WO2022107810A1 - インバータ一体型電動圧縮機 - Google Patents

インバータ一体型電動圧縮機 Download PDF

Info

Publication number
WO2022107810A1
WO2022107810A1 PCT/JP2021/042241 JP2021042241W WO2022107810A1 WO 2022107810 A1 WO2022107810 A1 WO 2022107810A1 JP 2021042241 W JP2021042241 W JP 2021042241W WO 2022107810 A1 WO2022107810 A1 WO 2022107810A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
bus bar
motor
capacitor
common mode
Prior art date
Application number
PCT/JP2021/042241
Other languages
English (en)
French (fr)
Inventor
康平 ▲高▼田
孝次 小林
厚博 蓼沼
Original Assignee
サンデン・アドバンストテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・アドバンストテクノロジー株式会社 filed Critical サンデン・アドバンストテクノロジー株式会社
Priority to CN202180076526.6A priority Critical patent/CN116897246A/zh
Priority to JP2022563801A priority patent/JPWO2022107810A1/ja
Priority to US18/035,044 priority patent/US20230402905A1/en
Priority to DE112021004790.6T priority patent/DE112021004790T5/de
Publication of WO2022107810A1 publication Critical patent/WO2022107810A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/348Passive dissipative snubbers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/803Electric connectors or cables; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/808Electronic circuits (e.g. inverters) installed inside the machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/077Compressor control units, e.g. terminal boxes, mounted on the compressor casing wall containing for example starter, protection switches or connector contacts

