WO2022110565A1 - 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备 - Google Patents

抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备 Download PDF

Info

Publication number
WO2022110565A1
WO2022110565A1 PCT/CN2021/078431 CN2021078431W WO2022110565A1 WO 2022110565 A1 WO2022110565 A1 WO 2022110565A1 CN 2021078431 W CN2021078431 W CN 2021078431W WO 2022110565 A1 WO2022110565 A1 WO 2022110565A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
radio frequency
cavity
electromagnetic interference
frequency power
Prior art date
Application number
PCT/CN2021/078431
Other languages
English (en)
French (fr)
Inventor
陈浩
胡琅
吴添洪
姚龙
马聪伟
Original Assignee
季华实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 季华实验室 filed Critical 季华实验室
Publication of WO2022110565A1 publication Critical patent/WO2022110565A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32651Shields, e.g. dark space shields, Faraday shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the invention relates to the technical field of radio frequency microwave/semiconductor equipment, in particular to a structure for suppressing electromagnetic interference and leaky waves, a radio frequency power supply and plasma etching equipment.
  • a typical application of an RF power supply is as a front end for plasma etching.
  • the place where plasma etching occurs is called a plasma chamber, which is equivalent to a vacuum chamber when the plasma is not ignited.
  • the plasma is ignited, and the impedance rapidly drops from the original high impedance, thereby bombarding the pre-placed target, making the target positively charged, reacting with the material, and completing the etching process.
  • the impedance of the plasma changes with the state of the gas. If the impedance is mismatched, the gas in the chamber cannot obtain enough energy to excite the plasma, and the working state will be abnormal. Therefore, an automatic impedance matching box is often deployed between the RF power supply and the reaction chamber to obtain adaptive impedance changes. However, when the working power of the RF power supply changes, the impedance adjustment speed of the automatic impedance matching box often requires a certain response time.
  • the RF power supply and the reaction chamber are in a state of impedance mismatch, and the problem caused by the impedance mismatch is the impact of excessive reflected power on the system module, resulting in poor system heat dissipation, damage to components, and excessive harmonics. , EMI is too large, or even leaking electromagnetic waves, causing harm to the human body.
  • the output power of radio frequency power supply (RF power supply is a sine wave voltage that can generate a fixed frequency, the frequency is in the radio frequency range (about 3KHz ⁇ 300GHz), and has a certain power) output power often requires kW level, and the typical output power is 5kW.
  • the RF power supply is assembled with a metal shell, which can improve the structural strength and shielding ability.
  • an isolation of more than 80dB is required, and the metal shell is often difficult to meet; Process limitations (such as gaps and holes in the corners) are the natural way to conduct electromagnetic waves, which greatly increases the risk of electromagnetic interference and leakage waves.
  • the purpose of the present invention is to provide a structure, radio frequency power supply and plasma etching equipment for suppressing electromagnetic interference and leaky waves, aiming to solve the problem that the existing radio frequency power supply housing cannot meet the requirements of electromagnetic interference and leaky wave shielding.
  • the technical scheme of the present invention is as follows: a structure for suppressing electromagnetic interference and leakage waves, which includes a radio frequency power supply housing and a plurality of cavities with a certain depth arranged on the inner wall of the radio frequency power supply housing, and the electromagnetic interference of the radio frequency power supply is incident. into the cavity, attenuation is achieved through multiple reflections and scattering of the cavity.
  • the plurality of cavities are arranged and distributed in an array.
  • the spacing between the left and right adjacent cavities is positively related to the working frequency of the radio frequency power supply, and the spacing between the upper and lower adjacent cavities is directly related to the working frequency of the radio frequency power supply. frequency is positively correlated.
  • the shape of the cross-section parallel to the inner wall of the radio frequency power supply housing where the cavity is located is an ellipse, a circle or a polygon.
  • the distance between the left and right adjacent cavity cavities is the same as that of the radio frequency power supply.
  • the relationship between the working frequency, the distance between the upper and lower adjacent cavities and the working frequency of the RF power supply, and the relationship between the depth of the cavity and the working frequency of the RF power supply are as follows:
  • Gap1 is the distance between the upper and lower adjacent cavities
  • Gap2 is the distance between the upper and lower two adjacent cavities
  • c is the speed of light
  • freq is the operating frequency of the radio frequency power supply
  • L is the side length of the polygon.
  • the inner angle of the polygon is greater than 90°.
  • the structure for suppressing electromagnetic interference and leaky waves wherein, when the shape of the cross-section of the cavity and the inner wall of the radio frequency power supply housing where the cavity is parallel to each other is a polygon, the side length of the cavity is related to the working frequency of the radio frequency power supply; The depth of the cavity is related to the operating frequency of the RF power supply.
  • the shape of the cross-section of the cavity and the inner wall of the radio frequency power supply housing where the cavity is parallel to each other is a regular hexagon.
