WO2022107601A1 - Inkjet ink composition, light-converting layer, and color filter - Google Patents

Inkjet ink composition, light-converting layer, and color filter Download PDF

Info

Publication number
WO2022107601A1
WO2022107601A1 PCT/JP2021/040513 JP2021040513W WO2022107601A1 WO 2022107601 A1 WO2022107601 A1 WO 2022107601A1 JP 2021040513 W JP2021040513 W JP 2021040513W WO 2022107601 A1 WO2022107601 A1 WO 2022107601A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
particles
acrylate
meth
group
Prior art date
Application number
PCT/JP2021/040513
Other languages
French (fr)
Japanese (ja)
Inventor
浩一 延藤
良夫 青木
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020237014369A priority Critical patent/KR102557679B1/en
Priority to JP2022503524A priority patent/JP7151929B1/en
Priority to CN202180067336.8A priority patent/CN116249756A/en
Publication of WO2022107601A1 publication Critical patent/WO2022107601A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to an ink jet ink composition, a light conversion layer, and a color filter.
  • Patent Document 1 discloses an ink jet ink composition containing luminescent nanocrystal particles made of core / shell type semiconductor nanocrystals, and a wavelength conversion member made of a cured film of the composition.
  • Luminescent nanocrystal particles such as semiconductor nanocrystals are prone to deterioration due to light irradiation in the presence of water vapor, oxygen, etc.
  • the light conversion layer is heated by strong light from the backlight, there is a problem that the luminescent nanocrystal particles are deteriorated by light irradiation at a high temperature and the light emission intensity is lowered.
  • a technique for enhancing the light resistance of the obtained cured film in a high temperature environment by adding a hindered amine compound to a curable composition containing core / shell type semiconductor nanocrystals has been developed. It has been proposed (see Patent Document 2).
  • Semiconductor nanocrystals having a perovskite-type crystal structure are not only relatively easy to control the particle size, but also the emission wavelength can be arbitrarily changed depending on the type of halogen element, and the half-value width of the peak width of the emission spectrum is set. It also has the advantage of being small.
  • the problem to be solved by the present invention is an ink composition for inkjet containing semiconductor nanocrystals made of metal halide, which can form a cured film having excellent light resistance at high temperatures, and light conversion using the ink composition. It is an object of the present invention to provide a layer and a color filter.
  • the present inventors have obtained a cured film having excellent light resistance at high temperatures when the hindered amine compound has a specific structure in an ink composition for inkjet containing semiconductor nanocrystals made of metal halide. We found that it can be formed and came up with the present invention.
  • the ink composition for inkjet of the present invention has a structure represented by the following formula (1), which is a luminescent particle containing semiconductor nanocrystal particles made of metal halide, a photopolymerizable compound, and a photopolymerization initiator. It is characterized by containing a NOR-type hindered amine compound.
  • R 1 to R 5 each independently represent a hydrocarbon group, and * indicates a bond.
  • the melting point of the NOR type hindered amine compound is 70 ° C. or higher.
  • the molecular weight of the NOR-type hindered amine compound is preferably 1000 or more.
  • the luminescent particles are particles having a surface layer formed on the surface of the semiconductor nanocrystal particles, and the surface layer is a silane having a binding group and a hydrolyzable silyl group that can be bonded to the surface of the semiconductor nanocrystal particles. It preferably contains a polymer of the compound.
  • the luminescent particles further include an inner space capable of accommodating the semiconductor nanocrystal particles and hollow particles having pores communicating with the inner space, and the semiconductor nanocrystal particles are accommodated in the inner space. You may.
  • the SP value of the photopolymerizable compound is preferably 10.0 or less. It is preferable that the photopolymerizable compound has a cyclic structure.
  • the ink composition preferably further contains light-scattering particles.
  • the ink composition preferably further contains a polymer dispersant.
  • the viscosity of the ink composition at 30 ° C. is preferably 7 to 12 mPa ⁇ s.
  • Another aspect of the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions emit light including a cured product of the ink jet ink composition.
  • the present invention relates to an optical conversion layer having a sex pixel portion.
  • Another aspect of the present invention relates to a color filter including the above-mentioned optical conversion layer.
  • an ink jet ink composition capable of forming a cured film having excellent light resistance at high temperatures.
  • an optical conversion layer and a color filter using the ink composition for inkjet.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
  • the ink composition includes luminescent particles containing semiconductor nanocrystal particles made of metal halide (hereinafter, also simply referred to as “nanocrystal particles”), a photopolymerizable compound, a photopolymerization initiator, and a description below. It contains a NOR-type hindered amine compound represented by the formula (1).
  • the ink composition is, for example, an ink composition for forming an optical conversion layer (for example, for forming a color filter pixel portion) used for forming an optical conversion layer (pixel portion of the optical conversion layer) of a color filter or the like. May be.
  • the ink composition is a composition (inkjet ink) used in an ultraviolet curable inkjet method.
  • Luminous particles include nanocrystalline particles.
  • Nanocrystal particles are nano-sized crystals (nanocrystal particles) composed of metal halides, which absorb excitation light and emit fluorescence or phosphorescence.
  • a luminescent nanocrystal made of a metal halide for example, a quantum dot having a perovskite-type crystal structure described later is widely known.
  • the nanocrystal particles are, for example, crystals having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope.
  • the nanocrystal particles can be excited by, for example, light energy or electrical energy of a predetermined wavelength and emit fluorescence or phosphorescence.
  • the nanocrystal particles made of metal halide are compounds represented by the general formula: A a M b X c .
  • A is at least one of an organic cation and a metal cation.
  • the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation.
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is at least one anion.
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
  • a is 1 to 7
  • b is 1 to 4, and c is 3 to 16.
  • the emission wavelength (emission color) of such nanocrystal particles can be controlled by adjusting the particle size, the type of anion constituting the X-site, and the abundance ratio.
  • a a M b X c are specifically AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX 5 . , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , A 7 M 3 X 16 are preferred.
  • A is at least one of an organic cation and a metal cation.
  • M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 ⁇ M 2 ⁇ ), three kinds of metal cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ ), and four kinds of metals. Examples thereof include cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ M 4 ⁇ ).
  • Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations.
  • X is an anion containing at least one halogen.
  • halogen anion X 1
  • X 2 ⁇ halogen anion
  • the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
  • the compound composed of the metal halide represented by the general formula A a M b X c is different from the metal cation used for the M site in order to improve the emission characteristics, and is different from Bi, Mn, Ca, Eu, Sb, Yb. It may be one to which a metal ion such as is added (doped).
  • the compound having a perovskite type crystal structure is adjusted by adjusting its particle size, the type and abundance ratio of the metal cations constituting the M site.
  • the emission wavelength can be controlled by adjusting the type and abundance ratio of the anions constituting the X-site, which is particularly preferable for use as a luminescent nanocrystal. Since this adjustment operation can be easily performed, the perovskite type semiconductor nanocrystal has a feature that the emission wavelength is easier to control and therefore the productivity is higher than that of the conventional core-shell type semiconductor nanocrystal. ing.
  • compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable.
  • A, M and X in the formula are as described above.
  • the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
  • A is Cs, Rb, K, Na, Li
  • M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 ⁇ M 2 ⁇ ), and X is preferably a chloride ion, a bromide ion, or an iodide ion.
  • M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
  • nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , and CHN 2 H 4 PbBr 3 are described as nanocrystal particles. It is preferable because it has excellent light intensity and quantum efficiency. Further, nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3, CsEuBr 3 , and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
  • the nanocrystal particles may be red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and may emit light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green luminescent crystal that emits light, or may be a blue luminescent crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm. Further, in one embodiment, a combination of these nanocrystal particles may be used. The wavelength of the emission peak of the nanocrystal particles can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
  • the red-emitting nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • 628 nm or more 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more.
  • Green-emitting nanocrystal particles have emission peaks in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
  • Blue-emitting nanocrystal particles have emission peaks in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
  • the shape of the nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the nanocrystal particles include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disc shape, a branch shape, a net shape, a rod shape and the like.
  • the shape of the nanocrystal particles is preferably a rectangular parallelepiped shape, a cube shape, or a spherical shape.
  • the average particle diameter (volume average diameter) of the nanocrystal particles is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less.
  • the average particle size of the nanocrystal particles is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more. Nanocrystal particles having such an average particle size are preferable because they easily emit light having a desired wavelength.
  • the average particle size of the nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
  • the luminescent particles are preferably particles further comprising a surface layer formed on the surface of the nanocrystal particles.
  • the surface layer preferably contains a polymer of a silane compound having a bondable group and a hydrolyzable silyl group that can be bonded to the surface of the semiconductor nanocrystal particles.
  • the binding group that can be bound to the surface of the nanocrystal particles may be a binding group that binds (coordinates) to a cation contained in the nanocrystal particles.
  • the binding group include a carboxyl group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a boronic acid group and the like. ..
  • the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group.
  • binding groups have a higher affinity for the cations contained in the nanocrystal particles than the hydrolyzable silyl group described above. Therefore, the silane compound can be coordinated with the binding group on the nanocrystal particle side to more easily and surely form nanocrystal particles having a surface layer.
  • the silane compound is formed by a reaction between precursor compounds having a binding group and a hydrolyzable silyl group.
  • the hydrolyzable silyl group can easily form a siloxane bond.
  • As the hydrolyzable silyl group a silanol group and an alkoxysilyl group having 1 to 6 carbon atoms are preferable.
  • a silane compound having a binding group and a hydrolyzable silyl group may be used alone, or two or more kinds may be used in combination.
  • the precursor compound may contain one or more compounds selected from the group consisting of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound.
  • carboxyl group-containing silicon compound examples include, for example, 3- (trimethoxysilyl) propionic acid, 3- (triethoxysilyl) propionic acid, 2-, carboxyethylphenylbis (2-methoxyethoxy) silane, N-. [3- (Trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N' , N'-triacetic acid and the like.
  • amino group-containing silicon compound examples include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N- (2).
  • mercapto group-containing silicon compound examples include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl.
  • the thickness of the surface layer is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm. Luminescent particles having a surface layer having such a thickness can sufficiently enhance the heat stability of the nanocrystal particles.
  • the thickness of the surface layer can be changed by adjusting the number of atoms (chain length) of the linking structure in which the binding group and the hydrolyzable silyl group of the precursor compound are linked.
  • the surface layer comprises mixing a solution containing a raw material compound for nanocrystal particles and a solution containing a precursor compound, and then condensing a hydrolyzable silyl group coordinated with the surface of the precipitated nanocrystal particles.
  • the luminescent particles may further include an inner space containing the nanocrystal particles and hollow particles having pores communicating with the inner space. Since the nanocrystal particles are contained inside the hollow particles, the stability of the luminescent particles with respect to oxygen gas and moisture can be further improved.
  • the hollow particles may have a spherical shape (true spherical shape), an elongated spherical shape (elliptical spherical shape), or a cubic shape (including a rectangular parallelepiped and a cube). Hollow particles can also be referred to as particles having a balloon structure.
