WO2022111182A1 - 一种热丝化学气相沉积装置及金属支架 - Google Patents

一种热丝化学气相沉积装置及金属支架 Download PDF

Info

Publication number
WO2022111182A1
WO2022111182A1 PCT/CN2021/126272 CN2021126272W WO2022111182A1 WO 2022111182 A1 WO2022111182 A1 WO 2022111182A1 CN 2021126272 W CN2021126272 W CN 2021126272W WO 2022111182 A1 WO2022111182 A1 WO 2022111182A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
diamond film
film layer
bracket
hot wire
Prior art date
Application number
PCT/CN2021/126272
Other languages
English (en)
French (fr)
Inventor
满卫东
朱长征
龚闯
吴剑波
蒋剑宏
Original Assignee
上海征世科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海征世科技股份有限公司 filed Critical 上海征世科技股份有限公司
Publication of WO2022111182A1 publication Critical patent/WO2022111182A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/274Diamond only using microwave discharges

Definitions

  • the invention relates to the field of chemical vapor deposition, in particular to a hot wire chemical vapor deposition device and a metal support therein.
  • Diamond has excellent mechanical, thermal, optical, electrical and acoustic properties, and has a wide range of application prospects.
  • the hot wire chemical vapor deposition (referred to as hot wire CVD) method uses hydrogen and carbon-containing gas or liquid as raw materials, and the diamond film is prepared by pyrolyzing the raw material gas through the hot wire, which has low cost, fast growth rate, and device It has the advantages of being easy to enlarge and so on, and it is a commonly used method for preparing diamond film.
  • hot wire CVD method to prepare diamond film, it is necessary to assemble several metal wires on a pair of electrodes connected to direct current. When the direct current passes through the metal wire, it will heat up due to the resistance of the metal wire itself.
  • the temperature reaches the required temperature, so the metal wire usually adopts high melting point metal (such as W, Ta, etc.), and the diameter generally does not exceed 1.5mm.
  • the hot wire elongates due to high temperature creep when heated from room temperature to operating temperature.
  • the hot wire reacts with the raw material carbon to carbonize, and the hot wire will also be elongated due to carburization during the carbonization process.
  • the length of the hot wire will be extended by about 5-20%.
  • the elongation of the heating wire will cause the middle section of the heating wire to drop, changing the distance between the heating wire and the substrate material, on the one hand, it will increase the surface temperature of the substrate material and deviate from the optimum
  • the growth conditions of the diamond film affect the quality of the deposited diamond film.
  • the drop of the hot wire is uneven, so that the distance between the hot wire and the substrate material is no longer constant, resulting in uneven thickness of the deposited diamond film.
  • the commonly used method is mainly to maintain the hot wire in a straight state by applying a tension on the hot wire.
  • tension There are two main types of tension, one is to use a high-temperature spring or shrapnel to pull one end of the wire, and the tension generated by the spring is used to keep the hot wire in a straightened state, such as US Patent No. 4953499, No. 4958592 , No.5833753, No.4970986 and Chinese patent ZL98205844.6 and so on. Since the tension provided by the spring is a variable force and obeys Hooke's law, as the hot wire lengthens and the spring shortens during the working process, the tension provided will decrease.
  • the spring works in a high temperature environment (generally, the ambient temperature is several hundred degrees Celsius), which will anneal the spring and make the stubborn coefficient smaller.
  • the elastic force will become smaller, and on the other hand, the service life of the spring will be affected. Therefore, high temperature springs have obvious disadvantages.
  • the tensile strength is greatly reduced, and the tension applied to the hot wire is limited. If the tension is too large, the hot wire will be broken, but if the applied tension is too small, it cannot compensate for the creep caused by high temperature. Elongation cannot guarantee that the hot wire is always in a straight state, thus affecting the uniformity of the deposited diamond film. Therefore, when using a high-temperature spring, the spring force of the spring must be carefully adjusted every time, which is troublesome.
  • the other is to hang a heavy object through one end of the hot wire, and use the gravity of the heavy object to straighten the hot wire.
  • the patent CN201102987Y applies a pulling force to the wire through a pulley block to keep the hot wire straight.
  • the structure of the pulley block is relatively complex, and it is placed in a high temperature environment, and the rotation of the pulley is not lubricated by the traditional liquid lubrication system, so the rotation of the pulley is difficult to maintain stability and consistency at high temperatures. It can be said that the structure of the existing hot wire suspension system is relatively complex.
  • the present invention provides a A metal support, the metal support is connected to a power supply to conduct current to the hot wire supported on the metal support, wherein the top surface of the metal support has several grooves, and the upper surface of the groove is formed with conductive diamonds
  • the film layer, each hot wire is placed on the diamond film layer in each groove individually, and the above-mentioned hot wire in the working state converts the diamond in contact with it into graphite, so as to reduce the gap between the above-mentioned hot wire and the above-mentioned diamond film layer. friction force.
  • the above-mentioned diamond film layer is a nano-diamond film layer with a grain size of less than 100 nanometers. Because the set diamond film layer is a diamond film with nanometer grain size, its surface has high smoothness and small friction coefficient, which can further reduce the sliding friction force generated when the hot wire slides on the surface of the nanodiamond film layer. Therefore, the pulling force that needs to be exerted on the heating wire can be reduced, and the service life of the heating wire can be improved.
  • the resistivity of the foregoing diamond film layer is 4.3*10-4 ⁇ .cm-7.8*10-2 ⁇ .cm. It can be understood that the above-mentioned metal bracket needs to play a role of conducting electricity and supporting. In order to ensure good electrical conductivity so that the power supply current can flow through the hot wire smoothly, the resistance of the diamond film layer needs to be reduced, and the metal bracket with low resistivity can reduce the heating problem of the metal bracket itself and reduce the temperature of the metal bracket itself.
  • the above-mentioned diamond film layer is a boron-doped diamond film layer, and the hole carrier concentration of the above-mentioned boron-doped diamond film layer is 8.7*10 19-4.6*10 21cm-3 between.
  • reducing the resistance of the diamond film is achieved by doping the diamond film with boron.
  • the resistivity of the diamond film is ensured by controlling the hole carrier concentration of the boron-doped diamond film to be between 8.7*10 19-4.6*10 21cm-3.
  • the thickness of the foregoing diamond film layer is 3-15 microns.
