WO2022110703A1 - 一种利用再生聚酯制造高模低缩工业丝的方法 - Google Patents

一种利用再生聚酯制造高模低缩工业丝的方法 Download PDF

Info

Publication number
WO2022110703A1
WO2022110703A1 PCT/CN2021/096093 CN2021096093W WO2022110703A1 WO 2022110703 A1 WO2022110703 A1 WO 2022110703A1 CN 2021096093 W CN2021096093 W CN 2021096093W WO 2022110703 A1 WO2022110703 A1 WO 2022110703A1
Authority
WO
WIPO (PCT)
Prior art keywords
chips
modulus
low
polyester
industrial yarn
Prior art date
Application number
PCT/CN2021/096093
Other languages
English (en)
French (fr)
Inventor
孙浩然
李俊隆
Original Assignee
亚东工业(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 亚东工业(苏州)有限公司 filed Critical 亚东工业(苏州)有限公司
Publication of WO2022110703A1 publication Critical patent/WO2022110703A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/096Humidity control, or oiling, of filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/098Melt spinning methods with simultaneous stretching
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters

Definitions

  • the invention belongs to the technical field of polyester industrial yarn manufacturing, and in particular relates to a method for manufacturing high-modulus and low-shrinkage industrial yarn by using regenerated polyester.
  • Polyester is one of the most widely used synthetic polymers at present. Among them, high modulus low shrinkage polyester industrial yarn (PET HMLS) is widely used due to its high strength, high dimensional stability and low cost. Manufactured in radial tire carcasses.
  • the polyester chips (virgin polyester chips) of traditional PET HMLS industrial yarns are derived from fossil raw materials (petroleum). The raw chips cannot be degraded by microorganisms for a long time.
  • the social reserves of polyester products for bottles are very large and easy to use. It causes "white pollution” and "space pollution", and the manufacturing process consumes a lot of energy and produces a large amount of harmful gases such as CO2 . Therefore, recycling PET bottles has certain economic and environmental effects.
  • Recycled polyester chips can be used to manufacture high-modulus and low-shrinkage industrial yarns by recycling PET bottles, which will greatly reduce the environmental load and effectively reduce carbon emissions.
  • impurities such as isophthalic acid (IPA) in recycled polyester
  • IPA isophthalic acid
  • other small molecular impurities are inevitably mixed. These impurities will reduce the crystallization ability of PET in the process of industrial yarn spinning, making spinning drafting difficult, and the physical properties of the finished product are inferior to traditional PET HMLS industrial yarn.
  • the production efficiency is not good, and it is impossible to make a good tire cord.
  • the technical problem to be solved by the present invention is to overcome the problem of heavy pollution when the existing raw materials for manufacturing high-modulus and low-shrinkage industrial yarns are made of virgin polyester chips and the poor crystallization ability due to impurities mixed in when the raw materials are recycled polyester chips. This in turn leads to the defect of poor physical properties of the finished product.
  • the technical scheme adopted in the present invention is:
  • the invention provides a method for manufacturing high-modulus and low-shrinkage industrial yarn by utilizing regenerated polyester, comprising the following steps:
  • the basic chips include recycled polyester chips recovered from polyester bottles;
  • step 2) drying the high-viscosity chips described in step 1), melt extrusion for spinning, and cooling the tow step by step; wherein, after drying, the moisture content of the chips is less than 30 ppm.
  • the heating temperature is 280 ⁇ 350°C, and the length of the no-wind slow cooling belt is 20 ⁇ 100mm;
  • the basic chips further include virgin polyester chips produced from fossil raw materials;
  • the mass ratio of the recycled polyester chips is: 10% ⁇ recycled polyester chips ⁇ 100%.
  • the method for manufacturing high-modulus and low-shrinkage industrial yarn by using recycled polyester further comprises passing the recycled polyester chips and the virgin polyester chips through a single screw conveying system between step 1) and step 2). The process of mixing.
  • step 2) nitrogen is used for drying, the drying temperature is 120-160° C., and the drying time is more than 8.0 hours.
  • step 2) the high-viscosity chips are melt-extruded by a screw extruder;
  • the temperature of the feed section of the screw extruder is 300-330°C
  • the temperature of the compression section is 290-320°C
  • the temperature of the metering section is 280-310°C
  • the head pressure is 14-18MPa.
  • step 2) the high-viscosity chips are spun through a spinning box, and the spinneret hole aspect ratio of the spinning box is 1.2 ⁇ 3.0.
  • step 2) after slow cooling without wind, the tow is cooled by blowing from the outside to the inner ring, the blowing pressure is 15-50Pa, and the blowing pressure is 15-50Pa.
  • the temperature is 22 to 65°C.
  • step 3 in the drawing process: the speed of the first hot roller group is 2700-3200 m/min, and the temperature is 60-80 °C; the speed of the second heat roller group is 3800 ⁇ 5000m/min, the temperature is 70 ⁇ 90°C; the speed of the third heat roller group is 5800 ⁇ 6200m/min, the temperature is 210 ⁇ 260°C; the draft ratio is 1.81 ⁇ 2.30%;
  • step 3 in the shaping process: the speed of the fourth heat roller group is 5800-6200m/min, and the temperature is 210-260°C; the speed of the fifth heat roller group is 5600-6200m/min, and the temperature is 210- 260°C; the speed of the sixth heating roller group is 5450-6000 m/min, the temperature is 100-150°C; the retraction ratio is 2.5-6.0%.
  • the coiling speed is 5450-5950 m/min.
  • the isophthalic acid contained in the high-modulus and low-shrinkage industrial yarn is proportional to the mass ratio of the recycled polyester chips in the basic chips. changes, the proportion of isophthalic acid increases by 0.12 to 0.22 wt% for every 10 wt% increase in the proportion;
  • the high modulus and low shrinkage industrial yarn has a denier of 300-4000D, a crystallinity of 45.0-53.5%, a strength of 7.5-9.0g/d, an elongation at break of 10.2-15.5%, and a dry heat shrinkage rate of 3.2-5.2 %.
  • the test method for intrinsic viscosity (IV) adopts ASTM D4603; the measurement method for crystallinity is the density gradient tube method (ASTM D1505).
  • the 100% crystalline and 100% amorphous densities of , using literature values, are 1.455 g/cm 3 and 1.333 g/cm 3 , respectively.
  • Strength and elongation were measured using the ASTM D885 method. Dry heat shrinkage test conditions are 177°C, 10min, 0.05g/d load.
  • the method for utilizing regenerated polyester to manufacture high-modulus and low-shrinkage industrial yarn comprises the following steps: 1) pre-crystallizing, crystallizing, and thickening basic slices to obtain high-viscosity slices, and the basic slices include polyester The recycled polyester chips recovered from the bottle; 2) the high-viscosity chips are dried, melted and extruded for spinning, and the tow is cooled step by step; 3) the tow is oiled, drawn, shaped and coiled to obtain high Die low shrinkage industrial yarn.
  • the method for using recycled polyester to manufacture high-modulus and low-shrinkage industrial yarns includes recycled polyester chips recovered from polyester bottles. Compared with the traditional manufacturing method of raw chips produced only from petrochemical raw materials, energy consumption and energy consumption are reduced. Carbon emissions can effectively alleviate the problems of "white pollution” and "space pollution", and are more in line with the concept of environmental protection and the corporate goals and social responsibilities of sustainable development.
  • the crystallization speed of the material will become faster and the crystallinity will decrease.
  • the strength and modulus of the filament decrease.
  • This method uses the pre-crystallization, crystallization and viscosity-increasing processes to polymerize the molecules of the recycled polyester chips, remove small molecules, increase the molecular chain, increase the intrinsic viscosity, and improve the pullability of the material.
  • the post-heating temperature of the tow during spinning is 280-350°C
  • the length of the no-wind slow cooling belt is 20-100mm.