  • One nanocrystal particle may be present in the inner space, or a plurality of nanocrystal particles may be present. Further, the inner space may be entirely occupied by one or a plurality of nanocrystal particles, or may be partially occupied.
  • the hollow particles may be any material as long as they can protect the nanocrystal particles. From the viewpoint of ease of synthesis, permeability, cost and the like, the hollow particles are preferably hollow silica particles, hollow alumina particles, hollow titanium oxide particles or hollow polymer particles, and are hollow silica particles or hollow alumina particles. More preferably, hollow silica particles are further preferable.
  • the average outer diameter of the hollow particles is not particularly limited, but is preferably 5 to 300 nm, more preferably 6 to 100 nm, further preferably 8 to 50 nm, and particularly preferably 10 to 25 nm. preferable.
  • the average inner diameter of the hollow silica particles is also not particularly limited, but is preferably 1 to 250 nm, more preferably 2 to 100 nm, still more preferably 3 to 50 nm, and 5 to 15 nm. Is particularly preferable. Hollow particles of this size can sufficiently enhance the heat stability of the nanocrystal particles.
  • the size of the pores is not particularly limited, but is preferably 0.5 to 10 nm, and more preferably 1 to 5 nm. In this case, the solution containing the raw material compound of the nanocrystal particles can be smoothly and surely filled in the inner space.
  • hollow silica particles can also be used for the hollow silica particles.
  • examples of such commercially available products include "SiliNax (registered trademark) SP-PN (b)” manufactured by Nittetsu Mining Co., Ltd.
  • the hollow particles are preferably hollow silica particles from the viewpoint of luminescence and dispersion characteristics in ink and the like, in addition to stabilizing the semiconductor nanocrystal particles.
  • the luminescent particles may further comprise a polymer layer containing a hydrophobic polymer.
  • the polymer layer may be located on the outermost layer of the luminescent particles, including the nanocrystal particles.
  • the polymer layer may be a layer that covers at least a portion of the surface layer.
  • the polymer layer may be a layer that covers at least a portion of the hollow silica.
  • the nanocrystal particles have a polymer layer, high stability to oxygen and moisture can be imparted to the luminescent particles.
  • the ink composition is prepared using the luminescent particles having a polymer layer, the dispersion stability of the luminescent particles can be improved.
  • the polymer layer is provided, the luminescent particles are less likely to aggregate when the ink composition is prepared, and the emission characteristics are less likely to be deteriorated due to the aggregation.
  • the polymer layer is formed by coating the surface of the particles to be coated (hereinafter, also referred to as "mother particles") with a hydrophobic polymer.
  • the polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
  • the non-aqueous solvent is preferably an organic solvent capable of dissolving the hydrophobic polymer, and more preferably if the mother particles can be uniformly dispersed.
  • the hydrophobic polymer can be very easily adsorbed on the mother particles to coat the polymer layer.
  • the non-aqueous solvent is a low dielectric constant solvent. By using a low dielectric constant solvent, the hydrophobic polymer can be strongly adsorbed on the surface of the mother particles and the polymer layer can be coated only by mixing the hydrophobic polymer and the mother particles in the non-aqueous solvent.
  • the polymer layer thus obtained is difficult to be removed from the mother particles even if the luminescent particles are washed with a solvent.
  • the dielectric constant of the non-aqueous solvent is preferably 10 or less, more preferably 6 or less, and particularly preferably 5 or less.
  • Preferred non-aqueous solvents are an aliphatic hydrocarbon solvent and an alicyclic hydrocarbon solvent, and an organic solvent containing at least one of them is preferable.
  • aliphatic hydrocarbon solvent or the alicyclic hydrocarbon solvent examples include n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane and the like. Further, as long as the effect of the present invention is not impaired, a mixed solvent in which at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is mixed with another organic solvent may be used as the non-aqueous solvent. good.
  • organic solvents examples include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate and amyl acetate; acetone, methyl ethyl ketone and methyl isobutyl.
  • Ketone solvents such as ketones, methylamylketones and cyclohexanones
  • alcoholic solvents such as methanol, ethanol, n-propanol, i-propanol, n-butanol and the like can be mentioned.
  • the amount of at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is preferably 50% by mass or more, more preferably 60% by mass or more. preferable.
  • the polymer (P) is a polymer containing a polymerizable unsaturated group soluble in a non-aqueous solvent.
  • the polymer (P) is polymerizable unsaturated, mainly composed of an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms or a fluorine-containing compound (B, C) having a polymerizable unsaturated group.
  • a polymer in which a polymerizable unsaturated group is introduced into a monomer copolymer, an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms, or a fluorine-containing compound having a polymerizable unsaturated group A macromonomer made of a copolymer of a polymerizable unsaturated monomer containing B and C) as a main component can be used.
  • alkyl (meth) acrylate (A) examples include n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isooctyl (meth) acrylate.
  • Examples of the fluorine-containing compound (B) having a polymerizable unsaturated group include methacrylates represented by the following formulas (B1-1) to (B1-7) and the following formulas (B1-8) to (B1-15). Examples include acrylates and the like. It should be noted that these compounds may be used alone or in combination of two or more.
  • fluorine-containing compound (C) having a polymerizable unsaturated group examples include a poly (perfluoroalkylene ether) chain and a compound having a polymerizable unsaturated group at both ends thereof.
  • Specific examples of the fluorine-containing compound (C) include compounds represented by the following formulas (C-1) to (C-13).
  • "-PFPE-" in the following formulas (C-1) to (C-13) is a poly (perfluoroalkylene ether) chain.
  • the fluorine-containing compound (C) is represented by the above formulas (C-1), (C-2), (C-5) or (C-6) from the viewpoint of easy industrial production.
  • Acryloyl groups are used at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-1) because the compound is preferable and the polymer (P) that is easily entangled with the surface of the mother particles can be synthesized.
  • a compound having methacryloyl groups at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-2) is more preferable.
  • polymer (P) examples include styrene, ⁇ -methylstyrene, pt-butylstyrene, and vinyl as compounds other than the above-mentioned alkyl (meth) acrylate (A) and fluorine-containing compound (B, C).
  • Aromatic vinyl compounds such as toluene; (meth) acrylates such as benzyl (meth) acrylate, dimethylamino (meth) acrylate, diethylamino (meth) acrylate, dibromopropyl (meth) acrylate, tribromophenyl (meth) acrylate.
  • the compound that can be used as the polymer (P) one type may be used alone or two or more types may be used in combination.
  • the alkyl (meth) acrylate (A) having a linear or branched alkyl group having 4 to 12 carbon atoms such as n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl methacrylate is used. It is preferable to use it.
  • a polymer (P) can be obtained by introducing a polymerizable unsaturated group into the copolymer.
  • a carboxylic acid group-containing polymerizable monomer such as acrylic acid or methacrylic acid, or an amino group such as dimethylaminoethyl methacrylate or dimethylaminopropylacrylamide
  • a copolymerization component in advance.
  • a glycidyl group such as glycidyl methacrylate and a polymerizable unsaturated group are added to the carboxylic acid group or the amino group. Examples thereof include a method of reacting a monomer having.
  • the monomer (M) is a polymerizable unsaturated monomer that is soluble in a non-aqueous solvent and becomes insoluble or sparingly soluble after polymerization.
  • Examples of the monomer (M) include vinyl-based monomers having no reactive polar group (functional group), amide bond-containing vinyl-based monomers, (meth) acryloyloxyalkyl phosphates, and (meth) acrylic.
  • vinyl-based monomers having no reactive polar group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate.
  • examples thereof include (meth) acrylates, (meth) acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, olefins such as vinylidene fluoride and the like.
  • amide bond-containing vinyl-based monomers include (meth) acrylamide, dimethyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-octyl (meth) acrylamide, diacetone acrylamide, and dimethylamino.
  • examples thereof include propylacrylamide, alkoxylated N-methylolated (meth) acrylamides and the like.
  • (meth) acryloyloxyalkyl phosphates include dialkyl [(meth) acryloyloxyalkyl] phosphates, (meth) acryloyloxyalkyl acid phosphates and the like.
  • Specific examples of (meth) acryloyloxyalkyl phosphites include dialkyl [(meth) acryloyloxyalkyl] phosphites, (meth) acryloyloxyalkyl acid phosphites, and the like.
  • the phosphorus atom-containing vinyl-based monomers include alkylene oxide adducts of the above-mentioned (meth) acryloyloxyalkyl acid phosphates or (meth) acryloyloxyalkyl acid phosphites, glycidyl (meth) acrylate, and the like.
  • Examples thereof include ester compounds of an epoxy group-containing vinyl-based monomer such as methylglycidyl (meth) acrylate with phosphoric acid, phosphite or acidic esters thereof, 3-chloro-2-acid phosphoxypropyl (meth) acrylate and the like. Be done.
  • hydroxyl group-containing polymerizable unsaturated monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (.
  • polymerizable unsaturated carboxylic acids such as monobutyl fumarate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate or adducts of these with ⁇ -caprolactone; (meth) acrylic acid.
  • Crotonic acid maleic acid, fumaric acid, itaconic acid, citraconic acid and other unsaturated mono- or dicarboxylic acids, polymerizable unsaturated carboxylic acids such as monoesters of dicarboxylic acid and monovalent alcohol; Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids (maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, hensentricarboxylic acid, benzenetetracarboxylic acid, "hymic acid”, tetra Monoglycidyl esters of various unsaturated carboxylic acids such as additives with chlorphthalic acid, dodecynyl succinic acid, etc.
  • Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydr
  • dialkylaminoalkyl (meth) acrylates include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
  • Specific examples of the epoxy group-containing polymerizable unsaturated monomer include, for example, a polymerizable unsaturated carboxylic acid, an equimolar adduct of a hydroxyl group-containing vinyl monomer and the anhydride of the polycarboxylic acid (mono-2- (mono-2- ().
  • Epoxide group-containing polymerization obtained by adding various polyepoxide compounds having at least two epoxy groups in one molecule to various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate) at an equimolar ratio.
  • various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate
  • examples thereof include sex compounds, glycidyl (meth) acrylate, ( ⁇ -methyl) glucidyl (meth) acrylate, and (meth) allyl glucidyl ether.
  • isocyanate group-containing ⁇ , ⁇ -ethylenically unsaturated monomers include, for example, an equimolar adduct of 2-hydroxyethyl (meth) acrylate and hexamethylene diisocyanate, and isocyanate ethyl (meth) acrylate.
  • examples thereof include monomers having an isocyanate group and a vinyl group.
  • alkoxysilyl group-containing polymerizable unsaturated monomers include silicone-based monomers such as vinylethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, and trimethylsiloxyethyl (meth) acrylate. Be done.
  • carboxyl group-containing ⁇ , ⁇ -ethylenic unsaturated monomers include unsaturated mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid.
  • ⁇ , ⁇ -Ethenyl unsaturated carboxylic acids such as monoesters of acids, dicarboxylic acids and monovalent alcohols; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( Meta) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl ⁇ , ⁇ -Unsaturated carboxylic acid hydroalkyl esters such as fumarate, mono-2-hydroxyethyl-monobutyl fumarate, polyethylene glycol mono (meth) acrylate and maleic acid, succinic acid, phthalic acid, hexahydrophthal Examples thereof include additions of polycarboxylic acids such as acids, tetrahydrophthalic acid, benzenetricarboxy
  • the monomer (M) is preferably an alkyl (meth) acrylate having an alkyl group having 3 or less carbon atoms, such as methyl (meth) acrylate and ethyl (meth) acrylate.