  • the above-mentioned thickness of the diamond film is set at 3-15 microns because the thickness of the diamond film cannot be too thin. If it is too thin, it cannot be ensured that enough diamond film is converted into graphite under the working state of the hot wire.
  • the thickness of the diamond film should not be too thick, because the diamond film is formed on the metal support, if it is too thick, the adhesion between the diamond film and the metal cannot be guaranteed, and it is easy to fall off. Therefore, the thickness of the diamond film layer needs to be set at 3-15 microns.
  • the working temperature of the foregoing heating wire is 1800-2300°C.
  • the aforementioned metal stent includes a metal tungsten stent and a metal molybdenum stent. Since the metal support needs to withstand a high temperature in the hot wire chemical vapor deposition, in order to ensure the purity of the product of the hot wire chemical vapor deposition, it is necessary to ensure that other items in the reaction chamber except the reaction raw materials maintain thermal stability and chemical stability Therefore, metal tungsten and metal molybdenum are the preferred materials for metal stents.
  • Another aspect of the present invention also provides a thermal filament chemical vapor deposition apparatus, comprising several horizontally placed thermal filaments, two ends of the several thermal filaments are respectively supported on a pair of brackets, wherein at least one of the above-mentioned pair of brackets
  • One bracket is the metal bracket described in any one of the above embodiments, and a weight is suspended from one end of the heating wire supported on the metal bracket to straighten the heating wire by the gravity of the weight.
  • each of the above-mentioned pair of supports is a metal support described in any one of the above-mentioned embodiments, and two ends of the above-mentioned hot wire are respectively suspended with heavy weights. After the object is supported on the above-mentioned metal bracket.
  • the other bracket in the pair of brackets is a fixed metal bracket, and the other end of the above-mentioned hot wire is fixed on the above-mentioned fixed metal bracket by a clamp.
  • the friction between the hot wire and the metal support is reduced by the formed graphite, which can reduce the tension required for tightening the hot wire and prolong the work of the hot wire. life.
  • FIG. 1 shows a top view of the metal bracket provided by the present invention.
  • Fig. 2 shows a schematic cross-sectional view along the A-A' direction of the groove of the metal stent provided by the present invention.
  • Fig. 3 shows a schematic cross-sectional view along the B-B' direction of the groove of the metal stent provided by the present invention.
  • FIG. 4 shows the laser Raman spectrum of the surface of the diamond film layer formed on the groove of the metal support provided by the present invention before hot wire chemical vapor deposition.
  • FIG. 5 shows the laser Raman spectrum of the surface of the diamond film layer formed on the groove of the metal support provided by the present invention after hot wire chemical vapor deposition.
  • the present invention provides a A hot filament chemical vapor deposition device and a metal support therein.
  • FIGS. 1-3 Please refer to FIGS. 1-3 to understand the hot filament chemical vapor deposition apparatus and the metal support therein provided by the present invention.
  • a pair of brackets including the metal bracket 110 and the fixing bracket 120 provided by the present invention are connected to the power supply 200 to conduct current to the heating wire 300 supported on the metal bracket 110 and the fixing bracket 120 .
  • FIG. 2 shows a cross-sectional view of the above-mentioned metal bracket 100 in the direction of AA′.
  • the top surface of the above-mentioned metal support 110 has several grooves 111, and the upper surface of the above-mentioned grooves is formed with a conductive diamond film layer 112, and each hot wire 300 is placed on the diamond film layer 112 in each groove 111 individually, and works The heating wire 300 in the state transforms the diamond in contact with it into graphite, so as to reduce the frictional force between the heating wire 300 and the diamond film layer 112 .
  • the overall shape of the metal bracket 110 may be an existing or to-be-existing shape, such as a long cube shape or other cylindrical shapes.
  • the overall shape of the metal bracket provided by the present invention can be adjusted according to actual needs, and the protection scope of the present invention should not be unduly limited.
  • the upper surface of the metal bracket 110 needs to be provided with several grooves 111 , and a heating wire 300 is placed in each groove.
  • the number of grooves 111 can be set according to actual needs, the grooves are parallel to each other, and the grooves are set at equal distances from each other, so as to ensure the uniformity of the heating wire.
  • the actual number of grooves is greater than the number of heating wires to be provided, it is only necessary to place the heating wires evenly in several of the grooves.
  • the above-mentioned diamond film layer is a nano-diamond film layer with a grain size of less than 100 nanometers. Because the set diamond film layer is a diamond film with nanometer grain size, its surface has high smoothness and small friction coefficient, which can further reduce the sliding friction force generated when the hot wire slides on the surface of the nanodiamond film layer. Therefore, the pulling force that needs to be exerted on the heating wire can be reduced, and the service life of the heating wire can be improved.
  • the resistivity of the above-mentioned diamond film layer is 4.3*10-4 ⁇ .cm-7.8*10-2 ⁇ .cm. It can be understood that the above-mentioned metal bracket needs to play a role of conducting electricity and supporting. In order to ensure good electrical conductivity so that the power supply current can flow through the hot wire smoothly, it is necessary to reduce the resistance of the diamond film layer, and the metal bracket with low resistivity can reduce the heating problem of the metal bracket itself and reduce the temperature of the metal bracket itself.
  • the above-mentioned diamond film layer is a boron-doped diamond film layer, and the hole carrier concentration of the above-mentioned boron-doped diamond film layer is between 8.7*10 19-4.6*10 21cm-3.
  • reducing the resistance of the diamond film is achieved by doping the diamond film with boron.
  • the resistivity of the diamond film layer is ensured by controlling the hole carrier concentration of the boron-doped diamond film to be between 8.7*10 19-4.6*10 21 cm-3.
  • the thickness of the foregoing diamond film layer is 3-15 microns.
  • the above-mentioned thickness of the diamond film is set at 3-15 microns because the thickness of the diamond film cannot be too thin. If it is too thin, it cannot be ensured that enough diamond film is converted into graphite under the working state of the hot wire.
  • the thickness of the diamond film should not be too thick, because the diamond film is formed on the metal support, if it is too thick, the adhesion between the diamond film and the metal cannot be guaranteed, and it is easy to fall off. Therefore, the thickness of the diamond film layer needs to be set at 3-15 microns.
