WO2019128432A1 - 一种扩频通信方法、用户设备和基站 - Google Patents

一种扩频通信方法、用户设备和基站 Download PDF

Info

Publication number
WO2019128432A1
WO2019128432A1 PCT/CN2018/112136 CN2018112136W WO2019128432A1 WO 2019128432 A1 WO2019128432 A1 WO 2019128432A1 CN 2018112136 W CN2018112136 W CN 2018112136W WO 2019128432 A1 WO2019128432 A1 WO 2019128432A1
Authority
WO
WIPO (PCT)
Prior art keywords
spreading
sequences
sequence
data
spreading sequences
Prior art date
Application number
PCT/CN2018/112136
Other languages
English (en)
French (fr)
Inventor
牟勤
刘柳
刘文佳
侯晓林
Original Assignee
株式会社Ntt都科摩
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ntt都科摩 filed Critical 株式会社Ntt都科摩
Priority to CN201880084302.8A priority Critical patent/CN111543009B/zh
Priority to US16/958,905 priority patent/US11139854B2/en
Publication of WO2019128432A1 publication Critical patent/WO2019128432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0074Code shifting or hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/713Spread spectrum techniques using frequency hopping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B2001/6904Spread spectrum techniques using code hopping

Definitions

  • the present application relates to the field of wireless communications, and in particular to a spread spectrum communication method, user equipment and base station that can be used in a wireless communication system.
  • Spread spectrum communication technology is a technology that uses information processing to improve transmission performance. Its characteristic is that the bandwidth used to transmit data is much larger than the bandwidth occupied by the data itself.
  • the spread spectrum communication technology spreads the data in a spreading sequence at the transmitting end, and despreads according to the same spreading sequence at the receiving end to recover the transmitted data.
  • Spread spectrum communication technology can obtain strong anti-interference ability and high transmission rate by using wide spectrum, and spread spectrum communication technology is also improved because different user equipments can be carried by using different spreading sequences in the same frequency band. The multiplexing rate of the frequency band.
  • the 5G non-orthogonal multiple access (NOMA) technology can use non-orthogonal transmission at the transmitting end, which actively introduces interference information and implements correct demodulation through serial interference cancellation (SIC) at the receiving end.
  • the sub-channels of the NOMA are orthogonal, but the same sub-channel is shared by multiple user equipments, and non-orthogonal transmission is implemented between different user equipments on the same sub-channel.
  • the base station allocates different spreading sequences for different user equipments on the same subchannel, so that the spread data between different user equipments is orthogonalized as much as possible.
  • a resource allocation method based on RACH-less scheduling will be introduced.
  • the user equipment instead of allocating the spreading sequence by the base station, the user equipment is required to select the spreading sequence by itself in the pre-configured set of spreading sequences for spreading. At this time, if two or more user equipments on the same subchannel select the same spreading sequence, continuous collision and interference will occur between the transmitted data, which is disadvantageous for the base station to correctly despread the data.
  • a spread spectrum communication method which is applied to a user equipment, and includes: in a set of spreading sequences, respectively selecting a spreading sequence for a plurality of symbols in data to be transmitted, where The spreading sequences selected by the at least two symbols are different; the data is spread using the selected spreading sequence; and the spread data is transmitted.
  • a spread spectrum communication method which is applied to a base station, comprising: receiving spread spectrum data sent by a user equipment, wherein at least two spread spectrum symbols in the data are different
  • the spreading sequence is obtained by spreading, and the spreading sequence is selected from a set of spreading sequences; and the data is despread according to a spreading sequence in the set of spreading sequences.
  • a user equipment comprising: a selecting unit configured to select, in a set of spreading sequences, a spreading sequence for each of a plurality of symbols in a data to be transmitted, wherein, for at least The spreading sequences selected by the two symbols are different; the spreading unit is configured to spread the data by using the selected spreading sequence; and the transmitting unit is configured to transmit the spread data.
  • a base station including: a receiving unit, configured to receive spread spectrum data sent by a user equipment, where at least two spreading symbols in the data are differently expanded The frequency sequence is obtained by spreading, and the spreading sequence is selected from a set of spreading sequences; and the despreading unit is configured to despread the data according to the spreading sequence in the set of spreading sequences.
  • the user equipment can respectively select the spreading sequence in the set of spreading sequences for the plurality of symbols in the data to be transmitted, and ensure that at least two of them are targeted for The spreading sequences of the symbols are different, so that the continuous collision and interference between the spread spectrum data transmitted between different user equipments can be minimized, which is beneficial to the base station to correctly receive and despread the received spread spectrum data, and reduce The block error rate of data transmission improves the accuracy of data decoding.
  • FIG. 1 is a schematic diagram of a communication system for implementing a scenario of an embodiment of the present invention
  • Figure 2 shows an example of a set of spreading sequences
  • 3 is a schematic diagram showing user equipment spreading a transmitted data
  • FIG. 4 shows an example in which a plurality of UEs respectively select a spreading sequence in a set of spreading sequences to spread and transmit data
  • FIG. 5 is a flowchart showing a method of spread spectrum communication according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a UE performing spreading according to a first implementation manner in the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a UE performing spreading according to a second implementation manner in the embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a UE performing spectrum expansion in a third implementation manner according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram showing another example of performing spreading of a UE in a third implementation manner in the embodiment of the present invention.
  • FIG. 10 is a flowchart showing a method of spread spectrum communication according to an embodiment of the present invention.
  • FIG. 11 is a structural block diagram of a UE according to an embodiment of the present invention.
  • FIG. 12 is a structural block diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a diagram showing an example of a hardware configuration of a user equipment or a base station according to an embodiment of the present invention.
  • the base station BS can generate a wireless connection with two user equipments UE1 and UE2, respectively, and UE1 and UE2 can respectively send data to the base station.
  • UE1 and UE2 may also transmit the spread data to the base station separately.
  • the base station can directly configure the spreading sequence for UE1 and UE2, and transmit the signal to the base station through signaling.
  • a set of spreading sequences may be configured, so that when performing spread spectrum communication, UE1 and UE2 respectively select a spreading sequence from the set of spreading sequences.
  • the set of spreading sequences may comprise a plurality of spreading sequences, each of which may comprise one or more elements.
  • the set of spreading sequences may be pre-configured.
  • the set of spreading sequences may be pre-configured in the base station and the UE, or may be configured by the base station and notified to the UE by various signaling.
  • the set may be configured by the base station according to actual conditions, or may be a set described in the 3GPP standard.
  • the structure of the communication system shown in FIG. 1 is only an example. In a practical application scenario, a base station can generate a connection with any user equipment and perform signaling and data transmission.
  • FIG. 2 shows an example of a set of spreading sequences.
  • the set of spreading sequences S may include six spreading sequences, which are respectively S1, S2, S3, S4, S5, and S6, and each spreading sequence may include four elements.
  • FIG. 3 shows a schematic diagram of user equipment spreading the transmitted data.
  • the user equipment UE1 may select the spreading sequence S1 for spreading, wherein for the three symbols of the UE1 data, the UE1 applies the same spreading sequence S1 to the three symbols for spreading.
  • spread spectrum data comprising three spreading symbols is formed, each spreading symbol comprising 4 symbols.
  • the UE1 may send the spread spectrum data to the base station, so that the base station receives and despreads the data.
  • the base station may select the same spreading sequence S1 as the spreading sequence selected by the UE1 in the set of spreading sequences S.
  • the base station may perform despreading for each spreading symbol in the spread spectrum data by using the same spreading sequence S1.
  • FIG. 4 shows an example in which a plurality of UEs respectively select a spreading sequence in a set of spreading sequences to spread and transmit data.
  • UE1-UE4 are selected in the set of spreading sequences having the spreading sequences S1, S2, S3 and S4, it is assumed that UE1 selects the spreading sequence S1, and UE2 selects the spreading sequence S2, and UE3 and UE4 select the same spreading sequence S3 for spreading.
  • the spread data of UE1, UE2 and the spread spectrum data of other UEs do not generate too much interference.
  • continuous unavoidable interference is generated due to the same spreading sequence, which may cause the base station to receive data and despreading failure, and the correct data transmitted by UE3 and UE4 cannot be obtained.
  • Embodiments of the present invention provide a spread spectrum communication method, which can minimize interference between spread spectrum data transmitted by multiple user equipments.
  • FIG. 5 shows a flow chart of the spread spectrum communication method 500.
  • step S501 in a set of spreading sequences, a spreading sequence is respectively selected for a plurality of symbols in data to be transmitted, wherein a spreading sequence selected for at least two symbols is different .
  • the UE may separately select respective spreading sequences for different symbols in the data to be transmitted, so as to avoid continuous mutual interference with the spread spectrum data of other UEs as much as possible.
  • at least two different spreading sequences can be selected such that the spreading sequences for at least two symbols are different.
  • the set of the spreading sequence may be pre-configured, for example, may be pre-configured in the base station and the UE, or may be configured by the base station according to actual conditions and notified to the UE by using various signalings, for example, the base station may pass the high layer signaling. Sending the set of spreading sequences to the UE.
  • the UE may randomly select a spreading sequence for each of a plurality of symbols in the data to be transmitted in the set of spreading sequences.
  • the UE randomly selects a spreading sequence for at least two symbols in the data to be transmitted, and ensures that the spreading sequences between the at least two symbols are different.
  • FIG. 6 is a schematic diagram of a UE performing spread spectrum according to a first implementation manner of the embodiment of the present invention.
  • UE1-UE4 may respectively select different spreading sequences for different symbols of their data for spreading.
  • UE1 may perform spreading for the first symbol selection spread spectrum sequence S1, and for the second symbol selection spread spectrum sequence S2 for spreading, and so on.
  • UE2 may perform spreading for the first symbol selection spreading sequence S2, and select the spreading sequence S3 for the second symbol for spreading.
  • the spreading sequences used by the individual symbols of the individual UEs are randomly selected.
  • the persistent interference between the spread data of UE3 and UE4 as shown in FIG. 4 mentioned above can be avoided as much as possible, and the interference of each different spreading symbol in the data of UE4 is dispersed to different users.
  • Between devices. It can be seen from FIG. 6 that even if the first symbol of UE4 and the first symbol of UE1 select the same spreading sequence, thereby generating interference between their spreading symbols, since the second symbol of UE1 is random, The spreading sequence S3 is selected, and the second symbol of UE4 randomly selects the spreading sequence S3. Therefore, the second spreading symbols of UE1 and UE4 no longer interfere.
  • the second spreading symbol of UE4 is changed to generate interference with UE2, so that interference between data transmitted by different user equipments can be randomized to facilitate data reception and despreading by the base station.
  • the UE may first select a first spreading sequence for the first symbol in the set of spreading sequences, where the first symbol may be the first symbol in the data to be sent by the UE. Or arbitrarily assigned one symbol; then based on the first spreading sequence of the first symbol and the number of hops selected for the user equipment in the hop count set, in the spreading sequence A second spreading sequence for its second symbol is determined in the set, wherein the hop count represents an offset between spreading sequences in the set of spreading sequences. For example, the number of hops may represent an offset between spreading sequence numbers in a set of spreading sequences.
  • the first spreading sequence for the first symbol may be randomly selected by the UE in the set of spreading sequences, and the number of hops may also be randomly selected by the UE in the set of hopping numbers.
  • the hopping number set may also be pre-configured.
  • the hopping number set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, etc. (for example, the base station may perform the hopping through high layer signaling.
  • the set of numbers is sent to the UE), of course, the standard can also be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the second spreading sequence in the set of spreading sequences can be determined accordingly.
  • the second spreading sequence may be determined according to the offset of the first spreading sequence indicated by the hop count in the set of spreading sequences, that is, the position of the first spreading sequence in the set of spreading sequences is hopped
  • the offset indicated by the number determines a spreading sequence located at the offset position in the set of spreading sequences as the second spreading sequence.
  • the first symbol and the second symbol may be two adjacent symbols in the same transport block, or may be two symbols with a certain interval, which is not limited herein.
  • the third symbol may continue in a manner similar to the second symbol.
  • the third spreading sequence to the Nth spreading sequence to which the Nth symbol is spread is determined.
  • the UE may continue to determine the third spreading sequence for the third symbol using the second spreading sequence and the previously selected number of hops, and so on, until the Nth spreading sequence for the Nth symbol is determined.
  • the Nth spreading sequence can be expressed, for example, as the ((i+(N-1) ⁇ f) mod M+1) spreading sequence.
  • the above description is only an example, and the number of hops used by the UE for different symbols may also be different, for example, the number of hops for selecting the second spreading sequence for the second symbol may be 1, and the third spreading for the third symbol.
  • the number of hops of the sequence can be 3, and no limitation is imposed here.
  • FIG. 7 is a schematic diagram of a UE performing spreading according to a second implementation manner in the embodiment of the present invention. As shown in FIG. 7, in the set of spreading sequences including the spreading sequences S1, S2, S3, and S4 and the hopping number set including the hop numbers 1 and 3, UE1-UE4 can select respective hop numbers, and The first symbol selects a respective spreading sequence for spreading.
  • the number of hops selected by UE1 is 1, and the first spreading sequence selected for the first symbol is S1; the number of hops selected by UE2 is 1, and the first spreading selected for the first symbol The sequence is S2; the number of hops selected by UE3 is 1, and the first spreading sequence selected for the first symbol is S3; the number of hops selected by UE4 is 3, and the first selected for the first symbol
  • the spreading sequence is S1.
  • the spread data of UE1-UE4 is as shown in FIG. 6.
  • the set of spreading sequences may include a plurality of spreading sequence groups, and each of the spreading sequence groups may include one or more spreading sequences.
  • the number of spreading sequences included in the set of spreading sequences may be the same or different.
  • the UE may select a set of spreading sequences in the set of spreading sequences, and spread a plurality of symbols of the data by using a spreading sequence in the selected set of spreading sequences.
  • the UE may first perform spreading on each of the spreading sequences of the set of spreading sequences for the same number of spreading sequences included in the set of spreading sequences of the set of spreading sequences, and then perform spreading separately.
  • each symbol in the data to be transmitted is spread.
  • each spreading sequence group in the set of spreading sequences includes 4 spreading sequences
  • the UE may utilize each spreading sequence in the selected spreading sequence group in units of 4 symbols.
  • the data to be transmitted is spread until the spreading is completed for all symbols.
  • the UE spreads some of the symbols in the data by using one of the selected spreading sequence groups, it can continue to spread the other symbols by using the same spreading sequence group, and can also reselect different symbols.
  • the spreading sequence group spreads the other symbols.
  • the specific spreading sequence group selection mode and the spreading mode are not limited herein.
  • FIG. 8 is a schematic diagram of a UE performing spreading according to a third implementation manner in the embodiment of the present invention.
  • a total of at least five spreading sequence groups are included in the set of spreading sequences, each spreading sequence group includes three spreading sequences, and UE1-UE4 selects and pairs data in these spreading sequence groups.
  • the frequency sequence group 1 spreads three sets of other symbols in its data and obtains the final spread spectrum data.
  • the UE2-UE4 adopts a similar manner, and respectively selects the spreading sequence group 2, the spreading sequence group 3, and the spreading sequence group 4 for spreading. It can be seen that the spread spectrum method can avoid the persistent interference between the spread spectrum data between different UEs as much as possible, realizes the randomization of the interference, and is beneficial to the base station to receive and despread the data.
  • the UE may further select, in the set of the spreading sequences, a first set of spreading sequences for the first symbol group, where the first symbol group may be the UE.
  • the first symbol group in the data to be sent may also be arbitrarily assigned one symbol group.
  • the number of symbols included in the first symbol group may be in the set of spreading sequences.
  • One or more sets of spreading sequences comprise the same number of spreading sequences; based on the first set of spreading sequences of the first symbol group and the selected jumps in the set of hops for the user equipment And determining, in the set of spreading sequences, a second set of spreading sequences for its second set of symbols, wherein the hop count represents an offset between sets of spreading sequences in the set of spreading sequences.
  • the first spreading sequence group for the first symbol group may be randomly selected by the UE in the pre-configured set of spreading sequences, and the number of hops may also be randomly selected by the UE in the hopping number set.
  • the hopping number set may also be pre-configured.
  • the hopping number set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, and of course, the standard may be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the second spreading sequence group in the set of spreading sequences can be determined accordingly.
  • the second set of spreading sequences may be determined according to the offset of the first set of spreading sequences indicated by the number of hops in the set of spreading sequences, that is, the first set of spreading sequences in the set of spreading sequences The position is offset by the number of hops, and the set of spreading sequences located at the offset position in the set of spreading sequences is determined as the second spreading sequence group.
  • the first symbol group and the second symbol group may be two adjacent symbol groups in the same transport block, or may be two symbol groups with a certain interval, and do not do here. limit.
  • the UE may continue in a manner similar to the second symbol group.
  • the third spreading sequence group to the Nth spreading sequence group for which the third symbol group is spread to the Nth symbol group is determined.
  • the UE may continue to determine the third set of spreading sequences for the third symbol group using the second set of spreading sequences and the previously selected number of hops, and so on, until the Nth for the Nth symbol group is determined.
  • Spreading sequence group the number of hops used by the UE for different symbol groups may also be different, for example, the number of hops for selecting the second spreading sequence group for the second symbol group may be 1, and the third spreading for the third symbol group.
  • the number of hops of the sequence group can be 2, and no limitation is imposed here.
  • FIG. 9 is a schematic diagram showing another example of performing spreading of a UE in a third implementation manner in the embodiment of the present invention.
  • UE1 may select the first spreading sequence group as the spreading sequence group S1 and select the hop number to be 1, on the basis of which UE1 is for three symbols.
  • the first symbol group can be separately spread by using each spreading sequence in the spreading sequence group S1, and then, for the second symbol group adjacent to the first symbol group, according to the selected hopping
  • the number is spread using the spread spectrum sequence set S2, and so on.
  • the spreading mode for the UE to transmit data in FIG. 9 is only an example, and the data may be spread by using an arbitrarily selected spreading sequence group and a hopping number selection spreading sequence, which is not limited herein.
  • step S502 the data is spread using the selected spreading sequence.
  • each spreading sequence in the spreading sequence group may be separately used to respectively Each corresponding symbol in the set of symbols is spread.
  • step S503 the UE transmits the spread spectrum data to the base station.
  • the spread spectrum communication method can enable the user equipment to separately select a spreading sequence in a set of spreading sequences for a plurality of symbols in the data to be transmitted, and ensure that the at least two symbols are for the at least two symbols.
  • Different spreading sequences can minimize the persistent collision and interference between the spread spectrum data transmitted between different user equipments, which is beneficial to the base station to correctly receive and despread the received spread spectrum data, and reduce data transmission.
  • the block error rate improves the accuracy of data decoding.
  • FIG. 10 shows a flow chart of the spread spectrum communication method 1000.
  • step S1001 the spread spectrum data sent by the user equipment is received, where at least two spreading symbols in the data are obtained by spreading with different spreading sequences.
  • the spreading sequence is selected from a set of spreading sequences.
  • the set of the spreading sequence may be pre-configured, for example, may be pre-configured in the base station and the UE, or may be configured by the base station according to actual conditions and notified to the UE by using various signaling, for example, the base station may adopt high-layer signaling. Sending the set of spreading sequences to the UE.
  • step S1002 the base station despreads the data according to the spreading sequence in the set of spreading sequences.
  • the UE randomly selects a spreading sequence for each of a plurality of symbols in the data to be transmitted in the set of spreading sequences.
  • the base station may despread the spreading sequence in the set of spreading sequences for each spreading symbol of the data until the despreading is successful.
  • UE1-UE4 includes spreading sequences S1, S2, S3, and S4 for different symbols of its data, respectively.
  • different spreading sequences are selected for spreading.
  • the base station will sequentially use the spreading sequences S1, S2, S3 and S4 in each of the spreading sequence sets for each spreading code in UE1-UE4. The elements try to despread separately until they can successfully despread the data.
  • the base station may sequentially try to use the spreading sequences S1 and S2 in the set of spreading sequences for the corresponding third spreading symbol.
  • S3 performs despreading.
  • despreading is performed using the spreading sequence S3, it is found that the data can be successfully despread and obtained before the spreading, and the despreading process is terminated.
  • the base station may not successfully despread after all the spreading sequences have been traversed. At this time, the base station stops the code after traversing all the spreading sequences in the set of the spreading sequence. The yuan is de-expanded.
  • the UE may perform spreading in the set of spreading sequences by using the selected first spreading sequence and the number of hops for the first symbol.
  • the base station may despread the spreading symbols in the data according to the spreading sequence in the set of spreading sequences and the number of hops in the set of hopping sequences until the despreading is successful.
  • the base station may despread the spreading code sequence in the set of spreading sequences for the first spreading symbol of the data, until the despreading is successful, and the despreading can be successfully despread.
  • the spreading sequence is determined as a first spreading sequence; then, based on the first spreading sequence, the spreading sequence is sequentially determined using the number of hops in the hopping set, and the second spreading symbol of the data is solved Expanding until a successful despreading, determining a spreading sequence that can be successfully despread as a second spreading sequence, and determining a number of hops that can be successfully despread as a number of hops for the user equipment, wherein the number of hops Representing an offset between spreading sequences in the set of spreading sequences.
  • the number of hops may represent an offset between spreading sequence numbers in a set of spreading sequences.
  • the hop count set may also be pre-configured.
  • the hop count set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, etc. (for example, the base station may pass the high layer signaling.
  • the set of hops is transmitted to the UE), of course, the standard can also be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the first spreading symbol and the second spreading symbol may be two adjacent spreading symbols in the same transmission block, or may be two spreading symbols with a certain interval. There are no restrictions here.
  • the base station may further despread the third spreading symbol-Nth spreading symbol according to the determined number of hops and the second spreading sequence.
  • the first spreading sequence is the ith spreading sequence in the set of spreading sequences
  • the number of hops is selected as f
  • the total number of spreading sequences in the set of spreading sequences is M
  • the Nth spreading sequence of the symbol can be expressed as the ((i+(N-1) ⁇ f) mod M+1) spreading sequence.
  • the above description is only an example, and the number of hops used by the UE for different spreading symbols may also be different, for example, the number of hops for selecting the second spreading sequence for the second symbol may be 1, and the third for the third symbol.
  • the number of hops of the spreading sequence can be three, and no limitation is imposed here.