Definitions

  • the present invention relates to an inverter-integrated electric compressor provided with an inverter device that applies a three-phase AC output to a motor.
  • the electric compressor used in the air conditioner for vehicles is required to be downsized to satisfy the space saving. Therefore, an electric compressor in which an inverter device for driving a motor by using a switching element is integrally provided in a housing (housing) for accommodating the motor is used.
  • this type of electric compressor is also required to have seismic performance, it is configured by integrally molding resin for the connection between the control board and the power supply, the connection between the switching elements, and the connection between the switching element and the motor.
  • a bus bar (wiring member) is used. Then, in Patent Document 1, a capacitor and a reactor for reducing the ripple of the power supply voltage are integrated in the bus bar.
  • the present invention has been made to solve the above-mentioned conventional technical problems, and is an inverter-integrated electric compressor capable of effectively suppressing noise due to a common mode current while reducing the size.
  • the purpose is to provide an opportunity.
  • the inverter-integrated electric compressor of the present invention includes an inverter device having a switching element and applying a three-phase AC output to the motor, and includes a control board for controlling switching of the switching element, a DC power supply, and the like. It includes a control board, a switching element, and a wiring member provided for wiring between motors, and is characterized in that an element for noise reduction is arranged in the wiring member.
  • the inverter-integrated electric compressor according to claim 2 is characterized in that, in the above invention, the control board, the wiring member, and the switching element are provided in a laminated manner.
  • the element for noise reduction in each of the above inventions is a snubber circuit for reducing noise, a capacitor for returning the outflowing common mode current to the noise source, and switching.
  • a normal mode coil connected between the element and the motor a three-phase common mode coil connected between the switching element and the motor, and a ferrite core connected between the switching element and the motor. , Or all of them.
  • the inverter-integrated electric compressor according to the fourth aspect of the present invention is characterized in that, in the above invention, the snubber circuit is an individual snubber circuit or a collective snubber circuit.
  • the inverter-integrated electric compressor according to the fifth aspect of the present invention is characterized in that, in the third or fourth aspect of the present invention, the snubber circuit is composed of a capacitor, a capacitor and a resistor, or a capacitor, a resistor and a diode. And.
  • the inverter-integrated electric compressor according to claim 6 is characterized in that, in each of the above inventions, the wiring member is a bus bar assembly formed by resin-molding a bus bar.
  • an inverter-integrated electric compressor equipped with an inverter device having a switching element and applying a three-phase AC output to a motor, a control board for controlling switching of the switching element, a DC power supply, and a control board.
  • the control board, the wiring member, and the switching element are provided in a laminated manner as in the invention of claim 2, by arranging the noise reduction element on the wiring member, the arrangement becomes three-dimensional and the creepage surface. It is possible to reduce the size while ensuring a sufficient distance.
  • a snubber circuit for reducing noise for example, as in the invention of claim 3, a capacitor for returning the outflowing common mode current to a noise source, a switching element and a motor.
  • a connected normal mode coil, a three-phase common mode coil connected between the switching element and the motor, a ferrite core connected between the switching element and the motor, and the like can be considered.
  • the outflowing common mode current can be returned to the noise source by a short route, and the power input can be performed as before. It is possible to suppress noise without inserting a large common mode coil into the part. This makes it possible to effectively suppress noise while reducing the size of the electric compressor.
  • the electric compressor can be obtained from the switching element via the motor.
  • the impedance of the path to the housing can be increased and the common mode current flowing out of this path can be reduced.
  • the normal mode coil connected between the switching element and the motor in the wiring member it is possible to effectively suppress the switching surge. This also eliminates the need to insert a large EMI filter (common mode coil) into the power input unit, making it possible to effectively suppress noise while reducing the size of the electric compressor.
  • the normal mode coil does not require the coupling of three-phase wires, so it can be arranged separately, and there are few restrictions when arranging it on the wiring member.
  • the common mode coil It is easier to make it smaller than.
  • the noise reduction effect can be obtained even if it is not included in all three phases (for example, only two phases), there is an advantage that it is easy to use.
  • the snubber circuit can be arranged closer to the switching element, and the noise attenuation effect can be enhanced. Become.
  • the snubber circuit in this case includes an individual snubber circuit and a collective snubber circuit as in the invention of claim 4.
  • the snubber circuit is actually composed of only a capacitor, a capacitor and a resistor, or a capacitor, a resistor and a diode as in the invention of claim 5.
  • the wiring member with a bus bar assembly made by molding a bus bar with a resin as in the invention of claim 6, it becomes possible to ensure seismic resistance while ensuring insulation.
  • FIG. 1 It is a perspective view of the inverter integrated electric compressor of one Example to which this invention was applied. It is a perspective view of the state in which the lid member of the inverter-integrated electric compressor of FIG. 1 is removed. It is an exploded perspective view of the part other than the filter board of the inverter device shown in FIG. It is an electric circuit diagram of the inverter device of FIG. It is an electric circuit diagram of the inverter circuit of the inverter device of FIG. 4 and the control board. It is a perspective view of the bus bar assembly of FIG. It is a top view which saw through the bus bar assembly of FIG. It is a perspective view of another bus bar assembly. It is a top view which saw through the bus bar assembly of FIG. Yet another perspective view of the busbar assembly.
  • the inverter-integrated electric compressor 1 of the embodiment constitutes a part of a refrigerant circuit of a vehicle air conditioner (not shown), and is driven by a motor M (shown in FIGS. 4 and 5) and the motor M.
  • a metal (aluminum or iron; aluminum in the example) housing 2 having a built-in compression mechanism (not shown) and an inverter device 3 (power conversion device) that drives a motor M by applying a three-phase AC output to the motor M. ) Is provided.
  • the housing 2 includes a motor housing 4 incorporating the motor M, a compression mechanism housing 6 connected to one side of the motor housing 4 in the axial direction and incorporating the compression mechanism, and one side of the compression mechanism housing 6.
  • a compression mechanism cover 7 for closing the opening, an inverter accommodating portion 8 configured on the other side in the axial direction of the motor housing 4, and a lid member 11 for closing the opening on the other side of the inverter accommodating portion 8 so as to be openable are provided. ing. Then, the inverter device 3 is accommodated in the inverter accommodating portion 8.
  • FIGS. 1 and 2 show the inverter-integrated electric compressor 1 in the state where the inverter accommodating portion 8 is on the top and the compression mechanism cover 7 is on the bottom, the compression mechanism cover 7 is actually used.
  • the inverter accommodating portion 8 is arranged on one side in the lateral direction so as to be on the other side.
  • the motor M of the embodiment is composed of an IPMSM (Interior Permanent Magnet Synchronous Motor), and the compression mechanism is, for example, a scroll type compression mechanism.
  • the compression mechanism is driven by the motor M to compress the refrigerant and discharge it into the refrigerant circuit of the vehicle air conditioner. Then, a low-temperature gas refrigerant sucked from an evaporator (also referred to as a heat absorber), which also constitutes a part of the refrigerant circuit, flows through the motor housing 4. Therefore, the inside of the motor housing 4 is cooled.
  • the inverter accommodating portion 8 is partitioned from the inside of the motor housing 4 in which the motor M is accommodated by a partition wall formed in the motor housing 4, and this partition wall is also cooled by a low-temperature gas refrigerant.
  • Inverter device 3 In the inverter device 3, six switching elements 13 to 18 composed of IGBTs (may be MOSFETs) constituting the upper and lower arms of each phase of the three-phase inverter circuit 9 (FIG. 3), and a control circuit 19 in the printed wiring.
  • the mounted control board 21, the battery 24 described later, the control board 21, the switching elements 13 to 18, the bus bar assembly 22 as a wiring member for wiring between the motors M (FIG. 3), and the filter board. 23 is provided, and the DC power supplied from the vehicle battery 24 (FIG. 4) as a DC power source is converted into three-phase AC power and supplied to the stator coil (not shown) of the motor M.
  • Reference numeral 26 is a positive electrode side path connected to the positive electrode side (+) of the battery 24 via LISN (pseudo power supply network), and 27 is a negative electrode side path connected to the negative electrode side (-) of the battery 24 via LISN.
  • An EMI filter 28 and a smoothing capacitor 29 are connected to the positive electrode side path 26 and the negative electrode side path 27.
  • the EMI filter 28 includes an X capacitor 31 connected between the positive electrode side path 26 and the negative electrode side path 27, a differential mode coil 32 connected to the positive electrode side path 26 in the subsequent stage of the X capacitor 31, and the differential mode coil. It is composed of a common mode coil 33 connected to the rear stage of 32, and a Y capacitor 36 and a Y capacitor 34 connected between the positive electrode side path 26 and the negative electrode side path 27 and the housing 2 in the rear stage of the common mode coil 33, respectively. ing.
  • the EMI filter 28 and the smoothing capacitor 29 are arranged on the filter board 23.
  • the X capacitor 31 is a capacitor for reducing differential mode noise
  • the Y capacitors 34 and 36 are capacitors for reducing common mode noise.
  • the housing 2 is connected to the vehicle body 37 (GND). Then, the housing 2 serves as a reference potential conductor of the inverter device 3.
  • a normal mode coil 40 as a reduction element, a three-phase common mode coil 41, and a ferrite core 42 are sequentially connected.
  • the normal mode coil 40 and the three-phase common mode coil 41 mainly increase the impedance of the low frequency, and the ferrite core 42 increases the impedance of the high frequency.