  • the method for producing high-modulus and low-shrinkage industrial yarn by utilizing regenerated polyester provided by the present invention, when selecting the raw material for manufacturing high-modulus and low-shrinkage industrial yarn, considering the strength and cost of the product industrial yarn, that is, the content of recycled polyester chips The higher it is, the more difficult it is to produce high-strength industrial yarn, and the manufacturing cost is also higher.
  • the basic chips of the present invention can also include virgin polyester chips produced from fossil raw materials, and the mass ratio of the recycled polyester chips is controlled to be : 10% ⁇ recycled polyester chips ⁇ 100%, mixing the appropriate proportion of virgin polyester chips can improve the strength of the product industrial yarn and reduce the manufacturing cost under the premise of controlling the energy consumption and carbon content at a low level. Therefore, the performance and price of the product industrial yarn can be adjusted by controlling the proportion of recycled polyester chips and virgin polyester chips to meet the different needs of customers.
  • the method for producing high-modulus and low-shrinkage industrial yarn by using regenerated polyester provided by the present invention adopts the cooling process from the outside to the inside to cool the spinning tow, so that the spinning tow will not stick together, and it is convenient to use.
  • Follow-up drafting; and control the air temperature and air pressure to prevent the risk of poor drafting, poor spinning conditions and too slow cooling, which will cause the tow to stick and the physical properties are low.
  • the method for manufacturing high-modulus and low-shrinkage industrial yarn by using regenerated polyester controls the speed and temperature of the first, second, and third heat rollers during the drawing process, so that the product industrial
  • the filament achieves the desired properties such as strength, elongation, modulus, heat shrinkage, etc.
  • the method for producing high-modulus and low-shrinkage industrial yarn by using regenerated polyester controls the speed and temperature of the fourth, fifth, and sixth heat rollers during the setting process, so that the drafting can be achieved.
  • the finished tow is completely crystallized, the microstructure tends to be stable, the strength and modulus are stabilized, the thermal shrinkage rate is reduced, and good conditions are provided for the coiling and forming of the ingot.
  • the present embodiment provides a method for manufacturing high-modulus and low-shrinkage industrial yarn by utilizing recycled polyester, comprising the following steps:
  • the viscosity-increasing process is a process in which the basic chips are placed in a high-temperature and high-vacuum reactor to undergo a polymerization reaction to increase the molecular chain to increase the molecular intrinsic viscosity.
  • the above-mentioned basic chips include recycled polyester chips recovered from PET bottles, that is, the source of basic chips is to use only recycled polyester chips as a single material, or to mix a certain proportion of virgin polyester chips produced from fossil raw materials into recycled polyester chips.
  • a mixture of ester chips If only recycled polyester chips are used for the basic chips, it can completely replace the traditional virgin polyester chips to manufacture industrial yarn, which can minimize production energy consumption and carbon emissions, but the strength is slightly lower and the cost is higher; if the basic chips are selected from recycled polyester chips
  • the blend of virgin polyester chips into the chips can further increase the strength of industrial yarns and reduce manufacturing costs, but does not minimize energy consumption and carbon emissions. Therefore, it is possible to choose whether to use recycled polyester chips completely or mix in an appropriate proportion of virgin polyester chips according to the different needs of customers in terms of performance and cost of industrial yarn.
  • the mass ratio of recycled polyester chips in the basic chips is 100wt%; for the case where virgin polyester is mixed, the mass ratio of recycled polyester chips in the basic chips is : 10wt% ⁇ recycled polyester chips ⁇ 100wt%. That is to say, the mass proportion of the recycled polyester chips in the basic chips is 10wt% ⁇ regenerated polyester chips ⁇ 100wt%, which can meet the conditions for manufacturing high-strength and low-shrinkage industrial yarns.
  • the above two cases all contain recycled polyester chips. Since the recycled polyester chips contain 1.2 to 2.2 wt% of impurities such as isophthalic acid (IPA), and other small molecular impurities are inevitably mixed in the recycling process, these Impurities in the spinning process will reduce the crystallinity of polyester (PET), which is not conducive to spinning draft, making the physical properties of industrial yarns inferior to those of traditional virgin polyester chips. In general, the intrinsic viscosity (IV) of recycled polyester chips ranges from 0.55 to 0.75.
  • the crystallization speed and crystallinity of polyester (PET) materials during crystallization can be improved through the tackifying process, which can make up for isophthalic acid (IPA). ) adverse effects on crystallization, and then improve the draftability of polyester (PET) materials, making it possible to apply high spinning speed and high draft ratio in the spinning process, reducing the frequency of filaments and broken filaments, and improving the industrial filament strength and modulus.
  • IPA isophthalic acid
  • the solid-phase polymerization method is used to pre-crystallize the low-viscosity basic chips at a temperature of 150-180°C for 0.5-1.5 hours, and then enter the crystallisation at a temperature of 200-230°C for 4-6 hours, and then enter the wall surface
  • the viscosity-increasing reactor at a temperature of 200-220°C reacts for 30-35 hours, the whole system operates in a nitrogen environment, the oxygen content of nitrogen is controlled at 30-70ppm, and the dew point is less than 70°C, so that the low-viscosity basic chip has an intrinsic viscosity (IV) increased to 0.85-1.15 to obtain high-viscosity slices.
  • IV intrinsic viscosity
  • the basic chips are mixed with virgin polyester chips in recycled polyester chips, the two need to be mixed before the spinning process.
  • the slices are mixed evenly in a single-screw conveying system (such as a mixer) according to a preset ratio to obtain mixed high-viscosity slices with more stable quality.
  • a single-screw conveying system such as a mixer
  • the mass proportion of recycled polyester chips is: 10% ⁇ recycled polyester chips ⁇ 100%.
  • the mixed high-viscosity chips or single-material high-viscosity chips obtained in step S2 are melted and extruded through a screw extruder to obtain a melt.
  • This process can further improve the melt viscosity and fluidity of high-viscosity chips, further compensate for the adverse effect of isophthalic acid (IPA) on crystallization, and then improve the draftability of polyester (PET) materials; for mixed high-viscosity chips , the extrusion process can also improve the uniformity of the mixture of recycled polyester chips and virgin polyester chips.
  • IPA isophthalic acid
  • PET polyester
  • the temperature of each section of the screw extruder is: the temperature of the feeding section is 300-330 °C, the temperature of the compression section is 290-320 °C, the temperature of the measuring section is 280-310 °C, and the head pressure is 14-18MPa.
  • the extruded chips obtained in step S3 are spun through a spinning box, and the tow is cooled step by step.
  • the technological parameters in the spinning process are: preferably Denny 1000-1500D, the number of spinneret holes in the spinning box is 180-480, and the length-diameter ratio of spinneret holes is 1.2-3.0.
  • Denny can also choose 300 ⁇ 4000D, such as 300D, 2000D, 4000D, if Denny is higher than 1500D, the number of spinneret holes may be higher than 480.
  • the post-heating temperature of the tow is 280-350°C
  • the length of the windless slow-cooling belt is 20-100 mm.
  • the blowing pressure is 15-50MPa, and the blowing temperature is 22-65°C.
  • the tow After spinning, the tow is cooled in stages in order to solidify the molten tow. If the tow is cooled too fast, it will be difficult to draw and the condition will be poor; if the tow is cooled too slowly, the risk of tow adhesion and low physical properties will occur. Based on this, after melt spinning, the tow is heated, cooled slowly without wind, and cooled with cooling air in sequence.
