WO2018228567A1 - 带宽资源配置方法、装置和系统 - Google Patents

带宽资源配置方法、装置和系统 Download PDF

Info

Publication number
WO2018228567A1
WO2018228567A1 PCT/CN2018/091668 CN2018091668W WO2018228567A1 WO 2018228567 A1 WO2018228567 A1 WO 2018228567A1 CN 2018091668 W CN2018091668 W CN 2018091668W WO 2018228567 A1 WO2018228567 A1 WO 2018228567A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth portion
information
bandwidth resource
bandwidth
network device
Prior art date
Application number
PCT/CN2018/091668
Other languages
English (en)
French (fr)
Inventor
李俊超
唐浩
汪凡
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CA3067281A priority Critical patent/CA3067281C/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PL18817808T priority patent/PL3534627T3/pl
Priority to EP18817808.1A priority patent/EP3534627B1/en
Priority to BR112019026426-4A priority patent/BR112019026426A2/pt
Priority to AU2018284889A priority patent/AU2018284889C1/en
Priority to RU2020101123A priority patent/RU2767325C2/ru
Priority to EP21157525.3A priority patent/EP3886517B1/en
Priority to JP2019569395A priority patent/JP7174720B2/ja
Priority to CN201880039867.4A priority patent/CN110771241B/zh
Priority to KR1020207000930A priority patent/KR102366668B1/ko
Publication of WO2018228567A1 publication Critical patent/WO2018228567A1/zh
Priority to US16/280,565 priority patent/US10660079B2/en
Priority to US16/867,054 priority patent/US11265868B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a bandwidth resource configuration method, apparatus, and system.
  • the base station may configure the bandwidth resource for the UE, and the base station and the UE may use the configured bandwidth resource as the working bandwidth resource of the UE, for the base station and the UE.
  • the transmission of UE specific information of the UE is performed.
  • the bandwidth resource may be part of the system resource, and the bandwidth of the bandwidth resource may be smaller than the system bandwidth.
  • the present application describes a bandwidth resource configuration method, apparatus and system, and access method, apparatus and system.
  • the network device (e.g., the base station) transmits the downlink transmission to the user equipment UE in the first bandwidth portion; and transmits the information of the second bandwidth portion to the user equipment in the third bandwidth portion.
  • the UE receives information of a second bandwidth portion from the network device.
  • the second bandwidth portion is a portion of the bandwidth to which the user equipment is to be handed over.
  • the third bandwidth portion is an access bandwidth portion, or the third bandwidth portion is one or more bandwidth portions of the candidate working bandwidth portion of the user equipment.
  • the present application provides a bandwidth resource configuration method, including: a network device working bandwidth resource at a UE source, performing, with the UE, performing transmission of first UE specific information of the UE; and performing UE calibration on the UE a bandwidth resource, the information of the UE target working bandwidth resource is sent to the UE, where the UE target working bandwidth resource is used to perform the second UE specific information transmission with the UE, where the UE source
  • the part of the frequency resource or the entire frequency resource included in the working bandwidth resource is not included in the UE calibration bandwidth resource, or part of the frequency resource or all frequency resources included in the UE calibration bandwidth resource is not included in the UE source working bandwidth resource.
  • the information of the target working bandwidth resource of the UE is carried by the physical downlink control channel.
  • the network device may also send information about the target working bandwidth resource of the UE to the UE.
  • the UE may receive the information of the UE target working bandwidth resource configured by the gNB for the UE in the calibration bandwidth resource, and may enable the UE to calibrate the configuration of the UE working bandwidth resource. Therefore, the probability that the gNB and the UE do not understand the working bandwidth resources of the UE may be reduced, or the gNB and the UE may perform corresponding calibration when the working bandwidth resources of the UE are inconsistent, so that the working bandwidth of the gNB and the UE to the UE can be made.
  • the resources are understood consistently.
  • the first design further includes: the network device transmitting, to the UE, frequency resource location information of a UE candidate working bandwidth resource; the UE target working bandwidth resource is a subset of the UE candidate working bandwidth resource, The information of the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one of the UE candidate working bandwidth resources; or the UE target working bandwidth resource includes the UE candidate working bandwidth. And a subset of the set of resources and the UE calibration bandwidth resource, the information of the UE target working bandwidth resource indicating that the UE target working bandwidth resource is at least one bandwidth resource in the set.
  • the UE target working bandwidth resource can be configured for the UE by using less information bits, and the UE target working bandwidth resource is indicated as at least one of the multiple bandwidth resources.
  • the information about the target working bandwidth resource of the UE that is sent by the network device to the UE includes the frequency resource location information of the target working bandwidth resource of the UE.
  • the resources in the system resources can be flexibly configured as the UE target working bandwidth resources.
  • the UE can flexibly configure resources for the UE to perform communication between the gNB and the UE, and can configure resources with better channel quality for the UE in the system resources, improve the data transmission rate between the gNB and the UE, and flexibly configure parameters for the UE. It is used to meet the quality of service (QoS) requirements of the UE's services; it can also provide a forward compatible communication system.
  • QoS quality of service
  • the network device calibrates the bandwidth resource of the UE in the UE, and sends information about the UE target working bandwidth resource to the UE,
  • the first period includes an integer number of first time units.
  • the UE calibrates the bandwidth resource, and the network device sends the UE target working bandwidth resource to the UE. Before receiving the first request sent by the UE, the first request is used to request to send information about the target working bandwidth resource of the UE to the UE.
  • the present application provides a bandwidth resource configuration method, including: performing, at a UE source working bandwidth resource, a UE and a network device to perform transmission of first UE specific information of the UE; and calibrating a bandwidth resource in a UE of the UE Receiving, by the network device, information about a target working bandwidth resource of the UE, where the target working bandwidth resource of the UE is used for performing, by using the network device, transmission of second UE specific information of the UE; The part of the frequency resource or the entire frequency resource included in the source working bandwidth resource is not included in the UE calibration bandwidth resource, or part of the frequency resource or all frequency resources included in the UE calibration bandwidth resource is not included in the UE source working bandwidth resource. in.
  • the information of the target working bandwidth resource of the UE is carried by the physical downlink control channel.
  • the UE may also receive information about the target working bandwidth resource of the UE that is sent by the network device.
  • the first design further includes: receiving frequency resource location information of the UE candidate working bandwidth resource sent by the network device; the UE target working bandwidth resource is a subset of the UE candidate working bandwidth resource, The information of the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one of the UE candidate working bandwidth resources; or the UE target working bandwidth resource includes the UE candidate working bandwidth. And a subset of the set of resources and the UE calibration bandwidth resource, the information of the UE target working bandwidth resource indicating that the UE target working bandwidth resource is at least one bandwidth resource in the set.
  • the information about the target working bandwidth resource of the UE includes frequency resource location information of the target working bandwidth resource of the UE.
  • the UE calibrates the bandwidth resource in the UE, and the UE receives the information about the UE target working bandwidth resource sent by the network device.
  • the first period comprises an integer number of first time units. And starting or restarting the first timer, if the first source specific information of the UE sent by the network device is received, after the expiration of the first timer, The UE of the UE calibrates the bandwidth resource, and receives information of the UE target working bandwidth resource sent by the network device.
  • the method can reduce the handover of the UE between different bandwidth resources, thereby reducing the introduction of the handover time, saving the time domain air interface resources for the UE, and improving the data transmission rate.
  • the fourth design according to the second aspect and the second design of the second aspect to the second design, the UE calibrating the bandwidth resource of the UE, and receiving the information of the UE target working bandwidth resource sent by the network device
  • the UE sends a first request to the network device, where the first request is used to request the network device to send information about the UE target working bandwidth resource to the UE.
  • the method can reduce the handover of the UE between different bandwidth resources, thereby reducing the introduction of the handover time, saving the time domain air interface resources for the UE, and improving the data transmission rate.
  • the fifth design before the UE calibrates the bandwidth resource of the UE, and the UE receives the information of the UE target working bandwidth resource sent by the network device, the first a guard period, switching from the UE source working bandwidth resource to the UE calibration bandwidth resource; and/or, after the UE calibrates the bandwidth resource of the UE, the UE receives the information of the UE target working bandwidth resource sent by the network device And switching from the UE calibration bandwidth resource to the UE target working bandwidth resource in a second protection period.
  • the present application provides a bandwidth resource configuration method, including: operating a bandwidth resource at a UE source, and performing, by the network device, the UE to transmit the first UE specific information of the UE; a resource, the network device sends, to the UE, information about a target working bandwidth resource of the UE, where the target working bandwidth resource of the UE is used as a working bandwidth resource of the UE, where the target working bandwidth resource of the UE is used for performing with the UE.
  • the network device Transmitting, by the network device, the second timer; if the second timer is in the running state, if the network device receives the feedback from the UE, stopping the second timer, where the The feedback is feedback of a channel corresponding to information carrying the target working bandwidth resource of the UE; after expiration of the second timer, the network device uses the UE source working bandwidth resource as the working bandwidth resource of the UE.
  • the information of the target working bandwidth resource of the UE is carried by the physical downlink control channel.
  • the network device's fallback mechanism ensures that the UE and the network device have consistent understanding of the working bandwidth resources of the UE.
  • the network device If the network device does not receive the feedback, the network device considers that the UE may not receive or correctly receive the information of the UE target working bandwidth resource, and considers that the UE may not use the UE target working bandwidth resource as the working bandwidth resource of the UE, and considers that the UE may The UE source working bandwidth resource is used as the working bandwidth resource of the UE. Therefore, the network device may use the UE source working bandwidth resource as the working bandwidth resource of the UE.
  • the first design further includes: the network device sending the frequency resource location information of the UE candidate working bandwidth resource to the UE; the UE target working bandwidth resource is a subset of the UE candidate working bandwidth resource, The information of the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one of the UE candidate working bandwidth resources; or the UE target working bandwidth resource includes the UE candidate working bandwidth.
  • the information about the target working bandwidth resource of the UE includes frequency resource location information of the target working bandwidth resource of the UE.
  • the present application provides a bandwidth resource configuration method, including: performing, by a UE, a working bandwidth resource, a UE and a network device performing transmission of first UE specific information of the UE; and working bandwidth resources of the UE source, Receiving, by the UE, the UE target working bandwidth resource information, where the UE target working bandwidth resource is used as the working bandwidth resource of the UE, where the UE target working bandwidth resource is used for performing with the network device Transmitting, by the UE, the second UE-specific information; the UE sends feedback to the network device, where the feedback is feedback corresponding to a channel carrying information of the UE target working bandwidth resource; the UE starts a third timer If the UE receives the second UE specific information sent by the network device, stopping the third timer in the UE target working bandwidth resource; after the third timer expires, the UE uses the UE source working bandwidth The resource is used as the working bandwidth resource of the UE.
  • the UE determines whether the network device may not receive or does not receive the feedback correctly, and the UE considers that the network device may use the UE source bandwidth resource as the UE.
  • the working bandwidth resource is used. Therefore, the UE can use the UE source bandwidth resource as the working bandwidth resource of the UE, so that the network device and the UE can understand the working bandwidth resources of the UE.
  • the first design further includes: receiving, by the UE, frequency resource location information of the UE candidate working bandwidth resource sent by the network device; the UE target working bandwidth resource is a subset of the UE candidate working bandwidth resource The information about the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one of the UE candidate working bandwidth resources; or the UE target working bandwidth resource includes the UE candidate working. A subset of the bandwidth resource and the set of the UE source working bandwidth resources, where the information of the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one bandwidth resource in the set.
  • the information about the target working bandwidth resource of the UE includes frequency resource location information of the target working bandwidth resource of the UE.
  • the present application provides a bandwidth resource configuration method, including: in a UE source working bandwidth resource, a UE and a network device perform transmission of first UE specific information of the UE; and in the UE source working bandwidth resource, Receiving, by the UE, the UE target working bandwidth resource information, where the UE target working bandwidth resource is used as the working bandwidth resource of the UE, where the UE target working bandwidth resource is used for performing with the network device Transmitting the second UE-specific information of the UE; the UE sends feedback to the network device, where the feedback is feedback corresponding to a channel carrying information of the target working bandwidth resource of the UE; the UE is directed to the network device Transmitting a second request; in the UE target working bandwidth resource, if the UE does not receive the network device to send the first response, the UE uses the UE source working bandwidth resource as the working bandwidth resource of the UE, where the The first response is a response corresponding to the second request.
  • the information of the target working bandwidth resource of the UE is carried by the physical downlink control channel.
  • the UE if the UE does not receive the first response, the UE considers that the gNB may not receive or does not receive the feedback correctly.
  • the UE considers that the gNB may use the UE source bandwidth resource as the working bandwidth resource of the UE. Therefore, the UE may use the UE source bandwidth.
  • the resource serves as the working bandwidth resource of the UE, which may make the gNB and the UE understand the working bandwidth resources of the UE.
  • the first design further includes: receiving, by the UE, frequency resource location information of the UE candidate working bandwidth resource sent by the network device; the UE target working bandwidth resource is a subset of the UE candidate working bandwidth resource, The information of the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one of the UE candidate working bandwidth resources; or the UE target working bandwidth resource includes the UE candidate working bandwidth.
  • the information about the target working bandwidth resource of the UE includes frequency resource location information of the target working bandwidth resource of the UE.
  • the application provides an access method, including: in a working bandwidth resource of the UE, if the UE receives the third UE specific information sent by the network device, the UE starts or restarts the fourth timer; the fourth timing After the device expires, the UE accesses the network device.
  • the UE based on the timer, in the working bandwidth resource of the UE, if the fourth timer expires, the UE considers that the understanding of the working bandwidth resource of the UE and the network device may be inconsistent, and the UE accesses the network device and can access The understanding of the working bandwidth resources of the UE is consistent with the network device.
  • the first design further includes: performing, by the UE, a working bandwidth resource, the UE and the network device performing transmission of the first UE specific information of the UE; and in the UE source working bandwidth resource, the UE receiving the And the information about the target working bandwidth resource of the UE that is sent by the network device, and the target working bandwidth resource of the UE is used as the working bandwidth resource of the UE, and the fourth timer is started, where the target working bandwidth resource of the UE is used for The network device performs transmission of the third UE specific information of the UE.
  • the UE after the working bandwidth resource is reconfigured for the UE, if the fourth timer expires, the UE considers that the understanding of the working bandwidth resource of the UE and the network device may be inconsistent, and the UE accesses the network.
  • the device can be consistent in understanding the working bandwidth resources of the UE after the access and the network device.
  • the application provides an access method, including: a UE sends a third request to a network device; and in a working bandwidth resource of the UE, if the UE does not receive the second response sent by the network device, accessing the network The device, wherein the second response corresponds to the third request.
  • the UE based on the request feedback mechanism, if the UE does not receive the second response, the UE considers that the understanding of the working bandwidth resources of the UE and the network device may be inconsistent, and the UE accesses the network device and can access.
  • the understanding of the working bandwidth resources of the UE is consistent with the network device.
  • the present application provides a device capable of implementing the functions of a network device in the above method.
  • This function can be implemented in the form of hardware, software or hardware plus software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor, a memory coupled to the processor, the processor executing program instructions stored by the memory, a transceiver coupled to the processor.
  • the processor utilizes the transceiver: the UE source working bandwidth resource, and the UE performs the first UE specific information transmission of the UE; and the UE UE calibrates the bandwidth resource to the UE Transmitting, by the UE, a target working bandwidth resource, where the UE target working bandwidth resource is used to perform the second UE specific information transmission with the UE, where the UE source working bandwidth resource includes a part of the frequency
  • the resource or all frequency resources are not included in the UE calibration bandwidth resource, or part of the frequency resource or all frequency resources included in the UE calibration bandwidth resource are not included in the UE source working bandwidth resource.
  • the present application provides an apparatus capable of implementing the functions of a UE in the foregoing method.
  • This function can be implemented in the form of hardware, software or hardware plus software.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • the apparatus includes a processor, a memory coupled to the processor, the processor executing program instructions stored by the memory, a transceiver coupled to the processor.
  • the processor utilizes the transceiver: the UE source working bandwidth resource, and the network device performs the first UE specific information transmission of the UE; the UE UE calibrates the bandwidth resource, and receives the network device
  • the information of the UE target working bandwidth resource is sent, where the UE target working bandwidth resource is used to perform the second UE specific information transmission with the network device, where: the UE source working bandwidth resource includes The partial frequency resource or the entire frequency resource is not included in the UE calibration bandwidth resource, or part of the frequency resource or all frequency resources included in the UE calibration bandwidth resource is not included in the UE source working bandwidth resource.
  • the present application provides a system comprising the apparatus of the above eighth aspect and the apparatus of the ninth aspect.
  • the present application provides a chip system, which includes a processor, and may further include a memory for supporting a network device to implement the functions of the network device in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system, and the chip system processor may further include a memory for supporting the UE to implement the function of the UE in the foregoing method.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a computer program product comprising instructions which, when run on a computer, cause the computer to perform the first aspect, the design of the first aspect, the third aspect, and the third aspect At least one of the methods described in the design.
  • the present application provides a computer program product comprising instructions, which, when run on a computer, cause the computer to perform the second aspect, the second aspect of the design, the fourth aspect, and the fourth aspect A method of at least one of the design, the fifth aspect, the fifth aspect, the sixth aspect, and the seventh aspect.
  • 1 is a schematic diagram of frequency resources in an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a first method for configuring a bandwidth resource according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of possible system bandwidth provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a subband included in a system bandwidth provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a UE candidate working bandwidth resource according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a second method for configuring a bandwidth resource according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of information about a UE target working bandwidth resource sent by a UE in a UE calibration bandwidth resource receiving gNB according to an embodiment of the present disclosure
  • FIG. 8 is a schematic diagram of a third method for configuring a bandwidth resource according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a fourth bandwidth resource configuration method according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a fifth bandwidth resource configuration method according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a sixth bandwidth resource configuration method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a first access method according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a second access method according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a device according to an embodiment of the present disclosure.
  • 15 is a schematic structural diagram of another device according to an embodiment of the present application.
  • 16 is a schematic structural diagram of still another apparatus according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of still another apparatus according to an embodiment of the present application.
  • the technical solution provided by the embodiment of the present application may be applied to a wireless communication system that can allocate frequency resources, such as the fifth generation mobile communication technology (5G) system.
  • the technical solution provided by the embodiment of the present application may also be applied to other orthogonal frequency division multiplexing (OFDM)-based networks, such as a long term evolution (LTE) system.
  • OFDM orthogonal frequency division multiplexing
  • LTE long term evolution
  • the communication device includes a network device and a user equipment (UE), and the communication device can utilize the air interface resource for wireless communication.
  • the network device may also be referred to as a network side device.
  • the wireless communication between the communication devices includes wireless communication between the network device and the UE, and wireless communication between the network device and the network device.
  • the communication device that manages and/or allocates the air interface resources may also be referred to as a scheduling entity, and the scheduled communication device may also be referred to as a slave entity.
  • the network device when the network device and the UE are in wireless communication, the network device may also be referred to as a scheduling entity, and the UE may also be referred to as a slave entity.
  • the technical solution provided by the embodiment of the present application may be described by using the wireless communication between the network device and the UE as an example, where the technical solution may be used for performing wireless communication between the scheduling entity and the slave entity.
  • wireless communication may also be simply referred to as "communication”
  • communication may also be described as "data transmission”.
  • the UE involved in the embodiment of the present application includes a handheld device, an in-vehicle device, a wearable device, or a computing device having a wireless communication function.
  • the UE may also be referred to as a terminal or a terminal device (TE), which is not limited in this application.
  • the network device involved in the embodiment of the present application includes a base station (BS), which may be a device deployed in the radio access network to perform wireless communication with the UE.
  • the base station may have various forms, such as a macro base station, a micro base station, a relay station, and an access point.
  • the macro base station and the micro base station perform wireless communication by means of wireless backhaul
  • the macro base station may also be referred to as a scheduling entity
  • the micro base station may also be referred to as a slave entity.
  • the base station in the embodiment of the present application may be a base station in a 5G system, where the base station in the 5G system may also be referred to as a Transmission Reception Point (TRP) or a gNB (generation Node B).
  • the base station to which the embodiment of the present application is related may also be an evolved Node B (eNB or e-NodeB) in LTE.
  • eNB evolved Node B
  • the technical solution provided by the embodiment of the present application may be described by taking the gNB in the 5G system as an example, and taking the wireless communication between the gNB and the UE as an example. Wireless communication between the scheduling entity and the slave entity.
  • Those skilled in the art can use the technical solution provided by the embodiments of the present application to perform wireless communication between other scheduling entities and subordinate entities without any creative work.
  • a gNB and a UE can utilize air interface resources for wireless communication.
  • the air interface resource may include a frequency resource, and the frequency resource may be located in a set frequency range. Among them, the frequency range may also be referred to as a band.
  • the center point of the frequency resource may be referred to as a center frequency point, and the width of the frequency domain resource may be referred to as a bandwidth (BW).
  • FIG. 1 shows a possible structural diagram of a frequency resource. As shown in FIG.
  • the frequency resource may be a segment of resources in the frequency band, the bandwidth of the frequency resource is W, the frequency of the center frequency is F, and the frequencies of the boundary points of the frequency resources are FW/2 and F+W/2, respectively. It can also be described that the frequency of the highest frequency point in the frequency resource is F+W/2, and the frequency of the lowest frequency point in the frequency resource is FW/2.
  • the gNB manages the system frequency resource, and allocates the frequency resource to the UE from the system frequency resource, so that the gNB and the UE can use the allocated frequency resource to communicate.
  • the system frequency resource is a frequency resource that can be managed and allocated by the network device.
  • the system frequency resource may also be referred to as a system resource.
  • the width of the system frequency resource may be referred to as the bandwidth of the system frequency resource, and may also be referred to as the system bandwidth or the transmission bandwidth.
  • the system traffic increases significantly.
  • the system bandwidth is designed for large bandwidth, and is used in the system. Provide a higher data transfer rate.
  • the bandwidth supported by the UE may be much smaller than the system bandwidth.
  • the bandwidth supported by the UE may also be referred to as the bandwidth capability of the UE.
  • the larger the bandwidth supported by the UE the stronger the processing capability of the UE, the higher the data transmission rate of the UE, and the higher the design cost of the UE.
  • the system bandwidth may be up to 400 MHz, and the bandwidth capability of the UE may be 20 MHz, 50 MHz, or 100 MHz, and the like.
  • the bandwidth capabilities of different UEs may be the same or different, and are not limited in this embodiment.
  • the method for the gNB to allocate the frequency resource to the UE is as follows: First, the gNB dynamically configures the working bandwidth resource of the UE for the UE by using signaling.
  • the working bandwidth resource configured for the UE is included in the system frequency resource, and the bandwidth of the UE may be less than or equal to the bandwidth supported by the UE.
  • the gNB allocates frequency resources to the UE from the working bandwidth resources of the UE, and enables the gNB and the UE to perform wireless communication on the allocated frequency resources.
  • the bandwidth resource is included in the system frequency resource, and may be part or all of the continuous or discontinuous resources in the system frequency resource.
  • the bandwidth resource may also be referred to as a bandwidth portion, a frequency resource, a frequency resource portion, a partial frequency resource, or other names, which is not limited in this application.
  • the bandwidth resource may also be referred to as a subband, a narrowband, or other name, which is not limited in this application.
  • a parameter may be configured for a bandwidth resource, the parameter including at least one of a subcarrier spacing and a cyclic prefix (CP).
  • CP cyclic prefix
  • the third generation partnership project (3GPP) in the process of research and development of standards for wireless communication systems, the English name of this parameter can also be called numerology.
  • the values of the parameters of the different bandwidth resources may be the same or different, and the application is not limited.
  • the working bandwidth resource of the UE may also be described as a bandwidth resource used by the gNB and the UE to transmit UE-specific information.
  • the UE-specific information includes at least one of UE-specific downlink control information (DCI), UE-specific uplink control information (UPI), UE-specific information carried on the data channel, and UE-specific reference signals. .
  • the gNB and the UE transmit the UE-specific information, including: the gNB sends the UE-specific information to the UE, the gNB receives the UE-specific information sent by the UE, the UE receives the UE-specific information sent by the gNB, and the UE sends the UE-specific information to the gNB.
  • the UE may receive the PDCCH from the gNB in a specific search space, and receive the DCI carried in the PDCCH.
  • the working bandwidth resource of the UE may also be referred to as a working bandwidth resource, a UE working bandwidth resource, a bandwidth resource, or other names, which is not limited in this application.
  • the working bandwidth resources of different UEs may be the same or different, and the application is not limited. Exemplarily, multiple UEs may share the same working bandwidth resource, and the working bandwidth resource may be independently configured for each UE.
  • the gNB dynamically configures the working bandwidth resource of the UE for the UE by using the signaling, the gNB and the UE may not understand the working bandwidth resources of the UE, and the gNB may not receive the data sent by the UE, and the UE does not receive the data.
  • the data sent to the gNB, that is, the gNB and the UE cannot perform data transmission normally.
  • a scenario that causes the gNB and the UE to understand the inconsistency of the working bandwidth resources of the UE is as follows: exemplarily, if the gNB dynamically reconfigures the working bandwidth resource of the UE for the UE by using signaling, and does not need to send the UE to the gNB The feedback of the signaling may be missed or mis-checked by the UE.
  • the gNB may consider that the working bandwidth resource of the UE is the target working bandwidth resource of the UE, and the UE may consider that the working bandwidth resource of the UE works as the UE source.
  • the bandwidth resources, that is, the gNB and the UE may have inconsistent understanding of the working bandwidth resources of the UE.
  • the gNB may miss or misdetect the feedback.
  • the gNB The working bandwidth resource of the UE may be considered as the UE source working bandwidth resource, and the UE may consider that the working bandwidth resource of the UE is the target working bandwidth resource of the UE, that is, the gNB and the UE may have inconsistent understanding of the working bandwidth resource of the UE.
  • the source working bandwidth resource of the UE when the gNB reconfigures the working bandwidth resource of the UE for the UE, the source working bandwidth resource of the UE is the working bandwidth resource of the UE before the reconfiguration, and the source working bandwidth resource of the UE may also be referred to as the source working bandwidth resource.
  • the source working bandwidth resource, the source bandwidth resource, the first bandwidth resource, or other names of the UE are not limited in this application.
  • the UE source working bandwidth resource may be one or more bandwidth resources. It may also be understood that the gNB may configure one or more working bandwidth resources of the UE for the UE. Among them, the term "source" may be translated into source in English.
  • the target working bandwidth resource of the UE is the working bandwidth resource of the UE that the gNB is reconfigured for the UE.
  • the gNB and the UE can use the UE target working bandwidth resource as the working bandwidth resource of the UE.
  • the UE target working bandwidth resource may also be referred to as a target working bandwidth resource, a target working bandwidth resource of the UE, a target bandwidth resource, a second bandwidth resource, or other names, which is not limited in this application.
  • the UE target working bandwidth resource may be one or more bandwidth resources. It may also be understood that the gNB may configure one or more working bandwidth resources of the UE for the UE during the reconfiguration process. Among them, the term "target" may be translated into target in English.
  • the embodiments of the present application provide various technical solutions, and each technical solution involves a corresponding method, device, and system.
  • the device in this application may also be referred to as a communication device.
  • the UE calibration bandwidth resource is introduced, and the gNB is used to send information about the UE target working bandwidth resource to the UE.
  • the gNB and the UE perform the transmission of the first UE specific information of the UE.
  • the UE calibrates the bandwidth resource of the UE, and the gNB sends the information of the UE target working bandwidth resource to the UE.
  • the UE target working bandwidth resource is used by the gNB and the UE to perform the second UE specific information transmission of the UE.
  • the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same.
  • the UE may receive the information of the UE target working bandwidth resource configured by the gNB for the UE in the calibration bandwidth resource, and enable the UE to calibrate the configuration of the working bandwidth resource of the UE. Therefore, the probability that the gNB and the UE do not understand the working bandwidth resources of the UE may be reduced.
  • the corresponding calibration may be performed, and the gNB and the UE may be used for the UE. The working bandwidth resources are consistently understood.
  • the UE calibration bandwidth resource and the UE source working bandwidth resource are not completely the same, and the gNB sends the information of the UE target working bandwidth resource to the UE.
  • the UE calibration bandwidth resource may also be referred to as a calibration bandwidth resource, a configuration bandwidth resource, a UE configuration bandwidth resource, a third bandwidth resource, or other names, which is not limited in this application.
  • the UE calibration bandwidth resource may be a bandwidth resource used by the gNB to send a synchronization signal and/or a broadcast channel to the UE, and the bandwidth resource may be a bandwidth resource shared by multiple UEs. In this scenario, the UE is calibrated.
  • the bandwidth resource may also be referred to as a public bandwidth resource or other name, which is not limited in this application.
