WO2022107992A1 - 표면 개질 2차원 맥신 및 이의 제조방법 - Google Patents

표면 개질 2차원 맥신 및 이의 제조방법 Download PDF

Info

Publication number
WO2022107992A1
WO2022107992A1 PCT/KR2021/000154 KR2021000154W WO2022107992A1 WO 2022107992 A1 WO2022107992 A1 WO 2022107992A1 KR 2021000154 W KR2021000154 W KR 2021000154W WO 2022107992 A1 WO2022107992 A1 WO 2022107992A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
substituted
unsubstituted
maxine
Prior art date
Application number
PCT/KR2021/000154
Other languages
English (en)
French (fr)
Inventor
인인식
이지훈
김소연
박성민
Original Assignee
한국교통대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국교통대학교산학협력단 filed Critical 한국교통대학교산학협력단
Priority to US18/037,352 priority Critical patent/US20230406714A1/en
Priority to CN202180083783.2A priority patent/CN116783142A/zh
Publication of WO2022107992A1 publication Critical patent/WO2022107992A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/921Titanium carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like

Definitions

  • the present invention was made with support from the Korean government in accordance with the "Photo-responsive Carbon Nanomaterial-based Transportation Convergence Material Development", a university-focused research institute support project in the science and engineering field with a unique project number 1345315501 and a project number 2018R1A6A1A03023788 of the National Research Foundation of Korea under the Ministry of Education.
  • the present invention relates to a surface-modified two-dimensional maxine and a method for manufacturing the same, and specifically, a surface-modified two-dimensional maxine having improved dispersibility and preventing oxidation of maxin by modifying the surface with a compound or an ionic compound containing a hydroxyl group, and a method for manufacturing the same It relates to a manufacturing method.
  • MAX phase (M is a transition metal including Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, A is Al, Si , P, S, Ga, Ge, As, Cd, In, Sn, Tl, Group 13 or 14 elements including Pb, X is carbon and/or nitrogen) is a quasi-ceramic MX and a metal other than M As a crystalline substance in which element A is combined, it has excellent properties such as electrical conductivity, oxidation resistance, and machinability.
  • Maxine has excellent electrical conductivity and strength due to its metal-like properties, and is recognized as a very useful material because it can be applied to various application technologies such as sensors, capacitors, storage materials, and electromagnetic shielding.
  • Maxine (MXene) prepared by chemical etching process is easily dispersed in water due to the large amount of -OH functional groups present on the surface, but maxine (MXene) dispersed in aqueous solution is easily oxidized by water molecules and dissolved oxygen to metal oxide It is difficult to store for a long period of time, such as losing its original excellent properties.
  • maxine (MXene) dispersed in aqueous solution is easily oxidized by water molecules and dissolved oxygen to metal oxide It is difficult to store for a long period of time, such as losing its original excellent properties.
  • the bonding strength with other hydrophobic materials is low, so it is difficult to form a composite material in a uniform state with an organic single molecule or organic polymer.
  • the technical problem to be achieved by the present invention is to prevent oxidation by dissolved oxygen present in water by physically modifying the surface of the two-dimensional maxine with a compound or ionic compound containing at least one hydroxyl group, and excellent in various organic solvents To provide a surface-modified two-dimensional maxine that exhibits dispersibility and has excellent electrical conductivity, solution processability and coating properties.
  • One embodiment of the present invention provides a surface-modified two-dimensional maxin in which the outer surface of the two-dimensional maxin is modified with one selected from the group consisting of a compound containing at least one hydroxyl group, an ionic compound, and combinations thereof.
  • the surface-modified two-dimensional maxine according to an exemplary embodiment of the present invention can be variously stably dispersed in water or an organic solvent depending on the compound or ionic compound containing at least one hydroxyl group used for surface modification, and oxidative stability and Long-term stability can be improved.
  • the method for manufacturing a surface-modified two-dimensional maxine according to an exemplary embodiment of the present invention can easily surface-modify the two-dimensional maxine.
  • FIG. 1 is a flowchart of a method for manufacturing a surface-modified two-dimensional maxine according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram showing a process for manufacturing a two-dimensional maxine.
  • Figure 3 is a schematic diagram showing a state modified with a carboxylic acid-based compound in the surface-modified two-dimensional maxine according to an embodiment of the present invention.
  • Example 4 is a photograph showing a state in which Example 1 and Comparative Example 1 were dispersed according to a solvent.
  • Example 5 is a photograph taken of the results of the folding test in order to confirm the flexibility of the thin film prepared in Example 14.
  • Example 6 is a photograph showing the contact angle of the thin film prepared according to Example 1 and Comparative Example 1 with respect to water.
  • Example 7 is a photograph showing the oxidation rate results of Example 6 and Comparative Example 1.
  • Example 8 is a graph showing the absorbance according to the wavelength of Example 5 and Comparative Example 1.
  • Example 9 is a graph showing the XRD of Example 6 and Comparative Example 1.
  • a and/or B means “A and B, or A or B.”
  • One embodiment of the present invention provides a surface-modified two-dimensional maxin in which the outer surface of the two-dimensional maxin is modified with one selected from the group consisting of a compound containing at least one hydroxyl group, an ionic compound, and combinations thereof.
  • the surface-modified two-dimensional maxine according to an exemplary embodiment of the present invention can be variously stably dispersed in water or an organic solvent depending on the compound or ionic compound containing at least one hydroxyl group used for surface modification, and oxidative stability and Long-term stability can be improved.
  • the two-dimensional maxine includes at least one layer in which a plurality of crystal cells having an empirical formula of M n+1 X n form a two-dimensional array, each X is located in an octahedral array consisting of a plurality of M, wherein M is at least one metal selected from the group consisting of a group IIIB metal, a group IVB metal, a group VB metal, and a group VIB metal, wherein each X is C, It is one selected from N and combinations thereof, and n may be 1, 2, or 3.
  • the two-dimensional maxine includes at least one layer in which a plurality of crystal cells having an empirical formula of M'2M"nXn+1 form a two-dimensional array, each X is located in an octahedral array of a plurality of M' and M", wherein M' and M" are different metals selected from the group consisting of a group IIIB metal, a group IVB metal, a group VB metal and a group VIB metal; , wherein each X is C, N, or a combination thereof, and n may be 1 or 2.
  • the compound including a hydroxyl group is a diol-based compound, a boronic acid-based compound, a carboxylic acid-based compound, a sulfonic acid-based compound, a sulfinic acid-based compound, a compound represented by the following Chemical Formula 1, and combinations thereof. It may be one selected from
  • the solubility according to the organic solvent according to the compound can be changed, and the binding force to the surface of the two-dimensional maxine can be improved.
  • the diol-based compound may be of Formula 2 below.
  • Each of R 1 , R 2 , R 3 and R 4 is hydrogen, a substituted or unsubstituted straight or branched chain alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 1 to 10 carbon atoms, and 3 to 7 carbon atoms. of a substituted or unsubstituted heterocycloalkene group, and a substituent represented by the following Chemical Formulas 2a and 2b.
  • the “*” means a connection point, wherein Y 1 is O or S, and each of Y 2 and Y 3 is -F, -Cl, -Br, -I, -OH, -SH, -NR 6 R 7 R 8 , wherein each of R 6 , R 7 and R 8 is hydrogen, a substituted or unsubstituted straight or branched chain alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 1 to 10 carbon atoms, and 3 carbon atoms. to 7 is a substituted or unsubstituted heterocycloalkene group.
  • Chemical Formula 2 may be any one of Chemical Formulas 2-1 to 2-5 below.
  • Formula 2 By selecting Formula 2 from the above, it can be stably dispersed in various ways in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • the boronic acid-based compound may be of Formula 3 below.
  • R 9 is a hydroxyl group, a substituted or unsubstituted straight-chain or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted straight-chain or branched alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted A cycloalkyl group, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted pyrenyl group, a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted thiophenyl group, a substituted or an unsubstituted furanyl group, a substituted or unsubstituted pyrazolyl group, and a substituted or unsubstituted pyrrolyl group.
  • Chemical Formula 3 may be selected from the group consisting of the following compounds 3-1 to 3-42 and combinations thereof.
  • Chemical Formula 3 By selecting Chemical Formula 3 from the above, it can be stably dispersed in various ways in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • the carboxylic acid-based compound may be one selected from the group consisting of the following Chemical Formula 4, the following Chemical Formulas 4-1 to 4-3, and combinations thereof.
  • R 10 is a substituted or unsubstituted linear or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted straight or branched alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted straight chain having 2 to 10 carbon atoms, or A branched dienyl group, a substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted pyrenyl group, a substituted or an unsubstituted pyridinyl group, a substituted or unsubstituted thiophenyl group, a substituted or unsubstituted furanyl group, a substituted or unsubstituted pyrazolyl
  • Chemical Formula 4 may be selected from the group consisting of the following compounds 4-4 to 4-13 and combinations thereof.
  • Chemical Formula 4 By selecting Chemical Formula 4 from the above, it can be stably dispersed in various ways in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • the sulfonic acid-based compound may be of Formula 5 below.
  • R 11 is a substituted or unsubstituted straight-chain or branched alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted straight-chain or branched alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted straight chain having 2 to 10 carbon atoms Or a branched dienyl group, a substituted or unsubstituted cycloalkyl group having 3 to 15 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, a substituted or unsubstituted anthracenyl group, a substituted or unsubstituted pyrenyl group, substituted Or an unsubstituted pyridinyl group, a substituted or unsubstituted thiophenyl group, a substituted or unsubstituted furanyl group, a substituted or unsubstituted pyr
  • Chemical Formula 5 may be one selected from the group consisting of the following Chemical Formulas 5-1 to 5-13 and combinations thereof.
  • Chemical Formula 5 By selecting Chemical Formula 5 from the above, it can be stably dispersed in various ways in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • the sulfinic acid-based compound may be of Formula 6 below.
  • the sulfinic acid-based compound as described above, it can be variously stably dispersed in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • the ionic compound is a cation selected from the group consisting of imidazolium-based compounds, pyridinium-based compounds, ammonium-based compounds, phosphinium-based compounds, and combinations thereof; and F - , Cl - , Br - , I, BF 4 - , PF 6 - , (CF 3 SO 2 ) 2 N - , CF 3 SO 3 - , C 2 N 3 - , CH 3 SO 3 - , CF 3 BF 3 - , C 2 F 5 BF 3 - , NO 3 - , CF 3 CO 2 - , C 3 H 5 O 3 - , C 7 H 5 O 2 - , and combinations thereof it could be By selecting the ionic compound from the above, it can be variously stably dispersed in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • the cation may be one selected from the group consisting of the following Chemical Formulas 7 to 9 and combinations thereof.
  • Each of R 12 , R 13 and R 14 is hydrogen, a substituted or unsubstituted linear or branched alkyl group having 1 to 15 carbon atoms, and a substituted or unsubstituted linear or branched alkenyl group having 2 to 10 carbon atoms.
  • Each of R 15 and R 16 is hydrogen and a substituted or unsubstituted straight-chain or branched alkyl group having 1 to 15 carbon atoms.