  • a radio frequency power supply comprising the structure for suppressing electromagnetic interference and leaky waves as described in any of the above.
  • a plasma etching apparatus comprising the structure for suppressing electromagnetic interference and leaky waves as described above.
  • the present invention provides a structure for suppressing electromagnetic interference and leaky waves, a radio frequency power supply and a plasma etching device, and by adopting metallized honeycomb network cavity arrays on all inner walls of the radio frequency power supply housing, When the interference signal is incident on the honeycomb cavity structure, the power of the interference signal will be attenuated, and multiple reflections and scattering will occur, thereby suppressing the external electromagnetic interference disturbance and leakage wave damage caused by the RF power supply, and satisfying the electromagnetic interference caused by the RF power supply shell. and leakage wave shielding requirements.
  • FIG. 1 is a schematic structural diagram of a structure for suppressing electromagnetic interference and leaky waves in the present invention.
  • FIG. 2 is a schematic view of the structure of the concave cavity in the present invention.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implying the number of indicated technical features. Thus, features delimited with “first”, “second” may expressly or implicitly include one or more of said features. In the description of the present invention, “plurality” means two or more, unless otherwise expressly and specifically defined.
  • the terms “installed”, “connected” and “connected” should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • installed should be understood in a broad sense, unless otherwise expressly specified and limited, for example, it may be a fixed connection or a detachable connection Connection, or integral connection; it can be mechanical connection, electrical connection or can communicate with each other; it can be directly connected or indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relation.
  • a first feature "on” or “under” a second feature may include the first and second features in direct contact, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature is directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • a structure for suppressing electromagnetic interference and leaky waves for suppressing EMC (electromagnetic interference) and leaky waves of a radio frequency power supply includes a radio frequency power supply housing 1 and an inner wall of the radio frequency power supply housing 1 There are multiple concave cavities 2 with a depth of H (the depth of the concave cavity 2 is related to the operating frequency of the radio frequency power supply). Suppress the external electromagnetic interference disturbance and leakage wave hazard caused by the radio frequency power supply.
  • leakage wave refers to the insufficient electromagnetic shielding ability due to the design defects of the casing and processing technology problems, so that the electromagnetic energy generated internally radiates from the gaps and holes of the machine, etc.
  • EMI electromagnetic interference
  • the plurality of cavities 2 are arranged in an array.
  • the distance Gap1 between the left and right adjacent cavities 2 is positively related to the operating frequency of the radio frequency power supply, and the upper and lower phase
  • the distance Gap2 between adjacent cavities 2 is positively related to the working frequency of the radio frequency power supply.
  • the shape of the cross-section of the cavity 2 parallel to the inner wall of the RF power supply housing 1 can be set according to actual needs, such as an ellipse, a circle, a polygon, and the like.
  • the cavity 2 and the radio frequency power supply housing where the cavity 2 is located in order to make the electromagnetic interference and leakage waves of the radio frequency power supply to be reflected and scattered as much as possible in the radio frequency power supply housing 1 (without leakage), the cavity 2 and the radio frequency power supply housing where the cavity 2 is located.
  • the shape of the cross section where the inner walls are parallel to each other is a polygon.
  • the relationship between the Gap1, Gap2, depth H and the working frequency of the RF power supply is as follows:
  • c is the speed of light
  • freq is the operating frequency of the radio frequency power supply
  • L is the side length of the polygon.
  • the inner angle of the polygon is greater than 90°.
  • the polygon can be set with different numbers of sides, such as quadrilateral, hexagonal, octagonal, etc. .
  • the side length L of the cavity 2 is related to the operating frequency of the RF power supply. If the working frequency of the radio frequency power supply is Freq and the corresponding wavelength is Length, the side length L of the cavity 2 is a quarter of the corresponding wavelength Length; A short circuit is formed in 2, the energy is attenuated and reflected, and will not leak out of the RF power supply housing 1.
  • the depth H of the cavity 2 is related to the operating frequency. If the working frequency of the radio frequency power supply is Freq and the corresponding wavelength is Length, the depth H of the cavity 2 is one-sixteenth of the corresponding wavelength Length. Under this size, the electromagnetic energy is repeatedly reflected in the metal wall of the cavity 2 .
  • the polygon is in the shape of a regular hexagon, and a plurality of regular hexagonal cavities 2 are arranged on the inner wall of the radio frequency power supply housing 1 to form a metallized honeycomb network array.
  • the technical solution also protects a radio frequency power supply, including the structure for suppressing electromagnetic interference and leaky waves as described above.
  • the technical solution also protects a plasma etching apparatus, including the structure for suppressing electromagnetic interference and leaky waves as described above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