  • the above-mentioned boron-doped diamond film of nanocrystalline grains formed on the upper surface of the groove is prepared by microwave plasma CVD method, and those skilled in the art can realize the above-mentioned boron-doped diamond film of nanocrystalline grains according to existing or existing technologies.
  • Preparation for example, "Preparation of High Boron Doped Diamond Thin Film (Si/BDD) and Research Details of Electrochemical Properties” (Chen Peng, Man Weidong, 2011) discloses a boron-doped diamond capable of preparing the above nanocrystalline grains Method for preparing thin films.
  • the working temperature of the above-mentioned heating wire is 1800-2300°C.
  • the above-mentioned metal stents include metal tungsten stents and metal molybdenum stents. Since the metal support needs to withstand a high temperature in the hot wire chemical vapor deposition, in order to ensure the purity of the product of the hot wire chemical vapor deposition, it is necessary to ensure that other items in the reaction chamber other than the reaction raw materials maintain thermal stability and chemical stability Therefore, metal tungsten and metal molybdenum are the preferred materials for metal stents.
  • the surface of the diamond film when the temperature of the diamond film exceeds 900°C, the surface of the diamond film will be graphitized, and a thin graphite layer will be formed on the surface of the graphitized boron-doped diamond film, which can further reduce the friction between the friction surfaces resistance. Moreover, the formation of this graphitization is completely different from the function of artificially adding graphite between the friction surfaces.
  • This graphitized surface can continuously generate graphite between the diamond film layer and the contact surface of the hot wire, which is always Lubrication effect. The artificially added graphite will gradually decrease with the movement of the surface of the hot wire because the hot wire is elongated, and the added graphite between the friction surfaces may gradually disappear, thereby losing the lubricating effect.
  • the diamond film is boron-doped and has conductivity, which does not affect the conductive function of the metal support.
  • the formed graphite is also conductive, and does not affect the electrical conduction state between the electrode holder and the hot metal wire.
  • the nano-grain diamond film when used, its surface finish is high and the friction coefficient is small, which facilitates the sliding of the hot wire on its surface, thereby reducing the pulling force on the hot wire and improving the thermal conductivity of the hot wire. service life.
  • the above-mentioned hot filament chemical vapor deposition device includes several horizontally placed hot filaments 300, two ends of the above-mentioned several hot filaments are respectively supported on a pair of brackets (including the metal bracket 110 and the fixed bracket 120 in FIG. 1), the above-mentioned pair of brackets At least one of the brackets is the metal bracket 110 described above, and a weight 420 is suspended from one end of the heating wire 300 supported on the metal bracket 110 to straighten the heating wire by the gravity of the weight 420 .
  • each of the above-mentioned pair of supports is a metal support described in any one of the above-mentioned embodiments, and two ends of the above-mentioned hot wire are respectively suspended The heavy objects are then supported on the above-mentioned metal brackets.
  • the other bracket in the pair of brackets is a fixed metal bracket 120
  • the other end of the above-mentioned hot filament is fixed by a clamp on the above-mentioned fixed metal bracket 120 .
  • the above-mentioned fixed metal bracket refers to that the hot wire end supported on the fixed metal bracket does not hang heavy objects, but is fixed to the fixed metal bracket.
  • the fixing method of the above-mentioned clamp can be one of them. Others can also be fixed through the holes opened in the fixed bracket and so on.
  • a pair of brackets 110 and 120 of the hot-wire chemical vapor deposition device are both made of metal molybdenum, and are respectively connected to two poles of an external DC power supply 200 , and the metal bracket 100 fixing bracket 200 is both
  • the insulator 410 is electrically insulated from the support column 400 .
  • the tantalum metal wire for fixing the bracket 120, that is, the heating wire 300 is fixed by a clamp, with a diameter of 0.5 mm.
  • the boron-doped diamond film 112 of the crystal grains and the hot wire at the end of the metal support 110 are tensioned and straightened by suspending the weight 420 .
  • the surface of the above-mentioned metal support 110, especially the surface of the groove 111, is prepared by a microwave CVD method to prepare a layer of boron-doped CVD diamond film with a thickness of 6.5 microns of nanocrystalline grains, and the preparation process is:
  • sccm standard cubic centimeters per minute
  • B 2H 6 is the flow rate of pure B 2H 6 diluted in H2 at a volume ratio of 1 ⁇ .
  • the resistivity of the obtained boron-doped CVD diamond film 112 is 2.6*10-3 ⁇ cm.
  • the grain size of the prepared CVD diamond film is less than 100 nm, which belongs to nano grain size.
  • Figure 4 is the laser Raman spectrum of the surface of the CVD diamond film. It can be seen that the position of the characteristic peak of diamond has moved from 1332 cm-1 to 1326.6 cm-1, indicating that boron is doped into the crystal lattice of diamond.
  • the metal support 110 is used in the process of preparing a diamond film by hot wire chemical vapor deposition.
  • a hot wire array consisting of 11 tantalum wires with a diameter of 0.8 mm can be selected, and the hot wire is placed in the groove 111 of the metal electrode 110 as shown in Figures 1 and 3, and the distance between the centers of the hot wires is 10 mm.
  • the length of the intermediate heating wire is 120 mm
  • the substrate material for depositing the CVD diamond film is a metal molybdenum sheet with a diameter of 100 mm
  • the thickness is 4 mm
  • the distance between the heating wire array and the molybdenum substrate material is 8 mm
  • the heating wire temperature is 2300 ° C
  • the reaction gas is 96% (Vol.) H 2 and 4% (Vol.) CH 4
  • the growth time was 200 hours
  • a CVD diamond film with a diameter of 100 mm and a thickness of 1.5 mm was prepared.
  • the hot filament array was kept straight. state.
  • Graphite components are formed between the surface of the nano-boron-doped diamond film and the hot metal wire, which can improve the sliding of the hot metal wire on the surface of the electrode frame, which is beneficial to the hot wire array being kept in a straight state all the time.
  • the specific implementation of the hot filament chemical vapor deposition apparatus provided by the present invention and the metal support therein has been described.
  • the friction between the hot wire and the metal support is reduced by the formed graphite, which can reduce the tension required for tightening the hot wire and prolong the work of the hot wire. life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明提供了一种热丝化学气相沉积装置及其中的金属支架,上述金属支架连接电源,以将电流导通至支撑在上述金属支架上的热丝,上述金属支架的顶表面具有若干凹槽,上述凹槽的上表面形成有导电的金刚石膜层,各根热丝单独地放置在各个凹槽中的金刚石膜层上,工作状态下的上述热丝使与之接触的金刚石转化为石墨,以降低上述热丝与上述金刚石膜层之间的摩擦力。根据本发明,通过形成的石墨减小热丝与金属支架之间的摩擦,可以降低绷紧热丝所需要的拉力,延长热丝的工作寿命。