  • Q is N or P, wherein R 17 , R 18 , R 19 and R 20 each is a substituted or unsubstituted straight-chain or branched alkyl group having 1 to 15 carbon atoms.
  • Chemical Formula 7 is one selected from the group consisting of the following Chemical Formulas 7-1 to 7-13 and combinations thereof
  • Chemical Formula 8 is the following Chemical Formulas 8-1 to 8-13 and these It may be one selected from the group consisting of a combination of
  • Chemical Formula 9 may be one selected from the group consisting of the following Chemical Formulas 9-1 to 9-13 and combinations thereof.
  • Chemical Formula 7 Chemical Formula 8 and Chemical Formula 9 from the above, it can be variously stably dispersed in water or an organic solvent, and oxidation stability and long-term stability can be improved.
  • FIG. 1 is a flowchart of a method for manufacturing a surface-modified two-dimensional maxine according to an embodiment of the present invention.
  • a first step (S10) of obtaining a maxine aqueous solution in which the two-dimensional maxine is dispersed by an acid etching process a second step (S30) of preparing a mixture in which one selected from the group consisting of a compound containing at least one hydroxyl group, an ionic compound, and a combination thereof is dispersed in water or an organic solvent
  • the method for manufacturing a surface-modified two-dimensional maxine according to an exemplary embodiment of the present invention can easily surface-modify the two-dimensional maxine.
  • an acid etching process includes a first step (S10) of obtaining an aqueous solution of maxine in which the two-dimensional maxine is dispersed.
  • 2 is a schematic diagram showing a process for manufacturing a two-dimensional maxine. Referring to FIG. 2 , by selectively removing the aluminum layer using LiF-HCl in the three-dimensional titanium-aluminum carbide of the MAX phase, a two-dimensional crystalline transition metal carbide having the general formula M (n+1) X n T x Manufactures MXenes, which are crystalline transition metal carbides.
  • the two-dimensional maxine manufactured by the above-described method includes a hydroxyl group, a fluorine group, a carbonyl group and/or an epoxy group on the surface.
  • a hydroxyl group a fluorine group, a carbonyl group and/or an epoxy group on the surface.
  • the second step (S30) of preparing a mixture in which one selected from the group consisting of a compound containing at least one hydroxyl group, an ionic compound, and a combination thereof is dispersed in water or an organic solvent include By dispersing one selected from the group consisting of a compound containing at least one hydroxyl group, an ionic compound, and a combination thereof in water or an organic solvent as described above, compatibility and workability with the Maxine aqueous solution can be improved.
  • a third step (S50) of modifying the outer surface of the two-dimensional maxine by mixing and stirring the aqueous solution of maxin obtained in the first step and the mixture of the second step (S50); includes; .
  • Figure 3 is a schematic diagram showing a state modified with a carboxylic acid-based compound in the surface-modified two-dimensional maxine according to an embodiment of the present invention. Referring to FIG. 3 , by mixing and stirring the maxine aqueous solution and the mixture, it can be confirmed that the carboxylic acid-based compound is physically bonded to the two-dimensional maxine surface by hydrogen bonding as shown in FIG. 3 .
  • By modifying the outer surface of the two-dimensional maxine as described above it can be stably dispersed in various ways in water or an organic solvent, oxidation stability and long-term stability can be improved, and electrical conductivity can be improved.
  • Maxine aqueous solution itself prepared in Preparation Example was used as Maxine ink.
  • a maxine ink was prepared in the same manner as in Example 1, except that the maxine ink was prepared by using Formula 3-1 instead of Formula 2-1 in Example 1.
  • a maxine ink was prepared in the same manner as in Example 1, except that in Example 1, a maxine ink was prepared by using Formula 4-3 instead of Formula 2-1.
  • a maxine ink was prepared in the same manner as in Example 1, except that the maxine ink was prepared by using Formula 4-1 instead of Formula 2-1 in Example 1.
  • a maxine ink was prepared in the same manner as in Example 1, except that in Example 1, a maxine ink was prepared by using Formula 3-6 instead of Formula 2-1.
  • a maxine ink was prepared in the same manner as in Example 1, except that the maxine ink was prepared by using Formula 4-8 instead of Formula 2-1 in Example 1.
  • a maxine ink was prepared in the same manner as in Example 1, except that in Example 1, a maxine ink was prepared by using Formula 5-5 instead of Formula 2-1.
  • An organic solution was prepared by dissolving 35 mg of Formula 3-9 in 10 mL of ethanol.
  • the aqueous maxine solution of Preparation Example and the organic solution in which Chemical Formula 3-9 was dissolved were mixed, and the reaction was performed by stirring at room temperature for 24 hours. After 24 hours, the stirring is stopped, and the maxine surface-modified by Chemical Formula 3-9 is separated through a centrifuge (1736R model, GYROZEN) and the solvent to be substituted (distilled water, ethanol, methanol, acetone, acetonitrile, chloroform, dichloro Methane, dimethylformamide) was washed 3 to 5 times to prepare maxine ink.
  • An organic solution was prepared by dissolving 35 mg of Chemical Formula 3-10 in 10 mL of acetone.
  • the aqueous maxine solution of Preparation Example and the organic solution in which Chemical Formula 3-10 was dissolved were mixed, and the reaction was performed by stirring at room temperature for 24 hours. After 24 hours, the stirring is stopped, and the maxine surface-modified by Chemical Formula 3-10 is separated through a centrifuge (1736R model, GYROZEN) and the solvent to be substituted (distilled water, ethanol, methanol, acetone, acetonitrile, chloroform, dichloro Methane, dimethylformamide) was washed 3 to 5 times to prepare maxine ink.
  • a maxine ink was prepared in the same manner as in Example 9, except that the maxine ink was prepared by using Formula 3-22 instead of Formula 3-10 in Example 9.
  • An organic solution was prepared by dissolving 35 mg of Formula 4-11 in 10 mL of chloroform.
  • the Maxine aqueous solution of Preparation Example and the organic solution in which Chemical Formula 4-11 was dissolved were mixed, and the reaction was carried out by stirring at room temperature for 24 hours. After 24 hours, the stirring is stopped, and the maxine surface-modified by Chemical Formula 4-11 is separated through a centrifuge (1736R model, GYROZEN) and the solvent to be substituted (distilled water, ethanol, methanol, acetone, acetonitrile, chloroform, dichloro Methane, dimethylformamide) was washed 3 to 5 times to prepare maxine ink.
  • An organic solution was prepared by dissolving 35 mg of Formula 3-24 in 10 mL of toluene.
  • the aqueous maxine solution of Preparation Example and an organic solution in which Chemical Formula 3-24 was dissolved were mixed, and the reaction was performed by stirring at room temperature for 24 hours. After 24 hours, the stirring is stopped, and the maxine surface-modified by Chemical Formula 3-24 is separated through a centrifuge (1736R model, GYROZEN) and the solvent to be substituted (distilled water, ethanol, methanol, acetone, acetonitrile, chloroform, dichloro Methane, dimethylformamide) was washed 3 to 5 times to prepare maxine ink.
  • An organic solution was prepared by dissolving 35 mg of Formula 3-25 in 10 mL of ethanol.
  • the Maxine aqueous solution of Preparation Example and the organic solution in which Chemical Formula 3-25 was dissolved were mixed, and the reaction was performed by stirring at room temperature for 24 hours. After 24 hours, the stirring is stopped, and the maxine surface-modified by Chemical Formula 3-25 is separated through a centrifuge (1736R model, GYROZEN) and the solvent to be substituted (distilled water, ethanol, methanol, acetone, acetonitrile, chloroform, dichloro Methane, dimethylformamide) was washed 3 to 5 times to prepare maxine ink.
  • a maxine ink was prepared in the same manner as in Example 9, except that the maxine ink was prepared by using Chemical Formula 4-3 instead of Chemical Formula 3-10 in Example 9.
  • a maxine ink was prepared in the same manner as in Example 9, except that the maxine ink was prepared by using Formula 2-5 instead of Formula 3-25 in Example 13.
  • Example 9 in the same manner as in Example 9, maxine ink was prepared using [(CF 3 SO 2 ) 2 N ⁇ ] as a cation and anion of Formula 7-9 instead of Formula 3-10. Ink was prepared.
  • An organic solution was prepared by dissolving 35 mg of an ionic compound containing a cation of Formula 7-6 and an anion of [(CF 3 SO 2 ) 2 N - ] in 10 mL of acetonitrile.
  • the maxin aqueous solution of Preparation Example and the organic solution in which the ionic compound was dissolved were mixed, and the reaction was performed by stirring at room temperature for 24 hours.
  • Maxine ink was prepared by using an ionic compound containing a cation of Formula 7-10 and an anion of [(CF 3 SO 2 ) 2 N - ] instead of the ionic compound used in Example 17
  • a maxine ink was prepared in the same manner as in step 17.
  • Maxine ink was prepared by using an ionic compound containing a cation of Formula 9-2 and an anion of [(CF 3 SO 2 ) 2 N - ] instead of the ionic compound used in Example 17
  • a maxine ink was prepared in the same manner as in step 17.
  • FIG. 4 is a photograph showing a state in which Example 1 and Comparative Example 1 were dispersed according to a solvent. 4, the Maxine ink of Example 1 and the Maxine aqueous solution of Comparative Example 1 were dispersed in distilled water, ethanol, methanol, acetone, acetonitrile, chloroform, dichloromethane and DMF (dimethylformamide).
  • Comparative Example 1 has excellent dispersibility only in distilled water, ethanol, methanol, and DMF (dimethylformamide), but Example 1 is for distilled water, ethanol, methanol, acetone, acetonitrile and DMF (dimethylformamide) It can be confirmed that it is stably and uniformly dispersed in more various organic solvents due to excellent compatibility.
  • a thin film was prepared by filtration using an anodic aluminum oxide film (pore size: 200 ⁇ m) for the maxine ink surface-modified according to Examples 1 to 19.
  • Example 5 is a photograph taken of the results of the folding test in order to confirm the flexibility of the thin film prepared in Example 14. As shown in FIG. 5 , it was confirmed that the thin films prepared with the Maxine inks of Examples 1 to 19 had a thickness of 7 ⁇ m and had excellent flexibility.
  • Example 6 is a photograph showing the contact angle of the thin film prepared according to Example 1 and Comparative Example 1 with respect to water. As shown in FIG. 6 , it can be confirmed that the maxine of Example 1 exhibits more hydrophobicity than the maxine of Comparative Example 1 that is hydrophilic. That is, it can be seen that Maxine surface-modified with a compound having a hydrophobic group as in Formula 2-1 exhibits slightly more hydrophobicity. As a result, it was confirmed that the surface modification of the maxine surface was successfully performed.
  • Example 7 is a photograph showing the oxidation rate results of Example 6 and Comparative Example 1. Referring to FIG. 7, in the case of Comparative Example 1, the oxidation rate rapidly increased after two months, and it was confirmed that most of them were oxidized and changed to a transparent solution state, whereas in the case of the Maxine ink of Example 6, oxidation was well performed even with the passage of time. I was able to confirm that it didn't happen.
  • the surface-modified two-dimensional maxine ink according to an exemplary embodiment of the present invention has excellent oxidation stability and improved long-term storage stability compared to maxine that is not surface-modified.
  • Example 8 is a graph showing the absorbance according to the wavelength of Example 5 and Comparative Example 1. Referring to FIG. 8, in Example 5, compared to Comparative Example 1, the absorption peak of 300 nm or less (the absorption peak of TiO 2 ) did not increase, and the Maxine surface plasmon resonance peak near 760 nm was maintained. The two-dimensional maxine confirmed that oxidation did not occur well additionally.
  • Example 9 is a graph showing the XRD of Example 6 and Comparative Example 1. Referring to FIG. 9, it can be seen that the 2D stacking structure of Maxine is well maintained even after surface modification, and d-spacing is slightly increased from the (002) peak shifted to the left due to the compound bound to the surface after surface modification. can
  • the surface-modified two-dimensional maxine and its manufacturing method, the two-dimensional maxine surface is modified with a compound containing a hydroxyl group to prevent oxidation and improve dispersibility in various organic solvents while maintaining electrical conductivity can