  • UE1-UE4 includes spreading sequences S1, S2, S3, and S4 for different symbols of its data, respectively.
  • the set of spreading sequences and the set of hopping numbers including the hop numbers 1 and 3 the respective hop numbers and the first spreading sequence are selected for spreading.
  • the base station despreads the first spreading symbols in the UE1 by using the spreading sequences S1, S2, S3 and S4 in this spreading sequence set. Until the despreading can be successfully deactivated, the spreading sequence (eg, the spreading sequence S1) that can be successfully despread is determined as the first spreading sequence.
  • the base station sequentially determines the spreading sequence by using the hop numbers 1 and 3 in the hopping number set.
  • the hopping number 1 can be used to determine the spreading ratio.
  • the sequence is S2, and the spreading sequence S4 can be determined for the hop number 3 to despread the second spreading symbol using the spreading sequences S2, S4, respectively.
  • the base station determines that the spread spectrum sequence S2 is the second spread spectrum sequence, and determines the number of hops 1 that can be successfully despread as the number of hops for UE1.
  • the base station can continue to despread other spreading symbols of UE1 and other UEs separately to obtain despread data.
  • the base station may despread the data based on the spreading sequence in the set of spreading sequences and the number of hops in the set of hopping numbers. For example, the base station may traverse a combination of the spreading sequence in the set of spreading sequences and the number of hops in the set of hopping numbers to despread one or more spreading symbols in the data until the despreading is successful. .
  • the set of spreading sequences may include a plurality of spreading sequence groups, and each of the spreading sequence groups may include one or more spreading sequences.
  • the number of spreading sequences included in the set of spreading sequences may be the same or different.
  • the UE may select a set of spreading sequences in the set of spreading sequences, and spread a plurality of symbols of the data by using a spreading sequence in the selected set of spreading sequences.
  • the base station despreading the data according to the spreading sequence in the set of spreading sequences may include: sequentially using, in each of the spreading sequence sets, for each spreading symbol group of the data The spreading sequence group is despread until it is successfully despread. Specifically, the base station may first perform despreading on the symbol group consisting of the same number of spreading sequences included in the spreading sequence group, and then use the spreading sequence group in the spreading sequence set. And so on, to despread all the symbol groups in the received data. For example, when each of the spreading sequence groups in the set of spreading sequences includes four spreading sequences, the base station can use the selected spreading sequence group for the received data in units of four spreading symbols. Each of the spreading sequences in the attempt attempts to despread.
  • the base station may continue to despread other symbol groups by using the same spreading sequence group, or may reuse different spreading sequence groups to other symbol groups. Deconvolution.
  • the specific spreading sequence group selection mode and the despreading mode are not limited herein.
  • a total of at least 5 spreading sequence groups are included in the set of spreading sequences, and each of the spreading sequence groups includes 3
  • UE1-UE4 selects among these spreading sequence groups and spreads the data.
  • the base station will sequentially use the spreading sequence groups 1, 2, 3, 4 and 5 in the set of spreading sequences to include three spreading symbols in UE1.
  • the symbol groups are despreaded separately until they are successfully despread.
  • the base station can also attempt to despread using the same or different sets of spreading sequences.
  • the UE may further utilize the selected one for the first symbol group in the set of spreading sequences.
  • a spreading sequence group and a hopping number are used for spreading, wherein the first symbol group may be the first symbol group in the data to be sent by the UE, or may be any arbitrarily assigned one symbol group, optionally The number of symbols included in the first symbol group may be the same as the number of spreading sequences included in one or more spreading sequence groups in the set of spreading sequences.
  • the base station despreads the spreading symbol groups in the data according to the number of hopping sequences in the set of spreading sequences and the hopping number set in the set of spreading sequences until the despreading is successful.
  • the base station may despread the spreading sequence group in the set of spreading sequences for the first spreading symbol group of the data, until the despreading is successful, and the spreading can be successfully despread.
  • the sequence group is determined to be a first set of spreading sequences; then based on the first set of spreading sequences, the number of hops in the set of hops is used in turn to determine a set of spreading sequences, and the second set of spreading symbols of the data Performing despreading until the despreading is successful, determining the spreading sequence that can be successfully despread as the second spreading sequence group, and determining the number of hops that can be successfully despread as the number of hops for the user equipment, where The number of hops represents the offset between the sets of spreading sequences in the set of spreading sequences.
  • the hopping number set may also be pre-configured.
  • the hopping number set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, etc., of course, the standard may also be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the first spreading symbol group and the second spreading symbol group may be two adjacent spreading symbol groups in the same transmission block, or may be two spreading devices with a certain interval. Symbol groups, no restrictions here.
  • the base station may further perform despreading on the third spreading symbol group-the Nth spreading symbol group according to the determined number of hops and the second spreading sequence group.
  • UE1 selects the first spreading sequence group as the extension.
  • the frequency sequence group S1 is selected and the number of hops is set to 1.
  • UE1 can separately perform spreading using each spreading sequence in the spreading sequence group S1 for the first symbol group including three symbols, and then, for the second adjacent to the first symbol group.
  • the symbol group can be spread using the spreading sequence group S2 according to the selected number of hops, and so on.
  • the base station will sequentially use the spreading sequence group 1, 2, 3, 4 and 5 in the set of spreading sequences to the first spreading symbol group in UE1.
  • despreading is performed separately until the despreading can be successfully performed, and a set of spreading sequences (e.g., spreading sequence group 1) capable of successful despreading is determined as the first spreading sequence group. Then, for the second spreading symbol group adjacent to the first spreading symbol group in UE1, the base station sequentially determines the spreading sequence group by using the hop numbers 1 and 3 in the hopping number set, for example, using the hop number 1 It is determined that the spreading sequence group is 2, and for the hop number 3, the spreading sequence group is determined to be 4, to despread the second spreading symbol group using the spreading sequence groups 2 and 4, respectively.
  • a set of spreading sequences e.g., spreading sequence group 1
  • the base station sequentially determines the spreading sequence group by using the hop numbers 1 and 3 in the hopping number set, for example, using the hop number 1 It is determined that the spreading sequence group is 2, and for the hop number 3, the spreading sequence group is determined to be 4, to despread the second spreading symbol group using the spreading sequence groups 2 and 4, respectively.
  • the base station determines that the spreading sequence group 2 is the second spreading sequence group, and determines the number of hops 1 that can be successfully despread as the number of hops for the UE1.
  • the base station can continue to despread the other spreading symbol groups of UE1 and other UEs separately to obtain despread data.
  • the base station may despread the data based on the number of hopping sequences in the set of spreading sequences and the number of hops in the set of hopping sequences. For example, the base station may traverse a combination of the set of spreading sequences in the set of spreading sequences and the number of hops in the set of hopping numbers to despread one or more spreading symbols in the data until the despreading is successful. until.
  • the spread spectrum communication method can enable the user equipment to separately select a spreading sequence in a set of spreading sequences for a plurality of symbols in the data to be transmitted, and ensure that the at least two symbols are for the at least two symbols.
  • Different spreading sequences can minimize the persistent collision and interference between the spread spectrum data transmitted between different user equipments, which is beneficial to the base station to correctly receive and despread the received spread spectrum data, and reduce data transmission.
  • the block error rate improves the accuracy of data decoding.
  • the UE can perform the above-described spread spectrum communication method. Since the operation of the UE is substantially the same as the steps of the spread spectrum communication method described above, only a brief description thereof will be made herein, and a repeated description of the same content will be omitted.
  • the UE 1100 includes a selection unit 1110, a spreading unit 1120, and a transmitting unit 1130. It is to be appreciated that FIG. 11 only shows components related to embodiments of the present application, while other components are omitted, but this is merely illustrative, and the UE 1100 may include other components as needed.
  • the selecting unit 1110 selects, in the set of spreading sequences, a spreading sequence for each of the plurality of symbols to be transmitted, wherein the spreading sequences selected for the at least two symbols are different.
  • the selection unit 1110 may select respective spreading sequences for different symbols in the data to be transmitted, respectively, to avoid persistent mutual interference with the spread spectrum data of other UEs as much as possible.
  • at least two different spreading sequences may be selected such that the spreading sequences for at least two symbols are different.
  • the set of the spreading sequence may be pre-configured, for example, may be pre-configured in the base station and the UE, or may be configured by the base station according to actual conditions and notified to the UE by using various signalings, for example, the base station may pass the high layer signaling. Sending the set of spreading sequences to the UE.
  • the selecting unit 1110 may randomly select a spreading sequence for each of the plurality of symbols in the data to be transmitted in the set of the spreading sequence.
  • the selection unit 1110 of the UE randomly selects a spreading sequence for each of at least two symbols in the data to be transmitted, and ensures that the spreading sequence between the at least two symbols is different.
  • FIG. 6 is a schematic diagram of a UE in a first implementation manner in the embodiment of the present invention, by using a selection unit 1110 to select a spreading sequence for spreading.
  • UE1-UE4 may respectively select different spreading sequences for different symbols of their data for spreading.
  • the selection unit in UE1 may perform spreading for the first symbol selection spread spectrum sequence S1, and for the second symbol selection spread spectrum sequence S2 for spreading, and so on.
  • the selection unit in UE2 may perform spreading for the first symbol selection spreading sequence S2 and the spreading sequence S3 for the second symbol.
  • the spreading sequences used by the individual symbols of the individual UEs are randomly selected. In this way, the persistent interference between the spread data of UE3 and UE4 as shown in FIG. 4 mentioned above can be avoided as much as possible, and the interference of each different spreading symbol in the data of UE4 is dispersed to different users.
  • the selecting unit 1100 of the UE may first select a first spreading sequence for the first symbol in the set of spreading sequences, where the first symbol may be the first of the data to be sent by the UE. a symbol, which may also be arbitrarily assigned to one of the symbols; then based on the first spreading sequence of the first symbol and the number of hops selected for the user equipment in the hop count set, Determining, in the set of spreading sequences, a second spreading sequence for its second symbol, wherein the hop count represents an offset between spreading sequences in the set of spreading sequences. For example, the number of hops may represent an offset between spreading sequence numbers in a set of spreading sequences.
  • the first spreading sequence for the first symbol may be randomly selected by the selecting unit 1100 in the set of spreading sequences, and the number of hops may also be randomly selected by the selecting unit 1100 in the set of hopping numbers.
  • the hopping number set may also be pre-configured.
  • the hopping number set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, etc. (for example, the base station may perform the hopping through high layer signaling.
  • the set of numbers is sent to the UE), of course, the standard can also be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the second spreading sequence in the set of spreading sequences can be determined accordingly.
  • the second spreading sequence may be determined according to the offset of the first spreading sequence indicated by the hop count in the set of spreading sequences, that is, the position of the first spreading sequence in the set of spreading sequences is hopped
  • the offset indicated by the number determines a spreading sequence located at the offset position in the set of spreading sequences as the second spreading sequence.
  • the first symbol and the second symbol may be two adjacent symbols in the same transport block, or may be two symbols with a certain interval, which is not limited herein.
  • the third unit may continue to be in the same manner as the second symbol.
  • the symbol to the Nth symbol determine a third spreading sequence to an Nth spreading sequence for which spreading is performed.
  • the UE may continue to determine the third spreading sequence for the third symbol using the second spreading sequence and the previously selected number of hops, and so on, until the Nth spreading sequence for the Nth symbol is determined.
  • the Nth spreading sequence can be expressed as the ((i+(N-1) ⁇ f) mod M+1) spreading sequence.
  • the above description is only an example, and the number of hops used by the UE for different symbols may also be different, for example, the number of hops for selecting the second spreading sequence for the second symbol may be 1, and the third spreading for the third symbol.
  • the number of hops of the sequence can be 3, and no limitation is imposed here.
  • FIG. 7 is a schematic diagram of a UE that uses a selection unit 1100 to select a spreading sequence and a hop number for spreading according to a second implementation manner of the embodiment of the present invention.
  • UE1-UE4 can select respective hop numbers, and The first symbol selects a respective spreading sequence for spreading.
  • the number of hops selected by UE1 is 1, and the first spreading sequence selected for the first symbol is S1; the number of hops selected by UE2 is 1, and the first spreading selected for the first symbol The sequence is S2; the number of hops selected by UE3 is 1, and the first spreading sequence selected for the first symbol is S3; the number of hops selected by UE4 is 3, and the first selected for the first symbol
  • the spreading sequence is S1.
  • the spread data of UE1-UE4 is as shown in FIG. 6.
  • the set of spreading sequences may include a plurality of spreading sequence groups, and each of the spreading sequence groups may include one or more spreading sequences.
  • the number of spreading sequences included in the set of spreading sequences may be the same or different.
  • the selecting unit 1100 may select a spreading sequence group in the set of spreading sequences, and perform spreading on the plurality of symbols of the data by using a spreading sequence in the selected group of spreading sequences. .
  • the selecting unit 1100 may first separately perform spreading on each of the spreading sequences of the spreading sequence group for the same number of spreading sequences included in the spreading sequence group of the spreading sequence set. Then, and so on, each symbol in the data to be transmitted is spread. For example, when each spreading sequence group in the set of spreading sequences includes 4 spreading sequences, the UE may utilize each spreading sequence in the selected spreading sequence group in units of 4 symbols. The data to be transmitted is spread until the spreading is completed for all symbols. Of course, after the UE spreads some of the symbols in the data by using one of the selected spreading sequence groups, it can continue to spread the other symbols by using the same spreading sequence group, and can also reselect different symbols. The spreading sequence group spreads the other symbols.
  • the specific spreading sequence group selection mode and the spreading mode are not limited herein.
  • FIG. 8 is a schematic diagram of a UE that uses a selection unit 1100 to select a spreading sequence group for spreading according to a third implementation manner of the embodiment of the present invention.
  • a total of at least five spreading sequence groups are included in the set of spreading sequences, each spreading sequence group includes three spreading sequences, and UE1-UE4 selects and pairs data in these spreading sequence groups.
  • the frequency sequence group 1 spreads three sets of other symbols in its data and obtains the final spread spectrum data.
  • the UE2-UE4 adopts a similar manner, and respectively selects the spreading sequence group 2, the spreading sequence group 3, and the spreading sequence group 4 for spreading. It can be seen that the spread spectrum method can avoid the persistent interference between the spread spectrum data between different UEs as much as possible, realizes the randomization of the interference, and is beneficial to the base station to receive and despread the data.
  • the selecting unit 1100 may further select, in the set of spreading sequences, a first set of spreading sequences for the first symbol group, where the first symbol group may be The first symbol group in the data to be sent by the UE may also be an arbitrarily assigned one of the symbol groups.
  • the number of symbols included in the first symbol group may be combined with the spreading sequence.
  • the number of spreading sequences included in the one or more spreading sequence groups in the set is the same; the first spreading sequence group based on the first symbol group and the selected user equipment in the hop count set a number of hops in which a second set of spreading sequences for a second set of symbols is determined, wherein said hop count represents an offset between sets of spreading sequences in said set of spreading sequences .
  • the first spreading sequence group for the first symbol group may be randomly selected by the UE in the pre-configured set of spreading sequences, and the number of hops may also be randomly selected by the UE in the hopping number set.
  • the hopping number set may also be pre-configured.
  • the hopping number set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, and of course, the standard may be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the second spreading sequence group in the set of spreading sequences can be determined accordingly.
  • the second set of spreading sequences may be determined according to the offset of the first set of spreading sequences indicated by the number of hops in the set of spreading sequences, that is, the first set of spreading sequences in the set of spreading sequences The position is offset by the number of hops, and the set of spreading sequences located at the offset position in the set of spreading sequences is determined as the second spreading sequence group.
  • the first symbol group and the second symbol group may be two adjacent symbol groups in the same transport block, or may be two symbol groups with a certain interval, and do not do here. limit.
  • the selecting unit 1100 determines the first spreading sequence group for the first symbol group and the second spreading sequence group for the second symbol group, it may also be in a similar manner to the second symbol group. And continuing to determine the third spreading sequence group to the Nth spreading sequence group for which the third symbol group and the Nth symbol group are spread. For example, the UE may continue to determine the third set of spreading sequences for the third symbol group using the second set of spreading sequences and the previously selected number of hops, and so on, until the Nth for the Nth symbol group is determined. Spreading sequence group.
  • the number of hops used by the selecting unit 1100 for different symbol groups may also be different, for example, the number of hops for selecting the second spreading sequence group for the second symbol group may be 1, and the third for the third symbol group.
  • the number of hops of the spreading sequence group can be 2, and no limitation is imposed here.
  • FIG. 9 is a schematic diagram showing another example of the third embodiment of the UE in the embodiment of the present invention using the selecting unit 1100 to select a spreading sequence group and a hop number for spreading.
  • the selecting unit of UE1 may select the first spreading sequence group as the spreading sequence group S1 and select the hop count as 1, on the basis that UE1 is for three.
  • the first symbol group of the symbols may be separately spread by using each spreading sequence in the spreading sequence group S1, and then, for the second symbol group adjacent to the first symbol group, The selected number of hops is spread using the spreading sequence set S2, and so on.
  • the spreading mode for the UE to transmit data in FIG. 9 is only an example, and the data may be spread by using an arbitrarily selected spreading sequence group and a hopping number selection spreading sequence, which is not limited herein.
  • Spreading unit 1120 spreads the data using the selected spreading sequence.
  • the spreading unit 1120 may separately use the different spreading sequences corresponding to the respective symbols.
  • the data is spread.
  • the spreading unit 1120 when the spreading sequence group is selected in units of symbol groups for each symbol in the data to be transmitted, the spreading unit 1120 can respectively utilize each of the spreading sequence groups for spreading. The sequence separately spreads each corresponding symbol in the set of symbols.
  • the transmitting unit 1130 transmits the spread data to the base station.
  • the user equipment can enable the user equipment to separately select a spreading sequence in a set of spreading sequences for a plurality of symbols in the data to be transmitted, and ensure that the spreading is performed for at least two symbols.
  • the sequences are different, so that the continuous collision and interference between the spread spectrum data transmitted between different user equipments can be minimized, which facilitates the correct reception and despreading of the received spread spectrum data by the base station, and reduces the error block of the data transmission. Rate, improve the accuracy of data decoding.
  • the base station can perform the above-described spread spectrum communication method. Since the operation of the base station is substantially the same as the steps of the spread spectrum communication method described above, only a brief description thereof will be made herein, and a repeated description of the same content will be omitted.
  • the base station 1200 includes a receiving unit 1210 and a despreading unit 1220. It will be appreciated that FIG. 12 only shows components related to embodiments of the present application, while other components are omitted, but this is merely illustrative, and base station 1200 may include other components as needed.
  • the receiving unit 1210 receives the spread spectrum data sent by the user equipment, where at least two spreading symbols in the data are obtained by spreading with different spreading sequences, and the spreading sequence is a spreading sequence. Selected in the collection.
  • At least two of the spread spectrum data transmitted by the UE received by the receiving unit 1210 are obtained by spreading with different spreading sequences to avoid spreading data with other UEs as much as possible. Continue to interfere with each other.
  • the set of the spreading sequence may be pre-configured, for example, may be pre-configured in the base station and the UE, or may be configured by the base station according to actual conditions and notified to the UE by using various signaling, for example, the base station may adopt high-layer signaling. Sending the set of spreading sequences to the UE.
  • the despreading unit 1220 despreads the data according to the spreading sequence in the set of spreading sequences.
  • the UE randomly selects a spreading sequence for each of a plurality of symbols in the data to be transmitted in the set of spreading sequences.
  • the despreading unit 1220 may despread the spreading sequence in the set of spreading sequences sequentially for each spreading symbol of the data until successful despreading.
  • UE1-UE4 includes spreading sequences S1, S2, S3, and S4 for different symbols of its data, respectively.
  • different spreading sequences are selected for spreading.
  • despreading unit 1220 will sequentially use spreading sequences S1, S2, S3 and S4 for each of UE1-UE4 in this set of spreading sequences, respectively. The spreading symbols respectively attempt to despread until the data can be successfully despread.
  • the despreading unit 1220 may sequentially try to use the spreading sequence in the set of spreading sequences for the corresponding third spreading symbol. S1, S2, and S3 perform despreading. When despreading is performed using the spreading sequence S3, it is found that the data can be successfully despread and obtained before the spreading, and the despreading process is terminated. Certainly, in the specific despreading process, the despreading unit 1220 may not successfully despread after traversing all the spreading sequences, and then stops after the base station traverses all the spreading sequences in the set of spreading sequences. This symbol is despread.
  • the UE may perform spreading in the set of spreading sequences by using the selected first spreading sequence and the number of hops for the first symbol.
  • the despreading unit 1220 may despread the spreading symbols in the data according to the spreading sequence in the set of spreading sequences and the number of hops in the set of hopping sequences until the solution is successful. Expand until now.
  • despreading unit 1220 may despread the spreading code sequence in the set of spreading sequences for the first spreading symbol of the data, until successful despreading, and will be able to The successfully despread spread spectrum sequence is determined as a first spreading sequence; then, based on the first spreading sequence, the spreading sequence is sequentially determined using the number of hops in the hop count set, and the second spreading code of the data is determined The despreading is performed until the despreading is successful, and the spreading sequence that can be successfully despread is determined as the second spreading sequence, and the number of hops that can be successfully despread is determined as the number of hops for the user equipment, where The number of hops represents the offset between the spreading sequences in the set of spreading sequences.
  • the number of hops may represent an offset between spreading sequence numbers in a set of spreading sequences.
  • the hop count set may also be pre-configured.
  • the hop count set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, etc. (for example, the base station may pass the high layer signaling.
  • the set of hops is transmitted to the UE), of course, the standard can also be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the first spreading symbol and the second spreading symbol may be two adjacent spreading symbols in the same transmission block, or may be two spreading symbols with a certain interval. There are no restrictions here.
