車両
JP2001169490A (ja) 車両用回転電機
JP2004064942A (ja) 回転電機及びそれを搭載した自動車
US11050373B2 (en) Rotary electric system
JP2012070613A5 (ja)
CN109327085B (zh) 用于永磁电机转子的非对称表面凹槽图案
WO2022113405A1 (ja) 回転電機、並びにそれを用いる電動車両用回転電機システム
RU2277284C2 (ru) Бесконтактная индукторная вентильная электрическая машина с электромагнитным возбуждением
CN114520559A (zh) 电机的绕组模式及电机的驱动系统
CN113224981A (zh) 用于电动卡车和高性能交通工具的增强的电力推进系统
TWI483540B (zh) 呈並聯交叉互鎖之非同步交流感應電機
TWI482420B (zh) 呈串聯交叉互鎖之非同步交流感應電機
EP3457547B1 (en) Permanent magnet motor
CN118572971A (zh) 一种永磁同步电机及行驶设备
WO2020175335A1 (ja) 回転電機
El–Sonbaty A novel AC excited axial flux synchronous motor for electric vehicles
JPH09163701A (ja) 回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21897385

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021386717

Country of ref document: AU

Date of ref document: 20210608

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21897385

Country of ref document: EP

Kind code of ref document: A1