  • the tow cooled in step S4 is oiled, and the oiling agent is an emulsified type, and the oiling rate is 0.3-0.9 wt%.
  • the purpose of oiling is to increase the cohesion between the tows, reduce friction and static electricity, so that the subsequent drafting process can be carried out smoothly, and the occurrence of filaments and broken filaments can be reduced.
  • the oiled tow is drawn through three sets of hot rolls to achieve the desired properties such as strength, elongation, modulus, heat shrinkage, etc. of the tow.
  • the speed of the first hot roller group (GR1) is 2700 ⁇ 3200m/min, and the temperature is 60 ⁇ 80°C
  • the speed of the second hot roller group (GR2) is 3800 ⁇ 5000m/min, and the temperature is 70 ⁇ 90°C
  • the speed of the third heat roller group is 5800-6200 m/min, and the temperature is 210-260°C.
  • the drafting ratio is 1.81-2.30%.
  • the drawn tow needs to be set at high temperature on the shaping hot roller, which can make the tow crystallized completely, the microstructure tends to be stable, the strength and modulus are stabilized, the thermal shrinkage rate is reduced, and it provides good conditions for subsequent coiling and forming.
  • the tow is shaped by another three groups of heat rollers: the speed of the fourth heat roller group is 5800-6200m/min, and the temperature is 210-260°C; the speed of the fifth heat roller group is 5600-6200m/min, and the temperature is 210 ⁇ 260°C; the speed of the sixth heat roller group is 5450 ⁇ 6000m/min, and the temperature is 100 ⁇ 150°C.
  • the shrinkage ratio of the above-mentioned setting is 2.5 to 6.0%.
  • the shaped tow is coiled and formed at a high coiling speed of 5450-5950 m/min to obtain high die and low shrinkage industrial yarn.
  • This embodiment provides a method for manufacturing industrial silk by using the above-mentioned method respectively using virgin polyester chips, Bio-PET, and HIPS as raw materials, and the carbon emission is shown in FIG. 1 .
  • This embodiment provides a method for manufacturing high-modulus and low-shrinkage industrial yarn by using recycled polyester.
  • the difference from Embodiment 1 is that no tackifying process is provided.
  • This embodiment provides a method for producing high-modulus and low-shrinkage industrial yarn by using recycled polyester.
  • the difference from Embodiment 1 is that the basic chips are directly treated with tackifying treatment in the tackifying process, without pre-crystallization and crystallization treatment.
  • This embodiment provides a method for producing high-modulus and low-shrinkage industrial yarn by using recycled polyester.
  • the difference from Embodiment 1 is that after the spinning process is completed, the tow is cooled by direct cooling air without using a post-heater, Design of no wind and slow cooling belt.
  • This embodiment provides a method for producing high-modulus and low-shrinkage industrial yarn using recycled polyester.
  • the difference from Comparative Example 3 is that after the spinning process is completed, the tow is cooled by direct cooling air, without the use of an after-heater, Design of no wind and slow cooling belt.
  • Examples 1-6 Compared with the industrial yarns manufactured with Bio-PET and HIPS as raw materials, the carbon emissions in Examples 1-6 are all lower, which indicates that the basic chips containing recycled polyester chips can help reduce carbon emissions.
  • the isophthalic acid content, crystallinity, strength, elongation and thermal shrinkage were tested on the industrial yarns manufactured in Examples 1-6 and Comparative Examples 2-5.
  • the dry heat shrinkage test standard is in accordance with ASTM D885, and the test conditions are: 177°C, load 0.05g/d, and equilibration time of 10 minutes.
  • the standard for judging the wool yarn is that a 9kg full spool of yarn (taking 1300D as an example, the total length is about 62km), if the number of wool yarns is visually observed at both ends of the yarn, it is qualified if the number of filaments is less than 10, and if it is more than 10, it is unqualified.
  • the industrial yarn produced by the thickening, spinning, cooling and drafting process of the present invention has physical properties such as strength and elongation that can reach the level of traditional industrial yarn, and can meet the needs of various downstream applications (such as tire cord), and has high production efficiency, low waste silk rate ( ⁇ 4%), and high wool yarn qualification rate.
  • the present invention can effectively increase the molecular chain length and remove some small molecular impurities by setting the viscosity increasing process;
  • the quality and processability of the sticky chips can prevent the chips from sticking and agglomerating in the viscosity increasing reactor.
  • This bad situation is serious, it will lead to the unsmooth discharge of the viscosity increasing reactor and make the high viscosity chips
  • the increase in the viscosity (IV) variation of the slicing makes the melting point of the slices, the melt fluidity, and the crystallization rate of the filaments uneven, which increases the frequency of broken filaments and filaments, and greatly increases the difficulty of processing.
  • the uniformity of the viscosity, melting point and crystallization rate of the high-viscosity chips can be effectively controlled, the stretchable ratio of the material is increased, and the spinnability is greatly improved. Intensity is greatly increased. This shows that if the viscosity increasing process is not set up, the strength of the manufactured industrial yarn cannot meet the requirements, and the rate of broken filaments is extremely high, and the production efficiency is unacceptable.
  • the crystallization rate is faster, the spinnability is worse, and the crystallinity of the finished industrial yarn is lower, which means that the pre-crystallization and crystallization process should be combined with the post-heating and wind-free slow cooling process to better reduce the crystallization rate. , improve the crystallinity.
  • the isophthalic acid contained in the high-modulus and low-shrinkage industrial yarn changes with the mass proportion of the recycled polyester chips in the basic chips: for every 10wt% increase in the proportion, the isophthalic acid content increases by 0.12-0.22wt% .
  • the isophthalic acid content of the high-modulus low-shrinkage industrial yarn is 0.
  • the industrial yarns manufactured in Examples 1-6 and Comparative Examples 2-5 were subjected to processes such as double-strand twisting, weaving, and dipping to obtain dipped cord fabrics. rate, GD fatigue resistance retention rate and other tests.
  • Industrial yarn is processed to produce dipped cord fabric, including twisting, weaving, dipping and other processes:
  • Twisting process use a direct twisting machine to perform primary twisting and double twisting on industrial yarns to obtain double twisted yarns;
  • the twisted yarns are arranged on the creel, and the tension between the twisted yarns is controlled by rolling bearings and belts to maintain uniformity.
  • the twisted yarns are passed through the reeds customized according to specifications, and weaving by air-jet looms.
  • the twisted yarn is woven into a prefabricated fabric with a preset width, and the weft yarn is made of cotton yarn or elastic yarn;
  • Dipping process dipping the green fabric to make the cord fabric achieve ideal physical properties and have the ability to bond with rubber. Double-bath dipping method is adopted. The first bath is dipped in Epoxy and MDI solution to activate the fiber, and the second bath is dipped. RFL resin, when dipping, the cord fabric passes through the oven, tension zone and glue tank in turn for dipping. During the dipping process, the cord fabric undergoes thermal extension and retraction deformation, and the total elongation rate is 0%-1%.
  • GD fatigue test conditions are: 1800rpm, 24hr, 20% compression, 6.5% extension, room temperature test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明属于聚酯工业丝制造技术领域,具体涉及一种利用再生聚酯制造高模低缩工业丝的方法,包括以下步骤:1)将基础切片预结晶、结晶、增黏,得到高黏切片,基础切片包括由聚酯瓶回收的再生聚酯切片;2)将高黏切片干燥、熔融挤出进行纺丝,对丝束冷却;3)对丝束上油、牵伸、定型、卷取,得到高模低缩工业丝。采用由聚酯瓶回收的再生聚酯切片,相比传统只利用源于石化原料生产的原生切片,降低了能耗和碳排放量;增黏工序使再生聚酯切片分子发生聚合反应,增大特性黏度,改善了材料可牵伸性能,使纺丝过程中高纺速高牵伸比成为可能,减少毛丝、断丝发生频率,制造的高模低缩工业丝可生产轮胎帘布等下游产品,获得与传统工业丝同等的性能表现。

