WO2022110613A1 - 一种perc电池制备方法 - Google Patents

一种perc电池制备方法 Download PDF

Info

Publication number
WO2022110613A1
WO2022110613A1 PCT/CN2021/086886 CN2021086886W WO2022110613A1 WO 2022110613 A1 WO2022110613 A1 WO 2022110613A1 CN 2021086886 W CN2021086886 W CN 2021086886W WO 2022110613 A1 WO2022110613 A1 WO 2022110613A1
Authority
WO
WIPO (PCT)
Prior art keywords
source
perc battery
etching
perc
film
Prior art date
Application number
PCT/CN2021/086886
Other languages
English (en)
French (fr)
Inventor
何一峰
吕文辉
邱小永
严文生
谭新玉
赵庆国
王行柱
Original Assignee
浙江贝盛光伏股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江贝盛光伏股份有限公司 filed Critical 浙江贝盛光伏股份有限公司
Publication of WO2022110613A1 publication Critical patent/WO2022110613A1/zh
Priority to ZA2022/11795A priority Critical patent/ZA202211795B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K13/00Etching, surface-brightening or pickling compositions
    • C09K13/04Etching, surface-brightening or pickling compositions containing an inorganic acid
    • C09K13/08Etching, surface-brightening or pickling compositions containing an inorganic acid containing a fluorine compound
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the field of photovoltaic technology, in particular to a preparation method of a PERC battery, which is mainly used for improving the efficiency of the PERC battery.
  • a method for preparing a high-efficiency monocrystalline silicon PERC solar cell with application number 202010213511.7 including texturing—diffusion—etching—annealing—front-side printing mask material and curing—front-side deposition of SINx anti-reflection film— Removal of mask material - deposition of SiNx/AlOx passivation film on the back side - laser on the back side - printing of back electrode and back electric field - TCO deposition - printing of positive electrode and low temperature curing.
  • the etching weight loss is controlled at 0.2g-0.35g, and the reflectivity is controlled at 20%-30%; when preparing the Al2O3/SiNx passivation film, the passivation The thickness of the passivation film is controlled at 80-150nm. After the passivation film is etched and deposited, the passivation efficiency of the passivation film is not very good, resulting in low efficiency of the PERC cell. Therefore, this application aims at the above-mentioned etching and deposition. The process of passivation film leads to the problem of lower efficiency of PERC cells to be studied.
  • the purpose of the present invention is to provide a method for preparing a PERC battery, which is mainly used to improve the efficiency of the PERC battery.
  • the present application provides a method for preparing a PERC battery, which includes a diffusion step, an etching step, and a back film step that are performed successively.
  • An etching solution is used in the etching step.
  • the components include HNO3, HF, H2SO4, and H2O; in the back film step, SiH4 and NH3 are used to deposit a film on the backside of the silicon wafer, and the number of times for the film deposition is twice.
  • the concentrations of the HNO3, HF, H2SO4, and H2O are respectively 28-30%, 6-8%, 6-9%, and 53-55%.
  • the gas flow ratio of NH3 and SiH4 during the first coating deposition is 6:1; the gas flow ratio of NH3 and SiH4 during the second coating deposition is 10:1.
  • the time for the first coating deposition is 180s; the time for the second coating deposition is 790s.
  • the temperature of the coating deposition is 490-580°C.
  • the back surface of the silicon wafer is filled with NH3 before the film deposition is performed.
  • the diffusion step includes a source operation: introducing N2 to bring out POCl3; the source operation includes a preliminary source and a later source; the amount of N2 introduced in the early source is 625sccm; the later period The amount of N2 introduced into the source is 2500sccm.
  • an operation of advancing the phosphorus source is included between the early-stage passing source and the later-stage passing-source, and the temperature of the phosphorus source advancing operation is 845-858°C.
  • a stable gas field operation is further included, and the stable gas field operation duration is 120s.
  • the present invention also provides a PERC battery, which is prepared by the above preparation method.
  • H2SO4 can increase the surface tension of the silicon wafer, increase the polishing effect of the backside, which is beneficial to improve the reflectivity and reduce the light energy on the backside
  • the absorption of PERC cell increases the utilization rate of sunlight.
  • Two coating depositions improve the uniformity of the silicon wafer surface, reduce chromatic aberration, and help improve the reflection of back light.
  • the Si3N4 thin film is formed on the back of the silicon wafer by feeding the corresponding NH3 and SiH4.
  • the gas flow rate of NH3 and SiH4 is 6:1 and 10:1 during the first coating deposition and the second coating deposition.
