WO2022111432A1 - 同步广播信号配置方法、装置、节点和存储介质 - Google Patents

同步广播信号配置方法、装置、节点和存储介质 Download PDF

Info

Publication number
WO2022111432A1
WO2022111432A1 PCT/CN2021/132250 CN2021132250W WO2022111432A1 WO 2022111432 A1 WO2022111432 A1 WO 2022111432A1 CN 2021132250 W CN2021132250 W CN 2021132250W WO 2022111432 A1 WO2022111432 A1 WO 2022111432A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
index
pattern
time slot
time slots
Prior art date
Application number
PCT/CN2021/132250
Other languages
English (en)
French (fr)
Inventor
徐汉青
田力
杨玲
栗子阳
赵亚军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022111432A1 publication Critical patent/WO2022111432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of wireless communication technologies, such as a method, apparatus, node and storage medium for configuring a synchronous broadcast signal.
  • the new radio interface (New Radio, NR) of the fifth generation mobile communication technology (5G) defines a new reference signal as synchronization signal/physical broadcast channel block (Synchronization Signal/Physical Broadcast Channel Block, SS/ PBCH block, SSB), the UE can perform cell search by detecting the SSB, and perform radio resource management measurement and radio link management based on the Secondary Synchronization Signal (SSS) in the SSB.
  • 5G fifth generation mobile communication technology
  • case D and case E in the SSB pattern support 120kHz subcarriers respectively spacing and 240kHz subcarrier spacing, due to control channels or data channels (for example, Physical Downlink Control Channel (PDCCH), Physical Uplink Control Channel (PUCCH), Physical Downlink Shared Channel (Physical Downlink Control Channel, PUCCH) Shared Channel, PDSCH), Physical Uplink Shared Channel (Physical Uplink Shared Channel, PUSCH)) support a maximum subcarrier spacing (Subcarrier Spacing, SCS) of 120kHz, therefore, patterns Case D and Case E only consider supporting SSB and 120kHz or 60kHz Control channels or data channels coexist.
  • PDCCH Physical Downlink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PUCCH Physical Downlink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the control channel or data channel or signal supports 240kHz, 480kHz or even higher SCS in the high frequency band (eg above 52.6GHz)
  • the SSB of 120kHz and 240kHz needs to consider the difference between the control channel or data channel of the higher SCS Compatibility problems.
  • the performance difference between 120kHz and 240kHz SSB SCS and using higher SSB SCS is very small, some simulation results show that using higher SSB SCS compared to 120/240kHz SSB SCS SCS still gets some buffs.
  • NR HF New Radio High Frequency
  • IEEE 802.11ad/ay NR HF has a high probability to support the 2.16GHz carrier name bandwidth.
  • the data channel and/or control channel need to support 480kHz SCS, 960kHz SCS or higher SCS, so the SSB needs to use the SCS that matches the data channel and/or control channel, then Facing a pattern design problem for SSB at 480kHz or 960kHz.
  • the embodiments of the present application provide a method, device, node, and storage medium for configuring a synchronous broadcast signal, so as to realize the compatibility of the SSB of 120 kHz and 240 kHz with the control channel or data channel of a higher SCS.
  • An embodiment of the present application provides a method for configuring a synchronous broadcast signal.
  • the method includes: a user equipment receives a first SSB sent by a base station; the user equipment performs cell synchronization according to the first SSB; a pattern of the first SSB supports 120 kHz SCS, 240 kHz SCS SCS, and at least one of SCS above 240kHz.
  • An embodiment of the present application provides an apparatus for configuring a synchronous broadcast signal.
  • the apparatus includes: a receiving module, configured to receive a first SSB sent by a base station; a synchronization module, configured to perform cell synchronization according to the first SSB; a pattern of the first SSB supports At least one of 120kHz SCS, 240kHz SCS, and SCS above 240kHz.
  • An embodiment of the present application provides a network node, the node includes a memory, a processor, a program stored in the memory and running on the processor, and a data bus for realizing connection and communication between the processor and the memory, the program When executed by the processor, the synchronous broadcast signal configuration method provided by the embodiment of the present application is implemented.
  • the embodiments of the present application provide a readable and writable storage medium for computer storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement the implementation of the present application
  • the example provides the configuration method of the synchronous broadcast signal.
  • Embodiments of the present application provide a method, apparatus, node, and storage medium for configuring a synchronous broadcast signal, wherein the method includes: a user equipment receiving a first SSB sent by a base station, and a pattern of the first SSB supports 120 kHz, 240 kHz, and above 240 kHz At least one of the SCSs, the user equipment performs cell synchronization according to the first SSB. In this way, the 120kHz and 240kHz SSB can be compatible with the control channel or data channel of the higher SCS.
  • FIG. 1 is a schematic diagram of a 5G NR SS/PBCH block pattern in the related art.
  • FIG. 2 is a schematic diagram of a transmission pattern of an SSB in the related art.
  • FIG. 3 is a flowchart of a method for configuring a synchronous broadcast signal provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of pattern translation in an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an apparatus for configuring a synchronous broadcast signal provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a network node provided by an embodiment of the present application.
  • words such as “optionally” or “exemplarily” are used to represent examples, illustrations, or illustrations. Any embodiment or design described in the embodiments of the present application as “optionally” or “exemplarily” should not be construed as preferred or advantageous over other embodiments or designs. Rather, the use of words such as “optionally” or “exemplarily” is intended to present the related concepts in a specific manner.
  • the synchronization signal/physical broadcast channel block includes a primary synchronization signal/secondary synchronization signal (Primary Synchronization Signal/Secondary Synchronization Signal, PSS/SSS) and a physical broadcast channel (Physical Broadcast Channel, PBCH).
  • PSS/SSS Primary Synchronization Signal/Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the pattern of the 5G NRSS/PBCH block includes a total of 5 Cases, Case A, Case B, Case C, Case D, and Case E (refer to the 3rd Generation Partnership Project (3GPP) technology) Specification (Technical Specification, TS) 38.213 Release-15/16), Case A is 15kHz, Case B and Case C are 30kHz. Case D is 120kHz and Case E is 240kHz. Case A, Case B, and Case C are used for carrier frequencies below 7GHz (FR1), and Case D and Case E are used for carrier frequencies above 24GHz (FR2).
  • 3GPP 3rd Generation Partnership Project
  • Case B The main difference between Case B and Case C is that the patterns of the 4 SSBs in each 1ms (2 time slots) are different, and each SSB in the five Cases occupies 4 orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing). , OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Fig. 2 shows the transmission pattern of SSB within the time granularity of 1ms (for Case A, Case B, Case C) and 0.25ms (for Case D, Case E) in the five Cases in Fig. 1 .
  • an embodiment of the present application provides a flowchart of a method for configuring a synchronous broadcast signal. As shown in FIG. 3 , the method may include but not limited to the following steps.
  • the user equipment receives the first SSB sent by the base station.
  • the pattern of the first SSB sent by the base station may support at least one of 120 kHz, 240 kHz, and SCS above 240 kHz.
  • the user equipment performs cell synchronization according to the first SSB.
  • the user equipment can perform cell synchronization according to the first SSB to solve the control of SSBs of 120 kHz and 240 kHz and higher SCSs Channel or data channel compatibility issues.
  • An embodiment of the present application provides a method for configuring a synchronous broadcast signal.
  • the method may include that a user equipment receives a first SSB sent by a base station, and a pattern of the first SSB supports at least one of 120 kHz, 240 kHz, and SCS above 240 kHz.
  • the device performs cell synchronization according to the first SSB. In this way, the 120kHz and 240kHz SSB can be compatible with the control channel or data channel of the higher SCS.
  • the pattern of the first SSB includes multiple candidate SSBs in the window, and the sequence numbers of the first symbols of the multiple candidate SSBs are ⁇ 2, 8 ⁇ +14n; where n represents the time slot sequence number , every 8 consecutive time slots are separated by 2 time slots, or, every 16 consecutive time slots are separated by 4 time slots.