  • the despreading unit 1220 may further despread the third spreading symbol-Nth spreading symbol according to the determined number of hops and the second spreading sequence.
  • the first spreading sequence is the ith spreading sequence in the set of spreading sequences
  • the number of hops is selected as f
  • the total number of spreading sequences in the set of spreading sequences is M
  • the Nth spreading sequence of the symbol can be expressed as the ((i+(N-1) ⁇ f) mod M+1) spreading sequence.
  • the above description is only an example, and the number of hops used by the UE for different spreading symbols may also be different, for example, the number of hops for selecting the second spreading sequence for the second symbol may be 1, and the third for the third symbol.
  • the number of hops of the spreading sequence can be three, and no limitation is imposed here.
  • UE1-UE4 includes spreading sequences S1, S2, S3, and S4 for different symbols of its data, respectively.
  • the set of spreading sequences and the set of hopping numbers including the hop numbers 1 and 3 the respective hop numbers and the first spreading sequence are selected for spreading.
  • the despreading unit 1220 will sequentially use the spreading sequences S1, S2, S3 and S4 in the set of spreading sequences to respectively respectively address the first spreading symbols in the UE1.
  • the despreading is performed until the despreading can be successfully performed, and the spreading sequence (e.g., spreading sequence S1) capable of successful despreading is determined as the first spreading sequence. Then, for the second spreading symbol adjacent to the first spreading symbol in UE1, the base station sequentially determines the spreading sequence by using the hop numbers 1 and 3 in the hopping number set. For example, the hopping number 1 can be used to determine the spreading ratio.
  • the sequence is S2, and the spreading sequence S4 can be determined for the hop number 3 to despread the second spreading symbol using the spreading sequences S2, S4, respectively.
  • the base station determines that the spread spectrum sequence S2 is the second spread spectrum sequence, and determines the number of hops 1 that can be successfully despread as the number of hops for UE1. By analogy, the base station can continue to despread other spreading symbols of UE1 and other UEs separately to obtain despread data.
  • despreading unit 1220 can despread the data based on the number of hops in the set of spreading sequences and the set of hops in the set of spreading sequences. For example, the despreading unit 1220 may traverse the combination of the spreading sequence in the set of spreading sequences and the number of hops in the set of hopping numbers to despread one or more spreading symbols in the data until successful. Unexpanded.
  • the set of spreading sequences may include a plurality of spreading sequence groups, and each of the spreading sequence groups may include one or more spreading sequences.
  • the number of spreading sequences included in the set of spreading sequences may be the same or different.
  • the UE may select a set of spreading sequences in the set of spreading sequences, and spread a plurality of symbols of the data by using a spreading sequence in the selected set of spreading sequences.
  • despreading the data according to the spreading sequence in the set of spreading sequences may include: sequentially using the spreading sequence for each spreading symbol group of the data.
  • the set of spreading sequences in the set is despread until it is successfully despread.
  • the base station may first perform despreading on the symbol group consisting of the same number of spreading sequences included in the spreading sequence group, and then use the spreading sequence group in the spreading sequence set. And so on, to despread all the symbol groups in the received data. For example, when each of the spreading sequence groups in the set of spreading sequences includes four spreading sequences, the base station can use the selected spreading sequence group for the received data in units of four spreading symbols. Each of the spreading sequences in the attempt attempts to despread.
  • the base station may continue to despread other symbol groups by using the same spreading sequence group, or may reuse different spreading sequence groups to other symbol groups. Deconvolution.
  • the specific spreading sequence group selection mode and the despreading mode are not limited herein.
  • a total of at least 5 spreading sequence groups are included in the set of spreading sequences, and each of the spreading sequence groups includes 3
  • UE1-UE4 selects among these spreading sequence groups and spreads the data.
  • the despreading unit 1220 will sequentially use the spread sequence groups 1, 2, 3, 4, and 5 in the set of the spread sequence to include three spread spectrums in the UE1.
  • the symbol groups of the symbols are despreaded separately until they can be successfully despread.
  • the base station can also attempt to despread using the same or different sets of spreading sequences.
  • the UE may further utilize the selected one for the first symbol group in the set of spreading sequences.
  • a spreading sequence group and a hopping number are used for spreading, wherein the first symbol group may be the first symbol group in the data to be sent by the UE, or may be any arbitrarily assigned one symbol group, optionally The number of symbols included in the first symbol group may be the same as the number of spreading sequences included in one or more spreading sequence groups in the set of spreading sequences.
  • the despreading unit 1220 despreads the spreading symbol groups in the data in turn according to the number of hopping sequences in the set of spreading sequences and the number of hops in the set of hopping sequences until successful.
  • the despreading unit 1220 may despread the spreading sequence group in the set of spreading sequences for the first spreading symbol group of the data, until the despreading is successful, and the despreading can be successfully despread.
  • the set of spreading sequences is determined as a first set of spreading sequences; then based on the first set of spreading sequences, the number of hops in the set of hops is used in turn to determine the set of spreading sequences, and the second spreading of the data
  • the symbol group is despread until the despreading is successful, the spreading sequence that can be successfully despread is determined as the second spreading sequence group, and the number of hops that can be successfully despread is determined as the number of hops for the user equipment.
  • the hop count represents an offset between groups of spreading sequences in the set of spreading sequences.
  • the hopping number set may also be pre-configured.
  • the hopping number set may be pre-configured by the base station, or may be configured by the base station and notified to the UE by, for example, signaling, etc., of course, the standard may also be written in advance.
  • the set of spreading sequence and the set of hopping numbers may also jointly form a set of spreading sequence resources, which are pre-configured by the base station at the same time.
  • the first spreading symbol group and the second spreading symbol group may be two adjacent spreading symbol groups in the same transmission block, or may be two spreading devices with a certain interval. Symbol groups, no restrictions here.
  • the base station may further perform despreading on the third spreading symbol group-the Nth spreading symbol group according to the determined number of hops and the second spreading sequence group.
  • UE1 selects the first spreading sequence group as the extension.
  • the frequency sequence group S1 is selected and the number of hops is set to 1.
  • UE1 can separately perform spreading using each spreading sequence in the spreading sequence group S1 for the first symbol group including three symbols, and then, for the second adjacent to the first symbol group.
  • the symbol group can be spread using the spreading sequence group S2 according to the selected number of hops, and so on.
  • the despreading unit 1220 will sequentially use the spreading sequence groups 1, 2, 3, 4, and 5 for the first spreading in the UE1 in the spreading sequence set.
  • the symbol groups are respectively despread until successfully despread, and the set of spreading sequences (e.g., spreading sequence group 1) that can be successfully despread is determined as the first spreading sequence group. Then, for the second spreading symbol group adjacent to the first spreading symbol group in UE1, the base station sequentially determines the spreading sequence group by using the hop numbers 1 and 3 in the hopping number set, for example, using the hop number 1 It is determined that the spreading sequence group is 2, and for the hop number 3, the spreading sequence group is determined to be 4, to despread the second spreading symbol group using the spreading sequence groups 2 and 4, respectively.
  • the set of spreading sequences e.g., spreading sequence group 1 that can be successfully despread
  • the base station determines that the spreading sequence group 2 is the second spreading sequence group, and determines the number of hops 1 that can be successfully despread as the number of hops for the UE1.
  • the base station can continue to despread the other spreading symbol groups of UE1 and other UEs separately to obtain despread data.
  • the despreading unit 1220 may despread the data based on the number of hopping sequences in the set of spreading sequences and the number of hops in the set of hopping sequences. For example, the despreading unit 1220 may traverse the combination of the set of spreading sequences in the set of spreading sequences and the number of hops in the set of hopping numbers to despread one or more spreading symbols in the data, respectively, until Successfully expanded.
  • the base station can enable the user equipment to separately select a spreading sequence in a set of spreading sequences for a plurality of symbols in the data to be transmitted, and ensure a spreading sequence for at least two symbols therein. Different, so as to minimize the persistent collision and interference between the spread spectrum data transmitted between different user equipments, which is beneficial to the base station to correctly receive and despread the received spread spectrum data, and reduce the error block rate of data transmission. Improve the accuracy of data decoding.
  • a user terminal or the like in an embodiment of the present invention can function as a computer that executes processing of the wireless communication method of the present invention.
  • FIG. 13 is a diagram showing an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the user terminal 1100 and the base station 1200 described above may be configured as a computer device that physically includes a processor 1310, a memory 1320, a memory 1330, a communication device 1340, an input device 1350, an output device 1360, a bus 1370, and the like.
  • the hardware structure of the user terminal 1100 and the base station 1200 may include one or more of the devices shown in the figure, or may not include some devices.
  • processor 1310 is only illustrated as one, but may be multiple processors.
  • the processing may be performed by one processor, or may be performed by one or more processors simultaneously, sequentially, or by other methods.
  • the processor 1310 can be installed by more than one chip.
  • Each function in the user terminal 1100 and the base station 1200 is realized, for example, by reading a predetermined software (program) into hardware such as the processor 1310 or the memory 1320, thereby causing the processor 1310 to perform an operation, and the communication device 1340 The communication performed is controlled and the reading and/or writing of data in the memory 1320 and the memory 1330 is controlled.
  • a predetermined software program
  • the communication device 1340 The communication performed is controlled and the reading and/or writing of data in the memory 1320 and the memory 1330 is controlled.
  • the processor 1310 for example, causes the operating system to operate to control the entire computer.
  • the processor 1310 may be configured by a central processing unit (CPU) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU central processing unit
  • the processor 1310 reads out programs (program codes), software modules, data, and the like from the memory 1330 and/or the communication device 1340 to the memory 1320, and executes various processes in accordance therewith.
  • programs program codes
  • software modules software modules
  • data data, and the like
  • the program a program for causing a computer to execute at least a part of the operations described in the above embodiments can be employed.
  • the memory 1320 is a computer readable recording medium, and may be, for example, a read only memory (ROM, Read Only Memory), a programmable read only memory (EPROM), an electrically programmable read only memory (EEPROM), or a random access memory ( At least one of RAM, Random Access Memory, and other suitable storage media.
  • the memory 1320 may also be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 320 can store an executable program (program code), a software module, and the like for implementing the wireless communication method according to the embodiment of the present invention.
  • the memory 1330 is a computer readable recording medium, and may be, for example, a flexible disk, a soft (registered trademark) disk (floppy disk), a magneto-optical disk (for example, a CD-ROM (Compact DiscROM), etc.), and a digital universal device.
  • CD Blu-ray (registered trademark) disc, removable disk, hard drive, smart card, flash device (eg card, stick, key driver), magnetic stripe, database, server And at least one of other suitable storage media.
  • Memory 1330 may also be referred to as an auxiliary storage device.
  • the communication device 1340 is hardware (transmission and reception device) for performing communication between computers through a wired and/or wireless network, and is also referred to as a network device, a network controller, a network card, a communication module, and the like, for example.
  • the communication device 1340 may include a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc., in order to implement, for example, Frequency Division Duplex (FDD) and/or Time Division Duplex (TDD).
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the input device 1350 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts input from the outside.
  • the output device 1360 is an output device (for example, a display, a speaker, a light emitting diode (LED) lamp, etc.) that performs an output to the outside.
  • the input device 1350 and the output device 1360 may also be an integrated structure (for example, a touch panel).
  • each device such as the processor 1310, the memory 1320, and the like are connected by a bus 1370 for communicating information.
  • the bus 1370 may be composed of a single bus or a different bus between devices.
  • the user terminal 1100 and the base station 1200 may include a microprocessor, a digital signal processor (DSP, Digital Signal Processor), an application specific integrated circuit (ASIC), a programmable logic device (PLD, Programmable Logic Device), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • Hardware such as FieldProgrammableGateArray), which can be used to implement part or all of each function block.
  • processor 310 can be installed by at least one of these hardware.
  • the channel and/or symbol can also be a signal (signaling).
  • the signal can also be a message.
  • the reference signal may also be simply referred to as RS (Reference Signal), and may also be referred to as a pilot (Pilot), a pilot signal, or the like according to applicable standards.
  • a component carrier CC, Component Carrier
  • CC Component Carrier
  • the radio frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the radio frame may also be referred to as a subframe.
  • a subframe may be composed of one or more time slots in the time domain.
  • the subframe may be a fixed length of time (eg, 1 ms) that is independent of the numerology.
  • the time slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA, Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • the time slot can also be a time unit based on parameter configuration.
  • the time slot may also include a plurality of minislots. Each minislot may be composed of one or more symbols in the time domain.
  • a minislot can also be referred to as a subslot.
  • Radio frames, subframes, time slots, mini-slots, and symbols all represent time units when signals are transmitted. Radio frames, subframes, time slots, mini-slots, and symbols can also use other names that correspond to each other.
  • one subframe may be referred to as a transmission time interval (TTI, TransmissionTimeInterval), and multiple consecutive subframes may also be referred to as a TTI, and one slot or one minislot may also be referred to as a TTI.
  • the subframe and/or the TTI may be a subframe (1 ms) in the existing LTE, or may be a period shorter than 1 ms (for example, 1 to 13 symbols), or may be a period longer than 1 ms.
  • a unit indicating a TTI may also be referred to as a slot, a minislot, or the like instead of a subframe.
  • TTI refers to, for example, a minimum time unit scheduled in wireless communication.
  • the radio base station performs scheduling for all user terminals to allocate radio resources (bandwidth, transmission power, etc. usable in each user terminal) in units of TTIs.
  • the definition of TTI is not limited to this.
  • the TTI may be a channel-coded data packet (transport block), a code block, and/or a codeword transmission time unit, or may be a processing unit such as scheduling, link adaptation, or the like.
  • the time interval e.g., the number of symbols
  • actually mapped to the transport block, code block, and/or codeword may also be shorter than the TTI.
  • TTI time slot or one mini time slot
  • more than one TTI ie, more than one time slot or more than one micro time slot
  • the number of slots (the number of microslots) constituting the minimum time unit of the scheduling can be controlled.
  • a TTI having a length of 1 ms may also be referred to as a regular TTI (TTI in LTE Rel. 8-12), a standard TTI, a long TTI, a regular subframe, a standard subframe, or a long subframe.
  • TTI shorter than a conventional TTI may also be referred to as a compressed TTI, a short TTI, a partial TTI (partial or fractional TTI), a compressed subframe, a short subframe, a minislot, or a subslot.
  • a long TTI (eg, a regular TTI, a subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • a short TTI eg, a compressed TTI, etc.
  • TTI length of the TTI may be replaced with 1 ms.
  • a resource block is a resource allocation unit of a time domain and a frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the RB may include one or more symbols in the time domain, and may also be one slot, one minislot, one subframe, or one TTI.
  • a TTI and a subframe may each be composed of one or more resource blocks.
  • one or more RBs may also be referred to as a physical resource block (PRB, Physical RB), a sub-carrier group (SCG), a resource element group (REG, a resource element group), a PRG pair, an RB pair, and the like.
  • a resource block may also be composed of one or more resource elements (RE, ResourceElement).
  • RE resource elements
  • ResourceElement For example, one RE can be a subcarrier and a symbol of a radio resource area.
  • radio frames, subframes, time slots, mini-slots, symbols, and the like are merely examples.
  • the number of subframes included in the radio frame, the number of slots of each subframe or radio frame, the number of microslots included in the slot, the number of symbols and RBs included in the slot or minislot, and the number of RBs included in the RB The number of subcarriers, the number of symbols in the TTI, the symbol length, and the length of the cyclic prefix (CP, Cyclic Prefix) can be variously changed.
  • the information, parameters, and the like described in the present specification may be expressed by absolute values, may be represented by relative values with predetermined values, or may be represented by other corresponding information.
  • wireless resources can be indicated by a specified index.
  • the formula or the like using these parameters may be different from those explicitly disclosed in the present specification.
  • the information, signals, and the like described in this specification can be expressed using any of a variety of different techniques.
  • data, commands, instructions, information, signals, bits, symbols, chips, etc. which may be mentioned in all of the above description, may pass voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of them. Combined to represent.
  • information, signals, and the like may be output from the upper layer to the lower layer, and/or from the lower layer to the upper layer.
  • Information, signals, etc. can be input or output via a plurality of network nodes.
  • Information or signals input or output can be stored in a specific place (such as memory) or managed by a management table. Information or signals input or output may be overwritten, updated or supplemented. The output information, signals, etc. can be deleted. The input information, signals, etc. can be sent to other devices.
  • the notification of the information is not limited to the mode/embodiment described in the specification, and may be performed by other methods.
  • the notification of the information may be through physical layer signaling (eg, Downlink Control Information (DCI), uplink control information (UCI, Uplink Control Information), upper layer signaling (eg, radio resource control (RRC, RadioResourceControl). Signaling, broadcast information (MIB (Master Information Block), System Information Block (SIB, System Information Block), etc.), Media Access Control (MAC, Medium Access Control) signaling, other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI uplink control information
  • RRC RadioResourceControl
  • Signaling broadcast information (MIB (Master Information Block), System Information Block (SIB, System Information Block), etc.
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be referred to as L1/L2 (Layer 1/Layer 2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may also be referred to as an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • the MAC signaling can be notified, for example, by a MAC Control Unit (MAC CE).
  • MAC CE MAC Control Unit
  • the notification of the predetermined information is not limited to being explicitly performed, and may be performed implicitly (for example, by not notifying the predetermined information or by notifying the other information).
  • the determination can be performed by a value (0 or 1) represented by 1 bit, or by a true or false value (boolean value) represented by true (true) or false (false), and can also be compared by numerical values ( For example, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language, or other names, should be interpreted broadly to mean commands, command sets, code, code segments, program code, programs, sub- Programs, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, steps, functions, and the like.
  • software, commands, information, and the like may be transmitted or received via a transmission medium.
  • a transmission medium For example, when using wired technology (coax, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to send software from a website, server, or other remote source
  • wired technology coax, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • radio base station (BS, Base Station)", “radio base station”, “eNB”, “gNB”, “cell”, “sector”, “cell group”, “carrier”, and “component carrier”
  • BS Base Station
  • eNB Radio base station
  • gNB gNodeB
  • cell a cell
  • ector a cell group
  • carrier a carrier
  • component carrier a radio base station
  • a radio base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • a wireless base station can accommodate one or more (eg, three) cells (also referred to as sectors). When a wireless base station accommodates multiple cells, the entire coverage area of the wireless base station can be divided into multiple smaller areas, and each smaller area can also pass through a wireless base station subsystem (for example, a small indoor wireless base station (radio-radio) Head (RRH, Remote RadioHead))) to provide communication services.
  • a wireless base station subsystem for example, a small indoor wireless base station (radio-radio) Head (RRH, Remote RadioHead)
  • RRH Radio-radio Head
  • the term "cell” or “sector” refers to a part or the whole of the coverage area of a radio base station and/or a radio base station subsystem that performs communication services in the coverage.
  • a radio base station is sometimes referred to by a fixed station, a NodeB, an eNodeB (eNB), an access point, a transmission point, a reception point, a femto cell, a small cell, and the like.
  • Mobile stations are also sometimes used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless Terminals, remote terminals, handsets, user agents, mobile clients, clients, or several other appropriate terms are used.
  • the wireless base station in this specification can also be replaced with a user terminal.
  • each mode/embodiment of the present invention can be applied to a configuration in which communication between a radio base station and a user terminal is replaced with communication between a plurality of user-to-device (D2D) devices.
  • D2D user-to-device
  • the function of the base station 1200 described above can be regarded as a function of the user terminal 800.
  • words such as "upstream” and "downstream” can also be replaced with "side”.
  • the uplink channel can also be replaced with a side channel.
  • the user terminal in this specification can also be replaced with a base station.
  • the function of the user terminal 1100 described above can be regarded as a function of the wireless base station 1200.
  • the radio base station may be performed by an upper node (upper node) depending on the situation.
  • various operations performed for communication with the terminal can pass through one or more of the radio base station and the radio base station.
  • the network node may be considered, for example, a Mobility Management Entity (MME), a Serving-Gateway (S-GW, etc.), but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • LTE-B Long Term Evolution
  • LTE-Beyond Long Term Evolution
  • SUPER 3G advanced international mobile communication
  • IMT-Advanced 4th generation mobile communication system
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FX
  • Future generation radio access GSM (registered trademark), Global System for Mobile communications), Code Division Multiple Access 2000 (CDMA2000), Super Mobile Broadband (UMB, Ultra) Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802.20, Ultra Wideband (UWB, Ultra-W
  • any reference to a unit using the names "first”, “second”, etc., as used in this specification, does not fully limit the number or order of the units. These names can be used in this specification as a convenient method of distinguishing between two or more units. Thus, reference to a first element and a second element does not mean that only two elements may be employed or that the first element must prevail in the form of the second unit.
  • determination used in the present specification sometimes includes various actions. For example, regarding “judgment (determination)", calculation, calculation, processing, deriving, investigating, and lookingup (eg, tables, databases, or other data) may be performed. Search in the structure, ascertaining, etc. are considered to be “judgment (determination)”. Further, regarding “judgment (determination)”, reception (for example, reception of information), transmission (for example, transmission of information), input (input), output (output), and access (for example) may also be performed (for example, Accessing data in memory, etc. is considered to be “judgment (determination)”.
  • judgment (determination) it is also possible to consider “resolving”, “selecting”, selecting (choosing), establishing (comparing), comparing (comparing), etc. as “judging (determining)”. That is to say, regarding "judgment (determination)", several actions can be regarded as performing "judgment (determination)".
  • connection means any direct or indirect connection or combination between two or more units, This includes the case where there is one or more intermediate units between two units that are “connected” or “coupled” to each other.
  • the combination or connection between the units may be physical, logical, or a combination of the two.
  • connection can also be replaced with "access”.
  • two units may be considered to be electrically connected by using one or more wires, cables, and/or printed, and as a non-limiting and non-exhaustive example by using a radio frequency region.
  • the electromagnetic energy of the wavelength of the region, the microwave region, and/or the light is "connected” or "bonded” to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明的实施例提供了扩频通信方法、用户设备和基站,其中应用于用户设备的扩频通信方法包括:在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列,其中,针对至少两个码元所选择的扩频序列不同;利用所选择的扩频序列对所述数据进行扩频;发送经扩频的数据。