  • the ferrite core 42 is arranged around the output paths 56U to 56W described later, and in the present invention, such an arrangement is also referred to as a connection. Further, it is assumed that the normal mode coil 40 is connected to all of the output paths 56U to 56W in the embodiment.
  • Reflux capacitors 43, 44 Further, between the positive electrode side path 26 between the inverter circuit 9 and the smoothing capacitor 29 and the negative electrode side path 27 and the housing 2, a recirculation capacitor as a noise reducing element composed of a capacitor for recirculating a common mode current. 43 and 44 are connected. In this case, the recirculation capacitor 43 is connected between the positive electrode side path 26 and the housing 2 (reference potential conductor), and the recirculation capacitor 44 is connected between the negative electrode side path 27 and the housing 2.
  • the recirculation capacitors 43 and 44, the above-mentioned normal mode coil 40, the three-phase common mode coil 41, and the ferrite core 42 are arranged in the bus bar assembly 22 in the embodiment.
  • the capacitance shown by 46 in FIG. 4 indicates the parasitic capacitance between the inverter circuit 9 and the housing 2, and the capacitance shown by 47 indicates the parasitic capacitance between the motor M and the housing 2.
  • FIG. 5 shows the electric circuit of the inverter circuit 9 and the control board 21.
  • the inverter circuit 9 has a U-phase inverter 48U, a V-phase inverter 48V, and a W-phase inverter 48W, and each of the phase inverters 48U to 48W has the above-mentioned upper arm side switching element (referred to as an upper arm switching element). It has 13 to 15 and 16 to 18 switching elements (referred to as lower arm switching elements) on the lower arm side individually. Further, flywheel diodes 49 are connected in antiparallel to each of the switching elements 13 to 18.
  • the high potential side terminals of the upper arm switching elements 13 to 15 of the inverter circuit 9 are connected to the positive electrode side path 26, and the low potential side terminals of the lower arm switching elements 16 to 18 are connected to the negative electrode side path 27. There is.
  • the low potential side terminal of the upper arm switching element 13 of the U-phase inverter 48U and the high potential side terminal of the lower arm switching element 16 are connected by an intermediate path 51U, and this intermediate path 51U is connected to the U phase of the motor M by the output path 56U. Connected to the stator coil.
  • the low potential side terminal of the upper arm switching element 14 of the V phase inverter 48V and the high potential side terminal of the lower arm switching element 17 are connected by an intermediate path 51V, and this intermediate path 51V is connected to the V of the motor M by the output path 56V. Connected to the phase stator coil. Further, the low potential side terminal of the upper arm switching element 15 of the W phase inverter 48W and the high potential side terminal of the lower arm switching element 18 are connected by an intermediate path 51W, and this intermediate path 51W is connected to the W of the motor M by the output path 56W. Connected to the phase stator coil.
  • the above-mentioned normal mode coil 40, three-phase common mode coil 41, and ferrite core 42 are provided in the output paths 56U to 56W located between the intermediate paths 51U to 51W and the motor M.
  • the ferrite core 42 is arranged collectively for all phases in the output paths 56U to 56W, it may be arranged separately around the output paths 56U to 56W of each phase.
  • control board 21 On the other hand, the control circuit 19 of the control board 21 is composed of a microcomputer having a processor, a rotation speed command value is input from the ECU of the vehicle, a phase current is input from the motor M, and the inverter circuit 9 is based on these.
  • the ON / OFF state of each of the upper and lower arm switching elements 13 to 18 of the above is controlled.
  • (Phase voltage) is a three-phase AC output, and the motor M is driven by applying it to the stator coils of each phase of the motor M via the output paths 56U to 56W.
  • the snubber circuit 52 as an element for noise reduction is connected between the positive electrode side path 26 and the negative electrode side path 27.
  • one end of the snubber circuit 52 is connected to the positive electrode side path 26 together with the high potential side terminal of the upper arm switching element 13 of the U-phase inverter 48U, and the other end is the low of the lower arm switching element 16. It is connected to the negative electrode side path 27 together with the potential side terminal.
  • the snubber circuit 52 of this embodiment is a C snubber circuit which is one of the collective snubber circuits composed of the capacitor C, and the capacitor C is connected between the positive electrode side path 26 and the negative electrode side path 27. ing.
  • the snubber circuit 52 consumes energy due to the surge voltage generated at the turn-off of the upper and lower arm switching elements 13 to 18. By consuming energy due to the surge voltage in this snubber circuit 52, it is possible to reduce the high frequency surge voltage generated between the drain and the source (between the collector and the emitter) of each of the upper and lower arm switching elements 13 to 18, and the motor M can be used. It is possible to suppress the common mode current generated between the and the housing 2 and reduce noise (mainly radio noise).
  • the capacitor C of this snubber circuit 52 is also arranged in the bus bar assembly 22 in the embodiment.
  • the capacitor C of the snubber circuit 52 By arranging the capacitor C of the snubber circuit 52, the normal mode coil 40, the three-phase common mode coil 41, the ferrite core 42, the recirculation capacitors 43, and 44 in the bus bar assembly 22, it is necessary to mount them on the control board 21. It disappears and the size of the control board 21 can be reduced. Further, by arranging the snubber circuit 52 in the bus bar assembly 22, the snubber circuit 52 can be arranged closer to the switching elements 13 to 18, and the noise attenuation effect can be enhanced.
  • 57 to 59 are bus bars made of conductive metal provided in the bus bar assembly 22. These bus bars 57 to 59 are connected to the drawer terminals 61 to 63 drawn from the partition wall of the motor housing 4 via three terminal plates 64, respectively. Then, these bus bars 57 to 59, the terminal board 64, and the extraction terminals 61 to 63 form a part of the output paths 56U to 56W described above.
  • the positive electrode side path 26 and the negative electrode side path 27 described above are connected to the power supply harness from the battery 24 described above via the HV connector 66 attached to the motor housing 4.
  • the terminal board 67 of the filter board 23 is electrically connected to the power supply harness via the HV connector 66, and the terminal board (not shown) on the control board 21 side is connected to the bus bars 68 and 69 of the bus bar assembly 22. That is, the bus bar 69 constitutes a part of the positive electrode side path 26, and the bus bar 68 constitutes a part of the negative electrode side path 27.
  • the upper and lower arm switching elements 13 to 18 of the above-mentioned inverter circuit 9 are in close contact with the partition wall of the motor housing 4, and are arranged in a heat conduction relationship with the partition wall. Since the partition wall is cooled by the low-temperature gas refrigerant as described above, the upper and lower arm switching elements 13 to 18 that generate heat are cooled from the partition wall.
  • the control board 21 is put on the bus bar assembly 22 as shown by an arrow in FIG.
  • the terminals 71 of the upper and lower arm switching elements 13 to 18 are inserted into the connection holes 73 of the control board 21.
  • each terminal 74 of the bus bar assembly 22 is inserted into the connection hole 76 of the control board 21.
  • the upper and lower arm switching elements 13 to 18 are arranged on the partition wall side of the motor housing 4, the bus bar assembly 22 is arranged on the partition wall side, and the control board 21 is laminated on the bus bar assembly 22.
  • the bus bars 57 to 59, 68, 69 of the bus bar assembly 22 are located outside the control board 21.
  • the control board 21 and the bus bar assembly 22 are connected by screws 77 and 78. Fasten to the motor housing 4.
  • the screw 78 penetrates the screw hole 79 of the control board 21 and the screw holes 81, 81A, 81B of the bus bar assembly 22, and the control board 21 and the bus bar assembly 22 are fastened together to the motor housing 4.
  • each screw 78 and the screw holes 81, 81A, 81B are electrically connected to the motor housing 4 (housing 2) and have the same potential.
  • the terminals 71 and 74 are soldered to the circuit of the control board 21 and the bus bar assembly 22 and electrically connected. Further, the extraction terminals 61 to 63 and the bus bars 57 to 59 are connected by the terminal board 64, the filter board 23 is connected to the bus bars 68 and 69, and the filter board 23 is connected to the HV connector 66 by the terminal board 67.
  • FIGS. 6 and 7 show the arrangement of the recirculation capacitors 43 and 44
  • FIGS. 8 and 9 show the arrangement of the normal mode coil 40, the three-phase common mode coil 41, and the ferrite core 42
  • FIGS. 10 and 11 show the arrangement.
  • the arrangement of the capacitors C of the snubber circuit 52 is shown, in this embodiment, it is assumed that all of them are actually provided in the bus bar assembly 22 as shown in FIG.
  • FIG. 6 shows a perspective view of the bus bar assembly 22 showing the arrangement of the recirculation capacitors 43 and 44
  • FIG. 7 shows a plan view of the bus bar assembly 22 of FIG. 6 as a perspective view.
  • the bus bar assembly 22 has a configuration in which the above-mentioned bus bars 57 to 59, 68, 69 are molded with an insulating hard resin 82. By resin-molding the bus bars 57 to 59, 68, 69 in this way to form the bus bar assembly 22, it is possible to ensure seismic resistance while ensuring insulation.
  • Each of the busbars 57-59, 68, 69 is composed of a conductive metal plate, most of which is embedded in the hard resin 82, with one end thereof upright vertically at the edge of the busbar assembly 22. It protrudes outward from the hard resin 82, and the terminal 74 described above protrudes outward from the hard resin 82 in a state of standing vertically from the other end or a portion in the middle. Then, as described above, the bus bars 57 to 59 form a part of the output paths 56U to 56W. Further, the bus bar 69 constitutes a part of the positive electrode side path 26 as described above, and the bus bar 68 constitutes a part of the negative electrode side path 27.
  • the above-mentioned recirculation capacitor 43 is provided between the screw hole 81A located at the end of the bus bar assembly 22 and the bus bar 69, and is conducted to them, and the recirculation capacitor 44 is located at the center of the bus bar assembly 22. It is provided between the positioned screw holes 81B and the bus bar 68 and is conductive to them. Since the screw holes 81A and 81B are conducted to the housing 2 as described above, the recirculation capacitor 43 is connected between the positive electrode side path 26 and the housing 2 (reference potential conductor) as shown in FIG. 4, and the recirculation capacitor 44 is connected. Will be connected between the negative electrode side path 27 and the housing 2. In this case, the recirculation capacitors 43 and 44 may be molded and embedded in the hard resin 82 of the bus bar assembly 22, or may be mounted on the surface of the hard resin 82.