  • the low refractive index of the upper layer is conducive to the absorption of light
  • the high refractive index of the substrate is conducive to the passivation effect and reduces the loss of light at the substrate.
  • the deposition time of the first coating is 180s, and the deposition time of the second coating is 790s, which makes the film thickness of the substrate thicker, which is beneficial to improve the passivation effect.
  • the coating deposition temperature is 490-580°C, which is beneficial to the high passivation effect.
  • the flux is larger, which increases the surface concentration, thereby reducing the surface contact resistance and further improving the efficiency of the PERC cell.
  • Figure 1 Flow chart of the diffusion process.
  • This embodiment provides a method for preparing a PERC battery, which is mainly used to improve the efficiency of the PERC battery.
  • the method includes: successively performing a diffusion step, an etching step, and a back film step, wherein an etching solution is used in the etching step, and the chemical components of the etching solution include HNO 3 , HF, H 2 SO 4 , H 2 O; the back film
  • SiH 4 and NH 3 are used to deposit a coating film on the backside of the silicon wafer, and the number of times of coating film deposition is twice.
  • PERC cells are mainly made through several steps of texturing, diffusion, etching, annealing, backside deposition of passivation film, frontside deposition of anti-reflection film, backside laser, screen printing, drying and sintering, and the process of forming PN junction through diffusion step Among them, the PN junction is equivalent to the heart of the PERC battery, and the preparation process directly affects the performance of the battery and the photoelectric conversion efficiency.
  • the etching includes dry etching and wet etching.
  • the etching step uses an etching solution to etch the surface and edges of the silicon wafer after diffusion, and the composition and concentration of the solution in the etching step are also It has a certain influence on the efficiency of the solar cell.
  • the general etching step is to use the mixed liquid of HNO 3 and HF for etching.
  • H 2 SO 4 is added to the etching solution for etching, and H 2
  • the density and tension of SO 4 are large.
  • H 2 SO 4 can increase the surface tension of the silicon wafer, increase the polishing effect of the backside, and help the etching solution to continuously polish the backside of the silicon wafer, which is helpful to improve the surface of the silicon wafer.
  • two layers of film are coated to form a better refraction and anti-reflection structure, and the photoelectric conversion efficiency is high. It cooperates with ITO film to increase the incident light, reduce the weakening of the incident light on the back side, and increase the absorption of light, which improves the photoelectric conversion efficiency from various aspects, thereby greatly improving the performance of the PERC cell.
  • the etching step is carried out in a wet etching machine, which includes an etching tank, a liquid storage tank is arranged under the etching tank, a return pipe is arranged between the etching tank and the liquid storage tank, and the etching tank is evenly distributed with More rollers, the silicon wafer passes through the etching groove on the roller, and the backside contacts the etching solution to achieve etching.
  • the concentrations of HNO 3 , HF, H 2 SO 4 , and H 2 O are 28-30%, 6-8%, 6-9%, and 53-55%, respectively.
  • the concentration of HNO 3 corresponds to the concentration of H 2 SO 4 decrease.
  • the H 2 SO 4 is pumped into the liquid storage tank through the H 2 SO 4 -resistant pipeline pump to achieve uniform addition, rather than directly adding it to the etching tank. If it is directly added to the etching tank, the etching solution will be uneven. , Abnormal phenomenon of local reaction, resulting in etching failure and waste of materials.
  • the rollers in the etching tank are deep-toothed rollers.
  • the deep-toothed rollers have little agitation on the liquid surface and large circulation flow, which is beneficial to avoid the phenomenon of poor polishing at the tail.
  • the effect comparison diagram is shown in Figure 2.
  • the polishing effect of the surface of the silicon wafer is improved, so that the reflection effect of the thin film formed by the back film of the silicon wafer with better polishing effect during the back film step is improved.
  • the back film step a two-layer film structure is adopted. Compared with the three-layer film structure, the two-layer film structure has better uniformity, more uniform chromatic aberration, and better light absorptivity.
  • the gas flow ratio of NH 3 and SiH 4 during the first coating deposition is 6:1; the gas flow ratio of NH 3 and SiH 4 during the second coating deposition is 10:1.