  • the pattern of Case D1 can support the coexistence of 120kHz SSB and SCS 120kHz or higher SCS (eg 240kHz) control channel.
  • the pattern of Case D1 is to include two candidate SSBs in 1 slot (1 slot includes 14 symbols, the same below), each candidate SSB includes 4 symbols, and the two candidate SSBs are at this time
  • the starting symbols in the slot are ⁇ 2, 8 ⁇ , respectively.
  • Case D1 leaves blank symbols at the beginning and end of the half slot (7 symbols), when the SSB is a control channel with the same SCS as the SCS supported by the pattern of the SSB or a higher SCS than the SCS supported by the pattern of the SSB When coexisting, these symbols can transmit PDCCH or PUCCH. Assuming that there are 64 candidate SSBs in the window, then these 64 candidate SSBs are located in 32 time slots, and every 8 consecutive time slots are separated by 2 time slots, that is, the value of n is 0, 1, 2, 3 , 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34 , 35, 36, 37.
  • the pattern of SSB Case E2 may support the coexistence of a 240 kHz SSB with a control channel of an SCS 240 kHz or higher (eg, 480 kHz).
  • the pattern of Case E2 includes two candidate SSBs in 1 time slot, each candidate SSB includes 4 symbols, and the starting symbols of the two candidate SSBs in the time slot are ⁇ 2, 8 ⁇ respectively. .
  • Case E2 leaves blank symbols at the beginning and end of the half slot (7 symbols), when the SSB is a control channel with the same SCS as the SCS supported by the pattern of the SSB or a higher SCS than the SCS supported by the pattern of the SSB When coexisting, these symbols can transmit PDCCH or PUCCH. Assuming that there are 64 candidate SSBs in the window, then these 64 candidate SSBs are located in 32 time slots, and there are 4 time slots between every 16 consecutive time slots, that is, the value of n is 0, 1, 2, 3 , 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 , 33, 34, 35.
  • the window in this embodiment of the present application may be a sending window, a receiving window, or a measurement window, and the window is not limited to having only 64 candidate SSBs, and more candidate SSBs may exist.
  • the window length may be 5ms, 4ms, 3ms, 2ms, 1ms, 0.5ms, 0.25ms, 0.125ms, 62.5us, 31.25us, 15.625us, etc., which are not limited in this embodiment of the present application.
  • the window length is a half frame (5ms).
  • the sequence numbers of the first symbols of the multiple candidate SSBs may also be ⁇ 4, 8, 16, 20 ⁇ +28n, where n represents the sequence number of the time slot pair, which is paired for every 8 consecutive time slots There are 4 time slots between them.
  • design a Case E1 pattern that can support the coexistence of 240kHz SSB with SCS control channels of 240kHz or lower SCS (eg, 120kHz).
  • Case E1 pattern can include 4 candidate SSBs in 2 time slots, each candidate SSB includes 4 symbols, and the start symbols of these 4 candidate SSBs in these 2 time slots (ie 28 symbols) are ⁇ 4, 8, 16, 20 ⁇ , respectively.
  • Case E1 has blank symbols at the beginning and end of the two time slots.
  • Case E1 can also leave blank symbols at the beginning and end of each of the 2 time slots.
  • the SSB coexists with a control channel with the same SCS as the SCS supported by the pattern of the SSB, these symbols can transmit PDCCH or PUCCH .
  • the pattern of Case E1 is that there are 64 candidate SSBs in the window, then these 64 candidate SSBs are located in 32 time slots, that is, 16 time slot pairs, if the interval between every 8 consecutive time slot pairs is 4 time slots, the value of n is 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17.
  • SSB SCS SSB SCS
  • higher SSB SCS e.g., 480/960kHz
  • some simulation results show that: Using a higher SSB SCS (eg 480/960kHz) can still achieve some gain compared to the 120/240kHz SSB SCS.
  • NR HF has a high probability of supporting a nominal bandwidth of 2.16GHz.
  • the data channel and/or control channel need to support SCS of 480kHz, 960kHz or higher, and SSB is the best Use an SCS that matches the data channel and/or control channel.
  • SCS the higher the SCS, the lower the complexity of frequency offset estimation.
  • the pattern of the first SSB can be designed in the following forms.
  • the pattern of the first SSB includes multiple candidate SSBs in the window, and the sequence numbers of the first symbols of the multiple candidate SSBs are ⁇ 4, 8, 16, 20 ⁇ +28n;
  • the candidate SSBs are located in consecutive time slots, or, every 4 consecutive time slot pairs are separated by 2 time slots, or every 8 consecutive time slot pairs are separated by 4 time slots.
  • Case F1 can support the coexistence of 480kHz SSB and SCS 480kHz or lower SCS (eg 240kHz) control channel.
  • Case F1 includes 4 candidate SSBs in 2 time slots, each candidate SSB includes 4 symbols, and the start symbols of these 4 candidate SSBs in 2 time slots (28 symbols) are ⁇ 4 , 8, 16, 20 ⁇ .
  • Case F1 has blank symbols at the beginning and end of the two time slots. When the SSB coexists with the control channel of a higher SCS, these symbols can transmit PDCCH or PUCCH.
  • Case F1 can also leave blank symbols at the beginning and end of each of the 2 slots, when the SSB coexists with a control channel with the same SCS as the SCS supported by the pattern of the SSB, these symbols can transmit PDCCH or PUCCH .
  • the 64 candidate SSBs can be located in 32 consecutive time slots, that is, 16 consecutive time slot pairs, at this time, the value of n can be 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.
  • the 64 candidate SSBs can also be located in 32 time slots, that is, 16 time slot pairs, and every 4 consecutive time slot pairs are separated by 2 time slots, then the value of n can be 0, 1, 2 , 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, or, there are 4 time slots between every 8 consecutive time slot pairs, at this time, the value of n Values are 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17.
  • the above-mentioned first SSB can also be designed as SSB Case G1 of 960 kHz, and the pattern of Case G1 can be used to support the coexistence of the 960 kHz SSB and the control channel of the SCS 960 kHz or lower SCS (for example, 480 kHz).
  • Case G1 includes 4 candidate SSBs in 2 time slots, each candidate SSB includes 4 symbols, and the start symbols of these 4 candidate SSBs in these 2 time slots (28 symbols) are ⁇ 4, 8, 16, 20 ⁇ .
  • Case G1 has blank symbols at the beginning and end of the two time slots. When the SSB coexists with the control channel of a higher SCS, these symbols can transmit PDCCH or PUCCH.
  • Case G1 can also leave blank symbols at the beginning and end of each of the 2 time slots.
  • these symbols can transmit PDCCH or PUCCH.
  • the pattern of Case G1 is that there are 64 candidate SSBs in the window, these 64 candidate SSBs can be located in 32 consecutive time slots, that is, 16 consecutive time slot pairs, at this time, the value of n can be 0 , 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.
  • the 64 candidate SSBs can be located in 32 time slots, that is, 16 time slot pairs, and every 4 consecutive time slot pairs are separated by 2 time slots, then the value of n can be 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, or, every 8 consecutive time slot pairs are separated by 4 time slots, at this time, the value of n 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17.
  • sequence number of the first symbol of the multiple candidate SSBs existing in the above-mentioned window may also be ⁇ 2, 8 ⁇ +14n; wherein, n represents the time slot sequence number, and the multiple candidate SSBs are located in In consecutive time slots, either, every 8 consecutive time slots are separated by 2 time slots, or, every 16 time slots are separated by 4 time slots.
  • the pattern of Case F2 can support the coexistence of 480kHz SSB and the control channel of SCS 480kHz or higher SCS (eg 960kHz).
  • the pattern of Case F2 includes two candidate SSBs in one time slot, each candidate SSB includes 4 symbols, and the starting symbols of the two candidate SSBs in the time slot are ⁇ 2, 8 ⁇ respectively. .
  • Case F2 leaves blank symbols at the beginning and end of the half slot (7 symbols), when the SSB is a control channel with the same SCS as the SCS supported by the pattern of the SSB or a higher SCS than the SCS supported by the pattern of the SSB When coexisting, these symbols can transmit PDCCH or PUCCH. Assuming that there are 64 candidate SSBs in the window, then these 64 candidate SSBs can be located in 32 consecutive time slots, that is, the value of n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 , 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.
  • the 64 candidate SSBs are located in 32 time slots, and every 8 consecutive time slots are separated by 2 time slots, then the value of n is 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37.
  • the 64 candidate SSBs are located in 32 time slots, and there are 4 time slots between every 16 time slots, that is, the value of n is 0, 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35.
  • the above-mentioned first SSB can also be designed as SSB Case G2 of 960kHz, and the pattern of Case G2 can support the coexistence of 960kHz SSB and SCS 960kHz or higher SCS (for example, 1920kHz) control channel.