Description

一种利用再生聚酯制造高模低缩工业丝的方法 技术领域
本发明属于聚酯工业丝制造技术领域,具体涉及一种利用再生聚酯制造高模低缩工业丝的方法。
背景技术
聚酯(PET)是目前人类使用最为广泛的合成高聚物之一,其中高模低缩型聚酯工业丝(PET HMLS)因具有高强力、高尺寸稳定性、成本低廉等特性,广泛用于子午轮胎胎体制造。传统PET HMLS工业丝的聚酯切片(原生聚酯切片)来源于化石原料(石油),该原生切片在相当长时间内不能被微生物降解,再加之瓶用聚酯制品的社会储量非常巨大,容易造成“白色污染”和“空间污染”,而且制造过程能耗高,产生大量CO 2等有害气体,因此,回收聚酯瓶再生聚酯具有一定的经济性和环保效应。
通过回收聚酯瓶再生聚酯切片可用于制造高模低缩工业丝,将会大幅度减轻环境负荷,有效减少碳排放量,但由于再生聚酯中含间苯二甲酸(IPA)等杂质,在回收聚酯瓶过程中又不可避免地混入其它小分子杂质,这些杂质在工业丝纺丝过程中会降低PET的结晶能力,使得纺丝牵伸不易,成品物性劣于传统PET HMLS工业丝,生产效率不佳,无法制造优良的轮胎帘子布。
发明内容
因此,本发明要解决的技术问题在于克服现有制造高模低缩工业丝的原料当采用原生聚酯切片时存在污染重问题以及当原料采用再生聚酯切片时因混入杂质而导致结晶能力差继而导致成品物性劣的缺陷。
为解决上述技术问题,本发明采用的技术方案是:
本发明提供一种利用再生聚酯制造高模低缩工业丝的方法,包括以下步骤:
1)将基础切片预结晶、结晶、增黏,得到高黏切片,所述高黏切片的特性黏度为0.85~1.15;其中,所述基础切片包括由聚酯瓶回收的再生聚酯切片;
2)将步骤1)所述的高黏切片进行干燥、熔融挤出进行纺丝,并对丝束逐级冷却;其中,干燥后切片含水率<30ppm,所述逐级冷却过程中,对丝束进行后加热温度为280~350℃,无风缓冷带长度为20~100mm;
3)对步骤2)逐级冷却后的丝束上油、牵伸、定型、卷取,得到高模低缩工业丝。
优选地,该利用再生聚酯制造高模低缩工业丝的方法,步骤1)中,所述基础切片还包括由化石原料生产的原生聚酯切片;
在所述基础切片中,所述再生聚酯切片质量占比为:10%≤再生聚酯切片<100%。
进一步优选地,该利用再生聚酯制造高模低缩工业丝的方法,在步骤1)和步骤2)之间还包括将所述再生聚酯切片和所述原生聚酯切片通过单螺杆输送系统进行混料的过程。
优选地,该利用再生聚酯制造高模低缩工业丝的方法,步骤2)中,采用氮气干燥,所述干燥温度为120~160℃,所述干燥时间为大于8.0小时。
进一步优选地,该利用再生聚酯制造高模低缩工业丝的方法,步骤2)中,所述高黏切片通过螺杆挤出机熔融挤出;
所述螺杆挤出机的进料段温度为300~330℃,压缩段温度为290~320℃,计量段温度为280~310℃,机头压力为14~18MPa。
进一步优选地,该利用再生聚酯制造高模低缩工业丝的方法,步骤2) 中,所述高黏切片通过纺丝箱纺丝,所述纺丝箱的喷丝孔长径比为1.2~3.0。
进一步优选地,该利用再生聚酯制造高模低缩工业丝的方法,步骤2)中,在无风缓冷后通过由外向内环吹风方式对丝束冷却,吹风压力为15~50Pa,吹风温度为22~65℃。
进一步优选地,该利用再生聚酯制造高模低缩工业丝的方法,步骤3)中,所述牵伸过程中:第一热辊组的速度为2700~3200m/min,温度为60~80℃;第二热辊组的速度为3800~5000m/min,温度为70~90℃;第三热辊组的速度为5800~6200m/min,温度为210~260℃;牵伸比为1.81~2.30%;
步骤3)中,所述定型过程中:第四热辊组的速度为5800~6200m/min,温度为210~260℃;第五热辊组的速度为5600~6200m/min,温度为210~260℃;第六热辊组的速度为5450~6000m/min,温度为100~150℃;回缩比为2.5~6.0%。
进一步优选地,该利用再生聚酯制造高模低缩工业丝的方法,所述卷取过程中,卷取车速为5450~5950m/min。
进一步优选地,所述利用再生聚酯制造的高模低缩工业丝,所述高模低缩工业丝含有的间苯二甲酸随所述再生聚酯切片在所述基础切片中的质量占比变化,占比每增加10wt%,间苯二甲酸含量增加0.12~0.22wt%;
所述高模低缩工业丝的丹尼为300~4000D,结晶度为45.0~53.5%,强度为7.5~9.0g/d,断裂伸长为10.2~15.5%,干热收缩率为3.2~5.2%。
特性黏度(IV)的测试方法采用ASTM D4603;结晶度测量方法为密度梯度管法(ASTM D1505),将待测纤维的密度测量出后,再使用内插法计算样品结晶度,此计算中涉及的100%结晶态密度及100%非晶态密度采用文献值,分别为1.455g/cm 3及1.333g/cm 3。强度和伸度的测量采用ASTM D885方法。干热收缩率测试条件为177℃,10min,0.05g/d load。
本发明技术方案,具有如下优点:
1.本发明提供的利用再生聚酯制造高模低缩工业丝的方法,包括以下步骤:1)将基础切片进行预结晶、结晶、增黏,得到高黏切片,该基础切片包括由聚酯瓶回收的再生聚酯切片;2)将高黏切片进行干燥、熔融挤出进行纺丝,并对丝束逐级冷却;3)对丝束上油、牵伸、定型、卷取,得到高模低缩工业丝。
该利用再生聚酯制造高模低缩工业丝的方法,基础切片包括由聚酯瓶回收的再生聚酯切片,相比传统只利用源于石化原料生产的原生切片制造方法,降低了能耗和碳排放量,可有效缓解“白色污染”和“空间污染”问题,更符合环保理念与永续发展的企业目标与社会责任。
考虑到再生聚酯切片含有的间苯二甲酸无法被去除而将导致材料结晶速度变快、结晶度下降的问题,快的结晶速度会使纺丝时不易牵伸,低的结晶度会使工业丝强度与模量下降,该方法通过预结晶、结晶、增黏工序使再生聚酯切片分子发生聚合反应,脱除小分子,使分子链增长,增大了特性黏度,改善了材料的可牵伸性能,提高了产品工业丝的强度与模量;同时,在纺丝时对丝束进行后加热温度为280~350℃,无风缓冷带长度为20~100mm,配合预结晶、结晶过程,调节材料的结晶速度,使纺丝过程中应用高纺速高牵比成为可能,减少毛丝、断丝的发生频率,得以生产高强高模工业丝。