本发明公开了一种抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备,通过在射频电源壳体的所有内壁上采用金属化的蜂窝状网络凹腔阵列,当干扰信号入射到蜂窝凹腔结构时,会对干扰信号功率产生衰减,并会产生多重反射及散射,从而抑制射频电源对外部的电磁干扰扰动及漏波危害,满足射频电源壳体对电磁干扰及漏波屏蔽的要求。

Description

抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备 技术领域
本发明涉及射频微波/半导体设备技术领域,尤其涉及的是一种抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备。
背景技术
射频电源典型的应用是作为等离子刻蚀的前端。等离子刻蚀发生的场所称为等离子体腔,在等离子体未点燃时,相当于真空腔。当加入高功率能量时,等离子体点燃,阻抗迅速从原来的高阻抗下降,从而轰击至预先放置的靶材上,使得靶材带正电,与材料进行反应,完成刻蚀过程。
由于射频电源在工作时,等离子体的阻抗随气体的状态时刻变化,如果阻抗失配,腔室内的气体无法获得足够的能量激发等离子体,工作状态就会出现异常。因此在射频电源和反应腔室之间往往部署有自动阻抗匹配箱以获得自适应阻抗的变化。但射频电源的工作功率变化时,自动阻抗匹配箱的阻抗调整速度往往需要一定的响应时间。在响应时间内射频电源和反应腔室处于阻抗失配状态,而阻抗失配带来的问题是反射功率过大对系统模块的冲击,导致系统散热不良、元器件损坏、各类谐波过高、EMI过大,甚至泄露电磁波,对人体造成伤害。
而关于电磁波泄露问题,研究表明人体与幅射源距离很近时,可以受到过量的辐射能量而导致头昏、睡眠障碍、记忆力减退、心动过缓、血压下降等。研究发现,当人眼靠近微波炉泄漏处约30cm,微波漏能达1mW/cm2时,会使人突然感到眼花,眼底检查见视网膜黄斑部上方有点状出血;人体最容易受到漏波伤害的部位是眼睛的晶体。如果眼睛较长时间受到超过安全规定的微波辐射,视力会下降,甚至引起白内障。为了保障使用者的健康,国际电工委员会和我国有关部门规定,在微波炉门外5厘米处,测得微波的泄漏不得超过5mW/cm2。而其他高功率设备,日最大允许量为400μW*h/cm2。
而为产生等离子体,射频电源(射频电源是可以产生固定频率的正弦波电压,频率在射频范围(约3KHz~300GHz)内、具有一定功率的电源)输出功率往往需要kW级别,典型的输出功率为5kW。一般射频电源采用金属壳体装配,可以提高结构强度和屏蔽能力,但从千瓦级别的可能漏波功率屏蔽到5mW/cm2,需要80dB以上的隔离,金属壳体往往难以满足;而且受装配上的工艺受限(如边角上的缝隙和孔),是天然的传导电磁波的途径,使得产生的电磁干扰及漏波风险大大增加。
因此,现有的技术还有待于改进和发展。
发明内容
本发明的目的在于提供一种抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备,旨在解决现有的射频电源壳体无法满足电磁干扰及漏波屏蔽要求的问题。
本发明的技术方案如下:一种抑制电磁干扰及漏波的结构,其中,包括射频电源壳体以及设置在射频电源壳体内壁上的多个具有一定深度的凹腔,射频电源的电磁干扰入射 到凹腔内,经过凹腔的多重反射及散射实现衰减。
所述的抑制电磁干扰及漏波的结构,其中,所述多个凹腔呈阵列排列分布。
所述的抑制电磁干扰及漏波的结构,其中,左右两个相邻凹腔之间的间距与射频电源的工作频率正相关,上下两个相邻凹腔之间的间距与射频电源的工作频率正相关。
所述的抑制电磁干扰及漏波的结构,其中,所述凹腔与所在的射频电源壳体内壁互相平行的截面的形状为椭圆或圆形或多边形。
所述的抑制电磁干扰及漏波的结构,其中,当凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用多边形时,左右两个相邻凹腔之间的间距与射频电源的工作频率的关系、上下两个相邻凹腔之间的间距与射频电源的工作频率之间的关系、凹腔深度与射频电源的工作频率之间的关系如下:
Figure PCTCN2021078431-appb-000001
其中,Gap1为上下两个相邻凹腔之间的间距,Gap2为上下两个相邻凹腔之间的间距,