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

[요약] 본 발명은 표면 개질 2차원 맥신 및 이의 제조방법에 관한 것으로, 구체적으로 히드록시기를 포함하는 화합물 또는 이온성화합물로 표면을 개질하여 맥신의 산화를 방지하며 분산성을 향상시킨 표면 개질 2차원 맥신 및 이의 제조방법에 관한 것이다. [대표도] 도 2

Description

표면 개질 2차원 맥신 및 이의 제조방법
본 발명은 2020년 11월 17일에 한국특허청에 제출된 한국 특허출원 제10-2020-0154061호의 출원일의 이익을 주장하며, 그 내용 전부는 본 발명에 포함된다.
본 발명은 교육부 산하 한국연구재단의 과제고유번호 1345315501, 과제번호 2018R1A6A1A03023788인 이공분야 대학중점연구소지원사업 "광응답형 탄소나노소재 기반 교통융합소재개발"에 따른 한국 정부의 지원을 받아 이루어졌다.
본 발명은 표면 개질 2차원 맥신 및 이의 제조방법에 관한 것으로, 구체적으로 히드록시기를 포함하는 화합물 또는 이온성화합물로 표면을 개질하여 맥신의 산화를 방지하며 분산성을 향상시킨 표면 개질 2차원 맥신 및 이의 제조방법에 관한 것이다.
흑연과 유사한 구조를 갖는 3차원의 물질 중 하나로, MAX 상(MAX phase, 여기서 M은 Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta를 포함하는 전이금속, A는 Al, Si, P, S, Ga, Ge, As, Cd, In, Sn, Tl, Pb을 포함하는 13 또는 14족 원소, X는 탄소 및/또는 질소)은 준세라믹 특성의 MX와, M과는 다른 금속원소 A가 조합된 결정질로 전기전도성, 내산화성, 기계 가공성 등의 물성이 우수한 특성을 갖는다.
2011년, 미국 Drexel University에서 MAX 상인 3차원의 티타늄-알루미늄 카바이드에서 불산을 사용하여 알루미늄 층을 선택적으로 제거함으로써, 일반식 M (n+1)X nT x을 갖는 맥신 (MXenes)이라는 새로운 계열의 2차원 (2D) 결정질 전이 금속 카바이드 (crystalline transition metal carbides)가 개발되었다.
맥신은 금속과 같은 성질로 인하여 우수한 전기전도성과 강도를 가지며, 센서, 커패시터, 저장 물질 및 전자기 차폐와 같은 다양한 응용기술에 적용할 수 있어 매우 유용한 물질로 인정받고 있다.
일반적으로, 맥신(MXene)은 강산 수용액에서 산과의 반응을 통해 표면에 -OH, -F, -Cl 및 =O 등의 말단 작용기 (terminal groups)가 생성되고, 그 중에서도 특히 -OH 작용기로 인해 친수성 특성을 가진다.
화학적 에칭 공정으로 제조된 맥신 (MXene)은 표면에 존재하는 다량의 -OH 작용기로 인해 수분산이 용이하지만, 수용액 상에 분산된 맥신 (MXene)은 물 분자 및 용존 산소에 의해 쉽게 산화되어 금속산화물로 변하고 그 본래의 우수한 특성을 잃어버리는 등 장기 보관이 어렵다. 또한 표면 친수성의 특성으로 인해 소수성을 가지는 다른 재료 (고분자, 유기물질)들과의 결합력이 낮아 유기단분자 또는 유기고분자와 균일한 상태의 복합재료를 형성하는데 어려움을 가진다.
따라서, 장기간 보존할 수 있도록 맥신의 산화 안정성을 향상시키며, 유기물질과 결합이 용이하도록 개질시킨 2차원 맥신에 대한 연구가 시급한 실정이었다.
본 발명이 이루고자 하는 기술적 과제는 적어도 하나의 히드록시기를 포함하는 화합물 또는 이온성화합물로 2차원 맥신의 표면을 물리적으로 개질시킴으로써, 물 속에 존재하는 용존 산소에 의한 산화를 방지하며, 다양한 유기용매에서도 우수한 분산성을 나타내며, 전기 전도도, 용액가공성 및 코팅성이 우수한 표면 개질 2차원 맥신을 제공하는 것이다.
다만, 본 발명이 해결하고자 하는 과제는 상기 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 하기의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시상태는 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나로 2차원 맥신의 외부 표면이 개질된 것인 표면 개질 2차원 맥신을 제공한다.
본 발명의 일 실시상태는 상기 표면 개질 2차원 맥신 제조방법에 있어서, 산 에칭 공정으로 상기 2차원 맥신이 분산된 맥신 수용액을 수득하는 제1 단계; 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 물 또는 유기용매에 분산시킨 혼합물을 준비하는 제2 단계; 및 상기 제1 단계로 수득된 맥신 수용액과 상기 제2 단계의 혼합물을 혼합 및 교반하여 상기 2차원 맥신의 외부 표면을 개질시키는 제3 단계;를 포함하는, 표면 개질 2차원 맥신 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신은 표면개질에 이용되는 적어도 하나의 히드록시기를 포함하는 화합물 또는 이온성화합물에 따라 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신의 제조방법은 상기 2차원 맥신을 용이하게 표면 개질할 수 있다.
본 발명의 효과는 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본원 명세서 및 첨부된 도면으로부터 당업자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신 제조방법의 순서도이다.
도 2는 2차원 맥신을 제조하는 과정을 나타낸 개략도이다.
도 3은 본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신에서 카르복시산계 화합물로 개질된 모습을 나타낸 개략도이다.
도 4는 실시예 1 및 비교예 1을 용매에 따라 분산된 모습을 나타낸 사진이다.
도 5는 실시예 14를 이용하여 제조한 박막의 유연도를 확인하기 위하여 폴딩시험 결과를 촬영한 사진이다.
도 6은 실시예 1 및 비교예 1에 따라 제조된 박막의 물에 대한 접촉각을 나타낸 사진이다.
도 7은 실시예 6 및 비교예 1의 산화속도 결과를 나타낸 사진이다.
도 8은 실시예 5 및 비교예 1의 파장에 따른 흡광도를 나타낸 그래프이다.
도 9는 실시예 6 및 비교예 1의 XRD를 나타낸 그래프이다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있음을 의미한다.
본원 명세서 전체에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본원 명세서 전체에서, "A 및/또는 B"는 "A 및 B, 또는 A 또는 B"를 의미한다.
이하, 본 발명에 대하여 더욱 상세하게 설명한다.
본 발명의 일 실시상태는 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나로 2차원 맥신의 외부 표면이 개질된 것인 표면 개질 2차원 맥신을 제공한다.
본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신은 표면개질에 이용되는 적어도 하나의 히드록시기를 포함하는 화합물 또는 이온성화합물에 따라 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 2차원 맥신은 M n+1X n의 실험식을 갖는 복수의 결정 셀(crystal cells)이 2차원 어레이를 이룬 층(layer)을 적어도 하나 이상 포함하며, 각각의 X는 복수 개의 M으로 이루어지는 8면체 어레이 내에 위치하고,상기 M은 IIIB족 금속, IVB족 금속, VB족 금속 및 VIB 족 금속으로 이루어진 군으로부터 선택된 적어도 하나의 금속이며,상기 각각의 X는 C, N 및 이들의 조합으로부터 선택된 하나이고, 상기 n은 1, 2 또는 3인 것인일 수 있다. 상술한 것으로부터 2차원 맥신을 선택함으로써, 히드록시기를 포함하는 화합물 또는 이온성화합물과의 결합력을 향상시킬 수 있으며, 상기 결합으로 인하여 산화안전성을 향상시키고 전기전도도를 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 2차원 맥신은 M'2M"nXn+1의 실험식을 갖는 복수의 결정 셀(crystal cells)이 2차원 어레이를 이룬 층(layer)을 적어도 하나 이상 포함하며, 각각의 X는 복수 개의 M' 및 M"로 이루어지는 8면체 어레이 내에 위치하고, 상기 M' 및 M"은 IIIB족 금속, IVB족 금속, VB족 금속 및 VIB 족 금속으로 이루어진 군으로부터 선택된 서로 상이한 금속이며, 상기 각각의 X는 C, N 또는 이들의 조합이고, 상기 n은 1 또는 2인 것일 수 있다. 상술한 것으로부터 2차원 맥신을 선택함으로써, 히드록시기를 포함하는 화합물 또는 이온성화합물과의 결합력을 향상시킬 수 있으며, 상기 결합으로 인하여 산화안전성을 향상시키고 전기전도도를 증가시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 히드록시기를 포함하는 화합물은 디올계 화합물, 보론산계 화합물, 카르복실산계 화합물, 설폰산계 화합물, 설핀산계 화합물, 하기의 화학식 1인 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다.
[화학식 1]
Figure PCTKR2021000154-appb-img-000001
상술한 것으로부터 상기 히드록시기를 포함하는 화합물을 선택함으로써, 상기 화합물에 따른 유기용매에 따른 용해도를 변화시킬 수 있으며, 상기 2차원 맥신의 표면에 대한 결합력을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 디올계 화합물은 하기의 화학식 2인 것일 수 있다.
[화학식 2]
Figure PCTKR2021000154-appb-img-000002
상기 R 1, R 2, R 3 및 R 4 각각은 수소, 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 1 내지 10의 치환 또는 비치환된 아릴기, 탄소수 3 내지 7의 치환 또는 비치환된 헤테로시클로알켄기, 및 하기의 화학식 2a 및 화학식 2b로 표시되는 치환기이다.
[화학식 2a]
Figure PCTKR2021000154-appb-img-000003
[화학식 2b]
Figure PCTKR2021000154-appb-img-000004
상기 “*”은 연결지점을 의미하고, 상기 Y 1는 O 또는 S이며, 상기 Y 2 및 Y 3 각각은 -F, -Cl, -Br, -I, -OH, -SH, -NR 6R 7R 8이며, 상기 R 6, R 7 및 R 8 각각은 수소, 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 1 내지 10의 치환 또는 비치환된 아릴기, 탄소수 3 내지 7의 치환 또는 비치환된 헤테로시클로알켄기이다. 상술한 것으로부터 상기 디올계 화합물을 선택함으로써, 상기 표면 개질 2차원 맥신의 산화 안정성을 향상시킬 수 있으며, 다양한 유기용매에 분산성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 2는 하기의 화학식 2-1 내지 2-5 중 어느 하나인 것일 수 있다.
[화학식 2-1]
Figure PCTKR2021000154-appb-img-000005
[화학식 2-2]
Figure PCTKR2021000154-appb-img-000006
[화학식 2-3]
Figure PCTKR2021000154-appb-img-000007
[화학식 2-4]
Figure PCTKR2021000154-appb-img-000008
[화학식 2-5]
Figure PCTKR2021000154-appb-img-000009
상술한 것으로부터 화학식 2를 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 보론산계 화합물은 하기의 화학식 3인 것일 수 있다.
[화학식 3]
Figure PCTKR2021000154-appb-img-000010
R 9는 히드록시기, 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알케닐기, 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 안트라센닐기, 치환 또는 비치환된 피렌닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 퓨란닐기, 치환 또는 비치환된 피라조릴기 및 치환 또는 비치환된 피롤릴기이다. 상술한 것으로부터 상기 보론산계 화합물을 선택함으로써, 따라 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 3은 하기의 화합물 3-1 내지 3-42 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
[화학식 3-1]
Figure PCTKR2021000154-appb-img-000011
[화학식 3-2]
Figure PCTKR2021000154-appb-img-000012
[화학식 3-3]
Figure PCTKR2021000154-appb-img-000013
[화학식 3-4]
Figure PCTKR2021000154-appb-img-000014
[화학식 3-5]
Figure PCTKR2021000154-appb-img-000015
[화학식 3-6]
Figure PCTKR2021000154-appb-img-000016
[화학식 3-7]
Figure PCTKR2021000154-appb-img-000017
[화학식 3-8]
Figure PCTKR2021000154-appb-img-000018
[화학식 3-9]
Figure PCTKR2021000154-appb-img-000019
[화학식 3-10]
Figure PCTKR2021000154-appb-img-000020
[화학식 3-11]
Figure PCTKR2021000154-appb-img-000021
[화학식 3-12]
Figure PCTKR2021000154-appb-img-000022
[화학식 3-13]
Figure PCTKR2021000154-appb-img-000023
[화학식 3-14]
Figure PCTKR2021000154-appb-img-000024
[화학식 3-15]
Figure PCTKR2021000154-appb-img-000025
[화학식 3-16]
Figure PCTKR2021000154-appb-img-000026
[화학식 3-17]
Figure PCTKR2021000154-appb-img-000027
[화학식 3-18]
Figure PCTKR2021000154-appb-img-000028
[화학식 3-19]
Figure PCTKR2021000154-appb-img-000029
[화학식 3-20]
Figure PCTKR2021000154-appb-img-000030
[화학식 3-21]