2.本发明提供的利用再生聚酯制造高模低缩工业丝的方法,在选用制造高模低缩工业丝的原料时,考虑到产品工业丝的强度和成本问题,即再生聚酯切片含量越高,越难生产高强度工业丝,同时制造成本也越高,基于此,本发明的基础切片还可以包括由化石原料生产的原生聚酯切片,并控制再生聚酯切片的质量占比为:10%≤再生聚酯切片<100%,混入合适比例的原生聚酯切片,在将能耗和碳含量控制在较低水平的前提下,还能提高产品工业丝的强度,降低制造成本,因此,可通过控制再生聚酯切片和原生聚酯切片 的占比对产品工业丝的性能和价格作出调整,满足客户的不同需求。
3.本发明提供的利用再生聚酯制造高模低缩工业丝的方法,在冷却工序采用由外向内环吹方式对纺丝丝束冷却,使纺丝丝束之间不会黏连,便于后续牵伸;并控制风温、风压,防止冷却太快不易牵伸、纺况差以及冷却太慢会丝束黏连、物性低下的风险。
4.本发明提供的利用再生聚酯制造高模低缩工业丝的方法,在冷却工序之后进行上油,增加了丝束的抱合性,减少摩擦力与静电,使得牵伸工序能顺利进行,减少毛丝和断丝的发生。
5.本发明提供的利用再生聚酯制造高模低缩工业丝的方法,牵伸过程中控制第一热辊组、第二热辊组、第三热辊组的速度和温度,使得产品工业丝达到理想的强度、伸长、模量、热收缩等性能。
6.本发明提供的利用再生聚酯制造高模低缩工业丝的方法,定型过程中控制第四热辊组、第五热辊组、第六热辊组的速度和温度,可使牵伸后的丝束结晶完全、微结构趋于稳定,稳定强力与模量,降低热收缩率,并为丝锭卷取成型提供良好条件。
具体实施方式
为了便于理解本发明的目的、技术方案和要点,下面将对本发明的实施方式作进一步详细描述。本发明可以多种不同的形式实施,而不应该被理解为仅限于在此阐述的实施例。相反,提供此实施例,使得本发明将是彻底的和完整的,并且将把本发明的构思充分传达给本领域技术人员,本发明将仅由权利要求来限定。
本实施例提供一种利用再生聚酯制造高模低缩工业丝的方法,包括以下步骤:
步骤S1.增黏工序
增黏工序(solid state polymerization,SSP)又叫固态聚合,是将基础切片置于在高温高真空反应器内发生聚合反应使分子链增长以提高分子特性黏度的过程。
上述基础切片包括由聚酯瓶回收的再生聚酯切片,也即,基础切片来源为只选用再生聚酯切片单料,或者选用在再生聚酯切片中混入一定比例的由化石原料生产的原生聚酯切片形成的混料。若基础切片只选用再生聚酯切片,可完全替代传统原生聚酯切片制造工业丝,能够最大限度降低生产能耗和碳排放量,但强度稍低、成本增高;若基础切片选用在再生聚酯切片中混入原生聚酯切片的混合料,可进一步提高工业丝的强度,并降低制造成本,但不能最大限度地降低耗能和碳排放量。因此,可根据客户对工业丝在性能和成本方面的不同需求来选择是完全用再生聚酯切片还是混入适当比例的原生聚酯切片。
对于只选用再生聚酯切片的情况,则在基础切片中,再生聚酯切片的质量占比为100wt%;对于混入原生聚酯情况,则在基础切片中,再生聚酯切片的质量占比为:10wt%≤再生聚酯切片<100wt%。也即,再生聚酯切片在基础切片中的质量占比为10wt%≤再生聚酯切片≤100wt%,都能满足制造高强低缩工业丝的条件。
上述两种情况都含有再生聚酯切片,由于再生聚酯切片中含有1.2~2.2wt%的间苯二甲酸(IPA)等杂质,而且在回收过程中又不避免地混入其它小分子杂质,这些杂质在纺丝工序中会降低聚酯(PET)的结晶度,不利于纺丝牵伸,使得工业丝的物性劣于传统只选用原生聚酯切片的物性。一般情况下,再生聚酯切片的特性黏度(IV)范围为0.55~0.75,通过增黏工序可改善聚酯(PET)材料在结晶时的结晶速度以及结晶度,可弥补间苯二甲酸(IPA)对结晶的不良影响,继而改善聚酯(PET)材料的可牵伸性能,使纺丝过程中应用高纺速高牵比成为可能,减少了毛丝、断丝的发生频率,提高 了工业丝的强度和模量。
具体地,采用固相聚合的方法,将低黏度的基础切片在温度150~180℃条件下预结晶0.5~1.5小时,然后进入温度为200~230℃条件下结晶4~6小时,再进入壁面温度为200~220℃条件下的增黏反应器反应30~35小时,全系统在氮气环境下运行,控制氮气含氧量在30~70ppm,露点<70℃,使低黏度的基础切片特性黏度(IV)提高至0.85~1.15,得到高黏切片。步骤S2.混料工序
若基础切片选用在再生聚酯切片中混入原生聚酯切片的情况,在纺丝工序前需要将二者混料,将由再生聚酯切片制造的高黏切片和由原生聚酯切片制造的高黏切片按照预设比例在单螺杆输送系统(如混料机)中使二者混合均匀,得到质量更稳定的混料高黏切片。在基础切片中,再生聚酯切片的质量占比为:10%≤再生聚酯切片<100%。
若基础切片只选用再生聚酯切片,则不需要该混料工序,作为单料高黏切片经干燥后直接进入挤出工序。
采用热氮气对单料高黏切片或混料高黏切片干燥,温度为120~160℃,时间大于8.0小时,使高黏切片的含水率<30ppm。
步骤S3.挤出工序
将步骤S2中得到混料高黏切片或者单料高黏切片通过螺杆挤出机熔融挤出,得到熔体。该工序可进一步改善高黏切片的熔融黏度及流动性,进一步弥补间苯二甲酸(IPA)对结晶的不良影响,继而改善聚酯(PET)材料的可牵伸性能;对于混料高黏切片,挤出工序还能提高再生聚酯切片与原生聚酯切片混料的均匀性。
该螺杆挤出机各区段的温度为:进料段温度为300~330℃,压缩段温度为290~320℃,计量段温度为280~310℃,机头压力为14~18MPa。
步骤S4.纺丝工序
将步骤S3中得到的挤出切片通过纺丝箱进行纺丝,并对丝束逐级冷却。其中,纺丝过程中的工艺参数为:优选丹尼1000~1500D,纺丝箱的喷丝孔数为180~480,喷丝孔长径比为1.2~3.0。
丹尼也可选用300~4000D,如300D、2000D、4000D,如果丹尼高于1500D,喷丝孔数可能高于480。
在纺丝箱之后依次设置后加热器、无风缓冷带设备,对丝束进行后加热温度为280~350℃,无风缓冷带长度为20~100mm。