Figure PCTCN2021078431-appb-000002
c为光速,freq为射频电源的工作频率,L为多边形的边长。
所述的抑制电磁干扰及漏波的结构,其中,当凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用多边形时,所述多边形的内角大于90°。
所述的抑制电磁干扰及漏波的结构,其中,当所述凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用多边形时,凹腔的边长与射频电源的工作频率相关;凹腔的深度与射频电源的工作频率相关。
所述的抑制电磁干扰及漏波的结构,其中,凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用正六边形。
一种射频电源,其中,包括如上述任一所述的抑制电磁干扰及漏波的结构。
一种等离子刻蚀设备,其中,包括如上述任一所述的抑制电磁干扰及漏波的结构。
本发明的有益效果:本发明通过提供一种抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备,通过在射频电源壳体的所有内壁上采用金属化的蜂窝状网络凹腔阵列,当干扰信号入射到蜂窝凹腔结构时,会对干扰信号功率产生衰减,并会产生多重反射及散射,从而抑制射频电源对外部的电磁干扰扰动及漏波危害,满足射频电源壳体对电磁干扰及漏波屏蔽的要求。
附图说明
图1是本发明中抑制电磁干扰及漏波的结构的结构示意图。
图2是本发明中凹腔的结构示意图。
具体实施方式
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、 “厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1至图2所示,一种抑制电磁干扰及漏波的结构,用于抑制射频电源的EMC(电磁干扰)及漏波,包括射频电源壳体1以及设置在射频电源壳体1内壁上的多个具有深度为H的凹腔2(凹腔2的深度与射频电源的工作频率相关),射频电源的电磁干扰入射到凹腔2内,经过凹腔2的多重反射及散射,从而抑制射频电源对外部的电磁干扰扰动及漏波危害。
为了尽可能地抑制射频电源的电磁干扰及漏波(漏波是指由于外壳的设计缺陷、加工工艺问题导致电磁屏蔽能力不足,从而内部产生的电磁能量从机器的缝隙、孔等向外辐射,属于EMI(电磁干扰)的一种),在某些具体实施例中,所述多个凹腔2呈阵列排列分布。
为了满足抑制不同工作频率的射频电源的电磁干扰及漏波,在某些具体实施例中,左右两个相邻凹腔2之间的间距Gap1与射频电源的工作频率正相关,上下两个相邻凹腔2之间的间距Gap2与射频电源的工作频率正相关。
在某些具体实施例中,所述凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状可以根据实际需要而设定,如椭圆,圆形,多边形,等。
作为一种优选实施例,为了可以使射频电源的电磁干扰及漏波尽可能地在射频电源壳体1进行多重反射及散射(不外泄),所述凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状采用多边形。
当凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状采用多边形时,所述Gap1、Gap2、深度H与射频电源的工作频率的关系如下:
Figure PCTCN2021078431-appb-000003
其中,
Figure PCTCN2021078431-appb-000004
c为光速,freq为射频电源的工作频率,L为多边形的边长。
为了避免在凹腔2内造成电磁打火,当凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状采用多边形时,所述多边形的内角大于90°。
当所述凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状采用多边形时,所述多边形可以根据需要设置不同的边数,如四边形、六边形,八边形,等等。