Description

一种扩频通信方法、用户设备和基站 技术领域
本申请涉及无线通信领域,并且具体涉及可以在无线通信系统中使用的扩频通信方法、用户设备和基站。
背景技术
扩频通信技术是一种利用信息处理改善传输性能的技术,其特点是传输数据所用的带宽远大于数据本身所占用的带宽。扩频通信技术在发送端以扩频序列对数据进行扩频,在接收端则根据同样的扩频序列进行解扩以恢复所传输的数据。扩频通信技术能够利用宽频谱获得较强的抗干扰能力、较高的传输速率,并且由于在相同频带上通过使用不同的扩频序列可以承载不同用户设备的数据,因此扩频通信技术也提高了频带的复用率。
5G的非正交多址技术(NOMA)能够在发送端采用非正交发送,其主动引入干扰信息,并在接收端通过串行干扰删除(SIC)实现正确解调。NOMA的子信道之间是正交的,但同一子信道则是多个用户设备共享的,同一子信道上不同用户设备之间实现非正交传输。在一般情况下,基站针对同一子信道上的不同用户设备分配不同的扩频序列,以使得不同用户设备之间扩频后的数据尽量正交化。然而,为了减少信令开销,将引入基于无基站调度(RACH-less)的资源分配方式。在这种情况下,取代由基站分配扩频序列,往往需要用户设备在预先配置的扩频序列集合中自行选择扩频序列以进行扩频。此时,若同一子信道上的两个及以上用户设备选择了相同的扩频序列,其传输的数据之间就会产生持续的冲突和干扰,从而不利于基站对于数据的正确解扩。
因此,需要一种尽量减少多个用户设备所发送的扩频数据之间的干扰的扩频通信方法。
发明内容
根据本发明的一个方面,提供了一种扩频通信方法,应用于用户设备,包括:在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列, 其中,针对至少两个码元所选择的扩频序列不同;利用所选择的扩频序列对所述数据进行扩频;发送经扩频的数据。
根据本发明的另一方面,提供了一种扩频通信方法,应用于基站,包括:接收用户设备发送的经扩频的数据,其中,所述数据中至少两个扩频码元是用不同的扩频序列进行扩频得到的,所述扩频序列是从扩频序列集合中选择的;根据所述扩频序列集合中的扩频序列,对所述数据进行解扩。
根据本发明的另一方面,提供了一种用户设备,包括:选择单元,配置为在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列,其中,针对至少两个码元所选择的扩频序列不同;扩频单元,配置为利用所选择的扩频序列对所述数据进行扩频;发送单元,配置为发送经扩频的数据。
根据本发明的另一方面,提供了一种基站,包括:接收单元,配置为接收用户设备发送的经扩频的数据,其中,所述数据中至少两个扩频码元是用不同的扩频序列进行扩频得到的,所述扩频序列是从扩频序列集合中选择的;解扩单元,配置为根据所述扩频序列集合中的扩频序列,对所述数据进行解扩。
利用根据本发明上述方面的扩频通信方法、用户设备和基站,能够使得用户设备针对要发送的数据中的多个码元在扩频序列集合中分别选择扩频序列,并保证其中针对至少两个码元的扩频序列不同,从而可以尽量减少不同用户设备之间所发送的扩频数据之间的持续冲突和干扰,有利于基站对所接收到的扩频数据的正确接收和解扩,减少了数据传输的误块率,提高了数据解码的准确性。
附图说明
通过结合附图对本发明的实施例进行详细描述,本发明的上述和其它目的、特征、优点将会变得更加清楚。
图1为用于实现本发明实施例场景的通信系统的示意图;
图2示出了扩频序列集合的示例;
图3示出用户设备对所发送的数据进行扩频的示意图;
图4示出了多个UE分别在扩频序列集合中选择扩频序列对数据进行扩频和发送的示例;
图5示出本发明实施例扩频通信方法的流程图;
图6示出了本发明实施例中第一实现方式的UE进行扩频的示意图;
图7示出了本发明实施例中第二实现方式的UE进行扩频的示意图;
图8示出了本发明实施例中第三实现方式的UE进行扩频的示意图;
图9示出了本发明实施例中第三实现方式的UE进行扩频的另一示例的示意图;
图10示出本发明实施例扩频通信方法的流程图;
图11示出本发明实施例UE的结构框图;
图12示出本发明实施例基站的结构框图;
图13示出根据本发明的一实施方式所涉及的用户设备或基站的硬件结构的示例的图。
具体实施方式
下面将参照附图来描述根据本发明实施例的扩频通信方法和相应的用户设备和基站。在附图中,相同的参考标号自始至终表示相同的元件。应当理解:这里描述的实施例仅仅是说明性的,而不应被解释为限制本发明的范围。
图1示出用于实现本发明实施例场景的通信系统的示意图。如图1所示,基站BS能够分别与两个用户设备UE1和UE2产生无线连接,UE1和UE2可将数据分别发送给基站。可选地,UE1和UE2也可以将经扩频的数据分别发送给基站。在一个示例中,基站可以直接给UE1和UE2分别配置扩频序列,并通过信令传输给基站。而在另一个示例中,为了尽量节省基站和用户设备之间的信令传输,可以配置扩频序列集合,使得在进行扩频通信时,UE1和UE2从扩频序列集合中分别选择扩频序列以进行扩频。该扩频序列集合可以包括多个扩频序列,每个扩频序列可以包括一个或多个元素。扩频序列集合可以为预先配置的,例如,扩频序列集合可以预先配置在基站和UE中,也可以由基站配置并且通过各种信令通知给UE。该集合可以由基站根据实际情况配置,也可以是3GPP标准中记载的集合。图1所示出的通信系统的结构仅为示例,在实际应用的场景中,基站可以与任意个用户设备产生连接,并进行信令和数据传输。
图2示出了扩频序列集合的示例。如图2所示,扩频序列集合S可以包括6个扩频序列,分别为S1、S2、S3、S4、S5、S6,每个扩频序列可以分别包括4个元素。图3示出用户设备对所发送的数据进行扩频的示意图。如图3所示,用户设备UE1可以选择扩频序列S1进行扩频,其中,针对UE1数据的三个码元,UE1将同一个扩频序列S1分别应用到这三个码元进行扩频,从而形成包含三个扩频码元的经扩频的数据,每个扩频码元包括4个码元。UE1可以将经扩频的数据发送给基站,以使基站对数据进行接收并解扩,具体地,基站可以在扩频序列集合S中选择与UE1所选择的扩频序列相同的扩频序列S1对UE1所发送的扩频数据进行解扩。在实际操作中,基站可以针对扩频数据中的每个扩频码元采用同样的扩频序列S1进行解扩。
但是,当不同的用户设备在扩频序列集合中选用了相同的扩频序列进行扩频,并且对于UE的所有码元都使用同一个扩频序列进行扩频时,这些用户设备的扩频数据之间将直接产生持续的干扰,并导致基站解扩失败的概率大大增加。图4示出了多个UE分别在扩频序列集合中选择扩频序列对数据进行扩频和发送的示例。根据图4可以看出,当UE1-UE4均在具有扩频序列S1、S2、S3和S4的扩频序列集合中进行选择时,假设UE1选择扩频序列S1,UE2选择扩频序列S2,而UE3和UE4则选择了同样的扩频序列S3进行扩频。在这种情况下,UE1、UE2经扩频的数据分别与其他UE的经扩频的数据不会产生太多干扰。而UE3和UE4的经扩频的数据之间则会由于同样的扩频序列产生持续的不可消除的干扰,从而可能导致基站接收数据后解扩失败,无法得到正确的UE3和UE4发送的数据。
本发明实施例提供一种扩频通信方法,其可以尽量减少多个用户设备所发送的扩频数据之间的干扰。
首先,参照图5描述根据本发明实施例的由用户设备执行的扩频通信方法。图5示出该扩频通信方法500的流程图。
如图5所示,在步骤S501中,在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列,其中,针对至少两个码元所选择的扩频序列不同。
在本步骤中,UE可以分别针对要发送的数据中的不同码元选择各自的扩频序列,以尽可能地避免与其他UE的经扩频的数据的持续相互干扰。具 体地,可以选择至少两个不同的扩频序列使得针对至少两个码元的扩频序列不同。如上所述,扩频序列集合可以为预先配置的,例如可以预先配置在基站和UE中,也可以由基站根据实际情况配置并且通过各种信令通知给UE,例如,基站可以通过高层信令将所述扩频序列集合发送给UE。
具体地,在第一实现方式中,UE可以在扩频序列集合中,对要发送数据中的多个码元分别随机选择扩频序列。在这种情况下,UE针对所要发送的数据中的至少两个码元均分别随机选择扩频序列,并保证所述至少两个码元之间的扩频序列不同。
图6示出了本发明实施例中第一实现方式的UE进行扩频的示意图。如图6所示,在包括扩频序列S1、S2、S3和S4的扩频序列集合中,UE1-UE4均可以针对其数据的不同码元分别选择不同的扩频序列进行扩频。例如,作为随机选择的结果,UE1可以针对其第一码元选择扩频序列S1进行扩频,而针对第二码元选择扩频序列S2进行扩频,以此类推。此外,UE2可以针对第一码元选择扩频序列S2进行扩频,而针对第二码元选择扩频序列S3进行扩频。由此,各个UE的各个码元所用的扩频序列是随机选择的。这样,可以尽量避免之前所提及的如图4所示的UE3和UE4经扩频的数据之间的持续干扰,而将例如UE4的数据中各个不同扩频码元的干扰分散到不同的用户设备之间。根据图6可以看出,即使UE4的第一码元与UE1的第一码元选择了相同的扩频序列,从而在其扩频码元之间产生干扰,但是由于UE1的第二码元随机选择了扩频序列S3,UE4的第二码元则随机选择了扩频序列S3因此,UE1和UE4的第二扩频码元之间不再干扰。相反,UE4的第二扩频码元则改为与UE2之间产生干扰,这样可以实现不同用户设备所发送的数据之间的干扰随机化,以利于基站端对数据的接收和解扩。
在第二实现方式中,UE可以在扩频序列集合中,首先选择针对第一码元的第一扩频序列,其中第一码元可以为此UE所要发送的数据中的第一个码元,也可以为其任意指定的一个码元;然后基于所述第一码元的第一扩频序列和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对其第二码元的第二扩频序列,其中所述跳跃数表示所述扩频序列集合中扩频序列之间的偏移。例如,所述跳跃数可以表示扩频序列集合中扩频序列编号之间的偏移。具体地,针对第一码元的第一扩频序列可以 由UE在扩频序列集合中随机选择,跳跃数也可以由UE在跳跃数集合中随机选择。其中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE(例如,基站可以通过高层信令将所述跳跃数集合发送给UE),当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。当UE确定了针对第一码元的第一扩频序列和跳跃数时,可以据此确定扩频序列集合中的第二扩频序列。具体地,可以根据所述跳跃数所指示的第一扩频序列在扩频序列集合中的偏移来确定第二扩频序列,即将第一扩频序列在扩频序列集合中的位置进行跳跃数所指示的偏移,将扩频序列集合中位于偏移后的位置的扩频序列确定为第二扩频序列。此外,可选地,第一码元和第二码元可以为同一传输块中的相邻的两个码元,也可以是具有一定间隔的两个码元,在此不做限制。
进一步地,当UE确定了针对第一码元的第一扩频序列和针对第二码元的第二扩频序列之后,还可以以与第二码元类似的方式,继续针对第三码元至第N码元确定对其进行扩频的第三扩频序列至第N扩频序列。例如,UE可以利用第二扩频序列和之前所选择的跳跃数继续确定针对第三码元的第三扩频序列,并以此类推,直至确定针对第N码元的第N扩频序列。可选地,当第一扩频序列为扩频序列集合中的第i个扩频序列,跳跃数选定为f,扩频序列集合中扩频序列的总数为M个时,第N码元的第N扩频序列可以表示为例如第((i+(N-1)×f)mod M+1)个扩频序列。以上描述仅为示例,UE针对不同码元所采用的跳跃数也可以不同,例如针对第二码元选择第二扩频序列的跳跃数可以为1,而针对第三码元选择第三扩频序列的跳跃数则可以为3,在此不做限制。
图7示出了本发明实施例中第二实现方式的UE进行扩频的示意图。如图7所示,在包括扩频序列S1、S2、S3和S4的扩频序列集合及包括跳跃数1和3的跳跃数集合中,UE1-UE4均可以选择各自的跳跃数,且针对其第一码元选择各自的扩频序列进行扩频。例如,UE1所选择的跳跃数为1,且针对第一码元所选择的第一扩频序列为S1;UE2所选择的跳跃数为1,且针对第一码元所选择的第一扩频序列为S2;UE3所选择的跳跃数为1,且针对第一码元所选择的第一扩频序列为S3;UE4所选择的跳跃数为3,且针对第一 码元所选择的第一扩频序列为S1。在这种情况下,UE1-UE4经扩频的数据如图6所示。可以看出,虽然UE1和UE4针对其第一码元均选择了相同的第一扩频序列S1,但由于UE1和UE4所选择的跳跃数不同,因此第二码元无干扰,由此,能够尽量避免二者经扩频的数据之间的持续干扰,而实现了不同用户设备所发送的数据之间的干扰随机化,以利于基站端对数据的接收和解扩。
在第三实现方式中,所述扩频序列集合中可以包括多个扩频序列组,每个所述扩频序列组可以包括一个或多个扩频序列。可选地,这些扩频序列组中所包含的扩频序列个数可以相同,也可以不同。在这一前提下,UE可以在所述扩频序列集合中选择扩频序列组,并利用所选择的扩频序列组中的扩频序列对所述数据的多个码元进行扩频。
具体地,UE可以首先针对与所述扩频序列集合的扩频序列组中所包含的扩频序列个数相同的码元,利用扩频序列组的每个扩频序列分别进行扩频,然后以此类推,对其要发送数据中的每个码元均进行扩频。例如,当扩频序列集合中的每个扩频序列组包含4个扩频序列时,UE可以以4个码元为单位,分别利用其所选择的扩频序列组中的每个扩频序列对要发送的数据进行扩频,直至对所有码元均完成扩频。当然,在UE利用其选择的某个扩频序列组对数据中的部分码元进行扩频之后,其可以继续利用相同的扩频序列组对其他码元进行扩频,也可以重新选择不同的扩频序列组对其他码元进行扩频。具体的扩频序列组选择方式和扩频方式在此均不作限制。
图8示出了本发明实施例中第三实现方式的UE进行扩频的示意图。如图8所示,在扩频序列集合中共包含至少5个扩频序列组,每个扩频序列组包含3个扩频序列,UE1-UE4将在这些扩频序列组中进行选择并对数据扩频。具体地,UE1选择了扩频序列组1,并利用其中的扩频序列S1、S2和S3分别对其数据中的第一码元-第三码元进行扩频,随后,UE1继续利用了扩频序列组1对其数据中的其他码元三个一组进行扩频,并得到最终的扩频数据。UE2-UE4采用了相类似的方式,分别选择了扩频序列组2、扩频序列组3和扩频序列组4进行扩频。可以看出,这种扩频方式能够尽量避免不同UE间的扩频数据之间的持续干扰,实现了干扰的随机化,有利于基站端对数据的接收和解扩。
可选地,在第三实现方式的基础上,UE还可以在所述扩频序列集合中选择针对其第一码元组的第一扩频序列组,其中第一码元组可以为此UE所要发送的数据中的第一个码元组,也可以为其任意指定的一个码元组,可选地,第一码元组中所包含的码元的个数可以与扩频序列集合中一个或多个扩频序列组所包含的扩频序列的个数相同;基于所述第一码元组的第一扩频序列组和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对其第二码元组的第二扩频序列组,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。具体地,针对第一码元组的第一扩频序列组可以由UE在预先配置好的扩频序列集合中随机选择,跳跃数也可以由UE在跳跃数集合中随机选择。其中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE,当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。当UE确定了针对第一码元组的第一扩频序列组和跳跃数时,可以据此确定扩频序列集合中的第二扩频序列组。具体地,可以根据所述跳跃数所指示的第一扩频序列组在扩频序列集合中的偏移来确定第二扩频序列组,即将第一扩频序列组在扩频序列集合中的位置进行跳跃数所指示的偏移,将扩频序列集合中位于偏移后的位置的扩频序列组确定为第二扩频序列组。此外,可选地,第一码元组和第二码元组可以为同一传输块中的相邻的两个码元组,也可以是具有一定间隔的两个码元组,在此不做限制。
进一步地,当UE确定了针对第一码元组的第一扩频序列组和针对第二码元组的第二扩频序列组之后,还可以以与第二码元组类似的方式,继续针对第三码元组以至第N码元组确定对其进行扩频的第三扩频序列组至第N扩频序列组。例如,UE可以利用第二扩频序列组和之前所选择的跳跃数继续确定针对第三码元组的第三扩频序列组,并以此类推,直至确定针对第N码元组的第N扩频序列组。另外,UE针对不同码元组所采用的跳跃数也可以不同,例如针对第二码元组选择第二扩频序列组的跳跃数可以为1,而针对第三码元组选择第三扩频序列组的跳跃数则可以为2,在此不做限制。
图9示出了本发明实施例中第三实现方式的UE进行扩频的另一示例的示意图。在图8所示实施例的基础上,参见图9,UE1可以选择第一扩频序 列组为扩频序列组S1,并选择跳跃数为1,在此基础上,UE1针对包含三个码元的第一码元组,可以利用扩频序列组S1中的每个扩频序列分别进行扩频,随后,针对与第一码元组相邻的第二码元组,可以根据所选择的跳跃数利用扩频序列组S2进行扩频,并以此类推。图9中针对UE要发送数据的扩频方式仅为示例,可以利用任意选择的扩频序列组和跳跃数选择扩频序列对所述数据进行扩频,在此不做限制。
在步骤S502中,利用所选择的扩频序列对所述数据进行扩频。
在本步骤中,如上述第一方式或第二方式所述,当针对要发送数据中的不同码元分别选择扩频序列时,可以利用各个码元所对应的不同的扩频序列分别对所述数据进行扩频。如上述第三方式所述,当针对要发送数据中的各个码元以码元组为单位选择扩频序列组时,可以分别利用所述扩频序列组中的每个扩频序列分别对所述码元组中的每个相应的码元进行扩频。
在步骤S503中,UE向基站发送经扩频的数据。
可见,根据本发明实施例的扩频通信方法,能够使得用户设备针对要发送的数据中的多个码元在扩频序列集合中分别选择扩频序列,并保证其中针对至少两个码元的扩频序列不同,从而可以尽量减少不同用户设备之间所发送的扩频数据之间的持续冲突和干扰,有利于基站对所接收到的扩频数据的正确接收和解扩,减少了数据传输的误块率,提高了数据解码的准确性。