Description

一种热丝化学气相沉积装置及金属支架 技术领域
本发明涉及化学气相沉积领域,尤其涉及热丝化学气相沉积装置及其中的金属支架。
背景技术
金刚石具有极佳的力、热、光、电、声学性能,具有及其广泛的应用前景。热金属丝化学气相沉积(简称热丝CVD)法采用氢气和含碳的气体或液体为原料,通过热的金属丝高温裂解原料气来制备金刚石膜,具有成本低、生长速度较快,并且装置容易放大等优点,是目前普遍采用的一种制备金刚石膜的方法。运用热丝CVD法制备金刚石膜,需要在连通直流电的一对电极上装配数根金属丝,当直流电流过金属丝时,会因为金属丝自身电阻而发热,通过控制电流大小来控制金属丝的温度达到所需要的温度,因此金属丝通常采用高熔点的金属(如W、Ta等),直径一般不超过1.5mm。热丝从室温加热到工作温度时会因为高温蠕变而伸长。另外,在高温下热金属丝和制备原料碳发生反应而碳化,在碳化过程中热丝也会因为渗碳而伸长。一般根据生长CVD金刚石所需时间的长短,热金属丝的长度会延长5-20%左右。由于热丝的两端被固定,热丝伸长会使处于热丝中间段下坠,改变热丝与衬底材料之间的距离,一方面会使衬底材料表面温度升高,偏离最佳的金刚石膜生长条件,影响沉积的金刚石膜的质量,另一方面,热丝下坠是不均匀下坠,使热丝与衬底材料的距离不再是常数,导致沉积的金刚石膜厚度不均匀。
针对热丝蠕变后长度增加的现象,现普遍采用的方法主要是在热金属丝上通过施加一个张力来维持热金属丝始终处于拉直状态。张力的产生主要有两种,一种是利用高温弹簧或弹片拉住金属丝的一端,利用弹簧形变产生的张力使热金属丝始终处于被拉直状态,如美国专利No.4953499,No.4958592,No.5833753,No.4970986以及中国专利ZL98205844.6等。由于弹簧提供的张力为变力,服从胡克定律,在工作过程中随着热丝伸长,弹簧缩短,提供的张力会下降。此外,弹簧在高温环境下工作(一般环境温度几百摄氏度),会使弹簧退火,使倔强系数变小,一方面使弹力变小,另一方面影响弹簧使用寿命。因此,高温弹簧有着明显的缺点。此外,由于热丝碳化后,抗拉强度大幅降低,施加在热丝上的张力有限,施加张力太大热丝会被拉断,但如果施加张力太小,就不能补偿因高温蠕变导致的伸长,就不能保证热丝始终处于平直状态,从而影响沉积的金刚石膜均匀性,因此,使用高温弹簧时,每次都必须仔细调整弹簧的弹力,比较麻烦。
另一种是通过热金属丝的一端悬挂重物,利用重物自身的重力作用拉直热金属丝。为了方便热金属丝的拉伸,专利CN201102987Y通过滑轮组,对金属丝施加拉力以保持热丝的平直。但该篇专利存在的是,滑轮组结构比较复杂,又放置在高温环境中,滑轮的转动也没有传统的液体润滑系统进行润滑,因此滑轮的转动在高温下也很难保持稳定和一致性。可以说,目前现有热丝悬挂系统,结构都比较复杂。
然而,不论用上述哪种方法,为了维持热金属丝的拉直状态,都需要通过一对金属电极支架对热丝的位置进行支撑和固定。热丝CVD在沉积CVD金刚石的过程中,高温下热金属丝的长度会由于高温蠕变、与反应原料中的碳化合,生成碳化物而变长,在热金属丝一端拉力的作用下,热丝会在金属电极支架表面滑动,会产生滑动摩擦,而且热金属丝在高温下会逐渐被拉长,直径会变小。同时表面产生碳化物的厚度也随着时间的延长而变厚,因此,热丝在金属电极支架表面滑动产生的滑动摩擦力也是一个不断变化的过程。为了维持足够的张力以保证热丝始终处于一个“紧绷”的状态,往往需要在热丝上施加一个较大的张力。较大的张力会使热丝更“容易”被拉长,使得拉长后的热丝直径变细,容易断裂,使得CVD沉积金刚石的过程终止。如果热金属丝能在电极支架表面能很“容易”的滑动,那么就可以减小在金属丝上施加的张力,这对延长热丝的寿命是非常重要的。
有鉴于此,亟需要提供一种热丝化学气相沉积装置及其中的金属支架,能够减小热丝与支架之间的摩擦,降低紧绷热丝所需要的拉力,从而延长热金属丝的工作寿命。
发明内容
以下给出一个或多个方面的简要概述以提供对这些方面的基本理解。此概述不是所有构想到的方面的详尽综览,并且既非旨在指认出所有方面的关键性或决定性要素亦非试图界定任何或所有方面的范围。其唯一的目的是要以简化形式给出一个或多个方面的一些概念以为稍后给出的更加详细的描述之序。
如上所描述的,为了解决现有中为了使得热丝始终保持平直状态,施加较大的绷紧热丝的拉力导致的热丝直径变小,使用寿命不长的问题,本发明提供了一种金属支架,上述金属支架连接电源,以将电流导通至支撑在上述金属支架上的热丝,其中,上述金属支架的顶表面具有若干凹槽,上述凹槽的上表面形成有导电的金刚石膜层,各根热丝单独地放置在各个凹槽中的金刚石膜层上,工作状态下的上述热丝使与之接触的金刚石转化为石墨,以降低上述热丝与上述金刚石膜层之间的摩擦力。