  • FIG. 8 shows a perspective view of the bus bar assembly 22 showing the arrangement of the normal mode coil 40, the three-phase common mode coil 41, and the ferrite core 42
  • FIG. 9 shows a plan view of the bus bar assembly 22 of FIG.
  • the configurations of the bus bars 57 to 59, 68, 69 of the bus bar assembly 22 and the structure in which they are molded with the hard resin 82 are as described above.
  • the above-mentioned normal mode coil 40 is connected to the upright end portion side of the bus bars 57 to 59, and the ferrite core 42 is provided around the upright end portion of the bus bars 57 to 59.
  • the phase common mode coil 41 is provided between the normal mode coil 40 and the ferrite core 42.
  • the bus bars 57 to 59 form a part of the output paths 56U to 56W, and the output paths 56U to 56W are located between the intermediate paths 51U to 51W and the motor M as described above.
  • the coil 40, the three-phase common mode coil 41, and the ferrite core 42 are connected between the intermediate paths 51U to 51W and the motor M.
  • the normal mode coil 40, the three-phase common mode coil 41, and the ferrite core 42 may be molded and embedded in the hard resin 82 of the bus bar assembly 22, or may be mounted on the surface of the hard resin 82. good.
  • FIG. 10 shows a perspective view of the bus bar assembly 22 showing the arrangement of the capacitor C of the snubber circuit 52
  • FIG. 11 shows a plan view of the bus bar assembly 22 of FIG. 10 as a perspective view.
  • the configurations of the bus bars 57 to 59, 68, 69 of the bus bar assembly 22 and the structure in which they are molded with the hard resin 82 are as described above.
  • the capacitor C of the snubber circuit 52 described above is connected to the upright one end side of the bus bars 68 and 69.
  • the bus bar 69 constitutes a part of the positive electrode side path 26, and the bus bar 68 forms a part of the negative electrode side path 27. Therefore, the capacitor C extends over the positive electrode side path 26 and the negative electrode side path 27. Will be connected.
  • the capacitor C may be molded and embedded in the hard resin 82 of the bus bar assembly 22, or may be mounted on the surface of the hard resin 82.
  • all of the normal mode coil 40, the three-phase common mode coil 41, the ferrite core 42, the recirculation capacitors 43 and 44, and the capacitor C of the snubber circuit 52 as elements for noise reduction are used.
  • the bus bar assembly 22 not only the recirculation capacitors 43 and 44 may be arranged in the bus bar assembly 22 as shown in FIGS. 6 and 7, and the normal mode coil 40 and the three-phase common mode coil may be arranged.
  • Only 41 and the ferrite core 42 may be arranged in the bus bar assembly 22 as shown in FIGS. 8 and 9. Also in the cases of FIGS.
  • only the normal mode coil 40 may be arranged in the bus bar assembly 22
  • only the three-phase common mode coil 41 may be arranged in the bus bar assembly 22
  • only the ferrite core 42 may be arranged in the bus bar. It may be placed in the assembly 22.
  • capacitor C of the snubber circuit 52 may be arranged in the bus bar assembly 22 as shown in FIGS. 10 and 11, and they (recirculation capacitors 43 and 44, normal mode coil 40, three-phase common mode coil 41, ferrite core) may be arranged. 42, two of the capacitors C) of the snubber circuit 52 may be combined and arranged in the bus bar assembly 22.
  • FIG. 12 shows an electric circuit diagram of an inverter device 100 without the above-mentioned normal mode coil 40, three-phase common mode coil 41, ferrite core 42, recirculation capacitors 43, 44, and snubber circuit 52.
  • those represented by the same reference numerals as those in FIG. 4 are assumed to have the same or similar functions.
  • the arrow indicated by N1 is the common mode current (noise) flowing out from the motor M to the housing 2 via the parasitic capacitor 47
  • the arrow indicated by N2 is flowing out from the inverter circuit 9 to the housing 2 via the parasitic capacitor 46.
  • Common mode current (noise) the arrow indicated by N3 is the common mode current (noise) that returns from the housing 2 to the upper and lower arm switching elements 13 to 18 of the inverter circuit 9 via the Y capacitors 34 and 36
  • the arrow indicated by N9 is HV.
  • the common mode currents (noise) flowing into the LISNs 26 and 27 on the positive electrode side (+) and the negative electrode side ( ⁇ ) through the shielded wire of the connector 66 are shown, respectively.
  • N4 indicate the common mode current (noise) flowing out from the housing 2 to the vehicle body 37
  • the arrows indicated by N5 to N8 indicate the common mode current flowing from the vehicle body 37 through the LISN27 and LISN26 into the EMI filter 28. Noise) is shown.
  • the arrows in the figure are shown in only one direction, the actual flow of the common mode current is not simple, and the current flows in and out in both directions at each location.
  • the common mode current (N1) flowing out from the motor M via the parasitic capacitance 47 becomes large. Further, the common mode current and the common mode current (N2) flowing out from the inverter circuit 9 to the housing 2 are returned to the upper and lower arm switching elements 13 to 18 of the inverter circuit 9 which is a noise source via the Y capacitors 34 and 36. (N3) Since the Y capacitors 34 and 36 are separated from the motor M and the inverter circuit 9, the recirculation path becomes long, and the filter effect (effect of recirculating the common mode current) of the Y capacitors 34 and 36 can be sufficiently obtained. It disappears.
  • the common mode current (N1) flowing out from the motor M via the parasitic capacitance 47 and the common mode current (N2) flowing out from the inverter circuit 9 to the housing 2 As shown by the arrow N10 in FIG. 13, returns to the upper and lower arm switching elements 13 to 18 of the inverter circuit 9 which is a noise source via the recirculation capacitors 43 and 44. Since the recirculation capacitors 43 and 44 are arranged in the bus bar assembly 22 provided at a position closer to the upper and lower arm switching elements 13 to 18 of the motor M and the inverter circuit 9 than the filter substrate 23, the recirculation path is shortened.
  • a high filter effect can be obtained with the recirculation capacitors 43 and 44. This makes it possible to suppress noise without inserting a large common mode coil into the power input section as in the past, and effectively suppresses noise while reducing the size of the inverter-integrated electric compressor 1. You will be able to.
  • the normal mode coil 40 is also arranged in the bus bar assembly 22 between the upper and lower arm switching elements 13 to 18 of the inverter circuit 9 and the motor M, the switching surge can be effectively suppressed.
  • These also eliminate the need to insert a large EMI filter (common mode coil) into the power input section, making it possible to effectively suppress noise while reducing the size of the inverter-integrated electric compressor 1.
  • the normal mode coil 40 does not require the coupling of three-phase wires, so that it can be arranged separately, and there are few restrictions when arranging the normal mode coil 22 in the bus bar assembly 22. It is easier to miniaturize than in the case of.
  • the normal mode coil 40 may not be inserted in all of the output paths 56U to 56W (three-phase) as in the embodiment, but may be inserted in only two phases, for example. This also has the advantage of being easy to use because the noise reduction effect can be obtained.
  • the capacitor C of the snubber circuit 52 for reducing noise is arranged in the bus bar assembly 22, noise (mainly radio noise) can be effectively reduced.
  • the snubber circuit is not mounted on the control board 21, but is arranged in the bus bar assembly 22 to form a three-dimensional arrangement (the control board 21, the bus bar assembly 22, and the upper and lower arm switching elements 13 to 18 are laminated). Therefore, it is possible to reduce the size while ensuring a sufficient creepage distance.
  • the snubber circuit 52 shown in the embodiment has been described by the C snubber circuit of the collective snubber circuit in which only the capacitor C is connected between the positive electrode side path 26 and the negative electrode side path 27.
  • the circuit 52 various configurations as shown in FIG. 14 can be considered.
  • the right side in this figure shows an example of a collective snubber circuit, and the second from the right is the C snubber circuit shown in the above-described embodiment.
  • the collective snubber circuit is connected between the positive electrode side path 26 and the negative electrode side path 27, but in addition, the RCD snubber circuit shown at the right end in the figure can be considered.
  • This RCD snubber circuit is composed of a parallel circuit of a diode D and a resistor R, and a capacitor C connected in series to the parallel circuit.
  • the diode D has a forward direction in the capacitor C direction, and the parallel circuit side is connected to the positive electrode side path 26 and the capacitor C side is connected to the negative electrode side path 27.
  • the left side of the figure shows an example of an individual snubber circuit.
  • the individual snubber circuits are individually connected to the upper and lower arm switching elements 13 to 18.
  • Examples of this individual snubber circuit include an RC snubber circuit (left end in FIG. 14), a charge / discharge type RCD snubber circuit (second from the left in FIG. 14), and a discharge blocking type RCD snubber circuit (third from the left in FIG. 14). be.
  • the RC snubber circuit consists of a series circuit of a resistor R and a capacitor C, and is connected between the collector and the emitter of the upper and lower arm switching elements 13 to 18, respectively.
  • a snubber circuit 52 composed of a parallel circuit of a diode D and a resistor R and a capacitor C connected in series to the parallel circuit is provided between the collector and the emitter of the individual upper and lower arm switching elements 13 to 18. It is connected to each of them.
  • the diode D is connected to the capacitor C in the forward direction
  • the parallel circuit side is connected to the collector
  • the capacitor C side is connected to the emitter.
  • the discharge prevention type RCD snubber circuit includes a series circuit of a capacitor C and a diode D connected between the collector and the emitter of the individual upper and lower arm switching elements 13 to 18, and a capacitor C of the upper arm switching elements 13 to 15, respectively. It consists of a resistor R connected between the diodes D and across the negative path 27, and a resistor R connected between the diodes 3 of the lower arm switching elements 16-18 and the capacitor C and across the positive path 26.
  • the capacitor C is connected to the collector, the diode D is connected to the emitter, and the diode D is in the forward direction on the emitter side.
  • the diode D is connected to the collector and the capacitor C is connected to the emitter, and the diode D is in the forward direction on the capacitor C side.
  • Each snubber circuit 52 consumes the surge voltage generated at the turn-off of the upper and lower arm switching elements 13 to 18.
  • the bus bar assembly 22 in which the bus bars 57 to 59, 68, 69 are molded with the hard resin 82 is adopted as the wiring member, but in the inventions of claims 1 to 3, the bus bar is not molded with the resin. May be good.
  • the shapes and structures of the inverter device 3 and the housing 2 (motor housing 4) shown in the examples are not limited thereto, and can be variously changed without departing from the spirit of the present invention. Nor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