  • the UE calibration bandwidth resource may be a bandwidth resource for the UE to initially access the gNB, and the bandwidth resource may be a bandwidth resource shared by multiple UEs. In this scenario, the UE calibration bandwidth resource may also be called This application does not limit the access to bandwidth resources, initial access bandwidth resources, or other names.
  • the bandwidth resource for the gNB to send the synchronization signal and/or the broadcast channel to the UE and the bandwidth resource for the initial access of the UE to the gNB may be the same or different bandwidth resources, which is not limited in this application.
  • the gNB may periodically send the information of the UE target working bandwidth resource to the UE.
  • the UE can periodically receive the information of the target working bandwidth resource of the UE, that is, the UE can periodically calibrate the configuration of the working bandwidth resource of the UE; the UE can also determine whether it needs to be calibrated. If calibration is required, the UE may receive information of the UE's target working bandwidth resource.
  • the gNB may further send information about the UE target working bandwidth resource to the UE based on the received first request sent by the UE.
  • the first request is used to request the gNB to send information about the UE target working bandwidth resource to the UE.
  • the gNB may further send information about the UE target working bandwidth resource to the UE in the working bandwidth resource of the UE.
  • a working bandwidth resource fallback mechanism (hereinafter referred to as a “return mechanism”) is introduced.
  • a fallback mechanism may be introduced on the gNB side.
  • the UE operates the bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • the gNB also sends information about the UE target working bandwidth resource to the UE in the UE source working bandwidth resource.
  • the UE target working bandwidth resource is used by the gNB and the UE to perform the second UE specific information transmission of the UE. If the gNB does not receive the feedback, the gNB uses the UE source working bandwidth resource of the UE as the working bandwidth resource of the UE, where the feedback is feedback corresponding to the channel carrying the information of the UE target working bandwidth resource.
  • the gNB may not receive or correctly receive the information of the UE target working bandwidth resource, and the UE may still use the UE source working bandwidth resource as the working bandwidth resource of the UE. Therefore, the gNB returns The UE source working bandwidth resource is retired to the UE, and the gNB uses the UE source working bandwidth resource as the working bandwidth resource of the UE to ensure that the UE and the gNB have the same understanding of the working bandwidth resources of the UE.
  • a fallback mechanism may be introduced on the UE side.
  • the UE and the gNB perform transmission of the first UE specific information of the UE in the UE source working bandwidth resource.
  • the UE also receives the information of the target working bandwidth resource of the UE that is sent by the gNB to the UE, and uses the target working bandwidth resource of the UE as the working bandwidth resource of the UE.
  • the UE target working bandwidth resource is used by the gNB and the UE to perform the second UE specific information transmission of the UE.
  • the UE sends feedback to the gNB, where the feedback is feedback corresponding to the channel carrying the information of the UE target working bandwidth resource.
  • the UE uses the UE source working bandwidth resource as the working bandwidth resource of the UE; or the UE sends the second request to the gNB, and the target working bandwidth of the UE.
  • the UE if the UE does not receive the first response sent by the gNB, the UE uses the UE source working bandwidth resource as the working bandwidth resource of the UE.
  • the gNB may not receive or correctly receive the feedback sent by the UE, and the gNB may still use the UE source working bandwidth resource as the UE.
  • the working bandwidth resource is used.
  • the UE retreats to the UE source working bandwidth resource, and the UE uses the UE source working bandwidth resource as the working bandwidth resource of the UE, which can ensure that the UE and the gNB have the same understanding of the working bandwidth resources of the UE.
  • the information of the UE target working bandwidth resource that the gNB sends to the UE may be any one of the following two types of information.
  • the first type of information the information about the target working bandwidth resource of the UE that the gNB sends to the UE may indicate that the target working bandwidth resource of the UE is at least one bandwidth resource of the UE candidate working bandwidth resource, or may indicate that the target working bandwidth resource of the UE is a candidate working for the UE.
  • the resource location information of the at least one bandwidth resource of the UE candidate working bandwidth resource may be configured for the gNB and the UE in a pre-configured manner, and the at least one bandwidth of the UE candidate working bandwidth resource may be configured for the UE by sending the information to the UE by using the gNB. Resource location information for the resource.
  • the second type of information the information of the UE target working bandwidth resource that the gNB sends to the UE includes the frequency resource location information of the target working bandwidth resource of the UE.
  • an access mechanism is introduced.
  • the UE determines that the understanding of the working bandwidth resources of the UE and the gNB may be inconsistent, the UE accesses the gNB.
  • normal communication between the UE and the gNB can be resumed by the UE accessing the gNB.
  • FIG. 2 is a diagram showing a first method for configuring a bandwidth resource according to an embodiment of the present application. The method corresponds to the first technical solution provided by the embodiment of the present application.
  • Step 201 The UE source working bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • Step 202 The UE's UE calibrates the bandwidth resource, and the gNB sends the UE target working bandwidth resource information to the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB.
  • the UE target working bandwidth resource is used by the gNB and the UE to perform the second UE specific information transmission of the UE.
  • the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same.
  • the gNB sends the information of the target working bandwidth resource of the UE to the UE by using the signaling, which is dynamic signaling, and may be carried by a physical downlink control channel (PDCCH).
  • the cyclic redundancy code (CRC) of the information carried by the PDCCH may be scrambled by using a corresponding radio network temporary identifier (RNTI) for performing PDCCH transmission. Error detection.
  • the UE receives the PDCCH, and decodes the control channel according to the corresponding RNTI to obtain information carried by the PDCCH.
  • the gNB may use the UE-specific RNTI to scramble the CRC of the information carried by the PDCCH.
  • the UE-specific RNTI may be a cell RNTI (C-RNTI).
  • C-RNTI cell RNTI
  • the gNB may use the common RNTI to scramble the CRC of the information carried by the PDCCH.
  • the multiple UEs may be all or part of the UEs in the cell.
  • the signaling includes semi-static signaling and dynamic signaling.
  • the semi-static signaling may include at least one of radio resource control (RRC) signaling, broadcast message, system message, and medium access control (MAC) control element (CE).
  • RRC radio resource control
  • MAC medium access control
  • CE medium access control
  • the dynamic signaling may include at least one of signaling carried by the physical downlink control channel and signaling carried by the physical downlink data channel.
  • the signaling carried by the physical downlink control channel may be referred to as downlink control information (DCI).
  • DCI downlink control information
  • the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same, and may be described as: part of the frequency resource or all frequency resources included in the UE source working bandwidth resource is not included in the UE calibration bandwidth resource, or part of the frequency included in the UE calibration bandwidth resource.
  • the resource or all frequency resources are not included in the UE source working bandwidth resource.
  • the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same.
  • the UE source working bandwidth resource includes at least one subcarrier not included in the UE calibration bandwidth resource, or the UE. At least one subcarrier included in the calibration bandwidth resource is not included in the UE source working bandwidth resource.
  • the gNB and the UE may determine the frequency resource location information of the UE calibration bandwidth resource in a pre-configured manner.
  • the gNB can also configure the UE to calibrate the bandwidth resource by means of signaling configuration.
  • the gNB sends signaling to the UE, where the signaling indicates the frequency resource location information of the UE calibrating the bandwidth resource.
  • the UE receives the signaling sent by the gNB, and is used to determine frequency resource location information of the UE calibration bandwidth resource.
  • the frequency resource location information of the bandwidth resource may be any one of the following first frequency resource location information to the fifth frequency resource location information.
  • the first type of frequency resource location information is used to configure which resource blocks include a resource block (RB) or a resource block group (RBG).
  • the RB and the RBG are resource units in the OFDM-based communication system.
  • system resources include several resource cells, one resource cell corresponds to one subcarrier, one RB includes C1 resource cells, and C1 is an integer greater than 1, exemplarily, C1 Is 12.
  • the system bandwidth can be described as C2 RBs, and C2 is an integer greater than or equal to 1.
  • one RB may include C3 symbols, C3 is an integer greater than 1, and exemplarily, C3 is 7 or 14.
  • FIG. 3 is a schematic diagram of possible structure of the system bandwidth.
  • the system bandwidth includes RB 0 to RB C2-1. C2 RBs.
  • the system bandwidth can also be described as C4 RBGs, one RBG includes C5 RBs, and C4 and C5 are integers greater than one.
  • the RB or RBG included in the bandwidth resource can be arbitrarily selected by using the value of each bit in the bitmap, so that flexible resource configuration can be provided, which can be applied to continuous and discontinuous Resource allocation.
  • the second frequency resource location information includes an index of the reference RB and the number of consecutively allocated RBs.
  • the reference RB may be any RB in the bandwidth resource, and the number of consecutively allocated RBs is the width of the bandwidth resource.
  • the reference RB may be the highest frequency RB of the bandwidth resources, the lowest frequency RB of the bandwidth resources, or the center RB of the bandwidth resource.
  • the second frequency resource location information can be jointly encoded by using the indication information of the reference RB index and the indication information of the consecutively allocated RB numbers. Therefore, resource allocation can be performed with fewer information bits, and the resource allocation can be reduced. Signaling overhead.
  • the third resource configuration information includes an index of the reference RBG and the number of consecutively allocated RBGs.
  • the reference RBG may be any RBG in the bandwidth resource, and the number of consecutively allocated RBGs is the width of the bandwidth resource.
  • the reference RBG may be the highest frequency RBG in the bandwidth resource, the lowest frequency RBG in the bandwidth resource, or the center RBG of the bandwidth resource.
  • the fourth frequency resource location information includes S combined indexes, and S is an integer greater than or equal to 1.
  • a combined index indicates P group resource configuration information. Any one of the group resource configuration information in the P group resource configuration information includes a start RB index and an end RB index, or includes a start RBG index and an end RBG index. Where P is an integer greater than or equal to 1, and the index may also be referred to as an identifier.
  • a set of resource configuration information indicates a contiguous resource. If the group resource configuration information includes a start RB index and an end RB index, and the start RB index and the end RB index are the same, the group resource configuration information indicates an RB. The index corresponding to the RB is the starting RB index or the ending RB index.
  • the group of resource configuration information includes a starting RBG index and an ending RBG index
  • the initial RBG index and the ending RBG index are the same
  • the group resource configuration information indicates an RBG
  • the index corresponding to the RBG is the starting RBG index. Or end the RBG index.
  • the sum of the resources indicated by each resource configuration information in the P group resource configuration information indicated by the combined index is the resource indicated by the combined index.
  • the sum of the resources indicated by the S combined indexes is a resource corresponding to the bandwidth resource.
  • the fourth type of frequency resource location information can be jointly encoded by using the indication information of the initial RB index and the indication information of the ending RB index. Therefore, less information can be allocated for resource allocation, and signaling overhead can be reduced.
  • the fourth type of frequency resource location information can support continuous and non-contiguous resource configuration, and can flexibly configure resources.
  • the fifth frequency resource location information including a subband indication, is used to indicate that the bandwidth resource is at least one subband in the system bandwidth.
  • the system bandwidth includes at least one subband.
  • 4 is a schematic diagram showing a possible structure of a subband included in a system bandwidth. As shown in FIG. 4, the system bandwidth includes three subbands of subband 0, subband 1 and subband 2, and one subband includes system bandwidth. Part of the bandwidth. It should be noted that the system bandwidth may include any number of sub-bands, and only one of the possibilities is shown in FIG. The bandwidth of the different sub-bands included in the system bandwidth may be the same or different, and is not limited in this embodiment.
  • the fifth resource configuration information when the bandwidth of the bandwidth frequency allocated to the UE is fixed and is a continuous resource, the signaling overhead can be effectively reduced.
  • the frequency resource location information is used to indicate the location of the resource at the frequency, which may also be referred to as a frequency resource location configuration, a frequency resource configuration information, or other names, which is not limited in this application.
  • the information of the target working bandwidth resource of the UE that is sent by the gNB to the UE may be at least one of the information of the first and second target working bandwidth resources.
  • the information about the target working bandwidth resource of the UE that the gNB sends to the UE may indicate that the target working bandwidth resource of the UE is at least one bandwidth resource of the UE candidate working bandwidth resource, or may indicate the target working bandwidth resource of the UE. At least one of the set of bandwidths including the UE candidate working bandwidth resource and the UE calibration bandwidth resource.
  • the first method for configuring the bandwidth resource includes: the gNB sends the frequency resource location information of the UE candidate working bandwidth resource to the UE, where the UE target working bandwidth resource is a subset of the UE candidate working bandwidth resource, and the information of the UE target working bandwidth resource.
  • the UE target working bandwidth resource is indicated as at least one of the UE candidate working bandwidth resources.
  • the UE candidate working bandwidth resource may include a UE calibration frequency resource.
  • the gNB sends the frequency resource location information of the UE candidate working bandwidth resource to the UE, where the UE target working bandwidth resource is a subset of the set of the UE candidate working bandwidth resource and the UE calibration bandwidth resource, and the information of the UE target working bandwidth resource indicates the UE.
  • the target working bandwidth resource is at least one of the set of the UE candidate working bandwidth resource and the UE calibration bandwidth resource.
  • the UE candidate working bandwidth resource does not include the UE calibration frequency resource, and the UE calibration frequency resource may be a signaling configured or pre-configured frequency resource.
  • the UE receives the frequency resource location information of the UE candidate working bandwidth resource sent by the gNB.
  • the UE candidate working bandwidth resource may also be described as a UE optional working bandwidth resource, a possible working bandwidth resource of the UE, and M1 bandwidth resources or other names that can be used as the working bandwidth resource of the UE. .
  • M1 is an integer greater than or equal to 1.
  • the UE candidate working bandwidth resource may further include a UE calibration bandwidth resource.
  • the UE source working bandwidth resource may be at least one bandwidth resource in the UE candidate working bandwidth resource.
  • FIG. 5 is a schematic diagram of UE candidate working bandwidth resources. In the example of FIG.
  • the system bandwidth is 400 MHz
  • the bandwidth supported by the UE is 20 MHz
  • the bandwidth of one of the UE candidate working bandwidth resources is 20 MHz
  • the bandwidth of the UE calibration bandwidth is 20 MHz.
  • the system resource includes 20 bandwidth resources, and the bandwidth resources are not overlapped. One of them is a UE calibrating bandwidth resource, and the other 19 bandwidth resources are UE candidate working bandwidth resources; or the 20 bandwidth resources are UE candidate working bandwidth resources. One of them calibrates the bandwidth resource for the UE.
  • the UE source working bandwidth resource is at least one of the 19 bandwidth resources, and the 19 bandwidth resources are 19 bandwidth resources obtained by subtracting the UE calibration bandwidth resource from the system resource.
  • the UE target bandwidth resource is at least one bandwidth resource in the UE candidate working bandwidth resource. As shown in FIG. 5, the bandwidth resources are not overlapped, and the bandwidth resources are continuous resources. In actual applications, the bandwidth resources may overlap, and the bandwidth resources may be continuous or discontinuous resources, which is not limited in this application.
  • the frequency resource location information of the bandwidth resource may be the first frequency resource location information to the fifth frequency. Any of the resource location information in the resource location information. Further, when the gNB sends the frequency resource location information of the UE candidate working bandwidth resource to the UE, the frequency resource location information of the different bandwidth resources in the candidate working bandwidth resource may be sent through the same signaling, or may be sent through different signaling candidates.
  • the frequency resource location information of different bandwidth resources in the working bandwidth resource is not limited in this application.
  • the signaling may send the frequency resource of the UE candidate working bandwidth resource to the UE by using the gNB.
  • the signaling used in the location information is the same or different. This application is not limited.
  • the signaling may include flag information, which is used to indicate which The frequency resource calibrates the bandwidth resource for the UE.
  • the information indicating that the UE target working bandwidth resource indicates that the UE target working bandwidth resource is at least one of the M2 bandwidth resources.
  • M2 is equal to the number of bandwidth resources included in the UE candidate working bandwidth resource, and the UE candidate working bandwidth.
  • the bandwidth resources included in the resource may also be described as M2 bandwidth resources; when the information of the target working bandwidth resource of the UE indicates that the target working bandwidth resource of the UE is at least one bandwidth resource including a set of UE candidate working bandwidth resources and UE calibration bandwidth resources.
  • M2 is equal to the number of bandwidth resources included in the set of UE candidate working bandwidth resources and UE calibration bandwidth resources, and the set of UE candidate working bandwidth resources and UE calibration bandwidth resources may also be described as M2 bandwidth resources.
  • the information of the UE target working bandwidth resource may be any one of the following first indication information to the third indication information, and is used to indicate the target working bandwidth resource of the UE. It is at least one bandwidth resource of M2 bandwidth resources. Where M2 is an integer greater than one.
  • the target bandwidth resource of the UE is considered to be the bandwidth resource corresponding to the information bit.
  • the target bandwidth resource of the UE is not included in the bandwidth resource corresponding to the information bit.
  • t1 and t2 are integers.
  • t1 is 1 and t2 is 0.
  • the third indication information includes K3 information bits, and K3 is an integer.
  • the configuration K3_X corresponds to at least one bandwidth resource, where K3_X is a possible value of K3 information bits, and the at least one bandwidth resource is included in the M2 bandwidth resources. If the value of the K3 information bits is K3_X, the bandwidth resource corresponding to K3_X is considered to be the UE target bandwidth resource.
  • bandwidth resource 1 bandwidth resource 2
  • bandwidth resource 3 bandwidth resource 3
  • K3_X bandwidth resource 3
  • bandwidth resource 6 and bandwidth resource 7 are UE target bandwidth resources.
  • the bandwidth resource is considered as the UE target bandwidth resource, and may be described as: the bandwidth resource may be used as the UE target bandwidth resource. Only one possible example is given in Table 1. In the actual application, the correspondence between the K3_X and the bandwidth resource may be any other relationship, which is not limited in this application.
  • the UE target bandwidth resource can be flexibly indicated to be any one of the M2 bandwidth resources, and the signaling overhead of the indication information can be reduced by using the binary coding.
  • the UE target working bandwidth resource can be configured for the UE by using the information of the first target working bandwidth resource, and the UE target working bandwidth resource is indicated as at least one of the multiple bandwidth resources.
  • the information of the UE target working bandwidth resource that the gNB sends to the UE includes the frequency resource location information of the target working bandwidth resource of the UE.
  • the frequency resource location information of the bandwidth resource may be any one of the first frequency resource location information to the fifth frequency resource location information.
  • the resources in the system resource can be flexibly configured as the target working bandwidth resource of the UE. Flexibly configuring resources for the UE to communicate between the gNB and the UE can bring the following three benefits:
  • the first advantage is to configure resources with better channel quality for the UE in the system resources, and improve the data transmission rate between the gNB and the UE.
  • the second advantage is that the parameters can be flexibly configured for the UE, and the parameters include a subcarrier spacing and a CP, which are used to satisfy the quality of service (QoS) requirements of the UE.
  • the quality of service includes delay and/or block error rate (BLER).
  • BLER block error rate
  • the third benefit is the provision of a forward compatible communication system.
  • the network device flexibly configures the working bandwidth resource for the UE, so that the network device can flexibly configure the blank resource in the system resource, and various possible communication systems can be introduced in the blank resource, thereby implementing the flexible communication system in the system resource. Evolution. Further, if a plurality of communication systems need to be supported in the system resources, by flexibly configuring the blank resources, the resources of the communication systems can be flexibly configured according to the load of each communication system in the multiple communication systems in the blank resources, and The total data transmission rate of the plurality of communication systems is increased in the system resources.
  • the method for flexibly configuring resources may have the above three advantages.
  • the UE may receive the information of the UE target working bandwidth resource configured by the gNB for the UE in the calibration bandwidth resource, and enable the UE to calibrate the configuration of the UE working bandwidth resource. Therefore, the probability that the gNB and the UE do not understand the working bandwidth resources of the UE may be reduced, or the gNB and the UE may perform corresponding calibration when the working bandwidth resources of the UE are inconsistent, so that the working bandwidth of the gNB and the UE to the UE can be made.
  • the resources are understood consistently.
  • the method for configuring a second bandwidth resource according to the embodiment of the present application is described in detail below with reference to FIG. 6.
  • the method corresponding to the method corresponding to the first technical solution provided by the embodiment of the present application the gNB periodically sends the UE target work to the UE. Information about bandwidth resources.
  • Step 601 The UE source working bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • Step 602 In the first period, the UE calibrates the bandwidth resource in the UE, and the gNB sends the information of the UE target working bandwidth resource to the UE.
  • the UE target working bandwidth resource is used for the gNB and the UE to perform the second UE specific information transmission, and the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same, and the first period includes an integer number of first time units.
  • Step 602 can include step 202.
  • the gNB may periodically send information of the UE target working bandwidth resource to the UE based on the first period.
  • the first period includes an integer number of first time units, and may also be described as a first period including N1 first time unit, and N1 is an integer greater than 1.
  • the UE calibrates the bandwidth resource in the UE, and the gNB may send the information of the UE target working bandwidth resource to the UE.
  • N2 is an integer less than or equal to N1.
  • the gNB and the UE may determine the first period according to the pre-configuration.
  • the gNB may also send signaling to the UE, where the signaling includes the configuration of the first period.
  • the UE receives the signaling sent by the gNB.
  • the UE determines the first period according to the received signaling.
  • the first period is an integer number of time units.
  • the time unit is exemplarily, the time unit is the first time unit.
  • the first period is also configured as a specific time length.
  • the unit is a common time unit such as seconds or milliseconds.
  • the time unit may also be referred to as a time unit, and includes time units commonly used in the field of communication systems such as symbols, time slots, mini-slots, subframes, and radio frames.
  • time unit lengths of the different parameters are different. Therefore, when the first period is an integer number of first time units, the parameters corresponding to the first time unit may also be configured, where the parameters are Including at least one of a subcarrier spacing and a CP.
  • the subcarrier spacing corresponding to the first time unit may be the same as the subcarrier spacing corresponding to the UE working bandwidth resource.
  • the subcarrier spacing corresponding to the first time unit may be configured as the reference subcarrier spacing, and the reference subcarrier spacing is The sub-carrier spacing is pre-configured according to the carrier frequency domain; the signaling that is sent to the UE by the gNB may also configure the sub-carrier spacing corresponding to the first time unit for the UE.
  • the gNB and the UE may determine N2 first time units in the first period according to the pre-configuration.
  • the gNB may also send signaling to the UE, where the signaling includes configurations of N2 first time units in the first cycle.
  • the UE receives the signaling sent by the gNB.
  • the UE determines N2 first time units in the first period according to the received signaling.
  • the first type of configuration information includes an offset P1 and a step size P2.
  • the first time unit of the N2 first time units in the first period is the P1 first time unit in the first period, and the two adjacent first ones of the N2 first time units in the first period
  • the distance of the time unit is P2 first time units.
  • P1 and P2 are integers.
  • the second configuration information includes P3 information bits, and P3 is equal to the number of first time units included in the first period, that is, P1 is equal to the above N1.
  • the P3 information bits are in one-to-one correspondence with the first time unit included in the first period.
  • t1 and t2 are integers.
  • t1 is 1 and t2 is 0.
  • the information of at least one first time unit in the first period can be flexibly configured to transmit the target working bandwidth resource of the UE by using the change of the value of each information bit, and is applicable to continuous and non-continuous in the time domain. Configuration.
  • the third configuration information includes the value N2. Any N2 first time units in the first period are N2 first time units in the first period described in the step.
  • the gNB can configure the uplink and downlink configuration according to the parameters such as the traffic volume, and the uplink and downlink configuration is used to configure whether the time unit is used for downlink (DL) transmission or uplink (UL) transmission.
  • the gNB can flexibly select the first time unit based on its uplink and downlink configuration, and send the information of the UE target working bandwidth resource to the UE in the selected first time unit.
  • the gNB may not need to reconfigure the working bandwidth resource for the UE, the gNB may not The information of the UE target working bandwidth resource is sent to the UE to save signaling overhead.
  • the gNB sends information about the UE target working bandwidth resource to the UE in the first period, or one or more first time units in the N2 first time units in the first period, where the information may be It is carried by physical channel A.
  • physical channel A is a PDCCH. It can also be described that the gNB sends the physical channel A to the UE in the first period, or one or more first time units in the N2 first time units in the first period, and the physical channel A carries the UE target working bandwidth. Resource information.
  • the gNB sends a physical channel to the UE, and may also describe that the gNB sends the information carried by the physical channel to the UE.
  • the UE calibrates the bandwidth resource in the UE, and the UE receives the information of the UE target working bandwidth resource that the gNB sends to the UE.
  • the UE target working bandwidth resource is used for the gNB and the UE to perform the second UE specific information transmission of the UE; the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same; the first period includes an integer number of first time units.
  • the UE may periodically receive the information of the UE target working bandwidth resource by using the following first receiving method.
  • the UE may also use the following second receiving method, and the UE receives the UE working bandwidth resource based on determining whether the UE working bandwidth resource needs to be calibrated. Information.
  • the UE In the first receiving method, the UE periodically receives information of the UE target working bandwidth resource. In a first period, in the first period, in the N2 first time units in the first period, the UE calibrates the bandwidth resource in the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB to the UE.
  • the N2 first time units in the first period are the same as those described above, and are not described herein again.
  • FIG. 7 is a schematic diagram of information of a UE target working bandwidth resource transmitted by a UE in a UE calibration bandwidth resource receiving gNB.
  • the gNB calibrates the bandwidth resource in the UE of the UE in the first time unit A of the first period, and sends information of the UE target working bandwidth resource to the UE.
  • N2 1.
  • N2 may be an integer greater than or equal to 1 and less than or equal to the above N1.
  • FIG. 7 is a schematic diagram of information of a UE target working bandwidth resource transmitted by a UE in a UE calibration bandwidth resource receiving gNB.
  • the gNB calibrates the bandwidth resource in the UE of
  • the working bandwidth resource of the UE is the bandwidth resource A.
  • the UE calibrates the bandwidth resource of the UE, and receives the information of the UE target working bandwidth resource sent by the gNB, where the information may indicate that the target working bandwidth resource of the UE is the bandwidth resource A, the UE The bandwidth resource A is still used as the working bandwidth resource of the UE. It can also be described that the UE does not update the working bandwidth resource of the UE.
  • the working bandwidth resource of the UE is the bandwidth resource A.
  • the UE calibrates the bandwidth resource of the UE in the first time unit A of the second first period, and receives the information of the UE target working bandwidth resource sent by the gNB, where the information may indicate that the target working bandwidth resource of the UE is the bandwidth resource B, the UE
  • the bandwidth resource B is used as the working bandwidth resource of the UE, that is, the UE updates the working bandwidth resource of the UE, and can also describe that the working bandwidth resource of the UE is calibrated.
  • the UE receives information about the target working bandwidth resource of the UE based on whether it is necessary to calibrate the UE working bandwidth resource.
  • the UE starts or restarts the first timer if the UE receives the first UE specific information of the UE that is sent by the gNB.
  • the UE restarting the first timer may be, in the UE source working bandwidth resource, if the UE receives the first UE specific information of the UE that is sent by the gNB, and the first timer is in the running state, the UE restarts. a timer. After the expiration of the first timer, the UE's UE calibrates the bandwidth resource, and receives the information of the UE target working bandwidth resource sent by the gNB.
  • the UE calibrates the bandwidth resource at the UE, and the UE receives the information of the UE target working bandwidth resource that the gNB sends to the UE.
  • the first time unit may be one or more first time units, and the first time unit is included in one or more first periods, which is the first of the N2 first time units in the first period. Time unit.
  • the UE switches from the source working bandwidth resource to the UE calibration bandwidth resource, and the UE receives the bandwidth resource of the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB to the UE. .
  • the UE receives the information of the UE target working bandwidth resource, it needs to switch from the UE source working bandwidth resource to the UE calibration bandwidth resource, and/or needs to switch from the UE calibration bandwidth resource to the UE target working bandwidth resource.
  • the method can reduce the handover between the UEs in different bandwidth resources, thereby reducing the introduction of the handover time, saving the time domain air interface resources, and improving the data transmission rate.
  • the possible scenario that the UE needs to switch from the UE source working bandwidth resource to the UE calibration bandwidth resource when receiving the information of the UE target working bandwidth resource is: the bandwidth capability of the UE is insufficient to support the UE source working bandwidth resource and the UE calibration bandwidth at the same time. Resources.
  • a possible scenario in which the UE needs to switch from the UE calibration bandwidth resource to the UE target working bandwidth resource when receiving the information of the UE target working bandwidth resource is: the bandwidth capability of the UE is insufficient to simultaneously support the UE calibration bandwidth resource and the UE target working bandwidth resource.
  • a guard period may be configured for the UE, where the UE is used to switch from the bandwidth resource C to the bandwidth resource.
  • the protection period is used for the UE to switch from one bandwidth resource to another bandwidth resource, and may also be referred to as a handover time, a protection time, or other name, which is not limited in this application.
  • the switch may also be referred to as an adjustment or other name.
  • the application is not limited, and the English translation may be retune.
  • the protection period can be configured as an integer number of time units.
  • a specific time length can also be configured.
  • the unit of the time length is a common time unit such as seconds, milliseconds, and microseconds.
  • the gNB may not communicate with the UE during the protection period of the UE.
  • the UE may switch from the UE source working bandwidth resource to the UE in the first protection period.
  • Calibrate bandwidth resources For example, after the UE calibrates the bandwidth resource of the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB to the UE, the UE switches from the UE calibration bandwidth resource to the UE target working bandwidth resource in the second protection period.
  • FIG. 7 is a schematic diagram of information of a UE target working bandwidth resource transmitted by a UE in a UE calibration bandwidth resource receiving gNB.
  • the UE switches from the UE source working bandwidth resource to the UE calibration bandwidth resource in the first protection period; after the first time unit A, the UE is in the second protection period, from the UE.
  • the calibration bandwidth resource is switched to the UE target working bandwidth resource.
  • the first protection period and the second protection period may be the same or different, and the application does not limit the application.
  • the information of the UE target working bandwidth resource can be transmitted in a relatively fixed manner in the time domain, and the UE can be targeted to perform the UE in the time domain.
  • the information of the target working bandwidth resource is received, so that the robustness of the information that the UE receives the target working bandwidth resource of the UE can be improved, and further, the power of the UE may also be saved.
  • the following is a detailed description of the third bandwidth resource configuration method provided by the embodiment of the present application.
  • the method corresponds to the first technical solution provided by the embodiment of the present application, and the gNB sends the UE target working bandwidth to the UE according to the UE request. Resource information.