当所述凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状采用多边形时,所述凹腔2的边长L与射频电源的工作频率相关。若射频电源的工作频率为Freq,对应的波长为Length,则凹腔2的边长L为对应波长Length的四分之一;其特性为基于传输线终端短路阻抗变换原理,入射电磁能量在凹腔2内形成短路,能量被衰减及反射,不会泄漏出射频电源壳体1之外。
当所述凹腔2与所在的射频电源壳体1内壁互相平行的截面的形状采用多边形时,所述凹腔2的深度H与工作频率相关。若射频电源的工作频率为Freq,对应波长为Length,则凹腔2的深度H为对应波长Length的十六分之一,在此尺寸下,电磁能量在凹腔2的金属壁内被重复反射。
作为一种优选实施例,所述多边形采用正六边形形状,多个正六边形的凹腔2设置在射频电源壳体1内壁上,形成金属化的蜂窝状网络阵列。
本技术方案还保护一种射频电源,包括如上述所述的抑制电磁干扰及漏波的结构。
本技术方案还保护一种等离子刻蚀设备,包括如上述所述的抑制电磁干扰及漏波的结构。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种抑制电磁干扰及漏波的结构,其特征在于,包括射频电源壳体以及设置在射频电源壳体内壁上的多个具有一定深度的凹腔,射频电源的电磁干扰入射到凹腔内,经过凹腔的多重反射及散射实现衰减。
  2. 根据权利要求1所述的抑制电磁干扰及漏波的结构,其特征在于,所述多个凹腔呈阵列排列分布。
  3. 根据权利要求1所述的抑制电磁干扰及漏波的结构,其特征在于,左右两个相邻凹腔之间的间距与射频电源的工作频率正相关,上下两个相邻凹腔之间的间距与射频电源的工作频率正相关。
  4. 根据权利要求1所述的抑制电磁干扰及漏波的结构,其特征在于,所述凹腔与所在的射频电源壳体内壁互相平行的截面的形状为椭圆或圆形或多边形。
  5. 根据权利要求3所述的抑制电磁干扰及漏波的结构,其特征在于,当凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用多边形时,左右两个相邻凹腔之间的间距与射频电源的工作频率的关系、上下两个相邻凹腔之间的间距与射频电源的工作频率之间的关系、凹腔与射频电源的工作频率之间的关系如下:
    Figure PCTCN2021078431-appb-100001
    其中,Gap1为左右两个相邻凹腔之间的间距,Gap2为上下两个相邻凹腔之间的间距,
    Figure PCTCN2021078431-appb-100002
    c为光速,freq为射频电源的工作频率,L为多边形的边长。
  6. 根据权利要求1所述的抑制电磁干扰及漏波的结构,其特征在于,当凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用多边形时,所述多边形的内角大于90°。
  7. 根据权利要求1所述的抑制电磁干扰及漏波的结构,其特征在于,当所述凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用多边形时,凹腔的边长与射频电源的工作频率相关;凹腔的深度与射频电源的工作频率相关。
  8. 根据权利要求1所述的抑制电磁干扰及漏波的结构,其特征在于,凹腔与所在的射频电源壳体内壁互相平行的截面的形状采用正六边形。
  9. 一种射频电源,其特征在于,包括如权利要求1至8任一所述的抑制电磁干扰及漏波的结构。
  10. 一种等离子刻蚀设备,其特征在于,包括如权利要求1至8任一所述的抑制电磁干扰及漏波的结构。
PCT/CN2021/078431 2020-11-24 2021-03-01 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备 WO2022110565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011332509.8A CN112151351A (zh) 2020-11-24 2020-11-24 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备
CN202011332509.8 2020-11-24