小型化を図りながら、コモンモード電流によるノイズを効果的に抑制することができるようにしたインバータ一体型電動圧縮機を提供する。インバータ一体型電動圧縮機は、上下アームスイッチング素子13、16を有して三相交流出力をモータMに印加するインバータ装置3を備えたものであって、上下アームスイッチング素子13、16のスイッチングを制御する制御基板と、バッテリ24、制御基板、上下アームスイッチング素子13~18、及び、モータM間の配線を行うために設けられたバスバーアセンブリ22とを備え、このバスバーアセンブリ22に、ノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42、還流コンデンサ43、44、スナバ回路52を配置した。

Description

インバータ一体型電動圧縮機
 本発明は、三相交流出力をモータに印加するインバータ装置を備えたインバータ一体型電動圧縮機に関する。
 従来より車両用の空気調和装置に用いられる電動圧縮機には省スペースを満足させるための小型化が要求される。そのため、モータを収容するハウジング(筐体)に、スイッチング素子を用いてモータを駆動するためのインバータ装置を一体に設けた電動圧縮機が用いられている。
 このようなインバータ一体型電動圧縮機では、各種の寄生結合(モータとハウジング間、スイッチング素子とハウジング間、基板とハウジング間等)が存在するため、スイッチング素子のスイッチング動作に伴う電圧変動により、ハウジングに流出するコモンモード電流(ノイズ)が多くなる。そこで、従来より制御基板の電源入力部にコモンモードコイルやYコンデンサから成るEMIフィルタを搭載し、スイッチング素子から寄生結合(寄生容量)を介してハウジングに流出するコモンモード電流(ノイズ)をスイッチング素子(ノイズ源)に還流させ、ノイズ低減を図る対策が採られていた(例えば、特許文献1参照)。
特許第5091521号公報 特許第4981483号公報
 しかしながら、係る従来の構成ではノイズ源であるスイッチング素子からEMIフィルタまでの経路がネジ等を経由する配線となるため、スイッチング素子からハウジングに流出したコモンモード電流に対してEMIフィルタまでの配線長が拡大し、コモンモード電流の還流ループが大きくなって、Yコンデンサのフィルタ効果(コモンモード電流を還流させる効果)が十分に得られない。そのため、電源入力部に十分なインピーダンスを持つ大型のコモンモードコイルを挿入しなければならなくなり、省スペース化に反するものとなっていた。
 また、コモンモード電流(漏れ電流)によって発生するノイズ(主にラジオノイズ)を低減するための抵抗とコンデンサから成るスナバ回路をスイッチング素子と並列に挿入する対策も提案されているが(例えば、特許文献2参照)、制御基板上に搭載するものであったため、絶縁に必要な沿面距離を十分に確保するために制御基板が大きくなってしまい、これも省スペース化を阻害する原因となっていた。
 一方、この種の電動圧縮機では耐震性能も要求されるため、制御基板と電源間の接続、スイッチング素子間の接続、及び、スイッチング素子とモータ間の接続のために、樹脂一体成型で構成されたバスバー(配線部材)が用いられる。そして、前記特許文献1では電源電圧のリップル低減用のコンデンサやリアクタをバスバーに一体化させていた。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、小型化を図りながら、コモンモード電流によるノイズを効果的に抑制することができるようにしたインバータ一体型電動圧縮機を提供することを目的とする。
 本発明のインバータ一体型電動圧縮機は、スイッチング素子を有して三相交流出力をモータに印加するインバータ装置を備えたものであって、スイッチング素子のスイッチングを制御する制御基板と、直流電源、制御基板、スイッチング素子、及び、モータ間の配線を行うために設けられた配線部材とを備え、この配線部材に、ノイズ低減用の素子を配置したことを特徴とする。
 請求項2の発明のインバータ一体型電動圧縮機は、上記発明において制御基板、配線部材、及び、スイッチング素子は積層されたかたちで設けられていることを特徴とする。
 請求項3の発明のインバータ一体型電動圧縮機は、上記各発明においてノイズ低減用の素子は、ノイズを低減するためのスナバ回路、流出したコモンモード電流をノイズ源に還流させるためのコンデンサ、スイッチング素子とモータ間に接続されたノーマルモードコイル、スイッチング素子とモータ間に接続された三相コモンモードコイル、スイッチング素子とモータ間に接続されたフェライトコア、のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであることを特徴とする。
 請求項4の発明のインバータ一体型電動圧縮機は、上記発明においてスナバ回路は、個別スナバ回路、又は、一括スナバ回路であることを特徴とする。
 請求項5の発明のインバータ一体型電動圧縮機は、請求項3又は請求項4の発明においてスナバ回路は、コンデンサ、或いは、コンデンサと抵抗、若しくは、コンデンサと抵抗とダイオードによる構成であることを特徴とする。
 請求項6の発明のインバータ一体型電動圧縮機は、上記各発明において配線部材は、バスバーを樹脂モールドして成るバスバーアセンブリであることを特徴とする。
 本発明によれば、スイッチング素子を有して三相交流出力をモータに印加するインバータ装置を備えたインバータ一体型電動圧縮機において、スイッチング素子のスイッチングを制御する制御基板と、直流電源、制御基板、スイッチング素子、及び、モータ間の配線を行うために設けられた配線部材とを備え、この配線部材に、ノイズ低減用の素子を配置したので、制御基板上に搭載されるノイズ低減用の素子を小型化し、制御基板を小型化することができるようになる。
 この場合、請求項2の発明の如く制御基板、配線部材、及び、スイッチング素子を積層したかたちで設けるものでは、ノイズ低減用の素子を配線部材に配置することで、立体的な配置となり、沿面距離を十分に確保しながら小型化を図ることが可能となる。
 尚、ノイズ低減用の素子としては、例えば請求項3の発明の如く、ノイズを低減するためのスナバ回路や、流出したコモンモード電流をノイズ源に還流させるためのコンデンサ、スイッチング素子とモータ間に接続されたノーマルモードコイル、スイッチング素子とモータ間に接続された三相コモンモードコイル、スイッチング素子とモータ間に接続されたフェライトコア等が考えられる。
 例えば、流出したコモンモード電流をノイズ源に還流させるためのコンデンサを配線部材に配置すれば、流出したコモンモード電流を短いルートでノイズ源に還流させることができるようになり、従来の如く電源入力部に大型のコモンモードコイルを挿入すること無く、ノイズを抑制することが可能となる。これにより電動圧縮機の小型化を図りながら、効果的にノイズを抑制することができるようになる。
 また、例えば、スイッチング素子とモータ間に接続された三相コモンモードコイルやスイッチング素子とモータ間に接続されたフェライトコアを配線部材に配置することによっても、スイッチング素子からモータを経て電動圧縮機のハウジングに至る経路のインピーダンスを増加させ、この経路から流出するコモンモード電流を低減させることができるようになる。また、スイッチング素子とモータ間に接続されたノーマルモードコイルを配線部材に配置することにより、スイッチングサージを効果的に抑制することが可能となる。これによっても、大型のEMIフィルタ(コモンモードコイル)を電源入力部に挿入する必要がなくなり、電動圧縮機の小型化を図りながら、効果的にノイズの抑制を図ることが可能となる。
 特に、ノーマルモードコイルは、コモンモードコイルと異なり、三相線の結合が不要なことから、別々に配置することが可能であり、配線部材に配置する際の制約が少なく、コモンモードコイルの場合よりも小型化し易い。更に、三相全てに入れなくとも(例えば二相のみ)、ノイズ低減効果が得られることから、使い勝手がよいという利点がある。
 更に、例えば、ノイズを低減するためのスナバ回路を配線部材に配置することにより、よりスイッチング素子に近接してスナバ回路を配置することができるようになり、ノイズ減衰効果を高めることができるようになる。
 この場合のスナバ回路としては、請求項4の発明の如き個別スナバ回路や一括スナバ回路がある。
 また、スナバ回路は実際には請求項5の発明の如くコンデンサのみや、コンデンサと抵抗、若しくは、コンデンサと抵抗とダイオードにより構成される。
 更にまた、請求項6の発明の如く配線部材を、バスバーを樹脂モールドして成るバスバーアセンブリで構成することで、絶縁を確保しながら耐震性も担保することができるようになるものである。
本発明を適用した一実施例のインバータ一体型電動圧縮機の斜視図である。 図1のインバータ一体型電動圧縮機の蓋部材を取り外した状態の斜視図である。 図2に示したインバータ装置のフィルタ基板以外の部分の分解斜視図である。 図3のインバータ装置の電気回路図である。 図4のインバータ装置のインバータ回路と制御基板の電気回路図である。 図3のバスバーアセンブリの斜視図である。 図6のバスバーアセンブリを透視した平面図である。 もう一つのバスバーアセンブリの斜視図である。 図8のバスバーアセンブリを透視した平面図である。 更にもう一つのバスバーアセンブリの斜視図である。 図10のバスバーアセンブリを透視した平面図である。 従来のインバータ装置のノイズ経路を説明する図である。 図4のインバータ装置のノイズ経路を説明するための電気回路図である。 スナバ回路の例を説明する図である。
 以下、本発明の一実施形態について、図面に基づき詳細に説明する。実施例のインバータ一体型電動圧縮機1は、図示しない車両用空気調和装置の冷媒回路の一部を構成するものであり、モータM(図4、図5に示す)と、このモータMにより駆動される圧縮機構(図示せず)を内蔵した金属製(アルミニウムや鉄製。実施例ではアルミニウム製)のハウジング2と、三相交流出力をモータMに印加して駆動するインバータ装置3(電力変換装置)を備えている。
 ハウジング2は、前記モータMを内蔵するモータハウジング4と、このモータハウジング4の軸方向の一側に接続されて前記圧縮機構を内蔵する圧縮機構ハウジング6と、この圧縮機構ハウジング6の一側の開口を閉塞する圧縮機構カバー7と、モータハウジング4の軸方向の他側に構成されたインバータ収容部8と、このインバータ収容部8の他側の開口を開閉可能に閉塞する蓋部材11を備えている。そして、このインバータ収容部8内にインバータ装置3が収容される。
 尚、図1、図2ではインバータ収容部8を上に、圧縮機構カバー7を下にした状態で実施例のインバータ一体型電動圧縮機1を示しているが、実際には圧縮機構カバー7が一側、インバータ収容部8が他側となるように横方向で配置されるものである。
 実施例のモータMは、IPMSM(Interior Permanent Magnet Synchronous Motor)から構成されており、前記圧縮機構は例えばスクロール式の圧縮機構である。圧縮機構はモータMにより駆動され、冷媒を圧縮して車両用空気調和装置の冷媒回路内に吐出する。そして、モータハウジング4には、これも冷媒回路の一部を構成するエバポレータ(吸熱器とも称される)から吸入された低温のガス冷媒が流通する。そのため、モータハウジング4内は冷却されている。そして、インバータ収容部8は、モータハウジング4に形成された隔壁によりモータMが収容されるモータハウジング4内と区画されており、この隔壁も低温のガス冷媒により冷却される。
 (1)インバータ装置3
 前記インバータ装置3は、三相のインバータ回路9の各相の上下アームを構成するIGBT(MOSFETでもよい)から成る6個のスイッチング素子13~18と(図3)、プリント配線に制御回路19が実装された制御基板21と、後述するバッテリ24、制御基板21、各スイッチング素子13~18、及び、モータM間の配線を行うための配線部材としてのバスバーアセンブリ22と(図3)、フィルタ基板23を備え、直流電源としての車両のバッテリ24(図4)から給電される直流電力を三相交流電力に変換して、前記モータMのステータコイル(図示せず)に給電するものである。
 (2)インバータ装置3の電気回路
 先ず、図4を用いてインバータ装置3の電気回路を説明する。26はバッテリ24の正極側(+)にLISN(疑似電源回路網)を介して接続された正極側経路、27はバッテリ24の負極側(-)にLISNを介して接続された負極側経路であり、これら正極側経路26と負極側経路27にはEMIフィルタ28と平滑コンデンサ29が接続されている。