下面,参照图10描述根据本发明实施例的由基站执行的扩频通信方法。图10示出该扩频通信方法1000的流程图。
如图10所示,在步骤S1001中,接收用户设备发送的经扩频的数据,其中,所述数据中至少两个扩频码元是用不同的扩频序列进行扩频得到的,所述扩频序列是从扩频序列集合中选择的。
在本步骤中,基站所接收的UE发送的经扩频的数据中的至少两个扩频码元是用不同的扩频序列进行扩频得到的,以尽可能地避免与其他UE的经扩频的数据的持续相互干扰。可选地,扩频序列集合可以为预先配置的,例如可以预先配置在基站和UE中,也可以由基站根据实际情况配置并且通过各种信令通知给UE,例如,基站可以通过高层信令将所述扩频序列集合发送给UE。
在步骤S1002中,基站根据所述扩频序列集合中的扩频序列,对所述数 据进行解扩。
具体地,与图5所示的实施例中前述第一实现方式对应地,UE在扩频序列集合中,对要发送数据中的多个码元分别随机选择扩频序列。在这种情况下,基站可以针对所述数据的每个扩频码元,依次使用所述扩频序列集合中的扩频序列进行解扩,直到成功解扩为止。
例如,在图6所示的本发明实施例中第一实现方式的经扩频的数据的示意图中,UE1-UE4针对其数据的不同码元分别在包括扩频序列S1、S2、S3和S4的扩频序列集合中选择不同的扩频序列进行扩频。相应地,基站在接收到UE1-UE4的经扩频的数据之后,将在此扩频序列集合中分别依次使用扩频序列S1、S2、S3和S4对UE1-UE4中的每个扩频码元分别尝试进行解扩,直到能够对数据进行成功解扩为止。例如,当UE1针对第三码元选择扩频序列S3进行扩频并发送给基站后,基站针对相应的第三扩频码元,可以依次尝试使用扩频序列集合中的扩频序列S1、S2、S3进行解扩,当使用扩频序列S3进行解扩时,发现可以成功解扩并得到扩频前的数据,则解扩过程终止。当然,在具体解扩过程中,也可能出现基站遍历过所有的扩频序列之后均无法成功解扩的情况,此时在基站遍历扩频序列集合中的所有扩频序列之后即停止对此码元进行解扩。
与图5所示的实施例中前述第二实现方式对应地,UE可以在扩频序列集合中,利用所选择的针对第一码元的第一扩频序列和跳跃数进行扩频。在这种情况下,基站可以根据所述扩频序列集合中的扩频序列和跳跃数集合中的跳跃数,依次对所述数据中的扩频码元进行解扩,直到成功解扩为止。例如,在一个示例中,基站可以针对所述数据的第一扩频码元,依次使用所述扩频序列集合中的扩频序列进行解扩,直到成功解扩为止,并将能够成功解扩的扩频序列确定为第一扩频序列;随后基于所述第一扩频序列,依次使用跳跃数集合中的跳跃数确定扩频序列,并对所述数据的第二扩频码元进行解扩,直到成功解扩为止,将能够成功解扩的扩频序列确定为第二扩频序列,并将能够成功解扩的跳跃数确定为针对所述用户设备的跳跃数,其中所述跳跃数表示所述扩频序列集合中扩频序列之间的偏移。例如,所述跳跃数可以表示扩频序列集合中扩频序列编号之间的偏移。在这一示例中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基 站配置并通过例如信令等方式告知UE(例如,基站可以通过高层信令将所述跳跃数集合发送给UE),当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。此外,可选地,第一扩频码元和第二扩频码元可以为同一传输块中的相邻的两个扩频码元,也可以是具有一定间隔的两个扩频码元,在此不做限制。
以此类推,基站还可以根据所确定的跳跃数和第二扩频序列继续对第三扩频码元-第N扩频码元进行解扩。可选地,当第一扩频序列为扩频序列集合中的第i个扩频序列,跳跃数选定为f,扩频序列集合中扩频序列的总数为M个时,第N扩频码元的第N扩频序列可以表示为第((i+(N-1)×f)mod M+1)个扩频序列。以上描述仅为示例,UE针对不同扩频码元所采用的跳跃数也可以不同,例如针对第二码元选择第二扩频序列的跳跃数可以为1,而针对第三码元选择第三扩频序列的跳跃数则可以为3,在此不做限制。
例如,在图7所示的本发明实施例中第二实现方式的经扩频的数据的示意图中,UE1-UE4针对其数据的不同码元分别在包括扩频序列S1、S2、S3和S4的扩频序列集合及包括跳跃数1和3的跳跃数集合中,选择各自的跳跃数和第一扩频序列进行扩频。相应地,基站在接收到UE1的经扩频的数据之后,将在此扩频序列集合中依次使用扩频序列S1、S2、S3和S4对UE1中的第一扩频码元分别进行解扩,直到能够成功解扩为止,并将能够成功解扩的扩频序列(例如扩频序列S1)确定为第一扩频序列。随后,针对UE1中与其第一扩频码元相邻的第二扩频码元,基站依次使用跳跃数集合中的跳跃数1、3确定扩频序列,例如,使用跳跃数1可以确定扩频序列为S2,针对跳跃数3可以确定扩频序列S4,以分别使用扩频序列S2、S4对第二扩频码元进行解扩。当利用扩频序列S2能够成功解扩时,基站确定扩频序列S2为第二扩频序列,并将能够成功解扩的跳跃数1确定为针对UE1的跳跃数。以此类推,基站可以继续对UE1的其他扩频码元以及其他UE分别进行解扩,以获得解扩后的数据。
在第二实现方式的另一种示例中,基站可以基于所述扩频序列集合中的扩频序列和跳跃数集合中的跳跃数对数据进行解扩。例如,基站可以遍历扩频序列集合中的扩频序列和跳跃数集合中的跳跃数所组成的组合,以对数据中的一个或多个扩频码元分别进行解扩,直到成功解扩为止。
与图5所示的实施例中前述第三实现方式对应地,所述扩频序列集合中可以包括多个扩频序列组,每个所述扩频序列组可以包括一个或多个扩频序列。可选地,这些扩频序列组中所包含的扩频序列个数可以相同也可以不同。在这一前提下,UE可以在所述扩频序列集合中选择扩频序列组,并利用所选择的扩频序列组中的扩频序列对所述数据的多个码元进行扩频。
相应地,基站根据所述扩频序列集合中的扩频序列,对所述数据进行解扩可以包括:针对所述数据的每个扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,直到成功解扩为止。具体地,基站可以首先针对与扩频序列组中所包含的扩频序列个数相同的码元组成的码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,然后以此类推,以对所接收数据中的所有码元组均进行解扩。例如,当扩频序列集合中的每个扩频序列组包含4个扩频序列时,基站可以对所接收的数据以4个扩频码元为单位,分别利用其所选择的扩频序列组中的每个扩频序列尝试进行解扩。当然,在基站对数据中的部分码元完成解扩之后,其可以利用相同的扩频序列组对其他码元组继续进行解扩,也可以重新使用不同的扩频序列组对其他码元组进行解扩。具体的扩频序列组选择方式和解扩方式在此均不作限制。
例如,在图8所示的本发明实施例中第三实现方式的经扩频的数据的示意图中,在扩频序列集合中共包含至少5个扩频序列组,每个扩频序列组包含3个扩频序列,UE1-UE4在这些扩频序列组中进行选择并对数据扩频。相应地,基站在接收到UE1的经扩频的数据之后,将在此扩频序列集合中依次使用扩频序列组1、2、3、4和5对UE1中包含三个扩频码元的码元组分别进行解扩,直到能够成功解扩为止。在解扩之后,针对另外的包含三个扩频码元的码元组,基站也可以利用刚才相同或不同的扩频序列组尝试进行解扩。
可选地,与图5所示的实施例中前述第三实现方式的基础上,在一个示例中,UE还可以在扩频序列集合中,利用所选择的针对其第一码元组的第一扩频序列组和跳跃数进行扩频,其中第一码元组可以为此UE所要发送的数据中的第一个码元组,也可以为其任意指定的一个码元组,可选地,第一码元组中所包含的码元的个数可以与扩频序列集合中一个或多个扩频序列组所包含的扩频序列的个数相同。在这种情况下,基站根据所述扩频序列集 合中的扩频序列组和跳跃数集合中的跳跃数,依次对所述数据中的扩频码元组进行解扩,直到成功解扩为止。例如,基站可以针对所述数据的第一扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,直到成功解扩为止,并将能够成功解扩的扩频序列组确定为第一扩频序列组;随后基于所述第一扩频序列组,依次使用跳跃数集合中的跳跃数确定扩频序列组,并对所述数据的第二扩频码元组进行解扩,直到成功解扩为止,将能够成功解扩的扩频序列确定为第二扩频序列组,并将能够成功解扩的跳跃数确定为针对所述用户设备的跳跃数,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。在这一示例中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE,当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。此外,可选地,第一扩频码元组和第二扩频码元组可以为同一传输块中的相邻的两个扩频码元组,也可以是具有一定间隔的两个扩频码元组,在此不做限制。以此类推,基站还可以根据所确定的跳跃数和第二扩频序列组继续对第三扩频码元组-第N扩频码元组进行解扩。
例如,在图9所示的本发明实施例中第三实现方式的经扩频的数据的另一示意图中,在图8所示实施例的基础上,UE1选择第一扩频序列组为扩频序列组S1,并选择跳跃数为1。由此,UE1针对包含三个码元的第一码元组,可以利用扩频序列组S1中的每个扩频序列分别进行扩频,随后,针对与第一码元组相邻的第二码元组,可以根据所选择的跳跃数利用扩频序列组S2进行扩频,并以此类推。相应地,基站在接收到UE1的经扩频的数据之后,将在此扩频序列集合中依次使用扩频序列组1、2、3、4和5对UE1中的第一扩频码元组分别进行解扩,直到能够成功解扩为止,并将能够成功解扩的扩频序列组(例如扩频序列组1)确定为第一扩频序列组。随后,针对UE1中与其第一扩频码元组相邻的第二扩频码元组,基站依次使用跳跃数集合中的跳跃数1、3确定扩频序列组,例如,使用跳跃数1可以确定扩频序列组为2,针对跳跃数3可以确定扩频序列组为4,以分别使用扩频序列组2、4对第二扩频码元组进行解扩。当利用扩频序列组2能够成功解扩时,基站确定扩频序列组2为第二扩频序列组,并将能够成功解扩的跳跃数1确定为针 对UE1的跳跃数。以此类推,基站可以继续对UE1的其他扩频码元组以及其他UE分别进行解扩,以获得解扩后的数据。
在第三实现方式基础上的再一种示例中,基站可以基于所述扩频序列集合中的扩频序列组和跳跃数集合中的跳跃数对数据进行解扩。例如,基站可以遍历扩频序列集合中的扩频序列组和跳跃数集合中的跳跃数所组成的组合,以对数据中的一个或多个扩频码元分别进行解扩,直到成功解扩为止。
可见,根据本发明实施例的扩频通信方法,能够使得用户设备针对要发送的数据中的多个码元在扩频序列集合中分别选择扩频序列,并保证其中针对至少两个码元的扩频序列不同,从而可以尽量减少不同用户设备之间所发送的扩频数据之间的持续冲突和干扰,有利于基站对所接收到的扩频数据的正确接收和解扩,减少了数据传输的误块率,提高了数据解码的准确性。
下面,参照图11来描述根据本申请实施例的UE。该UE可以执行上述扩频通信方法。由于该UE的操作与上文所述的扩频通信方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图11所示,UE 1100包括选择单元1110、扩频单元1120和发送单元1130。需要认识到,图11仅示出与本申请的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,UE 1100可以包括其他部件。
选择单元1110在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列,其中,针对至少两个码元所选择的扩频序列不同。
选择单元1110可以分别针对要发送的数据中的不同码元选择各自的扩频序列,以尽可能地避免与其他UE的经扩频的数据的持续相互干扰。具体地,可以选择至少两个不同的扩频序列使得针对至少两个码元的扩频序列不同。如上所述,扩频序列集合可以为预先配置的,例如可以预先配置在基站和UE中,也可以由基站根据实际情况配置并且通过各种信令通知给UE,例如,基站可以通过高层信令将所述扩频序列集合发送给UE。
具体地,在第一实现方式中,选择单元1110可以在扩频序列集合中,对要发送数据中的多个码元分别随机选择扩频序列。在这种情况下,UE的选择单元1110针对所要发送的数据中的至少两个码元均分别随机选择扩频序列,并保证所述至少两个码元之间的扩频序列不同。
图6示出了本发明实施例中第一实现方式的UE通过选择单元1110选 择扩频序列进行扩频的示意图。如图6所示,在包括扩频序列S1、S2、S3和S4的扩频序列集合中,UE1-UE4均可以针对其数据的不同码元分别选择不同的扩频序列进行扩频。例如,作为随机选择的结果,UE1中的选择单元可以针对其第一码元选择扩频序列S1进行扩频,而针对第二码元选择扩频序列S2进行扩频,以此类推。此外,UE2中的选择单元可以针对第一码元选择扩频序列S2进行扩频,而针对第二码元选择扩频序列S3进行扩频。由此,各个UE的各个码元所用的扩频序列是随机选择的。这样,可以尽量避免之前所提及的如图4所示的UE3和UE4经扩频的数据之间的持续干扰,而将例如UE4的数据中各个不同扩频码元的干扰分散到不同的用户设备之间。根据图6可以看出,即使UE4的第一码元与UE1的第一码元选择了相同的扩频序列,从而在其扩频码元之间产生干扰,但是由于UE1的第二码元随机选择了扩频序列S3,UE4的第二码元则随机选择了扩频序列S3因此,UE1和UE4的第二扩频码元之间不再干扰。相反,UE4的第二扩频码元则改为与UE2之间产生干扰,这样可以实现不同用户设备所发送的数据之间的干扰随机化,以利于基站端对数据的接收和解扩。
在第二实现方式中,UE的选择单元1100可以在扩频序列集合中,首先选择针对第一码元的第一扩频序列,其中第一码元可以为此UE所要发送的数据中的第一个码元,也可以为其任意指定的一个码元;然后基于所述第一码元的第一扩频序列和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对其第二码元的第二扩频序列,其中所述跳跃数表示所述扩频序列集合中扩频序列之间的偏移。例如,所述跳跃数可以表示扩频序列集合中扩频序列编号之间的偏移。具体地,针对第一码元的第一扩频序列可以由选择单元1100在扩频序列集合中随机选择,跳跃数也可以由选择单元1100在跳跃数集合中随机选择。其中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE(例如,基站可以通过高层信令将所述跳跃数集合发送给UE),当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。当选择单元1100确定了针对第一码元的第一扩频序列和跳跃数时,可以据此确定扩频序列集合中的第二扩频序列。具体地,可以根据所述跳跃数所指示的 第一扩频序列在扩频序列集合中的偏移来确定第二扩频序列,即将第一扩频序列在扩频序列集合中的位置进行跳跃数所指示的偏移,将扩频序列集合中位于偏移后的位置的扩频序列确定为第二扩频序列。此外,可选地,第一码元和第二码元可以为同一传输块中的相邻的两个码元,也可以是具有一定间隔的两个码元,在此不做限制。
进一步地,当选择单元1100确定了针对第一码元的第一扩频序列和针对第二码元的第二扩频序列之后,还可以以与第二码元类似的方式,继续针对第三码元至第N码元确定对其进行扩频的第三扩频序列至第N扩频序列。例如,UE可以利用第二扩频序列和之前所选择的跳跃数继续确定针对第三码元的第三扩频序列,并以此类推,直至确定针对第N码元的第N扩频序列。可选地,当第一扩频序列为扩频序列集合中的第i个扩频序列,跳跃数选定为f,扩频序列集合中扩频序列的总数为M个时,第N码元的第N扩频序列可以表示为第((i+(N-1)×f)mod M+1)个扩频序列。以上描述仅为示例,UE针对不同码元所采用的跳跃数也可以不同,例如针对第二码元选择第二扩频序列的跳跃数可以为1,而针对第三码元选择第三扩频序列的跳跃数则可以为3,在此不做限制。
图7示出了本发明实施例中第二实现方式的UE利用选择单元1100选择扩频序列和跳跃数进行扩频的示意图。如图7所示,在包括扩频序列S1、S2、S3和S4的扩频序列集合及包括跳跃数1和3的跳跃数集合中,UE1-UE4均可以选择各自的跳跃数,且针对其第一码元选择各自的扩频序列进行扩频。例如,UE1所选择的跳跃数为1,且针对第一码元所选择的第一扩频序列为S1;UE2所选择的跳跃数为1,且针对第一码元所选择的第一扩频序列为S2;UE3所选择的跳跃数为1,且针对第一码元所选择的第一扩频序列为S3;UE4所选择的跳跃数为3,且针对第一码元所选择的第一扩频序列为S1。在这种情况下,UE1-UE4经扩频的数据如图6所示。可以看出,虽然UE1和UE4针对其第一码元均选择了相同的第一扩频序列S1,但由于UE1和UE4所选择的跳跃数不同,因此第二码元无干扰,由此,能够尽量避免二者经扩频的数据之间的持续干扰,而实现了不同用户设备所发送的数据之间的干扰随机化,以利于基站端对数据的接收和解扩。
在第三实现方式中,所述扩频序列集合中可以包括多个扩频序列组,每 个所述扩频序列组可以包括一个或多个扩频序列。可选地,这些扩频序列组中所包含的扩频序列个数可以相同,也可以不同。在这一前提下,选择单元1100可以在所述扩频序列集合中选择扩频序列组,并利用所选择的扩频序列组中的扩频序列对所述数据的多个码元进行扩频。
具体地,选择单元1100可以首先针对与所述扩频序列集合的扩频序列组中所包含的扩频序列个数相同的码元,利用扩频序列组的每个扩频序列分别进行扩频,然后以此类推,对其要发送数据中的每个码元均进行扩频。例如,当扩频序列集合中的每个扩频序列组包含4个扩频序列时,UE可以以4个码元为单位,分别利用其所选择的扩频序列组中的每个扩频序列对要发送的数据进行扩频,直至对所有码元均完成扩频。当然,在UE利用其选择的某个扩频序列组对数据中的部分码元进行扩频之后,其可以继续利用相同的扩频序列组对其他码元进行扩频,也可以重新选择不同的扩频序列组对其他码元进行扩频。具体的扩频序列组选择方式和扩频方式在此均不作限制。