  • Step 801 The UE source working bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • Step 802 The UE sends a first request to the gNB, where the first request is used to request the gNB to send information about the target working bandwidth resource of the UE to the UE.
  • the gNB receives the first request sent by the UE.
  • the first request may be a scheduling request (SR).
  • SR scheduling request
  • the first request may be carried on an uplink control channel or an uplink data channel.
  • the SR is a signaling that is sent by the UE to the gNB, and is used to request the gNB to perform uplink scheduling on the UE, so that the UE can send data to the gNB according to the uplink scheduling information.
  • the UE may also determine whether it needs to calibrate the working bandwidth resource. If calibration is required, the UE sends a first request to the gNB to further reduce the signaling overhead. Specifically, in the UE source working bandwidth resource, if the UE receives the first UE specific information sent by the gNB, a timer is started. If the timer is in the running state, the UE source operates the bandwidth resource, and if the UE receives the first UE specific information sent by the gNB, restarts the third timer. After the expiration of the third timer, the UE sends a first request to the gNB.
  • the UE when the UE does not communicate with the gNB for a period of time, it can be considered whether the state of no communication is caused by the inconsistent understanding of the working bandwidth resources of the UE by the gNB and the UE, so that the working bandwidth can be considered. Resources are calibrated.
  • the UE calibrates the bandwidth resource in the UE, and the gNB sends the information of the UE target working bandwidth resource to the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB.
  • the UE target working bandwidth resource is used for transmitting the second UE specific information of the UE with the UE.
  • the UE source working bandwidth resource and the UE calibration bandwidth resource are not completely the same.
  • Step 803 can include step 202.
  • the timing relationship between the transmission of the first request and the transmission of the information of the UE calibrated bandwidth resource UE target working bandwidth resource may be: in time unit n, transmitting the first request, in time unit n+k, transmitting the UE target working bandwidth Resource information.
  • the transmission of information of the UE target working bandwidth resource is after the transmission of the first request, n is an integer, and k is an integer greater than or equal to 0.
  • the gNB receives the first request at time unit n and transmits information of the UE target working bandwidth resource to the UE at time unit n+k.
  • the UE sends a first request in the time unit n, and receives information of the UE target working bandwidth resource transmitted by the gNB in the time unit n+k.
  • the index of the corresponding time unit may be adjusted, which is not limited in this application.
  • the time interval corresponding to the time unit for transmitting the first request is 60 kHz
  • the reason for this phenomenon may be that the time unit for transmitting the first request is one time slot, and the time slot includes 7 symbols.
  • the time unit for transmitting information of the UE target working bandwidth resource is one time slot, and the time slot includes 7 symbols.
  • the symbol length corresponding to 60 kHz is 1/4 of the symbol length corresponding to 15 kHz
  • the length of the corresponding slot of 60 kHz is 1/4 of the length of the corresponding slot of 15 kHz. Therefore, at the same time, the index of the 60 kHz slot may be It is 4 times the index of the 15 kHz time slot.
  • the index of the time slot does not exceed the value range of the index of the time slot.
  • the gNB and the UE may determine the above k value based on system pre-configuration.
  • the k value may be pre-configured to be a constant, or the k value may be pre-configured to any one or more of n+k1 to n+k1+L, where k1 and L are integers.
  • k1 and L are pre-configured constants.
  • the gNB may also send signaling to the UE, indicating the k value by the signaling.
  • the UE receives the signaling sent by the gNB, and determines the k value according to the signaling configuration.
  • the UE if the UE receives the information of the target working bandwidth resource of the UE, it needs to switch from the UE source working bandwidth resource to the UE calibration bandwidth resource, and/or needs to calibrate the bandwidth from the UE.
  • the resource is switched to the target working bandwidth resource of the UE.
  • the method can reduce the handover of the UE between the different bandwidth resources, thereby avoiding the introduction of the handover time, saving the time domain air interface resource and improving the data transmission rate.
  • the gNB may also send the UE target working bandwidth resource information to the UE in the UE source working bandwidth resource.
  • the UE may also receive information of the UE target working bandwidth resource sent by the gNB in the UE source working bandwidth resource of the UE.
  • the information of the target working bandwidth resource of the UE may be configured.
  • the sending frequency of the UE working bandwidth resource is higher than the sending frequency of the UE working bandwidth resource in the UE.
  • the information of configuring the target working bandwidth resource of the UE is shorter in the sending period of the UE source working bandwidth resource than the information of the UE target working bandwidth resource in the sending period of the UE calibration bandwidth resource.
  • the information of configuring the UE target working bandwidth resource is the same as the sending period of the UE source working bandwidth resource of the UE and the information of the UE target working bandwidth resource are the same in the sending period of the UE calibration bandwidth resource, and may be used in the period.
  • the time unit in which the UE source working bandwidth resource transmits the information of the UE target working bandwidth resource is more than the time unit that can be used for the UE to calibrate the bandwidth resource to transmit the information of the UE target working bandwidth resource.
  • the UE may, when determining that it needs to be calibrated, receive the information of the UE target working bandwidth resource sent by the gNB at the UE calibration bandwidth resource.
  • the UE can determine whether the UE needs to be calibrated or every other period of time before switching to the UE calibration bandwidth resource to receive the information of the target working bandwidth resource of the UE, and configure the working bandwidth resource of the UE.
  • this method it is possible to further reduce handover of the UE between different bandwidth resources, thereby avoiding introduction of handover time, saving time domain air interface resources for the UE, and improving data transmission rate.
  • FIG. 9 is a schematic flowchart of a fourth bandwidth resource configuration method implemented on the gNB side.
  • Step 901 The UE source working bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • Step 902 In the UE source working bandwidth resource, the gNB sends the information of the UE target working bandwidth resource to the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB.
  • the UE target working bandwidth resource is used for transmitting the second UE specific information of the UE with the UE.
  • the content of the information of the target working bandwidth resource of the UE, the method for transmitting the information of the target working bandwidth resource of the UE, and the content related to the information of the target working bandwidth resource of the UE are similar to those in the step 202, and details are not described herein again.
  • the main difference between the step 902 and the step 202 is that: in step 202, the UE calibrates the bandwidth resource, the gNB calibrates the bandwidth resource, and the gNB sends the UE target working bandwidth resource information to the UE; in step 902, the UE source working bandwidth resource The gNB sends the information of the UE target working bandwidth resource to the UE.
  • Step 903 the gNB starts a second timer.
  • Step 904 If the second timer is in the running state, if the gNB receives the feedback sent by the UE, stopping the second timer, where the feedback is feedback corresponding to the channel carrying the information of the target working bandwidth resource of the UE.
  • This feedback may be 1 bit of information.
  • the value of the feedback may include confirmation feedback, and may also include confirmation feedback and non-confirmation feedback.
  • the gNB When the value of the feedback includes the acknowledgement feedback and does not include the non-acknowledgment feedback: the feedback is received, the gNB considers that the UE may correctly receive the information of the target working bandwidth resource of the UE, and considers that the UE may use the UE target working bandwidth resource as the working bandwidth resource of the UE. Therefore, the gNB can use the UE target working bandwidth resource as the working bandwidth resource of the UE; if no feedback is received, the gNB believes that the UE may not receive or correctly receive the information of the UE target working bandwidth resource, and considers that the UE may not have the UE target.
  • the working bandwidth resource is used as the working bandwidth resource of the UE.
  • the UE may consider the UE source working bandwidth resource as the working bandwidth resource of the UE. Therefore, the gNB may use the UE source working bandwidth resource as the working bandwidth resource of the UE.
  • the confirmation feedback may also be referred to simply as feedback.
  • the gNB When the value of the feedback includes the acknowledgement feedback and the non-acknowledgment feedback: the acknowledgement feedback is received, the gNB considers that the UE may correctly receive the information of the UE target working bandwidth resource, and considers that the UE may use the UE target working bandwidth resource as the working bandwidth resource of the UE. Therefore, the gNB can use the UE target working bandwidth resource as the working bandwidth resource of the UE; if no feedback is received or non-acknowledgment feedback is received, the gNB considers that the UE may not receive or correctly receive the information of the UE target working bandwidth resource, and considers the UE The UE target working bandwidth resource may not be used as the working bandwidth resource of the UE. The UE may use the UE source working bandwidth resource as the working bandwidth resource of the UE. Therefore, the gNB may use the UE source working bandwidth resource as the working bandwidth resource of the UE.
  • Step 905 After the expiration of the second timer, the gNB uses the UE source working bandwidth resource as the working bandwidth resource of the UE.
  • the UE and the gNB can consistently understand the working bandwidth resources of the UE by using the backoff mechanism of the gNB.
  • FIG. 10 is a schematic flowchart of a method for implementing a fifth bandwidth resource configuration method on the UE side.
  • Step 1001 The UE source working bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • Step 1002 In the UE source working bandwidth resource, the gNB sends the information of the UE target working bandwidth resource to the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB.
  • the UE target working bandwidth resource is used for transmitting the second UE specific information of the UE with the UE.
  • Step 1002 is the same as step 902.
  • Step 1003 The UE sends feedback to the gNB, where the feedback is feedback corresponding to a channel carrying information of the UE target working bandwidth resource.
  • the feedback in step 1003 can be the same as the feedback in step 904.
  • step 1004 the UE starts a third timer.
  • Step 1005 Stop the third timer in the UE target working bandwidth resource, if receiving the second UE specific information sent by the gNB.
  • Step 1006 After expiration of the third timer, the UE source working bandwidth resource is used as the working bandwidth resource of the UE.
  • the UE may use the UE source bandwidth resource as the working bandwidth resource of the UE, so that the gNB and the UE may understand the working bandwidth resources of the UE.
  • FIG. 11 is a schematic flowchart of a sixth bandwidth resource configuration method implemented on the UE side.
  • Step 1101 The UE source working bandwidth resource, and the gNB and the UE perform transmission of the first UE specific information of the UE.
  • Step 1102 In the UE source working bandwidth resource, the gNB sends the information of the UE target working bandwidth resource to the UE, and the UE receives the information of the UE target working bandwidth resource sent by the gNB.
  • the UE target working bandwidth resource is used for transmitting the second UE specific information of the UE with the UE.
  • Step 1102 is the same as step 1002.
  • Step 1103 The UE sends feedback to the gNB, where the feedback is feedback corresponding to a channel carrying information of the UE target working bandwidth resource.
  • Step 1103 is the same as step 1003.
  • Step 1104 The UE sends a second request to the gNB.
  • the gNB can receive the second request.
  • Step 1105 In the UE target working bandwidth resource, if the UE does not receive the first response sent by the gNB, the UE uses the UE source working bandwidth resource as the working bandwidth resource of the UE, where the first response is corresponding to the second The requested response.
  • the first response may be 1-bit information, and may also be UE-specific information or other information, which is not limited in this application.
  • the timing relationship between the transmission of the second request and the transmission of the first response is similar to the timing relationship between the transmission of the first request in step 803 and the transmission of information of the target working bandwidth resource of the UE calibrated bandwidth resource, and details are not described herein again.
  • the transmission of the second request corresponds to the transmission of the first request
  • the transmission of the first response corresponds to the transmission of information of the target working bandwidth resource of the UE calibration bandwidth resource UE.
  • the UE if the UE does not receive the first response, the UE considers that the gNB may not receive or does not receive the feedback correctly, and the UE considers that the gNB may use the UE source bandwidth resource as the UE.
  • the UE can use the UE source bandwidth resource as the working bandwidth resource of the UE, so that the gNB and the UE can understand the working bandwidth resources of the UE.
  • FIG. 12 is a schematic diagram of a corresponding process when the first access method is implemented on the UE side.
  • Step 1201 In the working bandwidth resource of the UE, if the UE receives the third UE specific information sent by the gNB, start or restart the fourth timer.
  • the UE may start or restart the fourth timer. Further, the fourth timer may also be started or restarted after reconfiguring the working bandwidth resources of the UE. Specifically, in the UE source working bandwidth resource, the UE and the network device perform the transmission of the first UE specific information of the UE. The network source works on the bandwidth resource, and the network device sends information about the UE target working bandwidth resource to the UE.
  • the UE receives the information of the UE target working bandwidth resource sent by the network device, uses the UE target working bandwidth resource as the working bandwidth resource of the UE, and the UE starts a fourth timer, where the UE target works
  • the bandwidth resource is used by the UE and the network device to perform transmission of the third UE specific information of the UE.
  • the UE target working bandwidth resource is used as the working bandwidth resource of the UE, in the working bandwidth resource of the UE, if the UE receives the third UE specific information sent by the gNB, the UE starts or restarts the fourth timer.
  • Step 1202 If the fourth timer expires, the UE accesses the gNB.
  • the gNB After accessing the gNB, the gNB can send information to the UE, and the UE can receive information sent by the gNB for the bandwidth resource for the gNB and the UE to transmit the UE specific information.
  • the information is information of the UE target working bandwidth resource described in the above method.
  • the UE In the first access method, based on the timer, the working bandwidth resource of the UE, if the fourth timer expires, the UE considers that the understanding of the working bandwidth resource of the UE and the gNB may be inconsistent, and the UE accesses the gNB, and may After the access and the gNB, the understanding of the working bandwidth resources of the UE is consistent.
  • FIG. 13 is a schematic diagram of a corresponding process when the second access method is implemented on the UE side.
  • step 1301 the UE sends a third request to the gNB.
  • Step 1302 In the working bandwidth resource of the UE, if the UE does not receive the second response sent by the gNB, the UE accesses the gNB. Wherein the second response corresponds to the third request.
  • the second response may be 1-bit information, and may also be UE-specific information or other information, which is not limited in this application.
  • the timing relationship between the transmission of the third request and the transmission of the second response is similar to the timing relationship between the transmission of the first request in step 803 and the transmission of information of the target working bandwidth resource of the UE calibrated bandwidth resource UE, and details are not described herein again.
  • the transmission of the third request corresponds to the transmission of the first request
  • the transmission of the second response corresponds to the transmission of the information of the target working bandwidth resource of the calibration bandwidth resource UE.
  • the UE based on the request feedback mechanism, if the UE does not receive the second response, the UE considers that the understanding of the working bandwidth resources of the UE and the gNB may be inconsistent, and the UE accesses the gNB.
  • the understanding of the working bandwidth resources of the UE is consistent with the gNB after the access.
  • the bandwidth resource used by the UE to access the gNB may be the working bandwidth resource of the UE. Further, after the UE accesses the gNB, the gNB may send information to the UE in the bandwidth resource for the UE to access the gNB, and configure the working bandwidth resource of the UE for the UE, where the information may be the UE target working bandwidth described above. Resource information.
  • the access method for the UE to access the gNB may be a method commonly used by those skilled in the art.
  • the access method may be a random access method in a 5G system or an LTE system.
  • the access method may include contention based access and non-contention based access.
  • the gNB and the UE may determine the frequency resource location information of the bandwidth resource used by the UE to access the gNB through pre-configuration.
  • the gNB can also configure frequency resource information for the UE to access the bandwidth resource of the gNB by using signaling.
  • the UE determines, according to the signaling sent by the gNB, the bandwidth resource configured by the gNB for the UE to access the gNB.
  • the resource location information of the bandwidth resource used by the UE to access the gNB may be any one of the first frequency resource location information to the fifth frequency resource location information in step 201.
  • the method provided by the embodiment of the present application is introduced from the perspective of the interaction between the gNB, the UE, and the gNB and the UE.
  • the gNB and the UE may include hardware structures and/or software modules, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above functions is performed in a hardware structure, a software module, or a hardware structure plus a software module, depending on the specific application and design constraints of the technical solution.
  • FIG. 14 is a schematic structural diagram of an apparatus 1400 according to an embodiment of the present application.
  • the device 1400 may be a gNB. It may also be a device applied to the gNB. When the device is applied to the gNB, it can support the gNB to implement the function of the gNB described in the above method.
  • Device 1400 can be implemented by a chip system. In the embodiment of the present application, the chip system may be composed of a chip, and may also include a chip and other discrete devices.
  • device 1400 includes a transmit module/receive module 14001.
  • the sending module/receiving module may also be referred to as a transceiver module.
  • the sending module/receiving module 14001 may be used to send information of the UE target working bandwidth resource, possibly for transmitting and/or receiving the first UE specific information, or For transmitting and/or receiving the second UE specific information, and also for transmitting the frequency resource location information of the UE candidate working bandwidth resource, or for transmitting the configuration of the first period and the N2 first time in the first period
  • the configuration of the unit may also be used to receive the first request, may also be used to receive feedback, may also be used to receive the second request, may also be used to send the first response, or may be used to receive the third request, or may be used
  • the second response may be used to send a downlink channel during the access process, and may also be used to receive an uplink channel during the access process.
  • the apparatus 1400 can also include a determination module 14002 that can be coupled to other modules included in the apparatus 1400, exemplarily including at least one of the transmit module/receive module 14001 and the timing module 14003.
  • the coupling in the embodiments of the present application is an indirect coupling or connection between devices, units or modules, which may be in electrical, mechanical or other form for information interaction between devices, units or modules.
  • the determining module 14002 may be used to determine information about the UE target working bandwidth resource sent by the sending module/receiving module 14001, the first UE specific information, and the second UE specific.
  • the device 1400 may further include a timing module 14003 for implementing the function of the second timer.
  • the timing module 14003 may be coupled to other modules included in the device 1400, exemplarily, including at least one of the transmitting module/receiving module 14001 and the determining module 14002.
  • FIG. 15 is a schematic structural diagram of an apparatus 1500 according to an embodiment of the present application.
  • the device 1500 may be a UE; and may be a device applied to the UE. When the device is applied to the UE, the device can support the UE to implement the function of the UE described in the foregoing method.
  • Device 1500 can be implemented by a chip system.
  • the device 1500 includes a transmitting module/receiving module 1501.
  • the sending module/receiving module 1501 may be used to receive information of the UE target working bandwidth resource, possibly for transmitting and/or receiving the first UE specific information, or For transmitting and/or receiving second UE specific information, and possibly also for receiving frequency resource location information of the UE candidate working bandwidth resource, and may also be used for receiving the configuration of the first period and the N2 first time in the first period.
  • the configuration of the unit may also be used to send the first request, may also be used to send feedback, may also be used to send the second request, may also be used to receive the first response, may also be used to send the third request, or may be used In order to receive the second response, it may also be used to send an uplink channel in the access process, and may also be used to receive the downlink channel in the access process.
  • the corresponding relationship between the information that may be sent and/or received by the sending module/receiving module 1501 and the foregoing methods is detailed in the foregoing methods, and details are not described herein again.
  • the apparatus 1500 can also include a determination module 15002 that can be coupled to other modules included in the apparatus 1500, illustratively including at least one of a transmit module/receive module 1501 and a timing module 15003.
  • the determining module 15002 may be configured to determine the first UE specific information, the second UE specific information, the first request, the feedback, and the second UE specific information sent by the sending module/receiving module 1501. At least one of the information carried by the uplink channel in the second request, the third request, and the access procedure.
  • the correspondence between the information that may be determined by the determining module 15002 and the foregoing methods is detailed in the foregoing methods, and details are not described herein again.
  • the device 1500 may further include a timing module 15003.
  • the timing module 15003 may The function of the third timer is used when the device 1500 is used to implement or is used to support the UE to implement the third bandwidth resource configuration method in FIG. 8;
  • the timing module 15003 may be used to implement the function of the fourth timer.
  • the timing module 15003 may be coupled to other modules included in the device 1500.
  • the other modules include at least one of a transmitting module/receiving module 15001 and a determining module 1502.
  • FIG. 16 is a schematic structural diagram of a device 1600 according to an embodiment of the present application.
  • the device 1600 may be a gNB. It may also be a device applied to the gNB. When the device is applied to the gNB, it can support the gNB to implement the function of the gNB described in the above method.
  • apparatus 1600 includes a processing system 1610 for implementing or for supporting gNBs to implement the functions of the gNBs described in the above methods.
  • Processing system 1610 can be a circuit that can be implemented by a chip system.
  • the processing system 1610 includes at least one processor 1613 that can be used to implement or to support the gNB to implement the functions of the gNBs described in the above methods.
  • Processor 1613 may also be used to manage other devices included in processing system 1610 when other devices are included in processing system 1610.
  • the other devices may be memory 1615, timing system 1611, bus 1612, and described below. At least one of the bus interfaces 1614.
  • the processor may be a central processing unit (CPU), a general-purpose processor network processor (NP processor), a digital signal processing (DSP), and a micro processor.
  • CPU central processing unit
  • NP processor general-purpose processor network processor
  • DSP digital signal processing
  • micro processor a microcontroller
  • PLD programmable logic device
  • Processing system 1610 may also include a memory 1615 for storing program instructions or program instructions and data.
  • the memory includes a volatile memory, such as a random-access memory (RAM); the memory may also include a non-volatile memory, such as a fast A flash memory, a hard disk drive (HDD) or a solid-state drive (SSD); the memory may further include a combination of the above types of memories.
  • RAM random-access memory
  • HDD hard disk drive
  • SSD solid-state drive
  • Processor 1613 may operate in conjunction with memory 1615.
  • Processor 1613 may execute program instructions stored in memory 1615.
  • the gNB can be implemented or supported to implement at least one of the functions of the gNB in the above method.
  • Processor 1613 may also read data stored in memory 1615.
  • Memory 1615 may also store data obtained by processor 1613 when executing program instructions.
  • the processor 1613 may include an information generating and transmitting circuit 16131.
  • the information generating and transmitting circuit 16131 may be used to generate and transmit first UE specific information when the apparatus 1600 is used to implement or to support the gNB to implement the above method, and may also be used for Generating and transmitting second UE specific information, and may also be used to generate and transmit frequency resource location information of the UE candidate working bandwidth resource, and may also be used to generate and transmit the configuration of the first period and the N2 first time in the first period.
  • the configuration of the unit may also be used to generate and send the first response, and may also be used to generate and send the second response, and may also be used to generate and transmit information carried by the downlink channel in the access process.
  • the memory 1615 may also include an information generating and transmitting module 16151 that may also operate in conjunction with the information generating and transmitting module 16151 when the information generating and transmitting circuit 16131 implements the above-described generating and transmitting functions.
  • the processor 1613 may also include information receiving and processing circuitry 16132, which may be used to receive and process the first UE specific information when the apparatus 1600 is used to implement or to support the gNB to implement the above method, and may also be used Receiving and processing the second UE specific information, may also be used to receive and process the first request, may also be used to receive and process feedback, may also be used to receive and process the second request, and may also be used to receive and process the third request. The request may also be used to receive and process information carried by the uplink channel during the access procedure.
  • the correspondence between the information that may be received and processed by the information receiving and processing circuit 16132 and the foregoing methods is detailed in the foregoing methods, and details are not described herein again.
  • the memory 1615 may also include an information receiving and processing module 16152 that may also operate in conjunction with the information receiving and processing module 16152 when the information receiving and processing circuitry 16132 implements the receiving and processing functions described above.
  • the processing system 1610 may also include a timing system 1611.
  • the timing system 1611 may be used to implement the functions of the second timer.
  • Processing system 1610 may also include a bus interface 1614 for providing an interface between bus 1612 and other devices.
  • Apparatus 1600 may also include a transceiver 1630 for communicating over a transmission medium with other communication devices such that other devices in device 1600 can communicate with other communication devices.
  • the other device may be the processing system 1610.
  • other devices in device 1600 may utilize transceiver 1630 to communicate with other communication devices to receive and/or transmit corresponding information. It can also be described that other devices in device 1600 may receive corresponding information, wherein the corresponding information is received by transceiver 1630 over a transmission medium, which may be via bus interface 1614 or through bus interface 1614 and bus 1612.
  • Interacting between the transceiver 1630 and other devices in the device 1600; and/or other devices in the device 1600 may transmit corresponding information, wherein the corresponding information is transmitted by the transceiver 1630 over the transmission medium, the corresponding The information can be exchanged between the transceiver 1630 and other devices in the device 1600 via the bus interface 1614 or through the bus interface 1614 and bus 1612.
  • the device 1600 may also include a user interface 1620, which is an interface between the user and the device 1600, possibly for user interaction with the device 1600.
  • user interface 1620 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • processing system 1610 includes a processor 1613, and may also include at least one of memory 1615, timing system 1611, bus 1612, and bus interface 1614 for implementing the functions of the gNBs described in the above methods.
  • processing system 1610 is also within the scope of this application.
  • FIG. 17 is a schematic structural diagram of an apparatus 1700 according to an embodiment of the present application.
  • the device 1700 may be a UE. It may also be a device that is applied to the UE. When the device is applied to the UE, the UE can support the UE to implement the functions of the UE described in the foregoing method.
  • apparatus 1700 includes a processing system 1710 for implementing or for supporting a UE to implement the functions of the UE described in the above methods.
  • Processing system 1710 can be a circuit that can be implemented by a chip system.
  • the processing system 1710 can include at least one processor 1713 that can be used to implement or to support the UE in implementing the functions of the UE described in the above methods.
  • Processor 1713 may also be used to manage other devices included in processing system 1710 when other devices are included in processing system 1710, which may be, for example, memory 1715, timing system 1711, bus 1712, and described below. At least one of the bus interfaces 1714.
  • Processing system 1710 may also include a memory 1715 for storing program instructions or program instructions and data.
  • the processor 1713 may operate in conjunction with the memory 1715.
  • the processor 1713 may execute program instructions stored in the memory 1715.
  • the processor 1713 executes the program instructions stored in the memory 1715, the UE may be implemented or supported to implement at least one of the functions of the UE in the above method.
  • the processor 1713 may also read the data stored in the memory 1715.
  • the memory 1715 may also store data obtained by the processor 1713 when executing program instructions.
  • the processor 1713 may include an information generating and transmitting circuit 17131.
  • the information generating and transmitting circuit 17131 may be used to generate and transmit the first UE specific information, and may also be used when the device 1700 is used to implement or to support the UE to implement the above method.
  • Used for generating and transmitting second UE specific information may also be used to generate and send a first request, may also be used to generate and send feedback, may also be used to generate and send a second request, and may also be used to generate and send a second request.
  • the three requests may also be used to generate and transmit information carried by the uplink channel during the access process.
  • the memory 1715 may also include an information generating and transmitting module 17151 that may also operate in conjunction with the information generating and transmitting module 17151 when the information generating and transmitting circuit 17131 implements the above-described generating and transmitting functions.
  • the processor 1713 may also include information receiving and processing circuitry 17132 that may be used to receive and process the first UE specific information when the apparatus 1700 is used to implement or to support the UE in implementing the methods described above, and may also The second UE specific information is received and processed, and may also be used to receive and process the first response, and may also be used to receive and process the second response, and may also be used to receive and process information carried by the downlink channel transmitted during the access process. .
  • the corresponding relationship between the information that may be received and processed by the information receiving and processing circuit 17132 and the foregoing methods is embodied in the foregoing methods, and details are not described herein again.
  • the memory 1715 may also include an information receiving and processing module 17152 that may also operate in conjunction with the information receiving and processing module 17152 when the information receiving and processing circuitry 17132 implements the receiving and processing functions described above.
  • the processing system 1710 may further include a timing system 1711.
  • the timing system 1711 may be used to implement the function of the first timer;
  • the timing system 1711 may be used to implement the function of the third timer; when the device 1700 is used to implement or support the UE implementation.
  • the timing system 1711 may be used to implement the function of the fourth timer.
  • Processing system 1710 may also include a bus interface 1714 for providing an interface between bus 1712 and other devices.
  • the device 1700 may also include a transceiver 1730 for communicating over a transmission medium with other communication devices such that other devices in the device 1700 can communicate with other communication devices.
  • the other device may be the processing system 1710.
  • other devices in device 1700 may utilize transceiver 1730 to communicate with other communication devices to receive and/or transmit corresponding information. It can also be described that other devices in device 1700 may receive corresponding information, wherein the corresponding information is received by transceiver 1730 via a transmission medium, which may be via bus interface 1714 or through bus interface 1714 and bus 1712.
  • the transceiver 1730 and other devices in the device 1700; and/or other devices in the device 1700 may transmit corresponding information, wherein the corresponding information is transmitted by the transceiver 1730 over the transmission medium, the corresponding The information can be exchanged between the transceiver 1730 and other devices in the device 1700 via the bus interface 1714 or through the bus interface 1714 and bus 1712.
  • the transceiver may also be a transmitter/receiver or a transceiver.
  • the device 1700 may also include a user interface 1720, which is an interface between the user and the device 1700, possibly for user interaction with the device 1700.
  • user interface 1720 may be at least one of a keyboard, a mouse, a display, a speaker, a microphone, and a joystick.
  • the processing system 1710 includes a processor 1713, and may further include at least one of a memory 1715, a timing system 1711, a bus 1712, and a bus interface 1714 for implementing the functions of the UE described in the above method.
  • Processing system 1710 is also within the scope of this application.
  • the module division of the device is a logical function division, and the actual implementation may have another division manner.
  • each functional module of the device may be integrated into one module, or each functional module may exist separately, or two or more functional modules may be integrated into one module.
  • the methods described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, the processes or functions described in accordance with embodiments of the present invention are generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, a network device, a user device, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transmission to another website site, computer, server or data center via wired (eg coaxial cable, fiber optic, digital subscriber line (DSL)) or wireless (eg infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (DVD)), or a semiconductor medium (for example, an SSD) or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (DVD)
  • a semiconductor medium for example, an SSD