 上記EMIフィルタ28は、正極側経路26と負極側経路27間に接続されたXコンデンサ31と、このXコンデンサ31の後段の正極側経路26に接続されたディファレンシャルモードコイル32と、このディファレンシャルモードコイル32の後段に接続されたコモンモードコイル33と、このコモンモードコイル33の後段において、正極側経路26及び負極側経路27とハウジング2間にそれぞれ接続されたYコンデンサ36及びYコンデンサ34から構成されている。
 そして、これらEMIフィルタ28と平滑コンデンサ29はフィルタ基板23に配置されている。上記Xコンデンサ31はディファレンシャルモードノイズを低減するためのコンデンサであり、Yコンデンサ34、36はコモンモードノイズを低減するためのコンデンサである。
 尚、ハウジング2は車体37(GND)に接続されている。そして、ハウジング2がインバータ装置3の基準電位導体となる。
 (2-1)ノーマルモードコイル40、三相コモンモードコイル41、及び、フェライトコア42
 また、平滑コンデンサ29の後段の正極側経路26及び負極側経路27にはインバータ回路9が接続されており、インバータ回路9の後述する中間経路51U~51WとモータMの間には、何れもノイズ低減用の素子としてのノーマルモードコイル40と、三相コモンモードコイル41と、フェライトコア42が順次接続されている。このノーマルモードコイル40や三相コモンモードコイル41は主に低周波のインピーダンスを増加させ、フェライトコア42は高周波のインピーダンスを増加させる。フェライトコア42は後述する出力経路56U~56Wの周囲に配置するものであるが、本発明では係る配置も接続と称する。また、ノーマルモードコイル40は実施例では出力経路56U~56Wの全てにそれぞれ接続されているものとする。
 (2-2)還流コンデンサ43、44
 更に、インバータ回路9と平滑コンデンサ29の間の正極側経路26及び負極側経路27とハウジング2間には、コモンモード電流を還流させるためのコンデンサで構成されたノイズ低減用の素子としての還流コンデンサ43、44が接続されている。この場合、還流コンデンサ43が正極側経路26とハウジング2(基準電位導体)間に接続され、還流コンデンサ44が負極側経路27とハウジング2間に接続される。
 そして、これら還流コンデンサ43、44と、前述したノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42は、実施例ではバスバーアセンブリ22に配置されている。尚、図4中46で示す容量はインバータ回路9とハウジング2間の寄生容量を示し、47で示す容量はモータMとハウジング2間の寄生容量を示している。
 (2-3)インバータ回路9
 次に、図5にはインバータ回路9の電気回路と制御基板21を示している。インバータ回路9は、U相インバータ48U、V相インバータ48V、W相インバータ48Wを有しており、各相インバータ48U~48Wは、それぞれ前述した上アーム側のスイッチング素子(上アームスイッチング素子と称す)13~15と、下アーム側のスイッチング素子(下アームスイッチング素子と称す)16~18を個別に有している。更に、各スイッチング素子13~18には、それぞれフライホイールダイオード49が逆並列に接続されている。
 そして、インバータ回路9の上アームスイッチング素子13~15の高電位側端子は正極側経路26に接続されており、下アームスイッチング素子16~18の低電位側端子は負極側経路27に接続されている。U相インバータ48Uの上アームスイッチング素子13の低電位側端子と下アームスイッチング素子16の高電位側端子は中間経路51Uにて接続され、この中間経路51Uが出力経路56UによってモータMのU相のステータコイルに接続される。
 また、V相インバータ48Vの上アームスイッチング素子14の低電位側端子と下アームスイッチング素子17の高電位側端子は中間経路51Vにて接続され、この中間経路51Vが出力経路56VによってモータMのV相のステータコイルに接続される。更に、W相インバータ48Wの上アームスイッチング素子15の低電位側端子と下アームスイッチング素子18の高電位側端子は中間経路51Wにて接続され、この中間経路51Wが出力経路56WによってモータMのW相のステータコイルに接続される。そして、前述したノーマルモードコイル40や三相コモンモードコイル41、フェライトコア42は中間経路51U~51WとモータMの間に位置する出力経路56U~56W中に設けられる。尚、フェライトコア42は出力経路56U~56Wについて全相一括で配置しているが、各相の出力経路56U~56Wの周囲にそれぞれ別個に配置してもよい。
 (2-4)制御基板21
 一方、制御基板21の制御回路19はプロセッサを有するマイクロコンピュータから構成されており、車両のECUから回転数指令値を入力し、モータMから相電流を入力して、これらに基づき、インバータ回路9の各上下アームスイッチング素子13~18のON/OFF状態を制御する。具体的には、各上下アームスイッチング素子13~18のゲート端子に印加するゲート電圧(駆動信号)を制御し、各相の上下アームスイッチング素子13~18をそれぞれ接続する中間経路51U~51Wの電圧(相電圧)を三相交流出力とし、出力経路56U~56Wを介してモータMの各相のステータコイルに印加することで当該モータMを駆動する。
 (2-5)スナバ回路52
 ここで、実施例では正極側経路26と負極側経路27間に渡ってノイズ低減用の素子としてのスナバ回路52が接続されている。具体的にはスナバ回路52の一端は、図5に示す如くU相インバータ48Uの上アームスイッチング素子13の高電位側端子と共に正極側経路26に接続され、他端は下アームスイッチング素子16の低電位側端子と共に負極側経路27に接続されている。尚、この実施例のスナバ回路52は、コンデンサCから構成された一括スナバ回路の一つであるCスナバ回路であり、このコンデンサCが正極側経路26と負極側経路27間に渡って接続されている。
 スナバ回路52は、上下アームスイッチング素子13~18のターンオフ時に発生するサージ電圧によるエネルギーを消費させる。このスナバ回路52においてサージ電圧によるエネルギーを消費させることで、各上下アームスイッチング素子13~18のドレイン-ソース間(コレクタ-エミッタ間)に発生する高周波のサージ電圧を低減することができ、モータMとハウジング2との間で生じるコモンモード電流を抑制し、ノイズ(主にラジオノイズ)を低減することができる。
 そして、このスナバ回路52のコンデンサCも実施例ではバスバーアセンブリ22に配置されている。これらスナバ回路52のコンデンサCや、ノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42、還流コンデンサ43、44をバスバーアセンブリ22に配置することで、制御基板21にそれらを実装する必要が無くなり、制御基板21の寸法を縮小することができる。また、スナバ回路52をバスバーアセンブリ22に配置することにより、よりスイッチング素子13~18に近接してスナバ回路52を配置することができるようになり、ノイズ減衰効果を高めることもできるようになる。
 図3において57~59はバスバーアセンブリ22に設けられた導電性金属から成るバスバーである。これらバスバー57~59は、モータハウジング4の隔壁から引き出された引出端子61~63に三枚の端子板64を介してそれぞれ接続される。そして、これらバスバー57~59、端子板64、及び、引出端子61~63が前述した出力経路56U~56Wの一部を構成することになる。
 また、前述した正極側経路26と負極側経路27は、モータハウジング4に取り付けられたHVコネクタ66を介して前述したバッテリ24からの電源ハーネスに接続されることになる。この場合、フィルタ基板23の端子板67がHVコネクタ66を介して電源ハーネスに導通接続され、制御基板21側の図示しない端子板がバスバーアセンブリ22のバスバー68、69に接続される。即ち、バスバー69は正極側経路26の一部を構成し、バスバー68は負極側経路27の一部を構成することになる。
 また、前述したインバータ回路9の各上下アームスイッチング素子13~18は、モータハウジング4の隔壁に密着され、それと熱伝導関係に配置される。隔壁は前述した如く低温のガス冷媒により冷却されているので、発熱を伴う各上下アームスイッチング素子13~18は隔壁から冷却されることになる。
 (3)インバータ装置3の組み付け
 次に、インバータ装置3をモータハウジング4に組み付ける手順について説明する。先ず、各上下アームスイッチング素子13~18を図3に示すようなかたちで前述したモータハウジング4の隔壁に配置する。次に、バスバーアセンブリ22を図3に矢印で示すようなかたちで各上下アームスイッチング素子13~18に被せる。このとき、各上下アームスイッチング素子13~18の各端子71を、バスバーアセンブリ22の貫通孔72に進入させてその先端をバスバーアセンブリ22より突出させる。
 次に、制御基板21を図3に矢印で示すようにバスバーアセンブリ22に被せる。このとき、各上下アームスイッチング素子13~18の各端子71を、制御基板21の各接続孔73に進入させる。また、バスバーアセンブリ22の各端子74を制御基板21の接続孔76に進入させる。このようにして、上下アームスイッチング素子13~18を最もモータハウジング4の隔壁側とし、その上にバスバーアセンブリ22、更にその上に制御基板21が積層されたかたちで配置される。尚、バスバーアセンブリ22の各バスバー57~59、68,69は制御基板21の外側に位置する。
 このように制御基板21、バスバーアセンブリ22、及び、各上下アームスイッチング素子13~18をインバータ収容部8内に積層されたかたちで配置した後、ネジ77、78で制御基板21とバスバーアセンブリ22をモータハウジング4に締結する。その際、ネジ78は制御基板21のネジ孔79とバスバーアセンブリ22のネジ孔81、81A、81Bを貫通し、制御基板21とバスバーアセンブリ22をモータハウジング4に共締めするかたちとなる。また、これにより各ネジ78とネジ孔81、81A、81Bはモータハウジング4(ハウジング2)と導通し、同電位となる。
 その後、各端子71、74を制御基板21やバスバーアセンブリ22の回路に半田付けし、電気的に接続する。また、引出端子61~63とバスバー57~59を端子板64で接続し、フィルタ基板23をバスバー68、69に接続し、端子板67でフィルタ基板23をHVコネクタ66に接続する。
 (4)バスバーアセンブリ22の構成
 次に、図6~図11を参照しながら実施例のバスバーアセンブリ22の構造について詳述する。図3に示す如く、この実施例では前述したノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42、還流コンデンサ43、44、スナバ回路52のコンデンサC(何れもノイズ低減用の素子)がバスバーアセンブリ22に配置されている。但し、以下の説明で使用する図6~図11では、各バスバー57~59、68、69と各素子との位置関係を分かりやすくするため、各素子の配置を分けて図示している。
 即ち、図6、図7は還流コンデンサ43、44の配置を示し、図8、図9はノーマルモードコイル40と三相コモンモードコイル41とフェライトコア42の配置を示し、図10、図11はスナバ回路52のコンデンサCの配置を示しているが、この実施例では実際には図3に示す如くそれらが全てバスバーアセンブリ22に設けられているものとする。
 (4-1)還流コンデンサ43、44の配置
 先ず、図6、図7について説明する。図6は還流コンデンサ43、44の配置を示すバスバーアセンブリ22の斜視図、図7は図6のバスバーアセンブリ22を透視した平面図をそれぞれ示している。バスバーアセンブリ22は、前述したバスバー57~59、68、69を絶縁性の硬質樹脂82によりモールドした構成とされている。このようにバスバー57~59、68、69を樹脂モールドしてバスバーアセンブリ22とすることで、絶縁を確保しながら耐震性も担保することができるようになる。
 各バスバー57~59、68、69は導電性の金属板から構成されており、大部分は硬質樹脂82内に埋設され、それらの一端部がバスバーアセンブリ22の縁部において垂直に起立した状態で硬質樹脂82から外部に突出し、他端部や途中の箇所から前述した端子74が垂直に起立した状態で硬質樹脂82から外部に突出している。そして、前述した如くバスバー57~59は出力経路56U~56Wの一部を構成する。また、バスバー69は前述した如く正極側経路26の一部を構成し、バスバー68は負極側経路27の一部を構成する。
 更に、実施例では前述した還流コンデンサ43がバスバーアセンブリ22の端部に位置するネジ孔81Aとバスバー69の間に設けられ、それらに導通されると共に、還流コンデンサ44がバスバーアセンブリ22の中央部に位置するネジ孔81Bとバスバー68の間に設けられ、それらに導通される。ネジ孔81A、81Bは前述した如くハウジング2に導通されているので、これにより、還流コンデンサ43は図4に示す如く正極側経路26とハウジング2(基準電位導体)間に接続され、還流コンデンサ44は負極側経路27とハウジング2間に接続されることになる。この場合、各還流コンデンサ43、44をバスバーアセンブリ22の硬質樹脂82内にモールドして埋設してもよく、硬質樹脂82の表面に実装するかたちとしてもよい。