  • the flow rate of NH3 is 4800sccm during the first coating deposition
  • the flow rate of SiH4 is 800sccm
  • the first layer of Si3N4 passivation film is deposited on the back of the silicon wafer
  • the flow rate of NH3 during the second coating deposition is 8000sccm
  • the flow rate of SiH 4 is 800sccm
  • the second layer of Si 3 N 4 passivation film is deposited on the first layer of Si 3 N 4 passivation film
  • the NH 3 injected in the second time is more than the first time, and the formed NH 3
  • the gas flow ratio of SiH 4 is also larger, which is convenient for forming the second passivation film of the silicon wafer substrate with high refractive index, and the mixed film structure of the upper first passivation film with low ref
  • the utilization rate of light in the PERC cell is better, and the low refractive index of the upper layer is conducive to the absorption of light, which is beneficial to improve the photoelectric conversion efficiency.
  • the first coating deposition time was 180s; the second coating deposition time was 790s.
  • the temperature of coating deposition is 490-580°C. Under the same temperature conditions, the longer the deposition time, the thicker the thickness of the passivation film. In order to adapt to the above-mentioned effect of forming a high refractive index of the silicon wafer substrate and a low refractive index of the upper layer, more light can be absorbed at the silicon wafer substrate.
  • the first passivation film on the upper layer absorbs as much light as possible, which further improves the performance of the PERC cell.
  • a constant temperature treatment is performed before the deposition of the coating film, and the constant temperature treatment makes the temperature of each area of the coating tube equalized. It is used to purge the surface of silicon wafers to reduce surface pollution.
  • NH 3 is also a gas needed for coating, which will not affect the deposition of coatings.
  • constant voltage treatment is performed before the first coating deposition and the second coating deposition to ensure that each coating deposition is deposited according to the set ratio of SiH 4 and NH 3 .
  • the back film operation is further processed, so that the passivation effect of the silicon nitride on the back side of the silicon wafer is better.
  • the color of the back film is bluish, and the color after optimization is golden yellow. In comparison, the effect obtained by the manufacturing process in this embodiment is better.
  • the diffusion step includes a source-passing operation: introducing N 2 to bring out POCl 3 ; the source-passing operation includes a pre-passing source and a later-passing source; the amount of N 2 introduced in the early-passing source is 625sccm; The amount of N 2 introduced into the source in the later period was 2500 sccm.
  • Diffusion step In the process of forming PN, the diffusion resistance is the most important monitoring index, which mainly depends on the resistance value of the square resistance and the uniformity of the square resistance.
  • the operation of advancing the phosphorus source is included between the early-stage and late-stage communication, and the temperature for advancing the phosphorus source operation is 845-858 °C.
  • the temperature is set to 845-858 ° C in this embodiment.
  • the temperature of the set junction is a little higher than the temperature of the middle part of the diffusion furnace, and the amount of N 2 introduced into the source in the early stage is also set to be 625sccm through experiments to ensure the maximum improvement of the efficiency of the PERC cell, while Correspondingly, in order to stabilize the uniformity of the square resistance, a stable gas field operation is also included before the source pass operation, and the stable gas field operation duration is 120s.
  • the stable gas field operation is carried out after evacuating the diffusion furnace. Due to the atmospheric pressure in the air, the diffusion furnace cannot be completely vacuumed, and a small amount of gas will still remain in the diffusion furnace. Disturbance affects the uniformity during diffusion.
  • a stable gas field operation is added.
  • the disorder of the gas in the diffusion furnace is alleviated and the uniformity of subsequent diffusion is improved. This in turn improves the efficiency of the PERC cell.
  • more N 2 is introduced into the later pass source to increase the surface concentration of the silicon wafer, thereby reducing the surface contact resistance and further improving the efficiency.
  • the amount of N2 introduced in the later stage is 2500sccm.
  • This embodiment also provides a PERC cell, which is prepared according to the above-mentioned preparation method, which improves the absorption and utilization of sunlight and improves the performance of the PERC cell.