图8示出了本发明实施例中第三实现方式的UE利用选择单元1100选择扩频序列组进行扩频的示意图。如图8所示,在扩频序列集合中共包含至少5个扩频序列组,每个扩频序列组包含3个扩频序列,UE1-UE4将在这些扩频序列组中进行选择并对数据扩频。具体地,UE1选择了扩频序列组1,并利用其中的扩频序列S1、S2和S3分别对其数据中的第一码元-第三码元进行扩频,随后,UE1继续利用了扩频序列组1对其数据中的其他码元三个一组进行扩频,并得到最终的扩频数据。UE2-UE4采用了相类似的方式,分别选择了扩频序列组2、扩频序列组3和扩频序列组4进行扩频。可以看出,这种扩频方式能够尽量避免不同UE间的扩频数据之间的持续干扰,实现了干扰的随机化,有利于基站端对数据的接收和解扩。
可选地,在第三实现方式的基础上,选择单元1100还可以在所述扩频序列集合中选择针对其第一码元组的第一扩频序列组,其中第一码元组可以为此UE所要发送的数据中的第一个码元组,也可以为其任意指定的一个码元组,可选地,第一码元组中所包含的码元的个数可以与扩频序列集合中一个或多个扩频序列组所包含的扩频序列的个数相同;基于所述第一码元组的第一扩频序列组和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对其第二码元组的第二扩频序列组,其中所述跳 跃数表示所述扩频序列集合中扩频序列组之间的偏移。具体地,针对第一码元组的第一扩频序列组可以由UE在预先配置好的扩频序列集合中随机选择,跳跃数也可以由UE在跳跃数集合中随机选择。其中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE,当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。当UE确定了针对第一码元组的第一扩频序列组和跳跃数时,可以据此确定扩频序列集合中的第二扩频序列组。具体地,可以根据所述跳跃数所指示的第一扩频序列组在扩频序列集合中的偏移来确定第二扩频序列组,即将第一扩频序列组在扩频序列集合中的位置进行跳跃数所指示的偏移,将扩频序列集合中位于偏移后的位置的扩频序列组确定为第二扩频序列组。此外,可选地,第一码元组和第二码元组可以为同一传输块中的相邻的两个码元组,也可以是具有一定间隔的两个码元组,在此不做限制。
进一步地,当选择单元1100确定了针对第一码元组的第一扩频序列组和针对第二码元组的第二扩频序列组之后,还可以以与第二码元组类似的方式,继续针对第三码元组以至第N码元组确定对其进行扩频的第三扩频序列组至第N扩频序列组。例如,UE可以利用第二扩频序列组和之前所选择的跳跃数继续确定针对第三码元组的第三扩频序列组,并以此类推,直至确定针对第N码元组的第N扩频序列组。另外,选择单元1100针对不同码元组所采用的跳跃数也可以不同,例如针对第二码元组选择第二扩频序列组的跳跃数可以为1,而针对第三码元组选择第三扩频序列组的跳跃数则可以为2,在此不做限制。
图9示出了本发明实施例中第三实现方式的UE利用选择单元1100选择扩频序列组和跳跃数进行扩频的另一示例的示意图。在图8所示实施例的基础上,参见图9,UE1的选择单元可以选择第一扩频序列组为扩频序列组S1,并选择跳跃数为1,在此基础上,UE1针对包含三个码元的第一码元组,可以利用扩频序列组S1中的每个扩频序列分别进行扩频,随后,针对与第一码元组相邻的第二码元组,可以根据所选择的跳跃数利用扩频序列组S2进行扩频,并以此类推。图9中针对UE要发送数据的扩频方式仅为示例,可以利用任意选择的扩频序列组和跳跃数选择扩频序列对所述数据进行扩 频,在此不做限制。
扩频单元1120利用所选择的扩频序列对所述数据进行扩频。
如上述第一方式或第二方式所述,当针对要发送数据中的不同码元分别选择扩频序列时,扩频单元1120可以利用各个码元所对应的不同的扩频序列分别对所述数据进行扩频。如上述第三方式所述,当针对要发送数据中的各个码元以码元组为单位选择扩频序列组时,扩频单元1120可以分别利用所述扩频序列组中的每个扩频序列分别对所述码元组中的每个相应的码元进行扩频。
发送单元1130向基站发送经扩频的数据。
可见,根据本发明实施例的用户设备,能够使得用户设备针对要发送的数据中的多个码元在扩频序列集合中分别选择扩频序列,并保证其中针对至少两个码元的扩频序列不同,从而可以尽量减少不同用户设备之间所发送的扩频数据之间的持续冲突和干扰,有利于基站对所接收到的扩频数据的正确接收和解扩,减少了数据传输的误块率,提高了数据解码的准确性。
下面,参照图12来描述根据本申请实施例的基站。该基站可以执行上述扩频通信方法。由于该基站的操作与上文所述的扩频通信方法的各个步骤基本相同,因此在这里只对其进行简要的描述,而省略对相同内容的重复描述。
如图12所示,基站1200包括接收单元1210和解扩单元1220。需要认识到,图12仅示出与本申请的实施例相关的部件,而省略了其他部件,但这只是示意性的,根据需要,基站1200可以包括其他部件。
接收单元1210接收用户设备发送的经扩频的数据,其中,所述数据中至少两个扩频码元是用不同的扩频序列进行扩频得到的,所述扩频序列是从扩频序列集合中选择的。
接收单元1210所接收的UE发送的经扩频的数据中的至少两个扩频码元是用不同的扩频序列进行扩频得到的,以尽可能地避免与其他UE的经扩频的数据的持续相互干扰。可选地,扩频序列集合可以为预先配置的,例如可以预先配置在基站和UE中,也可以由基站根据实际情况配置并且通过各种信令通知给UE,例如,基站可以通过高层信令将所述扩频序列集合发送给UE。
解扩单元1220基站根据所述扩频序列集合中的扩频序列,对所述数据进行解扩。
具体地,与图5所示的实施例中前述第一实现方式对应地,UE在扩频序列集合中,对要发送数据中的多个码元分别随机选择扩频序列。在这种情况下,解扩单元1220可以针对所述数据的每个扩频码元,依次使用所述扩频序列集合中的扩频序列进行解扩,直到成功解扩为止。
例如,在图6所示的本发明实施例中第一实现方式的经扩频的数据的示意图中,UE1-UE4针对其数据的不同码元分别在包括扩频序列S1、S2、S3和S4的扩频序列集合中选择不同的扩频序列进行扩频。相应地,解扩单元1220在接收到UE1-UE4的经扩频的数据之后,将在此扩频序列集合中分别依次使用扩频序列S1、S2、S3和S4对UE1-UE4中的每个扩频码元分别尝试进行解扩,直到能够对数据进行成功解扩为止。例如,当UE1针对第三码元选择扩频序列S3进行扩频并发送给基站后,解扩单元1220针对相应的第三扩频码元,可以依次尝试使用扩频序列集合中的扩频序列S1、S2、S3进行解扩,当使用扩频序列S3进行解扩时,发现可以成功解扩并得到扩频前的数据,则解扩过程终止。当然,在具体解扩过程中,也可能出现解扩单元1220遍历过所有的扩频序列之后均无法成功解扩的情况,此时在基站遍历扩频序列集合中的所有扩频序列之后即停止对此码元进行解扩。
与图5所示的实施例中前述第二实现方式对应地,UE可以在扩频序列集合中,利用所选择的针对第一码元的第一扩频序列和跳跃数进行扩频。在这种情况下,解扩单元1220可以根据所述扩频序列集合中的扩频序列和跳跃数集合中的跳跃数,依次对所述数据中的扩频码元进行解扩,直到成功解扩为止。例如,在一个示例中,解扩单元1220可以针对所述数据的第一扩频码元,依次使用所述扩频序列集合中的扩频序列进行解扩,直到成功解扩为止,并将能够成功解扩的扩频序列确定为第一扩频序列;随后基于所述第一扩频序列,依次使用跳跃数集合中的跳跃数确定扩频序列,并对所述数据的第二扩频码元进行解扩,直到成功解扩为止,将能够成功解扩的扩频序列确定为第二扩频序列,并将能够成功解扩的跳跃数确定为针对所述用户设备的跳跃数,其中所述跳跃数表示所述扩频序列集合中扩频序列之间的偏移。例如,所述跳跃数可以表示扩频序列集合中扩频序列编号之间的偏移。在这 一示例中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE(例如,基站可以通过高层信令将所述跳跃数集合发送给UE),当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。此外,可选地,第一扩频码元和第二扩频码元可以为同一传输块中的相邻的两个扩频码元,也可以是具有一定间隔的两个扩频码元,在此不做限制。
以此类推,解扩单元1220还可以根据所确定的跳跃数和第二扩频序列继续对第三扩频码元-第N扩频码元进行解扩。可选地,当第一扩频序列为扩频序列集合中的第i个扩频序列,跳跃数选定为f,扩频序列集合中扩频序列的总数为M个时,第N扩频码元的第N扩频序列可以表示为第((i+(N-1)×f)mod M+1)个扩频序列。以上描述仅为示例,UE针对不同扩频码元所采用的跳跃数也可以不同,例如针对第二码元选择第二扩频序列的跳跃数可以为1,而针对第三码元选择第三扩频序列的跳跃数则可以为3,在此不做限制。
例如,在图7所示的本发明实施例中第二实现方式的经扩频的数据的示意图中,UE1-UE4针对其数据的不同码元分别在包括扩频序列S1、S2、S3和S4的扩频序列集合及包括跳跃数1和3的跳跃数集合中,选择各自的跳跃数和第一扩频序列进行扩频。相应地,解扩单元1220在接收到UE1的经扩频的数据之后,将在此扩频序列集合中依次使用扩频序列S1、S2、S3和S4对UE1中的第一扩频码元分别进行解扩,直到能够成功解扩为止,并将能够成功解扩的扩频序列(例如扩频序列S1)确定为第一扩频序列。随后,针对UE1中与其第一扩频码元相邻的第二扩频码元,基站依次使用跳跃数集合中的跳跃数1、3确定扩频序列,例如,使用跳跃数1可以确定扩频序列为S2,针对跳跃数3可以确定扩频序列S4,以分别使用扩频序列S2、S4对第二扩频码元进行解扩。当利用扩频序列S2能够成功解扩时,基站确定扩频序列S2为第二扩频序列,并将能够成功解扩的跳跃数1确定为针对UE1的跳跃数。以此类推,基站可以继续对UE1的其他扩频码元以及其他UE分别进行解扩,以获得解扩后的数据。
在第二实现方式的另一种示例中,解扩单元1220可以基于所述扩频序 列集合中的扩频序列和跳跃数集合中的跳跃数对数据进行解扩。例如,解扩单元1220可以遍历扩频序列集合中的扩频序列和跳跃数集合中的跳跃数所组成的组合,以对数据中的一个或多个扩频码元分别进行解扩,直到成功解扩为止。
与图5所示的实施例中前述第三实现方式对应地,所述扩频序列集合中可以包括多个扩频序列组,每个所述扩频序列组可以包括一个或多个扩频序列。可选地,这些扩频序列组中所包含的扩频序列个数可以相同也可以不同。在这一前提下,UE可以在所述扩频序列集合中选择扩频序列组,并利用所选择的扩频序列组中的扩频序列对所述数据的多个码元进行扩频。
相应地,解扩单元1220根据所述扩频序列集合中的扩频序列,对所述数据进行解扩可以包括:针对所述数据的每个扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,直到成功解扩为止。具体地,基站可以首先针对与扩频序列组中所包含的扩频序列个数相同的码元组成的码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,然后以此类推,以对所接收数据中的所有码元组均进行解扩。例如,当扩频序列集合中的每个扩频序列组包含4个扩频序列时,基站可以对所接收的数据以4个扩频码元为单位,分别利用其所选择的扩频序列组中的每个扩频序列尝试进行解扩。当然,在基站对数据中的部分码元完成解扩之后,其可以利用相同的扩频序列组对其他码元组继续进行解扩,也可以重新使用不同的扩频序列组对其他码元组进行解扩。具体的扩频序列组选择方式和解扩方式在此均不作限制。
例如,在图8所示的本发明实施例中第三实现方式的经扩频的数据的示意图中,在扩频序列集合中共包含至少5个扩频序列组,每个扩频序列组包含3个扩频序列,UE1-UE4在这些扩频序列组中进行选择并对数据扩频。相应地,解扩单元1220在接收到UE1的经扩频的数据之后,将在此扩频序列集合中依次使用扩频序列组1、2、3、4和5对UE1中包含三个扩频码元的码元组分别进行解扩,直到能够成功解扩为止。在解扩之后,针对另外的包含三个扩频码元的码元组,基站也可以利用刚才相同或不同的扩频序列组尝试进行解扩。
可选地,与图5所示的实施例中前述第三实现方式的基础上,在一个示例中,UE还可以在扩频序列集合中,利用所选择的针对其第一码元组的第 一扩频序列组和跳跃数进行扩频,其中第一码元组可以为此UE所要发送的数据中的第一个码元组,也可以为其任意指定的一个码元组,可选地,第一码元组中所包含的码元的个数可以与扩频序列集合中一个或多个扩频序列组所包含的扩频序列的个数相同。在这种情况下,解扩单元1220根据所述扩频序列集合中的扩频序列组和跳跃数集合中的跳跃数,依次对所述数据中的扩频码元组进行解扩,直到成功解扩为止。例如,解扩单元1220可以针对所述数据的第一扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,直到成功解扩为止,并将能够成功解扩的扩频序列组确定为第一扩频序列组;随后基于所述第一扩频序列组,依次使用跳跃数集合中的跳跃数确定扩频序列组,并对所述数据的第二扩频码元组进行解扩,直到成功解扩为止,将能够成功解扩的扩频序列确定为第二扩频序列组,并将能够成功解扩的跳跃数确定为针对所述用户设备的跳跃数,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。在这一示例中,跳跃数集合也可以为预先配置的,例如,跳跃数集合可以由基站预先配置,也可以由基站配置并通过例如信令等方式告知UE,当然也可以预先写入标准。可选地,扩频序列集合和跳跃数集合也可以共同构成一个扩频序列资源集,由基站同时预先配置。此外,可选地,第一扩频码元组和第二扩频码元组可以为同一传输块中的相邻的两个扩频码元组,也可以是具有一定间隔的两个扩频码元组,在此不做限制。以此类推,基站还可以根据所确定的跳跃数和第二扩频序列组继续对第三扩频码元组-第N扩频码元组进行解扩。
例如,在图9所示的本发明实施例中第三实现方式的经扩频的数据的另一示意图中,在图8所示实施例的基础上,UE1选择第一扩频序列组为扩频序列组S1,并选择跳跃数为1。由此,UE1针对包含三个码元的第一码元组,可以利用扩频序列组S1中的每个扩频序列分别进行扩频,随后,针对与第一码元组相邻的第二码元组,可以根据所选择的跳跃数利用扩频序列组S2进行扩频,并以此类推。相应地,解扩单元1220在接收到UE1的经扩频的数据之后,将在此扩频序列集合中依次使用扩频序列组1、2、3、4和5对UE1中的第一扩频码元组分别进行解扩,直到能够成功解扩为止,并将能够成功解扩的扩频序列组(例如扩频序列组1)确定为第一扩频序列组。随后,针对UE1中与其第一扩频码元组相邻的第二扩频码元组,基站依次使用跳 跃数集合中的跳跃数1、3确定扩频序列组,例如,使用跳跃数1可以确定扩频序列组为2,针对跳跃数3可以确定扩频序列组为4,以分别使用扩频序列组2、4对第二扩频码元组进行解扩。当利用扩频序列组2能够成功解扩时,基站确定扩频序列组2为第二扩频序列组,并将能够成功解扩的跳跃数1确定为针对UE1的跳跃数。以此类推,基站可以继续对UE1的其他扩频码元组以及其他UE分别进行解扩,以获得解扩后的数据。
在第三实现方式基础上的再一种示例中,解扩单元1220可以基于所述扩频序列集合中的扩频序列组和跳跃数集合中的跳跃数对数据进行解扩。例如,解扩单元1220可以遍历扩频序列集合中的扩频序列组和跳跃数集合中的跳跃数所组成的组合,以对数据中的一个或多个扩频码元分别进行解扩,直到成功解扩为止。
可见,根据本发明实施例的基站,能够使得用户设备针对要发送的数据中的多个码元在扩频序列集合中分别选择扩频序列,并保证其中针对至少两个码元的扩频序列不同,从而可以尽量减少不同用户设备之间所发送的扩频数据之间的持续冲突和干扰,有利于基站对所接收到的扩频数据的正确接收和解扩,减少了数据传输的误块率,提高了数据解码的准确性。
<硬件结构>
本发明的一实施方式中的用户终端等可以作为执行本发明的无线通信方法的处理的计算机来发挥功能。图13是示出本发明的一实施方式所涉及的无线基站和用户终端的硬件结构的一例的图。上述的用户终端1100、基站1200可以作为在物理上包括处理器1310、内存1320、存储器1330、通信装置1340、输入装置1350、输出装置1360、总线1370等的计算机装置来构成。
另外,在以下的说明中,“装置”这样的文字也可替换为电路、设备、单元等。用户终端1100、基站1200的硬件结构可以包括一个或多个图中所示的各装置,也可以不包括部分装置。
例如,处理器1310仅图示出一个,但也可以为多个处理器。此外,可以通过一个处理器来执行处理,也可以通过一个以上的处理器同时、依次、或采用其它方法来执行处理。另外,处理器1310可以通过一个以上的芯片来安装。
用户终端1100、基站1200中的各功能例如通过如下方式实现:通过将 规定的软件(程序)读入到处理器1310、内存1320等硬件上,从而使处理器1310进行运算,对由通信装置1340进行的通信进行控制,并对内存1320和存储器1330中的数据的读出和/或写入进行控制。
处理器1310例如使操作系统进行工作从而对计算机整体进行控制。处理器1310可以由包括与周边装置的接口、控制装置、运算装置、寄存器等的中央处理器(CPU,Central Processing Unit)构成。
此外,处理器1310将程序(程序代码)、软件模块、数据等从存储器1330和/或通信装置1340读出到内存1320,并根据它们执行各种处理。作为程序,可以采用使计算机执行在上述实施方式中说明的动作中的至少一部分的程序。
内存1320是计算机可读取记录介质,例如可以由只读存储器(ROM,ReadOnlyMemory)、可编程只读存储器(EPROM,ErasableProgrammableROM)、电可编程只读存储器(EEPROM,ElectricallyEPROM)、随机存取存储器(RAM,RandomAccessMemory)、其它适当的存储介质中的至少一个来构成。内存1320也可以称为寄存器、高速缓存、主存储器(主存储装置)等。内存320可以保存用于实施本发明的一实施方式所涉及的无线通信方法的可执行程序(程序代码)、软件模块等。