Figure PCTKR2021000154-appb-img-000031
[화학식 3-22]
Figure PCTKR2021000154-appb-img-000032
[화학식 3-23]
Figure PCTKR2021000154-appb-img-000033
[화학식 3-24]
Figure PCTKR2021000154-appb-img-000034
[화학식 3-25]
Figure PCTKR2021000154-appb-img-000035
[화학식 3-26]
Figure PCTKR2021000154-appb-img-000036
[화학식 3-27]
Figure PCTKR2021000154-appb-img-000037
[화학식 3-28]
Figure PCTKR2021000154-appb-img-000038
[화학식 3-29]
Figure PCTKR2021000154-appb-img-000039
[화학식 3-30]
Figure PCTKR2021000154-appb-img-000040
[화학식 3-31]
Figure PCTKR2021000154-appb-img-000041
[화학식 3-32]
Figure PCTKR2021000154-appb-img-000042
[화학식 3-33]
Figure PCTKR2021000154-appb-img-000043
[화학식 3-34]
Figure PCTKR2021000154-appb-img-000044
[화학식 3-35]
Figure PCTKR2021000154-appb-img-000045
[화학식 3-36]
Figure PCTKR2021000154-appb-img-000046
[화학식 3-37]
Figure PCTKR2021000154-appb-img-000047
[화학식 3-38]
Figure PCTKR2021000154-appb-img-000048
[화학식 3-39]
Figure PCTKR2021000154-appb-img-000049
[화학식 3-40]
Figure PCTKR2021000154-appb-img-000050
[화학식 3-41]
Figure PCTKR2021000154-appb-img-000051
[화학식 3-42]
Figure PCTKR2021000154-appb-img-000052
상술한 것으로부터 상기 화학식 3을 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 카르복실산계 화합물은 하기의 화학식 4, 하기 화학식 4-1 내지 4-3 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다.
[화학식 4]
Figure PCTKR2021000154-appb-img-000053
[화학식 4-1]
Figure PCTKR2021000154-appb-img-000054
[화학식 4-2]
Figure PCTKR2021000154-appb-img-000055
[화학식 4-3]
Figure PCTKR2021000154-appb-img-000056
R 10은 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알케닐기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 디엔닐기, 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 안트라센닐기, 치환 또는 비치환된 피렌닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 퓨란닐기, 치환 또는 비치환된 피라조릴기 및 치환 또는 비치환된 피롤릴기이다. 상술한 것으로부터 상기 카르복실산계 화합물을 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 4는 하기의 화합물 4-4 내지 4-13 및 이들의 조합으로 이루어진 군으로부터 선택된 것일 수 있다.
[화학식 4-4]
Figure PCTKR2021000154-appb-img-000057
[화학식 4-5]
Figure PCTKR2021000154-appb-img-000058
[화학식 4-6]
Figure PCTKR2021000154-appb-img-000059
[화학식 4-7]
Figure PCTKR2021000154-appb-img-000060
[화학식 4-8]
Figure PCTKR2021000154-appb-img-000061
[화학식 4-9]
Figure PCTKR2021000154-appb-img-000062
[화학식 4-10]
Figure PCTKR2021000154-appb-img-000063
[화학식 4-11]
Figure PCTKR2021000154-appb-img-000064
[화학식 4-12]
Figure PCTKR2021000154-appb-img-000065
[화학식 4-13]
Figure PCTKR2021000154-appb-img-000066
상술한 것으로부터 상기 화학식 4를 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 설폰산계 화합물은 하기의 화학식 5인 것일 수 있다.
[화학식 5]
Figure PCTKR2021000154-appb-img-000067
상기 R 11은 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알케닐기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 디엔닐기, 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 안트라센닐기, 치환 또는 비치환된 피렌닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 퓨란닐기, 치환 또는 비치환된 피라조릴기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 벤조티오펜닐기, 치환 또는 비치환된 벤조이미다졸기 및 치환 또는 비치환된 디히드로벤조퓨란기이다. 상술한 것으로부터 설폰산계 화합물을 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 5는 하기 화학식 5-1 내지 5-13 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다.
[화학식 5-1]
Figure PCTKR2021000154-appb-img-000068
[화학식 5-2]
Figure PCTKR2021000154-appb-img-000069
[화학식 5-3]
Figure PCTKR2021000154-appb-img-000070
[화학식 5-4]
Figure PCTKR2021000154-appb-img-000071
[화학식 5-5]
Figure PCTKR2021000154-appb-img-000072
[화학식 5-6]
Figure PCTKR2021000154-appb-img-000073
[화학식 5-7]
Figure PCTKR2021000154-appb-img-000074
[화학식 5-8]
Figure PCTKR2021000154-appb-img-000075
[화학식 5-9]
Figure PCTKR2021000154-appb-img-000076
[화학식 5-10]
Figure PCTKR2021000154-appb-img-000077
[화학식 5-11]
Figure PCTKR2021000154-appb-img-000078
[화학식 5-12]
Figure PCTKR2021000154-appb-img-000079
[화학식 5-13]
Figure PCTKR2021000154-appb-img-000080
상술한 것으로부터 상기 화학식 5를 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 설핀산계 화합물은 하기의 화학식 6인 것일 수 있다.
[화학식 6]
Figure PCTKR2021000154-appb-img-000081
상술한 것과 같이 상기 설핀산계 화합물을 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 이온성화합물은 이미다졸리움계 화합물, 피리디늄계 화합물, 암모늄계 화합물, 포스피늄계 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 양이온; 및 F -, Cl -, Br -, I, BF 4 -, PF 6 -, (CF 3SO 2) 2N -, CF 3SO 3 -, C 2N 3 -, CH 3SO 3 -, CF 3BF 3 -, C 2F 5BF 3 -, NO 3 -, CF 3CO 2 -, C 3H 5O 3 -, C 7H 5O 2 -, 및 이들의 조합으로 선택된 하나인 음이온을 포함하는 것일 수 있다. 상술한 것으로부터 상기 이온성화합물을 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 양이온은 하기의 화학식 7 내지 9 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다.
[화학식 7]
Figure PCTKR2021000154-appb-img-000082
상기 R 12, R 13 및 R 14 각각은 수소, 치환 또는 비치환된 탄소수 1 내지 15인 직쇄 또는 분지쇄의 알킬기, 및 치환 또는 비치환된 탄소수 2 내지 10인 직쇄 또는 분지쇄의 알케닐기이다.
[화학식 8]
Figure PCTKR2021000154-appb-img-000083
상기 R 15 및 R 16 각각은 수소 및 치환 또는 비치환된 탄소수 1 내지 15인 직쇄 또는 분지쇄의 알킬기이다.
[화학식 9]
Figure PCTKR2021000154-appb-img-000084
상기 Q는 N 또는 P이며, 상기 R 17, R 18, R 19 및 R 20 각각은 치환 또는 비치환된 탄소수 1 내지 15인 직쇄 또는 분지쇄의 알킬기이다. 상술한 것과 같이 상기 양이온을 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 화학식 7은 하기 화학식 7-1 내지 7-13 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것이며, 상기 화학식 8은 하기 화학식 8-1 내지 8-13 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것이고, 상기 화학식 9는 하기 화학식 9-1 내지 9-13 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것일 수 있다.
[화학식 7-1]
Figure PCTKR2021000154-appb-img-000085
[화학식 7-2]
Figure PCTKR2021000154-appb-img-000086
[화학식 7-3]
Figure PCTKR2021000154-appb-img-000087
[화학식 7-4]
Figure PCTKR2021000154-appb-img-000088
[화학식 7-5]
Figure PCTKR2021000154-appb-img-000089
[화학식 7-6]
Figure PCTKR2021000154-appb-img-000090
[화학식 7-7]
Figure PCTKR2021000154-appb-img-000091
[화학식 7-8]
Figure PCTKR2021000154-appb-img-000092
[화학식 7-9]
Figure PCTKR2021000154-appb-img-000093
[화학식 7-10]
Figure PCTKR2021000154-appb-img-000094
[화학식 8-1]
Figure PCTKR2021000154-appb-img-000095
[화학식 8-2]
Figure PCTKR2021000154-appb-img-000096
[화학식 9-1]
Figure PCTKR2021000154-appb-img-000097
[화학식 9-2]
Figure PCTKR2021000154-appb-img-000098
[화학식 9-3]
Figure PCTKR2021000154-appb-img-000099
[화학식 9-4]
Figure PCTKR2021000154-appb-img-000100
[화학식 9-5]
Figure PCTKR2021000154-appb-img-000101
[화학식 9-6]
Figure PCTKR2021000154-appb-img-000102
상술한 것으로부터 화학식 7, 화학식 8 및 화학식 9를 선택함으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있다.
도 1은 본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신 제조방법의 순서도이다. 도 1을 참고하면, 본 발명의 일 실시상태는 상기 표면 개질 2차원 맥신 제조방법에 있어서, 산 에칭 공정으로 상기 2차원 맥신이 분산된 맥신 수용액을 수득하는 제1 단계(S10); 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 물 또는 유기용매에 분산시킨 혼합물을 준비하는 제2 단계(S30); 및 상기 제1 단계로 수득된 맥신 수용액과 상기 제2 단계의 혼합물을 혼합 및 교반하여 상기 2차원 맥신의 외부 표면을 개질시키는 제3 단계(S50);를 포함하는 표면 개질 2차원 맥신 제조방법을 제공한다.
본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신의 제조방법은 상기 2차원 맥신을 용이하게 표면 개질할 수 있다.
본 명세서에서 상기 표면 개질 2차원 맥신에서 상술한 내용과 중복되는 내용은 생략하도록 한다.
본 발명의 일 실시상태에 따르면, 산 에칭 공정으로 상기 2차원 맥신이 분산된 맥신 수용액을 수득하는 제1 단계(S10)를 포함한다. 도 2는 2차원 맥신을 제조하는 과정을 나타낸 개략도이다. 도 2를 참고하면, MAX 상인 3차원의 티타늄-알루미늄 카바이드에서 LiF-HCl을 사용하여 알루미늄 층을 선택적으로 제거함으로써, 일반식 M (n+1)X nT x을 갖는 2차원 결정질 전이 금속 카바이드 (crystalline transition metal carbides)인 맥신 (MXenes)을 제조한다. 상술한 방법으로 제조된 2차원 맥신은 표면에 히드록시기, 플루오르기, 카보닐기 및/또는 에폭시기를 포함한다. 상술한 것과 같이 상기 2차원 맥신이 분산된 맥신 수용액을 산 에칭 공정으로 수득함으로써, 표면에 히드록시기를 포함하는 화합물 또는 이온성화합물과 물리적으로 결합할 수 있는 작용기를 충분히 포함시킬 수 있다,