  • the pattern of Case G2 includes two candidate SSBs in 1 time slot, each candidate SSB includes 4 symbols, and the starting symbols of the two candidate SSBs in the time slot are ⁇ 2, 8 ⁇ respectively. .
  • Case G2 leaves blank symbols at the beginning and end of the half slot (7 symbols), when the SSB is a control channel with the same SCS as the SCS supported by the pattern of the SSB or a higher SCS than the SCS supported by the pattern of the SSB When coexisting, these symbols can transmit PDCCH or PUCCH. Assuming that there are 64 candidate SSBs in the window, these 64 candidate SSBs can be located in 32 consecutive time slots, that is, the value of n is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31.
  • the 64 candidate SSBs are located in 32 time slots, and every 8 consecutive time slots are separated by 2 time slots, that is, the value of n is 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 30, 31, 32, 33, 34, 35, 36, 37.
  • the 64 candidate SSBs are located in 32 time slots, and there are 4 time slots between every 16 time slots. At this time, the value of n is 0, 1, 2, 3, 4, 5, 6, 7 , 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35.
  • the normal CP length is only 146ns, 73ns or even lower.
  • the normal CP can only meet the needs of delay expansion, and cannot perform beam switching operations in the normal CP. In this case, beam switching time needs to be reserved between SSBs, during which the user equipment does not receive any data.
  • the Listen Before Talk (LBT) operation cannot be performed before the second SSB.
  • the pattern of the first SSB may include at least one pattern of Case A, Case C, Case D1, Case E2, Case F2, and Case G2.
  • at least two or more symbol intervals may be reserved between two SSBs in Case A, Case C, Case D1, Case E2, Case F2, and Case G2.
  • the pattern of Case D in the related art may be shifted, and the pattern obtained after shifting may be used as the first SSB pattern.
  • the shifting may include shifting the former SSB forward and/or the latter SSB backward among the two consecutive SSBs in the same time slot in Case D.
  • shifting the previous SSB of two consecutive SSBs in the even-numbered time slot for example, time slot 0, 2, 4, ...) in the Case D pattern forward by at least one symbol, and/or, The latter SSB among the two consecutive SSBs in the time slot with the odd-numbered time slot number (eg, time slot 1, 3, 5, . . . ) is shifted backward by at least one symbol.
  • the new SSB pattern contains 4 candidate SSBs in 2 time slots, each The candidate SSB includes 4 symbols, and the start symbols of the 4 candidate SSBs in these 2 time slots (28 symbols) are ⁇ 3, 8, 16, 21 ⁇ respectively, as shown in (b) in Figure 4 shown in the first pattern.
  • Sending SSB on one beam, or assuming that the user equipment receives SSB on one beam at most in one time slot, is equivalent to the same SSB index, Quasi Co-location (QCL) index, and beam index, This ensures that there is enough time for beam switching.
  • QCL Quasi Co-location
  • beam index This ensures that there is enough time for beam switching.
  • only one candidate SSB is defined in a slot, which is also beneficial to coexistence with a lower-order, same-order, or higher-order SCS PDCCH.
  • the pattern of the first SSB may be located in the middle or approximately the middle of the time slot.
  • the alternative SSB start symbol is located in any one of symbols 0 to 8 in the slot.
  • each candidate SSB may occupy 4 symbols or more (that is, the number of occupied symbols by each candidate SSB is greater than or equal to 4 and less than or equal to 14).
  • the PSS in an SSB occupies 2 symbols or 4 symbols
  • the SSS in an SSB occupies 2 symbols or 4 symbols
  • the PBCH in an SSB occupies at least 3 symbols (eg , occupying 3 symbols, 4 symbols or more).
  • the multiple candidate SSBs in the window may be divided into multiple groups, and the two groups are separated by at least one symbol, or at least one time slot.
  • the X candidate SSBs are divided into X groups, that is, each group includes one candidate SSB, and the X candidate SSBs are distributed in consecutive X time slots, or , and there is a time slot or multiple time slots between the two time slots that continuously carry the candidate SSB.
  • X candidate SSBs coexist in the window, and the X candidate SSBs can be divided into Y groups, and two consecutive groups are separated by one time slot or multiple time slots.
  • the pattern of the first SSB includes at least two candidate SSBs in one time slot, but it is defined that multiple consecutive candidate SSBs have the same first index, and the first index includes the SSB index, the QCL At least one of index and beam index.
  • 2 consecutive (such as odd-numbered and even-numbered) or 4 candidate SSBs have the same SSB index, QCL index, beam index; or, all candidate SSBs in the same slot or two slots Have the same SSB index, QCL index, beam index.
  • the first candidate SSB and the second candidate SSB have the same SSB index, QCL index, beam index
  • the third candidate SSB and the fourth candidate SSB have the same SSB index, QCL index, beam index index, etc.
  • SSB index, QCL index, and beam index in this embodiment of the present application indicate that one or more of the SSB index, QCL index, and beam index are the same.
  • the base station can send one of the two candidate SSBs in the same time slot to the user equipment, or, in a time slot, the base station can only send the user equipment on the same beam Device sends SSB.
  • the candidate SSB indexes (candidate SSB indexes) of the two candidate SSBs in the same time slot may be different, but have the same SSB index, or a QCL index, or a beam index.
  • the base station can only send SSB on one beam, and the same beam can be defined by the same SSB index, QCL index, and beam index, that is, the base station will not send on multiple beams in one time slot.
  • SSB For example, on symbols 4-7 of a time slot, the base station successfully sends SSB on beam 0, then SSB may not be sent on symbols 8-11 of the same time slot. If SSB needs to be sent, it can be sent on beam 0 Continue to send SSB. Alternatively, on symbols 4-7 of a time slot, since the LBT fails, that is, sending the SSB on beam 0 fails, the SSB can continue to be sent on beam 0 based on symbols 8-11 of the same time slot.
  • the user equipment may receive at most one SSB in one time slot, or the user equipment will not receive two SSBs with the same SSB index, QCL index, and beam index in one time slot. That is, the user equipment assumes that it has received at most one SSB in one slot, or the user equipment does not assume that it has received two SSBs with the same SSB index, QCL index, and beam index in one slot.
  • this design method can not only solve the time problem of beam switching, but also solve the problem that there is no time interval between two consecutive SSBs to perform LBT (for example, Case B, Case D, Case E, Case E1, Case F1, The pattern of Case G1), at the same time, this design method can also be applied to the case where the two SSBs in a time slot are discontinuous in the patterns of Case A, Case C, Case D1, Case E2, Case F2, and Case G2.
  • the transmission of 64 beams is generally supported.
  • alternative SSBs can be defined in the system to meet the requirements.
  • more candidate SSBs may be defined in the window.
  • 128 candidate SSBs can be defined in the half frame window, and the numbers of the candidate SSBs are 0 to 127 respectively.
  • 256 alternative SSBs can be defined in the half frame window, and the numbers of the alternative SSBs are 0 to 255 respectively.
  • 512 alternative SSBs can be defined in the half frame window, and the numbers of the alternative SSBs are 0 to 511 respectively.
  • the SSB of 240/480/960kHz SCS define 64 or more candidate SSBs (eg X) in a smaller window (eg, 1ms, 0.5ms, etc.) than the half frame window, these The alternate SSB numbers are 0-(X-1), respectively.
  • the above window length can be 5ms, 4ms, 3ms, 2ms, 1ms, 0.5ms, 0.25ms, 0.125ms, 62.5us, 31.25us, 15.625us, etc.
  • the window length is assumed to be half frame (5ms ).
  • the above-mentioned first index may be calculated according to a first algorithm.
  • the first algorithm may include dividing the second index by X and then rounding down to obtain a calculation result, and performing modulo calculation according to the calculation result and Q.
  • the second index includes a candidate SSB index (candidate SSB index) or a demodulation reference signal sequence index (Demodulation Reference Signal Index, DMRS index), X represents the number of consecutive multiple candidate SSBs with the same first index, and Q represents the beam number or quasi-co-site relationship number (e.g. as defined in 3GPP TS 38.213 v16.3.0 It can also be defined as the number of quasi-co-site relationships of the SSB).
  • the above-mentioned alternative SSB index is not equivalent to the SSB index (SSB index), the alternative SSB index is carried in the SSB sent by the base station, and the user equipment can use the alternative SSB index demodulated from the SSB. Calculate the SSB index.
