WO2022110925A1 - 用于镀膜机的激光直接光控装置 - Google Patents

用于镀膜机的激光直接光控装置 Download PDF

Info

Publication number
WO2022110925A1
WO2022110925A1 PCT/CN2021/113748 CN2021113748W WO2022110925A1 WO 2022110925 A1 WO2022110925 A1 WO 2022110925A1 CN 2021113748 W CN2021113748 W CN 2021113748W WO 2022110925 A1 WO2022110925 A1 WO 2022110925A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
control device
center
coating machine
film
Prior art date
Application number
PCT/CN2021/113748
Other languages
English (en)
French (fr)
Inventor
李鑫
王之琦
龚渤
Original Assignee
江苏永鼎光电子技术有限公司
江苏永鼎股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏永鼎光电子技术有限公司, 江苏永鼎股份有限公司 filed Critical 江苏永鼎光电子技术有限公司
Publication of WO2022110925A1 publication Critical patent/WO2022110925A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • C23C14/545Controlling the film thickness or evaporation rate using measurement on deposited material
    • C23C14/547Controlling the film thickness or evaporation rate using measurement on deposited material using optical methods
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the invention relates to the technical field of evaporation coating, in particular to a laser direct light control device for a coating machine.
  • Evaporation coating is often called vacuum coating. Its characteristic is that under vacuum conditions, the material evaporates and condenses on the glass surface to form a film, forming a film with strong adhesion on the glass surface.
  • the spectral characteristics of the film are determined by the thickness and refractive index of the film. In order to ensure the spectral characteristics of the film in actual production, it is necessary to accurately monitor the thickness of each film during the coating process.
  • crystal oscillation method belongs to the indirect measurement method
  • the optical control method belongs to the direct measurement method and has higher measurement accuracy.
  • the evaporation coating process consists of sequentially depositing materials with different refractive indices onto the substrate layer by layer.
  • the material with the first refractive index is deposited on the substrate with a target thickness (such as 100nm) of the first layer, and the material with the second refractive index is deposited on the substrate.
  • a second layer of a target thickness (eg, 100 nm) is deposited on the first layer, and so on, layer by layer, to hundreds or even thousands of layers.
  • the film thickness detection in the prior art includes collecting the light transmittance of the light signal passing through the film by the signal receiver, and calculating the optical thickness of the film by the light transmittance. In this way, the intensity of the light signal collected by the signal receiver will be Attenuates as the film thickness increases, resulting in lower monitoring accuracy and accumulation of measurement errors as the number of film layers increases.
  • the technical problem to be solved by the present invention is to provide a laser direct light control device for a coating machine, which can reduce the cumulative tolerance of film thickness measurement and improve the measurement accuracy.
  • the present invention provides a laser direct light control device for a coating machine, which includes a tooling part, and at least two film-forming bases are arranged on the tooling part, and the two film-forming bases is arranged on the circumference with the center of the tooling component as the center; at least one of the film forming bases is a monitoring base, and at least one monitoring substrate is arranged on the monitoring base;
  • It also includes a shielding member, the shielding member is arranged on the side of the monitoring base close to the evaporation source, the thickness direction of the shielding member is provided with a through hole, and the shielding member and the monitoring base are rotatably matched, so that all the All the monitoring substrates may be exposed through the through holes, and only one of the monitoring substrates is exposed through the through holes at a time.
  • the shielding member is fixed on a side of the monitoring base close to the evaporation source, and the monitoring base rotates around its center.
  • the monitoring base is fixed on the tooling component, and the shielding component rotates around its center.
  • it further includes a light source and a signal receiver, the light source and the signal receiver are respectively arranged on opposite sides of the monitoring base, and the optical axis of the lens included in the signal receiver is Perpendicular to the monitoring base, the light source is located on the optical axis of the lens included in the signal receiver, and the light signal of the light source can be projected onto the monitoring substrate through the through hole.
  • the light source is a laser light source.
  • the tooling component rotates around its own center.
  • the tooling component is provided with six film-forming bases, and the six film-forming bases are arranged on a circumference with the center of the tooling component as the center of the circle.
  • it further includes that six monitoring substrates are provided on the monitoring base, and the six monitoring substrates are arranged on a circumference centered on the center of the monitoring base.