본 발명의 일 실시상태에 따르면, 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 물 또는 유기용매에 분산시킨 혼합물을 준비하는 제2 단계(S30)를 포함한다. 상술한 것과 같이 물 또는 유기용매에 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 분산시킴으로써, 맥신 수용액과 상용성 및 작업성을 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 제1 단계로 수득된 맥신 수용액과 상기 제2 단계의 혼합물을 혼합 및 교반하여 상기 2차원 맥신의 외부 표면을 개질시키는 제3 단계(S50);를 포함한다. 도 3은 본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신에서 카르복시산계 화합물로 개질된 모습을 나타낸 개략도이다. 도 3을 참고하면, 상기 맥신 수용액과 상기 혼합물을 혼합 및 교반함으로써, 상기 도 3과 같이 카르복시산계 화합물이 2차원 맥신 표면에 수소결합으로 물리적 결합을 하는 것을 확인할 수 있다. 상술한 것과 같이 상기 2차원 맥신의 외부 표면을 개질시킴으로써, 물 또는 유기용매에 다양하게 안정적으로 분산될 수 있으며, 산화 안정성 및 장기 안정성이 향상될 수 있고 전기전도도를 향상시킬 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
제조예 - 맥신 수용액의 제조
1g의 Ti 3AlC 2 분말(평균입경 ≤40 μm)을 1.6g의 LiF(Alfa Aesar사, 98.5%)가 녹아 있는 9 M HCl(DAEJUNG, 35-37%)용액 20ml에 넣고 실온에서 24시간동안 교반하여 얻어진 산성의 용액을 원심분리기를 이용하여 수차례 탈이온수로 세척하였다. 박리된 맥신(MXene; Ti 3C 2T x) 수용액을 1 mg/mL로 희석하여 35 mL를 준비하였다.
비교예 1
상기 제조예에서 제조된 맥신 수용액 자체를 맥신 잉크로 사용하였다.
실시예 1
화학식 2-1 35 mg을 3차 정제 증류수 10 mL에 용해시켜 수용액을 준비하였다. 상기 제조예의 맥신 수용액과 화학식 2-1을 용해시킨 수용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 화학식 2-1로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 2
상기 실시예 1에서 화학식 2-1 대신 화학식 3-1을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 1의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 3
상기 실시예 1에서 화학식 2-1 대신 화학식 4-3을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 1의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 4
상기 실시예 1에서 화학식 2-1 대신 화학식 4-1을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 1의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 5
상기 실시예 1에서 화학식 2-1 대신 화학식 3-6을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 1의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 6
상기 실시예 1에서 화학식 2-1 대신 화학식 4-8을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 1의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 7
상기 실시예 1에서 화학식 2-1 대신 화학식 5-5를 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 1의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 8
화학식 3-9 35 mg을 에탄올 10 mL에 용해시켜 유기용액을 준비하였다. 상기 제조예의 맥신 수용액과 화학식 3-9를 용해시킨 유기용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 화학식 3-9로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 9
화학식 3-10 35 mg을 아세톤 10 mL에 용해시켜 유기용액을 준비하였다. 상기 제조예의 맥신 수용액과 화학식 3-10을 용해시킨 유기용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 화학식 3-10으로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 10
상기 실시예 9에서 화학식 3-10 대신 화학식 3-22를 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 9의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 11
화학식 4-11 35 mg을 클로로포름 10 mL에 용해시켜 유기용액을 준비하였다. 상기 제조예의 맥신 수용액과 화학식 4-11을 용해시킨 유기용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 화학식 4-11으로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 12
화학식 3-24 35 mg을 톨루엔 10 mL에 용해시켜 유기용액을 준비하였다. 상기 제조예의 맥신 수용액과 화학식 3-24를 용해시킨 유기용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 화학식 3-24로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 13
화학식 3-25 35 mg을 에탄올 10 mL에 용해시켜 유기용액을 준비하였다. 상기 제조예의 맥신 수용액과 화학식 3-25를 용해시킨 유기용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 화학식 3-25로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 14
상기 실시예 9에서 화학식 3-10 대신 화학식 4-3을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 9의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 15
상기 실시예 13에서 화학식 3-25 대신 화학식 2-5를 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 9의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 16
상기 실시예 9에서 화학식 3-10 대신 화학식 7-9인 양이온과 음이온으로 [(CF 3SO 2) 2N -]를 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 9의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 17
화학식 7-6인 양이온과 [(CF 3SO 2) 2N -]인 음이온을 포함하는 이온성화합물 35 mg을 아세토나이트릴 10 mL에 용해시켜 유기용액을 준비하였다. 상기 제조예의 맥신 수용액과 상기 이온성화합물을 용해시킨 유기용액을 혼합하고 상온에서 24시간 동안 교반하여 반응을 수행하였다. 24시간 후 교반을 멈추고 원심분리기(1736R 모델, GYROZEN 社)를 통해 상기 이온성화합물로 표면 개질된 맥신을 분리하고 치환하고자 하는 용매(증류수, 에탄올, 메탄올, 아세톤, 아세토나이트릴, 클로로포름, 다이클로로메탄, 다이메틸포름아마이드)로 3 내지 5 차례 씻어내어 맥신 잉크를 제조하였다.
실시예 18
상기 실시예 17에서 사용한 이온성화합물을 대신 화학식 7-10인 양이온 및 [(CF 3SO 2) 2N -]인 음이온을 포함하는 이온성화합물을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 17의 방법과 동일하게 맥신 잉크를 제조하였다.
실시예 19
상기 실시예 17에서 사용한 이온성화합물을 대신 화학식 9-2인 양이온 및 [(CF 3SO 2) 2N -]인 음이온을 포함하는 이온성화합물을 사용하여 맥신 잉크를 제조한 것을 제외하고 실시예 17의 방법과 동일하게 맥신 잉크를 제조하였다.
실험예 1 (맥신 잉크의 분산성 확인)
상기 실시예 1 내지 19로부터 제조된 맥신 잉크의 증류수, 에탄올, 메탄올, 아세톤, 아세토니트릴, 클로로포름, 디클로로메탄 및 DMF(디메틸폼아마이드)에 대한 분산도를 UV-vis (V770 모델, Jasco 社)을 사용해 측정하였으며, 그 결과를 하기 표 1에 정리하였다.
또한, 도 4는 실시예 1 및 비교예 1을 용매에 따라 분산된 모습을 나타낸 사진이다. 도 4를 참고하면, 상기 실시예 1의 맥신 잉크와 상기 비교예 1의 맥신 수용액을 증류수, 에탄올, 메탄올, 아세톤, 아세토니트릴, 클로로포름, 디클로로메탄 및 DMF(디메틸폼아마이드)에 분산시켰다.
상기 비교예 1은 증류수, 에탄올, 메탄올, 및 DMF(디메틸폼아마이드)에만 분산성이 우수하지만, 상기 실시예 1은 증류수, 에탄올, 메탄올, 아세톤, 아세토니트릴 및 DMF(디메틸폼아마이드)에 대한 분상성이 우수하여 더욱 다양한 유기용매에 안정적으로 균일하게 분산된 것을 확인할 수 있다.
실험예 2 (맥신 잉크를 이용한 박막 제조)
상기 실시예 1 내지 19에 따라 표면 개질된 맥신 잉크를 양극성 알루미늄 산화 피막(Anodic aluminium oxide film)(pore 크기 : 200μm)을 이용하여 여과법으로 박막을 제조하였다.
도 5는 실시예 14를 이용하여 제조한 박막의 유연도를 확인하기 위하여 폴딩시험 결과를 촬영한 사진이다. 상기 상기 실시예 1 내지 19의 맥신 잉크로 제조된 박막은 도 5와 같이, 두께 7μm를 가지며 유연성이 우수함을 확인하였다.
실험예 3 (맥신 잉크를 이용하여 제조된 박막의 전기전도도 측정)
상기 실시예 1 내지 19로부터 제조된 수계 및 유기 맥신 잉크를 이용하여 제조한 박막의 전기전도도를 면저항 측정기(CMT-SR2000N 모델, AiT 社)를 사용하여 측정된 값으로부터 계산식(전기전도도=1/면저항₁두께)을 이용하여 계산하였으며, 그 결과를 하기 표 1에 정리하였다.
구분 구분 전기 전도도
(S/cm)
분산도 (상, 중, 하)
비교예 맥신 수용액 Avg. 3,010
실시예 1 화학식 2-1 5,369
실시예 2 화학식 3-1 5,213
실시예 3 화학식 4-3 5,266
실시예 4 화학식 4-1 4,849
실시예 5 화학식 3-6 5,981
실시예 6 화학식 4-8 9,558
실시예 7 화학식 5-5 6,579
실시예 8 화학식 3-9 3,571
실시예 9 화학식 3-10 3,093
실시예 10 화학식 3-22 3,817
실시예 11 화학식 4-11 3,726
실시예 12 화학식 3-24 3,108
실시예 13 화학식 3-25 3,053
실시예 14 화학식 4-3 3,047
실시예 15 화학식 2-5 3,135
실시예 16 화학식 7-9 및 [(CF 3SO 2) 2N -] 3,823
실시예 17 화학식 7-6 및 [(CF 3SO 2) 2N -] 4,563
실시예 18 화학식 7-10 및 [(CF 3SO 2) 2N -] 4,333
실시예 19 화학식 9-2 및 [(CF 3SO 2) 2N -] 3,371
상기 표 1에서 ①은 증류수, ②는 에탄올, ③은 메탄올, ④는 아세톤, ⑤는 아세토니트릴, ⑥은 클로로포름, ⑦은 디클로로메탄, ⑧은 디메틸포름아마이드를 의미한다.상기 표 1의 결과로부터, 본 발명의 일 실시상태에 따른 표면 개질된 2차원 맥신의 전기전도도는 모두 최소 3,053 S/cm 이상에 해당하며, 표면 개질 전의 2차원 맥신인 비교예 1의 고유의 전기전도도와 대비하여 동등이상의 값으로 물성이 크게 개선된 것을 확인할 수 있다.
실험예 4 (표면 개질 전후 물에 대한 접촉각 비교)
상기 비교예 1을 이용하여 제조한 맥신 필름(Ti 3C 2T x)과 상기 실시예 1을 이용하여 제조한 맥신 필름 위에 증류수를 떨어트려 접촉각을 비교한 결과를 도 6에 나타내었다.
도 6은 실시예 1 및 비교예 1에 따라 제조된 박막의 물에 대한 접촉각을 나타낸 사진이다. 도 6에 도시된 바와 같이, 친수성인 비교예 1로 제조된 맥신보다 실시예 1인 맥신이 더 소수성을 나타내는 것을 확인할 수 있다. 즉, 화학식 2-1과 같은 소수기를 가진 화합물로 표면개질된 맥신이 조금 더 소수성을 나타냄을 알 수 있다. 이로 인하여 맥신표면이 표면개질이 성공적으로 이루어졌다는 것을 확인할 수 있었다.
실험예 5 (표면 개질 전후 산화속도 비교)
상기 비교예 1에 따른 맥신 수용액(Ti 3C 2T x)과 실시예 6에 따른 화학식 4-8인 화합물로 표면 개질된 후 에탄올에 분산된 맥신 유기 잉크를 두 달간 방치하였을 때의 산화상태를 비교한 결과를 도 7에 나타내었다.
도 7은 실시예 6 및 비교예 1의 산화속도 결과를 나타낸 사진이다. 상기 도 7을 참고하면, 비교예 1의 경우 두 달 뒤 산화속도가 급격히 증가하여 대부분 산화되어 투명한 용액상태로 변화됨을 확인할 수 있는 반면, 실시예 6의 맥신 잉크의 경우 시간이 경과됨에도 산화가 잘 일어나지 않음을 확인할 수 있었다.
상기 실시예 1 내지 5 및 실시예 7 내지 19 모두 공통적으로 시간이 경과됨에도 산화가 잘 일어나지 않음을 확인하였다.
이로부터 본 발명의 일 실시상태에 따른 표면 개질 2차원 맥신 잉크는 표면 개질이 되지 않은 맥신에 비해 산화안정성이 매우 우수하며, 장기간 보관 안정성이 향상된 것을 확인하였다.
실험예 6 (표면 개질 전후 대하여 UV-vis 흡광도 비교)
실시예 5에 따른 표면 개질 2차원 맥신과 비교예 1의 맥신에 대하여 UV-vis을 이용하여 흡광도를 분석하였다.
도 8은 실시예 5 및 비교예 1의 파장에 따른 흡광도를 나타낸 그래프이다. 상기 도 8을 참고하면, 실시예 5는 비교예 1에 비하여 300 nm 이하의 흡수 피크(TiO 2의 흡수 피크)가 커지지 않았고, 760 nm 근처의 맥신 표면 플라스몬 공명 피크가 유지되는 것으로부터 표면 개질 2차원 맥신은 산화가 추가적으로 잘 일어나지 않음을 확인하였다.
실험예 7 (표면 개질 전후 대하여 XRD 비교)
도 9는 실시예 6 및 비교예 1의 XRD를 나타낸 그래프이다. 상기 도 9를 참고하면, 표면 개질 후에도 맥신의 2D stacking 구조가 잘 유지되며, 표면개질 후 표면에 결합된 화합물에 기인하여 (002) 피크가 왼쪽으로 이동한 것으로부터 d-spacing이 약간 커진 것을 확인할 수 있다.
본 발명의 일 실시상태인 표면 개질 2차원 맥신 및 이의 제조방법에 따르면 2차원 맥신 표면을 히드록시기를 포함한 화합물로 개질함으로써, 산화를 방지하고 다양한 유기용매에서의 분산성을 향상시키는 동시에 전기전도도를 유지할 수 있다.
이상에서 본 발명은 비록 한정된 실시예에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (17)