 (4-2)ノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42の配置
 次に、図8、図9について説明する。図8はノーマルモードコイル40と三相コモンモードコイル41とフェライトコア42の配置を示すバスバーアセンブリ22の斜視図、図9は図8のバスバーアセンブリ22を透視した平面図をそれぞれ示している。バスバーアセンブリ22のバスバー57~59、68、69の構成、及び、それらを硬質樹脂82でモールドした構造は前述した通りである。
 そして、実施例では前述したノーマルモードコイル40がバスバー57~59の起立した一端部側に接続されており、フェライトコア42はバスバー57~59の起立した一端部の周囲に渡って設けられ、三相コモンモードコイル41はノーマルモードコイル40とフェライトコア42の間に設けられている。前述した如くバスバー57~59は出力経路56U~56Wの一部を構成すると共に、出力経路56U~56Wは前述した如く中間経路51U~51WとモータMの間に位置するので、これにより、ノーマルモードコイル40と三相コモンモードコイル41とフェライトコア42は中間経路51U~51WとモータMの間に接続されることになる。この場合、ノーマルモードコイル40、三相コモンモードコイル41、及び、フェライトコア42をバスバーアセンブリ22の硬質樹脂82内にモールドして埋設してもよく、硬質樹脂82の表面に実装するかたちとしてもよい。
 (4-3)スナバ回路52のコンデンサCの配置
 次に、図10、図11について説明する。図10はスナバ回路52のコンデンサCの配置を示すバスバーアセンブリ22の斜視図、図11は図10のバスバーアセンブリ22を透視した平面図をそれぞれ示している。同様にバスバーアセンブリ22のバスバー57~59、68、69の構成、及び、それらを硬質樹脂82でモールドした構造は前述した通りである。
 そして、実施例では前述したスナバ回路52のコンデンサCがバスバー68、69の起立した一端部側に渡って接続されている。前述した如くバスバー69は正極側経路26の一部を構成し、バスバー68は負極側経路27の一部を構成するので、これにより、コンデンサCは正極側経路26と負極側経路27に渡って接続されることになる。この場合、コンデンサCをバスバーアセンブリ22の硬質樹脂82内にモールドして埋設してもよく、硬質樹脂82の表面に実装するかたちとしてもよい。
 尚、実施例(図3、図4)ではノイズ低減用の素子としてのノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42、還流コンデンサ43、44、スナバ回路52のコンデンサCの全てをバスバーアセンブリ22に配置するようにしたが、それに限らず、還流コンデンサ43、44のみを図6、図7のようにバスバーアセンブリ22に配置してもよく、ノーマルモードコイル40と三相コモンモードコイル41とフェライトコア42のみを図8、図9のようにバスバーアセンブリ22に配置してもよい。図8、図9の場合においても、ノーマルモードコイル40のみをバスバーアセンブリ22に配置してもよく、三相コモンモードコイル41のみをバスバーアセンブリ22に配置してもよく、フェライトコア42のみをバスバーアセンブリ22に配置するようにしてもよい。
 また、スナバ回路52のコンデンサCのみを図10、図11のようにバスバーアセンブリ22に配置してもよく、それら(還流コンデンサ43及び44、ノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42、スナバ回路52のコンデンサC)のうちの二つを組み合わせてバスバーアセンブリ22に配置するようにしてもよい。
 (5)ノイズ低減効果
 次に、図12、図13を参照しながら、本発明によるノイズ低減効果について説明する。図12は前述したノーマルモードコイル40、三相コモンモードコイル41、フェライトコア42、還流コンデンサ43、44、スナバ回路52を設けないインバータ装置100の電気回路図を示している。尚、この図において図4と同一符号で示すものは同一若しくは同様の機能を奏するものとする。
 この図中、N1で示す矢印はモータMから寄生容量47を介してハウジング2に流出するコモンモード電流(ノイズ)、N2で示す矢印はインバータ回路9から寄生容量46を介してハウジング2に流出するコモンモード電流(ノイズ)、N3で示す矢印はハウジング2からYコンデンサ34、36を介してインバータ回路9の上下アームスイッチング素子13~18に還流するコモンモード電流(ノイズ)、N9で示す矢印はHVコネクタ66のシールド線を通って正極側(+)及び負極側(-)のLISN26、27に流入するコモンモード電流(ノイズ)をそれぞれ示している。また、N4で示す矢印はハウジング2から車体37に流出するコモンモード電流(ノイズ)、N5~N8で示す矢印は、車体37からLISN27、LISN26を経由してEMIフィルタ28に流入するコモンモード電流(ノイズ)を示している。尚、図中の矢印は単一方向のみで示しているが、実際のコモンモード電流の流れは単純ではなく、各場所において双方向で流出/流入している。
 図12のインバータ装置100の場合、モータMから寄生容量47を介して流出するコモンモード電流(N1)が大きくなる。また、このコモンモード電流とインバータ回路9からハウジング2に流出するコモンモード電流(N2)はYコンデンサ34、36を介してノイズ源であるインバータ回路9の上下アームスイッチング素子13~18に還流するが(N3)、モータMやインバータ回路9からYコンデンサ34、36は離れているため、還流経路が長くなり、Yコンデンサ34、36のフィルタ効果(コモンモード電流を還流させる効果)が十分に得られなくなる。
 一方、図4のように還流コンデンサ43、44を配置することにより、モータMから寄生容量47を介して流出するコモンモード電流(N1)とインバータ回路9からハウジング2に流出するコモンモード電流(N2)のうちの多くは、図13に矢印N10で示すように、還流コンデンサ43、44を介してノイズ源であるインバータ回路9の上下アームスイッチング素子13~18に還流するようになる。この還流コンデンサ43、44は、フィルタ基板23よりもモータMやインバータ回路9の上下アームスイッチング素子13~18に近い位置に設けられたバスバーアセンブリ22に配置されているので、還流経路が短くなり、還流コンデンサ43、44において高いフィルタ効果を得ることができるようになる。これにより、従来の如く電源入力部に大型のコモンモードコイルを挿入すること無く、ノイズを抑制することが可能となり、インバータ一体型電動圧縮機1の小型化を図りながら、効果的にノイズを抑制することができるようになる。
 また、実施例ではインバータ回路9の上下アームスイッチング素子13~18とモータM間のバスバーアセンブリ22に三相コモンモードコイル41とフェライトコア42を配置したので、インバータ回路9の上下アームスイッチング素子13~18を繋ぐ各中間経路51U~51W、各出力経路56U~56W、及び、モータMを経てハウジング2に至る経路のインピーダンスが増加し、寄生容量47を経由して流出するコモンモード電流(ノイズ。矢印N1で示す)は小さくなる。また、実施例ではインバータ回路9の上下アームスイッチング素子13~18とモータM間のバスバーアセンブリ22にノーマルモードコイル40も配置しているので、スイッチングサージを効果的に抑制することが可能となる。これらによっても、大型のEMIフィルタ(コモンモードコイル)を電源入力部に挿入する必要がなくなり、インバータ一体型電動圧縮機1の小型化を図りながら、効果的にノイズの抑制を図ることが可能となる。
 特に、ノーマルモードコイル40は、コモンモードコイルと異なり、三相線の結合が不要なことから、別々に配置することが可能であり、バスバーアセンブリ22に配置する際の制約が少なく、コモンモードコイルの場合よりも小型化し易い。尚、ノーマルモードコイル40は、実施例の如く出力経路56U~56W(三相)の全てに入れなくとも、例えば二相のみに入れてもよい。それによっても、ノイズ低減効果が得られることから、使い勝手がよいという利点がある。
 更に、実施例では、ノイズを低減するためのスナバ回路52のコンデンサCをバスバーアセンブリ22に配置しているので、ノイズ(主にラジオノイズ)を効果的に低減することができるようになる。この場合、制御基板21上にスナバ回路を搭載するものでは無く、バスバーアセンブリ22に配置することで立体的な配置となり(制御基板21とバスバーアセンブリ22、上下アームスイッチング素子13~18は積層されているため)、沿面距離を十分に確保しながら小型化を図ることが可能となる。
 (6)スナバ回路52の構成例
 尚、実施例で示したスナバ回路52はコンデンサCのみを正極側経路26と負極側経路27間に接続した一括スナバ回路のCスナバ回路で説明したが、スナバ回路52としては図14に示すような種々の構成が考えられる。この図中右側は一括スナバ回路の例を示し、右から二番目が前述した実施例で示したCスナバ回路である。一括スナバ回路は正極側経路26と負極側経路27間に接続されるものであるが、その他に図中右端に示すRCDスナバ回路が考えられる。このRCDスナバ回路は、ダイオードDと抵抗Rの並列回路と、この並列回路に直列接続されたコンデンサCから構成される。ダイオードDはコンデンサC方向が順方向とされ、並列回路側が正極側経路26に、コンデンサC側が負極側経路27に接続される。
 また、図中左側は個別スナバ回路の例を示している。個別スナバ回路は各上下アームスイッチング素子13~18に対して個々に接続されるものである。この個別スナバ回路の例としてはRCスナバ回路(図14の左端)、充放電形RCDスナバ回路(図14の左から二番目)、放電阻止形RCDスナバ回路(図14の左から三番目)がある。
 RCスナバ回路は抵抗RとコンデンサCの直列回路から成り、上下アームスイッチング素子13~18のコレクタとエミッタ間に渡ってそれぞれ接続される。充放電形RCDスナバ回路は、ダイオードDと抵抗Rの並列回路と、この並列回路に直列接続されたコンデンサCから構成されたスナバ回路52が個々の上下アームスイッチング素子13~18のコレクタとエミッタ間に渡ってそれぞれ接続される。この場合、ダイオードDはコンデンサC方向が順方向とされ、並列回路側がコレクタに、コンデンサC側がエミッタに接続される。
 放電阻止形RCDスナバ回路は、個々の上下アームスイッチング素子13~18のコレクタとエミッタ間に渡ってそれぞれ接続されたコンデンサCとダイオードDの直列回路と、上アームスイッチング素子13~15のコンデンサCとダイオードDの間と負極側経路27に渡って接続された抵抗Rと、下アームスイッチング素子16~18のダイオード3とコンデンサCの間と正極側経路26に渡って接続された抵抗Rから成る。
 この場合、上アームスイッチング素子13~15ではコンデンサCがコレクタに、ダイオードDがエミッタに接続され、ダイオードDはエミッタ側が順方向とされる。また、下アームスイッチング素子16~18ではダイオードDがコレクタにコンデンサCがエミッタに接続され、ダイオードDはコンデンサC側が順方向とされる。何れのスナバ回路52も、上下アームスイッチング素子13~18のターンオフ時に発生するサージ電圧を消費させるものである。
 尚、実施例では配線部材として、バスバー57~59、68、69を硬質樹脂82でモールドしたバスバーアセンブリ22を採用したが、請求項1~請求項3の発明では樹脂でモールドしないバスバーであってもよい。また、実施例で示したインバータ装置3やハウジング2(モータハウジング4)の形状、構造は、それに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能であることは云うまでもない。
 1 インバータ一体型電動圧縮機
 2 ハウジング
 3 インバータ装置
 4 モータハウジング
 8 インバータ収容部
 9 インバータ回路
 13~18 上下アームスイッチング素子
 21 制御基板
 22 バスバーアセンブリ(配線部材)
 24 バッテリ(直流電源)
 26 正極側経路
 27 負極側経路
 40 ノーマルモードコイル
 41 三相コモンモードコイル
 42 フェライトコア
 43、44 還流コンデンサ
 51U~51W 中間経路
 52 スナバ回路
 57~59、68、69 バスバー
 82 硬質樹脂
 C コンデンサ
 D ダイオード
 M モータ
 R 抵抗