在无风缓冷之后还需对丝束采用冷却风冷却,通过由外向内吹风方式对丝束冷却,吹风压力为15~50MPa,吹风温度为22~65℃。
在纺丝之后需对丝束逐级冷却,其目的是将熔融态的丝束固化。丝束冷却太快,则不易牵伸、防况差;丝束冷却太慢,则会出现丝束黏连、物性低的风险。基于此,在熔融纺丝之后依次对丝束后加热、无风缓冷、冷却风冷却,三者相互配合,实现逐级冷却,使纺丝之间不会黏连,便于后续的牵伸。
步骤S5.上油工序
将步骤S4经冷却的丝束上油处理,油剂选用乳化型,上油率为0.3~0.9wt%。上油是为了增加丝束之间的抱合性,减少摩擦力与静电,使得后续牵伸工序能够顺利进行,减少毛丝与断丝的发生。
步骤S6.牵伸工序
经上油的丝束通过三组热辊牵伸,以使丝束达到理想的强度、伸长、模量、热收缩等性能。其中,第一热辊组(GR1)的速度为2700~3200m/min,温度为60~80℃;第二热辊组(GR2)的速度为3800~5000m/min,温度为70~90℃;第三热辊组的速度为5800~6200m/min,温度为210~260℃。
牵伸过程中,牵伸比为1.81~2.30%。
步骤S7.定型工序
经牵伸的丝束需要在定型热辊上高温定型,可使丝束结晶完全、微结构趋于稳定,稳定强力与模量,降低热收缩率,为后续卷取成型提供良好条件。
具体地,丝束通过另外三组热辊定型:第四热辊组的速度为5800~6200m/min,温度为210~260℃;第五热辊组的速度为5600~6200m/min,温度为210~260℃;第六热辊组的速度为5450~6000m/min,温度为100~150℃。
上述定型的回缩比为2.5~6.0%。
步骤S8.卷取工序
定型后的丝束在5450~5950m/min高的卷取速度下卷取成型,得到高模低缩工业丝。
利用再生聚酯制造高模低缩工业丝的不同实施方式的工艺参数如下:
Figure PCTCN2021096093-appb-000001
Figure PCTCN2021096093-appb-000002
对比例1
本实施例提供一种分别以原生聚酯切片、Bio-PET、HIPS为原料采用上述方法制造工业丝,碳排放量如图1所示。
对比例2
本实施例提供一种利用再生聚酯制造高模低缩工业丝的方法,与实施例1所不同的是,不设置增黏工序。
对比例3
本实施例提供一种利用再生聚酯制造高模低缩工业丝的方法,与实施例1所不同的是,在增黏工序中对基础切片直接增黏处理,无预结晶、结晶处理。
对比例4
本实施例提供一种利用再生聚酯制造高模低缩工业丝的方法,与实施例1所不同的是,在纺丝工序结束后,对丝束直接冷却风冷却,不使用后加热器、无风缓冷带等设计。
对比例5
本实施例提供一种利用再生聚酯制造高模低缩工业丝的方法,与对比例3所不同的是,在纺丝工序结束后,对丝束直接冷却风冷却,不使用后加热 器、无风缓冷带等设计。
测试例1
1.碳排放量比较
由图1得知,与基础切片只选用传统原生聚酯切片相比,选用再生聚酯切片单料或再生聚酯切片与原生聚酯切片混料均可降低碳排放量,当基础切片只选用再生聚酯切片时(即在基础切片中质量占比为100%)时,碳排放量可减少63%,这说明基础切片中含有再生聚酯切片有助于降低碳排放量。
与分别以Bio-PET、HIPS为原料制造工业丝相比,实施例1-6中的碳排放量均较低,这说明基础切片中含有再生聚酯切片有助于降低碳排放量。
2.制造方法对产品工业丝性能的影响
对实施例1-6、对比例2-5制造的工业丝进行间苯二甲酸含量、结晶度、强度、伸度、热缩率进行测试。
Figure PCTCN2021096093-appb-000003
强度、断裂伸长和定荷伸长测试依照ASTM D885标准:使用Instron 5564测试仪,C-clamp 2714-004气动夹头,1kN荷重传感器。测试条件:标距长度250mm,拉伸速度300mm/min,预张力0.05gf/den,气压0.4-0.6Mpa。测试前样品平衡条件:24±2℃,相对湿度55±5%,平衡24小时。
干热收缩率测试标准依照ASTM D885,测试条件为:177℃,荷重0.05g/d,平衡时间为10分钟。
毛丝判等标准为,9kg的满卷纱绽(以1300D为例全长约62km),纱绽两端面目视观察若毛丝数量在10根以内为合格,大于10根则为不合格。
由测试数据可见,使用本发明的增黏、纺丝、冷却、牵伸工艺所生产的工业丝,其强伸度等物性可达传统工业丝的水准,能满足各种下游应用的需求(如轮胎帘布),且生产效率高,废丝率低(<4%),毛丝合格率高。
与对比例2相较,本发明设置增黏工序能有效提高分子链长度,去除部分小分子杂质;与对比例3比较,本发明在增黏工序中设置预结晶、结晶过程能有效地提升高黏切片的品质与可加工性,防止切片在增黏反应器中产生黏并、结块等不良现象,这种不良情况严重时会导致增黏反应器出料不顺,并会使高黏切片的黏度(IV)变异增加,使切片的熔点、熔体流动性、丝条的结晶速率等发生不均匀的现象,增加断丝与毛丝的发生频率,大幅提升加工的困难度。若在增黏工序中设置预结晶、结晶过程,则能有效地控制高黏切片的黏度、熔点、结晶速率等均匀性,增加材料的可拉伸倍率,使得可纺性大幅提升,工业丝的强度大幅增加。这说明,若不设置增黏工序,所制造的工业丝强度达不到要求,且断丝毛丝率极高,生产效率无法接受。
通过与对比例4相较,在纺丝之后不使用后加热、无风缓冷过程,则丝束将冷却过快,过早硬化及结晶,使得生产效率大幅下降,物性也有所损失;通过与对比例5相较,在增黏工序中不设置预结晶、结晶过程,同时在纺丝工序中不设置后加热、无风缓冷过程,则高黏切片的均匀性不佳,纺丝过程中,结晶速率更快,可纺性更差,成品工业丝结晶度则更低,这说明在预结晶、结晶过程后还应与后加热、无风缓冷过程配合,才能更好地降低结晶速率,提高结晶度。
通过上述数据可知,高模低缩工业丝含有的间苯二甲酸随再生聚酯切片 在基础切片中的质量占比变化:占比每增加10wt%,间苯二甲酸含量增加0.12~0.22wt%。当不采用再生聚酯切片时,高模低缩工业丝中间苯二甲酸含量为0。
3.产品帘子布性能
对实施例1-6、对比例2-5制造的工业丝进行双股捻纱、织布、浸胶等工序制得浸胶帘子布,进行强力、断裂伸长、定荷伸长、热缩率、GD耐疲劳保持率等测试。