在上述金属支架的一实施例中,可选的,上述金刚石膜层为晶粒尺寸小于100纳米的纳米金刚石膜层。由于所设置的金刚石膜层为晶粒尺寸为纳米量级的金刚石薄膜,其表面的光洁度高,摩擦系数小,能够进一步降低热丝在纳米金刚石膜层表面滑动时产生的滑动摩擦力。从而能够降低需要施加在热丝上的拉力,提高热丝的使用寿命。
在上述金属支架的一实施例中,可选的,上述金刚石膜层的电阻率为4.3*10-4Ω.cm-7.8*10-2Ω.cm。可以理解的是,上述的金属支架需要起到导电和支撑的作用。为了保证良好的导电性,使得电源电流能够顺利流经热丝,需要降低金刚石膜层的电阻,并且低电阻率的金属支架能够降低金属支架自身的发热问题,降低金属支架自身的温度。
在上述金属支架的一实施例中,可选的,上述金刚石膜层为掺硼金刚石膜层,上述掺硼金刚石膜层的空穴载流子浓度在8.7*10 19-4.6*10 21cm-3之间。在上述的实施例中,降低金刚石膜层的电阻是通过在金刚石膜层中掺杂硼来实现的。通过控制掺硼后的金刚石膜的空穴载流子浓度在8.7*10 19-4.6*10 21cm-3之间来保证金刚石膜层的电阻率。
在上述金属支架的一实施例中,可选的,上述金刚石膜层的厚度为3-15微米。将上述的金刚石膜层的厚度设置在3-15微米是由于金刚石膜层的厚度不能太薄,若太薄,无法保证在热丝工作状态下有足够的金刚石膜层被转化为石墨。另一方面,金刚石膜层的厚度亦不能太厚,由于金刚石膜层是形成在金属支架上,若太厚则无法保证金刚石膜层与金属之间的附着力,容易脱落。因此,需要将金刚石膜层的厚度设置在3-15微米。
在上述金属支架的一实施例中,可选的,上述热丝的工作温度为1800-2300℃。
在上述金属支架的一实施例中,可选的,上述金属支架包括金属钨支架、金属钼支架。由于在热丝化学气相沉积中金属支架需要承受很高的温度,为了保证热丝化学气相沉积的生成物的纯度,需要保证在反应腔内除了反应原料外的其他物品保持热稳定性和化学稳定性,因此,金属钨和金属钼是优选的金属支架的材质。
本发明的另一方面还提供了一种热丝化学气相沉积装置,包括水平放置的若干热丝,上述若干热丝的两端分别支撑在一对支架上,其中,上述一对支架中的至少一个支架为如上任意一项实施例所描述的金属支架,支撑在上述金属支架上的热丝一端悬挂有重物,以利用上述重物的重力拉直上述热丝。
在上述热丝化学气相沉积装置的一实施例中,可选的,上述一对支架中的每个 支架均为上述任意一项实施例所描述的金属支架,上述热丝的两端分别悬挂重物后支撑在上述金属支架上。
在上述热丝化学气相沉积装置的一实施例中,可选的,上述一对支架中的另一个支架为固定金属支架,上述热丝的另一端通过夹具固定在上述固定金属支架上。
根据本发明所提供的热丝化学气相沉积装置及其中的金属支架,过形成的石墨减小热丝与金属支架之间的摩擦,可以降低绷紧热丝所需要的拉力,延长热丝的工作寿命。
附图说明
在结合以下附图阅读本公开的实施例的详细描述之后,能够更好地理解本发明的上述特征和优点。在附图中,各组件不一定是按比例绘制,并且具有类似的相关特性或特征的组件可能具有相同或相近的附图标记。
图1示出了本发明所提供的金属支架的俯视图。
图2示出了本发明所提供的金属支架的凹槽的A-A’方向的截面示意图。
图3示出了本发明所提供的金属支架的凹槽的B-B’方向的截面示意图。
图4示出了本发明所提供的金属支架的凹槽上所形成的金刚石膜层表面在进行热丝化学气相沉积之前的激光拉曼光谱图。
图5示出了本发明所提供的金属支架的凹槽上所形成的金刚石膜层表面在进行热丝化学气相沉积之后的激光拉曼光谱图。
附图标记
110金属支架
111凹槽
112金刚石膜层
120固定支架
200电源
300热丝
400支撑柱
410绝缘体
420重物
具体实施方式
以下结合附图和具体实施例对本发明作详细描述。注意,以下结合附图和具体实施例描述的诸方面仅是示例性的,而不应被理解为对本发明的保护范围进行任何 限制。
给出以下描述以使得本领域技术人员能够实施和使用本发明并将其结合到具体应用背景中。各种变型、以及在不同应用中的各种使用对于本领域技术人员将是容易显见的,并且本文定义的一般性原理可适用于较宽范围的实施例。由此,本发明并不限于本文中给出的实施例,而是应被授予与本文中公开的原理和新颖性特征相一致的最广义的范围。
在以下详细描述中,阐述了许多特定细节以提供对本发明的更透彻理解。然而,对于本领域技术人员显而易见的是,本发明的实践可不必局限于这些具体细节。换言之,公知的结构和器件以框图形式示出而没有详细显示,以避免模糊本发明。
请读者注意与本说明书同时提交的且对公众查阅本说明书开放的所有文件及文献,且所有这样的文件及文献的内容以参考方式并入本文。除非另有直接说明,否则本说明书(包含任何所附权利要求、摘要和附图)中所揭示的所有特征皆可由用于达到相同、等效或类似目的的可替代特征来替换。因此,除非另有明确说明,否则所公开的每一个特征仅是一组等效或类似特征的一个示例。