  • it further includes an auxiliary positive plate, and the auxiliary positive plate is used for shielding part of the evaporation source.
  • the laser direct light control device used in the coating machine of the present invention there is always only a blank monitoring substrate through the through hole of the shielding member and the substrate on the film-forming base participates in the evaporation coating synchronously.
  • a certain value for example, 100nm
  • adjust the blocking member or the monitoring base so that the next blank area of the monitoring substrate or the next blank monitoring substrate participates in the evaporation coating, and the sum of the film thicknesses on the monitoring substrate is calculated as the total thickness of the coating on the substrate.
  • FIG. 1 is a schematic structural diagram of a laser direct light control device for a coating machine in a preferred embodiment of the present invention
  • Fig. 2 is the structural representation of coating machine
  • FIG. 3 is a schematic structural diagram of a tooling component in a preferred embodiment of the present invention.
  • 1-coating chamber 3-laser light source, 5-signal receiver, 7-evaporation source;
  • 2-tooling parts 4-film forming base, 6-monitoring base, 8-monitoring substrate, 10-shielding part, 12-through hole, 14-auxiliary positive plate.
  • the evaporation coating is completed in a coating chamber, and the evaporation coating process is composed of materials with different refractive indices deposited on a substrate layer by layer.
  • the embodiment of the present invention discloses a laser direct light control device for a coating machine, which is used for evaporative coating.
  • the coating thickness is monitored in real time during the process. Among them, during the evaporation coating process, the light transmittance oscillates with the increase of the coating thickness. When it reaches the extreme value (maximum value/minimum value), the optical thickness of the coating (the product of the actual thickness and the refractive index of the coating) is four points. An integer multiple of the light wavelength, when the light transmittance changes between extreme values, it can be seen that the optical thickness of the coating increases by a quarter wavelength, so the thickness of the coating can be calculated by monitoring the light transmittance.
  • an embodiment of the present invention discloses a laser direct light control device for a coating machine, which is arranged in a coating chamber 1, and the bottom of the coating chamber 1 is provided with an ion source and at least two sets of evaporation Source 7, two sets of evaporation sources 7 are respectively used to provide two kinds of materials, such as silicon dioxide material and tantalum pentoxide material, and the two evaporation sources 7 work alternately to evaporate two kinds of materials (silicon dioxide material, five Alternate coating of tantalum oxide material), ion source assisted evaporation coating.
  • the laser direct light control device for the coating machine is arranged in the coating chamber 1 to monitor the coating thickness online, and includes a tooling component 2, a light source and a signal receiver 5, the light source projects a light signal to the coating, and the signal is received.
  • the device 5 is used to receive the light signal passing through the coating, and calculate the thickness of the coating by monitoring the light transmittance of the light source passing through the coating.
  • the laser light source 3 is preferably used as the light source.
  • the laser light source has high intensity, narrow bandwidth, good coherence, and high signal-to-noise ratio of the signal, so that the intensity of the optical signal collected by the signal receiver 5 does not vary with As the coating thickness increases, it decreases, improving the accuracy of film thickness measurement.
  • At least two film-forming bases 4 are provided on the tooling part 2.
  • two film-forming bases 4 are provided on the tooling part 2, one of them is used as a monitoring base 6, and the other is used as a film-forming base.
  • the base 4 is used for placing the substrate; when there are three or more film forming bases 4 on the tooling part 2, at least one is used as a monitoring base 6, and the other film forming bases 4 are used for placing the substrate.
  • the film-forming bases 4 are sequentially arranged on the same circumference with the center of the tooling part 2 as the center of the circle.
  • the monitoring base 6 is provided with at least one monitoring substrate 8, which includes at least two embodiments, the first embodiment: a monitoring substrate 8 is provided on the monitoring base 6, and the one monitoring substrate 8 has at least two blank areas, and the two blank areas are sequentially arranged on the same circumference with the center of the monitoring substrate 8 as the center of the circle.
  • the monitoring base is provided with two or more monitoring substrates 8, and the monitoring substrates 8 are sequentially arranged on the same circumference with the center of the monitoring base 6 as the center of the circle
  • the monitoring substrate 8 here is equivalent to the blank area of the first embodiment.