  • the polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P). It is preferable that the mother particles and the polymer (P) are mixed before the polymerization is carried out.
  • a homogenizer, a disper, a bead mill, a paint shaker, a kneader, a roll mill, a ball mill, an attritor, a sand mill and the like can be used.
  • the form of the mother particles used when forming the polymer layer is not particularly limited, and may be any of slurry, wet cake, powder and the like.
  • the monomer (M) and the polymerization initiator described later are further mixed and polymerized to obtain the polymer (P) and the monomer (M).
  • a polymer layer composed of the polymer is formed. As a result, luminescent particles are obtained.
  • the number average molecular weight of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. Is even more preferable.
  • the surface of the mother particles can be satisfactorily coated with the polymer layer.
  • the amount of the polymer (P) used is appropriately set according to the intended purpose and is not particularly limited, but is usually 0.5 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is preferably 1 to 40 parts by mass, more preferably 2 to 35 parts by mass.
  • the amount of the monomer (M) used is also appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 40 parts by mass with respect to 100 parts by mass of the mother particle. It is preferably 1 to 35 parts by mass, more preferably 2 to 30 parts by mass.
  • the amount of the hydrophobic polymer finally covering the surface of the mother particles is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is more preferably 3 to 40 parts by mass.
  • the amount of the monomer (M) is usually preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the polymer (P). , 50-80 parts by mass is more preferable.
  • the thickness of the polymer layer is preferably 0.5 to 100 nm, more preferably 0.7 to 50 nm, and even more preferably 1 to 30 nm. If the thickness of the polymer layer is less than 0.5 nm, dispersion stability is often not obtained.
  • the thickness of the polymer layer exceeds 100 nm, it is often difficult to contain the mother particles at a high concentration.
  • the stability of the luminescent particles with respect to oxygen and moisture can be further improved.
  • the polymerization of the monomer (M) in the presence of the mother particles, the non-aqueous solvent and the polymer (P) can be carried out by a known polymerization method, but is preferably carried out in the presence of a polymerization initiator.
  • a polymerization initiator include dimethyl-2,2-azobis (2-methylpropionate), azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylbutyronitrile), and benzoyl.
  • examples thereof include peroxide, t-butyl perbenzoate, t-butyl-2-ethylhexanoate, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide and the like.
  • polymerization initiators may be used alone or in combination of two or more.
  • the polymerization initiator which is sparingly soluble in a non-aqueous solvent, is preferably added to the mixture containing the mother particles and the polymer (P) in a state of being dissolved in the monomer (M).
  • the monomer (M) or the monomer (M) in which the polymerization initiator is dissolved may be added to the mixed solution having reached the polymerization temperature by a dropping method and polymerized, but at room temperature before the temperature rise. It is stable and preferable to add it to the mixed solution, mix it sufficiently, and then raise the temperature to polymerize it.
  • the polymerization temperature is preferably in the range of 60 to 130 ° C, more preferably in the range of 70 to 100 ° C. If the monomer (M) is polymerized at such a polymerization temperature, morphological changes (for example, alteration, crystal growth, etc.) of the nanocrystal particles can be suitably prevented.
  • the polymer not adsorbed on the surface of the mother particles is removed to obtain luminescent particles.
  • the method for removing the polymer that has not been adsorbed include centrifugal sedimentation and ultrafiltration. In centrifugal sedimentation, the dispersion liquid containing the mother particles and the polymer that has not been adsorbed is rotated at high speed, the mother particles in the dispersion liquid are settled, and the polymer that has not been adsorbed is separated.
  • a dispersion containing the mother particles and the non-adsorbed polymer is diluted with an appropriate solvent, and the diluted solution is passed through a filtration membrane having an appropriate pore size to separate the unadsorbed polymer and the mother particles.
  • a filtration membrane having an appropriate pore size to separate the unadsorbed polymer and the mother particles.
  • luminescent particles having a polymer layer can be obtained.
  • the luminescent particles may be stored in a state of being dispersed in a dispersion medium or a photopolymerizable compound (that is, as a dispersion liquid), or the dispersion medium may be removed and stored as a powder (aggregate of luminescent particles alone). You may.
  • the content of the luminescent particles in the ink composition is preferably 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, and is 20% by mass or less, 15% by mass or less, or 10% by mass. It is less than mass%.
  • the ink composition may contain two or more of red luminescent particles, green luminescent particles, and blue luminescent particles as the luminescent particles, but may contain only one of these particles. Is more preferable.
  • the content of the green luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass.
  • the content of the red luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass.
  • the ink composition contains a NOR type hindered amine compound represented by the following formula (1).
  • the hindered amine compound is a compound having an imino group (NOR type hindered amino group) in which a hydrocarbon group (R) is bonded via an oxygen atom (O) as a hindered amino group.
  • the NOR-type hindered amine compound may be a compound having one NOR-type hindered amino group, or may be a compound having a plurality of (for example, two or more) NOR-type hindered amino groups. Then, the ink composition may be used with only one kind as the NOR type hindered amine compound, or two or more kinds may be used.
  • R 1 to R 5 each independently represent a hydrocarbon group, and * indicates a bond.
  • the number of carbon atoms of the hydrocarbon group as R 1 and R 4 is, for example, 1 or more or 2 or more, and preferably 8 or less or 7 or less.
  • R1 is preferably, for example, an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, an aralkyl group having 7 to 25 carbon atoms, or an aryl group having 6 to 12 carbon atoms.
  • the alkyl group may be linear or branched.
  • the cycloalkyl group may be, for example, a cyclohexyl group.
  • the hydrocarbon group as R2 to R5 and R6 to R10 may be, for example, an alkyl group.
  • the number of carbon atoms of the hydrocarbon group as R 2 to R 5 may be, for example, 1 or more, or 8 or less.
  • R2 to R5 may be, for example, a methyl group.
  • * Represents a bond, and may be, for example, a binding site with a carbon atom, a nitrogen atom, or an oxygen atom.
  • the ink composition of the present embodiment is contained in the ink composition as compared with the case where the NR type hindered amine compound is contained. It is possible to form a cured film having excellent solubility in a photopolymerizable compound and excellent light resistance at high temperatures.
  • the photopolymerizable compound used as the ink composition is preferably a compound having a low polarity in terms of compatibility with light emitting particles, and more preferably a NOR type hindered amine compound.
  • the NOR type hindered amine compound has better light resistance than the NR type hindered amine compound because it is more difficult to coordinate to the surface of the semiconductor nanotie and the photostabilizing action of the hindered amine compound is not hindered. Will be done.
  • the NR-type hindered amine compound means a compound having a structure represented by "-N-R” instead of the structure represented by "-N-OR” of the NOR-type hindered amine compound. Is a hydrogen or alkyl group.
  • the NOR-type hindered amine compound may be a compound further having a 1,3,5-triazine ring which may have a substituent.
  • the structure represented by the formula (1) may be bonded to the 1,3,5-triazine ring directly or via another atom (for example, a nitrogen atom).
  • the NOR type hindered amine compound for example, a compound that is liquid at 20 ° C or solid at 20 ° C can also be used. However, considering that the cured product of the ink composition may be heated to, for example, about 50 ° C. by light irradiation, it is preferable that the melting point of the NOR type hindered amine compound is high, and it is 70 ° C. or higher, 80 ° C. or higher, or It is preferably 85 ° C. or higher. When a NOR-type hindered amine compound having a melting point of 70 ° C.
  • the hindered amine compound does not liquefy. It is possible to prevent the phenomenon of the hindered amine compound oozing out on the surface of the cured product (bleeding phenomenon) (bleeding resistance).
  • the melting point of the NOR-type hindered amine compound is preferably 180 ° C. or lower.
  • the molecular weight (or molar mass) or mass average molecular weight of the NOR type hindered amine compound may be 1000 or more.
  • the value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted as the “mass average molecular weight”.
  • the NOR type hindered amine compound is preferably a compound represented by the following formula (1a), the following formula (1b), the following formula (1c), the following formula (1d) or the following formula (1e). From the viewpoint of further excellent curability and further excellent light resistance at high temperature, the NOR type hindered amine compound is more preferably a compound represented by the following formula (1a) or the following formula (1b).
  • n represents an integer from 1 to 15.
  • R is the following formula (1b-R): Indicates a group represented by.
  • * indicates a binding site with a nitrogen atom.
  • TINUVIN registered trademark
  • NOR371 melting point: 91 to 104 ° C., mass average molecular weight: 2800 to 4000, BASF Japan stock, which has a structure represented by the above formula (1a)
  • Flamestab NOR116FF melting point: 108 to 123 ° C., molecular weight: 2261, manufactured by BASF Japan Co., Ltd.
  • TINUVIN registered trademark
  • the content of the NOR-type hindered amine compound is 0.1% by mass or more, 0.2% by mass or more, based on the total mass of the ink composition, from the viewpoint of further excellent light resistance at high temperature. Alternatively, it may be 0.3% by mass or more.
  • the content of the NOR type hindered amine compound may be, for example, 5.0% by mass or less, 3.0% by mass or less, or 2.0% by mass or less.
  • the ink composition contains a photopolymerizable compound.
  • the photopolymerizable compound is preferably a photoradical polymerizable compound that polymerizes by irradiation with light, and may be a photopolymerizable monomer or oligomer. These are used with photopolymerization initiators.
  • One type of photopolymerizable compound may be used alone, or two or more types may be used in combination.
  • the photopolymerizable compound preferably contains a monofunctional monomer having one photopolymerizable group and a polyfunctional monomer having two or more photopolymerizable groups.
  • the mass ratio of the monofunctional monomer to the polyfunctional monomer in the photopolymerizable compound may be 1.0, 5.0 or 10.0.
  • the mass ratio of the monofunctional monomer to the polyfunctional monomer is within this range, the ink viscosity is suitable for inkjet suitability, and the cured film has excellent curability, so that the cured film (light conversion layer) emits light. The characteristics will be even better.
  • Examples of the photopolymerizable compound include (meth) acrylate compounds.
  • the (meth) acrylate compound includes a methacrylate compound having a methacryloyl group and an acrylate compound having an acryloyl group.
  • the (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups.
  • Monofunctional (meth) acrylates are used from the viewpoints of excellent fluidity when preparing an ink composition, excellent ejection stability, and suppression of deterioration of smoothness due to curing shrinkage during the production of a cured film. It is preferable to use it in combination with a functional (meth) acrylate.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl.
  • the polyfunctional (meth) acrylate may be a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like, and may be, for example.
  • bifunctional (meth) acrylate examples include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate.
  • Di (meth) acrylate substituted with an oxy group Two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol were substituted with a (meth) acryloyloxy group.
  • Di (meth) acrylate Di (meth) acrylate in which two hydroxyl groups of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are replaced with a (meth) acryloyloxy group, 1 mol.
  • Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to trimethylol propane is substituted with a (meth) acryloyloxy group, and 4 mol is added to 1 mol of bisphenol A.
  • Examples thereof include di (meth) acrylate in which the two hydroxyl groups of the above ethylene oxide or the diol obtained by adding the propylene oxide are substituted with a (meth) acryloyloxy group.
  • trifunctional (meth) acrylate examples include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, 1 mol of trimethylolpropane and 3 mol or more of ethylene oxide or propylene.
  • examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
  • tetrafunctional (meth) acrylate examples include pentaerythritol tetra (meth) acrylate and the like.
  • pentafunctional (meth) acrylate examples include dipentaerythritol penta (meth) acrylate and the like.
  • hexafunctional (meth) acrylate examples include dipentaerythritol hexa (meth) acrylate and the like.
  • the polyfunctional (meth) acrylate may be a poly (meth) acrylate in which a plurality of hydroxyl groups of dipentaerythritol such as dipentaerythritol hexa (meth) acrylate are substituted with (meth) acryloyloxy groups.
  • the (meth) acrylate compound may be an ethylene oxide-modified phosphoric acid (meth) acrylate, an ethylene oxide-modified alkyl phosphoric acid (meth) acrylate, or the like, which has a phosphoric acid group.
  • the photopolymerizable compound as described above has two or more polymerizable functional groups in one molecule. It is more preferable to use a polyfunctional photopolymerizable compound having two or more functionalities as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
  • the molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more.
  • the molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
  • the viscosity of the monofunctional (meth) acrylate is, for example, 2 mPa ⁇ s or more, and 3 mPa ⁇ s or more or. It may be 5 mPa ⁇ s or more.
  • the viscosity of the monofunctional (meth) acrylate is, for example, 50 or less, and may be 20 or less or 10 or less.
  • the viewpoint of easily achieving both viscosity, ejection property and viscosity stability as an inkjet ink it is preferably 2 to 50 mPa ⁇ s, more preferably 3 to 20 mPa ⁇ s, and 5 to 10 mPa ⁇ s. Is particularly preferable.
  • Examples of the monofunctional (meth) acrylate compound having a viscosity of 2 to 50 mPa ⁇ s at room temperature include lauryl acrylate (viscosity 4 to 5 mPa ⁇ s) and isostearyl acrylate (viscosity 17 mPa ⁇ s, viscosity 4 to 5 mPa ⁇ s).
  • Isodecyl acrylate (viscosity 2.7 mPa ⁇ s), isobornyl acrylate (viscosity 7.7 mPa ⁇ s), cyclohexyl acrylate (viscosity 2.5 mPa ⁇ s), benzyl acrylate (viscosity 2.2 mPa ⁇ s), phenoxy Ethyl acrylate (viscosity 9 mPa ⁇ s), dicyclopentenyl acrylate (viscosity 8-18 mPa ⁇ s), dicyclopentenyloxyethyl acrylate (viscosity 15-25 mPa ⁇ s), dicyclopentanyl acrylate (viscosity 7-17 mPa ⁇ s) , (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate (viscosity 5.1 mPa ⁇ s), (2
  • the cyclic structure may be an aromatic ring structure or a non-aromatic ring structure.
  • the number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less.
  • the number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more.
  • the number of carbon atoms is, for example, 20 or less, preferably 18 or less.
  • the aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms.
  • the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like.
  • the aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like.
  • the number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less.
  • the organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
  • the non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms.
  • the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring.
  • a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring
  • a cycloalkene ring such as a cyclopenten
  • the alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring.
  • the non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
  • the radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure.
  • phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
  • the content of the radically polymerizable compound having a cyclic structure is from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, and from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and easily obtaining excellent ejection properties.
  • Based on the total mass of the photopolymerizable compound in the ink composition it is preferably 3 to 85% by mass, more preferably 10 to 80% by mass, and further preferably 20 to 75% by mass. It is preferably 30 to 70% by mass, and particularly preferably 30 to 70% by mass.
  • a radically polymerizable compound having a linear structure having 3 or more carbon atoms as the ink composition, and having a linear structure having 4 or more carbon atoms. It is more preferable to use a radically polymerizable compound.
  • the linear structure represents a hydrocarbon chain having 3 or more carbon atoms.
  • a hydrogen atom directly connected to a carbon atom constituting the linear structure may be substituted with a methyl group or an ethyl group, but the number of substitutions may be 3 or less. preferable.
  • the radically polymerizable compound having a linear structure having 4 or more carbon atoms preferably has a structure in which atoms other than hydrogen atoms are connected without branching, and other than carbon atoms and hydrogen atoms. In addition, it may have a hetero atom such as an oxygen atom. That is, the linear structure is not limited to a structure in which three or more carbon atoms are linearly continuous, and is a structure in which three or more carbon atoms are linearly connected via a heteroatom such as an oxygen atom. May be good.
  • the linear structure may have unsaturated bonds, but preferably consists only of saturated bonds.
  • the number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more.
  • the number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less.
  • radical polymerization having a linear structure in which the total number of carbon atoms is 3 or more is not included in the number.
  • the sex compound preferably does not have a cyclic structure from the viewpoint of ejection property.
  • the linear structure is preferably, for example, a structure having a linear alkyl group having 4 or more carbon atoms.
  • the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group.
  • an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the linear structure is preferably, for example, a structure having a linear alkylene group having 4 or more carbon atoms.
  • the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group.
  • a butylene group a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene
  • an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
  • the linear structure is preferably, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group).
  • the number of linear alkylene groups is 2 or more, preferably 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different.
  • the number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, may be 2 or more or 3 or more, but is preferably 4 or less.
  • linear alkyl group examples include the above-mentioned linear alkyl group having 4 or more carbon atoms, as well as a methyl group, an ethyl group and a propyl group.
  • linear alkylene group examples include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group.
  • an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
  • the content of the radically polymerizable compound having a linear structure having 3 or more carbon atoms is excellent in the viewpoint that an appropriate viscosity can be easily obtained as an ink jet ink, an excellent ejection property can be easily obtained, and the curability of the ink composition is excellent.
  • it is preferably 10 to 90% by mass, preferably 15 to 80% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is more preferably%, and particularly preferably 20 to 70% by mass.
  • the photopolymerizable compound it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 3 or more.
  • the amount of nanocrystal particles containing luminescent nanocrystals is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. According to the combination of the photopolymerizable compounds, there is a tendency to obtain a pixel portion having excellent surface uniformity.
  • the SP value of the photopolymerizable compound is preferably 10.0 or less.
  • the SP value of the photopolymerizable compound may be, for example, 9.75 or less, or 9.50 or less, and may be 8.50 or more or 8.70 or more.
  • the solubility of the NOR-type hindered amine compound, the storage stability of the ink, and the optical properties are further improved.
  • the content of the photopolymerizable compound is from the viewpoint of excellent storage stability of the ink and excellent optics. From the viewpoint of obtaining characteristics (for example, external quantum efficiency), it is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is preferably 0 to 5% by mass.
  • the SP value (solubility parameter / unit: ((cal / cm 3 ) 0.5 ) in the present invention is described in RF Fedors, Polymer Engineering Science, 14, p147 (1974), so-called. It refers to the solubility parameter calculated by the Fedors method. In the Fedors method, it is considered that the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and the solubility parameter is expressed by the following formula (1).
  • the solubility parameter is a value unique to each compound.
  • ⁇ Ecoh indicates the aggregation energy
  • ⁇ V indicates the molar molecular content
  • the SI unit of the SP value is (J / cm 3 ) 0.5 or (MPa) 0.5 , but here, (cal / cm 3 ) 0.5 , which is conventionally used conventionally, is used.
  • the unit of the SP value can be converted by the following formula: 1 (cal / cm 3 ) 0.5 ⁇ 2.05 (J / cm 3 ) 0.5 ⁇ 2.05 (MPa) 0.5 .
  • Examples of the (meth) acrylate compound having an SP value of 10.0 or less include lauryl acrylate (SP value: 8.70), isostearyl acrylate (SP value: 8.59), and isodecyl acrylate (SP value: 8).
  • the photopolymerizable compound as described above has two or more polymerizable functional groups in one molecule. It is more preferable to use a polyfunctional photopolymerizable compound having two or more functionalities as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
  • the content of the photopolymerizable compound contained in the ink composition is from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, from the viewpoint that the curability of the ink composition is good, and the pixel portion (curing of the ink composition).
  • the photopolymerization initiator is preferably at least one selected from the group consisting of alkylphenone-based compounds, acylphosphine oxide-based compounds and oxime ester-based compounds.
  • alkylphenone-based photopolymerization initiator include compounds represented by the formula (b-1).
  • R1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c independently represent the following formula (R 2 ).
  • the compounds represented by the following formulas (b-1-1) to (b-1-6) are preferable, and the following formula (b-1) is preferable.
  • the compound represented by the formula (b-1-5) or the formula (b-1-6) is more preferable.
  • Examples of the acylphosphine oxide-based photopolymerization initiator include compounds represented by the formula (b-2).
  • R 24 represents an alkyl group, an aryl group or a heterocyclic group
  • R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group. May be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfon group, an aryl group, an alkoxy group, or an arylthio group.
  • the compounds represented by the above formula (b-2) are preferable, and the following formula (b-2) is preferable.
  • a compound represented by -1) or the formula (b-2-5) is more preferable.
  • Examples of the oxime ester-based photopolymerization initiator include compounds represented by the following formula (b-3-1) or formula (b-3-2).
  • R 27 to R 31 each independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.
  • the content of the photopolymerization initiator is preferably 0.05 to 10% by mass, more preferably 0.1 to 8% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. It is preferably 1 to 6% by mass, and more preferably 1 to 6% by mass.
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the ink composition containing the photopolymerization initiator in such an amount sufficiently maintains the photosensitivity at the time of photocuring, and the crystals of the photopolymerization initiator are less likely to precipitate when the cured film is dried, so that the physical properties of the cured film are deteriorated. Can be suppressed.
  • the photopolymerization initiator When dissolving the photopolymerization initiator in the ink composition, it is preferable to dissolve it in the photopolymerizable compound in advance before use. In order to dissolve the photopolymerizable compound, it is preferable to uniformly dissolve the photopolymerizable compound by adding a photopolymerization initiator while stirring so that the reaction due to heat is not started.
  • the dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable compound and the thermal polymerizable property of the photopolymerizable compound, but the polymerization of the photopolymerizable compound may be appropriately adjusted.
  • the temperature is preferably 10 to 50 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
  • the ink composition may further contain light scattering particles.
  • the light-scattering particles are preferably, for example, optically inactive inorganic fine particles.
  • the light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
  • Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate.
  • Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
  • a material constituting the light-scattering particles at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
  • titanium oxide When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility.
  • a surface treatment method for titanium oxide There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
  • Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina.
  • Alumina or silica also contains their hydrates.
  • the surface of the titanium oxide particles is uniformly surface-coated by performing a surface treatment containing alumina on the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
  • the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed.
  • the amount of alumina and silica to be treated is preferably more silica than that of alumina.