  1. 적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나로 2차원 맥신의 외부 표면이 개질된 것인,
    표면 개질 2차원 맥신.
  2. 청구항 1에 있어서,
    상기 2차원 맥신은 M n+1X n의 실험식을 갖는 복수의 결정 셀(crystal cells)이 2차원 어레이를 이룬 층(layer)을 적어도 하나 이상 포함하며,
    각각의 X는 복수 개의 M으로 이루어지는 8면체 어레이 내에 위치하고,
    상기 M은 IIIB족 금속, IVB족 금속, VB족 금속 및 VIB 족 금속으로 이루어진 군으로부터 선택된 적어도 하나의 금속이며,
    상기 각각의 X는 C, N 및 이들의 조합으로부터 선택된 하나이고,
    상기 n은 1, 2 또는 3인 것인,
    표면 개질된 2차원 맥신.
  3. 청구항 1에 있어서,
    상기 2차원 맥신은 M' 2M" nX n+1의 실험식을 갖는 복수의 결정 셀(crystal cells)이 2차원 어레이를 이룬 층(layer)을 적어도 하나 이상 포함하며,
    각각의 X는 복수 개의 M' 및 M"로 이루어지는 8면체 어레이 내에 위치하고,
    상기 M' 및 M"은 IIIB족 금속, IVB족 금속, VB족 금속 및 VIB 족 금속으로 이루어진 군으로부터 선택된 서로 상이한 금속이며,
    상기 각각의 X는 C, N 또는 이들의 조합이고,
    상기 n은 1 또는 2인,
    표면 개질된 2차원 맥신.
  4. 청구항 1에 있어서,
    상기 히드록시기를 포함하는 화합물은 디올계 화합물, 보론산계 화합물, 카르복실산계 화합물, 설폰산계 화합물, 설핀산계 화합물, 하기의 화학식 1인 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것인,
    표면 개질 2차원 맥신:
    [화학식 1]
    Figure PCTKR2021000154-appb-img-000103
  5. 청구항 4에 있어서,
    상기 디올계 화합물은 하기의 화학식 2인 것인,
    표면 개질 2차원 맥신:
    [화학식 2]
    Figure PCTKR2021000154-appb-img-000104
    상기 R 1, R 2, R 3 및 R 4 각각은 수소, 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 1 내지 10의 치환 또는 비치환된 아릴기, 탄소수 3 내지 7의 치환 또는 비치환된 헤테로시클로알켄기, 및 하기의 화학식 2a 및 화학식 2b로 표시되는 치환기이고,
    [화학식 2a]
    Figure PCTKR2021000154-appb-img-000105
    [화학식 2b]
    Figure PCTKR2021000154-appb-img-000106
    상기 “*”은 연결지점을 의미하고,
    상기 Y 1는 O 또는 S이며,
    상기 Y 2 및 Y 3 각각은 -F, -Cl, -Br, -I, -OH, -SH, -NR 6R 7R 8이며,
    상기 R 6, R 7 및 R 8 각각은 수소, 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 1 내지 10의 치환 또는 비치환된 아릴기, 탄소수 3 내지 7의 치환 또는 비치환된 헤테로시클로알켄기이다.
  6. 청구항 5에 있어서,
    상기 화학식 2는 하기의 화학식 2-1 내지 2-5 중 어느 하나인 것인,
    표면 개질 2차원 맥신:
    [화학식 2-1]
    Figure PCTKR2021000154-appb-img-000107
    [화학식 2-2]
    Figure PCTKR2021000154-appb-img-000108
    [화학식 2-3]
    Figure PCTKR2021000154-appb-img-000109
    [화학식 2-4]
    Figure PCTKR2021000154-appb-img-000110
    [화학식 2-5]
    Figure PCTKR2021000154-appb-img-000111
  7. 청구항 4에 있어서,
    상기 보론산계 화합물은 하기의 화학식 3인 것인
    표면 개질 2차원 맥신:
    [화학식 3]
    Figure PCTKR2021000154-appb-img-000112
    R 9는 히드록시기, 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알케닐기, 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 안트라센닐기, 치환 또는 비치환된 피렌닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 퓨란닐기, 치환 또는 비치환된 피라조릴기 및 치환 또는 비치환된 피롤릴기이다.
  8. 청구항 7에 있어서,
    상기 화학식 3은 하기의 화합물 3-1 내지 3-42 및 이들의 조합으로 이루어진 군으로부터 선택된 것인,
    표면 개질 2차원 맥신;
    [화학식 3-1]
    Figure PCTKR2021000154-appb-img-000113
    [화학식 3-2]
    Figure PCTKR2021000154-appb-img-000114
    [화학식 3-3]
    Figure PCTKR2021000154-appb-img-000115
    [화학식 3-4]
    Figure PCTKR2021000154-appb-img-000116
    [화학식 3-5]
    Figure PCTKR2021000154-appb-img-000117
    [화학식 3-6]
    Figure PCTKR2021000154-appb-img-000118
    [화학식 3-7]
    Figure PCTKR2021000154-appb-img-000119
    [화학식 3-8]
    Figure PCTKR2021000154-appb-img-000120
    [화학식 3-9]
    Figure PCTKR2021000154-appb-img-000121
    [화학식 3-10]
    Figure PCTKR2021000154-appb-img-000122
    [화학식 3-11]
    Figure PCTKR2021000154-appb-img-000123
    [화학식 3-12]
    Figure PCTKR2021000154-appb-img-000124
    [화학식 3-13]
    Figure PCTKR2021000154-appb-img-000125
    [화학식 3-14]
    Figure PCTKR2021000154-appb-img-000126
    [화학식 3-15]
    Figure PCTKR2021000154-appb-img-000127
    [화학식 3-16]
    Figure PCTKR2021000154-appb-img-000128
    [화학식 3-17]
    Figure PCTKR2021000154-appb-img-000129
    [화학식 3-18]
    Figure PCTKR2021000154-appb-img-000130
    [화학식 3-19]
    Figure PCTKR2021000154-appb-img-000131
    [화학식 3-20]
    Figure PCTKR2021000154-appb-img-000132
    [화학식 3-21]
    Figure PCTKR2021000154-appb-img-000133
    [화학식 3-22]
    Figure PCTKR2021000154-appb-img-000134
    [화학식 3-23]
    Figure PCTKR2021000154-appb-img-000135
    [화학식 3-24]
    Figure PCTKR2021000154-appb-img-000136
    [화학식 3-25]
    Figure PCTKR2021000154-appb-img-000137
    [화학식 3-26]
    Figure PCTKR2021000154-appb-img-000138
    [화학식 3-27]
    Figure PCTKR2021000154-appb-img-000139
    [화학식 3-28]
    Figure PCTKR2021000154-appb-img-000140
    [화학식 3-29]
    Figure PCTKR2021000154-appb-img-000141
    [화학식 3-30]
    Figure PCTKR2021000154-appb-img-000142
    [화학식 3-31]
    Figure PCTKR2021000154-appb-img-000143
    [화학식 3-32]
    Figure PCTKR2021000154-appb-img-000144
    [화학식 3-33]
    Figure PCTKR2021000154-appb-img-000145
    [화학식 3-34]
    Figure PCTKR2021000154-appb-img-000146
    [화학식 3-35]
    Figure PCTKR2021000154-appb-img-000147
    [화학식 3-36]
    Figure PCTKR2021000154-appb-img-000148
    [화학식 3-37]
    Figure PCTKR2021000154-appb-img-000149
    [화학식 3-38]
    Figure PCTKR2021000154-appb-img-000150
    [화학식 3-39]
    Figure PCTKR2021000154-appb-img-000151
    [화학식 3-40]
    Figure PCTKR2021000154-appb-img-000152
    [화학식 3-41]
    Figure PCTKR2021000154-appb-img-000153
    [화학식 3-42]
    Figure PCTKR2021000154-appb-img-000154
  9. 청구항 4에 있어서,
    상기 카르복실산계 화합물은 하기의 화학식 4, 하기 화학식 4-1 내지 4-3 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것인,
    표면 개질 2차원 맥신;
    [화학식 4]
    Figure PCTKR2021000154-appb-img-000155
    [화학식 4-1]
    Figure PCTKR2021000154-appb-img-000156
    [화학식 4-2]
    Figure PCTKR2021000154-appb-img-000157
    [화학식 4-3]
    Figure PCTKR2021000154-appb-img-000158
    R 10은 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알케닐기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 디엔닐기, 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 안트라센닐기, 치환 또는 비치환된 피렌닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 퓨란닐기, 치환 또는 비치환된 피라조릴기 및 치환 또는 비치환된 피롤릴기이다.