Claims (6)

  1.  スイッチング素子を有して三相交流出力をモータに印加するインバータ装置を備えたインバータ一体型電動圧縮機において、
     前記スイッチング素子のスイッチングを制御する制御基板と、
     直流電源、前記制御基板、前記スイッチング素子、及び、前記モータの配線を行うために設けられた配線部材とを備え、
     該配線部材に、ノイズ低減用の素子を配置したことを特徴とするインバータ一体型電動圧縮機。
  2.  前記制御基板、前記配線部材、及び、前記スイッチング素子は積層されたかたちで設けられていることを特徴とする請求項1に記載のインバータ一体型電動圧縮機。
  3.  前記ノイズ低減用の素子は、
     ノイズを低減するためのスナバ回路、
     流出したコモンモード電流をノイズ源に還流させるためのコンデンサ、
     前記スイッチング素子と前記モータ間に接続されたノーマルモードコイル、
     前記スイッチング素子と前記モータ間に接続された三相コモンモードコイル、
     前記スイッチング素子と前記モータ間に接続されたフェライトコア、
     のうちの何れか、又は、それらの組み合わせ、若しくは、それらの全てであることを特徴とする請求項1又は請求項2に記載のインバータ一体型電動圧縮機。
  4.  前記スナバ回路は、個別スナバ回路、又は、一括スナバ回路であることを特徴とする請求項3に記載のインバータ一体型電動圧縮機。
  5.  前記スナバ回路は、コンデンサ、或いは、コンデンサと抵抗、若しくは、コンデンサと抵抗とダイオードによる構成であることを特徴とする請求項3又は請求項4に記載のインバータ一体型電動圧縮機。
  6.  前記配線部材は、バスバーを樹脂モールドして成るバスバーアセンブリであることを特徴とする請求項1乃至請求項5のうちの何れかに記載のインバータ一体型電動圧縮機。
PCT/JP2021/042241 2020-11-19 2021-11-17 インバータ一体型電動圧縮機 WO2022107810A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180076526.6A CN116897246A (zh) 2020-11-19 2021-11-17 逆变器一体型电动压缩机
JP2022563801A JPWO2022107810A1 (ja) 2020-11-19 2021-11-17
US18/035,044 US20230402905A1 (en) 2020-11-19 2021-11-17 Inverter-integrated electric compressor
DE112021004790.6T DE112021004790T5 (de) 2020-11-19 2021-11-17 Inverterintegrierter elektrischer Kompressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-192125 2020-11-19
JP2020192125 2020-11-19

Publications (1)

Publication Number Publication Date
WO2022107810A1 true WO2022107810A1 (ja) 2022-05-27

Family

ID=81708936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/042241 WO2022107810A1 (ja) 2020-11-19 2021-11-17 インバータ一体型電動圧縮機

Country Status (5)

Country Link
US (1) US20230402905A1 (ja)
JP (1) JPWO2022107810A1 (ja)
CN (1) CN116897246A (ja)
DE (1) DE112021004790T5 (ja)
WO (1) WO2022107810A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324903A (ja) * 2002-04-26 2003-11-14 Denso Corp 車両用インバータ一体型モータ
JP2014058910A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 車載用電動圧縮機
JP2016160802A (ja) * 2015-02-27 2016-09-05 株式会社豊田自動織機 電動圧縮機

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324903A (ja) * 2002-04-26 2003-11-14 Denso Corp 車両用インバータ一体型モータ
JP2014058910A (ja) * 2012-09-18 2014-04-03 Toyota Industries Corp 車載用電動圧縮機
JP2016160802A (ja) * 2015-02-27 2016-09-05 株式会社豊田自動織機 電動圧縮機

Also Published As

Publication number Publication date
US20230402905A1 (en) 2023-12-14
JPWO2022107810A1 (ja) 2022-05-27
CN116897246A (zh) 2023-10-17
DE112021004790T5 (de) 2023-07-27

Similar Documents

Publication Publication Date Title
EP2398136B1 (en) Inverter device and inverter-integrated electric compressor
US11025141B2 (en) On-board electric compressor with a motor and noise reducing unit with inverter device having a damping unit reducing Q value of low pass filter circuit
JP3760887B2 (ja) 車両用インバータ一体型モータ
JP2809095B2 (ja) インバータ装置
US8257060B2 (en) Inverter-integrated electric compressor
US10374523B2 (en) Power conversion device
JP2004190547A (ja) インバータ一体型電動コンプレッサ及びその組み立て方法
EP3416189A1 (en) Semiconductor module and inverter device
WO2022107809A1 (ja) 電力変換装置
JP2004190525A (ja) 車両用電動コンプレッサ
JP4055643B2 (ja) インバータ装置
WO2022107810A1 (ja) インバータ一体型電動圧縮機
US11139752B2 (en) Power conversion device with wiring having different parasitic inductances
CN115516762A (zh) 滤波装置及电力变换装置
JP2004031590A (ja) 半導体装置
US20220360164A1 (en) Capacitor module and power conversion device
CN110754033B (zh) 电力变换装置
JP7167328B2 (ja) 電力変換装置
JP7496434B2 (ja) 電力変換装置
JP7035543B2 (ja) 電力変換器
CN115699550A (zh) 噪声滤波器及使用该噪声滤波器的电力转换装置
WO2023090263A1 (ja) 電力変換装置及びその製造方法
JP6910412B2 (ja) 電力変換装置
JPH11171413A (ja) エレベータの制御装置
JP2023137607A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022563801

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180076526.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21894684

Country of ref document: EP

Kind code of ref document: A1