注意,在使用到的情况下,标志左、右、前、后、顶、底、正、反、顺时针和逆时针仅仅是出于方便的目的所使用的,而并不暗示任何具体的固定方向。事实上,它们被用于反映对象的各个部分之间的相对位置和/或方向。
如上所描述的,为了解决现有中为了使得热丝始终保持平直状态,施加较大的绷紧热丝的拉力导致的热丝直径变小,使用寿命不长的问题,本发明提供了一种热丝化学气相沉积装置及其中的金属支架。
请结合图1-3来理解本发明所提供的热丝化学气相沉积装置及其中的金属支架。如图1所示出的,一对支架,包括本发明所提供的金属支架110和固定支架120连接电源200,以将电流导通至支撑在金属支架110和固定支架120上的热丝300。其中,请进一步结合图2,图2示出了上述金属支架100在A-A'方向上的剖面图。上述金属支架110的顶表面具有若干凹槽111,上述凹槽的上表面形成有导电的金刚石膜层112,各根热丝300单独地放置在各个凹槽111中的金刚石膜层112上,工作状态下的上述热丝300使与之接触的金刚石转化为石墨,以降低上述热丝300与上述金刚石膜层112之间的摩擦力。
在上述的实施例中,金属支架110的整体形状可以是现有或将有的形状,例如长条的立方体状或者其他圆柱体等形状。本发明所提供的金属支架的整体形状可以根据实际需要调整,不应不当地限制本发明的保护范围。
而金属支架110的上表面需要设置若干个凹槽111,每一个凹槽内单独放置一根热丝300。可以理解的是,凹槽111的数量可以根据实际需要设置,各个凹槽之间相互平行,并且凹槽与凹槽之间等距离设置,以保证热丝设置的均匀性。另外,需要注意的是,若实际的凹槽数量大于需要设置的热丝数量,仅需要将热丝均匀地放置在其中的几个凹槽中即可。
在上述的实施例中,可选的,上述金刚石膜层为晶粒尺寸小于100纳米的纳米金刚石膜层。由于所设置的金刚石膜层为晶粒尺寸为纳米量级的金刚石薄膜,其表面的光洁度高,摩擦系数小,能够进一步降低热丝在纳米金刚石膜层表面滑动时产生的滑动摩擦力。从而能够降低需要施加在热丝上的拉力,提高热丝的使用寿命。
在上述的一实施例中,可选的,上述金刚石膜层的电阻率为4.3*10-4Ω.cm-7.8*10-2Ω.cm。可以理解的是,上述的金属支架需要起到导电和支撑的作用。为了保证良好的导电性,使得电源电流能够顺利流经热丝,需要降低金刚石膜层的电阻,并且低电阻率的金属支架能够降低金属支架自身的发热问题,降低金属支架自身的温度。
进一步的,上述金刚石膜层为掺硼金刚石膜层,上述掺硼金刚石膜层的空穴载流子浓度在8.7*10 19-4.6*10 21cm-3之间。在上述的实施例中,降低金刚石膜层的电阻是通过在金刚石膜层中掺杂硼来实现的。在本发明中,通过控制掺硼后的金刚石膜的空穴载流子浓度在8.7*10 19-4.6*10 21cm-3之间来保证金刚石膜层的电阻率。
在上述金属支架的一实施例中,可选的,上述金刚石膜层的厚度为3-15微米。将上述的金刚石膜层的厚度设置在3-15微米是由于金刚石膜层的厚度不能太薄,若太薄,无法保证在热丝工作状态下有足够的金刚石膜层被转化为石墨。另一方面,金刚石膜层的厚度亦不能太厚,由于金刚石膜层是形成在金属支架上,若太厚则无法保证金刚石膜层与金属之间的附着力,容易脱落。因此,需要将金刚石膜层的厚度设置在3-15微米。
上述形成在在凹槽上表面的纳米晶粒的掺硼金刚石薄膜通过微波等离子体CVD方法制备,本领域技术人员可以根据现有或将有的技术来实现上述纳米晶粒的掺硼金刚石薄膜的制备,例如,《高硼掺杂金刚石薄膜(Si/BDD)的制备及电化学性能的研究详细》(陈朋、满卫东,2011)公开了一种能够制备上述纳米晶粒的掺硼金刚石薄膜的制备方法。
在上述的一实施例中,上述热丝的工作温度为1800-2300℃。进一步的,上述 金属支架包括金属钨支架、金属钼支架。由于在热丝化学气相沉积中金属支架需要承受很高的温度,为了保证热丝化学气相沉积的生成物的纯度,需要保证在反应腔内除了反应原料外的其他物品保持热稳定性和化学稳定性,因此,金属钨和金属钼是优选的金属支架的材质。
根据上述的金属支架,当金刚石薄膜温度超过900℃时,金刚石膜表面会石墨化,石墨化后的掺硼金刚石膜表面会形成一层薄的石墨层,可以进一步减小摩擦面之间的摩擦阻力。而且这种石墨化的形成与人为在摩擦面之间添加石墨的功能是完全不同的,这种石墨化的表面可以源源不断的在金刚石膜层和热丝的接触面之间产生石墨,时刻保持润滑的作用。而人工添加的石墨会因为热丝被拉长而导致摩擦面之间的添加石墨会随着热丝表面的移动而逐渐减少,最后可能消失,从而失去润滑的作用。