  10. 청구항 9에 있어서,
    상기 화학식 4는 하기의 화합물 4-4 내지 4-13 및 이들의 조합으로 이루어진 군으로부터 선택된 것인 표면 개질 2차원 맥신:
    [화학식 4-4]
    Figure PCTKR2021000154-appb-img-000159
    [화학식 4-5]
    Figure PCTKR2021000154-appb-img-000160
    [화학식 4-6]
    Figure PCTKR2021000154-appb-img-000161
    [화학식 4-7]
    Figure PCTKR2021000154-appb-img-000162
    [화학식 4-8]
    Figure PCTKR2021000154-appb-img-000163
    [화학식 4-9]
    Figure PCTKR2021000154-appb-img-000164
    [화학식 4-10]
    Figure PCTKR2021000154-appb-img-000165
    [화학식 4-11]
    Figure PCTKR2021000154-appb-img-000166
    [화학식 4-12]
    Figure PCTKR2021000154-appb-img-000167
    [화학식 4-13]
    Figure PCTKR2021000154-appb-img-000168
  11. 청구항 4에 있어서,
    상기 설폰산계 화합물은 하기의 화학식 5인 것인 표면 개질 2차원 맥신;
    [화학식 5]
    Figure PCTKR2021000154-appb-img-000169
    상기 R 11은 탄소수 1 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알킬기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 알케닐기, 탄소수 2 내지 10의 치환 또는 비치환된 직쇄 또는 분지쇄인 디엔닐기, 탄소수 3 내지 15의 치환 또는 비치환된 시클로알킬기, 치환 또는 비치환된 탄소수 6 내지 20의 아릴기, 치환 또는 비치환된 안트라센닐기, 치환 또는 비치환된 피렌닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 퓨란닐기, 치환 또는 비치환된 피라조릴기, 치환 또는 비치환된 피롤릴기, 치환 또는 비치환된 벤조티오펜닐기, 치환 또는 비치환된 벤조이미다졸기 및 치환 또는 비치환된 디히드로벤조퓨란기이다.
  12. 청구항 11에 있어서,
    상기 화학식 5는 하기 화학식 5-1 내지 5-13 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것인,
    표면 개질 2차원 맥신:
    [화학식 5-1]
    Figure PCTKR2021000154-appb-img-000170
    [화학식 5-2]
    Figure PCTKR2021000154-appb-img-000171
    [화학식 5-3]
    Figure PCTKR2021000154-appb-img-000172
    [화학식 5-4]
    Figure PCTKR2021000154-appb-img-000173
    [화학식 5-5]
    Figure PCTKR2021000154-appb-img-000174
    [화학식 5-6]
    Figure PCTKR2021000154-appb-img-000175
    [화학식 5-7]
    Figure PCTKR2021000154-appb-img-000176
    [화학식 5-8]
    Figure PCTKR2021000154-appb-img-000177
    [화학식 5-9]
    Figure PCTKR2021000154-appb-img-000178
    [화학식 5-10]
    Figure PCTKR2021000154-appb-img-000179
    [화학식 5-11]
    Figure PCTKR2021000154-appb-img-000180
    [화학식 5-12]
    Figure PCTKR2021000154-appb-img-000181
    [화학식 5-13]
    Figure PCTKR2021000154-appb-img-000182
  13. 청구항 4에 있어서,
    상기 설핀산계 화합물은 하기의 화학식 6인 것인,
    표면 개질 2차원 맥신:
    [화학식 6]
    Figure PCTKR2021000154-appb-img-000183
  14. 청구항 1에 있어서,
    상기 이온성화합물은 이미다졸리움계 화합물, 피리디늄계 화합물, 암모늄계 화합물, 포스피늄계 화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 양이온; 및
    F -, Cl -, Br -, I -, BF 4 -, PF 6 -, (CF 3SO 2) 2N -, CF 3SO 3 -, C 2N 3 -, CH 3SO 3 -, CF 3BF 3 -, C 2F 5BF 3 -, NO 3 -, CF 3CO 2 -, C 3H 5O 3 -, C 7H 5O 2 -, 및 이들의 조합으로 선택된 하나인 음이온을 포함하는 것인,
    표면 개질 2차원 맥신:
  15. 청구항 14에 있어서,
    상기 양이온은 하기의 화학식 7 내지 9 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것인,
    표면 개질 2차원 맥신;
    [화학식 7]
    Figure PCTKR2021000154-appb-img-000184
    상기 R 12, R 13 및 R 14 각각은 수소, 치환 또는 비치환된 탄소수 1 내지 15인 직쇄 또는 분지쇄의 알킬기, 및 치환 또는 비치환된 탄소수 2 내지 10인 직쇄 또는 분지쇄의 알케닐기이며,
    [화학식 8]
    Figure PCTKR2021000154-appb-img-000185
    상기 R 15 및 R 16 각각은 수소 및 치환 또는 비치환된 탄소수 1 내지 15인 직쇄 또는 분지쇄의 알킬기이고,
    [화학식 9]
    Figure PCTKR2021000154-appb-img-000186
    상기 Q는 N 또는 P이며,
    상기 R 17, R 18, R 19 및 R 20 각각은 치환 또는 비치환된 탄소수 1 내지 15인 직쇄 또는 분지쇄의 알킬기이다.
  16. 청구항 15에 있어서,
    상기 화학식 7은 하기 화학식 7-1 내지 7-10 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것이며,
    상기 화학식 8은 하기 화학식 8-1 내지 8-2 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것이고,
    상기 화학식 9는 하기 화학식 9-1 내지 9-6 및 이들의 조합으로 이루어진 군으로부터 선택된 하나인 것인,
    표면 개질 2차원 맥신:
    [화학식 7-1]
    Figure PCTKR2021000154-appb-img-000187
    [화학식 7-2]
    Figure PCTKR2021000154-appb-img-000188
    [화학식 7-3]
    Figure PCTKR2021000154-appb-img-000189
    [화학식 7-4]
    Figure PCTKR2021000154-appb-img-000190
    [화학식 7-5]
    Figure PCTKR2021000154-appb-img-000191
    [화학식 7-6]
    Figure PCTKR2021000154-appb-img-000192
    [화학식 7-7]
    Figure PCTKR2021000154-appb-img-000193
    [화학식 7-8]
    Figure PCTKR2021000154-appb-img-000194
    [화학식 7-9]
    Figure PCTKR2021000154-appb-img-000195
    [화학식 7-10]
    Figure PCTKR2021000154-appb-img-000196
    [화학식 8-1]
    Figure PCTKR2021000154-appb-img-000197
    [화학식 8-2]
    Figure PCTKR2021000154-appb-img-000198
    [화학식 9-1]
    Figure PCTKR2021000154-appb-img-000199
    [화학식 9-2]
    Figure PCTKR2021000154-appb-img-000200
    [화학식 9-3]
    Figure PCTKR2021000154-appb-img-000201
    [화학식 9-4]
    Figure PCTKR2021000154-appb-img-000202
    [화학식 9-5]
    Figure PCTKR2021000154-appb-img-000203
    [화학식 9-6]
    Figure PCTKR2021000154-appb-img-000204
  17. 청구항 1의 표면 개질 2차원 맥신 제조방법에 있어서,
    산 에칭 공정으로 상기 2차원 맥신이 분산된 맥신 수용액을 수득하는 제1 단계;
    적어도 하나의 히드록시기를 포함하는 화합물, 이온성화합물 및 이들의 조합으로 이루어진 군으로부터 선택된 하나를 물 또는 유기용매에 분산시킨 혼합물을 준비하는 제2 단계; 및
    상기 제1 단계로 수득된 맥신 수용액과 상기 제2 단계의 혼합물을 혼합 및 교반하여 상기 2차원 맥신의 외부 표면을 개질시키는 제3 단계;를 포함하는,
    표면 개질 2차원 맥신 제조방법.
PCT/KR2021/000154 2020-11-17 2021-01-06 표면 개질 2차원 맥신 및 이의 제조방법 WO2022107992A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/037,352 US20230406714A1 (en) 2020-11-17 2021-01-06 Surface-modified two-dimensional mxene, and method for producing same
CN202180083783.2A CN116783142A (zh) 2020-11-17 2021-01-06 表面改性二维迈科烯及其生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200154061A KR20220067653A (ko) 2020-11-17 2020-11-17 표면 개질 2차원 맥신 및 이의 제조방법
KR10-2020-0154061 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022107992A1 true WO2022107992A1 (ko) 2022-05-27