Abstract

本发明属于光伏技术领域,具体为一种PERC电池制备方法,主要用于提高PERC电池的效率。本发明包括:先后进行的扩散步骤、刻蚀步骤、背膜步骤,刻蚀步骤中采用刻蚀溶液,刻蚀溶液的化学成分包括HNO 3、HF、H 2SO 4、H 2O;背膜步骤中采用SiH 4和NH 3对硅片背面进行镀膜沉积,所述镀膜沉积次数为两次。本发明与现有技术相比,增加了硅片基底的折射率,提高了PERC电池对光的吸收率,提高了PERC电池的效率。

Description

一种PERC电池制备方法 技术领域
本发明属于光伏技术领域,具体为一种PERC电池制备方法,主要用于提高PERC电池的效率。
背景技术
随着科技的进步以及环保意识的增强,PERC电池迎合了环保节能的需求,成为新能源研发中重要的一部分。申请号为202010213511.7的一种高效单晶硅PERC太阳能电池的制备方法,包括制绒——扩散——刻蚀——退火——正面印刷掩膜材料并固化——正面沉积SINx减反膜——去除掩膜材料——背面沉积SiNx/AlOx钝化膜——背面激光——印刷背电极和背电场——TCO沉积——印刷正电极并低温固化。使用HF/HNO3溶液对扩散后的硅片进行背面抛光和去PSG,刻蚀减重控制在0.2g-0.35g,反射率控制在20%-30%; 制备Al2O3/SiNx钝化膜时,钝化膜的厚度控制在80-150nm,在刻蚀与沉积钝化膜后,钝化膜的钝化效率不是很好,导致PERC电池的效率不高,因此,本申请针对上述在刻蚀与沉积钝化膜的过程导致PERC电池效率较低的问题进行研究。
技术解决方案
本发明的目的在于提供一种PERC电池制备方法,主要用于提高PERC电池的效率。
本申请为了解决上述技术问题,提供了一种PERC电池制备方法,包括先后进行的扩散步骤、刻蚀步骤、背膜步骤,所述刻蚀步骤中采用刻蚀溶液,所述刻蚀溶液的化学成分包括HNO3、HF、H2SO4、H2O;所述背膜步骤中采用SiH4和NH3对硅片背面进行镀膜沉积,所述镀膜沉积次数为两次。
作为优选,所述HNO3、HF、H2SO4、H2O的浓度分别为28-30%、6-8%、6-9%、53-55%。
作为优选,所述第一次镀膜沉积时NH3和SiH4的气体流量比为6:1;所述第二次镀膜沉积时NH3和SiH4的气体流量比为10:1。
作为优选,所述第一次镀膜沉积的时间为180s;所述第二次镀膜沉积的时间为790s。
作为优选,所述镀膜沉积的温度为490-580℃。
作为优选,所述对硅片背面进行镀膜沉积前充入NH3。
作为优选,所述扩散步骤包括通源操作:通入N2带出POCl3;所述通源操作包括前期通源和后期通源;所述前期通源中通入N2的量为625sccm;所述后期通源中通入N2的量为2500sccm。
作为优选,所述前期通源和后期通源之间包括推进磷源操作,所述推进磷源操作的温度为845-858℃。
作为优选,所述通源操作前还包括稳定气场操作,所述稳定气场操作时长120s。
本发明还提供了一种PERC电池,经上述制备方法制备而成。
有益效果
本发明具有如下技术效果:
1.  在刻蚀溶液中加入H2SO4,相较于只用到HF和HNO3而言,H2SO4能增大硅片表面的张力,增加了背面的抛光效果,有利于提高反射率,减少背面对光能的吸收,增大PERC电池对太阳光的利用率。
2.  两次镀膜沉积提高了硅片表面的均匀性,减小了色差,有利于提高背面光的反射。
3.  通过通入相应的NH3和SiH4在硅片背面形成Si3N4薄膜,NH3和SiH4的气体流量在第一次镀膜沉积时与第二次镀膜沉积时的比例为6:1和10:1,形成硅片基底高折射率、上层低折射率的混合膜结构,上层低折射率有助于光的吸收,基底高折射率有助于钝化效果,减少在基底处光的散失。