根据本发明的优选实施例,金刚石薄膜是掺硼的,具有导电性,不影响金属支架的导电功能。同时所形成的石墨也是导电的,不影响电极支架与热金属丝之间的电导通状态。
根据另一优选的实施例,当采用纳米晶粒的金刚石薄膜时,其表面光洁度高,摩擦系数小,便于热丝在其表面滑动,从而能够降低施加在热丝上的拉力,提高热丝的使用寿命。
本发明的另一方面还提供了一种热丝化学气相沉积装置,请结合图1、3来理解。上述热丝化学气相沉积装置的包括水平放置的若干热丝300,上述若干热丝的两端分别支撑在一对支架(包括图1中的金属支架110和固定支架120)上,上述一对支架中的至少一个支架为上述所描述的金属支架110,支撑在上述金属支架110上的热丝300一端悬挂有重物420,以利用上述重物420的重力拉直上述热丝。
在上述热丝化学气相沉积装置的一实施例中,可选的,上述一对支架中的每个支架均为上述任意一项实施例所所描述的金属支架,上述热丝的两端分别悬挂重物后支撑在上述金属支架上。
在上述热丝化学气相沉积装置的一实施例中,如图1所示出的,可选的,上述一对支架中的另一个支架为固定金属支架120,上述热丝的另一端通过夹具固定在上述固定金属支架120上。可以理解的是上述的固定金属支架指的是支撑在该固定金属支架上的热丝端不悬挂重物,而是与该固定金属支架固定。上述夹具的固定方式可以是其中的一种方式。其他的还可以通过固定在固定支架里开设的孔洞等等。
在如图1-3所示出的实施例中,热丝化学气相沉积装置的一对支架110、120 均由金属钼制成,分别连接外接直流电源200的两极,金属支架100固定支架200均通过绝缘体410与支撑柱400保持电绝缘状态。固定支架120的钽质金属丝,即热丝300通过夹具固定,直径0.5毫米,金属支架110上有凹槽111,凹槽111里面放置金属丝,即热丝300,凹槽表面制备有一层纳米晶粒的掺硼金刚石薄膜112,金属支架110端的热丝通过悬挂重物420的方式进行张力拉直。
以下给出上述金属支架110的制备方法和搭载了该金属支架的热丝CVD装置的工作过程。
上述的金属支架110的表面,尤其是凹槽111的表面通过微波CVD方法制备一层厚度为6.5微米的纳米晶粒的掺硼CVD金刚石薄膜,制备工艺为:
表1纳米晶粒的掺硼CVD金刚石膜制备工艺
注:sccm:标准立方厘米每分钟;B 2H 6为纯B 2H 6按1‰体积比稀释在H2中的流量。
得到的掺硼CVD金刚石膜112的电阻率为2.6*10-3Ω.cm。所制备的CVD金刚石膜的晶粒尺寸小于100nm,属于纳米晶粒尺寸。图4为CVD金刚石膜表面的激光拉曼光谱图,可以看出金刚石特征峰位置从1332cm-1移动到了1326.6cm-1,说明硼掺入了金刚石的晶格中。
在制备得到上述的金属支架110后,将该金属支架110用于热丝化学气相沉积制备金刚石膜的过程。可以选用由11根直径为0.8毫米的钽丝组成的热丝阵列,将热丝如图1、3所示出的放置在金属电极110的凹槽111中,热丝中心间距10毫米,两电极间热丝长度120毫米,沉积CVD金刚石膜用的衬底材料为直径100毫米的金属钼片,厚度4毫米,热丝阵列与钼衬底材料距离8毫米,热丝温度2300℃,反应气体为96%(Vol.)H 2和4%(Vol.)CH 4,生长时间200小时,制备出直径100毫米,厚度1.5毫米的CVD金刚石膜,在整个生长过程中,热丝阵列一直处于平直状态。
在利用上述的金属支架110进行CVD金刚石膜沉积结束后,对金属支架110表面掺硼纳米晶粒的CVD金刚石膜表面进行拉曼光谱检测,结果如图5所示。可以看出,经过热丝的高温长时间接触,掺硼纳米金刚石膜表面形成了非金刚石碳的成分(1350cm-1附近的特征峰)是石墨成分(1580cm-1附近的特征峰)。在纳米掺硼金刚石薄膜表面与热金属丝之间形成石墨成分,可以提高热金属丝在电极架表面的滑动,有利于热丝阵列始终保持平直状态。
至此已经描述了本发明所提供的本发明所提供的热丝化学气相沉积装置及其中 的金属支架的具体实现方式。根据本发明所提供的热丝化学气相沉积装置及其中的金属支架,过形成的石墨减小热丝与金属支架之间的摩擦,可以降低绷紧热丝所需要的拉力,延长热丝的工作寿命。
应当理解的是,本说明书将不用于解释或限制权利要求的范围或意义。此外,在前面的详细描述中,可以看到的是,各种特征被在单个实施例中组合在一起以用于精简本公开的目的。本公开的此方法不应被解释为反映所要求保护的实施例要求比在每个权利要求中明确列举的特征更多的特征的目的。相反,如所附权利要求所反映的,创造性主题在于少于单个所公开的实施例的所有特征。因此,所附权利要求据此并入详细描述中,其中每个权利要求独立地作为单独的实施例。
在该描述中提及的一个实施例或实施例意在结合该实施例描述的特定的特征、结构或特性被包括在电路或方法的至少一个实施例中。在说明书中各处出现的短语一个实施例不一定全部指的是同一实施例。