Family

ID=81709232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000154 WO2022107992A1 (ko) 2020-11-17 2021-01-06 표면 개질 2차원 맥신 및 이의 제조방법

Country Status (4)

Country Link
US (1) US20230406714A1 (ko)
KR (1) KR20220067653A (ko)
CN (1) CN116783142A (ko)
WO (1) WO2022107992A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477578A (zh) * 2015-08-27 2017-03-08 大连理工大学 一种基于酸性深共融溶剂的MXene二维材料制备方法
US20190166733A1 (en) * 2016-04-22 2019-05-30 Drexel University Two-dimensional metal carbide, nitride, and carbonitride films and composites for emi shielding
KR20200071928A (ko) * 2018-12-11 2020-06-22 한국과학기술원 수소 플라즈마를 활용한 이차원 물질의 전기적 특성 회복 방법 및 이의 장치
KR20200118650A (ko) * 2019-04-08 2020-10-16 한국과학기술연구원 포화 또는 불포화 탄화수소를 포함하는 아민으로 표면개질 된 2차원 맥신 입자 및 이의 제조 방법 및 용도

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106477578A (zh) * 2015-08-27 2017-03-08 大连理工大学 一种基于酸性深共融溶剂的MXene二维材料制备方法
US20190166733A1 (en) * 2016-04-22 2019-05-30 Drexel University Two-dimensional metal carbide, nitride, and carbonitride films and composites for emi shielding
KR20200071928A (ko) * 2018-12-11 2020-06-22 한국과학기술원 수소 플라즈마를 활용한 이차원 물질의 전기적 특성 회복 방법 및 이의 장치
KR20200118650A (ko) * 2019-04-08 2020-10-16 한국과학기술연구원 포화 또는 불포화 탄화수소를 포함하는 아민으로 표면개질 된 2차원 맥신 입자 및 이의 제조 방법 및 용도

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIMBU TEJ B., CHITARA BASANT, ORLANDO JASON D., GARCIA CERVANTES MARTHA Y., KUMARI SHALINI, LI QI, TANG YONGAN, YAN FEI: "Green synthesis of reduced Ti 3 C 2 T x MXene nanosheets with enhanced conductivity, oxidation stability, and SERS activity", JOURNAL OF MATERIALS CHEMISTRY C, ROYAL SOCIETY OF CHEMISTRY, GB, vol. 8, no. 14, 9 April 2020 (2020-04-09), GB , pages 4722 - 4731, XP055932131, ISSN: 2050-7526, DOI: 10.1039/C9TC06984D *

Also Published As

Publication number Publication date
US20230406714A1 (en) 2023-12-21
KR20220067653A (ko) 2022-05-25
CN116783142A (zh) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2020022751A1 (ko) 유기 전계 발광 소자
WO2020138867A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2013105747A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2012102544A2 (ko) 신규한 유기염료 및 이의 제조방법
WO2017122978A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020138873A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2013081315A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2016032299A1 (ko) 단량체 염을 이용한 폴리이미드 제조방법
WO2013069939A1 (ko) 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
WO2014058232A2 (ko) 스파이로형 유기 재료 및 이를 이용한 유기 전기발광 소자
WO2021182893A1 (ko) 유기 발광 소자
WO2020138871A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2014142488A1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2020138872A1 (en) Organic light emitting diode and organic light emitting device including the same
WO2021221475A1 (ko) 유기 발광 소자
WO2019074241A1 (ko) 페닐아세틸렌 유도체를 포함하는 pd-1과 pd-l1의 상호작용 억제제
WO2022107992A1 (ko) 표면 개질 2차원 맥신 및 이의 제조방법
WO2022086149A1 (ko) 유기전자소자용 화합물, 이를 포함하는 유기전자소자 및 유기전자소자를 포함하는 표시장치
WO2022045838A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2019212183A1 (ko) 중합성 액정 화합물, 광학 소자용 액정 조성물, 중합체, 광학 이방체 및 디스플레이 장치용 광학 소자
WO2018106028A1 (ko) 올레핀 중합 촉매용 전이금속 화합물, 이를 포함하는 올레핀 중합 촉매 및 이를 이용하여 중합된 폴리올레핀
WO2022203276A1 (ko) 핵생성 억제 형성용 물질 및 이를 포함하는 유기전계발광소자
WO2020153771A1 (ko) 디아민 화합물, 및 이를 이용한 폴리이미드 전구체 및 폴리이미드 필름
WO2022045825A1 (ko) 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물
WO2013147431A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894771

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18037352

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180083783.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894771

Country of ref document: EP

Kind code of ref document: A1