4.  第一次镀膜沉积时间180s,而第二次镀膜沉积时间790s,使得基底的膜层厚度较厚,有利于提高钝化效果。
5.  镀膜沉积温度490-580℃,有利于力高钝化效果。
6.  对硅片背面进行镀膜沉积前充入NH3,吹扫硅片表面,减少表面污染,增加镀膜沉积时表面的光滑度,提升钝化效果。
7.  前期通源量较小,推进温度较低,有利于降低PN结深,提高扩散方阻。
8.  在通源操作前进行稳定气场操作,有助于提高方阻的均匀性。
9.  后期通源量较大,增加了表面浓度,从而减少了表面接触电阻,进一步提高了PERC电池的效率。
附图说明
图1 扩散工艺流程图。
图2 优化前后刻蚀效果对比图
图3 优化前后背膜效果对比图
本发明的实施方式
这里使用的术语仅用于描述特定实施例的目的,而不意图限制本发明。 除非另外定义,否则本文使用的所有术语具有与本发明所属领域的普通技术人员通常理解的相同的含义。 将进一步理解的是,常用术语应该被解释为具有与其在相关领域和本公开内容中的含义一致的含义。本公开将被认为是本发明的示例,并且不旨在将本发明限制到特定实施例。
本实施例提供了一种PERC电池制备方法,主要用于提高PERC电池的效率。该方法包括:先后进行的扩散步骤、刻蚀步骤、背膜步骤,刻蚀步骤中采用刻蚀溶液,刻蚀溶液的化学成分包括HNO 3、HF、H 2SO 4、H 2O;背膜步骤中采用SiH 4和NH 3对硅片背面进行镀膜沉积,镀膜沉积次数为两次。
PERC电池主要经过制绒、扩散、刻蚀、退火、背面沉积钝化膜、正面沉积减反膜、背面激光、丝网印刷、烘干烧结几个步骤制成,经扩散步骤形成PN结的过程中,PN结相当于PERC电池的心脏,制备过程直接影响电池的性能,影响光电转换效率。除此之外,刻蚀包括干法刻蚀和湿法刻蚀,本实施例中,刻蚀步骤利用刻蚀溶液对扩散后硅片表面和边缘进行腐蚀,刻蚀步骤溶液的成分及浓度也对太阳能电池的效率有一定的影响,一般的刻蚀步骤是利用HNO 3和HF的混合液体进行刻蚀,而本实施例中在刻蚀溶液中加入了H 2SO 4进行刻蚀,H 2SO 4的密度和张力都较大,H 2SO 4能增加硅片表面的张力,增加背面的抛光效果,有助于刻蚀溶液对硅片背面有进行持续抛光,有助于提高硅片表面的反射率,而在背膜的过程中,通过镀两层膜,形成较好的折射和减反结构,光电转换效率较高。与ITO薄膜相互配合,增加入射光、减小射入的光在背面的削弱、增加对光的吸收,从多个方面提高了光电转换效率,进而极大地提升了PERC电池的性能。
其中,刻蚀步骤在湿法刻蚀机内进行,含有刻蚀槽,刻蚀槽的下方设有储液罐,刻蚀槽与储液罐间设有回流管道,刻蚀槽内均匀分布有多更滚轮,硅片在滚轮上通过刻蚀槽,通过时背面接触刻蚀溶液,实现刻蚀。刻蚀溶液中,HNO 3、HF、H 2SO 4、H 2O的浓度分别为28-30%、6-8%、6-9%、53-55%。通过加入H 2SO 4来增加硅片表面的张力,提高硅片表面的抛光效果,而因加入H 2SO 4,为了避免腐蚀性过强,HNO 3的浓度与H 2SO 4的浓度相应的减小。刻蚀时将H 2SO 4通过耐H 2SO 4管路泵打入储液罐,实现均匀补加,而不是直接加入刻蚀槽,若直接加入刻蚀槽,有造成刻蚀液不均匀、局部反应的不正常的异常现象,造成刻蚀失败,以及材料的浪费。刻蚀槽内的滚轮采用深齿滚轮,深齿滚轮对液面的搅动小,循环流量大,有利于避免尾部抛光差的现象,经上述刻蚀后硅片背面效果与原始工艺中刻蚀后效果对比图如图2所示,经刻蚀步骤后提高了硅片表面的抛光效果,使得背膜步骤时在抛光效果更好的硅片背膜所形成的的薄膜反射效果得到提升。在背膜步骤中,采用两层膜的结构,相较三层膜的结构,两层膜结构的均匀性更好,色差也较均匀,光的吸收率更好。