  • the SSB index is equivalent to the quasi-co-site index (QCL index) and the beam index (Beam index) to a certain extent.
  • the calculation method of the first index may be as follows:
  • the calculation method can be As follows:
  • QCL refers to the large-scale parameter of the channel experienced by a symbol on one antenna port, which can be inferred from the channel experienced by a symbol on another antenna port.
  • Large-scale parameters may include one or more of delay spread, average delay, Doppler spread, Doppler shift, average gain, and spatial reception parameters.
  • SSBs with the same SSB index or QCL index or Beam index are QCL, eg, in terms of average gain, QCL-Type A (TypeA), and QCL-TypeD.
  • the implementation of the foregoing step S301 may include that the user equipment obtains the index of the candidate SSB according to the first SSB sent by the base station.
  • the above-mentioned alternative SSB index may be carried on the DMRS sequence.
  • the formula of DMRS sequence scrambling initialization is as follows:
  • the alternative SSB index can also be carried in the PBCH payload (payload) (non-master information block (Master Information Block, MIB)), because 1 bit of the 8 bits of the PBCH payload is used to send the low-frequency alternative SSB index. , while for high frequency scenarios, no spare bits are available. Therefore, the above-mentioned PBCH payload for carrying the candidate SSB index redefines the number of bits for sending the candidate SSB index, for example, 1 bit or 2 bits are additionally defined for sending the candidate SSB index.
  • payload payload
  • MIB Master Information Block
  • the number of candidate SSB indices is equal to 64, and the PBCH payload is If all are used, then 1bit or 2bit or 3bit can be newly defined in the PBCH payload to send the alternative SSB index, for example, the new definition and / or
  • the alternative SSB index can also be carried in the MIB, and the alternative SSB index is sent through a defined or undefined information bit in the MIB, for example, through subCarrierSpacingCommon, or ssb-SubcarrierOffset, or pdcch- ConfigSIB1, or spare to send. These information bits may be idle in 5G high frequency or unlicensed carrier scenarios, so they can be used to send alternative SSB indices.
  • the alternative SSB index can be carried in a system information block (System Information Block, SIB), for example, sent through SIB1 or other system information (Other System Information, OSI) (ie other information bits, such as SIB2, SIB3, etc.) Alternative SSB index.
  • SIB System Information Block
  • FIG. 5 is an apparatus for configuring a synchronous broadcast signal according to an embodiment of the present application.
  • the apparatus may include: a receiving module 501 and a synchronization module 502; wherein the receiving module is used to receive the first SSB sent by the base station; the synchronization module is used to perform cell synchronization according to the first SSB;
  • the pattern of an SSB supports at least one of 120 kHz, 240 kHz, and SCS above 240 kHz.
  • the pattern of the first SSB includes multiple candidate SSBs in the window, and the sequence numbers of the first symbols of the multiple candidate SSBs are ⁇ 2, 8 ⁇ +14n; where n represents a time slot Sequence number, every 8 consecutive time slots are separated by 2 time slots, or every 16 consecutive time slots are separated by 4 time slots.
  • the pattern of the first SSB includes multiple candidate SSBs in the window, and the sequence numbers of the first symbols of the multiple candidate SSBs are ⁇ 4, 8, 16, 20 ⁇ +28n; where n represents a time slot pair Sequence number, every 8 consecutive time slot pairs are separated by 4 time slots.
  • the pattern of the first SSB may include that multiple candidate SSBs exist within the window, and the sequence numbers of the first symbols of the multiple candidate SSBs are ⁇ 4, 8, 16, 20 ⁇ +28n; where n Indicates the sequence number of the time slot pair, multiple candidate SSBs are located in consecutive time slots, or, every 4 consecutive time slot pairs are separated by 2 time slots, or, every 8 consecutive time slot pairs are separated by 4 time slots .
  • the pattern of the first SSB includes multiple candidate SSBs in the window, and the sequence numbers of the first symbols of the multiple candidate SSBs are ⁇ 2, 8 ⁇ +14n;
  • the SSBs are located in consecutive time slots, either by 2 time slots between every 8 consecutive time slots, or by 4 time slots between every 16 time slots.
  • the pattern of the first SSB may include a pattern obtained by shifting the pattern of Case D, the shifting including shifting forward a previous SSB of two consecutive SSBs in the same time slot in the pattern of Case D, and //or, the latter SSB is translated backwards.
  • the pattern of the first SSB may include that an alternative SSB exists in one slot, this alternative SSB occupies at least 4 symbols, and the start symbol of one alternative SSB is located in symbols 0 to 0 in one slot. Any of the 8 symbols.
  • the multiple candidate SSBs in the window may be divided into multiple groups, and each group is separated by at least one symbol, or, each group is separated by at least one time slot.
  • the pattern of the first SSB includes at least two candidate SSBs in one time slot, and multiple consecutive candidate SSBs have the same first index, where the first index includes an SSB index, a quasi-co-site address at least one of an index and a beam index.
  • the first index may be calculated according to a first algorithm.
  • the first algorithm may include: dividing the second index by X, rounding down to obtain a calculation result, and performing modulo calculation according to the calculation result and Q.
  • the second index includes a candidate SSB index or a DMRS index, X represents the number of consecutive multiple candidate SSBs with the same first index, and Q represents the number of beams or the number of quasi-co-site relationships.
  • the receiving module may be further configured to acquire the index of the candidate SSB according to the first SSB sent by the base station.
  • the above-mentioned alternative SSB index can be carried on the DMRS sequence; or, the alternative SSB index is carried in the PBCH payload, and the number of bits for sending the alternative SSB index is redefined in the PBCH payload; or, the alternative SSB index is carried In the main information block; alternatively, the alternative SSB index is carried in the system information block.
  • the apparatus for configuring a synchronous broadcast signal provided in this embodiment is used to implement the method for configuring a synchronous broadcast signal in the embodiment shown in FIG. 3 , and the implementation principle and technical effect thereof are similar, which will not be repeated here.
  • FIG. 6 is a schematic structural diagram of a network node according to an embodiment.
  • the node includes a processor 601 and a memory 602; the number of processors 601 in the node can be one or more, in FIG. 6, one processor 601 is taken as an example; the processor 601 and the memory 602 in the node It can be connected by a bus or in other ways, and the connection by a bus is taken as an example in FIG. 6 .
  • the memory 602 can be used to store software programs, computer-executable programs and modules, such as program instructions/modules corresponding to the synchronous broadcast signal configuration method in the embodiment of FIG.
  • the processor 601 implements the above-mentioned synchronous broadcast signal configuration method by running the software programs, instructions and modules stored in the memory 602 .
  • the memory 602 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the set-top box, and the like. Additionally, memory 602 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device.
  • Embodiments of the present application further provide a readable and writable storage medium for computer storage, where the storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to perform the above implementation
  • a synchronous broadcast signal configuration method An example of a synchronous broadcast signal configuration method.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of multiple Physical components execute cooperatively.
  • Some or all of the physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit.
  • a processor such as a central processing unit, digital signal processor or microprocessor
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include but are not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), erasable programmable read-only memory (Erasable Programmable Read Only Memory, EEPROM), flash memory or other memory technologies, Compact Disc Read-Only Memory (CD-ROM), Digital Video Disc (DVD) or other optical disk storage, magnetic cassettes, tapes, magnetic disk storage or other magnetic storage devices , or any other medium that can be used to store desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种同步广播信号配置方法、装置、节点和存储介质,其中,该方法包括:用户设备接收基站发送的第一SSB,第一SSB的图样支持120kHz的SCS、240kHz的SCS,以及240kHz以上的SCS中的至少之一,用户设备根据第一SSB进行小区同步。