工业丝经加工生产浸胶帘子布包含捻纱、织布、浸胶等工序:
捻纱工序:使用直捻机对工业丝进行初捻和复捻,制得双股捻纱;
织布工序:捻纱排列于纱架上,透过滚动轴承及皮带控制捻纱间的张力保持均一,织造时将捻纱穿过依规格定制的钢筘,并采用喷气织机织造,将所述捻纱织成预设幅宽的胚布,纬纱则采用棉纱或弹性纱;
浸胶工序:对胚布进行浸胶处理,使帘子布达到理想的物理性能并具备与橡胶黏合的能力,采用双浴浸胶法,第一浴浸渍Epoxy及MDI溶液活化纤维,第二浴浸渍RFL树酯,浸胶时帘子布依次经过烘箱、张力区及胶槽进行浸胶,在浸胶过程中,帘布发生热延伸及回缩形变,总延伸率为0%-1%。
Figure PCTCN2021096093-appb-000004
Figure PCTCN2021096093-appb-000005
强度、断裂伸长和定荷伸长测试依照ASTM D885标准,测试条件如前述。热缩率测试依照ASTM D885标准,测试条件为:180℃,荷重0.05g/d,平衡时间为2分钟。
GD疲劳测试条件为:1800rpm,24hr,20%compression,6.5%extension,室温测试。
由测试数据可见,本发明实施例1-6所制造的轮胎浸胶帘子布,各项物性及耐疲劳性可达行业优等水平,而对比例2-5所生产之帘布,物性明显较差,尤其因高速纺丝过程中纤维损伤较大,帘布的耐疲劳性受到很大影响,特别是对比例2,在疲劳测试结束前样品即断裂,明显不符合要求。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种利用再生聚酯制造高模低缩工业丝的方法,其特征在于,包括以下步骤:
    1)将基础切片预结晶、结晶、增黏,得到高黏切片,所述高黏切片的特性黏度为0.85~1.15;其中,所述基础切片包括由聚酯瓶回收的再生聚酯切片;
    2)将步骤1)所述的高黏切片进行干燥、熔融挤出进行纺丝,并对丝束逐级冷却;其中,干燥后切片含水率<30ppm,所述逐级冷却过程中,对丝束进行后加热温度为280~350℃,无风缓冷带长度为20~100mm;
    3)对步骤2)逐级冷却后的丝束上油、牵伸、定型、卷取,得到高模低缩工业丝。
  2. 根据权利要求1所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤1)中,所述基础切片还包括由化石原料生产的原生聚酯切片;
    在所述基础切片中,所述再生聚酯切片质量占比为:10wt%≤再生聚酯切片<100wt%。
  3. 根据权利要求2所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,在步骤1)和步骤2)之间还包括将所述再生聚酯切片和所述原生聚酯切片通过单螺杆输送系统进行混料的过程。
  4. 根据权利要求1-3任一所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤2)中,采用氮气干燥,所述干燥温度为120~160℃,所述干燥时间为大于8.0小时。
  5. 根据权利要求4所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤2)中,所述高黏切片通过螺杆挤出机熔融挤出;
    所述螺杆挤出机的进料段温度为300~330℃,压缩段温度为290~320℃,计量段温度为280~310℃,机头压力为14~18MPa。
  6. 根据权利要求5所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤2)中,所述高黏切片通过纺丝箱纺丝,所述纺丝箱的喷丝孔长径比为1.2~3.0。
  7. 根据权利要求6所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤2)中,所述逐级冷却过程还包括在无风缓冷后通过由外向内环吹风方式对丝束冷却,吹风压力为15~50Pa,吹风温度为22~65℃。
  8. 根据权利要求7所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤3)中,所述牵伸过程中:第一热辊组的速度为2700~3200m/min,温度为60~80℃;第二热辊组的速度为3800~5000m/min,温度为70~90℃;第三热辊组的速度为5800~6200m/min,温度为210~260℃;牵伸比为1.81~2.30%;
    所述定型过程中:第四热辊组的速度为5800~6200m/min,温度为210~260℃;第五热辊组的速度为5600~6200m/min,温度为210~260℃;第六热辊组的速度为5450~6000m/min,温度为100~150℃;回缩比为2.5~6.0%。
  9. 根据权利要求8所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,步骤3)中,所述卷取过程中,卷取车速为5450~5950m/min。
  10. 根据权利要求2-9任一所述的利用再生聚酯制造高模低缩工业丝的方法,其特征在于,所述高模低缩工业丝含有的间苯二甲酸随所述再生聚酯切片在所述基础切片中的质量占比变化,占比每增加10wt%,间苯二甲酸含量增加0.12~0.22wt%;
    所述高模低缩工业丝的丹尼为300~4000D,结晶度为45.0~53.5%,强度为7.5~9.0g/d,断裂伸长为10.2~15.5%,干热收缩率为3.2~5.2%。
PCT/CN2021/096093 2020-11-25 2021-05-26 一种利用再生聚酯制造高模低缩工业丝的方法 WO2022110703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011335009.X 2020-11-25
CN202011335009.XA CN112695392A (zh) 2020-11-25 2020-11-25 一种利用再生聚酯制造高模低缩工业丝的方法