本实施例中,第一次镀膜沉积时NH 3和SiH 4的气体流量比为6:1;第二次镀膜沉积时NH 3和SiH 4的气体流量比为10:1。其中,第一次镀膜沉积时NH 3的流量为4800sccm,SiH 4的流量为800sccm,在硅片背面沉积第一层Si 3N 4钝化膜,第二次镀膜沉积时NH 3的流量为8000sccm,SiH 4的流量为800sccm,在第一层Si 3N 4钝化膜上沉积第二层Si 3N 4钝化膜,第而次冲入的NH 3较第一次多,形成的NH 3和SiH 4的气体流量比也较大,便于形成硅片基底的第二层钝化膜高折射率,而上层第一层钝化膜低折射率的混合膜层结构,基底高折射率有助于钝化效果,使得PERC电池中对光的利用率更好,上层低折射率有助于光的吸收,有利于提高光电转换效率。除此之外,第一次镀膜沉积的时间为180s;第二次镀膜沉积的时间为790s。镀膜沉积的温度为490-580℃。在相同的温度条件下,沉积时间越长,钝化膜的厚度越厚,为了适应于上述形成硅片基底高折射率、上层低折射率的效果,使得在硅片基底处光能被更多地折射进PERC电池,减少光的削弱,而同时上层的第一层钝化膜尽可能多的吸收光,使得PERC电池的性能得到进一步的提升。本实施例中,在镀膜沉积前经恒温处理,恒温处理使得镀膜管各区域的温度均衡,在恒温处理时,对硅片背面进行镀膜沉积前充入NH 3。用以吹扫硅片表面,减少表面污染,同时NH 3也是镀膜时需用到的气体,不会对镀膜沉积造成影响。在第一次镀膜沉积和第二次镀膜沉积前均进行恒压处理,保证每次镀膜沉积都是按照所设定的SiH 4、NH 3比例沉积。经刻蚀操作后,背膜操作进一步加工,使得硅片的背面氮化硅的钝化效果更好,如图3所示,原始工艺背膜后与本实施例中背膜后效果对比,原始工艺中背膜后颜色偏蓝,优化后颜色为金黄色,对比来看,本实施例中制造工艺所得到的效果更好。
本实施例中,如图1,扩散步骤包括通源操作:通入N 2带出POCl 3;通源操作包括前期通源和后期通源;前期通源中通入N 2的量为625sccm;后期通源中通入N 2的量为2500sccm。扩散步骤在形成PN的过程中,扩散方阻是最重要的监控指标,主要看方阻的阻值和方阻的均匀性。前期通源和后期通源之间包括推进磷源操作,推进磷源操作的温度为845-858℃。前期通源中通入N 2的量较少,而相对较低的温度使得PN结的深度降低,提高扩散方阻,减少掺杂浓度,提高电池效率,当方阻达到一定值时,对电池的效率达到饱和,本实施例中,方阻提高的饱和值为145欧姆,因此,根据实验,本实施例中设温度为845-858℃,由于在接近扩散炉炉口的位置温度易受影响而偏低,因此,设定路口的温度较扩散炉中间部分的温度高一点,而同样经实验设定前期通源中通入N 2的量为625sccm,保证PERC电池的效率得到最大的提升,而相应的为了稳定方阻的均匀性,通源操作前还包括稳定气场操作,所述稳定气场操作时长120s。稳定气场操作在将扩散炉内抽真空后进行,由于空气中有大气压,扩散炉内无法做到完全真空,扩散炉内依旧会保留少量的气体,而抽真空后的扩散炉内的气体比较紊乱,影响在扩散时的均匀性,因此,在抽真空后且在通源操作前加入稳定气场操作,通过120s的稳定气场,缓和扩散炉内气体的紊乱,提高后续扩散的均匀性,进而提高PERC电池的效率。除外,在增大方阻、稳定方阻均匀性的同时,在后期通源中通入较多的N 2,增加硅片表面浓度,从而减少表面接触电阻,进一步提高效率,为了保证电池效率得到最大的提升,本实施例中后期通入N 2的量为2500sccm。
本实施例还提供了一种PERC电池,根据上述制备方法制备而成,提高了对太阳光的吸收与利用,提升了PERC电池的性能。
虽然描述了本发明的实施方式,但是本领域普通技术人员可以在所附权利要求的范围内做出各种变形或修改。