Publications (1)

Publication Number Publication Date
WO2022110565A1 true WO2022110565A1 (zh) 2022-06-02

Family

ID=73887275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/078431 WO2022110565A1 (zh) 2020-11-24 2021-03-01 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备

Country Status (2)

Country Link
CN (1) CN112151351A (zh)
WO (1) WO2022110565A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151351A (zh) * 2020-11-24 2020-12-29 季华实验室 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738265B1 (en) * 2000-04-19 2004-05-18 Nokia Mobile Phones Ltd. EMI shielding for portable electronic devices
KR20080025628A (ko) * 2006-09-18 2008-03-21 엘지전자 주식회사 디스플레이용 필터 및 그의 제조방법
CN101917829A (zh) * 2010-08-24 2010-12-15 哈尔滨工业大学 带有基于频率选择表面技术的电磁屏蔽效能散热孔的电子设备外壳体
JP2011222640A (ja) * 2010-04-07 2011-11-04 Bridgestone Corp 光学フィルタ用電磁波シールド材、及びこれを用いた光学フィルタ
CN204314346U (zh) * 2014-09-03 2015-05-06 公安部第三研究所 射频测试中的电磁屏蔽装置
CN112151351A (zh) * 2020-11-24 2020-12-29 季华实验室 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660647B2 (ja) * 1992-10-21 1997-10-08 株式会社巴川製紙所 電波吸収体
US5539150A (en) * 1995-01-18 1996-07-23 American Etching & Manufacturing Kit and method of making radiation shields
JP4148562B2 (ja) * 1998-06-24 2008-09-10 横浜ゴム株式会社 電波吸収体の製造方法
JP2002180568A (ja) * 2000-12-12 2002-06-26 Yokohama Rubber Co Ltd:The 電波吸収体及びその施工方法
CN101325620A (zh) * 2007-06-14 2008-12-17 鸿富锦精密工业(深圳)有限公司 防辐射手机壳体
CN101415318B (zh) * 2007-10-19 2011-11-30 鸿富锦精密工业(深圳)有限公司 无线通讯设备及其电磁屏蔽装置
CN201947596U (zh) * 2010-11-11 2011-08-24 谢忠 一种新型屏波板
CN103002723A (zh) * 2011-09-08 2013-03-27 青钢金属建材股份有限公司 电磁波滤阻板材结构
CN103781297A (zh) * 2012-10-23 2014-05-07 姜堰市科苑电子仪器有限公司 电气仪器机箱电磁屏蔽结构
CN202978850U (zh) * 2012-12-19 2013-06-05 中微半导体设备(上海)有限公司 等离子体处理腔室及其射频匹配电路
CN106777627A (zh) * 2016-12-02 2017-05-31 上海无线电设备研究所 一种蜂窝结构吸波板缩比模拟材料构造方法
KR102330098B1 (ko) * 2017-04-24 2021-11-23 주성엔지니어링(주) 기판 처리 장치
CN207399753U (zh) * 2017-11-09 2018-05-22 四川农业大学 一种带有金属屏蔽板的吸波材料结构
CN209658588U (zh) * 2018-04-08 2019-11-19 东莞理工学院 一种隔磁散热激光器
CN109023290B (zh) * 2018-06-21 2020-08-28 成都溢杰科技有限公司 基于固体碳源的二维碳纳米材料制备方法和装置
CN109167181B (zh) * 2018-07-24 2021-02-02 电子科技大学 一种图形化蜂窝单元宽带周期吸波结构
CN209845637U (zh) * 2019-03-26 2019-12-24 福建星宏新材料科技有限公司 吸波结构
CN111029789B (zh) * 2019-12-24 2021-10-22 中国航空工业集团公司沈阳飞机设计研究所 一种正蜂窝10°结构吸波材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738265B1 (en) * 2000-04-19 2004-05-18 Nokia Mobile Phones Ltd. EMI shielding for portable electronic devices
KR20080025628A (ko) * 2006-09-18 2008-03-21 엘지전자 주식회사 디스플레이용 필터 및 그의 제조방법
JP2011222640A (ja) * 2010-04-07 2011-11-04 Bridgestone Corp 光学フィルタ用電磁波シールド材、及びこれを用いた光学フィルタ
CN101917829A (zh) * 2010-08-24 2010-12-15 哈尔滨工业大学 带有基于频率选择表面技术的电磁屏蔽效能散热孔的电子设备外壳体
CN204314346U (zh) * 2014-09-03 2015-05-06 公安部第三研究所 射频测试中的电磁屏蔽装置
CN112151351A (zh) * 2020-11-24 2020-12-29 季华实验室 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备