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供了一种带宽资源配置方法、装置和系统。其中,该方法包括:在UE源工作带宽资源,基站和UE进行该UE的第一UE特定信息的传输;在该UE的UE校准带宽资源,基站向该UE发送该UE的UE目标工作带宽资源的信息,其中,UE目标工作带宽资源用于基站与该UE进行该UE的第二UE特定信息的传输;其中,UE源工作带宽资源和UE校准带宽资源不完全相同。通过本申请提供的带宽资源配置方法,在基站和UE对该UE的工作带宽资源理解不一致时可以进行校准,校准后可以使基站和UE对该UE的工作带宽资源理解一致,从而可以使基站和UE进行正常的通信。

Description

带宽资源配置方法、装置和系统
本申请要求于2017年06月16日提交中国专利局、申请号为201710459800.3、申请名称为“带宽资源配置方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及带宽资源配置方法、装置和系统。
背景技术
在无线通信系统中,当系统带宽大于UE支持的带宽时,基站可能为该UE配置带宽资源,基站和该UE可以将该配置的带宽资源作为该UE的工作带宽资源,用于基站和该UE进行该UE的UE特定信息的传输。其中,带宽资源可以为系统资源中的部分资源,带宽资源的带宽可以小于系统带宽。当基站和UE对该UE的工作带宽资源的理解不一致时,基站和该UE间的通信可能无法正常进行。
发明内容
本申请描述了带宽资源配置方法、装置和系统,以及接入方法、装置和系统。
网络设备(例如基站)在第一带宽部分向用户设备UE发送下行传输;在第三带宽部分向所述用户设备发送第二带宽部分的信息。所述UE从所述网络设备接收第二带宽部分的信息。所述第二带宽部分为所述用户设备将要切换至的带宽部分。其中所述第三带宽部分为接入带宽部分,或者所述第三带宽部分为所述用户设备的候选工作带宽部分中的一个或者多个带宽部分。通过该设计可以使得网络设备和UE对工作带宽资源的理解一致。UE在执行带宽部分切换时,可以根据网络设备指示的第二带宽部分的信息,切换至第二带宽部分。从而保障UE与网络设备的正常通信。
第一方面,本申请提供了一种带宽资源配置方法,包括:网络设备在UE源工作带宽资源,与所述UE进行所述UE的第一UE特定信息的传输;在所述UE的UE校准带宽资源,向所述UE发送UE目标工作带宽资源的信息;其中,所述UE目标工作带宽资源用于与所述UE进行所述UE的第二UE特定信息的传输;其中,所述UE源工作带宽资源包括的部分频率资源或全部频率资源不包括在所述UE校准带宽资源中,或者所述UE校准带宽资源包括的部分频率资源或全部频率资源不包括在所述UE源工作带宽资源中。所述UE目标工作带宽资源的信息由物理下行控制信道携带。在所述UE源工作带宽资源,网络设备还可以向所述UE发送所述UE目标工作带宽资源的信息。通过第一方面提供的方法,UE可以在校准带宽资源接收gNB为UE配置的UE目标工作带宽资源的信息,可以使UE对UE工作带宽资源的配置进行校准。因此,可以减少出现gNB和UE对UE的工作带宽资源理解不一致的概率,或者当gNB和UE对UE的工作带宽资源理解不一致时可以进行相应的校准,从而可以使gNB和UE对UE的工作带宽资源理解一致。
第一个设计,根据第一方面,还包括:网络设备向所述UE发送UE候选工作带 宽资源的频率资源位置信息;所述UE目标工作带宽资源是所述UE候选工作带宽资源的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述UE候选工作带宽资源中的至少一个带宽资源;或者,所述UE目标工作带宽资源是包括所述UE候选工作带宽资源和所述UE校准带宽资源的集合的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述集合中的至少一个带宽资源。通过该设计,可以通过较少的信息位为UE配置UE目标工作带宽资源,指示UE目标工作带宽资源为多个带宽资源中的至少一个带宽资源。
第二个设计中,根据第一方面,网络设备向UE发送的UE目标工作带宽资源的信息包括所述UE目标工作带宽资源的频率资源位置信息。通过该设计,可以灵活地将系统资源中的资源配置为UE目标工作带宽资源。为UE灵活地配置资源,用于进行gNB和UE间的通信,可以在系统资源中为UE配置信道质量较好的资源,提高gNB和UE间的数据传输速率;还可以灵活地为UE配置参数,用于满足UE的业务的服务质量(quality of service,简称QoS)要求;还可以提供前向兼容的通信系统。
在第三个设计中,根据第一方面和第一方面上述各设计中任何一个,在第一周期,网络设备在UE的UE校准带宽资源,向所述UE发送UE目标工作带宽资源的信息,其中,所述第一周期包括整数个第一时间单元。
在第四个设计中,根据第一方面和第一方面第一个设计至第二个设计中任何一个,在所述UE的UE校准带宽资源,网络设备向所述UE发送UE目标工作带宽资源的信息之前,接收所述UE发送的第一请求,所述第一请求用于请求向所述UE发送所述UE目标工作带宽资源的信息。
第二方面,本申请提供了一种带宽资源配置方法,包括:在UE源工作带宽资源,UE与网络设备进行所述UE的第一UE特定信息的传输;在所述UE的UE校准带宽资源,接收所述网络设备发送的UE目标工作带宽资源的信息;其中,所述UE目标工作带宽资源用于与所述网络设备进行所述UE的第二UE特定信息的传输;其中,所述UE源工作带宽资源包括的部分频率资源或全部频率资源不包括在所述UE校准带宽资源中,或者所述UE校准带宽资源包括的部分频率资源或全部频率资源不包括在所述UE源工作带宽资源中。所述UE目标工作带宽资源的信息由物理下行控制信道携带。在所述UE源工作带宽资源,UE还可以接收所述网络设备发送的所述UE目标工作带宽资源的信息。
第一个设计,根据第二方面,还包括:接收所述网络设备发送的UE候选工作带宽资源的频率资源位置信息;所述UE目标工作带宽资源是所述UE候选工作带宽资源的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述UE候选工作带宽资源中的至少一个带宽资源;或者,所述UE目标工作带宽资源是包括所述UE候选工作带宽资源和所述UE校准带宽资源的集合的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述集合中的至少一个带宽资源。
第二个设计,根据第二方面,所述UE目标工作带宽资源的信息包括所述UE目标工作带宽资源的频率资源位置信息。
第三个设计,根据第二方面和第二方面上述各设计中任何一个,在第一周期,在 所述UE的UE校准带宽资源,UE接收所述网络设备发送的UE目标工作带宽资源的信息,其中,所述第一周期包括整数个第一时间单元。在所述UE源工作带宽资源,如果接收到所述网络设备发送的所述UE的第一UE特定信息,启动或重新启动第一定时器;所述第一定时器期满之后,在所述UE的UE校准带宽资源,接收所述网络设备发送的UE目标工作带宽资源的信息。通过该设计,如果UE在接收UE目标工作带宽资源的信息时,需要从UE源工作带宽资源切换至UE校准带宽资源,和/或需要从UE校准带宽资源切换至UE目标工作带宽资源,通过该方法可以减少UE在不同带宽资源之间的切换,从而可以减少引入切换时间,为UE节省时域空口资源,提高数据传输速率。
第四个设计,根据第二方面和第二方面第一个设计至第二个设计中任何一个,在所述UE的UE校准带宽资源,接收所述网络设备发送的UE目标工作带宽资源的信息之前,UE向所述网络设备发送第一请求,所述第一请求用于请求所述网络设备向所述UE发送所述UE目标工作带宽资源的信息。通过该设计,如果UE在接收UE目标工作带宽资源的信息时,需要从UE源工作带宽资源切换至UE校准带宽资源,和/或需要从UE校准带宽资源切换至UE目标工作带宽资源,通过该方法可以减少UE在不同带宽资源之间的切换,从而可以减少引入切换时间,为UE节省时域空口资源,提高数据传输速率。
第五个设计,根据第二方面和第二方面上述各设计中任何一个,在所述UE的UE校准带宽资源,UE接收所述网络设备发送的UE目标工作带宽资源的信息之前,在第一保护周期,从所述UE源工作带宽资源切换至所述UE校准带宽资源;和/或,在所述UE的UE校准带宽资源,UE接收所述网络设备发送的UE目标工作带宽资源的信息之后,在第二保护周期,从所述UE校准带宽资源切换至所述UE目标工作带宽资源。
第三方面,本申请提供了一种带宽资源配置方法,包括:在UE源工作带宽资源,网络设备与所述UE进行所述UE的第一UE特定信息的传输;在所述UE源工作带宽资源,网络设备向所述UE发送UE目标工作带宽资源的信息,将所述UE目标工作带宽资源作为所述UE的工作带宽资源,其中,所述UE目标工作带宽资源用于与所述UE进行所述UE的第二UE特定信息的传输;网络设备启动第二定时器;如果第二定时器是运行状态,如果网络设备接收到所述UE的反馈,停止第二定时器,其中,所述反馈为对应于携带所述UE目标工作带宽资源的信息的信道的反馈;在第二定时器期满后,网络设备将所述UE源工作带宽资源作为所述UE的工作带宽资源。所述UE目标工作带宽资源的信息由物理下行控制信道携带。该设计中,通过网络设备的回退机制,可以保证UE和网络设备对UE的工作带宽资源的理解一致。如果网络设备没有收到反馈,网络设备认为UE可能没有收到或者没有正确接收到UE目标工作带宽资源的信息,认为UE可能没有将UE目标工作带宽资源作为UE的工作带宽资源,认为UE可能将UE源工作带宽资源作为UE的工作带宽资源,因此,网络设备可以将UE源工作带宽资源作为UE的工作带宽资源。
第一个设计,根据第三方面,还包括:网络设备向所述UE发送UE候选工作带宽资源的频率资源位置信息;所述UE目标工作带宽资源是所述UE候选工作带宽资 源的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述UE候选工作带宽资源中的至少一个带宽资源;或者,所述UE目标工作带宽资源是包括所述UE候选工作带宽资源和所述UE源工作带宽资源的集合的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述集合中的至少一个带宽资源。
第二个设计,根据第三方面,所述UE目标工作带宽资源的信息包括所述UE目标工作带宽资源的频率资源位置信息。
第四方面,本申请提供了一种带宽资源配置方法,包括:在UE源工作带宽资源,UE与网络设备进行所述UE的第一UE特定信息的传输;在所述UE源工作带宽资源,UE接收所述网络设备发送的UE目标工作带宽资源的信息,将所述UE目标工作带宽资源作为所述UE的工作带宽资源,其中,所述UE目标工作带宽资源用于与所述网络设备进行所述UE的第二UE特定信息的传输;UE向所述网络设备发送反馈,其中,所述反馈为对应于携带所述UE目标工作带宽资源的信息的信道的反馈;UE启动第三定时器;在所述UE目标工作带宽资源,如果UE接收到所述网络设备发送的所述第二UE特定信息,停止第三定时器;第三定时器期满后,UE将所述UE源工作带宽资作为所述UE的工作带宽资源。该设计中,直到第三定时器期满,如果UE没有接收到第二UE特定信息,UE认为网络设备可能未接收或者未正确接收到反馈,UE认为网络设备可能将UE源带宽资源作为UE的工作带宽资源,因此,UE可以将UE源带宽资源作为UE的工作带宽资源,从而可能使网络设备和UE对UE的工作带宽资源理解一致。
第一个设计,根据第四方面,还包括:UE接收所述网络设备发送的UE候选工作带宽资源的频率资源位置信息;所述UE目标工作带宽资源是所述UE候选工作带宽资源的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述UE候选工作带宽资源中的至少一个带宽资源;或者,所述UE目标工作带宽资源是包括所述UE候选工作带宽资源和所述UE源工作带宽资源的集合的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述集合中的至少一个带宽资源。
第二个设计,根据第四方面,所述UE目标工作带宽资源的信息包括所述UE目标工作带宽资源的频率资源位置信息。
第五方面,本申请提供了一种带宽资源配置方法,包括:在UE源工作带宽资源,UE与网络设备进行所述UE的第一UE特定信息的传输;在所述UE源工作带宽资源,UE接收所述网络设备发送的UE目标工作带宽资源的信息,将所述UE目标工作带宽资源作为所述UE的工作带宽资源,其中,所述UE目标工作带宽资源用于与所述网络设备进行所述UE的第二UE特定信息的传输;UE向所述网络设备发送反馈,其中,所述反馈为对应于携带所述UE目标工作带宽资源的信息的信道的反馈;UE向所述网络设备发送第二请求;在所述UE目标工作带宽资源,如果UE没有接收到所述网络设备发送第一响应,UE将所述UE源工作带宽资作为所述UE的工作带宽资源,其中,所述第一响应为对应于所述第二请求的响应。所述UE目标工作带宽资源的信息由物理下行控制信道携带。该设计中,如果UE没有接收到第一响应,UE认为gNB可能 未接收或者未正确接收到反馈,UE认为gNB可能将UE源带宽资源作为UE的工作带宽资源,因此,UE可以将UE源带宽资源作为UE的工作带宽资源,从而可能使gNB和UE对UE的工作带宽资源理解一致。
第一个设计,根据第五方面,还包括UE接收所述网络设备发送的UE候选工作带宽资源的频率资源位置信息;所述UE目标工作带宽资源是所述UE候选工作带宽资源的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述UE候选工作带宽资源中的至少一个带宽资源;或者,所述UE目标工作带宽资源是包括所述UE候选工作带宽资源和所述UE源工作带宽资源的集合的子集,所述UE目标工作带宽资源的信息指示了所述UE目标工作带宽资源为所述集合中的至少一个带宽资源。
第二个设计,根据第五方面,所述UE目标工作带宽资源的信息包括所述UE目标工作带宽资源的频率资源位置信息。
第六方面,本申请提供了一种接入方法,包括:在UE的工作带宽资源,如果UE接收到网络设备发送的第三UE特定信息,UE启动或者重新启动第四定时器;第四定时器期满后,UE接入所述网络设备。该方法中,基于定时器,在UE的工作带宽资源,如果第四定时器期满,UE认为其和网络设备对UE的工作带宽资源的理解可能不一致,UE接入网络设备,可以在接入后和网络设备实现对UE的工作带宽资源的理解一致。
第一个设计,根据第六方面,还包括:在UE源工作带宽资源,UE与网络设备进行所述UE的第一UE特定信息的传输;在所述UE源工作带宽资源,UE接收所述网络设备发送的UE目标工作带宽资源的信息,将所述UE目标工作带宽资源作为所述UE的工作带宽资源,启动所述第四定时器,其中,所述UE目标工作带宽资源用于与所述网络设备进行所述UE的第三UE特定信息的传输。该方法中,当为UE重配置工作带宽资源后,在UE的工作带宽资源,如果第四定时器期满,UE认为其和网络设备对UE的工作带宽资源的理解可能不一致,UE接入网络设备,可以在接入后和网络设备实现对UE的工作带宽资源的理解一致。
第七方面,本申请提供了一种接入方法,包括:UE向网络设备发送第三请求;在UE的工作带宽资源,如果UE没有接收到网络设备发送的第二响应,接入所述网络设备,其中,所述第二响应对应于所述第三请求。该方法中,基于请求反馈机制,在UE工作带宽资源,如果没有收到第二响应,UE认为其和网络设备对UE的工作带宽资源的理解可能不一致,UE接入网络设备,可以在接入后和网络设备实现对UE的工作带宽资源的理解一致。
第八方面,本申请提供了一种设备,该设备能够实现上述方法中网络设备的功能。该功能可以通过硬件、软件或硬件加软件的形式实现。该硬件或软件包括一个或多个与上述功能相对应的模块。示例性地,该设备包括:处理器;存储器,所述存储器和所述处理器耦合,所述处理器执行所述存储器存储的程序指令;收发器,所述收发器和所述处理器耦合。其中,所述处理器利用所述收发器:在UE源工作带宽资源,与所述UE进行所述UE的第一UE特定信息的传输;在所述UE的UE校准带宽资源,向所述UE发送UE目标工作带宽资源的信息,其中,所述UE目标工作带宽资源用于与所述UE进行所述UE的第二UE特定信息的传输;其中,所述UE源工作带宽资源 包括的部分频率资源或全部频率资源不包括在所述UE校准带宽资源中,或者所述UE校准带宽资源包括的部分频率资源或全部频率资源不包括在所述UE源工作带宽资源中。
第九方面,本申请提供了一种设备,该设备能够实现上述方法中UE的功能。该功能可以通过硬件、软件或硬件加软件的形式实现。该硬件或软件包括一个或多个与上述功能相对应的模块。示例性地,该设备包括:处理器;存储器,所述存储器和所述处理器耦合,所述处理器执行所述存储器存储的程序指令;收发器,所述收发器和所述处理器耦合。其中,所述处理器利用所述收发器:在UE源工作带宽资源,与网络设备进行所述UE的第一UE特定信息的传输;在所述UE的UE校准带宽资源,接收所述网络设备发送的UE目标工作带宽资源的信息;其中,所述UE目标工作带宽资源用于与所述网络设备进行所述UE的第二UE特定信息的传输,其中:所述UE源工作带宽资源包括的部分频率资源或全部频率资源不包括在所述UE校准带宽资源中,或者所述UE校准带宽资源包括的部分频率资源或全部频率资源不包括在所述UE源工作带宽资源中。
第十方面,本申请提供了一种系统,包括上述第八方面的设备和第九方面的设备。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于支持网络设备实现上述方法中网络设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请提供了一种芯片系统,该芯片系统处理器,还可以包括存储器,用于支持UE实现上述方法中UE的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十三方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、第一方面的各设计、第三方面和第三方面的各设计中至少一个描述的方法。
第十四方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面、第二方面的各设计、第四方面、第四方面的各设计、第五方面、第五方面的各设计、第六方面和第七方面中至少一个描述的方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对本申请实施例中所需要使用的附图进行说明。
图1是本申请实施例中的频率资源的示意图;
图2是本申请实施例提供的第一种带宽资源配置方法的示意图;
图3是本申请实施例提供的系统带宽可能的结构示意图;
图4是本申请实施例提供的系统带宽包括的子带的可能的结构示意图;
图5是本申请实施例提供的一个UE候选工作带宽资源示意图;
图6是本申请实施例提供的第二种带宽资源配置方法的示意图;
图7是本申请实施例提供的UE在UE校准带宽资源接收gNB发送的UE目标工作带宽资源的信息的一个示意图;
图8是本申请实施例提供的第三种带宽资源配置方法的示意图;
图9是本申请实施例提供的第四种带宽资源配置方法的示意图;
图10是本申请实施例提供的第五种带宽资源配置方法的示意图;
图11是本申请实施例提供的第六种带宽资源配置方法的示意图;
图12是本申请实施例提供的第一种接入方法的示意图;
图13是本申请实施例提供的第二种接入方法的示意图;
图14是本申请实施例提供的一种装置的结构示意图;
图15是本申请实施例提供的另一种装置的结构示意图;
图16是本申请实施例提供的又一种装置的结构示意图;
图17是本申请实施例提供的再一种装置的结构示意图。
具体实施方式
本申请实施例描述的网络架构和业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例提供的技术方案可能应用于可以分配频率资源的无线通信系统,例如第五代移动通信技术(the fifth generation mobile communication technology,简称5G)系统。本申请实施例提供的技术方案还可能应用于其它基于正交频分复用(orthogonal frequency division multiplexing,简称OFDM)的网络,例如长期演进(long term evolution,简称LTE)系统。本申请实施例中,术语“系统”和“网络”的范围类似。
在无线通信系统中,包括通信设备,通信设备包括网络设备和用户设备(user equipment,简称UE),通信设备间可以利用空口资源进行无线通信。其中,网络设备还可以称为网络侧设备。通信设备间的无线通信包括:网络设备和UE间的无线通信,网络设备和网络设备间的无线通信。通信设备间利用空口资源进行无线通信时,对空口资源进行管理和/或分配的通信设备还可以称为调度实体,被调度的通信设备还可以称为从属实体。示例性地,当网络设备和UE进行无线通信时,网络设备还可以称为调度实体,UE还可以称为从属实体。本申请实施例可以以网络设备和UE间的无线通信为例,对本申请实施例提供的技术方案进行描述,其中,该技术方案可用于进行调度实体和从属实体间的无线通信。在本申请实施例中,术语“无线通信”还可以简称为“通信”,术语“通信”还可以描述为“数据传输”。
本申请实施例涉及到的UE包括具有无线通信功能的手持式设备、车载设备、可穿戴设备或计算设备。本申请实施例中,UE还可以称为终端(terminal)或终端设备(terminal equipment,简称TE)等,本申请不做限定。
本申请实施例涉及到的网络设备包括基站(base station,简称BS),该网络设备可能为一种部署在无线接入网中可以和UE进行无线通信的设备。其中,基站可能有多种形式,比如宏基站、微基站、中继站和接入点等。当宏基站和微基站通过无线回传的方式进行无线通信时,宏基站还可以称为调度实体,微基站还可以称为从属实体。示例性地,本申请实施例涉及到的基站可以是5G系统中的基站,其中,5G系统中的基站还可以称为发送接收点(transmission Reception Point,简称TRP)或gNB(generation Node B,简称gNB);本申请实施例涉及到的基站还可以是LTE中的演进型基站(evolved Node B,简称eNB或e-NodeB)。在本申请实施例提供的技术方案中,可 以以基站是5G系统中的gNB为例,以gNB和UE间的无线通信为例,描述本申请实施例提供的技术方案,该技术方案可用于进行调度实体和从属实体间的无线通信。本领域技术人员可以不付出创造性劳动,将本申请实施例提供的技术方案用于进行其它调度实体和从属实体间的无线通信。
在无线通信系统中,gNB和UE可以利用空口资源进行无线通信。空口资源可以包括频率资源,频率资源可以位于设置的频率范围。其中,频率范围还可以称为频带(band)。在频域,频率资源的中心点可以称为中心频点,频域资源的宽度可以称为带宽(bandwidth,简称BW)。示例性地,图1所示为频率资源可能的结构示意图。如图1中所示,频率资源可以为频带内的一段资源,频率资源的带宽为W,中心频点的频率为F,频率资源的边界点的频率分别为F-W/2和F+W/2,还可以描述为,频率资源中最高频点的频率为F+W/2,频率资源中最低频点的频率为F-W/2。
gNB和UE利用系统频率资源进行无线通信时,gNB管理系统频率资源,从系统频率资源中为UE分配频率资源,使得gNB和UE可以利用该分配的频率资源进行通信。其中,系统频率资源是网络设备可以管理和分配的频率资源,在本申请实施例中,系统频率资源还可以简称为系统资源。在频域,系统频率资源的宽度可以称为系统频率资源的带宽,还可以称为系统带宽或传输带宽。在通信系统中,随着UE业务量的增加,尤其是随着UE数量的增加,系统业务量显著增加,因此,现有通信系统中提出了系统带宽为大带宽的设计,用于在系统中提供较高的数据传输速率。在系统带宽为大带宽的系统中,考虑到UE的成本以及UE的业务量,UE支持的带宽可能远小于系统带宽。其中,UE支持的带宽还可以称为UE的带宽能力。UE支持的带宽越大,UE的处理能力越强,UE的数据传输速率可能越高,UE的设计成本可能越高。示例性地,在5G系统中,系统带宽最大可能为400MHz,UE的带宽能力可能为20MHz、50MHz或100MHz等。在无线通信系统中,不同UE的带宽能力可以相同也可以不同,本申请实施例不做限制。
当系统带宽为大带宽时,gNB为UE分配频率资源的一种方法为:首先,gNB通过信令动态地为UE配置该UE的工作带宽资源。其中,为UE配置的工作带宽资源包括于系统频率资源中,其带宽可以小于等于UE支持的带宽。然后,gNB从UE的工作带宽资源中为UE分配频率资源,可以使gNB和UE在该分配的频率资源进行无线通信。
本申请实施例中,带宽资源包括于系统频率资源中,可以是系统频率资源中连续的或者不连续的部分或者全部资源。带宽资源还可以称为带宽部分、频率资源、频率资源部分、部分频率资源或者其它名称,本申请不做限制。当带宽资源为系统频率资源中的一段连续资源时,带宽资源还可以称为子带、窄带或者其它名称,本申请不做限制。在基于OFDM的系统中,可以为一个带宽资源配置相应的参数,该参数包括子载波间隔和循环前缀(cyclic prefix,简称CP)中至少一个。第三代合作伙伴计划(third generation partnership project,简称3GPP)在研究和制定无线通信系统的标准的过程中,该参数的英文名称还可以称为numerology。不同带宽资源的参数的值可以相同,也可以不同,本申请不作限制。
在本申请实施例中,UE的工作带宽资源还可以描述为用于gNB和UE传输UE 特定信息的带宽资源。其中,UE特定信息包括UE特定下行控制信息(downlink control information,简称DCI)、UE特定上行控制信息(uplink control information,简称UCI)、承载于数据信道的UE特定信息和UE特定参考信号中至少一个。其中,gNB和UE传输UE特定信息包括:gNB向UE发送UE特定信息、gNB接收UE发送的UE特定信息、UE接收gNB发送的UE特定信息、和UE向gNB发送UE特定信息中至少一个。例如,UE可以在特定搜索空间从gNB接收PDCCH,接收该PDCCH中携带的DCI。进一步地,UE的工作带宽资源还可以称为工作带宽资源、UE工作带宽资源、带宽资源或者其它名称,本申请不做限制。进一步地,不同UE的工作带宽资源可以相同,也可以不相同,本申请不做限制。示例性地,多个UE可以共享相同的工作带宽资源,也可以为每个UE独立配置工作带宽资源。
如果gNB通过信令动态地为UE配置该UE的工作带宽资源,可能会出现gNB和UE对该UE的工作带宽资源的理解不一致,由此导致gNB接收不到UE发送的数据,UE也接收不到gNB发送的数据,即gNB和UE无法正常地进行数据传输。导致出现gNB和UE对该UE的工作带宽资源理解不一致的场景有如下可能:示例性地,如果gNB通过信令动态地为UE重配置该UE的工作带宽资源,且无需该UE向gNB发送针对该信令的反馈,UE可能会漏检或错检该信令,此时,gNB可能认为该UE的工作带宽资源为UE目标工作带宽资源,UE可能认为该UE的工作带宽资源为UE源工作带宽资源,即gNB和UE可能对该UE的工作带宽资源理解不一致。再示例性地,如果gNB通过信令动态地为UE重配置该UE的工作带宽资源,且UE向gNB发送针对该信令的反馈,gNB可能会漏检或错检该反馈,此时,gNB可能认为该UE的工作带宽资源为UE源工作带宽资源,UE可能认为该UE的工作带宽资源为UE目标工作带宽资源,即gNB和UE可能对该UE的工作带宽资源理解不一致。
本申请实施例中,当gNB为UE重配置该UE的工作带宽资源时,UE源工作带宽资源是重配置前该UE的工作带宽资源,UE源工作带宽资源还可以称为源工作带宽资源、UE的源工作带宽资源、源带宽资源、第一带宽资源或者其它名称,本申请不做限制。进一步地,UE源工作带宽资源可以为一个或者多个带宽资源,还可以理解为,gNB可以为UE配置一个或者多个该UE的工作带宽资源。其中,术语“源”在英文中可能翻译为source。
本申请实施例中,当gNB为UE重配置该UE的工作带宽资源时,UE目标工作带宽资源是gNB为UE重配置的该UE的工作带宽资源。工作带宽资源的重配置生效后,gNB和UE可以将UE目标工作带宽资源作为该UE的工作带宽资源。UE目标工作带宽资源还可以称为目标工作带宽资源、UE的目标工作带宽资源、目标带宽资源、第二带宽资源或者其它名称,本申请不做限制。进一步地,UE目标工作带宽资源可以为一个或者多个带宽资源,还可以理解为,在重配置过程中gNB可以为UE配置一个或者多个该UE的工作带宽资源。其中,术语“目标”在英文中可能翻译为target。
为了解决上述gNB和UE对该UE的UE工作带宽资源的理解不一致的问题,本申请实施例提供了多种技术方案,每种技术方案均涉及相应的方法、装置和系统,以下分别进行举例说明。本申请中装置有时也可以称为通信装置。
第一种技术方案:
在本申请实施例提供的第一种技术方案中,引入了UE校准带宽资源,用于gNB向UE发送UE目标工作带宽资源的信息。具体地:在UE源工作带宽资源,gNB与UE进行UE的第一UE特定信息的传输。在UE的UE校准带宽资源,gNB向UE发送UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于gNB与UE进行UE的第二UE特定信息的传输。其中,UE源工作带宽资源和UE校准带宽资源不完全相同。通过本申请实施例提供的第一种技术方案,UE可以在校准带宽资源接收gNB为UE配置的UE目标工作带宽资源的信息,可以使UE对该UE的工作带宽资源的配置进行校准。因此,可以减少出现gNB和UE对该UE的工作带宽资源理解不一致的概率;或者,当gNB和UE对该UE的工作带宽资源理解不一致时可以进行相应的校准,可以使gNB和UE对UE的工作带宽资源理解一致。
本申请实施例提供的第一种技术方案中,UE校准带宽资源和UE源工作带宽资源不完全相同,用于gNB向UE发送UE目标工作带宽资源的信息。UE校准带宽资源还可以称为校准带宽资源、配置带宽资源、UE配置带宽资源、第三带宽资源或者其它名称,本申请不做限制。作为一种实现的可能,UE校准带宽资源可以为用于gNB向UE发送同步信号和/或广播信道的带宽资源,该带宽资源可以为多个UE共享的带宽资源,在该场景下,UE校准带宽资源还可以称为公共带宽资源或者其它名称,本申请不做限制。作为另一种实现的可能,UE校准带宽资源可以为用于UE初始接入gNB的带宽资源,该带宽资源可以为多个UE共享的带宽资源,在该场景下,UE校准带宽资源还可以称为接入带宽资源、初始接入带宽资源或者其它名称,本申请不做限制。其中,用于gNB向UE发送同步信号和/或广播信道的带宽资源和用于UE初始接入gNB的带宽资源可以为相同或不同的带宽资源,本申请不做限制。
在本申请实施例提供的第一种技术方案中,在UE校准带宽资源,gNB可以周期性地向UE发送UE目标工作带宽资源的信息。该方法中,在UE校准带宽资源,UE可以周期性地接收UE目标工作带宽资源的信息,即UE可以周期性地对UE工作带宽资源的配置进行校准;UE也可以判断其是否需要进行校准,如果需要校准,UE可以接收UE目标工作带宽资源的信息。
在本申请实施例提供的第一种技术方案中,在UE校准带宽资源,gNB还可以基于接收到的UE发送的第一请求,向UE发送UE目标工作带宽资源的信息。其中,第一请求用于请求gNB向UE发送UE目标工作带宽资源的信息。
进一步地,在本申请实施例提供的第一种技术方案中,gNB还可以在UE的工作带宽资源向该UE发送UE目标工作带宽资源的信息。
第二种技术方案:
本申请实施例提供的第二种技术方案中,引入了工作带宽资源回退机制(以下简称“回退机制”)。
本申请实施例提供的第二种技术方案中,可以在gNB侧引入回退机制。在UE源工作带宽资源,gNB与该UE进行该UE的第一UE特定信息的传输。在UE源工作带宽资源,gNB还向UE发送UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于gNB与UE进行该UE的第二UE特定信息的传输。如果gNB没有收到反馈, gNB将UE的UE源工作带宽资源作为UE的工作带宽资源,其中,该反馈为对应于携带UE目标工作带宽资源的信息的信道的反馈。该方法中,如果gNB没有收到反馈,说明UE可能未接收到或者未正确接收到UE目标工作带宽资源的信息,UE可能依然将UE源工作带宽资源作为UE的工作带宽资源,因此,gNB回退至UE源工作带宽资源,gNB将UE源工作带宽资源作为UE的工作带宽资源,可以保证UE和gNB对UE的工作带宽资源的理解一致。
本申请实施例提供的第二种技术方案中,可以在UE侧引入回退机制。在UE源工作带宽资源,UE与gNB进行该UE的第一UE特定信息的传输。在UE源工作带宽资源,UE还接收gNB向UE发送的UE目标工作带宽资源的信息,将UE目标工作带宽资源作为该UE的工作带宽资源。其中,UE目标工作带宽资源用于gNB与UE进行UE的第二UE特定信息的传输。UE向gNB发送反馈,其中,该反馈为对应于携带UE目标工作带宽资源的信息的信道的反馈。在UE目标工作带宽资源,如果UE没有收到gNB发送的第二UE特定信息,UE将UE源工作带宽资源作为UE的工作带宽资源;或者,UE向gNB发送第二请求,在UE目标工作带宽资源,如果UE没有收到gNB发送的第一响应,UE将UE源工作带宽资源作为UE的工作带宽资源。该方法中,如果UE没有收到第二UE特定信息或者没有收到第一响应,说明gNB可能未接收到或者未正确接收到UE发送的反馈,gNB可能依然将UE源工作带宽资源作为UE的工作带宽资源,因此,UE回退至UE源工作带宽资源,UE将UE源工作带宽资源作为UE的工作带宽资源,可以保证UE和gNB对UE的工作带宽资源的理解一致。
在本申请实施例提供的第一种技术方案和第二种技术方案中,gNB向UE发送的UE目标工作带宽资源的信息可能为以下两种信息中的任何一种。
第一种信息:gNB向UE发送的UE目标工作带宽资源的信息可以指示UE目标工作带宽资源为UE候选工作带宽资源中的至少一个带宽资源,或者可以指示UE目标工作带宽资源为包括UE候选工作带宽资源和UE校准带宽资源的集合中的至少一个带宽资源。其中,可以通过预配置的方式为gNB和UE配置UE候选工作带宽资源中至少一个带宽资源的资源位置信息,还可以通过gNB向UE发送信息的方式为UE配置UE候选工作带宽资源中至少一个带宽资源的资源位置信息。
第二种信息:gNB向UE发送的UE目标工作带宽资源的信息包括UE目标工作带宽资源的频率资源位置信息。
第三种技术方案:
本申请实施例提供的第三种技术方案中,引入了一种接入机制。在UE的工作带宽资源,如果UE判断其和gNB对该UE的工作带宽资源理解可能不一致,UE接入gNB。该方法中,通过UE接入gNB,可以恢复UE和gNB的正常通信。
基于上述描述的本申请实施例提供的三种技术方案,下面结合附图,进一步详细 地描述该三种技术方案涉及的方法、装置和系统。
图2所示为本申请实施例提供的第一种带宽资源配置方法,该方法对应于本申请实施例提供的第一种技术方案。
步骤201,在UE源工作带宽资源,gNB与UE进行该UE的第一UE特定信息的传输。
步骤202,在UE的UE校准带宽资源,gNB向UE发送UE目标工作带宽资源的信息,UE接收gNB发送的UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于gNB与UE进行该UE的第二UE特定信息的传输。其中,UE源工作带宽资源和UE校准带宽资源不完全相同。
gNB通过信令为UE发送该UE的UE目标工作带宽资源的信息,该信令为动态信令,可能由物理下行控制信道(physical downlink control channel,简称PDCCH)携带。gNB发送PDCCH时,PDCCH携带的信息的循环冗余码(cyclic redundancy code,简称CRC)可能被使用相应的无线网络临时标识(radio network temporary identifier,简称RNTI)加扰,用于进行PDCCH的传输的错误检测。UE接收PDCCH,根据上述相应的RNTI对控制信道进行解码,获得PDCCH携带的信息。如果gNB向UE发送的UE目标工作带宽资源的信息为UE特定信息,UE目标工作带宽资源的信息由PDCCH携带,则,gNB可以使用UE特定的RNTI对PDCCH携带的信息的CRC进行加扰。其中,UE特定的RNTI可以为小区RNTI(cell RNTI,简称C-RNTI)。如果gNB向UE发送的UE目标工作带宽资源的信息为多个UE共享的信息,UE目标工作带宽资源的信息由PDCCH携带,则,gNB可以使用公共RNTI对PDCCH携带的信息的CRC进行加扰。其中,该多个UE可能为小区中的全部或者部分UE。
本申请实施例中,信令包括半静态信令和动态信令。半静态信令可以包括无线资源控制(radio resource control,简称RRC)信令、广播消息、系统消息和媒体接入控制(medium access control,简称MAC)控制元素(control element,简称CE)中至少一个,动态信令可以包括物理下行控制信道携带的信令和物理下行数据信道携带的信令中至少一个。其中,物理下行控制信道携带的信令可以称为下行控制信息(downlink control information,简称DCI)。
UE源工作带宽资源和UE校准带宽资源不完全相同还可以描述为:UE源工作带宽资源包括的部分频率资源或全部频率资源不包括在UE校准带宽资源中,或者UE校准带宽资源包括的部分频率资源或全部频率资源不包括在UE源工作带宽资源中。示例性地,在基于OFDM的通信系统中,UE源工作带宽资源和UE校准带宽资源不完全相同可能为:UE源工作带宽资源包括的至少一个子载波不包括在UE校准带宽资源中,或者UE校准带宽资源包括的至少一个子载波不包括在UE源工作带宽资源中。
gNB和UE可以通过预配置的方式确定UE校准带宽资源的频率资源位置信息。gNB还可以通过信令配置的方式为UE配置UE校准带宽资源。gNB向UE发送信令,该信令中指示了UE校准带宽资源的频率资源位置信息。相应地,UE接收gNB发送的该信令,用于确定UE校准带宽资源的频率资源位置信息。对于一个带宽资源,例如UE校准带宽资源,该带宽资源的频率资源位置信息可以为以下第一种频率资源位 置信息至第五种频率资源位置信息中的任一种频率资源位置信息。
第一种频率资源位置信息,包括比特图(bitmap),用于配置带宽资源包括系统带宽中的哪些资源块(resource block,简称RB)或者哪些资源块组(resource block group,简称RBG)。本申请实施例中,RB和RBG为基于OFDM的通信系统中的资源单位。在基于OFDM的通信系统中,在频域,系统资源中包括若干个资源格,一个资源格对应于一个子载波,一个RB包括C1个资源格,C1为大于1的整数,示例性地,C1为12。系统带宽可以被描述为C2个RB,C2为大于等于1的整数。进一步地,在时域,一个RB可以包括C3个符号,C3为大于1的整数,示例性地,C3为7或14。以一个RB频域包括12个资源格时域包括7个符号为例,图3所示为系统带宽可能的结构示意图,如图3中所示,系统带宽中包括RB 0至RB C2-1共C2个RB。在频域,系统带宽还可以被描述为C4个RBG,一个RBG包括C5个RB,C4和C5为大于1的整数。使用第一种频率资源位置信息,可以通过比特图中各比特的取值,任意地选择包含在带宽资源中的RB或者RBG,因此可以提供灵活的资源配置,可以适用于连续的和非连续的资源分配。
第二种频率资源位置信息,包括参考RB的索引,和连续地分配的RB的个数。其中,参考RB可以是带宽资源中的任意RB,连续地分配的RB的个数是带宽资源的宽度。示例性地,参考RB可以是带宽资源中频率最高的RB、带宽资源中频率最低的RB、或者带宽资源的中心RB。使用第二种频率资源位置信息,可以通过对参考RB索引的指示信息和连续分配RB个数的指示信息进行联合编码,因此,可以用较少的信息位进行资源分配,能够降低资源分配时的信令开销。
第三种资源配置信息,包括参考RBG的索引,和连续地分配的RBG的个数。其中,参考RBG可以是带宽资源中的任意RBG,连续地分配的RBG的个数是带宽资源的宽度。示例性地,参考RBG可以是带宽资源中频率最高的RBG、带宽资源中频率最低的RBG、或者带宽资源的中心RBG。使用第三种频率资源位置信息,可以通过对参考RBG索引的指示信息和连续分配RBG个数的指示信息进行联合编码,因此,可以用较少的信息位进行资源分配,能够降低资源分配时的信令开销。
第四种频率资源位置信息,包括S个组合索引,S为大于等于1的整数。一个组合索引指示P组资源配置信息。P组资源配置信息中的任一组资源配置信息包括一个起始RB索引和一个结束RB索引,或者包括一个起始RBG索引和一个结束RBG索引。其中,P为大于等于1的整数,索引也可以称为标识。一组资源配置信息指示一段连续资源,如果该组资源配置信息包括一个起始RB索引和一个结束RB索引,起始RB索引和结束RB索引相同,则该组资源配置信息指示了一个RB,该RB对应的索引为该起始RB索引或该结束RB索引。如果该组资源配置信息包括一个起始RBG索引和一个结束RBG索引,起始RBG索引和结束RBG索引相同,则该组资源配置信息指示了一个RBG,该RBG对应的索引为该起始RBG索引或结束RBG索引。一个组合索引指示的P组资源配置信息中的各资源配置信息指示的资源之和为该组合索引指示的资源。上述S个组合索引指示的资源之和为带宽资源对应的资源。使用第四种频率资源位置信息,可以通过对起始RB索引的指示信息和结束RB索引的指示信息进行联合编码,因此,可以用较少的信息为进行资源分配,可以降低信令开销。第四 种频率资源位置信息可以支持连续和非连续的资源配置,可以灵活地进行资源配置。
第五种频率资源位置信息,包括子带指示,用于指示带宽资源为系统带宽中的至少一个子带。其中,系统带宽包括至少一个子带。图4所示为系统带宽包括的子带的可能的结构示意图,如图4中所示,系统带宽包括子带0、子带1和子带2共3个子带,一个子带包括系统带宽中的部分带宽。需要说明的是,系统带宽可以包括任意数量的子带,图4中仅示出了其中一种可能。系统带宽包括的不同子带的带宽可以相同也可以不同,本申请实施例不作限制。使用第五种资源配置信息,当分配给UE的带宽频率的带宽大小固定且为连续资源时,可以有效地降低信令开销。
本申请实施例中,频率资源位置信息用于指示资源在频率的位置,其还可以称为频率资源位置配置、频率资源配置信息或者其它名称,本申请不做限制。
在第一种带宽资源配置方法中,gNB向UE发送的UE目标工作带宽资源的信息可以为以下第一种和第二种目标工作带宽资源的信息中至少一种。
第一种目标工作带宽资源的信息:
在第一种带宽资源配置方法中,gNB向UE发送的UE目标工作带宽资源的信息可以指示UE目标工作带宽资源为UE候选工作带宽资源中的至少一个带宽资源,或者可以指示UE目标工作带宽资源为包括UE候选工作带宽资源和UE校准带宽资源的集合中的至少一个带宽资源。此时,第一种带宽资源配置方法还包括:gNB向UE发送UE候选工作带宽资源的频率资源位置信息,UE目标工作带宽资源是UE候选工作带宽资源的子集,UE目标工作带宽资源的信息指示了UE目标工作带宽资源为UE候选工作带宽资源中的至少一个带宽资源。其中,UE候选工作带宽资源可能包括UE校准频率资源。或者,gNB向UE发送UE候选工作带宽资源的频率资源位置信息,UE目标工作带宽资源是包括UE候选工作带宽资源和UE校准带宽资源的集合的子集,UE目标工作带宽资源的信息指示了UE目标工作带宽资源为包括UE候选工作带宽资源和UE校准带宽资源的集合中的至少一个带宽资源。其中,UE候选工作带宽资源不包括UE校准频率资源,UE校准频率资源可能为信令配置的或者预配置的频率资源。UE接收gNB发送的UE候选工作带宽资源的频率资源位置信息。
本申请实施例中,UE候选工作带宽资源还可以描述为UE可选工作带宽资源、UE可能的工作带宽资源、M1个可以用作UE工作带宽资源的带宽资源或者其它名称,本申请不做限制。其中,M1为大于等于1的整数。进一步地,如上述描述,UE候选工作带宽资源还可能包括UE校准带宽资源。UE源工作带宽资源可以为UE候选工作带宽资源中至少一个带宽资源。图5所示为UE候选工作带宽资源的示意图。图5的示例中,系统带宽为400MHz,UE支持的带宽20MHz,UE候选工作带宽资源中的一个带宽资源的带宽为20MHz,UE校准带宽资源为20MHz。系统资源中包括20个带宽资源,各带宽资源无交叠,其中,1个为UE校准带宽资源,另外19个带宽资源为UE候选工作带宽资源;或者该20个带宽资源为UE候选工作带宽资源,其中1个为UE校准带宽资源。UE源工作带宽资源为19个带宽资源中的至少一个带宽资源,该19个带宽资源为系统资源中包括20个带宽资源减去UE校准带宽资源后得到的19个带宽资源。UE目标带宽资源为UE候选工作带宽资源中至少一个带宽资源。图5中所示 各带宽资源无交叠,带宽资源为连续的资源,实际应用中,各带宽资源可以交叠,带宽资源可以为连续的或者不连续的资源,本申请不做限制。
gNB向UE发送UE候选工作带宽资源的频率资源位置信息时,对于候选工作带宽资源中的一个带宽资源,该带宽资源的频率资源位置信息可以为上述第一种频率资源位置信息至第五种频率资源位置信息中的任一种频率资源位置信息。进一步地,gNB向UE发送UE候选工作带宽资源的频率资源位置信息时,可以通过相同的信令发送候选工作带宽资源中的不同带宽资源的频率资源位置信息,也可以通过不同的信令发送候选工作带宽资源中的不同带宽资源的频率资源位置信息,本申请不做限制。
当gNB通过信令配置的方式为UE配置UE校准带宽资源时,即gNB向UE发送UE校准带宽资源的频率资源位置信息时,该信令可以和gNB向UE发送UE候选工作带宽资源的频率资源位置信息时使用的信令相同,也可以不相同。本申请不做限制。当gNB为UE配置UE校准带宽资源时使用的信令和gNB向UE发送UE候选工作带宽资源的频率资源位置信息时使用的信令相同时,该信令中可以包括标志信息,用于指示哪个频率资源为UE校准带宽资源。
在第一种目标工作带宽资源的信息中,为了简化描述,还可以描述为UE目标工作带宽资源的信息指示了UE目标工作带宽资源为M2个带宽资源中的至少一个带宽资源。其中,当UE目标工作带宽资源的信息指示了UE目标工作带宽资源为UE候选工作带宽资源中的至少一个带宽资源时,M2等于UE候选工作带宽资源包括的带宽资源的个数,UE候选工作带宽资源包括的带宽资源还可以描述为M2个带宽资源;当UE目标工作带宽资源的信息指示了UE目标工作带宽资源为包括UE候选工作带宽资源和UE校准带宽资源的集合中的至少一个带宽资源时,M2等于包括UE候选工作带宽资源和UE校准带宽资源的集合中包括的带宽资源的个数,包括UE候选工作带宽资源和UE校准带宽资源的集合还可以描述为M2个带宽资源。在第一种目标工作带宽资源的信息中,UE目标工作带宽资源的信息可以为以下第一种指示信息至第三种指示信息中的任一种指示信息中,用于指示UE目标工作带宽资源为M2个带宽资源中的至少一个带宽资源。其中,M2为大于1的整数。
第一种指示信息,包括K1=M2个信息位,该K1个信息位和上述M2个带宽资源一一对应。当一个信息位取值为t1时,认为UE目标带宽资源包括该信息位对应的带宽资源,当一个信息位取值为t2时,认为UE目标带宽资源不包括该信息位对应的带宽资源。其中,t1和t2为整数。示例性地,t1为1,t2为0。利用第一种指示信息,可以通过比特图中各比特取值的改变,可以灵活地进行资源配置,可以灵活地指示UE目标带宽资源为M2个带宽资源中的至少一个带宽资源。
第二种指示信息,包括K2个信息位,
Figure PCTCN2018091668-appb-000001
其中,K1同第一种指示信息中的K1。如果该K2个信息位的值为K2_X,认为UE目标带宽资源为上述M2个带宽资源中的第K2_X个带宽资源。其中,当K2_X从0开始计数时,K2_X为大于等于0且小于K1的整数;当K2_X从1开始计数时,K2_X为大于等于1且小于等于K1的整数。示例性地,如果M2=8,则K2=3,当K2_X值为1时,UE目标带宽资源为上述M2个带宽资源中的第1个带宽资源。如果利用第二种指示信息,可以灵活地指示UE目标带宽资源为M2个带宽资源中的任一个带宽资源,还可以通过二进制编码 降低指示信息的信令开销。
第三种指示信息,包括K3个信息位,K3为整数。通过预配置的方法,配置K3_X对应于至少一个带宽资源,其中,K3_X为K3个信息位可能的取值,该至少一个带宽资源包括于上述M2个带宽资源中。如果K3个信息位的值为K3_X,认为K3_X对应的带宽资源为UE目标带宽资源。示例性地,表1所示为K3_X和带宽资源的可能对应关系。其中,表1中以M2=8,K3=1为例。K3_X可能为0或1,当K3_X为0时,认为其对应的带宽资源0、带宽资源1、带宽资源2和带宽资源3为UE目标带宽资源;当K3_X为1时,认为其对应的带宽资源4、带宽资源5、带宽资源6和带宽资源7为UE目标带宽资源。在本申请实施例中,认为带宽资源为UE目标带宽资源,还可以描述为:可以将该带宽资源作为UE目标带宽资源。表1中仅给出一个可能的示例,实际应用中,K3_X和带宽资源的对应关系可能为其它任意关系,本申请不做限制。利用第三种指示信息,可以灵活地指示UE目标带宽资源为M2个带宽资源中的任一个带宽资源,还可以通过二进制编码降低指示信息的信令开销。
表1 K3_X和带宽资源对应关系
Figure PCTCN2018091668-appb-000002
通过第一种目标工作带宽资源的信息,可以通过较少的信息位为UE配置UE目标工作带宽资源,指示UE目标工作带宽资源为多个带宽资源中的至少一个带宽资源。
第二种目标工作带宽资源的信息:
在第一种带宽资源配置方法中,gNB向UE发送的UE目标工作带宽资源的信息包括UE目标工作带宽资源的频率资源位置信息。其中,对于UE目标工作带宽资源中的一个带宽资源,该带宽资源的频率资源位置信息可以为上述第一种频率资源位置信息至第五种频率资源位置信息中的任一种频率资源位置信息。通过第二种目标工作带宽资源的信息,可以灵活地将系统资源中的资源配置为UE目标工作带宽资源。为UE灵活地配置资源,用于进行gNB和UE间的通信,可以带来以下三个好处:
第一个好处,在系统资源中为UE配置信道质量较好的资源,提高gNB和UE间的数据传输速率。
第二个好处,可以灵活地为UE配置参数,该参数包括子载波间隔和CP,用于满足UE的业务的服务质量(quality of service,简称QoS)要求。其中,服务质量包括时延和/或误块率(block error rate,简称BLER)。在无线通信系统中,例如5G系统中,为了支持服务质量要求不同的多种业务类型,不同UE或者同一个UE的不同业务类型的数据传输可以使用不同的参数。
第三个好处,提供了一种前向兼容的通信系统。网络设备为UE灵活地配置工作带宽资源,可以使网络设备在系统资源中灵活地配置空白资源,在该空白资源中可以引入各种可能的通信系统,从而实现在系统资源中灵活地进行通信系统的演进。进一 步地,如果系统资源中需要支持多种通信系统,通过灵活地配置空白资源,可以在空白资源中根据该多种通信系统中的各通信系统的负载灵活地配置各通信系统的资源,可以在系统资源中提高该多种通信系统的总的数据传输速率。
本领域技术人员可以理解,本申请实施例的提供三个技术方案中,以及该三个技术方案涉及的方法中,可以灵活地配置资源的方法都有可能有以上三个好处。
通过本申请实施例提供的第一种带宽资源配置方法,UE可以在校准带宽资源接收gNB为UE配置的UE目标工作带宽资源的信息,可以使UE对UE工作带宽资源的配置进行校准。因此,可以减少出现gNB和UE对UE的工作带宽资源理解不一致的概率,或者当gNB和UE对UE的工作带宽资源理解不一致时可以进行相应的校准,从而可以使gNB和UE对UE的工作带宽资源理解一致。
下面结合图6,详细说明本申请实施例提供的第二种带宽资源配置方法,该方法对应于方法对应于本申请实施例提供的第一种技术方案中gNB周期性地向UE发送UE目标工作带宽资源的信息。
步骤601,在UE源工作带宽资源,gNB与UE进行该UE的第一UE特定信息的传输。
步骤602,在第一周期,在UE的UE校准带宽资源,gNB向UE发送UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于gNB与UE进行UE的第二UE特定信息的传输,UE源工作带宽资源和UE校准带宽资源不完全相同,第一周期包括整数个第一时间单元。
步骤602可以包括步骤202。
gNB可以基于第一周期,周期性地为UE发送UE目标工作带宽资源的信息。其中,第一周期包括整数个第一时间单元,还可以描述为第一周期包括N1第一个时间单元,N1为大于1的整数。在一个第一周期,在该第一周期中的N2个第一时间单元,在UE的UE校准带宽资源,gNB可以向UE发送UE目标工作带宽资源的信息。其中,N2为小于等于N1的整数。
gNB和UE可以根据预配置确定第一周期。gNB还可以向UE发送信令,该信令中包括第一周期的配置。相应地,UE接收gNB发送的信令。UE根据接收到的信令,确定第一周期。预配置或者信令配置第一周期时,可以配置第一周期为整数个时间单元,示例性地,该时间单元为第一时间单元;也可以配置第一周期为具体的时间长度,该时间长度的单位为秒或者毫秒等常用的时间单位。本申请实施例中,时间单元还可以称为时间单位,包括符号、时隙、微时隙、子帧、无线帧等通信系统领域常用的时间单元。当通信系统中支持多种参数时,由于不同参数对应的时间单元长度不同,因此,当配置第一周期为整数个第一时间单元时,还可以配置第一时间单元对应的参数,其中,参数包括子载波间隔和CP中至少一个。示例性地,可以配置第一时间单元对应的子载波间隔和UE工作带宽资源对应的子载波间隔相同;还可以配置第一时间单元对应的子载波间隔为参考子载波间隔,参考子载波间隔为根据载波频域预配置的子载波间隔;还可以通过gNB向UE发送的信令为UE配置第一时间单元对应的子载波间隔。
gNB和UE可以根据预配置确定第一周期中的N2个第一时间单元。gNB还可以向UE发送信令,信令中包括第一周期中的N2个第一时间单元的配置。相应地,UE接收gNB发送的信令。UE根据接收到的信令,确定第一周期中的N2个第一时间单元。配置第一周期中的N2个第一时间单元时,可以通过以下第一种配置信息至第三种配置信息中的任一种进行相应的配置:
第一种配置信息,包括偏移量P1和步长P2。第一周期中的N2个第一时间单元中的第一个时间单元为第一周期中第P1个第一时间单元,第一周期中的N2个第一时间单元中的两个相邻第一时间单元的距离为P2个第一时间单元。其中,P1和P2为整数。利用第一种配置信息,可以通过偏移量P1和步长利用较少的信息位指示第一周期中的N2个第一时间单元,适用于等间隔配置。本领域技术人员可以理解,当N2=1时,第一种配置信息中还可以不包括步长P2。
第二种配置信息,包括P3个信息位,P3等于第一周期包括的第一时间单元的个数,即P1等于上述N1。该P3个信息位和第一周期包括的第一时间单元一一对应。当一个信息位取值为t1时,认为该信息位对应的第一时间单元包括于本步骤中描述的第一周期中的N2个第一时间单元中;当一个信息位取值为t2时,认为该信息位对应的第一时间单元不包括于本步骤中描述的第一周期中的N2个第一时间单元中中。其中,t1和t2为整数。示例性地,t1为1,t2为0。利用第二种配置信息,可以通过各信息位取值的改变,灵活地配置第一周期中至少一个第一时间单元可用于传输UE目标工作带宽资源的信息,适用于时域内连续和非连续的配置。
第三种配置信息,包括数值N2。第一周期内的任意N2个第一时间单元为本步骤中描述的第一周期中的N2个第一时间单元。在TDD系统中,gNB可以根据业务量等参数配置上下行配置,上下行配置用于配置时间单元是用于下行(downlink,简称DL)传输还是上行(uplink,简称UL)传输。利用第三种配置信息,可以使gNB基于其上下行配置,灵活地选择第一时间单元,在该选择的第一时间单元向UE发送UE目标工作带宽资源的信息。
进一步地,在一个第一周期中,或者在一个第一周期中的N2个第一时间单元中的一个或者多个第一时间单元,如果gNB不需要为UE重配置工作带宽资源,gNB可以不向UE发送UE目标工作带宽资源的信息,以节省信令开销。
在本申请实施例中,gNB在第一周期,或者在第一周期中的N2个第一时间单元中的一个或者多个第一时间单元向UE发送UE目标工作带宽资源的信息,该信息可以由物理信道A携带,示例性地,物理信道A为PDCCH。还可以描述为,gNB在第一周期,或者在第一周期中的N2个第一时间单元中的一个或者多个第一时间单元向UE发送物理信道A,物理信道A中携带UE目标工作带宽资源的信息。在本申请实施例中,gNB向UE发送物理信道,还可以描述为gNB向UE发送该物理信道携带的信息。
在第一周期,在UE的UE校准带宽资源,UE接收gNB向UE发送的UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于gNB与UE进行UE的第二UE特定信息的传输;UE源工作带宽资源和UE校准带宽资源不完全相同;第一周期包括 整数个第一时间单元。UE可以利用以下第一种接收方法,周期性地接收UE目标工作带宽资源的信息;UE也可以利用以下第二种接收方法,UE基于判断是否需要校准UE工作带宽资源,接收UE目标工作带宽资源的信息。
第一种接收方法,UE周期性地接收UE目标工作带宽资源的信息。在一个第一周期,在该第一周期,在第一周期中的N2个第一时间单元,在该UE的UE校准带宽资源,UE接收gNB向UE发送的UE目标工作带宽资源的信息。其中,第一周期中的N2个第一时间单元同上述描述,这里不再赘述。
图7所示为UE在UE校准带宽资源接收gNB发送的UE目标工作带宽资源的信息的一个示意图。如图7中所示,配置第一周期,配置第一周期中一个第一时间单位A,用于传输UE目标工作带宽资源的信息,即N2=1。gNB在第一周期的第一时间单元A,在UE的UE校准带宽资源,向该UE发送UE目标工作带宽资源的信息。图7中示例N2=1,实际中N2可以为任意大于等于1小于等于上述N1的整数。如图7中所示,在第一个第一周期,UE在接收UE目标工作带宽资源的信息之前,UE的工作带宽资源为带宽资源A。UE在第一个第一周期的第一时间单元A,在UE的UE校准带宽资源,接收gNB发送的UE目标工作带宽资源的信息,该信息可以指示UE目标工作带宽资源为带宽资源A,UE依然将带宽资源A作为UE的工作带宽资源,还可以描述为,UE不更新该UE的工作带宽资源。在第二个第一周期,UE在接收UE目标工作带宽资源的信息之前,UE的工作带宽资源为带宽资源A。UE在第二个第一周期的第一时间单元A,在UE的UE校准带宽资源,接收gNB发送的UE目标工作带宽资源的信息,该信息可以指示UE目标工作带宽资源为带宽资源B,UE将带宽资源B作为UE的工作带宽资源,即UE更新了UE的工作带宽资源,还可以描述将UE的工作带宽资源进行了校准。
第二种接收方法,UE基于判断是否需要校准UE工作带宽资源,接收UE目标工作带宽资源的信息。在UE源工作带宽资源,如果UE接收到gNB发送的该UE的第一UE特定信息,UE启动或重新启动第一定时器。其中,UE重新启动第一定时器可能为,在UE源工作带宽资源,如果UE接收到gNB发送的该UE的第一UE特定信息,且第一定时器为运行状态,则,UE重新启动第一定时器。第一定时器期满之后,在UE的UE校准带宽资源,接收gNB发送的UE目标工作带宽资源的信息。示例性地,如果第一定时器期满,在定时器期满后的第一时间单元,在UE的UE校准带宽资源,UE接收gNB向UE发送的UE目标工作带宽资源的信息。其中,该第一时间单元可以为一个或者多个第一时间单元,该第一时间单元包括于一个或多个第一周期中,为第一周期中的N2个第一时间单元中的第一时间单元。在一种实现方式中,如果第一定时器期满,UE从源工作带宽资源切换至UE校准带宽资源,在UE的UE校准带宽资源,UE接收gNB向UE发送的UE目标工作带宽资源的信息。第二种接收方法中,如果UE在接收UE目标工作带宽资源的信息时,需要从UE源工作带宽资源切换至UE校准带宽资源,和/或需要从UE校准带宽资源切换至UE目标工作带宽资源,通过该方法可以减少UE在不同带宽资源之间的切换,从而可以减少引入切换时间,为UE节省时域空口资源,提高数据传输速率。其中,UE在接收UE目标工作带宽资源的信息时,需要从UE源工作带宽资源切换至UE校准带宽资源的可能的场景为:UE的带 宽能力不足以同时支持UE源工作带宽资源和UE校准带宽资源。UE在接收UE目标工作带宽资源的信息时,需要从UE校准带宽资源切换至UE目标工作带宽资源的可能的场景为:UE的带宽能力不足以同时支持UE校准带宽资源和UE目标工作带宽资源。
本申请实施例中,UE的带宽能力不足以同时支持X个带宽资源可以描述为:UE的带宽能力为W,该X个带宽资源的最高频点的频率组成的集合为H i,i=1,2...X,该X个带宽资源的最低频点的频率组成的集合为L i,i=1,2...X,W<(h-l),其中,h=max(H i,i=1,2...X),l=min(L i,i=1,2...X)。
在本申请实施例提供的任一种方法中,当UE从带宽资源C切换至带宽资源D时,可以为UE配置保护周期(guard period),用于UE用于从带宽资源C切换至带宽资源D。其中,保护周期用于UE从一个带宽资源切换至另一个带宽资源,还可以称为切换时间,保护时间或者其它名称,本申请不做限制。其中,切换还可以称为调整或者其它名称,本申请不做限制,其英文翻译可能为retune。其中,保护周期可以配置为整数个时间单元;还可以配置具体的时间长度,该时间长度的单位为秒、毫秒、微秒等常用的时间单位。在UE的保护周期,gNB可能不和UE进行通信。
示例性地,在第一周期,在UE的UE校准带宽资源,UE接收gNB向UE发送的UE目标工作带宽资源的信息之前,在第一保护周期,UE可能从UE源工作带宽资源切换至UE校准带宽资源。再示例性地,在UE的UE校准带宽资源,UE接收gNB向UE发送的UE目标工作带宽资源的信息之后,在第二保护周期,UE从UE校准带宽资源切换至UE目标工作带宽资源。示例性地,如上述描述,图7所示为UE在UE校准带宽资源接收gNB发送的UE目标工作带宽资源的信息的一个示意图。在图7中,UE在第一时间单元A之前,在第一保护周期,从UE源工作带宽资源切换至UE校准带宽资源;UE在第一时间单元A之后,在第二保护周期,从UE校准带宽资源切换至UE目标工作带宽资源。其中,第一保护周期和第二保护周期可以相同,也可以不相同,本申请不做限制。
通过本申请实施例提供的第二种带宽资源配置方法,通过第一周期,可以在时域内相对固定地进行UE目标工作带宽资源的信息的传输,可以使得UE在时域内有针对性地进行UE目标工作带宽资源的信息的接收,从而可以提高了UE接收UE目标工作带宽资源的信息的鲁棒性,进一步地,还可能节省UE的功率。
下面结合图8,详细说明本申请实施例提供的第三种带宽资源配置方法,该方法对应于本申请实施例提供的第一种技术方案中,gNB基于UE请求,向UE发送UE目标工作带宽资源的信息。
步骤801,在UE源工作带宽资源,gNB与UE进行该UE的第一UE特定信息的传输。
步骤802,UE向gNB发送第一请求,第一请求用于请求gNB向该UE发送UE目标工作带宽资源的信息。
gNB接收UE发送的第一请求。