存储器1330是计算机可读取记录介质,例如可以由软磁盘(flexible disk)、软(注册商标)盘(floppy disk)、磁光盘(例如,只读光盘(CD-ROM(CompactDiscROM)等)、数字通用光盘、蓝光(Blu-ray,注册商标)光盘)、可移动磁盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒(stick)、密钥驱动器(key driver))、磁条、数据库、服务器、其它适当的存储介质中的至少一个来构成。存储器1330也可以称为辅助存储装置。
通信装置1340是用于通过有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也称为网络设备、网络控制器、网卡、通信模块等。通信装置1340为了实现例如频分双工(FDD,FrequencyDivisionDuplex)和/或时分双工(TDD,TimeDivisionDuplex),可以包括高频开关、双工器、滤波器、频率合成器等。
输入装置1350是接受来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按钮、传感器等)。输出装置1360是实施向外部的输出的输 出设备(例如,显示器、扬声器、发光二极管(LED,LightEmittingDiode)灯等)。另外,输入装置1350和输出装置1360也可以为一体的结构(例如触控面板)。
此外,处理器1310、内存1320等各装置通过用于对信息进行通信的总线1370连接。总线1370可以由单一的总线构成,也可以由装置间不同的总线构成。
此外,用户终端1100、基站1200可以包括微处理器、数字信号处理器(DSP,DigitalSignalProcessor)、专用集成电路(ASIC,ApplicationSpecificIntegratedCircuit)、可编程逻辑器件(PLD,ProgrammableLogicDevice)、现场可编程门阵列(FPGA,FieldProgrammableGateArray)等硬件,可以通过该硬件来实现各功能块的部分或全部。例如,处理器310可以通过这些硬件中的至少一个来安装。
(变形例)
另外,关于本说明书中说明的用语和/或对本说明书进行理解所需的用语,可以与具有相同或类似含义的用语进行互换。例如,信道和/或符号也可以为信号(信令)。此外,信号也可以为消息。参考信号也可以简称为RS(ReferenceSignal),根据所适用的标准,也可以称为导频(Pilot)、导频信号等。此外,分量载波(CC,ComponentCarrier)也可以称为小区、频率载波、载波频率等。
此外,无线帧在时域中可以由一个或多个期间(帧)构成。构成无线帧的该一个或多个期间(帧)中的每一个也可以称为子帧。进而,子帧在时域中可以由一个或多个时隙构成。子帧可以是不依赖于参数配置(numerology)的固定的时间长度(例如1ms)。
进而,时隙在时域中可以由一个或多个符号(正交频分复用(OFDM,OrthogonalFrequencyDivisionMultiplexing)符号、单载波频分多址(SC-FDMA,SingleCarrierFrequencyDivisionMultipleAccess)符号等)构成。此外,时隙也可以是基于参数配置的时间单元。此外,时隙还可以包括多个微时隙。各微时隙在时域中可以由一个或多个符号构成。此外,微时隙也可以称为子时隙。
无线帧、子帧、时隙、微时隙以及符号均表示传输信号时的时间单元。 无线帧、子帧、时隙、微时隙以及符号也可以使用各自对应的其它名称。例如,一个子帧可以被称为传输时间间隔(TTI,TransmissionTimeInterval),多个连续的子帧也可以被称为TTI,一个时隙或一个微时隙也可以被称为TTI。也就是说,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是短于1ms的期间(例如1~13个符号),还可以是长于1ms的期间。另外,表示TTI的单元也可以称为时隙、微时隙等而非子帧。
在此,TTI例如是指无线通信中调度的最小时间单元。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频带宽度、发射功率等)的调度。另外,TTI的定义不限于此。
TTI可以是经过信道编码的数据包(传输块)、码块、和/或码字的发送时间单元,也可以是调度、链路适配等的处理单元。另外,在给出TTI时,实际上与传输块、码块、和/或码字映射的时间区间(例如符号数)也可以短于该TTI。
另外,一个时隙或一个微时隙被称为TTI时,一个以上的TTI(即一个以上的时隙或一个以上的微时隙)也可以成为调度的最小时间单元。此外,构成该调度的最小时间单元的时隙数(微时隙数)可以受到控制。
具有1ms时间长度的TTI也可以称为常规TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、常规子帧、标准子帧、或长子帧等。短于常规TTI的TTI也可以称为压缩TTI、短TTI、部分TTI(partial或fractional TTI)、压缩子帧、短子帧、微时隙、或子时隙等。
另外,长TTI(例如常规TTI、子帧等)也可以用具有超过1ms的时间长度的TTI来替换,短TTI(例如压缩TTI等)也可以用具有比长TTI的TTI长度短且1ms以上的TTI长度的TTI来替换。
资源块(RB,ResourceBlock)是时域和频域的资源分配单元,在频域中,可以包括一个或多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包括一个或多个符号,也可以为一个时隙、一个微时隙、一个子帧或一个TTI的长度。一个TTI、一个子帧可以分别由一个或多个资源块构成。另外,一个或多个RB也可以称为物理资源块(PRB,PhysicalRB)、子载波组(SCG,Sub-CarrierGroup)、资源单元组(REG,Resource ElementGroup)、 PRG对、RB对等。
此外,资源块也可以由一个或多个资源单元(RE,ResourceElement)构成。例如,一个RE可以是一个子载波和一个符号的无线资源区域。
另外,上述的无线帧、子帧、时隙、微时隙以及符号等的结构仅仅为示例。例如,无线帧中包括的子帧数、每个子帧或无线帧的时隙数、时隙内包括的微时隙数、时隙或微时隙中包括的符号和RB的数目、RB中包括的子载波数、以及TTI内的符号数、符号长度、循环前缀(CP,Cyclic Prefix)长度等的结构可以进行各种各样的变更。
此外,本说明书中说明的信息、参数等可以用绝对值来表示,也可以用与规定值的相对值来表示,还可以用对应的其它信息来表示。例如,无线资源可以通过规定的索引来指示。进一步地,使用这些参数的公式等也可以与本说明书中明确公开的不同。
在本说明书中用于参数等的名称在任何方面都并非限定性的。例如,各种各样的信道(物理上行链路控制信道(PUCCH,PhysicalUplink ControlChannel)、物理下行链路控制信道(PDCCH,PhysicalDownlink ControlChannel)等)和信息单元可以通过任何适当的名称来识别,因此为这些各种各样的信道和信息单元所分配的各种各样的名称在任何方面都并非限定性的。
本说明书中说明的信息、信号等可以使用各种各样不同技术中的任意一种来表示。例如,在上述的全部说明中可能提及的数据、命令、指令、信息、信号、比特、符号、芯片等可以通过电压、电流、电磁波、磁场或磁性粒子、光场或光子、或者它们的任意组合来表示。
此外,信息、信号等可以从上层向下层、和/或从下层向上层输出。信息、信号等可以经由多个网络节点进行输入或输出。
输入或输出的信息、信号等可以保存在特定的场所(例如内存),也可以通过管理表进行管理。输入或输出的信息、信号等可以被覆盖、更新或补充。输出的信息、信号等可以被删除。输入的信息、信号等可以被发往其它装置。
信息的通知并不限于本说明书中说明的方式/实施方式,也可以通过其它方法进行。例如,信息的通知可以通过物理层信令(例如,下行链路控制 信息(DCI,DownlinkControlInformation)、上行链路控制信息(UCI,UplinkControlInformation))、上层信令(例如,无线资源控制(RRC,RadioResourceControl)信令、广播信息(主信息块(MIB,MasterInformationBlock)、系统信息块(SIB,SystemInformationBlock)等)、媒体存取控制(MAC,MediumAccessControl)信令)、其它信号或者它们的组合来实施。
另外,物理层信令也可以称为L1/L2(第1层/第2层)控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以称为RRC消息,例如可以为RRC连接建立(RRC Connection Setup)消息、RRC连接重配置(RRC Connection Reconfiguration)消息等。此外,MAC信令例如可以通过MAC控制单元(MAC CE(Control Element))来通知。
此外,规定信息的通知(例如,“为X”的通知)并不限于显式地进行,也可以隐式地(例如,通过不进行该规定信息的通知,或者通过其它信息的通知)进行。
关于判定,可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或假(false)表示的真假值(布尔值)来进行,还可以通过数值的比较(例如与规定值的比较)来进行。
软件无论被称为软件、固件、中间件、微代码、硬件描述语言,还是以其它名称来称呼,都应宽泛地解释为是指命令、命令集、代码、代码段、程序代码、程序、子程序、软件模块、应用程序、软件应用程序、软件包、例程、子例程、对象、可执行文件、执行线程、步骤、功能等。
此外,软件、命令、信息等可以经由传输介质被发送或接收。例如,当使用有线技术(同轴电缆、光缆、双绞线、数字用户线路(DSL,DigitalSubscriberLine)等)和/或无线技术(红外线、微波等)从网站、服务器、或其它远程资源发送软件时,这些有线技术和/或无线技术包括在传输介质的定义内。
本说明书中使用的“系统”和“网络”这样的用语可以互换使用。
在本说明书中,“无线基站(BS,BaseStation)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”这样的用语可以互换使用。无线基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、 接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
无线基站可以容纳一个或多个(例如三个)小区(也称为扇区)。当无线基站容纳多个小区时,无线基站的整个覆盖区域可以划分为多个更小的区域,每个更小的区域也可以通过无线基站子系统(例如,室内用小型无线基站(射频拉远头(RRH,RemoteRadioHead)))来提供通信服务。“小区”或“扇区”这样的用语是指在该覆盖中进行通信服务的无线基站和/或无线基站子系统的覆盖区域的一部分或整体。
在本说明书中,“移动台(MS,MobileStation)”、“用户终端(userterminal)”、“用户装置(UE,UserEquipment)”以及“终端”这样的用语可以互换使用。无线基站有时也以固定台(fixedstation)、NodeB、eNodeB(eNB)、接入点(accesspoint)、发送点、接收点、毫微微小区、小小区等用语来称呼。
移动台有时也被本领域技术人员以用户台、移动单元、用户单元、无线单元、远程单元、移动设备、无线设备、无线通信设备、远程设备、移动用户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或者若干其它适当的用语来称呼。
此外,本说明书中的无线基站也可以用用户终端来替换。例如,对于将无线基站和用户终端间的通信替换为多个用户终端间(D2D,Device-to-Device)的通信的结构,也可以应用本发明的各方式/实施方式。此时,可以将上述的基站1200所具有的功能当作用户终端800所具有的功能。此外,“上行”和“下行”等文字也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样,本说明书中的用户终端也可以用基站来替换。此时,可以将上述的用户终端1100所具有的功能当作无线基站1200所具有的功能。
在本说明书中,设为通过无线基站进行的特定动作根据情况有时也通过其上级节点(uppernode)来进行。显然,在具有无线基站的由一个或多个网络节点(networknodes)构成的网络中,为了与终端间的通信而进行的各种各样的动作可以通过无线基站、除无线基站之外的一个以上的网络节点(可以考虑例如移动管理实体(MME,MobilityManagementEntity)、服务网关(S-GW,Serving-Gateway)等,但不限于此)、或者它们的组合来进行。
本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用, 还可以在执行过程中进行切换来使用。此外,本说明书中说明的各方式/实施方式的处理步骤、序列、流程图等只要没有矛盾,就可以更换顺序。例如,关于本说明书中说明的方法,以示例性的顺序给出了各种各样的步骤单元,而并不限定于给出的特定顺序。
本说明书中说明的各方式/实施方式可以应用于利用长期演进(LTE,LongTermEvolution)、高级长期演进(LTE-A,LTE-Advanced)、超越长期演进(LTE-B,LTE-Beyond)、超级第3代移动通信系统(SUPER 3G)、高级国际移动通信(IMT-Advanced)、第4代移动通信系统(4G,4th generation mobile communication system)、第5代移动通信系统(5G,5th generation mobile communication system)、未来无线接入(FRA,Future Radio Access)、新无线接入技术(New-RAT,Radio Access Technology)、新无线(NR,New Radio)、新无线接入(NX,New radio access)、新一代无线接入(FX,Future generation radio access)、全球移动通信系统(GSM(注册商标),Global System for Mobile communications)、码分多址接入2000(CDMA2000)、超级移动宽带(UMB,Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、超宽带(UWB,Ultra-WideBand)、蓝牙(Bluetooth(注册商标))、其它适当的无线通信方法的系统和/或基于它们而扩展的下一代系统。
本说明书中使用的“根据”这样的记载,只要未在其它段落中明确记载,则并不意味着“仅根据”。换言之,“根据”这样的记载是指“仅根据”和“至少根据”这两者。
本说明书中使用的对使用“第一”、“第二”等名称的单元的任何参照,均非全面限定这些单元的数量或顺序。这些名称可以作为区别两个以上单元的便利方法而在本说明书中使用。因此,第一单元和第二单元的参照并不意味着仅可采用两个单元或者第一单元必须以若干形式占先于第二单元。
本说明书中使用的“判断(确定)(determining)”这样的用语有时包含多种多样的动作。例如,关于“判断(确定)”,可以将计算(calculating)、推算(computing)、处理(processing)、推导(deriving)、调查(investigating)、搜索(lookingup)(例如表、数据库、或其它数据结构中的搜索)、确认(ascertaining)等视为是进行“判断(确定)”。此外,关于“判断(确定)”, 也可以将接收(receiving)(例如接收信息)、发送(transmitting)(例如发送信息)、输入(input)、输出(output)、存取(accessing)(例如存取内存中的数据)等视为是进行“判断(确定)”。此外,关于“判断(确定)”,还可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为是进行“判断(确定)”。也就是说,关于“判断(确定)”,可以将若干动作视为是进行“判断(确定)”。
本说明书中使用的“连接的(connected)”、“结合的(coupled)”这样的用语或者它们的任何变形是指两个或两个以上单元间的直接的或间接的任何连接或结合,可以包括以下情况:在相互“连接”或“结合”的两个单元间,存在一个或一个以上的中间单元。单元间的结合或连接可以是物理上的,也可以是逻辑上的,或者还可以是两者的组合。例如,“连接”也可以替换为“接入”。在本说明书中使用时,可以认为两个单元是通过使用一个或一个以上的电线、线缆、和/或印刷电气连接,以及作为若干非限定性且非穷尽性的示例,通过使用具有射频区域、微波区域、和/或光(可见光及不可见光这两者)区域的波长的电磁能等,被相互“连接”或“结合”。
在本说明书或权利要求书中使用“包括(including)”、“包含(comprising)”、以及它们的变形时,这些用语与用语“具备”同样是开放式的。进一步地,在本说明书或权利要求书中使用的用语“或(or)”并非是异或。
以上对本发明进行了详细说明,但对于本领域技术人员而言,显然,本发明并非限定于本说明书中说明的实施方式。本发明在不脱离由权利要求书的记载所确定的本发明的宗旨和范围的前提下,可以作为修改和变更方式来实施。因此,本说明书的记载是以示例说明为目的,对本发明而言并非具有任何限制性的意义。