Also Published As

Publication number Publication date
CN112151351A (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
JP5969816B2 (ja) 構造部材及び通信装置
WO2022110565A1 (zh) 抑制电磁干扰及漏波的结构、射频电源及等离子刻蚀设备
JP2006244891A5 (zh)
US20130175082A1 (en) Vent structure for electromagnetic shielding
WO2014087666A1 (ja) マイクロ波処理装置
CN109872976B (zh) 一种用于解决散热片的天线效应的方法
JP2014110325A (ja) 電磁波吸収体および光トランシーバ
US20230309281A1 (en) Package Body, Preparation Method Thereof, Terminal, and Electronic Device
EP3826444A1 (en) Electromagnetic interference ("emi") sheet attenuators
US11881622B2 (en) Antenna element with filtering function, filtering radiation unit, and antenna
WO2020207029A1 (zh) 烹饪器具
WO2020054754A1 (ja) マイクロ波加熱装置
US9576774B2 (en) Plasma wavguide using step part and block part
JP2014216067A (ja) 高周波加熱装置
JP2014085513A (ja) 光トランシーバ
JP2013246999A (ja) 高周波加熱装置
CN109067010B (zh) 一种双频近零磁导率的屏蔽电磁超材料及其应用
JP5255024B2 (ja) ラジアルアンテナ及びそれを用いたプラズマ処理装置
EP3435739B1 (en) High frequency heating device
RU2085057C1 (ru) Сверхвысокочастотная печь
JP7378019B2 (ja) マイクロ波処理装置
CN110797250B (zh) 表面波等离子体加工设备
JP2001119192A (ja) 電波無響箱
Zehentner et al. Modes on the standard and inverted conductor-backed slotline
KR20210137809A (ko) 다중 쵸크를 구비하는 오븐

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21896085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21896085

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21896085

Country of ref document: EP

Kind code of ref document: A1