可选地,第一请求可以为调度请求(scheduling request,简称SR)。如果第一请 求为SR,第一请求可以承载于上行控制信道或者上行数据信道。SR为UE发送给gNB的信令,用于请求gNB对该UE进行上行调度,可以使UE根据上行调度信息向gNB发送数据。通过重用SR作为第一请求,可以减少系统中信令的类型,简化系统设计。
在UE向gNB发送第一请求前,UE还可以判断其是否需要校准工作带宽资源,如果需要校准,UE向gNB发送第一请求,用于进一步降低信令开销。具体地,在UE源工作带宽资源,如果UE接收到gNB发送的第一UE特定信息,启动定时器。如果定时器为运行状态,在UE源工作带宽资源,如果UE接收到gNB发送的第一UE特定信息,重新启动所述第三定时器。第三定时器期满后,UE向gNB发送第一请求。利用第定时器,可以使UE在一段时间内没有和gNB进行通信时,可以考虑该没有通信的状态是否由gNB和UE对该UE的工作带宽资源的理解不一致造成,从而可以考虑对其工作带宽资源进行校准。
步骤803,在UE的UE校准带宽资源,gNB向UE发送UE目标工作带宽资源的信息,UE接收gNB发送的UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于与UE进行UE的第二UE特定信息的传输。其中,UE源工作带宽资源和UE校准带宽资源不完全相同。
步骤803可以包括步骤202。
第一请求的传输和在UE校准带宽资源UE目标工作带宽资源的信息的传输之间的定时关系可能为:在时间单元n,传输第一请求,在时间单元n+k,传输UE目标工作带宽资源的信息。其中,UE目标工作带宽资源的信息的传输在第一请求的传输之后,n为整数,k大于等于0的整数。示例性地,gNB在时间单元n接收第一请求,在时间单元n+k向UE发送UE目标工作带宽资源的信息。UE在时间单元n发送第一请求,在时间单元n+k接收gNB发送的UE目标工作带宽资源的信息。当传输第一请求的时间单元和传输UE目标工作带宽资源的信息的时间单元对应的子载波间隔和/或CP类型不同时,其对应的时间单元的索引可以进行调整,本申请不做限制。示例性地,如果传输第一请求的时间单元对应的子载波间隔为60kHz,该时间单元对应的索引可能为n;如果传输UE目标工作带宽资源的信息的时间单元对应的子载波间隔为15kHz,该时间单元对应的索引可能为n/4,其中,4=60/15。导致该现象出现的原因可能为:传输第一请求的时间单元为一个时隙,该时隙包括7个符号。传输UE目标工作带宽资源的信息的时间单元为一个时隙,该时隙包括7个符号。其中,60kHz对应的符号长度为15kHz对应的符号长度的1/4,60kHz对应的时隙长度为15kHz对应的时隙长度的1/4,因此,在相同的时间,60kHz的时隙的索引可能是15kHz的时隙的索引的4倍。其中,时隙的索引不超过该时隙的索引的取值范围。
gNB和UE可以基于系统预配置确定上述k值。可以预配置k值为常数,也可以预配置k值为n+k1至n+k1+L中任一个或多个值,其中,k1和L为整数。示例性地,k1和L为预配置的常数。
gNB还可以向UE发送信令,通过该信令指示k值。UE接收gNB发送的信令,根据信令配置确定k值。
通过本申请实施例提供的第三种带宽资源配置方法,如果UE在接收UE目标工作带宽资源的信息时,需要从UE源工作带宽资源切换至UE校准带宽资源,和/或需 要从UE校准带宽资源切换至UE目标工作带宽资源,通过该方法可以减少UE在不同带宽资源之间的切换,从而避免引入切换时间,为UE节省时域空口资源,提高数据传输速率。
进一步地,在本申请实施例提供的第一种带宽资源配置方法至第三种带宽资源配置方法中,gNB还可以在UE源工作带宽资源,向该UE发送UE目标工作带宽资源的信息。相应地,UE还可以在UE的UE源工作带宽资源,接收gNB发送的UE目标工作带宽资源的信息。在该方法中,可以配置UE目标工作带宽资源的信息在UE源工作带宽资源的发送频率高于UE目标工作带宽资源的信息在UE校准带宽资源的发送频率。示例性地,配置UE目标工作带宽资源的信息在UE源工作带宽资源的发送周期比UE目标工作带宽资源的信息在UE校准带宽资源的发送周期短。再示例性地,配置UE目标工作带宽资源的信息在UE的UE源工作带宽资源的发送周期和UE目标工作带宽资源的信息在UE校准带宽资源的发送周期相同,在该周期内,可以用于在UE源工作带宽资源传输UE目标工作带宽资源的信息的时间单元比可以用于在UE校准带宽资源传输UE目标工作带宽资源的信息的时间单元多。再示例性地,UE可以在判断其需要校准时,在UE校准带宽资源接收gNB发送的UE目标工作带宽资源的信息。通过这些方法,可以使UE判断需要校准时或者每隔较长的一段时间,才切换至UE校准带宽资源接收UE目标工作带宽资源的信息,进行UE的工作带宽资源的配置。通过该方法,可能进一步减少UE在不同带宽资源之间的切换,从而避免引入切换时间,为UE节省时域空口资源,提高数据传输速率。
下面结合图9,详细说明本申请实施例提供的第四种带宽资源配置方法,该方法对应于本申请实施例提供的第二种技术方案中gNB侧的相应设计。其中,图9所示为在gNB侧实现第四种带宽资源配置方法时对应的流程示意图。
步骤901,在UE源工作带宽资源,gNB与UE进行该UE的第一UE特定信息的传输。
步骤902,在UE源工作带宽资源,gNB向UE发送UE目标工作带宽资源的信息,UE接收gNB发送的UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于与UE进行UE的第二UE特定信息的传输。
步骤902中,UE目标工作带宽资源的信息的内容,UE目标工作带宽资源的信息的传输方法等和UE目标工作带宽资源的信息相关的内容类似步骤202中的描述,这里不再赘述。步骤902和步骤202的主要区别在于:步骤202中,引入了UE校准带宽资源,在UE校准带宽资源,gNB向UE发送UE目标工作带宽资源的信息;在步骤902中,在UE源工作带宽资源,gNB向UE发送UE目标工作带宽资源的信息。
步骤903,gNB启动第二定时器;
步骤904,如果第二定时器是运行状态,如果gNB接收到UE发送的反馈,停止第二定时器,其中,该反馈为对应于携带所述UE目标工作带宽资源的信息的信道的反馈。
该反馈可能为1比特信息。
该反馈的值可以包括确认反馈,也可以包括确认反馈和非确认反馈。
当该反馈的值包括确认反馈,不包括非确认反馈时:收到反馈,gNB认为UE可能正确接收到了UE目标工作带宽资源的信息,认为UE可能将UE目标工作带宽资源作为UE的工作带宽资源,因此,gNB可以将UE目标工作带宽资源作为UE的工作带宽资源;没有收到反馈,gNB认为UE可能没有收到或者没有正确接收到UE目标工作带宽资源的信息,认为UE可能没有将UE目标工作带宽资源作为UE的工作带宽资源,认为UE可能将UE源工作带宽资源作为UE的工作带宽资源,因此,gNB可以将UE源工作带宽资源作为UE的工作带宽资源。该方法中,确认反馈还可以简称为反馈。
当该反馈的值包括确认反馈和非确认反馈时:收到确认反馈,gNB认为UE可能正确接收到了UE目标工作带宽资源的信息,认为UE可能将UE目标工作带宽资源作为UE的工作带宽资源,因此,gNB可以将UE目标工作带宽资源作为UE的工作带宽资源;没有收到反馈或者收到非确认反馈,gNB认为UE可能没有收到或者没有正确接收到了UE目标工作带宽资源的信息,认为UE可能没有将UE目标工作带宽资源作为UE的工作带宽资源,认为UE可能将UE源工作带宽资源作为UE的工作带宽资源,因此,gNB可以将UE源工作带宽资源作为UE的工作带宽资源。
步骤905,在第二定时器期满后,gNB将所述UE源工作带宽资源作为所述UE的工作带宽资源。
本申请实施例提供的第四种带宽资源配置方法中,通过gNB的回退机制,可以保证UE和gNB对UE的工作带宽资源的理解一致。
下面结合图10,详细说明本申请实施例提供的第五种带宽资源配置方法,该方法对应于本申请实施例提供的第二种技术方案中UE侧的第一种设计。其中,图10所示为在UE侧实现第五种带宽资源配置方法时对应的流程示意图。
步骤1001,在UE源工作带宽资源,gNB与UE进行该UE的第一UE特定信息的传输。
步骤1002,在UE源工作带宽资源,gNB向UE发送UE目标工作带宽资源的信息,UE接收gNB发送的UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于与UE进行UE的第二UE特定信息的传输。
步骤1002同步骤902。
步骤1003,UE向gNB发送反馈,其中,该反馈为对应于携带UE目标工作带宽资源的信息的信道的反馈。
步骤1003中的反馈可以同步骤904中的反馈。
步骤1004,UE启动第三定时器。
步骤1005,在UE目标工作带宽资源,如果接收到gNB发送的第二UE特定信息,停止第三定时器。
步骤1006,第三定时器期满(expire)后,将所述UE源工作带宽资作为所述UE的工作带宽资源。
本申请实施例提供的第五种带宽资源配置方法中,直到第三定时器期满,如果UE没有接收到第二UE特定信息,UE认为gNB可能未接收或者未正确接收到反馈,UE 认为gNB可能将UE源带宽资源作为UE的工作带宽资源,因此,UE可以将UE源带宽资源作为UE的工作带宽资源,从而可能使gNB和UE对UE的工作带宽资源理解一致。
下面结合图11,详细说明本申请实施例提供的第六种带宽资源配置方法,该方法对应于本申请实施例提供的第二种技术方案中UE侧的第二种相应设计。其中,图11所示为在UE侧实现第六种带宽资源配置方法时对应的流程示意图。
步骤1101,在UE源工作带宽资源,gNB与UE进行该UE的第一UE特定信息的传输。
步骤1102,在UE源工作带宽资源,gNB向UE发送UE目标工作带宽资源的信息,UE接收gNB发送的UE目标工作带宽资源的信息。其中,UE目标工作带宽资源用于与UE进行UE的第二UE特定信息的传输。
步骤1102同步骤1002。
步骤1103,UE向gNB发送反馈,其中,该反馈为对应于携带UE目标工作带宽资源的信息的信道的反馈。
步骤1103同步骤1003。
步骤1104,UE向gNB发送第二请求;
gNB可以接收第二请求。
步骤1105,在UE目标工作带宽资源,如果UE没有接收到gNB发送的第一响应,UE将UE源工作带宽资作为UE的工作带宽资源,其中,所述第一响应为对应于所述第二请求的响应。
第一响应可以为1比特信息,还可以为UE特定信息或者其它信息,本申请不做限制。
第二请求的传输和第一响应的传输之间的定时关系类似步骤803中第一请求的传输和在UE校准带宽资源UE目标工作带宽资源的信息的传输之间的定时关系,这里不再赘述。其中,第二请求的传输对应第一请求的传输,第一响应的传输对应在UE校准带宽资源UE目标工作带宽资源的信息的传输。
本申请实施例提供的第六种带宽资源配置方法中,如果UE没有接收到第一响应,UE认为gNB可能未接收或者未正确接收到反馈,UE认为gNB可能将UE源带宽资源作为UE的工作带宽资源,因此,UE可以将UE源带宽资源作为UE的工作带宽资源,从而可能使gNB和UE对UE的工作带宽资源理解一致。
下面结合图12,详细介绍本申请实施例提供的第一种接入方法,该方法对应于本申请实施例提供的第三种设计。其中,图12所示为在UE侧实现第一种接入方法时对应的流程示意图。
步骤1201,在UE的工作带宽资源,如果UE接收到gNB发送的第三UE特定信息,启动或者重新启动第四定时器。
在UE的工作带宽资源,如果UE接收到gNB发送的第三UE特定信息,UE可以启动或者重新启动第四定时器。进一步的,第四定时器还可以在对UE的工作带宽资 源进行重配置后启动或重新启动。具体为,在UE源工作带宽资源,UE与网络设备进行该UE的第一UE特定信息的传输。在UE源工作带宽资源,网络设备向UE发送UE目标工作带宽资源的信息。相应的,在UE源工作带宽资源,UE接收网络设备发送的UE目标工作带宽资源的信息,将UE目标工作带宽资源作为该UE的工作带宽资源,UE启动第四定时器,其中,UE目标工作带宽资源用于UE与网络设备进行该UE的第三UE特定信息的传输。将UE目标工作带宽资源作为该UE的工作带宽资源后,在UE的工作带宽资源,如果UE接收到gNB发送的第三UE特定信息,UE启动或者重新启动第四定时器。
步骤1202,如果第四定时器期满,UE接入gNB。
接入gNB后,gNB可以向UE发送信息,UE可以接收gNB为其发送的信息,该信息指示了用于gNB和UE传输UE特定信息的带宽资源。示例性地,该信息为上述方法中描述的UE目标工作带宽资源的信息。
在第一种接入方法,基于定时器,在UE的工作带宽资源,如果第四定时器期满,UE认为其和gNB对UE的工作带宽资源的理解可能不一致,UE接入gNB,可以在接入后和gNB实现对UE的工作带宽资源的理解一致。
下面结合图13,详细介绍本申请实施例提供的第二种接入方法,该方法对应于本申请实施例提供的第三种设计。其中,图13所示为在UE侧实现第二种接入方法时对应的流程示意图。
步骤1301,UE向gNB发送第三请求。
步骤1302,在UE的工作带宽资源,如果UE没有接收到gNB发送的第二响应,UE接入gNB。其中,第二响应对应于第三请求。
第二响应可以为1比特信息,还可以为UE特定信息或者其它信息,本申请不做限制。
第三请求的传输和第二响应的传输之间的定时关系类似步骤803中第一请求的传输和在UE校准带宽资源UE目标工作带宽资源的信息的传输之间的定时关系,这里不再赘述。其中,第三请求的传输对应第一请求的传输,第二响应的传输对应在校准带宽资源UE目标工作带宽资源的信息的传输。
在第二种接入方法中,基于请求反馈机制,在UE工作带宽资源,如果没有收到第二响应,UE认为其和gNB对UE的工作带宽资源的理解可能不一致,UE接入gNB,可以在接入后和gNB实现对UE的工作带宽资源的理解一致。
本申请实施例提供的第一种和第二种接入方法,UE接入gNB后,可以配置用于UE接入gNB的带宽资源为UE的工作带宽资源。进一步地,UE接入gNB后,gNB可以在用于UE接入gNB的带宽资源,向UE发送信息,为UE配置该UE的工作带宽资源,其中,该信息可以为上述描述的UE目标工作带宽资源的信息。
本申请实施例提供的第一种和第二种接入方法中,UE接入gNB的接入方法可以为本领域技术人员常用的方法。示例性地,该接入方法可以为5G系统或者LTE系统中的随机接入方法。该接入方法可以包括基于竞争的接入和非基于竞争的接入。gNB 和UE可以通过预配置确定用于UE接入gNB的带宽资源的频率资源位置信息。gNB还可以通过信令为UE配置用于UE接入gNB的带宽资源的频率资源信息。UE根据接收到的gNB发送的信令,确定gNB为其配置的用于UE接入gNB的带宽资源。其中,用于UE接入gNB的带宽资源的资源位置信息可以为步骤201中第一种频率资源位置信息至第五种频率资源位置信息中的任一种频率资源位置信息。
上述本申请提供的实施例中,分别从gNB、UE、以及gNB和UE之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述方法中描述的各功能,gNB和UE可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图14是本申请实施例提供的装置1400的结构示意图。其中,装置1400可能是gNB;也可能是应用于gNB的装置,该装置应用于gNB时,能够支持gNB实现上述方法中描述的gNB的功能。装置1400可以由芯片系统实现。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
如图14中所示,装置1400包括发送模块/接收模块14001。本申请实施例中,发送模块/接收模块也可以称为收发模块。
当装置1400用于实现或者用于支持gNB实现上述方法时,发送模块/接收模块14001可能用于发送UE目标工作带宽资源的信息,可能用于发送和/或接收第一UE特定信息,也可能用于发送和/或接收第二UE特定信息,也可能用于发送UE候选工作带宽资源的频率资源位置信息,也可能用于发送第一周期的配置和第一周期中的N2个第一时间单元的配置,也可能用于接收第一请求,也可能用于接收反馈,也可能用于接收第二请求,也可能用于发送第一响应,也可能用于接收第三请求,也可能用于发送第二响应,也可能用于接入过程中发送下行信道,还可能用于接入过程中接收上行信道。其中,发送模块/接收模块14001可能发送和/或接收的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。
装置1400还可以包括确定模块14002,确定模块14002可能和装置1400中包括的其它模块耦合,示例性的,该其它模块包括发送模块/接收模块14001和定时模块14003中至少一个。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或连接,其可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。当装置1400用于实现或者用于支持gNB实现上述方法时,确定模块14002可能用于确定上述发送模块/接收模块14001发送的UE目标工作带宽资源的信息、第一UE特定信息、第二UE特定信息、UE候选工作带宽资源的频率资源位置信息、第一周期的配置和第一周期中的N2个第一时间单元的配置、第一响应、第二响应和接入过程中下行信道携带的信息中至少一个。其中,确定模块14002可能确定的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。
当装置1400用于实现或者用于支持gNB实现上述第四种带宽资源配置方法时,装置1400还可以包括定时模块14003,用于实现第二定时器的功能。定时模块14003可能和装置1400中包括的其它模块耦合,示例性的,该其它模块包括发送模块/接收 模块14001和确定模块14002中至少一个。
图15是本申请实施例提供的装置1500的结构示意图。其中,装置1500可能是UE;也可能是应用于UE的装置,该装置应用于UE时,能够支持UE实现上述方法中描述的UE的功能。装置1500可以由芯片系统实现。
如图15中所示,装置1500包括发送模块/接收模块15001。
当装置1500用于实现或者用于支持UE实现上述方法时,发送模块/接收模块15001可能用于接收UE目标工作带宽资源的信息,可能用于发送和/或接收第一UE特定信息,也可能用于发送和/或接收第二UE特定信息,也可能用于接收UE候选工作带宽资源的频率资源位置信息,也可能用于接收第一周期的配置和第一周期中的N2个第一时间单元的配置,也可能用于发送第一请求,也可能用于发送反馈,也可能用于发送第二请求,也可能用于接收第一响应,也可能用于发送第三请求,也可能用于接收第二响应,也可能用于接入过程中发送上行信道,还可能用于接入过程中接收下行信道。其中,发送模块/接收模块15001可能发送和/或接收的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。
装置1500还可以包括确定模块15002,确定模块15002可能和装置1500中包括的其它模块耦合,示例性的,该其它模块包括发送模块/接收模块15001和定时模块15003中至少一个。当装置1500用于实现或者用于支持UE实现上述方法时,确定模块15002可能用于确定上述发送模块/接收模块15001发送的第一UE特定信息、第二UE特定信息、第一请求、反馈、第二请求、第三请求和接入过程中上行信道携带的信息中至少一个。其中,确定模块15002可能确定的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。
装置1500还可能包括定时模块15003,当装置1500用于实现或者用于支持UE实现当装置1500用于实现或者用于支持UE实现图6涉及的第二种带宽资源配置方法时,定时模块15003可能用于实现第一定时器的功能;当装置1500用于实现或者用于支持UE实现图8涉及的第三种带宽资源配置方法时,定时模块15003可能用于实现第三定时器的功能;当装置1500用于实现或者用于支持UE实现图12涉及的第一种接入方法时,定时模块15003可能用于实现第四定时器的功能。定时模块15003可能和装置1500中包括的其它模块耦合,示例性的,该其它模块包括发送模块/接收模块15001和确定模块15002中至少一个。
图16是本申请实施例提供的装置1600的结构示意图。其中,装置1600可能是gNB;也可能是应用于gNB的装置,该装置应用于gNB时,能够支持gNB实现上述方法中描述的gNB的功能。
如图16中所示,装置1600包括处理系统1610,用于实现或者用于支持gNB实现上述方法中描述的gNB的功能。处理系统1610可以是一种电路,该电路可以由芯片系统实现。处理系统1610包括至少一个处理器1613,可以用于实现或者用于支持gNB实现上述方法中描述的gNB的功能。当处理系统1610中包括其它装置时,处理器1613还可以用于管理处理系统1610中包括的其它装置,示例性地,该其它装置可能为下述 描述的存储器1615、定时系统1611、总线1612和总线接口1614中至少一个。本申请实施例中,处理器可以是中央处理器(central processing unit,简称CPU),通用处理器网络处理器(network processor,简称NP)、数字信号处理器(digital signal processing,简称DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,简称PLD)或它们的任意组合。
处理系统1610还可能包括存储器1615,用于存储程序指令或者程序指令和数据。本申请实施例中,存储器包括易失性存储器(volatile memory),例如随机存取存储器(random-access memory,简称RAM);存储器也可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(hard disk drive,简称HDD)或固态硬盘(solid-state drive,简称SSD);存储器还可以包括上述种类的存储器的组合。
处理器1613可能和存储器1615协同操作。处理器1613可能执行存储器1615中存储的程序指令。当处理器1613执行存储器1615中存储的程序指令时,可以实现或者支持gNB实现上述方法中gNB的各功能中至少一个功能。处理器1613还可能读取存储器1615中存储的数据。存储器1615还可能存储处理器1613执行程序指令时得到的数据。
处理器1613可能包括信息生成和发送电路16131,当装置1600用于实现或者用于支持gNB实现上述方法时,信息生成和发送电路16131可能用于生成和发送第一UE特定信息,也可能用于生成和发送第二UE特定信息,也可能用于生成和发送UE候选工作带宽资源的频率资源位置信息,也可能用于生成和发送第一周期的配置和第一周期中的N2个第一时间单元的配置,也可能用于生成和发送第一响应,也可能用于生成和发送第二响应,也可能用于生成和发送接入过程中下行信道携带的信息。其中,信息生成和发送电路16131可能生成和发送的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。存储器1615还可能包括信息生成和发送模块16151,信息生成和发送电路16131实现上述生成和发送功能时,还可能和信息生成和发送模块16151协同操作。
处理器1613还可能包括信息接收和处理电路16132,当装置1600用于实现或者用于支持gNB实现上述方法时,信息接收和处理电路16132可能用于接收和处理第一UE特定信息,也可能用于接收和处理第二UE特定信息,也可能用于接收和处理第一请求,也可能用于接收和处理反馈,也可能用于接收和处理第二请求,也可能用于接收和处理第三请求,还可能用于接收和处理接入过程中上行信道携带的信息。其中,信息接收和处理电路16132可能接收和处理的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。存储器1615还可能包括信息接收和处理模块16152,信息接收和处理电路16132实现上述接收和处理功能时,还可能和信息接收和处理模块16152协同操作。
处理系统1610还可能包括定时系统1611,当装置1600用于实现或者用于支持gNB实现上述第四种带宽资源配置方法时,定时系统1611可能用于实现第二定时器的功能。
处理系统1610还可以包括总线接口1614,用于提供总线1612和其它装置之间的接口。
装置1600还可能包括收发器1630,用于通过传输介质和其它通信设备进行通信,从而用于装置1600中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统1610。示例性地,装置1600中的其它装置可能利用收发器1630和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置1600中的其它装置可能接收相应的信息,其中,该相应的信息由收发器1630通过传输介质进行接收,该相应的信息可以通过总线接口1614或者通过总线接口1614和总线1612在收发器1630和装置1600中的其它装置之间进行交互;和/或,装置1600中的其它装置可能发送相应的信息,其中,该相应的信息由收发器1630通过传输介质进行发送,该相应的信息可以通过总线接口1614或者通过总线接口1614和总线1612在收发器1630和装置1600中的其它装置之间进行交互。
装置1600还可能包括用户接口1620,用户接口1620是用户和装置1600之间的接口,可能用于用户和装置1600进行信息交互。示例性地,用户接口1620可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置1600的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统1610包括处理器1613,还可以包括存储器1615、定时系统1611、总线1612和总线接口1614中至少一个,用于实现上述方法中描述的gNB的功能。处理系统1610也在本申请的保护范围。
图17是本申请实施例提供的装置1700的结构示意图。其中,装置1700可能是UE;也可能是应用于UE的装置,该装置应用于UE时,能够支持UE实现上述方法中描述的UE的功能。
如图17中所示,装置1700包括处理系统1710,用于实现或者用于支持UE实现上述方法中描述的UE的功能。处理系统1710可以是一种电路,该电路可以由芯片系统实现。处理系统1710可以包括至少一个处理器1713,可以用于实现或者用于支持UE实现上述方法中描述的UE的功能。当处理系统1710中包括其它装置时,处理器1713还可以用于管理处理系统1710中包括的其它装置,示例性地,该其它装置可能为下述描述的存储器1715、定时系统1711、总线1712和总线接口1714中至少一个。
处理系统1710还可能包括存储器1715,用于存储程序指令或者程序指令和数据。
处理器1713可能和存储器1715协同操作。处理器1713可能执行存储器1715中存储的程序指令。当处理器1713执行存储器1715中存储的程序指令时,可以实现或者支持UE实现上述方法中UE的各功能中至少一个功能。处理器1713还可能读取存储器1715中存储的数据。存储器1715还可能存储处理器1713执行程序指令时得到的数据。
处理器1713可能包括信息生成和发送电路17131,当装置1700用于实现或者用于支持UE实现上述方法时,信息生成和发送电路17131可能用于生成和发送第一UE特定信息,也可能也可能用于生成和发送第二UE特定信息,也可能用于生成和发送第一请求,也可能用于生成和发送反馈,也可能用于生成和发送第二请求,也可能用于生成和发送第三请求,也可能用于生成和发送接入过程中上行信道携带的信息。其中,信息生成和发送电路17131可能生成和发送的各信息和上述各方法的对应关系在 上述各方法中进行了详细的体现,这里不再赘述。存储器1715还可能包括信息生成和发送模块17151,信息生成和发送电路17131实现上述生成和发送功能时,还可能和信息生成和发送模块17151协同操作。
处理器1713还可能包括信息接收和处理电路17132,当装置1700用于实现或者用于支持UE实现上述方法时,信息接收和处理电路17132可能用于接收和处理第一UE特定信息,也可能用于接收和处理第二UE特定信息,也可能用于接收和处理第一响应,也可能用于接收和处理第二响应,还可能用于接收和处理接入过程中传输的下行信道携带的信息。其中,信息接收和处理电路17132可能接收和处理的各信息和上述各方法的对应关系在上述各方法中进行了详细的体现,这里不再赘述。存储器1715还可能包括信息接收和处理模块17152,信息接收和处理电路17132实现上述接收和处理功能时,还可能和信息接收和处理模块17152协同操作。
处理系统1710还可能包括定时系统1711,当装置1700用于实现或者用于支持UE实现图6涉及的第二种带宽资源配置方法时,定时系统1711可能用于实现第一定时器的功能;当装置1700用于实现或者用于支持UE实现图8涉及的第三种带宽资源配置方法时,定时系统1711可能用于实现第三定时器的功能;当装置1700用于实现或者用于支持UE实现图12涉及的第一种接入方法时,定时系统1711可能用于实现第四定时器的功能。
处理系统1710还可以包括总线接口1714,用于提供总线1712和其它装置之间的接口。
装置1700还可能包括收发器1730,用于通过传输介质和其它通信设备进行通信,从而用于装置1700中的其它装置可以和其它通信设备进行通信。其中,该其它装置可能是处理系统1710。示例性地,装置1700中的其它装置可能利用收发器1730和其它通信设备进行通信,接收和/或发送相应的信息。还可以描述为,装置1700中的其它装置可能接收相应的信息,其中,该相应的信息由收发器1730通过传输介质进行接收,该相应的信息可以通过总线接口1714或者通过总线接口1714和总线1712在收发器1730和装置1700中的其它装置之间进行交互;和/或,装置1700中的其它装置可能发送相应的信息,其中,该相应的信息由收发器1730通过传输介质进行发送,该相应的信息可以通过总线接口1714或者通过总线接口1714和总线1712在收发器1730和装置1700中的其它装置之间进行交互。本申请实施例中,收发器还可以成发送器/接收器,或者发送接收器。
装置1700还可能包括用户接口1720,用户接口1720是用户和装置1700之间的接口,可能用于用户和装置1700进行信息交互。示例性地,用户接口1720可能是键盘、鼠标、显示器、扬声器(speaker)、麦克风和操作杆中至少一个。
上述主要从装置1700的角度描述了本申请实施例提供的一种装置结构。在该装置中,处理系统1710包括处理器1713,还可以包括存储器1715、定时系统1711、总线1712和总线接口1714中至少一个,用于实现上述方法中描述的UE的功能。处理系统1710也在本申请的保护范围。
本申请的装置实施例中,装置的模块划分是一种逻辑功能划分,实际实现时可以 有另外的划分方式。例如,装置的各功能模块可以集成于一个模块中,也可以是各个功能模块单独存在,也可以两个或两个以上功能模块集成在一个模块中。
本申请实施例中描述的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
以上各实施例仅用以说明本申请的技术方案,并不用于限定其保护范围。凡在本申请的技术方案的基础上所做的修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (43)