  • titanium oxide particles surface-treated with alumina or silica can be produced as follows.
  • Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide.
  • sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid.
  • aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
  • the content of the light-scattering particles may be 0.5% by mass or more, 1% by mass or more, or 2% by mass or more, based on the total mass of the ink composition, and may be 10% by mass or less, 9% by mass or less, or. It may be 8% by mass or less.
  • the ink composition may further contain a polymer dispersant.
  • the polymer dispersant is a molecule having a weight average molecular weight (Mw) of more than 5,000, and is a compound capable of improving the dispersion stability of light-scattering particles in an ink composition.
  • the polymer dispersant also contributes to the dispersion stability of the luminescent particles.
  • Mw weight average molecular weight
  • GPC gel permeation chromatography
  • polymer dispersant examples include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyether resins, phenol resins, silicone resins, polyurea resins, amino resins, and polyamine resins ( Polyethylene imine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins, etc.
  • Examples thereof include modified rosin, rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin derivatives such as rosin-modified phenol, and the like.
  • Examples of commercially available polymer dispersants include DISPERBYK (registered trademark) series manufactured by Big Chemie, TEGO (registered trademark) Dispers series manufactured by Ebony, EFKA (registered trademark) series manufactured by BASF, and Japan Lubrizol.
  • SOLSPERSE (registered trademark) series manufactured by Zol, Ajinomoto Fine-Techno's Azispar (registered trademark) series, DISPARLON (registered trademark) series manufactured by Kusumoto Kasei, Floren series manufactured by Kyoeisha Chemical Co., Ltd., and the like can be used.
  • the polymer dispersant is a block copolymer.
  • the effect of applying the block copolymer to the polymer dispersant is that the block copolymer is composed of a hydrophilic region and a pigment adsorption region, so that high dispersibility can be obtained and a random copolymer weight can be obtained. It is possible to obtain better dispersibility than coalescence or cross-copolymer.
  • the monomer monomer constituting the copolymer has a high probability of being sterically or electrically stably arranged in the copolymer at the time of polymer formation.
  • Monomer Since the portion (molecule) in which the monomer is stably arranged is sterically or electrically stable, it often becomes an obstacle when adsorbing on the pigment surface.
  • the block copolymer type polymer dispersant having a controlled molecular arrangement the portion that hinders the adsorption of the dispersant to the pigment may be arranged at a position away from the adsorption portion between the pigment and the dispersant. can.
  • the polymer dispersant according to the present invention is not limited as long as it has the above characteristics, and a block copolymer synthesized using a known ethylenically unsaturated monomer can be applied, and the ethylenically unsaturated monomer can be used. , For example, the following can be mentioned.
  • Stylines and styrene derivatives such as ⁇ -methylstyrene or vinyltoluene; vinyl esters of carboxylic acids such as vinyl acetate, vinyl propionate; vinyl halides; ethylenically unsaturated monocarboxylic acids and dicarboxylic acids such as acrylic acids, Monoalkyl esters with methacrylic acid, itaconic acid, maleic acid or fumaric acid, and the above-mentioned alkanols of dicarboxylic acids (preferably those having 1 to 4 carbon atoms), derivatives of the above-mentioned monoalkyl esters, and their derivatives.
  • vinyl esters of carboxylic acids such as vinyl acetate, vinyl propionate
  • vinyl halides vinyl halides
  • ethylenically unsaturated monocarboxylic acids and dicarboxylic acids such as acrylic acids, Monoalkyl esters with methacrylic acid, itaconic acid, maleic acid or fumaric acid
  • N-substituted derivatives, aryl esters, and derivatives thereof N-substituted derivatives, aryl esters, and derivatives thereof; amides of unsaturated carboxylic acids such as acrylamide, methacrylamide, N-methylolacrylamide or methacrylamide, N-alkylacrylamide; ethylenic monomers containing sulfonic acid groups and theirs.
  • Ammonium or alkali metal salts such as vinyl sulfonic acid, vinyl benzene sulfonic acid, ⁇ -acrylamide methyl propane sulfonic acid, 2-sulfoethylene methacrylate; vinyl amine amides such as vinyl formamide, vinyl acetamide; second, third or second An unsaturated ethylenic monomer containing a quaternary amino group or a nitrogen-containing heterocyclic group, such as vinylpyridine, vinylimidazole, aminoalkyl (meth) acrylate, aminoalkyl (meth) acrylamide, acrylic acid or dimethylaminoethyl methacrylate, acrylic.
  • a block copolymer can be synthesized according to a known method, for example, a synthesis method such as JP-A-2005-60669 and JP-A-2007-314617.
  • a (meth) acrylic block copolymer for example, JP-A-60-89452, JP-A-9-62002, P.I. Lutz, P. et al. Massonetal, Polym. Bull. 12, 79 (1984), B.I. C. Anderson, G.M. D. Andrewsetal, Macromolecules, 14, 1601 (1981), K. et al. Hatada, K. et al. Ute, et al, Polym. J. 17,977 (1985), K.K. Hatada, K. et al. Ute, et al, Polym. J.
  • the polymer dispersant used in the present invention has a basic polar group, and the basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and pyridine, pyrimidine, pyrazine, and the like. Examples thereof include nitrogen-containing heterocyclic groups such as imidazole and triazole.
  • the amine value of the polymer dispersant is preferably 6 to 90 mgKOH / g, more preferably 7 to 70 mgKOH / g, and even more preferably 8 to 50 mgKOH / g.
  • the amine value of the polymer dispersant is smaller than 6 mgKOH / g, the adsorptivity of the polymer dispersant to the light diffusing particles is low, and when the amine value is larger than 90 mgKOH / g, the polarity is high, and aggregation and storage stability are achieved. It tends to cause deterioration, and the dispersibility of the luminescent particles also deteriorates due to the influence.
  • the content of the polymer dispersant is preferably 0.5 to 50% by mass, more preferably 2 to 30% by mass, and 3 to 20 parts by mass with respect to 100% by mass of the light-scattering particles. Is particularly preferable.
  • the ink composition may contain other components other than luminescent particles, photopolymerizable compounds, photopolymerization initiators, light-scattering particles, and polymer dispersants as long as the effects of the present invention are not impaired.
  • examples of such other components include polymerization inhibitors, antioxidants, leveling agents, chain transfer agents, dispersion aids, thermoplastic resins, sensitizers and the like.
  • Polymerization inhibitor examples include p-methoxyphenol, cresol, t-butylcatechol, 3,5-di-t-butyl-4-hydroxytoluene, and 2,2'-methylenebis (4-methyl-6-t-).
  • antioxidant examples include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (product name "IRGANOX® 1010”)) and thiodiethylenebis [3-.
  • Tridecylphosphite product name" JP-310 "), Trilaurylphosphite (product name” JP-312L "), Tris (tridecyl) phosphite (product name” JP-333 "), Trio Rail phosphite (product name "JP-318-O"), diphenylmono (2-ethylhexyl) phosphite (product name "JPM-308"), diphenylmonodecylphosphite (product name "JPM-311") ", Diphenylmono (tridecyl) phosphite (product name "JPM-313"), bis (decyl) pentaerythritol diphosphite (product name "JPE-10”), tristearylphosphite (product name "JP-318E”) (Manufactured by Johoku Chemical Industry Co., Ltd.); Butylated hydroxytol
  • the leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent particles is preferable.
  • leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkylethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts and the like.
  • the amount of the leveling agent added is preferably 0.005 to 2% by mass, more preferably 0.01 to 0.5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. preferable.
  • the chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate.
  • Examples of the chain transfer agent include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, thiol compounds, sulfide compounds and the like.
  • the amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. ..
  • thermoplastic resin examples include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
  • Sensitizer As the sensitizer, a thioxanthone-based compound, a benzophenone-based compound, a quinone-based compound, amines and the like can be used.
  • sensitizers examples include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, benzophenone, 4,4'-bis (diethylamino) benzophenone, 2-ethylanthraquinone, trimethylamine, methyldimethylamine, and triethanolamine.
  • Viscosity of ink composition is preferably in the range of 2 to 20 mPa ⁇ s, more preferably in the range of 5 to 15 mPa ⁇ s, and 7 to 7 to 7 to s, from the viewpoint of ejection stability during inkjet printing. It is more preferably in the range of 12 mPa ⁇ s.
  • the ejection control of the ink composition (for example, the control of the ejection amount and the ejection timing) becomes easy.
  • the ink composition can be smoothly ejected from the ink ejection holes.
  • the viscosity of the ink composition can be measured by, for example, an E-type viscometer.
  • the viscosity increase rate of the ink composition may be 5% or less, 1% or less, or 0.5% or less, and may be 0.01% or more.
  • the viscosity increase rate of the ink composition is a value calculated by the following formula. Equation: ( ⁇ 1 - ⁇ 0 ) / ⁇ 0 ⁇ 100
  • ⁇ 1 indicates the viscosity of the ink composition after storage at 40 ° C. for 1 week at 30 ° C.
  • ⁇ 0 indicates the viscosity of the ink composition of the ink composition before storage.
  • the surface tension of the ink composition is preferably a surface tension suitable for the inkjet printing method.
  • the specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m.
  • the ink composition as described above can be prepared, for example, by dispersing luminescent particles in a solution in which a NOR-type hindered amine compound and, if necessary, a photopolymerizable compound and a photopolymerization initiator are mixed.
  • Dispersion of luminescent particles can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
  • the ink composition set of one embodiment includes the ink composition of the above-described embodiment.
  • the ink composition set may include an ink composition (non-luminescent ink composition) containing no luminescent particles in addition to the ink composition (luminescent ink composition) of the above-described embodiment.
  • the non-emissive ink composition is, for example, a curable ink composition.
  • the non-emission ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (emissive ink composition) of the above-described embodiment except that it does not contain luminescent particles. You may.
  • the non-luminescent ink composition does not contain luminescent particles, when light is incident on the pixel portion formed by the non-luminescent ink composition (the pixel portion containing the cured product of the non-luminescent ink composition).
  • the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-emissive ink composition is preferably used to form a pixel portion having the same color as the light from the light source.
  • the pixel portion formed by the non-emissive ink composition can be a blue pixel portion.
  • the non-luminescent ink composition preferably contains light-scattering particles.
  • the pixel portion formed by the non-emission ink composition can scatter the light incident on the pixel portion, whereby the pixel It is possible to reduce the difference in light intensity of the light emitted from the unit at the viewing angle.
  • optical conversion layer and color filter> Another embodiment of the present invention is an optical conversion layer and a color filter.
  • the details of the light conversion layer and the color filter obtained by using the ink composition or the ink composition set of the above-described embodiment will be described with reference to the drawings.
  • the following embodiment is an embodiment when the ink composition contains light-scattering particles.
  • the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
  • FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40.
  • the light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
  • the optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10.
  • the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order.
  • the light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing a cured product of the ink composition of the above-described embodiment, respectively.
  • the cured product shown in FIG. 1 contains luminescent particles, a curing component, and light scattering particles.
  • the first pixel portion 10a includes a first curing component 13a, a first luminescent particle 11a and a first light scattering particle 12a dispersed in the first curing component 13a, respectively.