  • the laser direct light control device used for the coating machine further includes a shielding member 10, the shielding member 10 is arranged on the side of the monitoring base 6 close to the evaporation source 7, and a through hole 12 is provided in the thickness direction of the shielding member 10. , the shielding member 10 and the monitoring base 6 are rotatably matched, so that all the monitoring substrates 8 can be exposed through the through holes 12, and only one of the monitoring substrates 8 passes through the through holes at a time. 12 exposed. Alternatively, all blank areas of the one monitoring substrate 8 can be exposed through the through holes 12 , and only one blank area at a time is exposed through the through holes 12 .
  • the light source and the signal receiver 5 are respectively arranged on opposite sides of the monitoring base 6, the optical axis of the lens included in the signal receiver 5 is perpendicular to the monitoring base 6, and the light source is located at The signal receiver 5 is on the optical axis of the lens, and the light signal of the light source can be projected onto the monitoring substrate 8 through the through hole 12 .
  • One blank area and the substrate on the film-forming base 4 simultaneously participate in the coating, and the other blank areas are all blocked by the shielding member 10 and do not participate in the coating.
  • the light source and signal receiver 5 are used to monitor the coating thickness on the monitoring substrate 8 involved in the coating.
  • a certain value for example, 100 nm
  • adjust the shielding member 10 or the monitoring base 6 so that the next blank monitoring substrate 8 is exposed at the through hole 12 to participate in the evaporation coating, or the monitoring substrate 8 is up and down
  • a blank area is exposed at the through hole 12 to participate in the evaporation coating, and then the sum of the film thicknesses on each monitoring substrate 8 is calculated as the total thickness of the coating on the substrate, or the sum of the film thicknesses in each blank area on the monitoring substrate 8 is calculated as the base.
  • the total thickness of the upper coating for example, 100 nm
  • the shielding member 10 is fixed on the side of the monitoring base 6 close to the evaporation source 7 .
  • the positions of the light source and the signal receiver are fixed, and the monitoring base 6 Rotating around its center, the monitoring substrate 8 exposed to the through hole 12 is changed by the rotation of the monitoring base 6 .
  • the monitoring base 6 is fixed on the tooling part 2, the blocking part 10 rotates around its center, and the positions of the light source and the signal receiver follow the blocking part. 10 is rotated so that the light source can always be projected onto the monitoring substrate 8 through the through hole, and the monitoring substrate 8 exposed to the through hole 12 can be changed by rotating the shielding member 10 .
  • the shielding member 10 rotates around its center, and the monitoring base 6 rotates around its center.
  • the present invention can reduce the cumulative tolerance of film thickness measurement and improve the measurement accuracy by replacing different monitoring substrates 8 or replacing different blank areas to participate in the evaporation coating.
  • the tooling part 2 rotates around its own center, and the sampling position can be changed, so as to realize multi-point sampling, and reduce the coating thickness measurement error through multi-point sampling.
  • the rotation speed of the tooling part 2 can be adjusted, and the adjustment of the rotation speed can improve the uniformity of the coating film.
  • a plurality of film-forming bases 4 are arranged on the tooling part 2 , and the plurality of film-forming bases 4 are arranged on a circumference with the center of the tooling part 2 as the center of the circle.
  • the diameter of the tooling part 2 is 600 mm, and it has six stations (that is, there are 6 film-forming bases), one film-forming base 4 is the monitoring base 6, and the other five film-forming bases 4 can be Clamp 1 piece of WMS-15 glass substrate with a diameter of 150 mm, and the distance from the center of each substrate to the axis of the tooling part 2 is the same.
  • the above-designed tooling component 2 enables a set of laser measuring modules to measure the thicknesses of multiple coating films on multiple film-forming bases, thereby improving monitoring efficiency.
  • a plurality of monitoring substrates 8 are arranged on the monitoring base 6, for example, six monitoring substrates 8 are arranged on the monitoring base 6, and the six monitoring substrates 8 are arranged on all
  • the center of the monitoring base 6 is on the circumference of the center of the circle.