Claims (24)

  1. 一种扩频通信方法,应用于用户设备,包括:
    在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列,其中,针对至少两个码元所选择的扩频序列不同;
    利用所选择的扩频序列对所述数据进行扩频;
    发送经扩频的数据。
  2. 如权利要求1所述的方法,其中,在所述在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列之前还包括:
    通过高层信令接收基站发送的所述扩频序列集合。
  3. 如权利要求1所述的方法,其中,所述在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列包括:
    在扩频序列集合中,对要发送数据中的多个码元分别随机选择扩频序列。
  4. 如权利要求1所述的方法,其中,所述在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列包括:
    在扩频序列集合中,选择针对第一码元的第一扩频序列;
    基于所述第一码元的第一扩频序列和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对第二码元的第二扩频序列,其中所述跳跃数表示所述扩频序列集合中扩频序列之间的偏移。
  5. 如权利要求1所述的方法,其中,
    所述扩频序列集合中包括多个扩频序列组,每个所述扩频序列组包括多个扩频序列;
    所述在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列包括:在所述扩频序列集合中选择扩频序列组;
    所述利用所选择的扩频序列对所述数据进行扩频包括:利用所选择的扩频序列组中的扩频序列对所述数据的多个码元进行扩频。
  6. 如权利要求5所述的方法,其中,所述在所述扩频序列集合中选择扩频序列组包括:
    在所述扩频序列集合中选择针对第一码元组的第一扩频序列组;
    基于所述第一码元组的第一扩频序列组和在跳跃数集合中所选择的针 对所述用户设备的跳跃数,在所述扩频序列集合中确定针对第二码元组的第二扩频序列组,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。
  7. 如权利要求4或6所述的方法,其中,所述方法还包括:
    通过高层信令接收基站发送的所述跳跃数集合。
  8. 一种扩频通信方法,应用于基站,包括:
    接收用户设备发送的经扩频的数据,其中,所述数据中至少两个扩频码元是用不同的扩频序列进行扩频得到的,所述扩频序列是从扩频序列集合中选择的;
    根据所述扩频序列集合中的扩频序列,对所述数据进行解扩。
  9. 如权利要求8所述的方法,其中,在所述接收用户设备发送的经扩频的数据之前还包括:
    通过高层信令发送所述扩频序列集合至所述用户设备。
  10. 如权利要求8所述的方法,其中,所述根据所述扩频序列集合中的扩频序列,对所述数据进行解扩包括:
    针对所述数据的每个扩频码元,依次使用所述扩频序列集合中的扩频序列进行解扩,直到成功解扩为止。
  11. 如权利要求8所述的方法,其中,所述根据所述扩频序列集合中的扩频序列,对所述数据进行解扩包括:
    根据所述扩频序列集合中的扩频序列和跳跃数集合中的跳跃数,依次对所述数据中的扩频码元进行解扩,直到成功解扩为止,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。
  12. 如权利要求8所述的方法,其中,
    所述扩频序列集合中包括多个扩频序列组,每个所述扩频序列组包括多个扩频序列;
    所述根据所述扩频序列集合中的扩频序列,对所述数据进行解扩包括:针对所述数据的每个扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,直到成功解扩为止。
  13. 如权利要求12所述的方法,其中,所述针对所述数据的每个扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩包括:
    根据所述扩频序列集合中的扩频序列组合跳跃数集合中的跳跃数,依次对所述数据中的扩频码元组进行解扩,直到成功解扩为止,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。
  14. 如权利要求11或13所述的方法,其中,所述方法还包括:
    通过高层信令发送所述跳跃数集合至所述用户设备。
  15. 一种用户设备,包括:
    选择单元,配置为在扩频序列集合中,对要发送的数据中的多个码元分别选择扩频序列,其中,针对至少两个码元所选择的扩频序列不同;
    扩频单元,配置为利用所选择的扩频序列对所述数据进行扩频;
    发送单元,配置为发送经扩频的数据。
  16. 如权利要求15所述的用户设备,其中,
    所述选择单元在扩频序列集合中,对要发送数据中的多个码元分别随机选择扩频序列。
  17. 如权利要求15所述的用户设备,其中,
    所述选择单元在扩频序列集合中,选择针对第一码元的第一扩频序列;
    基于所述第一码元的第一扩频序列和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对第二码元的第二扩频序列,其中所述跳跃数表示所述扩频序列集合中扩频序列之间的偏移。
  18. 如权利要求15所述的用户设备,其中,
    所述扩频序列集合中包括多个扩频序列组,每个所述扩频序列组包括多个扩频序列;
    所述选择单元在所述扩频序列集合中选择扩频序列组;
    所述扩频单元利用所述选择单元选择的扩频序列组中的扩频序列对所述数据的多个码元进行扩频。
  19. 如权利要求18所述的用户设备,其中,
    所述选择单元在所述扩频序列集合中选择针对第一码元组的第一扩频序列组;
    基于所述第一码元组的第一扩频序列组和在跳跃数集合中所选择的针对所述用户设备的跳跃数,在所述扩频序列集合中确定针对第二码元组的第二扩频序列组,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的 偏移。
  20. 一种基站,包括:
    接收单元,配置为接收用户设备发送的经扩频的数据,其中,所述数据中至少两个扩频码元是用不同的扩频序列进行扩频得到的,所述扩频序列是从扩频序列集合中选择的;
    解扩单元,配置为根据所述扩频序列集合中的扩频序列,对所述数据进行解扩。
  21. 如权利要求20所述的基站,其中,
    所述解扩单元针对所述数据的每个扩频码元,依次使用所述扩频序列集合中的扩频序列进行解扩,直到成功解扩为止。
  22. 如权利要求20所述的基站,其中,
    所述解扩单元根据所述扩频序列集合中的扩频序列和跳跃数集合中的跳跃数,依次对所述数据中的扩频码元进行解扩,直到成功解扩为止,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。
  23. 如权利要求20所述的基站,其中,
    所述扩频序列集合中包括多个扩频序列组,每个所述扩频序列组包括多个扩频序列;
    所述解扩单元针对所述数据的每个扩频码元组,依次使用所述扩频序列集合中的扩频序列组进行解扩,直到成功解扩为止。
  24. 如权利要求23所述的基站,其中,
    所述解扩单元根据所述扩频序列集合中的扩频序列组合跳跃数集合中的跳跃数,依次对所述数据中的扩频码元组进行解扩,直到成功解扩为止,其中所述跳跃数表示所述扩频序列集合中扩频序列组之间的偏移。
PCT/CN2018/112136 2017-12-29 2018-10-26 一种扩频通信方法、用户设备和基站 WO2019128432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880084302.8A CN111543009B (zh) 2017-12-29 2018-10-26 一种扩频通信方法、用户设备和基站
US16/958,905 US11139854B2 (en) 2017-12-29 2018-10-26 Method for spread spectrum communication, user equipment and base station

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711487607.7 2017-12-29
CN201711487607.7A CN110011692A (zh) 2017-12-29 2017-12-29 一种扩频通信方法、用户设备和基站

Publications (1)

Publication Number Publication Date
WO2019128432A1 true WO2019128432A1 (zh) 2019-07-04

Family

ID=67062992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112136 WO2019128432A1 (zh) 2017-12-29 2018-10-26 一种扩频通信方法、用户设备和基站

Country Status (3)

Country Link
US (1) US11139854B2 (zh)
CN (2) CN110011692A (zh)
WO (1) WO2019128432A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210281288A1 (en) * 2018-11-09 2021-09-09 Zte Corporation Design of symbol-group based spreading schemes

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110011692A (zh) * 2017-12-29 2019-07-12 株式会社Ntt都科摩 一种扩频通信方法、用户设备和基站
US11336328B2 (en) * 2018-12-06 2022-05-17 Huawei Technologies Co., Ltd. Method and apparatus for non-orthogonal multiple access communication
CN110719120B (zh) * 2019-10-15 2021-08-13 北京遥感设备研究所 一种通用可配置msk或qpsk软扩频调制系统
US10992338B1 (en) * 2020-06-19 2021-04-27 Microsoft Technology Licensing, Llc Secure wireless IOT platform

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264964A (zh) * 2000-03-22 2000-08-30 信息产业部电信传输研究所 无干扰准同步码分多址通信系统扩频序列码组设计方法
CN106576013A (zh) * 2014-08-21 2017-04-19 株式会社Ntt都科摩 基站、用户装置以及无线通信系统

Family Cites Families (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601816B2 (ja) * 1999-05-31 2004-12-15 韓國電子通信研究院 移動通信システムにおける変調装置、端末器および変調方法
JP3309836B2 (ja) * 1999-07-22 2002-07-29 日本電気株式会社 Cdmaセルラー無線システムおよび通信方法
US20070127553A1 (en) * 1999-08-13 2007-06-07 Viasat, Inc. Code Reuse Multiple Access For Satellite Return Link
US7327775B1 (en) * 1999-12-23 2008-02-05 Nokia Corporation CDMA receiver
US20080095121A1 (en) * 2002-05-14 2008-04-24 Shattil Steve J Carrier interferometry networks
US8363593B2 (en) * 2002-11-06 2013-01-29 Alcatel Lucent Method for carrying downlink control information for an enhanced uplink dedicated channel
KR100470401B1 (ko) * 2002-12-24 2005-02-05 한국전자통신연구원 그룹화 최유도 검출을 이용한 무선 통신 시스템 및 방법
CN1440134A (zh) * 2003-02-24 2003-09-03 陶成 一种多级直接序列扩频通信方法
US7342970B2 (en) * 2003-05-02 2008-03-11 Lucent Technologies Inc. Array processing using an aggregate channel matrix generated using a block code structure
US7420916B2 (en) * 2003-05-13 2008-09-02 Nokia Corporation Fourier-transform based linear equalization for MIMO CDMA downlink
WO2006000954A1 (en) * 2004-06-24 2006-01-05 Philips Intellectual Property & Standards Gmbh A radio network with parallel transmission and a method of forwarding a signal in a radio network
US8290024B2 (en) * 2004-08-12 2012-10-16 Texas Instruments Incorporated Methods and apparatus to facilitate improved code division multiple access receivers
KR100654316B1 (ko) * 2004-12-08 2006-12-08 한국과학기술원 직교 주파수 및 직교 부호 도약 다중화 통신 방식
US8385388B2 (en) * 2005-12-06 2013-02-26 Qualcomm Incorporated Method and system for signal reconstruction from spatially and temporally correlated received samples
TWI431990B (zh) * 2006-01-11 2014-03-21 Interdigital Tech Corp 以不等調變及編碼方法實施空時處理方法及裝置
US20080031369A1 (en) * 2006-06-07 2008-02-07 Li Ye Geoffrey Apparatus and methods for multi-carrier wireless access with energy spreading
EP1936900A1 (de) * 2006-12-18 2008-06-25 Nokia Siemens Networks Gmbh & Co. Kg Verfahren bzw. OFDM-Vorrichtung zur SC-FDMA-Datenübertragung
KR20090024623A (ko) * 2007-09-04 2009-03-09 한국전자통신연구원 고속 무선 통신을 위한 프레임 구성 방법 및 이를 이용한 고속 무선 통신 장치
JP2009272725A (ja) * 2008-04-30 2009-11-19 Sharp Corp 通信システム、受信装置及び通信方法
EP2584750B1 (en) * 2008-08-26 2018-08-08 Marvell World Trade Ltd. Physical layer data unit format
CN102362465A (zh) * 2009-05-11 2012-02-22 华为技术有限公司 业务请求处理方法、装置及系统
US8565287B2 (en) * 2009-09-29 2013-10-22 Broadcom Corporation Method and system for per-cell interference estimation for interference suppression
KR101699493B1 (ko) * 2010-05-03 2017-01-26 주식회사 팬택 Mimo 환경에서 직교성을 제공하는 사이클릭 쉬프트 파라메터를 송수신하는 방법 및 장치
US9172513B2 (en) * 2010-10-11 2015-10-27 Qualcomm Incorporated Resource assignments for uplink control channel
US8958489B2 (en) * 2011-01-06 2015-02-17 Lg Electronics Inc. Method of modulating signal for data communication and device thereof
US8848698B2 (en) * 2011-10-22 2014-09-30 Lg Electronics Inc. Scheduling method in multiple access system and apparatus using the same
GB2503418A (en) * 2012-04-27 2014-01-01 Imp Innovations Ltd Spreading data symbols using a number of signature sequences selected in accordance with system values indicative of signal-to-noise ratios
US10516517B2 (en) * 2015-01-29 2019-12-24 Intel IP Corporation System and methods for support of frequency hopping for UEs with reduced bandwidth support
CN106301662A (zh) * 2015-05-14 2017-01-04 株式会社Ntt都科摩 数据发送和接收方法以及数据发送和接收设备
CN106559101B (zh) * 2015-09-25 2019-12-10 电信科学技术研究院 一种频域扩频、解扩频方法及装置
CN114884640A (zh) * 2016-03-31 2022-08-09 北京三星通信技术研究有限公司 通信系统中的终端、基站及其方法
US20190158206A1 (en) * 2016-05-13 2019-05-23 Intel IP Corporation Multi-user multiple input multiple ouput systems
US10367677B2 (en) * 2016-05-13 2019-07-30 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
US10630410B2 (en) * 2016-05-13 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Network architecture, methods, and devices for a wireless communications network
WO2018027806A1 (zh) * 2016-08-11 2018-02-15 华为技术有限公司 解调参考信号传输方法及相关设备
JP2019208086A (ja) * 2016-09-29 2019-12-05 シャープ株式会社 基地局装置、端末装置およびその通信方法
AU2017355779B2 (en) * 2016-11-02 2022-08-18 Ntt Docomo, Inc. Transmitting apparatus and radio communication method
JPWO2018163432A1 (ja) * 2017-03-10 2020-01-09 株式会社Nttドコモ ユーザ端末及び無線通信方法
WO2018173236A1 (ja) * 2017-03-23 2018-09-27 株式会社Nttドコモ ユーザ端末及び無線通信方法
US11502775B2 (en) * 2017-10-19 2022-11-15 Ntt Docomo, Inc. User terminal and radio communication method
CN110011692A (zh) * 2017-12-29 2019-07-12 株式会社Ntt都科摩 一种扩频通信方法、用户设备和基站
US10728000B2 (en) * 2018-01-04 2020-07-28 Qualcomm Incorporated Reference signal transmission techniques in wireless communications
BR112020014111A2 (pt) * 2018-01-12 2020-12-01 Ntt Docomo, Inc. terminal, método de radiocomunicação para um terminal e estação base
WO2019140562A1 (en) * 2018-01-17 2019-07-25 Qualcomm Incorporated Techniques and apparatuses for demodulation reference signal and phase rotation for sub-physical resource block allocation with two tone modulation
US11452099B2 (en) * 2018-02-14 2022-09-20 Ntt Docomo, Inc. User terminal and radio communication method
EP4329238A3 (en) * 2018-02-15 2024-05-01 Ntt Docomo, Inc. User terminal and wireless communication method
JP7343956B2 (ja) * 2018-02-15 2023-09-13 株式会社Nttドコモ 端末、無線通信方法及びシステム
BR112020016681A2 (pt) * 2018-02-15 2020-12-15 Ntt Docomo, Inc. Terminal, método de comunicação para um terminal e estação base
BR112020017052A2 (pt) * 2018-02-23 2020-12-15 Ntt Docomo, Inc. Terminal, método de radiocomunicação para um terminal e estação base
CN112042246A (zh) * 2018-02-26 2020-12-04 株式会社Ntt都科摩 用户终端以及无线通信方法
US10396940B1 (en) * 2018-04-09 2019-08-27 At&T Intellectual Property I, L.P. Scheduling downlink data with multiple slot feedback channel configuration in wireless communication systems
EP3783975B1 (en) * 2018-04-19 2024-01-17 Ntt Docomo, Inc. Resource allocation for pucch
JP7108025B2 (ja) * 2018-05-02 2022-07-27 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
MX2020011551A (es) * 2018-05-02 2020-11-24 Ntt Docomo Inc Terminal de usuario.
US10666374B2 (en) * 2018-05-11 2020-05-26 At&T Intellectual Property I, L.P. Non-orthogonal multiple access for uplink data transmission for 5G or other next generation network
US11089598B2 (en) * 2018-08-30 2021-08-10 Qualcomm Incorporated Multiple access signatures for non-orthogonal multiple access (NOMA) wireless communications
US11336328B2 (en) * 2018-12-06 2022-05-17 Huawei Technologies Co., Ltd. Method and apparatus for non-orthogonal multiple access communication
KR20190101927A (ko) * 2019-08-13 2019-09-02 엘지전자 주식회사 Xr 디바이스 및 그 제어 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264964A (zh) * 2000-03-22 2000-08-30 信息产业部电信传输研究所 无干扰准同步码分多址通信系统扩频序列码组设计方法
CN106576013A (zh) * 2014-08-21 2017-04-19 株式会社Ntt都科摩 基站、用户装置以及无线通信系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "R1-1609892, On the Performance of Inter- leaved-based Multiple Access Schemes", 3GPP TSG RAN WG1 MEETING #86BIS, 9 October 2016 (2016-10-09), XP051149918, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/wgl_rll/tsgr1_86b/docs> *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210281288A1 (en) * 2018-11-09 2021-09-09 Zte Corporation Design of symbol-group based spreading schemes
US11637583B2 (en) * 2018-11-09 2023-04-25 Zte Corporation Symbol-group based spreading schemes

Also Published As

Publication number Publication date
CN110011692A (zh) 2019-07-12
US11139854B2 (en) 2021-10-05
CN111543009B (zh) 2022-02-18
US20200343937A1 (en) 2020-10-29
CN111543009A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
JP7074757B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7078625B2 (ja) 端末、無線通信方法及びシステム
WO2019128432A1 (zh) 一种扩频通信方法、用户设备和基站
JPWO2018203396A1 (ja) ユーザ端末及び無線通信方法
WO2018228516A1 (zh) 一种探测参考信号传输方法、基站和用户设备
JPWO2018203407A1 (ja) ユーザ端末及び無線通信方法
WO2018171426A1 (zh) 波束配置方法、移动台和基站
JPWO2019021486A1 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2023500369A (ja) Pdcch監視方法および装置、ならびに記憶媒体および端末
JP7181673B2 (ja) 端末、無線通信方法、基地局及びシステム
CN109845319B (zh) 用户装置
CN110291733B (zh) 无授权传输方法、用户终端和基站
JP6995787B2 (ja) 端末及び基地局
WO2019037555A1 (zh) 资源调度方法、用户设备和基站
CN112753257B (zh) 由用户设备、基站执行的方法以及用户设备和基站
WO2019064537A1 (ja) ユーザ端末及び無線通信方法
JP7195153B2 (ja) ユーザ端末及び無線通信方法
WO2020194562A1 (ja) 端末、及び、無線通信方法
WO2019140557A1 (zh) 无线通信方法、用户设备和基站
WO2020026355A1 (ja) ユーザ端末
WO2019157697A1 (zh) 传输块大小列表构建和选择方法、随机接入方法和通信设备
CN114503724A (zh) 终端及发送方法
WO2022079861A1 (ja) 端末
CN111295910B (zh) 扩频序列选择方法、发射功率的调整方法和通信装置
WO2022201401A1 (ja) 端末及び無線基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18895763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18895763

Country of ref document: EP

Kind code of ref document: A1