  • the second pixel portion 10b includes a second curing component 13b and a second luminescent particle 11b and a second light scattering particle 12b dispersed in the second curing component 13b, respectively. ..
  • the curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound.
  • the curing component may contain a component other than the organic solvent contained in the ink composition.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light-scattering particle 12b.
  • the first luminescent particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light.
  • the second luminescent particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
  • the content of the luminescent particles in the luminescent pixel portion is preferably based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being superior in the effect of improving the external quantum efficiency and obtaining excellent emission intensity. 1% by mass or more, 2% by mass or more, or 3% by mass or more.
  • the content of the luminescent particles is preferably 15% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of excellent reliability of the pixel portion and excellent emission intensity. It is 10% by mass or less, or 7% by mass or less.
  • the content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be more than or equal to 3% by mass or more.
  • the content of the light-scattering particles is 30% by mass or less, 25, based on the total mass of the cured product of the luminescent ink composition, from the viewpoint of improving the effect of improving the external quantum efficiency and the reliability of the pixel portion. It may be mass% or less, 20 parts by mass or less, 15 parts by mass or less, or 10% by mass or less.
  • the third pixel portion 10c is a non-light emitting pixel portion (non-light emitting pixel portion) containing a cured product of the above-mentioned non-light emitting ink composition.
  • the cured product does not contain luminescent particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound.
  • the third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
  • the third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of, for example, 420 to 480 nm. Therefore, the third pixel unit 10c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the transmittance of the third pixel unit 10c can be measured by a microspectroscopy device.
  • the content of the light-scattering particles in the non-emissive pixel portion is 1% by mass based on the total mass of the cured product of the non-emission ink composition from the viewpoint that the difference in light intensity at the viewing angle can be further reduced. It may be more than 5% by mass, or it may be 10% by mass or more.
  • the content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-emissive ink composition from the viewpoint of further reducing light reflection. It may be 70% by mass or less.
  • the thickness of the pixel portion may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more. You may.
  • the thickness of the pixel portion may be, for example, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less. You may.
  • the light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source.
  • the material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used.
  • the binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W.
  • An emulsion-type resin composition (for example, an emulsion of a reactive silicone) or the like can be used.
  • the thickness of the light-shielding portion 20 may be, for example, 0.5 ⁇ m or more, and may be 10 ⁇ m or less.
  • the base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, a synthetic quartz plate, a transparent resin film, an optical resin film, or the like.
  • a flexible base material or the like can be used.
  • a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass.
  • "7059 glass”, “1737 glass”, “Eagle 200” and “Eagle XG” manufactured by Corning Inc., "AN100” manufactured by Asahi Glass Co., Ltd., "OA-10G” and “OA-10G” manufactured by Nippon Electric Glass Co., Ltd. OA-11 ” is suitable. These are materials with a small thermal expansion rate and are excellent in dimensional stability and workability in high temperature heat treatment.
  • the color filter 100 provided with the above optical conversion layer 30 is suitably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
  • the color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40 and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. ..
  • the pixel portion 10 has a step of selectively adhering the ink composition (inkjet ink) to the pixel portion forming region on the base material 40 by an inkjet method, and irradiates the ink composition with active energy rays (for example, ultraviolet rays). It can be formed by a method comprising a step of curing an ink composition to obtain a light emitting pixel portion.
  • a luminescent pixel portion can be obtained by using the above-mentioned luminescent ink composition as the ink composition, and a non-luminescent pixel portion can be obtained by using the non-luminescent ink composition.
  • the method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40.
  • a method of patterning this thin film and the like can be mentioned.
  • the metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the method for patterning include a photolithography method.
  • Examples of the inkjet method include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element, a piezo jet method using a piezoelectric element, and the like.
  • the ink composition can be cured by using, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like. LEDs are preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
  • the wavelength of the irradiated light is preferably 250 nm to 440 nm, more preferably 300 nm to 400 nm. When an LED is used, it is preferably 350 to 400 nm or less, for example, from the viewpoint of sufficiently curing a film thickness of 10 ⁇ m or more.
  • the light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 .
  • a light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface. It is not preferable because it is inferior in sex.
  • the irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
  • the coating film can be cured in the air or in an inert gas, but it is more preferably performed in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film.
  • the inert gas include nitrogen, argon, carbon dioxide and the like.
  • the light conversion layer is a pixel portion containing a cured product of a luminescent ink composition containing blue-emitting nanocrystal particles in place of the third pixel portion 10c or in addition to the third pixel portion 10c ( It may be provided with a blue pixel portion).
  • the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing nanocrystal particles that emit light of colors other than red, green, and blue. good. In these cases, it is preferable that each of the luminescent particles contained in each pixel portion of the optical conversion layer has an absorption maximum wavelength in the same wavelength range.
  • At least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent particles.
  • the color filter may be provided with an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion.
  • an ink-repellent layer instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation may be performed for exposure to selectively increase the parental ink property of the pixel portion forming region.
  • the photocatalyst include titanium oxide and zinc oxide.
  • the color filter may be provided with an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
  • the color filter may be provided with a protective layer on the pixel portion.
  • This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided.
  • a material used as a known protective layer for a color filter can be used.
  • the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent particles.
  • the pigment may be contained in the ink composition.
  • one or two types of luminescent pixel portions are luminescent particles. It may be a pixel portion containing a coloring material without containing the above.
  • a known color material can be used.
  • a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned.
  • Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, and a mixture of a phthalocyanine-based blue dye and an azo-based yellow organic dye.
  • Examples of the coloring material used for the blue pixel portion (B) include an ⁇ -type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5 mass based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance when contained in the optical conversion layer. % Is preferable.
  • the following compound was prepared as the hindered amine compound (A).
  • A-2) TINUVIN (registered trademark) NOR371 NOR type, melting point 91 to 104 ° C., molecular weight 2800 to 4000
  • A-3) TINUVIN (registered trademark) 123 NOR type, melting point ⁇ 20 ° C.
  • antioxidant (C) As the antioxidant (C), (C-1) IRGANOX (registered trademark) 1010 (phenolic) and (C-2) Hostanox (registered trademark) P-EPQ (phosphorus) were prepared.
  • D-1 Isobornyl methacrylate (light ester IB-X, monofunctional, cyclic, viscosity: 6 mPa ⁇ s / 25 ° C.)
  • D-2) Lauryl methacrylate (light ester L, monofunctional, chain, viscosity: 3-8 mPa ⁇ s / 25 ° C.)
  • D-3) Phenoxyethyl methacrylate (light ester PO, monofunctional, cyclic, viscosity: 7 mPa ⁇ s / 25 ° C.)
  • D-4) 1,6-Hexanediol dimethacrylate (light ester 1,6-HX, bifunctional, chain, viscosity: 5-6 mPa ⁇ s / 25 ° C.)
  • D-1) to (D-4) are all manufactured by Kyoeisha Chemical Co., Ltd.
  • Titanium oxide (CR60-2) was prepared as light-scattering particles (F).
  • the reaction solution was stirred under the atmosphere (23 ° C., humidity 45%) for 60 minutes, and then 20 mL of ethanol was added.
  • the obtained suspension was centrifuged (3,000 rpm, 5 minutes) to recover the solid matter, and luminescent particles X-1 were obtained.
  • the luminescent particles X-1 were perovskite-type lead cesium tribromide crystals having a surface layer, and the average particle size was 10 nm as observed by a transmission electron microscope.
  • the surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was 1 nm. That is, the luminescent particles X-1 were silica-coated particles.
  • the luminescent particles X-1 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.9% by mass to obtain a luminescent particle dispersion liquid 1 in which the luminescent particles X-1 were dispersed. ..
  • ⁇ Preparation of light-scattering particle dispersion> In a container filled with nitrogen gas, 10.0 parts by mass of titanium oxide (“CR60-2” manufactured by Ishihara Sangyo Co., Ltd.) and polymer dispersant “EFKA PX4701” (amine value: 40.0 mgKOH / g, BASF Japan) 1.0 part by mass of phenoxyethyl methacrylate (light ester PO; manufactured by Kyoeisha Chemical Co., Ltd.) 14.0 parts by mass was mixed. Further, zirconia beads (diameter: 1.25 mm) are added to the obtained compound, and the container is sealed and shaken for 2 hours using a paint conditioner to disperse the compound to disperse light-diffusing particles. I got body 1. The average particle size of the light diffusing particles after the dispersion treatment was 0.245 ⁇ m as measured by using NANOTRAC WAVE II.
  • the ink composition (1) was obtained.
  • the content of luminescent particles is 1.5% by mass
  • the content of IB-X is 50.0% by mass
  • the content of LM is 16.0% by mass
  • the content of PO is 4. It is 2% by mass
  • the content of 1,6-HX is 20.0% by mass
  • the content of TPO-H is 3.0% by mass
  • the content of O-819 is 1.5% by mass.
  • the content of Irganox 1010 is 0.5% by mass
  • the content of P-EPQ is 0.5% by mass
  • the content of light-scattering particles is 3.0% by mass
  • the polymer is dispersed.
  • the content of the agent was 0.3% by mass. The content is based on the total mass of the ink composition.
  • ink compositions (2) to (9) and (C1) to (C3) Luminous particle dispersion, light scattering particle dispersion, photopolymerizable compounds D-2 and D-3, photopolymerization initiators E-1 and E-2, light stabilizers A-1 to A-5, antioxidant
  • the ink compositions (2) of Examples 2 to 9 were prepared under the same conditions as the preparation of the ink composition (1) except that the addition amounts of the agents C-1 and C-2 were changed to the addition amounts shown in Table 1 below. )-(9) and the ink compositions (C1)-(C3) of Comparative Examples 1 to 3.
  • ⁇ Preparation of optical conversion layer (sample for evaluation)>
  • the obtained ink composition was applied onto a glass substrate (“EagleXG” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 15 ⁇ m.
  • the obtained film was irradiated with ultraviolet light having an LED lamp wavelength of 395 nm under a nitrogen atmosphere at an exposure amount of 10 J / cm 2 .
  • the ink composition was cured to form a layer made of the cured product of the ink composition on the glass substrate, which was used as a light conversion layer.
  • ⁇ Evaluation of ink composition and optical conversion layer> (Example 1) ⁇ Viscosity of ink composition> The viscosity (initial viscosity) of the ink composition at 30 ° C. was measured using an E-type viscometer. ⁇ Cure film curability> When the surface of the obtained light conversion layer 1 was evaluated by palpation using a cotton swab according to the following criteria, the surface was not scratched and there was no tack feeling. ⁇ Evaluation criteria ⁇ ⁇ : The surface of the optical conversion layer 1 is not scratched and there is no tack feeling. ⁇ : The surface of the optical conversion layer 1 is not scratched and there is a slight tack feeling, but there is no problem in practical use. The surface of 1 is slightly scratched and has a tacky feeling. ⁇ : The surface of the optical conversion layer 1 is scratched and a part of the cured film adheres to the cotton swab.