  • auxiliary positive plate 14 the auxiliary positive plate 14 is arranged in the coating chamber 1 , the evaporation source 7 is located directly under the auxiliary positive plate 14 , and the partial evaporation is blocked by the auxiliary positive plate 14 . source to maintain film thickness uniformity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本发明公开了一种用于镀膜机的激光直接光控装置,包括光源、信号接收器和工装部件,所述工装部件上设有至少两个成膜基座,所述两个成膜基座设置在以所述工装部件的中心为圆心的圆周上;至少一个所述成膜基座为监控基座,所述监控基座上设有至少一个监控基片;还包括遮挡部件,所述遮挡部件设置在所述监控基座靠近蒸发源的一侧,所述遮挡部件的厚度方向设有通孔,所述遮挡部件和监控基座转动配合,使得所有的所述监控基片均可以通过所述通孔暴露、且每次只有其中一个所述监控基片通过所述通孔暴露。本发明的用于镀膜机的激光直接光控装置,减小膜厚测量的累积公差,提高测量精确度。

Description

用于镀膜机的激光直接光控装置 技术领域
本发明涉及蒸发镀膜技术领域,具体涉及一种用于镀膜机的激光直接光控装置。
背景技术
蒸发镀膜常称真空镀膜,其特点是在真空条件下,材料蒸发并在玻璃表面上凝结成膜,在玻璃表面形成附着力很强的薄膜,薄膜的光谱特性由薄膜的厚度和折射率决定,实际生产中为了确保薄膜的光谱特性需要在镀膜过程中对每层薄膜的厚度进行精确的在线监测。目前在线监测薄膜厚度的方法主要有晶体振荡和光学控制两种方法,晶体振荡方法属于间接测量方法;光学控制方法属于直接测量方法,具有更高的测量精确度。
蒸发镀膜过程由具有不同折射率的材料依次逐层沉积到基底上构成,比如,第一种折射率的材料在基底上沉积目标厚度(比如100nm)的第一层,第二种折射率的材料在第一层上沉积目标厚度(比如100nm)的第二层,以此类推依次逐层沉积至数百层、甚至上千层。现有技术中的膜厚检测包括由信号接收器采集光信号透过薄膜的光透射率,通过光透射率计算出薄膜的光学厚度,这种方式中,信号接收器采集到的光信号强度会随着膜厚增加而减弱,导致监测精度降低,并且会随着薄膜层数的增加造成测量误差累积。
发明内容
本发明要解决的技术问题是提供一种用于镀膜机的激光直接光控装置,减小膜厚测量的累积公差,提高测量精确度。
为了解决上述技术问题,本发明提供了一种用于镀膜机的激光直接光控装置,包括工装部件,所述工装部件上设有至少两个成膜基座,所述两个成膜基座设置在以所述工装部件的中心为圆心的圆周上;至少一个所述成膜基座为监控基座,所述监控基座上设有至少一个监控基片;
还包括遮挡部件,所述遮挡部件设置在所述监控基座靠近蒸发源的一侧,所述遮挡部件的厚度方向设有通孔,所述遮挡部件和监控基座转动配合,使得所有的所述监控基片均可以通过所述通孔暴露、且每次只有其中一个所述监控基片通过所述通孔暴露。
本发明一个较佳实施例中,进一步包括所述遮挡部件固定在所述监控基座靠近蒸发源的一侧,所述监控基座绕自己的中心转动。
本发明一个较佳实施例中,进一步包括所述监控基座固定在所述工装部件上,所述遮挡部件绕自己的中心转动。
本发明一个较佳实施例中,进一步包括还包括光源和信号接收器,所述光源和信号接收器分别设置在所述监控基座的相对两侧,所述信号接收器所含透镜的光轴与所述监控基座相垂直,所述光源位于所述信号接收器所含透镜的光轴上,且所述光源的光信号能够透过所述通孔投射至所述监控基片上。
本发明一个较佳实施例中,进一步包括所述光源为激光光源。
本发明一个较佳实施例中,进一步包括所述工装部件绕自己的中心转动。
本发明一个较佳实施例中,进一步包括所述工装部件的转动速度能够调节。
本发明一个较佳实施例中,进一步包括所述工装部件上设有六个所述成膜基座,所述六个成膜基座设置在以所述工装部件的中心为圆心的圆周上。
本发明一个较佳实施例中,进一步包括所述监控基座上设有六个所述监控基片,所述六个监控基片设置在以所述监控基座的中心为圆心的圆周上。
本发明一个较佳实施例中,进一步包括还包括辅正板,所述辅正板用于遮 挡部分蒸发源。
本发明的有益效果:
本发明的用于镀膜机的激光直接光控装置,透过遮挡部件的通孔始终只有一个空白的监控基片和成膜基座上的基底同步参与蒸发镀膜,当基底上镀膜厚度达到一定值(比如100nm)时,调整遮挡部件或者监控基座,使得监控基片的下一个空白区域或者下一个空白的监控基片参与蒸发镀膜,计算监控基片上膜层厚度的总和为基底上镀膜总厚度,通过更换监控基片的采样位置或者更换不同监控基片参与蒸发镀膜的方式可以减小膜厚测量的累积公差,提高测量精确度。
附图说明
图1为本发明优选实施例中用于镀膜机的激光直接光控装置的结构示意图;
图2为镀膜机的结构示意图;
图3为本发明优选实施例中工装部件的结构示意图。
图中标号说明:
1-镀膜腔室,3-激光光源,5-信号接收器,7-蒸发源;
2-工装部件,4-成膜基座,6-监控基座,8-监控基片,10-遮挡部件,12-通孔,14-辅正板。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例
蒸发镀膜在镀膜腔室内完成,蒸发镀膜过程由具有不同折射率的材料依次 逐层沉积到基底上构成,本发明实施例公开一种用于镀膜机的激光直接光控装置,用于在蒸发镀膜过程中实时监控镀膜厚度。其中,蒸发镀膜过程中,光透射率随着镀膜厚度的增加震荡变化,达到极值(极大值/极小值)时,镀膜的光学厚度(实际厚度与镀膜折射率的乘积)为四分之一光波长的整数倍,当光透射率完成一次极值间的变化时,可知镀膜光学厚度增加了四分之一波长,由此可以通过监测光透射率,计算出镀膜的厚度。
参照图1、2所示,本发明实施例公开一种用于镀膜机的激光直接光控装置,设置在镀膜腔室1内,所述镀膜腔室1底部设有离子源和至少两组蒸发源7,两组蒸发源7分别用于提供两种材料,比如二氧化硅材料、五氧化二钽材料,两个蒸发源7交替工作在基底上蒸镀两种材料(二氧化硅材料、五氧化二钽材料)交替的镀膜,离子源辅助蒸发镀膜。所述用于镀膜机的激光直接光控装置设置在镀膜腔室1内在线监控镀膜厚度,其包括工装部件2、光源和信号接收器5,所述光源向镀膜投射光信号,所述信号接收器5用于接收透过镀膜的光信号,通过监测光源透过镀膜的光透射率,计算出镀膜的厚度。
本发明实施例技术方案中,所述光源优选使用激光光源3,激光光源强度高,带宽窄,相干性好,信号的信噪比高,使得信号接收器5采集到的光信号强度不会随着镀膜厚度增加而减弱,提升膜厚测量精确度。
具体的,所述工装部件2上设有至少两个成膜基座4,当工装部件2上设有两个成膜基座4时,其中一个用作监控基座6,另一个成膜基座4用于放置基底;当工装部件2上设有三个或者更多个成膜基座4时,至少一个用作监控基座6,其它的成膜基座4均用于放置基底。所述成膜基座4为两个或者更多个时,所述成膜基座4依次设置在以所述工装部件2的中心为圆心的同一圆周上。
所述监控基座6上设有至少一个监控基片8,此处包含至少两种实施例,第一种实施例:监控基座6上设有一个监控基片8,所述一个监控基片8上具 有至少两个空白区域,所述两个空白区域依次设置以监控基片8的中心为圆心的同一圆周上。当第二种实施例:监控基座上设有两个或者更多个监控基片8上,所述监控基片8依次设置在以所述监控基座6的中心为圆心的同一圆周上,此处的监控基片8等同于第一种实施例的空白区域。
用于镀膜机的激光直接光控装置还包括遮挡部件10,所述遮挡部件10设置在所述监控基座6靠近蒸发源7的一侧,所述遮挡部件10的厚度方向设有通孔12,所述遮挡部件10和监控基座6转动配合,使得所有的所述监控基片8均可以通过所述通孔12暴露、且每次只有其中一个所述监控基片8通过所述通孔12暴露。或者使得所述一个监控基片8的所有空白区域均可以通过所述通孔12暴露、且每次只有其中一个空白区域通过所述通孔12暴露。
其中,所述光源和信号接收器5分别设置在所述监控基座6的相对两侧,所述信号接收器5所含透镜的光轴与所述监控基座6相垂直,所述光源位于所述信号接收器5所含透镜的光轴上,且所述光源的光信号能够透过所述通孔12投射至所述监控基片8上。所述监控基座6上只有一个监控基片8和成膜基座4上的基底同步参与镀膜,其它的监控基片8全部被遮挡部件10遮挡而不参与镀膜;或者,监控基片8的一个空白区域和成膜基座4上的基底同步参与镀膜,其它的空白区域全部被遮挡部件10遮挡而不参与镀膜。所述光源和信号接收器5用于监测参与镀膜的监控基片8上的镀膜厚度。当基底上镀膜厚度达到一定值(比如100nm)时,调整遮挡部件10或者监控基座6,使得下一个空白的监控基片8暴露在通孔12处参与蒸发镀膜,或者使得监控基片8上下一个空白区域暴露在通孔12处参与蒸发镀膜,随后计算各个监控基片8上膜层厚度的总和为基底上镀膜总厚度,或者计算监控基片8上各个空白区域膜层厚度的总和为基底上镀膜总厚度。