Publications (1)

Publication Number Publication Date
WO2022110703A1 true WO2022110703A1 (zh) 2022-06-02

Family

ID=75505990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096093 WO2022110703A1 (zh) 2020-11-25 2021-05-26 一种利用再生聚酯制造高模低缩工业丝的方法

Country Status (2)

Country Link
CN (1) CN112695392A (zh)
WO (1) WO2022110703A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115262010A (zh) * 2022-09-08 2022-11-01 江苏索力得新材料集团有限公司 一种生物可降解高强涤纶工业丝的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695392A (zh) * 2020-11-25 2021-04-23 亚东工业(苏州)有限公司 一种利用再生聚酯制造高模低缩工业丝的方法
CN115449909A (zh) * 2022-08-31 2022-12-09 浙江古纤道绿色纤维有限公司 一种再生功能性涤纶工业丝生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505150A (zh) * 2011-10-14 2012-06-20 亚东工业(苏州)有限公司 一种添加回收瓶片的聚酯工业长丝的制造方法
CN102808230A (zh) * 2012-08-22 2012-12-05 亚东工业(苏州)有限公司 一种高强超低伸型安全带用聚酯工业长丝及其制造方法
KR20140030860A (ko) * 2012-09-04 2014-03-12 주식회사 효성 고모듈러스 저수축 폴리에스터 타이어코드의 제조방법 및 이로부터 제조된 고모듈러스 저수축 폴리에스터 타이어코드
CN205223435U (zh) * 2015-12-04 2016-05-11 浙江古纤道新材料股份有限公司 用于高强型高模低缩涤纶工业丝的加工设备
CN108179499A (zh) * 2017-12-27 2018-06-19 安徽东锦资源再生科技有限公司 再生聚酯高模低缩纤维制备工艺
CN112695392A (zh) * 2020-11-25 2021-04-23 亚东工业(苏州)有限公司 一种利用再生聚酯制造高模低缩工业丝的方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590143C (zh) * 2006-11-28 2010-02-17 谭亦武 利用聚酯回收瓶制造食品级聚酯瓶片的生产工艺
CN101173420A (zh) * 2007-11-28 2008-05-07 盛虹集团有限公司 一种利用回收聚酯废料生产无纺布的技术
CN102120868B (zh) * 2011-04-08 2012-07-04 扬州三星塑胶有限公司 一种高拉伸强度再生性回收聚酯片材增韧工艺
CN102168319B (zh) * 2011-04-23 2012-07-04 无锡市太极实业股份有限公司 高强力高模量低收缩聚酯工业丝的生产方法
CN102605454B (zh) * 2011-10-31 2013-03-06 龙福环能科技股份有限公司 由回收pet瓶片料规模化生产涤纶工业长丝的方法
CN104532366A (zh) * 2014-12-19 2015-04-22 仪征市仲兴环保科技有限公司 一种用回收聚酯为原料生产再生超高强力工业长丝的方法
CN105543987A (zh) * 2016-02-22 2016-05-04 苏州金泉新材料股份有限公司 一步法制备聚酯短纤维的方法
EP3257886A1 (en) * 2016-06-17 2017-12-20 Sasa Polyester Sanayi A.S. Process for production of pet, and products thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102505150A (zh) * 2011-10-14 2012-06-20 亚东工业(苏州)有限公司 一种添加回收瓶片的聚酯工业长丝的制造方法
CN102808230A (zh) * 2012-08-22 2012-12-05 亚东工业(苏州)有限公司 一种高强超低伸型安全带用聚酯工业长丝及其制造方法
KR20140030860A (ko) * 2012-09-04 2014-03-12 주식회사 효성 고모듈러스 저수축 폴리에스터 타이어코드의 제조방법 및 이로부터 제조된 고모듈러스 저수축 폴리에스터 타이어코드
CN205223435U (zh) * 2015-12-04 2016-05-11 浙江古纤道新材料股份有限公司 用于高强型高模低缩涤纶工业丝的加工设备
CN108179499A (zh) * 2017-12-27 2018-06-19 安徽东锦资源再生科技有限公司 再生聚酯高模低缩纤维制备工艺
CN112695392A (zh) * 2020-11-25 2021-04-23 亚东工业(苏州)有限公司 一种利用再生聚酯制造高模低缩工业丝的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115262010A (zh) * 2022-09-08 2022-11-01 江苏索力得新材料集团有限公司 一种生物可降解高强涤纶工业丝的制备方法

Also Published As

Publication number Publication date
CN112695392A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2022110703A1 (zh) 一种利用再生聚酯制造高模低缩工业丝的方法
US5049447A (en) Polyester fiber for industrial use and process for preparation thereof
KR20090048377A (ko) 크리이프 특성이 우수한 산업용 고강도 폴리에스테르 원사 및 그 제조방법
CN101671854A (zh) 用一步法生产涤纶工业丝的方法
CN113668076A (zh) 一种利用生物基锦纶56制造帘子布的方法
CN101824664B (zh) 一种高强涤纶工业丝的制备方法
CN111411405B (zh) 一种高强聚酰胺56工业丝及其制备方法与应用
CN1727540B (zh) 聚酯浸渍帘线
WO2022247054A1 (zh) 一种凉感索弹纤维的生产方法
JP4337539B2 (ja) ポリエステル繊維の製造方法、及び溶融紡糸用紡糸口金
CN110295402B (zh) 一种聚苯硫醚纤维的制备方法
KR100448008B1 (ko) 고강도 저수축 폴리에스테르 섬유 및 그 제조방법
JPS5953736A (ja) ポリエステルタイヤコ−ド及びその製法
CN114540976A (zh) 高韧高强聚苯硫醚单丝的生产方法
TW202140874A (zh) 聚醯胺46複絲
KR101552697B1 (ko) 폴리에틸렌테레프탈레이트 연신사의 제조방법, 폴리에틸렌테레프탈레이트 연신사 및 타이어 코오드
CN111304759B (zh) 一种聚酯工业丝的拉伸方法
CN114592253B (zh) 一种聚乳酸长丝及其制备方法
KR100621142B1 (ko) 평활성이 우수한 폴리에스테르 원사의 제조방법
CN115418732B (zh) 一种peek fdy丝制备工艺及peek fdy丝
TW202300737A (zh) 具有改善的後加工性之聚乙烯紗線以及包括其之布料
JPH05163627A (ja) ポリエステルタイヤコードの製造方法
KR960002880B1 (ko) 나일론 46 섬유의 제조방법
CN116024697A (zh) 一种可降解纤维及其制备方法和应用
KR930000250B1 (ko) 폴리에스터 초저수축사의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896213

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896213

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/11/2023)