  1. 一种带宽资源配置方法,包括:
    在第一带宽部分与网络设备进行下行传输;
    在第三带宽部分从所述网络设备接收第二带宽部分的信息,所述第二带宽部分为将要切换至的带宽部分;其中所述第三带宽部分为接入带宽部分,或者所述第三带宽部分为候选工作带宽部分中的一个或者多个带宽部分。
  2. 根据权利要求1所述的方法,其特征在于,所述第一带宽部分与第三带宽部分不相同。
  3. 根据权利要求1或2所述的方法,其特征在于,所述在第三带宽部分从所述网络设备接收第二带宽部分的信息包括:在所述第三带宽部分从所述网络设备接收物理下行控制信道PDCCH,所述PDCCH携带所述第二带宽部分的信息。
  4. 根据权利要求1-3任一项所述的方法,包括:
    在所述第一带宽部分从所述网络设备接收第二带宽部分的信息,所述第二带宽部分为所述将要切换至的带宽部分。
  5. 根据权利要求1-4任一项所述的方法,包括:切换至所述第二带宽部分。
  6. 根据权利要求1至5任一项所述的方法,包括:在所述第一带宽部分,如果从所述网络设备接收到下行传输,启动或重新启动第一定时器;
    如果所述第一定时器期满,切换至所述第三带宽,在第三带宽部分从所述网络设备接收第二带宽部分的信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述在第一带宽部分与网络设备进行下行传输包括:从所述网络设备接收PDCCH。
  8. 根据权利要求7所述的方法,其特征在于,从所述网络设备接收PDCCH包括:在特定搜索空间从所述网络设备接收PDCCH。
  9. 根据权利要求1至8中任何一个所述的方法,其特征在于,
    在第三带宽部分从所述网络设备接收第二带宽部分的信息之前,所述方法还包括:从所述第一带宽部分切换至所述第三带宽部分;和/或,
    在第三带宽部分从所述网络设备接收第二带宽部分的信息之后,所述方法还包括:从所述第三带宽部分切换至所述第二带宽部分。
  10. 根据权利要求1-9任一项所述的方法,包括:从网络设备接收候选工作带宽部分的频率资源位置信息;
    所述第二带宽部分是所述候选工作带宽部分的子集,所述第二带宽部分的信息指示了所述第二带宽部分为所述候选工作带宽部分中的至少一个带宽部分。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第二带宽部分的信息包括所述第二带宽部分的频率资源位置信息。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,在第三带宽部分从所述网络设备接收第二带宽部分的信息之前,所述方法还包括:
    向所述网络设备发送第一请求,所述第一请求用于请求从所述网络设备接收所述第二带宽部分的信息。
  13. 一种带宽资源配置方法,包括:
    在第一带宽部分向用户设备发送下行传输;
    在第三带宽部分向所述用户设备发送第二带宽部分的信息,所述第二带宽部分为所述用户设备将要切换至的带宽部分;其中所述第三带宽部分为接入带宽部分,或者所述第三带宽部分为所述用户设备的候选工作带宽部分中的一个或者多个带宽部分。
  14. 根据权利要求13所述的方法,其特征在于,所述第一带宽部分与第三带宽部分不相同。
  15. 根据权利要求13或14所述的方法,其特征在于,所述在第三带宽部分向所述用户设备发送第二带宽部分的信息包括:在第三带宽部分向所述用户设备发送物理下行控制信道PDCCH,所述PDCCH携带所述第二带宽部分的信息。
  16. 根据权利要求13-15任一项所述的方法,包括:
    在所述第一带宽部分向所述用户设备发送第二带宽部分的信息,所述第二带宽部分为所述用户设备将要切换至的带宽部分。
  17. 根据权利要求13-16任一项所述的方法,其特征在于,所述向用户设备发送下行传输包括:向所述用户设备发送PDCCH。
  18. 根据权利要求17所述的方法,其特征在于,向所述用户设备发送PDCCH包括:在特定搜索空间向所述用户设备发送PDCCH。
  19. 根据权利要求13-18任一项所述的方法,包括:向用户设备发送候选工作带宽部分的频率资源位置信息;
    所述第二带宽部分是所述候选工作带宽部分的子集,所述第二带宽部分的信息指示了所述第二带宽部分为所述候选工作带宽部分中的至少一个带宽部分。
  20. 根据权利要求13-19任一项所述的方法,其特征在于,所述第二带宽部分的信息包括所述第二带宽部分的频率资源位置信息。
  21. 根据权利要求13-20任一项所述的方法,其特征在于,在第三带宽部分向所述用户设备发送第二带宽部分的信息之前,所述方法还包括:
    从用户设备接收第一请求,所述第一请求用于请求向所述用户设备发送所述第二带宽部分的信息。
  22. 一种通信装置,用于实现权利要求1-12任一项所述的方法。
  23. 一种通信装置,包括:
    至少一个处理器和收发单元,所述处理器利用所述收发单元:
    在第一带宽部分与网络设备进行下行传输;
    在第三带宽部分从所述网络设备接收第二带宽部分的信息,所述第二带宽部分为将要切换至的带宽部分;其中所述第三带宽部分为接入带宽部分,或者所述第三带宽部分为候选工作带宽部分中的一个或者多个带宽部分。
  24. 根据权利要求23所述的通信装置,其特征在于,所述第一带宽部分与第三带宽部分不相同。
  25. 根据权利要求23-24任一项所述的通信装置,其特征在于,所述处理器用于:在所述第一带宽部分,如果从所述网络设备接收到下行传输,启动或重新启动第一定时器;
    如果所述第一定时器期满,将用户设备切换至所述第三带宽,在第三带宽部分从所 述网络设备接收第二带宽部分的信息。
  26. 一种通信装置,用于实现权利要求13-21任一项所述的方法。
  27. 一种通信装置,包括:
    至少一个处理器和收发单元,所述处理器利用所述收发单元:
    在第一带宽部分向用户设备发送下行传输;
    在第三带宽部分向所述用户设备发送第二带宽部分的信息,所述第二带宽部分为所述用户设备将要切换至的带宽部分;其中所述第三带宽部分为接入带宽部分,或者所述第三带宽部分为所述用户设备的候选工作带宽部分中的一个或者多个带宽部分。
  28. 根据权利要求23-25、或27任一项所述的通信装置,所述收发单元为收发器、或者通信接口。
  29. 一种带宽资源配置方法,其特征在于,包括:
    在第一带宽部分,与用户设备UE进行所述UE的第一UE特定信息的传输;
    在所述第一带宽部分,向所述UE发送第二带宽部分的信息,将所述第二带宽部分作为所述UE的工作带宽部分,其中,所述第二带宽部分用于与所述UE进行所述UE的第二UE特定信息的传输;
    启动第二定时器;
    如果第二定时器是运行状态,如果接收到所述UE的反馈,停止第二定时器,其中,所述反馈为对应于携带所述第二带宽部分的信息的信道的反馈;
    在第二定时器期满后,将所述第一带宽部分作为所述UE的工作带宽部分。
  30. 根据权利要求29所述的方法,其特征在于,所述第二带宽部分的信息由物理下行控制信道PDCCH携带。
  31. 根据权利要求29或者30所述的方法,其特征在于,包括:向所述UE发送候选工作带宽部分的频率资源位置信息;
    所述第二带宽部分是所述候选工作带宽部分的子集,所述第二带宽部分的信息指示了所述第二带宽部分为所述候选工作带宽部分中的至少一个带宽部分。
  32. 根据权利要求29-31任一项所述的方法,其特征在于,所述第二带宽部分的信息包括所述第二带宽部分的频率资源位置信息。
  33. 一种带宽资源配置方法,其特征在于,包括:
    在第一带宽部分,与网络设备进行用户设备UE的第一UE特定信息的传输;
    在所述第一带宽部分,接收所述网络设备发送的第二带宽部分的信息,将所述第二带宽部分作为所述UE的工作带宽部分,其中,所述第二带宽部分用于与所述网络设备进行所述UE的第二UE特定信息的传输;
    向所述网络设备发送反馈,其中,所述反馈为对应于携带所述第二带宽部分的信息的信道的反馈;
    启动第三定时器;
    在所述第二带宽部分,如果接收到所述网络设备发送的所述第二UE特定信息,停止第三定时器;
    第三定时器期满后,将所述第一带宽资作为所述UE的工作带宽部分。
  34. 一种带宽资源配置方法,其特征在于,包括:
    在第一带宽部分,与网络设备进行用户设备UE的第一UE特定信息的传输;
    在所述第一带宽部分,接收所述网络设备发送的第二带宽部分的信息,将所述第二带宽部分作为所述UE的工作带宽部分,其中,所述第二带宽部分用于与所述网络设备进行所述UE的第二UE特定信息的传输;
    向所述网络设备发送反馈,其中,所述反馈为对应于携带所述第二带宽部分的信息的信道的反馈;
    向所述网络设备发送第二请求;
    在所述第一带宽部分,如果没有接收到所述网络设备发送的第一响应,将所述第一带部分作为所述UE的工作带宽部分,其中,所述第一响应为对应于所述第二请求的响应。
  35. 根据权利要求33或者34所述的方法,其特征在于,所述第二带宽部分的信息由物理下行控制信道携带。
  36. 根据权利要求33-35中任一项所述的方法,其特征在于,还包括:接收所述网络设备发送的UE候选工作带宽部分的频率资源位置信息;
    所述第二带宽部分是所述UE候选工作带宽部分的子集,所述第二带宽部分的信息指示了所述第二带宽部分为所述UE候选工作带宽部分中的至少一个带宽部分。
  37. 根据权利要求33-36中任一项所述的方法,其特征在于,所述第二带宽部分的信息包括所述第二带宽部分的频率资源位置信息。
  38. 一种接入方法,其特征在于,包括:
    在UE工作带宽部分,如果接收到网络设备发送的第三UE特定信息,启动或者重新启动第四定时器;
    第四定时器期满后,接入所述网络设备。
  39. 根据权利要求38所述的方法,其特征在于,在UE工作带宽部分,如果接收到网络设备发送的第三UE特定信息,启动或者重新启动第四定时器之前,还包括:
    在第一带宽部分,与网络设备进行所述UE的第一UE特定信息的传输;
    在所述第一带宽部分,接收所述网络设备发送的第二带宽部分的信息,将所述第二带宽部分作为所述UE的工作带宽部分,其中,所述第二带宽部分用于与所述网络设备进行所述UE的第三UE特定信息的传输;
    启动所述第四定时器。
  40. 一种接入方法,其特征在于,包括:
    向网络设备发送第三请求;
    在UE工作带宽部分,如果没有接收到网络设备发送的第二响应,接入所述网络设备,其中,所述第二响应对应于所述第三请求。
  41. 一种通信装置,其特征在于,用于实现权利要求29-40任一项所述的方法。
  42. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行权利要求1-21任一项所述的方法,或使得计算机执行权利要求29-40任一项所述的方法。
  43. 一种通信系统,包括权利要求22至25任一项所述的通信装置、和权利要求26-28任一项所述的通信装置。
PCT/CN2018/091668 2017-06-16 2018-06-15 带宽资源配置方法、装置和系统 WO2018228567A1 (zh)