本发明实施例的第一种实现方案中,所述遮挡部件10固定在所述监控基座6靠近蒸发源7的一侧,此时光源和信号接收器的位置固定,所述监控基座6 绕自己的中心转动,通过监控基座6转动来变化暴露于通孔12的监控基片8。
本发明实施例的第二种实现方案中,所述监控基座6固定在所述工装部件2上,所述遮挡部件10绕自己的中心转动,此时光源和信号接收器的位置跟随遮挡部件10转动,使得光源始终能透过通孔投射到监控基片8上,通过遮挡部件10转动来变化暴露于通孔12的监控基片8。
本发明实施例的第三种实现方案中,所述遮挡部件10绕自己的中心转动,所述监控基座6绕自己的中心转动,通过遮挡部件10和监控基座6的转动来变化暴露于通孔12的监控基片8。
本发明通过更换不同监控基片8或者更换不同空白区域参与蒸发镀膜的方式可以减小膜厚测量的累积公差,提高测量精确度。
所述工装部件2绕自己的中心转动,可以改变采样位置,实现多点采样,通过多点采样减小镀膜厚度测量误差。所述工装部件2的转动速度能够调节,调节转动速度可以改善镀膜的均匀性。
进一步的,所述工装部件2上设置多个成膜基座4,多个成膜基座4设置在以所述工装部件2的中心为圆心的圆周上。比如,工装部件2直径为600毫米,具有六个工位(即设有6个成膜基座),一个成膜基座4为监控基座6,其它五个成膜基座4上均可装夹1片材料为WMS-15、直径为150毫米的玻璃基底,每片基底的圆心至工装部件2轴心的距离相同。以上设计的工装部件2使得一套激光测量模组可以对应测量多个成膜基座上的多片镀膜的厚度,提高监测效率。
进一步的,所述监控基座6上设置多个监控基片8,比如,所述监控基座6上设有六个所述监控基片8,所述六个监控基片8设置在以所述监控基座6的中心为圆心的圆周上。
进一步的,还包括辅正板14,所述辅正板14设置在镀膜腔室1内,所述 蒸发源7位于所述辅正板14的正下方,通过所述辅正板14遮挡部分蒸发源,以保持薄膜厚度的均匀性。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种用于镀膜机的激光直接光控装置,包括工装部件,其特征在于:所述工装部件上设有至少两个成膜基座,所述两个成膜基座设置在以所述工装部件的中心为圆心的圆周上;至少一个所述成膜基座为监控基座,所述监控基座上设有至少一个监控基片;
    还包括遮挡部件,所述遮挡部件设置在所述监控基座靠近蒸发源的一侧,所述遮挡部件的厚度方向设有通孔,所述遮挡部件和监控基座转动配合,使得所有的所述监控基片均可以通过所述通孔暴露、且每次只有其中一个所述监控基片通过所述通孔暴露。
  2. 如权利要求1所述的用于镀膜机的激光直接光控装置,其特征在于:所述遮挡部件固定在所述监控基座靠近蒸发源的一侧,所述监控基座绕自己的中心转动。
  3. 如权利要求1所述的用于镀膜机的激光直接光控装置,其特征在于:所述监控基座固定在所述工装部件上,所述遮挡部件绕自己的中心转动。
  4. 如权利要求1~3任一项所述的用于镀膜机的激光直接光控装置,其特征在于:还包括光源和信号接收器,所述光源和信号接收器分别设置在所述监控基座的相对两侧,所述信号接收器所含透镜的光轴与所述监控基座相垂直,所述光源位于所述信号接收器所含透镜的光轴上,且所述光源的光信号能够透过所述通孔投射至所述监控基片上。
  5. 如权利要求4所述的用于镀膜机的激光直接光控装置,其特征在于:所述光源为激光光源。
  6. 如权利要求1所述的用于镀膜机的激光直接光控装置,其特征在于:所述工装部件绕自己的中心转动。
  7. 如权利要求6所述的用于镀膜机的激光直接光控装置,其特征在于:所述工装部件的转动速度能够调节。
  8. 如权利要求1所述的用于镀膜机的激光直接光控装置,其特征在于:所述工装部件上设有六个所述成膜基座,所述六个成膜基座设置在以所述工装部件的中心为圆心的圆周上。
  9. 如权利要求1所述的用于镀膜机的激光直接光控装置,其特征在于:所述监控基座上设有六个所述监控基片,所述六个监控基片设置在以所述监控基座的中心为圆心的圆周上。
  10. 如权利要求1所述的用于镀膜机的激光直接光控装置,其特征在于:还包括辅正板,所述辅正板用于遮挡部分蒸发源。
PCT/CN2021/113748 2020-11-27 2021-08-20 用于镀膜机的激光直接光控装置 WO2022110925A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011354676.2A CN112176309B (zh) 2020-11-27 2020-11-27 用于镀膜机的激光直接光控装置