Claims (10)

  1. 一种PERC电池制备方法,包括先后进行的扩散步骤、刻蚀步骤、背膜步骤,其特征在于:
    所述刻蚀步骤中采用刻蚀溶液,所述刻蚀溶液的化学成分包括HNO 3、HF、H 2SO 4、H 2O;
    所述背膜步骤中采用SiH 4和NH 3对硅片背面进行镀膜沉积,所述镀膜沉积次数为两次。
  2. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述HNO 3、HF、H 2SO 4、H 2O的浓度分别为28-30%、6-8%、6-9%、53-55%。
  3. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述第一次镀膜沉积时NH 3和SiH 4的气体流量比为6:1;
    所述第二次镀膜沉积时NH 3和SiH 4的气体流量比为10:1。
  4. 根据权利要求书3所述的一种PERC电池制备方法,其特征在于:
    所述第一次镀膜沉积的时间为180s;
    所述第二次镀膜沉积的时间为790s。
  5. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述镀膜沉积的温度为490-580℃。
  6. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述对硅片背面进行镀膜沉积前充入NH 3
  7. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述扩散步骤包括通源操作:通入N 2带出POCl 3
    所述通源操作包括前期通源和后期通源;
    所述前期通源中通入N 2的量为625sccm;
    所述后期通源中通入N 2的量为2500sccm。
  8. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述前期通源和后期通源之间包括推进磷源操作,所述推进磷源操作的温度为845-858℃。
  9. 根据权利要求书1所述的一种PERC电池制备方法,其特征在于:
    所述通源操作前还包括稳定气场操作,所述稳定气场操作时长120s。
  10. 一种PERC电池,根据权利要求书1-9中任一项所述的一种PERC电池制备方法制备而成。
PCT/CN2021/086886 2020-11-27 2021-04-13 一种perc电池制备方法 WO2022110613A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/11795A ZA202211795B (en) 2020-11-27 2022-10-28 Perc cell preparation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011361940.5A CN112635617A (zh) 2020-11-27 2020-11-27 一种perc电池制备方法
CN202011361940.5 2020-11-27

Publications (1)

Publication Number Publication Date
WO2022110613A1 true WO2022110613A1 (zh) 2022-06-02

Family

ID=75306538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086886 WO2022110613A1 (zh) 2020-11-27 2021-04-13 一种perc电池制备方法

Country Status (3)