Priority Applications (12)

Application Number Priority Date Filing Date Title
RU2020101123A RU2767325C2 (ru) 2017-06-16 2018-06-15 Способ, аппаратура и система конфигурации ресурсов полосы пропускания
PL18817808T PL3534627T3 (pl) 2017-06-16 2018-06-15 Sposób, urządzenie i system konfiguracji zasobu szerokości pasma
EP18817808.1A EP3534627B1 (en) 2017-06-16 2018-06-15 Bandwidth resource configuration method, apparatus, and system
BR112019026426-4A BR112019026426A2 (pt) 2017-06-16 2018-06-15 método de configuração de recurso de largura de banda, aparelho, e sistema
AU2018284889A AU2018284889C1 (en) 2017-06-16 2018-06-15 Bandwidth resource configuration method, apparatus, and system
CA3067281A CA3067281C (en) 2017-06-16 2018-06-15 Bandwidth resource configuration method, apparatus, and system
EP21157525.3A EP3886517B1 (en) 2017-06-16 2018-06-15 Bandwidth resource configuration method, apparatus, and system
KR1020207000930A KR102366668B1 (ko) 2017-06-16 2018-06-15 대역폭 자원 구성 방법, 장치 및 시스템
CN201880039867.4A CN110771241B (zh) 2017-06-16 2018-06-15 带宽资源配置方法、装置和系统
JP2019569395A JP7174720B2 (ja) 2017-06-16 2018-06-15 帯域幅リソース構成方法、装置、およびシステム
US16/280,565 US10660079B2 (en) 2017-06-16 2019-02-20 Bandwidth resource configuration method, apparatus, and system
US16/867,054 US11265868B2 (en) 2017-06-16 2020-05-05 Bandwidth resource configuration method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459800.3A CN109152037B (zh) 2017-06-16 2017-06-16 带宽资源配置方法、装置和系统
CN201710459800.3 2017-06-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/280,565 Continuation US10660079B2 (en) 2017-06-16 2019-02-20 Bandwidth resource configuration method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018228567A1 true WO2018228567A1 (zh) 2018-12-20

Family

ID=64658957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091668 WO2018228567A1 (zh) 2017-06-16 2018-06-15 带宽资源配置方法、装置和系统

Country Status (11)

Country Link
US (2) US10660079B2 (zh)
EP (2) EP3886517B1 (zh)
JP (1) JP7174720B2 (zh)
KR (1) KR102366668B1 (zh)
CN (3) CN111107643B (zh)
AU (1) AU2018284889C1 (zh)
BR (1) BR112019026426A2 (zh)
CA (1) CA3067281C (zh)
PL (1) PL3534627T3 (zh)
RU (1) RU2767325C2 (zh)
WO (1) WO2018228567A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11402396B2 (en) 2019-12-31 2022-08-02 Shenzhen Prs Limited Process record slide and method of using the same for loose cells

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6911296B2 (ja) 2016-08-08 2021-07-28 ソニーグループ株式会社 通信装置、通信方法、及びプログラム
CN110958662B (zh) * 2018-09-27 2022-11-22 维沃移动通信有限公司 一种接入控制方法、终端及网络侧设备
US11758518B2 (en) 2020-05-15 2023-09-12 Electronics And Telecommunications Research Institute Method and apparatus for supporting bandwidth part based operations in sidelink communication
CN113784386B (zh) * 2020-06-09 2024-03-05 维沃移动通信有限公司 数据的传输方法及装置、终端及网络侧设备
CN117616850A (zh) * 2021-07-20 2024-02-27 株式会社Ntt都科摩 终端和通信方法
KR20240043445A (ko) * 2022-09-27 2024-04-03 삼성전자주식회사 무선 통신 시스템에서 네트워크 에너지 절약을 위한 sps 및 cg 송수신 방법 및 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239737A (zh) * 2010-01-08 2011-11-09 华为技术有限公司 资源分配方法及装置
CN102845120A (zh) * 2010-03-31 2012-12-26 高通股份有限公司 有助于支持多无线共存的方法和装置
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN105516888A (zh) * 2014-09-26 2016-04-20 上海贝尔股份有限公司 一种机器通信设备终端和基站中进行数据传输的方法
US20160302174A1 (en) * 2015-04-09 2016-10-13 Intel IP Corporation Methods, apparatuses, and systems for enhancement of evolved physical downlink control channel for machine type communications

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2417531C2 (ru) * 2006-06-21 2011-04-27 Квэлкомм Инкорпорейтед Способы и устройство для измерения, обмена и/или использования информации о помехах
US8509791B2 (en) * 2007-03-17 2013-08-13 Qualcomm Incorporated Handover in wireless communications
EP2713655A4 (en) * 2011-09-29 2014-08-27 Huawei Tech Co Ltd INTERCELLULAR SWITCHING PROCESS, BASE STATION FOR IT AND SYSTEM THEREWITH
US9491738B2 (en) * 2012-02-03 2016-11-08 Qualcomm Incorporated Managing downlink and uplink resources for low cost user equipments
WO2013116972A1 (en) * 2012-02-06 2013-08-15 Nokia Siemens Networks Oy Methods and devices for an improved cell access procedure
CN103298118B (zh) * 2012-02-29 2016-04-13 电信科学技术研究院 一种时频资源的指示及确认方法和装置
CN103298117B (zh) * 2012-02-29 2016-03-23 电信科学技术研究院 一种时频资源的指示及确认方法和装置
WO2014085966A1 (zh) * 2012-12-03 2014-06-12 富士通株式会社 机器类型通信的资源配置方法和装置
WO2014163302A1 (ko) * 2013-04-04 2014-10-09 엘지전자 주식회사 소규모 셀에서의 수신 방법 및 사용자 장치
CN106717092B (zh) * 2014-09-25 2020-07-07 株式会社Ntt都科摩 用户终端、无线基站以及无线通信方法
US9572106B2 (en) * 2014-10-31 2017-02-14 Qualcomm Incorporated Dynamic bandwidth switching for reducing power consumption in wireless communication devices
CN106034153B (zh) * 2015-03-16 2019-06-28 阿里巴巴集团控股有限公司 带宽资源分配方法、数据传输方法、装置及系统
CN108141853B (zh) * 2016-02-03 2022-01-18 索尼公司 终端装置、基站装置和通信方法
US20180077689A1 (en) * 2016-09-15 2018-03-15 Qualcomm Incorporated Multiple bandwidth operation
US20180192329A1 (en) * 2017-01-04 2018-07-05 Cypress Semiconductor Corporation Dynamic Bandwidth Selection
EP3570482B1 (en) * 2018-05-15 2021-08-18 Comcast Cable Communications, LLC Multiple active bandwidth parts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239737A (zh) * 2010-01-08 2011-11-09 华为技术有限公司 资源分配方法及装置
CN102845120A (zh) * 2010-03-31 2012-12-26 高通股份有限公司 有助于支持多无线共存的方法和装置
CN103220796A (zh) * 2012-01-21 2013-07-24 电信科学技术研究院 一种下行数据传输方法及其设备
CN105516888A (zh) * 2014-09-26 2016-04-20 上海贝尔股份有限公司 一种机器通信设备终端和基站中进行数据传输的方法
US20160302174A1 (en) * 2015-04-09 2016-10-13 Intel IP Corporation Methods, apparatuses, and systems for enhancement of evolved physical downlink control channel for machine type communications

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11402396B2 (en) 2019-12-31 2022-08-02 Shenzhen Prs Limited Process record slide and method of using the same for loose cells

Also Published As

Publication number Publication date
CN109152037A (zh) 2019-01-04
KR102366668B1 (ko) 2022-02-23
CN110771241A (zh) 2020-02-07
EP3534627A4 (en) 2020-01-22
JP7174720B2 (ja) 2022-11-17
CN111107643B (zh) 2021-04-09
US10660079B2 (en) 2020-05-19
PL3534627T3 (pl) 2021-10-25
AU2018284889A1 (en) 2020-01-16
EP3886517B1 (en) 2024-05-29
JP2020523901A (ja) 2020-08-06
RU2020101123A3 (zh) 2021-10-06
EP3886517A1 (en) 2021-09-29
CA3067281C (en) 2023-09-19
EP3534627A1 (en) 2019-09-04
US20190191421A1 (en) 2019-06-20
CN109152037B (zh) 2022-07-29
BR112019026426A2 (pt) 2020-07-21
CN111107643A (zh) 2020-05-05
RU2767325C2 (ru) 2022-03-17
AU2018284889B2 (en) 2021-03-25
CN110771241B (zh) 2024-05-14
RU2020101123A (ru) 2021-07-16
US20200267704A1 (en) 2020-08-20
KR20200013775A (ko) 2020-02-07
US11265868B2 (en) 2022-03-01
EP3534627B1 (en) 2021-04-07
AU2018284889C1 (en) 2021-08-05
CA3067281A1 (en) 2018-12-20

Similar Documents

Publication Publication Date Title
WO2018228567A1 (zh) 带宽资源配置方法、装置和系统
JP7121800B2 (ja) アンライセンス無線バンドシナリオのための一時的フローティングdlタイミングアプローチ
WO2017092707A1 (zh) 无线通信的方法和装置
WO2020094019A1 (zh) 信息传输方法及装置
WO2018210243A1 (zh) 一种通信方法和装置
JP2020504546A (ja) リソース指示方法、ユーザ機器、およびネットワークデバイス
WO2018228416A1 (zh) 一种通信方法、网络设备及终端设备
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
KR20200028453A (ko) 리소스 할당 방법, 단말, 및 네트워크 디바이스
KR102546012B1 (ko) 반송파 호핑 방법, 단말기 및 기지국
WO2020143490A1 (zh) 通信方法及装置
US20190124705A1 (en) Identifier management method, apparatus, and system
KR20220071247A (ko) 반복을 통한 구성 ul
JP2018537907A (ja) スケジューリング情報送信方法および装置
WO2019213881A1 (zh) 一种上行传输资源分配方法及装置
CN116569512A (zh) 方法、通信设备和基础设施设备
WO2020062064A1 (zh) 由用户设备、基站执行的方法以及用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817808

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018817808

Country of ref document: EP

Effective date: 20190528

ENP Entry into the national phase

Ref document number: 3067281

Country of ref document: CA

Ref document number: 2019569395

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026426

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207000930

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018284889

Country of ref document: AU

Date of ref document: 20180615

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112019026426

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191212