CN202011354676.2 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022110925A1 true WO2022110925A1 (zh) 2022-06-02

Family

ID=73918111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113748 WO2022110925A1 (zh) 2020-11-27 2021-08-20 用于镀膜机的激光直接光控装置

Country Status (2)

Country Link
CN (1) CN112176309B (zh)
WO (1) WO2022110925A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112176309B (zh) * 2020-11-27 2021-04-09 江苏永鼎光电子技术有限公司 用于镀膜机的激光直接光控装置
CN113512712A (zh) * 2021-06-01 2021-10-19 东莞隆润光学技术有限公司 膜厚修正板及光学直接监控镀膜设备
CN113403601B (zh) * 2021-06-21 2022-10-21 中国科学院光电技术研究所 一种镀膜厚度光学控制装置和方法
CN113776442B (zh) * 2021-09-15 2023-05-30 佛山市博顿光电科技有限公司 光谱检测装置、膜厚实时监控方法及系统、真空镀膜机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410411A (en) * 1992-01-17 1995-04-25 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for forming multi-layer film
CN102272348A (zh) * 2008-11-06 2011-12-07 莱博德光学有限责任公司 试验玻片更换系统
DE102011101416A1 (de) * 2011-05-13 2012-11-15 Mtu Aero Engines Gmbh Messverfahren und Vorrichtung zur Schichtdickenmessung sowie Herstellungsverfahren und Beschichtungsanlage
CN103906991A (zh) * 2011-09-02 2014-07-02 莱博德光学有限责任公司 测试玻璃更换
CN107385408A (zh) * 2017-07-24 2017-11-24 京东方科技集团股份有限公司 膜厚测试装置及方法、蒸镀设备
CN112176309A (zh) * 2020-11-27 2021-01-05 江苏永鼎光电子技术有限公司 用于镀膜机的激光直接光控装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4676883A (en) * 1986-03-03 1987-06-30 Sierracin Corporation Optical disk transmission monitor for deposited films
JPH0798993B2 (ja) * 1986-07-23 1995-10-25 日本板硝子株式会社 膜厚制御方法
JP4449293B2 (ja) * 2001-12-19 2010-04-14 株式会社ニコン 成膜装置、及び光学部材の製造方法
JP5319856B1 (ja) * 2012-06-13 2013-10-16 株式会社シンクロン 膜厚測定装置及び成膜装置
CN105316643A (zh) * 2014-08-04 2016-02-10 陕西银河景天电子有限责任公司 一种薄膜产品制备过程中的监控设备
CN107916410B (zh) * 2017-11-23 2019-11-05 湖北东田光电材料科技有限公司 一种检测光学镀膜厚度的反射式光学监控方法
CN109321887B (zh) * 2018-11-19 2020-09-01 北方夜视技术股份有限公司 利用多点反射率监控制备大尺寸均匀薄膜的装置与方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410411A (en) * 1992-01-17 1995-04-25 Matsushita Electric Industrial Co., Ltd. Method of and apparatus for forming multi-layer film