Description

同步广播信号配置方法、装置、节点和存储介质 技术领域
本申请涉及无线通信技术领域,例如一种同步广播信号配置方法、装置、节点和存储介质。
背景技术
用户设备(User Equipment,UE)开机后需要通过小区搜索获得小区标识(Identity,ID)以及时频同步。第五代移动通信技术(5th generation mobile communication technology,5G)的新空口(New Radio,NR)定义了一个新的参考信号为同步信号/物理广播信道块(Synchronization Signal/Physical Broadcast Channel Block,SS/PBCH block,SSB),UE可以通过检测SSB来执行小区搜索,并且基于SSB中的辅同步信号(Secondary Synchronization Signal,SSS)进行无线资源管理测量和无线链路管理。
对于5G NR版本-15/16频段2(Release-15/16 frequency range2,Release-15/16 FR2),SSB图样中的情况D(Case D)和情况E(Case E)分别支持120kHz的子载波间隔和240kHz的子载波间隔,由于控制信道或数据信道(比如,物理下行控制信道(Physical Downlink Control Channel,PDCCH)、物理上行控制信道(Physical Uplink Control Channel,PUCCH)、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)、物理上行共享信道(Physical Uplink Shared Channel,PUSCH))最大支持120kHz的子载波间隔(Subcarrier Spacing,SCS),因此,图样Case D和Case E仅考虑支持SSB与120kHz或60kHz的控制信道或数据信道共存。但是,如果在高频段(例如,52.6GHz以上),控制信道或数据信道或信号支持240kHz、480kHz甚至更高的SCS,那么120kHz和240kHz的SSB需要考虑与更高SCS的控制信道或数据信道的兼容问题。在高频段,即使120kHz和240kHz的SSB SCS与使用更高的SSB SCS(譬如480/960kHz)性能差异非常小,但一些仿真结果表明:相比于120/240kHz的SSB SCS,使用更高的SSB SCS仍然能取得一些增益。为了新空口高频(New Radio High Frequency,NR HF)能够与电气和电子工程师协会(Institute of Electrical and Electronics Engineers,IEEE)802.11ad/ay友好共存,NR HF有很大概率支持2.16GHz的载波名义带宽。为了支持这样的大带宽,数据信道和/或控制信道需要支持480kHz的SCS、960kHz的SCS或者更高的SCS,这样,SSB就需要使 用与数据信道和/或控制信道相匹配的SCS,那么就面临480kHz或960kHz的SSB的图样设计问题。
发明内容
本申请实施例提出一种同步广播信号配置方法、装置、节点和存储介质,实现120kHz和240kHz的SSB与更高SCS的控制信道或数据信道的兼容。
本申请实施例提供了一种同步广播信号配置方法,该方法包括:用户设备接收基站发送的第一SSB;用户设备根据第一SSB进行小区同步;第一SSB的图样支持120kHz的SCS、240kHz的SCS,以及240kHz以上的SCS中的至少之一。
本申请实施例提供了一种同步广播信号配置装置,该装置包括:接收模块,用于接收基站发送的第一SSB;同步模块,用于根据第一SSB进行小区同步;第一SSB的图样支持120kHz的SCS、240kHz的SCS,以及240kHz以上的SCS中的至少之一。
本申请实施例提供了一种网络节点,该节点包括存储器、处理器,存储在存储器上并可在处理器上运行的程序以及用于实现处理器和存储器之间的连接通信的数据总线,程序被处理器执行时实现本申请实施例提供的同步广播信号配置方法。
本申请实施例提供了一种可读写存储介质,用于计算机存储,存储介质存储有一个或者多个程序,该一个或者多个程序可被一个或者多个处理器执行,以实现本申请实施例提供的同步广播信号配置方法。
本申请实施例提供了一种同步广播信号配置方法、装置、节点和存储介质,其中,该方法包括:用户设备接收基站发送的第一SSB,第一SSB的图样支持120kHz、240kHz,以及240kHz以上的SCS中的至少之一,用户设备根据第一SSB进行小区同步。通过这样的方式可以实现120kHz和240kHz的SSB与更高SCS的控制信道或数据信道的兼容。
附图说明
图1是相关技术中的5G NR SS/PBCH block图样示意图。
图2是相关技术中的SSB的发送图样示意图。
图3是本申请实施例提供的一种同步广播信号配置方法的流程图。
图4是本申请实施例中的图样平移示意图。
图5是本申请实施例提供的一种同步广播信号配置装置结构示意图。
图6是本申请实施例提供的一种网络节点结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚明白,下文中将结合附图对本申请的实施例进行说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
另外,在本申请实施例中,“可选地”或者“示例性地”等词用于表示作例子、例证或说明。本申请实施例中被描述为“可选地”或者“示例性地”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“可选地”或者“示例性地”等词旨在以具体方式呈现相关概念。
为了便于更加清楚的理解本申请实施例提供的方案,在此对本申请实施例中所涉及到的相关概念进行解释,具体如下。
同步信号/物理广播信道块包括主同步信号/辅同步信号(Primary Synchronization Signal/Secondary Synchronization Signal,PSS/SSS)和物理广播信道(Physical Broadcast Channel,PBCH)。
如图1所示,5G NRSS/PBCH block的图样包括Case A、Case B、Case C、Case D、Case E共5个Case(参考第三代合作伙伴项目(the 3rd Generation Partnership Project,3GPP)技术规范(Technical Specification,TS)38.213 Release-15/16),Case A为15kHz,Case B和Case C为30kHz。Case D为120kHz,Case E为240kHz。Case A、Case B、Case C用于7GHz以下的载波频率(FR1),Case D和Case E用于24GHz以上的载波频率(FR2)。Case B和Case C的主要区别是每个1ms(2个时隙)内的4个SSB的图样不一样,五个Case中每个SSB都占用4个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
如图2所示,图2为图1的5个Case中1ms(for Case A、Case B、Case C)和0.25ms(for Case D、Case E)时间粒度内,SSB的发送图样。
在上述概念的基础上,本申请实施例提供了一种同步广播信号配置方法的流程图,如图3所示,该方法可以包括但不限于以下步骤。
S301、用户设备接收基站发送的第一SSB。
示例性地,上述基站发送的第一SSB的图样可以支持120kHz、240kHz,以 及240kHz以上的SCS中的至少之一。
S302、用户设备根据第一SSB进行小区同步。
由于用户设备获取的第一SSB的图样可以支持120kHz、240kHz,以及240kHz以上的SCS中的至少之一,那么用户设备根据第一SSB进行小区同步可以解决120kHz和240kHz的SSB与更高SCS的控制信道或数据信道的兼容问题。
本申请实施例提供了一种同步广播信号配置方法,该方法可以包括用户设备接收基站发送的第一SSB,第一SSB的图样支持120kHz、240kHz,以及240kHz以上的SCS中的至少之一,用户设备根据第一SSB进行小区同步。通过这样的方式可以实现120kHz和240kHz的SSB与更高SCS的控制信道或数据信道的兼容。
在一种示例中,第一SSB的图样包括窗内存在多个备选SSB,该多个备选SSB的第一个符号的序号为{2,8}+14n;其中,n表示时隙序号,每8个连续时隙之间间隔2个时隙,或者,每16个连续时隙之间间隔4个时隙。
例如,以120kHz的SSB Case D1为例,Case D1的图样可以支持120kHz SSB与SCS 120kHz或更高SCS(例如240kHz)的控制信道共存。Case D1的图样为在1个时隙内包含两个备选SSB(1个时隙包括14个符号,以下相同),每个备选SSB包括4个符号,这两个备选SSB在该时隙内的起始符号分别为{2,8}。Case D1在半时隙(7个符号)的开头和尾部均留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS或比SSB的图样支持的SCS更高的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。假设窗内存在64个备选SSB,那么这64个备选SSB位于32个时隙,每8个连续时隙之间间隔2个时隙,即n的取值为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37。
或者,假设第一SSB的图样包括SSB Case E2的图样,SSB Case E2的图样可以支持240kHz SSB与SCS 240kHz或更高SCS(例如480kHz)的控制信道共存。Case E2的图样为在1个时隙内包含两个备选SSB,每个备选SSB包括4个符号,这两个备选SSB在该时隙内的起始符号分别为{2,8}。Case E2在半时隙(7个符号)的开头和尾部均留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS或比SSB的图样支持的SCS更高的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。假设窗内存在64个备选SSB,那么这64个备选SSB位于32个时隙,每16个连续时隙之间间隔4个时隙,即n 的取值为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35。
需要说明的是,本申请实施例中的窗可以为发送窗、接收窗或者测量窗,窗内并不局限于仅存在64个备选SSB,可以存在更多个备选SSB。进一步地,窗长可以为5ms、4ms、3ms、2ms、1ms、0.5ms、0.25ms、0.125ms、62.5us、31.25us、15.625us等,本申请实施例对此不作限定。为了便于描述,在本申请实施例中,假设窗长为半帧(half frame)(5ms)。
在一种示例中,上述多个备选SSB的第一符号的序号也可以为{4,8,16,20}+28n,其中,n表示时隙对序号,每8个连续时隙对之间间隔4个时隙。例如,设计可以支持240kHz SSB与SCS 240kHz或更低SCS(例如120kHz)的控制信道共存的Case E1图样。Case E1图样在2个时隙内可以包含4个备选SSB,每个备选SSB包括4个符号,这4个备选SSB在这2个时隙(即28个符号)内的起始符号分别为{4,8,16,20}。Case E1在2个时隙的开头和尾部均留有空白符号,当SSB与更高SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。Case E1在2个时隙的每个时隙的开头和尾部也可以留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。同样地,假设Case E1的图样为在窗内存在64个备选SSB,那么这64个备选SSB位于32个时隙,即16个时隙对,若每8个连续时隙对之间间隔4个时隙,则n的取值为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17。