Country Link
CN (1) CN112635617A (zh)
WO (1) WO2022110613A1 (zh)
ZA (1) ZA202211795B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635617A (zh) * 2020-11-27 2021-04-09 浙江贝盛光伏股份有限公司 一种perc电池制备方法
CN114571086B (zh) * 2021-12-31 2023-06-20 华侨大学 纳秒激光诱导等离子体复合飞秒激光加工装置及加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731960A (zh) * 2017-10-16 2018-02-23 常州亿晶光电科技有限公司 Perc电池背面氮化硅多层膜的制备方法
CN109994553A (zh) * 2019-04-30 2019-07-09 通威太阳能(成都)有限公司 一种三层介电钝化膜perc太阳电池及制作工艺
CN111029414A (zh) * 2019-12-25 2020-04-17 横店集团东磁股份有限公司 一种太阳能单晶PERC制备的多层SiNx背膜工艺方法
CN111403551A (zh) * 2020-03-24 2020-07-10 浙江爱旭太阳能科技有限公司 一种高效单晶硅perc太阳能电池的制备方法
CN111416002A (zh) * 2020-04-24 2020-07-14 通威太阳能(安徽)有限公司 一种电池背面氮化硅膜层、perc电池及制备方法
CN111987191A (zh) * 2020-09-09 2020-11-24 苏州腾晖光伏技术有限公司 一种修复perc电池激光开膜损伤的方法
CN112635617A (zh) * 2020-11-27 2021-04-09 浙江贝盛光伏股份有限公司 一种perc电池制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108183149A (zh) * 2017-12-27 2018-06-19 安徽银欣新能源科技有限公司 一种太阳能电池片的生产方法
CN108922941A (zh) * 2018-05-30 2018-11-30 韩华新能源(启东)有限公司 一种太阳能perc电池的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107731960A (zh) * 2017-10-16 2018-02-23 常州亿晶光电科技有限公司 Perc电池背面氮化硅多层膜的制备方法
CN109994553A (zh) * 2019-04-30 2019-07-09 通威太阳能(成都)有限公司 一种三层介电钝化膜perc太阳电池及制作工艺
CN111029414A (zh) * 2019-12-25 2020-04-17 横店集团东磁股份有限公司 一种太阳能单晶PERC制备的多层SiNx背膜工艺方法
CN111403551A (zh) * 2020-03-24 2020-07-10 浙江爱旭太阳能科技有限公司 一种高效单晶硅perc太阳能电池的制备方法
CN111416002A (zh) * 2020-04-24 2020-07-14 通威太阳能(安徽)有限公司 一种电池背面氮化硅膜层、perc电池及制备方法
CN111987191A (zh) * 2020-09-09 2020-11-24 苏州腾晖光伏技术有限公司 一种修复perc电池激光开膜损伤的方法
CN112635617A (zh) * 2020-11-27 2021-04-09 浙江贝盛光伏股份有限公司 一种perc电池制备方法

Also Published As

Publication number Publication date
ZA202211795B (en) 2024-02-28
CN112635617A (zh) 2021-04-09

Similar Documents

Publication Publication Date Title
JP6821830B2 (ja) 管型perc片面太陽電池、その製造方法及びその専用装置
CN111564503B (zh) 一种背结背接触太阳能电池结构及其制备方法
CN101548395B (zh) 具有改进的表面钝化的晶体硅太阳能电池的制造方法
WO2016112757A1 (zh) 一种n型双面电池及其制作方法
CN111668345A (zh) 一种太阳能电池及其制备方法
US20130298984A1 (en) Passivation of silicon surfaces using intermediate ultra-thin silicon oxide layer and outer passivating dielectric layer
KR20130129818A (ko) 실리콘 웨이퍼들 상에 n+pp+ 또는 p+nn+ 구조를 준비하는 방법
JP2023159201A (ja) 太陽電池及びその製造方法、太陽電池モジュール
CN111785809A (zh) 钝化接触电池的制备方法
WO2022110613A1 (zh) 一种perc电池制备方法
CN109192813A (zh) Perc电池背面钝化工艺
CN104037257A (zh) 太阳能电池及其制造方法、单面抛光设备
CN109004038B (zh) 太阳能电池及其制备方法和光伏组件
CN105070792A (zh) 一种基于溶液法的多晶太阳电池的制备方法
CN106653942A (zh) 一种n型单晶硅双面电池的制作方法
WO2023216628A1 (zh) 异质结太阳电池、其制备方法及发电装置
WO2023202079A1 (zh) 太阳电池的制备方法、太阳电池
CN105355723B (zh) 晶体硅太阳电池二氧化硅钝化膜的制备方法
JP7368653B2 (ja) 太陽電池及び光起電力モジュール
WO2023202132A1 (zh) 太阳电池及其制备方法
CN105226114A (zh) 一种黑硅钝化结构及其制备方法
CN116741877A (zh) 一种tbc电池制备方法及tbc电池
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN113948611A (zh) 一种p型ibc电池及其制备方法、组件、光伏系统
CN117038799A (zh) 一种bc电池制备方法及bc电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896129

Country of ref document: EP

Kind code of ref document: A1