CN102272348A (zh) * 2008-11-06 2011-12-07 莱博德光学有限责任公司 试验玻片更换系统
DE102011101416A1 (de) * 2011-05-13 2012-11-15 Mtu Aero Engines Gmbh Messverfahren und Vorrichtung zur Schichtdickenmessung sowie Herstellungsverfahren und Beschichtungsanlage
CN103906991A (zh) * 2011-09-02 2014-07-02 莱博德光学有限责任公司 测试玻璃更换
CN107385408A (zh) * 2017-07-24 2017-11-24 京东方科技集团股份有限公司 膜厚测试装置及方法、蒸镀设备
CN112176309A (zh) * 2020-11-27 2021-01-05 江苏永鼎光电子技术有限公司 用于镀膜机的激光直接光控装置

Also Published As

Publication number Publication date
CN112176309A (zh) 2021-01-05
CN112176309B (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
WO2022110925A1 (zh) 用于镀膜机的激光直接光控装置
US7119908B2 (en) Method and apparatus for measuring thickness of thin film and device manufacturing method using same
KR101129214B1 (ko) 마크 위치 검출 장치 및 위치 어긋남 검출 장치
TWI686845B (zh) 用於沈積之監控系統與其中之操作之方法
CN109652780A (zh) 一种提高异形零件镀膜均匀性的控制方法
JP2013505482A (ja) 光配向膜製造用紫外線高透過二重ワイヤグリッド偏光板及びその製造方法
TWI426258B (zh) Real - time Monitoring of Film Growth by Dynamic Interferometer
WO2023040674A1 (zh) 光谱检测装置、膜厚实时监控方法及系统、真空镀膜机
JP4118585B2 (ja) マスクブランクの製造方法
JP4642024B2 (ja) 一体型の多目的光学アラインメントのためのシステムおよび方法
CN111394700A (zh) 一种蒸发镀膜制作装置及制作蒸发镀膜的方法
CN112553589B (zh) 一种高稳定性薄膜监控方法及镀膜装置
CN113355646B (zh) 一种基于多源共蒸技术的薄膜监测制备装置及方法
CN112504143A (zh) 镀膜膜厚在线监测方法和镀膜机
JP5502227B1 (ja) 膜厚分布測定方法
CN117867461A (zh) 基于宽光谱监控的镀膜工艺方法
CN117248178A (zh) 一种实时监测镜片面形的镀膜装置及镀膜方法
JP2011084760A (ja) 成膜方法
EP1148149B1 (en) Method for the production of multi-layer systems
JP2005154804A (ja) 光学薄膜成膜装置及び光学薄膜成膜方法
JPH07109569A (ja) 薄膜形成方法
Wang et al. Large-area uniformity in evaporation coating through a new form of substrate motion
JP2008095158A (ja) スパッタ成膜装置及びスパッタ成膜方法
SU742400A1 (ru) Способ получени многослойных интерференционных зеркал
CN220729179U (zh) 一种在线测量oled蒸镀膜层厚度的系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896430

Country of ref document: EP

Kind code of ref document: A1