在一种场景下,例如,在高频段(例如,52.6GHz以上),即使120/240kHz的SSB SCS与使用更高的SSB SCS(譬如480/960kHz)性能差异非常小,但一些仿真结果表明:相比于120/240kHz的SSB SCS,使用更高的SSB SCS(譬如480/960kHz)仍然能取得一些增益。并且,NR HF有很大概率支持2.16GHz的载波名义带宽,为了NR HF能够与IEEE 802.11ad/ay友好共存,数据信道和/或控制信道需要支持480kHz、960kHz或更高的SCS,SSB最好使用与数据信道和/或控制信道相匹配的SCS。此外,SCS越大,频偏估计复杂性越低。那么在这种情形下,可以将上述第一SSB的图样设计为如下几种形式。
第一SSB的图样包括窗内存在多个备选SSB,多个备选SSB的第一个符号的序号为{4,8,16,20}+28n;其中,n表示时隙对序号,多个备选SSB位于连续的时隙中,或者,每4个连续时隙对之间间隔2个时隙,或者,每8个连续时隙对之间间隔4个时隙。
以480kHz的SSB Case F1为例,该Case F1的图样可以支持480kHz SSB 与SCS 480kHz或更低SCS(例如240kHz)的控制信道共存。Case F1在2个时隙内包含4个备选SSB,每个备选SSB包括4个符号,这4个备选SSB在2个时隙(28个符号)内的起始符号分别为{4,8,16,20}。Case F1在2个时隙的开头和尾部均留有空白符号,当SSB与更高SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。Case F1在2个时隙的每个时隙的开头和尾部也可以留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。假设窗内存在64个备选SSB,这个64个备选SSB可以位于32个连续时隙,也即16个连续时隙对,此时,n的取值可以为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15。或者,这64个备选SSB也可以位于32个时隙,即16个时隙对,每4个连续时隙对之间间隔2个时隙,那么n的取值可以为0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,或者,每8个连续时隙对之间间隔4个时隙,此时,n的取值为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17。
可选地,上述第一SSB也可以设计为960kHz的SSB Case G1,该Case G1的图样可以用于支持960kHz SSB与SCS 960kHz或更低SCS(例如480kHz)的控制信道共存。Case G1在2个时隙内包含4个备选SSB,每个备选SSB包括4个符号,这4个备选SSB在这2个时隙(28个符号)内的起始符号分别为{4,8,16,20}。Case G1在2个时隙的开头和尾部均留有空白符号,当SSB与更高SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。Case G1在2个时隙每个时隙的开头和尾部也可以留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。同样地,假设Case G1的图样为窗内存在64个备选SSB,这64个备选SSB可以位于32个连续时隙,即16个连续时隙对,此时,n的取值可以为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15。或者,这64个备选SSB可以位于32个时隙,即16个时隙对,每4个连续时隙对之间间隔2个时隙,那么n的取值可以为0,1,2,3,5,6,7,8,10,11,12,13,15,16,17,18,或者,每8个连续时隙对之间间隔4个时隙,此时,n的取值为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17。
在另一种情形下,上述窗内存在的多个备选SSB的第一个符号的序号也可以为{2,8}+14n;其中,n表示时隙序号,该多个备选SSB位于连续的时隙中,或者,每8个连续时隙之间间隔2个时隙,或者,每16个时隙之间间隔4个时隙。
例如,以480kHz的SSB Case F2为例,Case F2的图样可以支持480kHz SSB 与SCS 480kHz或更高SCS(例如960kHz)的控制信道共存。Case F2的图样为在1个时隙内包含两个备选SSB,每个备选SSB包括4个符号,这两个备选SSB在该时隙内的起始符号分别为{2,8}。Case F2在半时隙(7个符号)的开头和尾部均留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS或比SSB的图样支持的SCS更高的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。假设窗内存在64个备选SSB,那么这64个备选SSB可以位于32个连续时隙,即n的取值为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31。或者,这64个备选SSB位于32个时隙,每8个连续时隙之间间隔2个时隙,那么n的取值为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37。或者,这64个备选SSB位于32个时隙,每16个时隙之间间隔4个时隙,即n的取值为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35。
可选地,上述第一SSB也可以设计为960kHz的SSB Case G2,该Case G2的图样可以支持960kHz SSB与SCS 960kHz或更高SCS(例如1920kHz)的控制信道共存。Case G2的图样为在1个时隙内包含两个备选SSB,每个备选SSB包括4个符号,这两个备选SSB在该时隙内的起始符号分别为{2,8}。Case G2在半时隙(7个符号)的开头和尾部均留有空白符号,当SSB与具有与SSB的图样支持的SCS相同的SCS或比SSB的图样支持的SCS更高的SCS的控制信道共存时,这些符号可以发送PDCCH或PUCCH。假设窗内存在64个备选SSB,这64个备选SSB可以位于32个连续时隙,即n的取值为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31。或者,这64个备选SSB位于32个时隙,每8个连续时隙之间间隔2个时隙,即n的取值为0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20,21,22,23,24,25,26,27,30,31,32,33,34,35,36,37。或者,这64个备选SSB位于32个时隙,每16个时隙之间间隔4个时隙,此时,n的取值为0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35。
另一种场景下,在传统的FR2中,Case D和Case E中并不是两个SSB之间都留有一个符号或以上的时间间隔,Case D和Case E中有很多SSB是连续发送的。由于240kHz SCS对应的一般循环前缀(Normal Cyclic Prefix,Normal CP)长度为293ns(120kHz SCS对应的CP更长),在大部分场景下,这一长度大于 时延扩展、波束(beam)切换时间等长度之和。因此,beam切换可以在CP中进行,也即,如果SSB维持SCS(120/240kHz)不变,SSB之间不需要留有显式的波束切换间隙(beam switching gap)。但是,如果SSB采用480kHz、960kHz或更高的SCS,这个时候normal CP长度只有146ns、73ns甚至更低,normal CP仅能满足时延扩展的需要,不能在normal CP中进行beam切换操作。这种情况下,SSB之间就需要留有beam切换的时间,在此期间用户设备不接收任何数据。而且,如果两个SSB之间不存在时间间隔,若第一个SSB成功发送,那么在第二个SSB之前无法进行先侦听后会话(Listen Before Talk,LBT)操作。
基于上述场景下存在的问题,在一个时隙或两个时隙内,上述第一SSB的图样可以包括Case A、Case C、Case D1、Case E2、CaseF2、Case G2中至少之一的图样,并且,Case A、Case C、Case D1、Case E2、CaseF2、Case G2中两两SSB之间可以至少保留有2个以上的符号间隔。
或者,可以对相关技术的Case D的图样进行平移,将平移后得到的图样作为第一SSB图样。示例性地,该平移可以包括对Case D中同一时隙内连续两个SSB中前一个SSB向前平移,和/或,后一个SSB向后平移。
例如,将Case D图样中时隙序号为偶数的时隙(比如,时隙0,2,4,……)中的连续两个SSB中前一个SSB向前平移至少一个符号,和/或,将时隙序号为奇数的时隙(比如,时隙1,3,5,……)中的连续两个SSB中后一个SSB向后平移至少一个符号。
如图4所示,以图4中(a)为准,如果将Case D中时隙序号为偶数的时隙(时隙0)中的连续两个SSB中前一个SSB向前平移一个符号,并将时隙序号为奇数的时隙(时隙1)中的连续两个SSB中后一个SSB向后平移一个符号,那么新SSB图样在2个时隙内包含4个备选SSB,每个备选SSB包括4个符号,这4个备选SSB在这2个时隙(28个符号)内的起始符号分别为{3,8,16,21},如图4中(b)中的第一个图样所示。如果将Case D中时隙序号为偶数的时隙(时隙0)中的连续两个SSB中前一个SSB向前平移两个符号,并将时隙序号为奇数的时隙(时隙1)中的连续两个SSB中后一个SSB向后平移两个符号,那么平移后的4个备选SSB在这2个时隙内的起始符号分别为{2,8,16,22},如图4中(b)中的第二个图样所示。
在相关技术中,每个时隙存在2个备选SSB,例如,120kHz的Case D的图样中的64个SSB几乎占满了half frame窗,240kHz的Case E的图样中的64个SSB接近占满半个half frame窗。而由于SCS增加导致时隙长度变短,half frame窗内有足够的空间能够容纳64个SSB的发送,因此,可以在一个时隙内仅定义 一个备选SSB,或者限定一个时隙内仅会在一个波束上发送SSB,或者假定用户设备在一个时隙内最多接收到一个波束上的SSB,即相当于SSB索引、准共站址(Quasi Co-location,QCL)索引,以及beam索引相同,这样即可以保证有足够的时间用于beam切换。并且,一个时隙内仅定义一个备选SSB,还有利于与更低阶、同阶、或更高阶SCS PDCCH的共存。
示例性地,第一SSB的图样可以位于时隙的中间或近似中间位置。例如,备选SSB起始符号位于时隙中的符号0至符号8中的任意一个。为了保证SSB的覆盖和检测性能,每个备选SSB可以占用4个符号或更多个符号(也即每个备选SSB占用符号的数目大于等于4,且小于等于14)。比如,一个SSB中的PSS占用2个符号或4个符号,和/或,一个SSB中的SSS占用2个符号或4个符号,和/或,一个SSB中的PBCH占用至少3个符号(例如,占用3个符号、4个符号或更多个符号)。
可以将窗内的多个备选SSB分为多个组,两两组之间相隔至少一个符号,或者,至少一个时隙。例如,假设窗内共存在X个备选SSB,这X个备选SSB分为X组,即每组包括一个备选SSB,这个X个备选SSB分布在连续的X个时隙上,或者,连续承载备选SSB的两个时隙之间相隔一个时隙或多个时隙。或者,假设窗内共存在X个备选SSB,这X个备选SSB可以分为Y组,两个连续组之间相隔一个时隙或多个时隙。
可选地,也可以限定上述第一SSB的图样包括一个时隙内存在至少两个备选SSB,但是限定连续多个备选SSB具备相同的第一索引,该第一索引包括SSB索引、QCL索引、beam索引中的至少一个。例如,连续的2个(比如第奇数个和第偶数个)或4个备选SSB具备相同的SSB索引、QCL索引、beam索引;或者,同一个时隙或两个时隙内所有备选SSB具备相同的SSB索引、QCL索引、beam索引。比如,第一个备选SSB和第二个备选SSB具有相同的SSB索引、QCL索引、beam索引,第三个备选SSB和第四个备选SSB具有相同的SSB索引、QCL索引、beam索引,等等。
需要说明的是,本申请实施例中相同的SSB索引、QCL索引、beam索引表示SSB索引、QCL索引、beam索引中的一个或多个相同。
可选地,在一种示例中,基站可以向用户设备发送同一个时隙内的两个备选SSB中的其中一个,或者,在一个时隙内,基站只能在同一个波束上向用户设备发送SSB。