  • ⁇ Bleed test> The obtained optical conversion layer 1 was allowed to stand at 60 ° C. for 30 days, then allowed to stand at 25 ° C. for another day, and then the surface of the optical conversion layer 1 was visually observed to show the presence or absence of bleeding (optical conversion layer 1). It was confirmed whether or not the components eluted from the inside ooze out on the surface) and whether or not whitening (whether or not the surface of the light conversion layer 1 was whitened by the eluted components).
  • There is bleeding and there is whitening.
  • the external quantum efficiency is a value indicating how much of the light (photons) incident on the optical conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
  • EQE means that the larger the value, the smaller the deterioration of the semiconductor nanocrystals due to ultraviolet rays in the curing step of the coating film, that is, the better the stability against ultraviolet rays.
  • the EQE is preferably 20% or more, more preferably 25% or more, which means that it is excellent.
  • the EQE measured immediately after the optical conversion layer was produced was set to the initial external quantum efficiency EQE 0 , and the EQE 0 was measured and found to be 32%.
  • the ink compositions of Examples 1 to 9 containing the NOR-type hindered amine compound have the above-mentioned ink viscosities and excellent curability, and are therefore suitable as ink composition for inkjet. be. Since the cured products of the ink compositions of Examples 1 to 9 are excellent in light resistance at high temperatures, the ink compositions are suitable for use in the light conversion layer.
  • the ink compositions of Examples 1 to 4 and 7 to 8 containing the NOR-type hindered amine compound having a melting point of more than 90 ° C. are particularly preferable because the surface of the light conversion layer 1 does not bleed or whiten.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Biophysics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention addresses the problem of providing: an inkjet ink composition which contains semiconductor nanocrystals composed of a metal halide and from which a cured film having excellent light resistance at a high temperature can be formed; and a light-converting layer and a color filter which use said ink composition. The problem can be solved by an inkjet ink composition according to the present invention, the ink composition comprising: light-emitting particles including semiconductor nanocrystal particles composed of a metal halide; a photopolymerizable compound; a photopolymerization initiator; and an NOR-type hindered amine compound having a structure represented by formula (1). [In formula (1), R1-R5 each independently represent a hydrocarbon group, and * represents a dangling bond.]

Description

インクジェット用インク組成物、光変換層及びカラーフィルタInkjet ink composition, light conversion layer and color filter
 本発明は、インクジェット用インク組成物、光変換層及びカラーフィルタに関する。 The present invention relates to an ink jet ink composition, a light conversion layer, and a color filter.
 近年、ディスプレイの高色域化が強く求められている。そのため、赤色有機顔料粒子又は緑色有機顔料粒子に代えて、量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いた、赤色画素、緑色画素等の画素部を有するカラーフィルタの研究が活発化している。カラーフィルタは微細なパターンを有することが望まれる上に、フォトリソグラフィ方式では発光性ナノ結晶粒子の無駄な消費が生じることから、紫外線硬化型インク組成物を用いたインクジェット法(インクジェット方式)により、光変換層を形成することが検討されている。例えば、特許文献1には、コア/シェル型の半導体ナノ結晶からなる発光性ナノ結晶粒子を含有するインクジェット用インク組成物と、当該組成物の硬化膜からなる波長変換部材が開示されている。 In recent years, there has been a strong demand for higher color gamut of displays. Therefore, a color having a pixel portion such as a red pixel or a green pixel using luminescent nanocrystal particles such as quantum dots, quantum rods, and other inorganic phosphor particles instead of the red organic pigment particles or the green organic pigment particles. Research on filters is becoming more active. Since it is desired that the color filter has a fine pattern and the photolithography method wastefully consumes luminescent nanocrystal particles, an inkjet method (inkjet method) using an ultraviolet curable ink composition is used. It is being studied to form an optical conversion layer. For example, Patent Document 1 discloses an ink jet ink composition containing luminescent nanocrystal particles made of core / shell type semiconductor nanocrystals, and a wavelength conversion member made of a cured film of the composition.
 半導体ナノ結晶等の発光性ナノ結晶粒子は、水蒸気、酸素等の存在下での光照射によって劣化が生じやすい。特に、光変換層はバックライトからの強い光によって加熱されるため、高温下における光照射によって発光性ナノ結晶粒子が劣化して発光強度が低下するという問題がある。この問題に対しては、例えば、コア/シェル型の半導体ナノ結晶を含む硬化性組成物にヒンダードアミン系化合物を添加することにより、得られた硬化膜における高温環境下での耐光性を高める技術が提案されている(特許文献2参照)。 Luminescent nanocrystal particles such as semiconductor nanocrystals are prone to deterioration due to light irradiation in the presence of water vapor, oxygen, etc. In particular, since the light conversion layer is heated by strong light from the backlight, there is a problem that the luminescent nanocrystal particles are deteriorated by light irradiation at a high temperature and the light emission intensity is lowered. To solve this problem, for example, a technique for enhancing the light resistance of the obtained cured film in a high temperature environment by adding a hindered amine compound to a curable composition containing core / shell type semiconductor nanocrystals has been developed. It has been proposed (see Patent Document 2).
 一方、コア/シェル型の半導体ナノ結晶を光変換材とする場合、発光波長域を調整するために、コア部及びシェル部の厳密な粒子サイズ制御が必要となり、工業的に品質の安定したインクを生産する難易度が高い。そこで、粒子サイズを比較的容易に調整可能な無機発光性粒子として、近年、メタルハライドからなる半導体結晶、特に、CsPbX(XはCl、BrまたはIを示す。)で表される化合物に代表されるペロブスカイト型の結晶構造を有する半導体ナノ結晶が見出され、注目を集めている(例えば、特許文献3)。ペロブスカイト型の結晶構造を有する半導体ナノ結晶は、粒子サイズの制御が比較的容易であるだけでなく、ハロゲン元素の種類によっても発光波長を任意に変更でき、さらに発光スペクトルのピーク幅の半値幅が小さいという利点もある。 On the other hand, when a core / shell type semiconductor nanocrystal is used as an optical conversion material, strict particle size control of the core portion and the shell portion is required in order to adjust the emission wavelength range, and the ink is industrially stable in quality. The difficulty of producing is high. Therefore, as inorganic luminescent particles whose particle size can be adjusted relatively easily, in recent years, a semiconductor crystal made of metal halide, particularly a compound represented by CsPbX 3 (X represents Cl, Br or I) is represented. Semiconductor nanocrystals having a perovskite-type crystal structure have been found and are attracting attention (for example, Patent Document 3). Semiconductor nanocrystals having a perovskite-type crystal structure are not only relatively easy to control the particle size, but also the emission wavelength can be arbitrarily changed depending on the type of halogen element, and the half-value width of the peak width of the emission spectrum is set. It also has the advantage of being small.
特開2020-076976号公報Japanese Unexamined Patent Publication No. 2020-079676 国際公開第2019/186734号International Publication No. 2019/186734 特表2018-506625号公報Special Table 2018-506625
 しかしながら、ペロブスカイト型の半導体ナノ結晶をインクジェット用インク組成物に適用し、特許文献2に開示のヒンダードアミン系化合物を添加しただけでは、得られた硬化膜(光変換層)の高温下での耐光性が不十分であるという不都合がある。 However, simply by applying the perovskite-type semiconductor nanocrystals to the ink composition for inkjet and adding the hindered amine compound disclosed in Patent Document 2, the obtained cured film (photoconverting layer) has light resistance at high temperatures. Is inadequate.
 本発明が解決しようとする課題は、高温下での耐光性に優れた硬化膜を形成可能な、メタルハライドからなる半導体ナノ結晶を含有するインクジェット用インク組成物、当該インク組成物を用いた光変換層及びカラーフィルタを提供することを目的とする。 The problem to be solved by the present invention is an ink composition for inkjet containing semiconductor nanocrystals made of metal halide, which can form a cured film having excellent light resistance at high temperatures, and light conversion using the ink composition. It is an object of the present invention to provide a layer and a color filter.
 本発明者らは、鋭意検討の結果、メタルハライドからなる半導体ナノ結晶を含有するインクジェット用インク組成物において、ヒンダードアミン化合物が特定の構造を有する場合に、高温下での耐光性に優れた硬化膜を形成可能であることを見出し、本発明に想到した。 As a result of diligent studies, the present inventors have obtained a cured film having excellent light resistance at high temperatures when the hindered amine compound has a specific structure in an ink composition for inkjet containing semiconductor nanocrystals made of metal halide. We found that it can be formed and came up with the present invention.
 すなわち、本発明のインクジェット用インク組成物は、メタルハライドからなる半導体ナノ結晶粒子を含む発光性粒子と、光重合性化合物と、光重合開始剤と、下記式(1)で表される構造を有するNOR型ヒンダードアミン化合物と、を含有することを特徴とする。
Figure JPOXMLDOC01-appb-C000002
[式(1)中、R~Rはそれぞれ独立に炭化水素基を示し、*は結合手を示す。]
That is, the ink composition for inkjet of the present invention has a structure represented by the following formula (1), which is a luminescent particle containing semiconductor nanocrystal particles made of metal halide, a photopolymerizable compound, and a photopolymerization initiator. It is characterized by containing a NOR-type hindered amine compound.
Figure JPOXMLDOC01-appb-C000002
[In the formula (1), R 1 to R 5 each independently represent a hydrocarbon group, and * indicates a bond. ]
 NOR型ヒンダードアミン化合物の融点が70℃以上であることが好ましい。NOR型ヒンダードアミン化合物の分子量が1000以上であることが好ましい。 It is preferable that the melting point of the NOR type hindered amine compound is 70 ° C. or higher. The molecular weight of the NOR-type hindered amine compound is preferably 1000 or more.
 発光性粒子は、前記半導体ナノ結晶粒子の表面に形成された表面層を備える粒子であり、前記表面層が半導体ナノ結晶粒子の表面に結合可能な結合性基及び加水分解性シリル基を有するシラン化合物の重合体を含有することが好ましい。 The luminescent particles are particles having a surface layer formed on the surface of the semiconductor nanocrystal particles, and the surface layer is a silane having a binding group and a hydrolyzable silyl group that can be bonded to the surface of the semiconductor nanocrystal particles. It preferably contains a polymer of the compound.
 発光性粒子は、前記半導体ナノ結晶粒子を収容可能な内側空間、及び該内側空間に連通する細孔を有する中空粒子を更に備え、前記半導体ナノ結晶粒子が前記内側空間に収容されたものであってもよい。 The luminescent particles further include an inner space capable of accommodating the semiconductor nanocrystal particles and hollow particles having pores communicating with the inner space, and the semiconductor nanocrystal particles are accommodated in the inner space. You may.
 光重合性化合物のSP値が10.0以下であることが好ましい。光重合性化合物が環状構造を有することが好ましい。 The SP value of the photopolymerizable compound is preferably 10.0 or less. It is preferable that the photopolymerizable compound has a cyclic structure.
 インク組成物は、光散乱性粒子を更に含有することが好ましい。インク組成物は、高分子分散剤を更に含有することが好ましい。 The ink composition preferably further contains light-scattering particles. The ink composition preferably further contains a polymer dispersant.