Claims (10)

  1. 一种金属支架,所述金属支架连接电源,以将电流导通至支撑在所述金属支架上的热丝,其特征在于,所述金属支架的顶表面具有若干凹槽,所述凹槽的上表面形成有导电的金刚石膜层,各根热丝单独地放置在各个凹槽中的金刚石膜层上,工作状态下的所述热丝使与之接触的金刚石转化为石墨,以降低所述热丝与所述金刚石膜层之间的摩擦力。
  2. 如权利要求1所述的金属支架,其特征在于,所述金刚石膜层为晶粒尺寸小于100纳米的纳米金刚石膜层。
  3. 如权利要求1所述的金属支架,其特征在于,所述金刚石膜层的电阻率为4.3*10-4Ω.cm-7.8*10-2Ω.cm。
  4. 如权利要求3所述的金属支架,其特征在于,所述金刚石膜层为掺硼金刚石膜层,所述掺硼金刚石膜层的空穴载流子浓度在8.7*10 19-4.6*10 21cm-3之间。
  5. 如权利要求1所述的金属支架,其特征在于,所述金刚石膜层的厚度为3-15微米。
  6. 如权利要求1所述的金属支架,其特征在于,所述热丝的工作温度为1800-2300℃。
  7. 如权利要求1所述的金属支架,其特征在于,所述金属支架包括金属钨支架、金属钼支架。
  8. 一种热丝化学气相沉积装置,包括水平放置的若干热丝,所述若干热丝的两端分别支撑在一对支架上,其特征在于,所述一对支架中的至少一个支架为权利要求1-7中任意一项所述的金属支架,支撑在所述金属支架上的热丝一端悬挂有重物,以利用所述重物的重力拉直所述热丝。
  9. 如权利要求8所述的热丝化学气相沉积装置,其特征在于,所述一对支架中的每个支架均为权利要求1-7中任意一项所述的金属支架,所述热丝的两端分别悬挂重物后支撑在所述金属支架上。
  10. 如权利要求8所述的热丝化学气相沉积装置,其特征在于,所述一对支架中的另一个支架为固定金属支架,所述热丝的另一端通过夹具固定在所述固定金属支架上。
PCT/CN2021/126272 2020-11-27 2021-10-26 一种热丝化学气相沉积装置及金属支架 WO2022111182A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011360023.5A CN112501582B (zh) 2020-11-27 2020-11-27 一种热丝化学气相沉积装置及金属支架
CN202011360023.5 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022111182A1 true WO2022111182A1 (zh) 2022-06-02

Family

ID=74967152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126272 WO2022111182A1 (zh) 2020-11-27 2021-10-26 一种热丝化学气相沉积装置及金属支架

Country Status (2)

Country Link
CN (1) CN112501582B (zh)
WO (1) WO2022111182A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112501582B (zh) * 2020-11-27 2021-06-11 上海征世科技有限公司 一种热丝化学气相沉积装置及金属支架

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634770A (zh) * 2012-05-06 2012-08-15 北京科技大学 一种大面积沉积金刚石膜的热丝架及其制造方法
CN203768454U (zh) * 2014-05-20 2014-08-13 湖南中航超强金刚石膜高科技有限公司 模具内孔沉积金刚石薄膜的夹具
US20180355475A1 (en) * 2017-05-12 2018-12-13 Gvd Corporation Systems for depositing coatings on surfaces and associated methods
CN112501582A (zh) * 2020-11-27 2021-03-16 上海征世科技有限公司 一种热丝化学气相沉积装置及金属支架

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108505019B (zh) * 2018-06-12 2024-02-09 深圳先进技术研究院 热丝夹具与热丝沉积设备及其应用与利用其得到的器具
JP7061049B2 (ja) * 2018-09-10 2022-04-27 株式会社神戸製鋼所 熱フィラメントcvd装置
CN109371380A (zh) * 2018-12-05 2019-02-22 中国科学院金属研究所 一种多功能金刚石薄膜的热丝化学气相沉积装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634770A (zh) * 2012-05-06 2012-08-15 北京科技大学 一种大面积沉积金刚石膜的热丝架及其制造方法
CN203768454U (zh) * 2014-05-20 2014-08-13 湖南中航超强金刚石膜高科技有限公司 模具内孔沉积金刚石薄膜的夹具
US20180355475A1 (en) * 2017-05-12 2018-12-13 Gvd Corporation Systems for depositing coatings on surfaces and associated methods
CN112501582A (zh) * 2020-11-27 2021-03-16 上海征世科技有限公司 一种热丝化学气相沉积装置及金属支架

Also Published As

Publication number Publication date
CN112501582B (zh) 2021-06-11
CN112501582A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US10337098B2 (en) Method for growing carbon nanotubes
Wang et al. ZnO hexagonal arrays of nanowires grown on nanorods
Qiu et al. Thermal conductivity and microstructure of Ti-doped graphite
WO2022111182A1 (zh) 一种热丝化学气相沉积装置及金属支架
JPH0288499A (ja) 化学蒸着法によるダイヤモンド製造用の抵抗加熱ヒータ
JPH03120369A (ja) ばねにより張られた線条を有する合成ダイヤモンド蒸着装置
JPH05306195A (ja) 平坦なcvdダイヤモンド薄膜の製造法
Chiu et al. Synthesis of high-purity silicon carbide nanowires by a catalyst-free arc-discharge method
CN102103953B (zh) 一种在碳化硅基底上外延生长的冷阴极场发射材料及方法
Jia et al. Growth behavior of CVD diamond films with enhanced electron field emission properties over a wide range of experimental parameters
US20220081300A1 (en) Method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition
CN104404620A (zh) 一种在大直径6H/4H-SiC硅面和碳面双面同时生长石墨烯的方法
EP2539481A1 (en) Hot wire chemical vapor deposition (hwcvd) with carbide filaments
TW201315276A (zh) 奈米碳管加熱器及其製法
CN109095461B (zh) 一种单层石墨烯的制备方法
Liao et al. Characteristics of aligned carbon nanotubes synthesized using a high-rate low-temperature process
Yang et al. Simultaneous growth of diamond thin films and carbon nanotubes at temperatures⩽ 550° C
CN108502871A (zh) 在封闭静态体系下批量制备石墨烯的方法、石墨烯及应用
Tyagi et al. Step growth in single crystal diamond grown by microwave plasma chemical vapor deposition
CN108396377A (zh) 一种高质量单层多晶石墨烯薄膜的制备方法
Lim et al. The field emission properties of silicon carbide whiskers grown by CVD
US20140011920A1 (en) Continuous vapor grown carbon fiber mat and the producing method thereof
KR102349695B1 (ko) 수직배향 탄소 나노 튜브 집합체의 제조방법
US7767275B2 (en) Method for synthesizing self-aligned carbon nanomaterials on large area
Kweon et al. Deposition of Carbon Whiskers by Applying bias Voltage and Investigation of Their Field Emission Properties

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2023)