或者,同一个时隙内的两个备选SSB的备选SSB索引(candidate SSB index)可以不同,但是具有相同的SSB索引,或者,QCL索引,或者,beam索引。 基站在一个时隙内,可以只在一个波束上发送SSB,其中,同一个波束可以通过相同的SSB索引、QCL索引、beam索引定义,即基站在一个时隙内不会在多个波束上发送SSB。例如,在一个时隙的符号4-7上,基站在波束0上发送SSB成功,那么在同一个时隙的符号8-11上可以不发送SSB,如果需要发送SSB,那么可以在波束0上继续发送SSB。或者,在一个时隙的符号4-7上,由于LBT失败,即在波束0上发送SSB失败,那么可以基于同一时隙的符号8-11,在波束0上继续发送SSB。
相应地,上述步骤S301可以为用户设备在一个时隙内最多接收到一个SSB,或者,用户设备不会在一个时隙内接收到两个具备相同SSB索引、QCL索引、beam索引的SSB。也即,用户设备假定其在一个时隙内最多接收到一个SSB,或者,用户设备不会假定其在一个时隙内接收到两个具备相同SSB索引、QCL索引、beam索引的SSB。
基于这样的设计方式不仅可以解决波束切换的时间问题,也可以解决两个连续SSB之间没有时间间隔用以执行LBT的问题(例如,Case B、Case D、Case E、Case E1、Case F1、Case G1的图样),同时,这一设计方式也可以应用于Case A、Case C、Case D1、Case E2、Case F2、Case G2的图样中一个时隙内两个SSB不连续的情形下。
在一种示例中,在FR2频率(24.25GHz-52.6GHz)的载波以及FR2以上频率(例如52.6GHz-71GHz)的载波的场景下,一般支持64个beam的发送即可,相应的,在窗内定义64个备选SSB即可以满足要求。但为了增加SSB在窗内的发送机会,尤其针对非授权场景,可以在窗内定义更多个备选SSB。
例如,对于240kHz SCS的SSB,可以在half frame窗内定义128个备选SSB,备选SSB的编号分别为0~127。
对于480kHz SCS的SSB,可以在half frame窗内定义256个备选SSB,备选SSB的编号分别为0~255。
对于960kHz SCS的SSB,可以在half frame窗内定义512个备选SSB,备选SSB的编号分别为0~511。
或者,对于240/480/960kHz SCS的SSB,在一个相比half frame窗更小的窗内(例如,1ms、0.5ms等)定义64个或更多个备选SSB(譬如X个),这些备选SSB编号分别为0-(X-1)。
同样地,上述窗长可以为5ms、4ms、3ms、2ms、1ms、0.5ms、0.25ms、0.125ms、62.5us、31.25us、15.625us等,为了便于描述,将窗长假设为half frame(5ms)。
在一种示例中,上述第一索引可以根据第一算法计算得到。例如,该第一算法可以包括将第二索引除以X后向下取整得到计算结果,根据计算结果和Q进行取模计算。第二索引包括备选SSB索引(candidate SSB index)或解调参考信号序列索引(Demodulation Reference Signal Index,DMRS index),X表示具备相同第一索引的连续多个备选SSB的数目,Q表示波束数目或准共站址关系数目(例如,3GPP TS 38.213 v16.3.0中定义的
Figure PCTCN2021132250-appb-000001
亦可定义为SSB的准共站址关系数目)。
需要说明的是,上述备选SSB索引与SSB索引(SSB index)并不等效,备选SSB索引携带在基站发送的SSB中,用户设备根据从SSB中解调出的备选SSB索引即可计算出SSB索引。但SSB索引与准共站址索引(QCL index)、波束索引(Beam index)在一定程度上可以等效。
示例性地,若同一时隙或两个时隙内连续2个备选SSB具备相同的第一索引,那么第一索引的计算方式可以如下所示:
以SSB索引为例,
Figure PCTCN2021132250-appb-000002
或者,假设连续4个备选SSB具备相同的第一索引,例如,candidate SSB 0,candidate SSB 1,candidate SSB 2,candidate SSB 3具备相同的QCL关系,那么以SSB索引为例,其计算方式可以如下所示:
Figure PCTCN2021132250-appb-000003
需要说明的是,QCL是指一个天线端口上的符号所经历的信道的大尺度参数可以从另一个天线端口上的符号所经历的信道推断出来。大尺度参数可以包括时延扩展、平均时延、多普勒扩展、多普勒偏移、平均增益以及空间接收参数中的一个或多个。具备相同的SSB索引或QCL index或Beam index的SSBs之间是QCL的,例如,在平均增益、QCL-类型A(TypeA)以及QCL-TypeD等方面。
在一种示例中,上述步骤S301的实现方式可以包括用户设备根据基站发送的第一SSB获取备选SSB索引。
示例性地,上述备选SSB索引可以承载在DMRS序列上。其中,DMRS序列加扰初始化的公式如下所示:
Figure PCTCN2021132250-appb-000004
Figure PCTCN2021132250-appb-000005
表示备选SSB索引的最低4比特(bit)、5bit或6bit,即需要通过16个或32个DMRS序列承载这4bit或5bit,
Figure PCTCN2021132250-appb-000006
表示小区标识。
可选地,备选SSB索引也可以承载在PBCH有效载荷(payload)(非主信息块(Master Information Block,MIB))中,由于PBCH payload的8bit中有1bit用于发送低频的备选SSB索引,而对高频场景而言,没有空余的比特可用。因而,上述用于承载备选SSB索引的PBCH payload中重新定义有发送备选SSB索引的比特数,例如,额外定义1bit或2bit用于发送备选SSB索引。
例如,假设表示备选SSB索引个数等于64,PBCH payload中
Figure PCTCN2021132250-appb-000007
全部被使用,那么可以在PBCH payload中新定义1bit或2bit或3bit发送备选SSB索引,例如,新定义
Figure PCTCN2021132250-appb-000008
和/或
Figure PCTCN2021132250-appb-000009
需要说明的是,PBCH payload的比特数增加不影响加扰和循环冗余校验(Cyclic Redundancy Check,CRC)的过程,加扰后和CRC校验后的PBCH payload的比特数相应的增加1bit或2bit或3bit。极化码(Polar)编码输出的512bit不变。因此Polar编码后续的过程,甚至资源元素映射过程都不会受到影响。
在一种示例中,备选SSB索引也可以承载在MIB中,通过MIB中已定义或未定义的信息bit发送备选SSB索引,例如,通过MIB中的subCarrierSpacingCommon、或ssb-SubcarrierOffset、或pdcch-ConfigSIB1、或spare进行发送。这些信息bit在5G高频或非授权载波场景下可能闲置,因此可以用于发送备选SSB索引。或者,可以将备选SSB索引承载在系统消息块(System Information Block,SIB)中,例如,通过SIB1或其它系统信息(Other System Information,OSI)(即其他信息比特,比如SIB2、SIB3等)发送备选SSB索引。
图5为本申请实施例提供的一种同步广播信号配置装置。如图5所示,该装置可以包括:接收模块501和同步模块502;其中,接收模块,用于接收基站发送的第一SSB;同步模块,用于根据第一SSB进行小区同步;其中,第一SSB的图样支持120kHz、240kHz,以及240kHz以上的SCS中的至少之一。
在一种示例中,上述第一SSB的图样包括窗内存在多个备选SSB,该多个备选SSB的第一个符号的序号为{2,8}+14n;其中,n表示时隙序号,每8个连续时隙之间间隔2个时隙,或者,每16个连续时隙之间间隔4个时隙。
或者,第一SSB的图样包括窗内存在多个备选SSB,该多个备选SSB的第一个符号的序号为{4,8,16,20}+28n;其中,n表示时隙对序号,每8个连续时隙对之间间隔4个时隙。
在一种示例中,第一SSB的图样可以包括窗内存在多个备选SSB,多个备 选SSB的第一个符号的序号为{4,8,16,20}+28n;其中,n表示时隙对序号,多个备选SSB位于连续的时隙,或者,每4个连续时隙对之间间隔2个时隙,或者,每8个连续时隙对之间间隔4个时隙。
或者,第一SSB的图样包括窗内存在多个备选SSB,多个备选SSB的第一个符号的序号为{2,8}+14n;其中,n表示时隙序号,多个备选SSB位于连续的时隙,或者,每8个连续时隙之间间隔2个时隙,或者,每16个时隙之间间隔4个时隙。
在一种示例中,第一SSB的图样可以包括对Case D的图样平移后得到的图样,该平移包括将Case D的图样中同一时隙内连续两个SSB中前一个SSB向前平移,和/或,后一个SSB向后平移。
可选地,第一SSB的图样可以包括一个时隙内存在一个备选SSB,这一个备选SSB至少占用4个符号,并且一个备选SSB的起始符号位于一个时隙内的符号0至符号8中的任意一个。
窗内的多个备选SSB可以分为多个组,每个组之间相隔至少一个符号,或者,每个组之间相隔至少一个时隙。
在一种示例中,第一SSB的图样包括一个时隙内存在至少两个备选SSB,并且,连续多个备选SSB具备相同的第一索引,第一索引包括SSB索引、准共站址索引、波束索引中的至少之一。
示例性地,第一索引可以根据第一算法计算得到,例如,第一算法可以包括:将第二索引除以X后向下取整得到计算结果,根据计算结果和Q进行取模计算。
第二索引包括备选SSB索引或DMRS索引,X表示具备相同第一索引的连续多个备选SSB的数目,Q表示波束数目或准共站址关系数目。
可选地,接收模块,还可以用于根据基站发送的第一SSB获取备选SSB索引。
示例性地,上述备选SSB索引可以承载在DMRS序列上;或者,备选SSB索引承载在PBCH payload中,PBCH payload中重新定义有发送备选SSB索引的比特数;或者,备选SSB索引承载在主信息块中;或者,备选SSB索引承载在系统消息块中。
本实施例提供的同步广播信号配置装置用于实现图3所示实施例的同步广播信号配置方法,其实现原理和技术效果类似,此处不再赘述。
图6为一实施例提供的一种网络节点的结构示意图。如图6所示,该节点 包括处理器601和存储器602;节点中处理器601的数量可以是一个或多个,图6中以一个处理器601为例;节点中的处理器601和存储器602可以通过总线或其他方式连接,图6中以通过总线连接为例。
存储器602作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请图3实施例中的同步广播信号配置方法对应的程序指令/模块(例如,同步广播信号配置装置中的接收模块501和同步模块502)。处理器601通过运行存储在存储器602中的软件程序、指令以及模块实现上述的同步广播信号配置方法。
存储器602可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据机顶盒的使用所创建的数据等。此外,存储器602可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
本申请实施例还提供了一种可读写存储介质,用于计算机存储,该存储介质存储有一个或者多个程序,一个或者多个程序可被一个或者多个处理器执行,以执行上述实施例中的一种同步广播信号配置方法。
本领域普通技术人员可以理解,上文中所公开方法中的全部或一些步骤、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由多个物理组件合作执行。一些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、可擦式可编程只读存储器(Erasable Programmable Read Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Video Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问 的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图仅说明了本申请的示例性实施例而已,并非因此局限本申请的权利范围。本领域技术人员不脱离本申请的范围和实质内所作的任何修改、等同替换和改进,均应在本申请的权利范围之内。

Claims (16)

  1. 一种同步广播信号配置方法,包括:
    用户设备接收基站发送的第一同步信号/物理广播信道块SSB;
    所述用户设备根据所述第一SSB进行小区同步;
    所述第一SSB的图样支持120kHz的子载波间隔、240kHz的子载波间隔,以及240kHz以上的子载波间隔中的至少之一。
  2. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括窗内存在多个备选SSB,所述多个备选SSB的第一个符号的序号为{2,8}+14n;
    其中,n表示时隙序号,每8个连续时隙之间间隔2个时隙,或者,每16个连续时隙之间间隔4个时隙。
  3. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括窗内存在多个备选SSB,所述多个备选SSB的第一个符号的序号为{4,8,16,20}+28n;
    其中,n表示时隙对序号,每8个连续时隙对之间间隔4个时隙。
  4. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括窗内存在多个备选SSB,所述多个备选SSB的第一个符号的序号为{4,8,16,20}+28n;
    其中,n表示时隙对序号,所述多个备选SSB位于连续的时隙中,或者,每4个连续时隙对之间间隔2个时隙,或者,每8个连续时隙对之间间隔4个时隙。
  5. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括窗内存在多个备选SSB,所述多个备选SSB的第一个符号的序号为{2,8}+14n;
    其中,n表示时隙序号,所述多个备选SSB位于连续的时隙中,或者,每8个连续时隙之间间隔2个时隙,或者,每16个时隙之间间隔4个时隙。
  6. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括对Case D的图样平移后得到的图样;
    所述平移包括所述Case D的图样中同一时隙内连续两个SSB中前一个SSB向前平移,或者,所述平移包括所述Case D的图样中同一时隙内连续两个SSB中后一个SSB向后平移,或者,所述平移包括所述Case D的图样中同一时隙内连续两个SSB中前一个SSB向前平移以及后一个SSB向后平移。
  7. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括一个时隙内存在一个备选SSB,所述一个备选SSB至少占用4个符号,所述一个备选SSB的起始符号位于所述一个时隙内的符号0至符号8中的任意一个。
  8. 根据权利要求7所述的方法,其中,窗内的多个备选SSB分为多个组,所述多个组中的每两组之间相隔至少一个符号,或者,所述多个组中的每两组之间相隔至少一个时隙。
  9. 根据权利要求1所述的方法,其中,所述第一SSB的图样包括一个时隙内存在至少两个备选SSB,并且,连续多个备选SSB具备相同的第一索引,所述第一索引包括SSB索引、准共站址索引、波束索引中的至少之一。
  10. 根据权利要求9所述的方法,其中,所述第一索引根据第一算法计算得到,所述第一算法包括:将第二索引除以X后向下取整得到计算结果,对所述计算结果和Q进行取模计算;
    其中,所述第二索引包括备选SSB索引或解调参考信号序列索引,所述X表示具备相同第一索引的所述连续多个备选SSB的数目,所述Q表示波束数目或准共站址关系数目。
  11. 根据权利要求1所述的方法,其中,所述用户设备接收基站发送的第一SSB,包括:
    所述用户设备根据所述基站发送的所述第一SSB获取备选SSB索引。
  12. 根据权利要求11所述的方法,其中,所述备选SSB索引承载在解调参考信号序列上;
    或者,所述备选SSB索引承载在物理广播信道有效载荷中,所述物理广播信道有效载荷重新定义有发送所述备选SSB索引的比特数。
  13. 根据权利要求11所述的方法,其中,所述备选SSB索引承载在主信息块中;
    或者,所述备选SSB索引承载在系统消息块中。
  14. 一种同步广播信号配置装置,包括:
    接收模块,设置为接收基站发送的第一同步信号/物理广播信道块SSB;
    同步模块,设置为根据所述第一SSB进行小区同步;
    所述第一SSB的图样支持120kHz的子载波间隔、240kHz的子载波间隔,以及240kHz以上的子载波间隔中的至少之一。
  15. 一种网络节点,包括:存储器、处理器,存储在所述存储器上并可在所述处理器上运行的程序,以及用于实现所述处理器和所述存储器之间的连接通信的数据总线,所述程序被所述处理器执行时实现如权利要求1-13任一项所述的同步广播信号配置方法。
  16. 一种可读写存储介质,用于计算机存储,其特征在于,所述可读写存储介质存储有至少一个程序,所述至少一个程序可被至少一个处理器执行,以实现如权利要求1-13任一项所述的同步广播信号配置方法。
PCT/CN2021/132250 2020-11-24 2021-11-23 同步广播信号配置方法、装置、节点和存储介质 WO2022111432A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011333998.9 2020-11-24
CN202011333998.9A CN112566234A (zh) 2020-11-24 2020-11-24 同步广播信号配置方法、装置、节点和存储介质

Publications (1)

Publication Number Publication Date
WO2022111432A1 true WO2022111432A1 (zh) 2022-06-02

Family

ID=75043514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132250 WO2022111432A1 (zh) 2020-11-24 2021-11-23 同步广播信号配置方法、装置、节点和存储介质

Country Status (2)

Country Link
CN (1) CN112566234A (zh)
WO (1) WO2022111432A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4091375A4 (en) * 2021-04-06 2023-05-03 Apple Inc. SYNCHRONIZATION SIGNAL BLOCK AND BROADCAST PHYSICAL CHANNEL TRANSMISSION IN WIRELESS COMMUNICATIONS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质
CN115190613A (zh) * 2021-04-06 2022-10-14 展讯通信(上海)有限公司 同步信号块ssb确定方法及相关设备
CN115250528A (zh) * 2021-04-25 2022-10-28 北京紫光展锐通信技术有限公司 Sl-ssb的传输方法及相关装置
CN114095142B (zh) * 2021-11-18 2023-12-05 紫光展锐(重庆)科技有限公司 信号处理方法及相关装置
CN114501610B (zh) * 2022-04-02 2022-07-15 北京云智软通信息技术有限公司 小区同步方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置
CN111183683A (zh) * 2017-07-25 2020-05-19 三星电子株式会社 用于未许可的新无线电频谱的同步信号块时间位置和同步信号突发集构成的装置和方法
CN111314260A (zh) * 2020-02-14 2020-06-19 展讯通信(上海)有限公司 通信方法、装置、设备及存储介质
CN111669238A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质
WO2021226963A1 (zh) * 2020-05-14 2021-11-18 Oppo广东移动通信有限公司 一种ssb的确定方法及装置、通信设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111183683A (zh) * 2017-07-25 2020-05-19 三星电子株式会社 用于未许可的新无线电频谱的同步信号块时间位置和同步信号突发集构成的装置和方法
CN110601809A (zh) * 2019-09-30 2019-12-20 北京展讯高科通信技术有限公司 信息发送方法及装置、信息接收方法及装置
CN111314260A (zh) * 2020-02-14 2020-06-19 展讯通信(上海)有限公司 通信方法、装置、设备及存储介质
WO2021226963A1 (zh) * 2020-05-14 2021-11-18 Oppo广东移动通信有限公司 一种ssb的确定方法及装置、通信设备
CN111669238A (zh) * 2020-05-15 2020-09-15 中国信息通信研究院 一种高频发现信号传输方法、设备和系统
CN112566234A (zh) * 2020-11-24 2021-03-26 中兴通讯股份有限公司 同步广播信号配置方法、装置、节点和存储介质

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4091375A4 (en) * 2021-04-06 2023-05-03 Apple Inc. SYNCHRONIZATION SIGNAL BLOCK AND BROADCAST PHYSICAL CHANNEL TRANSMISSION IN WIRELESS COMMUNICATIONS

Also Published As

Publication number Publication date
CN112566234A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
WO2022111432A1 (zh) 同步广播信号配置方法、装置、节点和存储介质
US11516773B2 (en) Methods and apparatus for supporting multiple services in wireless communication system
US11729797B2 (en) Method and apparatus for supporting large subcarrier spacing for SS/PBCH block
US10959253B2 (en) Transmission method and apparatus using numerology and scheduling method and apparatus using numerology
WO2019096291A1 (zh) 信息发送、接收方法及装置
ES2840062T3 (es) Procedimientos y aparato de soporte de múltiples servicios en sistema de comunicación inalámbrica
JP6538054B2 (ja) ワイヤレス通信システムにおける基準信号生成
JP6113854B2 (ja) セルラワイヤレス通信におけるフレキシブルスペクトルサポート
WO2020143718A1 (zh) 控制信道的监测方法及装置、发送方法及装置、存储介质
WO2015065017A1 (ko) 무선 통신 시스템에서 장치 대 장치 단말의 신호 송수신 방법 및 장치
US11909561B2 (en) Transmission in an inactive state
JP2022095933A (ja) ランダムアクセス方法及び装置
KR101611268B1 (ko) 2개의 무선 통신 방식을 지원하는 무선 통신 시스템에서의 레인징 수행 방법
RU2758784C1 (ru) Пользовательское устройство
CN113498630A (zh) 用于在未经许可的nr中配置rach机会的方法和装置
WO2018228567A1 (zh) 带宽资源配置方法、装置和系统
KR20140060162A (ko) 이동 통신 시스템에서 다중-접속 신호 생성/복원 방법 및 장치
JP2021503791A (ja) 検出ウィンドウ指示方法及び装置
WO2020048481A1 (zh) 通信方法及装置
WO2019128432A1 (zh) 一种扩频通信方法、用户设备和基站
CN113766648B (zh) 一种ssb传输方法和装置及设备
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
WO2017177977A1 (zh) 一种系统信息的发送方法和装置
JP2021521669A (ja) クリアチャネルのリスニング方法、装置及び機器
CN112753257A (zh) 由用户设备、基站执行的方法以及用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896933

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02/11/2023)