 インク組成物の30℃における粘度が7~12mPa・sであることが好ましい。 The viscosity of the ink composition at 30 ° C. is preferably 7 to 12 mPa · s.
 本発明の他の一側面は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部は、上記インクジェット用インク組成物の硬化物を含む発光性画素部を有する、光変換層に関する。本発明の他の一側面は、上記光変換層を備える、カラーフィルタに関する。 Another aspect of the present invention includes a plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions emit light including a cured product of the ink jet ink composition. The present invention relates to an optical conversion layer having a sex pixel portion. Another aspect of the present invention relates to a color filter including the above-mentioned optical conversion layer.
 本発明の一側面によれば、高温下での耐光性に優れた硬化膜を形成可能なインクジェット用インク組成物を提供することができる。本発明の他の一側面によれば、上記インクジェット用インク組成物を用いた光変換層及びカラーフィルタを提供することができる。 According to one aspect of the present invention, it is possible to provide an ink jet ink composition capable of forming a cured film having excellent light resistance at high temperatures. According to another aspect of the present invention, it is possible to provide an optical conversion layer and a color filter using the ink composition for inkjet.
図1は、本発明の一実施形態のカラーフィルタの模式断面図である。FIG. 1 is a schematic cross-sectional view of a color filter according to an embodiment of the present invention.
 以下、本発明の実施形態について説明する。本発明は、以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. The present invention is not limited to the following embodiments.
<インク組成物>
 本発明の一実施形態は、インクジェット用インク組成物(以下、単に「インク組成物」ともいう。)である。一実施形態に係るインク組成物は、メタルハライドからなる半導体ナノ結晶粒子(以下単に「ナノ結晶粒子」ともいう。)を含む発光性粒子と、光重合性化合物と、光重合開始剤と、後述の式(1)で表されるNOR型ヒンダードアミン化合物とを含有する。
<Ink composition>
One embodiment of the present invention is an inkjet ink composition (hereinafter, also simply referred to as “ink composition”). The ink composition according to one embodiment includes luminescent particles containing semiconductor nanocrystal particles made of metal halide (hereinafter, also simply referred to as “nanocrystal particles”), a photopolymerizable compound, a photopolymerization initiator, and a description below. It contains a NOR-type hindered amine compound represented by the formula (1).
 インク組成物は、例えば、カラーフィルタ等が有する光変換層(光変換層の画素部)を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用)のインク組成物であってよい。上記インク組成物は、紫外線硬化型インクジェット方式に用いられる組成物(インクジェットインク)である。 The ink composition is, for example, an ink composition for forming an optical conversion layer (for example, for forming a color filter pixel portion) used for forming an optical conversion layer (pixel portion of the optical conversion layer) of a color filter or the like. May be. The ink composition is a composition (inkjet ink) used in an ultraviolet curable inkjet method.
 <<発光性粒子>>
 発光性粒子は、ナノ結晶粒子を含む。ナノ結晶粒子は、メタルハライドからなり、励起光を吸収して、蛍光または燐光を発光するナノサイズの結晶体(ナノ結晶粒子)である。メタルハライドからなる発光性ナノ結晶としては、例えば、後述のペロブスカイト型結晶構造を有する量子ドットが広く知られている。ナノ結晶粒子は、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
 ナノ結晶粒子は、例えば、所定の波長の光エネルギー又は電気エネルギーにより励起され、蛍光または燐光を発することができる。
<< Luminous particles >>
Luminous particles include nanocrystalline particles. Nanocrystal particles are nano-sized crystals (nanocrystal particles) composed of metal halides, which absorb excitation light and emit fluorescence or phosphorescence. As a luminescent nanocrystal made of a metal halide, for example, a quantum dot having a perovskite-type crystal structure described later is widely known. The nanocrystal particles are, for example, crystals having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or a scanning electron microscope.
The nanocrystal particles can be excited by, for example, light energy or electrical energy of a predetermined wavelength and emit fluorescence or phosphorescence.
 メタルハライドからなるナノ結晶粒子は、一般式:Aで表される化合物である。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 Mは、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。る。
 aは、1~7であり、bは、1~4であり、cは、3~16である。
 かかるナノ結晶粒子は、その粒子サイズ、Xサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる。
The nanocrystal particles made of metal halide are compounds represented by the general formula: A a M b X c .
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
M is at least one metal cation. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
X is at least one anion. Examples of the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen. To.
a is 1 to 7, b is 1 to 4, and c is 3 to 16.
The emission wavelength (emission color) of such nanocrystal particles can be controlled by adjusting the particle size, the type of anion constituting the X-site, and the abundance ratio.
 一般式Aで表される化合物は、具体的にはAMX、AMX、AMX、AMX、AMX、AM、AMX、AMX、AMX、A、AMX、AMX、AM、AMX、A、AMX、A、A、A10、A16で表される化合物が好ましい。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 式中、Mは、少なくとも1種の金属カチオンである。具体的には、1種の金属カチオン(M)、2種の金属カチオン(M α β)、3種の金属カチオン(M α β γ)、4種の金属カチオン(M α β γ δ)などが挙げられる。ただし、α、β、γ、δは、それぞれ0~1の実数を表し、かつα+β+γ+δ=1を表す。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 式中、Xは、少なくとも1種のハロゲンを含むアニオンである。具体的には、1種のハロゲンアニオン(X)、2種のハロゲンアニオン(X α β)などが挙げられる。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲンを含む。
The compounds represented by the general formula A a M b X c are specifically AMX, A 4 MX, AMX 2 , AMX 3 , A 2 MX 3 , AM 2 X 3 , A 2 MX 4 , A 2 MX 5 . , A 3 MX 5 , A 3 M 2 X 5 , A 3 MX 6 , A 4 MX 6 , AM 2 X 6 , A 2 MX 6 , A 4 M 2 X 6 , A 3 MX 8 , A 3 M 2 X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 , A 7 M 3 X 16 are preferred.
In the formula, A is at least one of an organic cation and a metal cation. Examples of the organic cation include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and examples of the metal cation include cations such as Cs, Rb, K, Na and Li.
In the formula, M is at least one metal cation. Specifically, one kind of metal cation (M 1 ), two kinds of metal cations (M 1 α M 2 β ), three kinds of metal cations (M 1 α M 2 β M 3 γ ), and four kinds of metals. Examples thereof include cations (M 1 α M 2 β M 3 γ M 4 δ ). However, α, β, γ, and δ each represent a real number of 0 to 1, and represent α + β + γ + δ = 1. Metal cations are selected from Group 1, Group 2, Group 3, Group 4, Group 5, Group 6, Group 7, Group 8, Group 9, Group 10, Group 11, Group 13, Group 14, and Group 15. Examples include cations. More preferably, Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Examples thereof include cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr.
In the formula, X is an anion containing at least one halogen. Specific examples thereof include one type of halogen anion (X 1 ) and two types of halogen anion (X 1 α X 2 β ). Examples of the anion include chloride ion, bromide ion, iodide ion, cyanide ion and the like, and include at least one halogen.
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 The compound composed of the metal halide represented by the general formula A a M b X c is different from the metal cation used for the M site in order to improve the emission characteristics, and is different from Bi, Mn, Ca, Eu, Sb, Yb. It may be one to which a metal ion such as is added (doped).
 上記一般式Aで表されるメタルハライドからなる化合物の中で、ペロブスカイト型結晶構造を有する化合物は、その粒子サイズ、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、発光性ナノ結晶として利用する上で特に好ましい。この調整操作は簡便に行えるので、ペロブスカイト型の半導体ナノ結晶は、従来のコアシェル型の半導体ナノ結晶と比較して、発光波長の制御がより容易であり、よって生産性が高いという特徴を有している。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、上記Mサイトに用いた金属カチオンとは異なる、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 Among the compounds composed of metal halides represented by the above general formula A a M b X c , the compound having a perovskite type crystal structure is adjusted by adjusting its particle size, the type and abundance ratio of the metal cations constituting the M site. Further, the emission wavelength (emission color) can be controlled by adjusting the type and abundance ratio of the anions constituting the X-site, which is particularly preferable for use as a luminescent nanocrystal. Since this adjustment operation can be easily performed, the perovskite type semiconductor nanocrystal has a feature that the emission wavelength is easier to control and therefore the productivity is higher than that of the conventional core-shell type semiconductor nanocrystal. ing. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 , and A 2 MX 6 are preferable. A, M and X in the formula are as described above. Further, as described above, the compound having a perovskite-type crystal structure was added (doped) with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, which are different from the metal cations used for the M site. It may be a thing.
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、Zrから選ばれることが好ましい。 Among the compounds showing a perovskite type crystal structure, A is Cs, Rb, K, Na, Li, and M is one kind of metal cation (M 1 ) or two kinds, in order to show better emission characteristics. It is a metal cation (M 1 α M 2 β ), and X is preferably a chloride ion, a bromide ion, or an iodide ion. However, α and β each represent a real number of 0 to 1, and represent α + β = 1. Specifically, M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, and Zr. preferable.
 ペロブスカイト型結晶構造を示すメタルハライドからなる発光性ナノ結晶粒子の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いたナノ結晶粒子は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsEuBr、CsYbI等のMとしてPb以外の金属カチオンを用いたナノ結晶粒子は、低毒性であって環境への影響が少ないことから、好ましい。 As a specific composition of luminescent nanocrystal particles made of metal halide showing a perovskite-type crystal structure, nanocrystal particles using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , and CHN 2 H 4 PbBr 3 are described as nanocrystal particles. It is preferable because it has excellent light intensity and quantum efficiency. Further, nanocrystal particles using a metal cation other than Pb as M such as CsSnBr 3, CsEuBr 3 , and CsYbI 3 are preferable because they have low toxicity and have little influence on the environment.
 ナノ結晶粒子は、605~665nmの波長範囲に発光ピークを有する光(赤色光)を発する赤色発光性の結晶であってよく、500~560nmの波長範囲に発光ピークを有する光(緑色光)を発する緑色発光性の結晶であってよく、420~480nmの波長範囲に発光ピークを有する光(青色光)を発する青色発光性の結晶であってもよい。また、一実施形態において、これらのナノ結晶粒子の組み合わせでもよい。
 なお、ナノ結晶粒子の発光ピークの波長は、例えば、絶対PL量子収率測定装置を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することできる。
The nanocrystal particles may be red light emitting crystals that emit light having an emission peak in the wavelength range of 605 to 665 nm (red light), and may emit light having an emission peak in the wavelength range of 500 to 560 nm (green light). It may be a green luminescent crystal that emits light, or may be a blue luminescent crystal that emits light (blue light) having an emission peak in the wavelength range of 420 to 480 nm. Further, in one embodiment, a combination of these nanocrystal particles may be used.
The wavelength of the emission peak of the nanocrystal particles can be confirmed, for example, in the fluorescence spectrum or the phosphorescence spectrum measured by using an absolute PL quantum yield measuring device.
 赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の波長範囲に発光ピークを有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の波長範囲に発光ピークを有することが好ましい。
 これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は任意に組み合わせ可能である。
The red-emitting nanocrystal particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. It is preferable to have an emission peak in a wavelength range of 632 nm or less or 630 nm or less, and to have an emission peak in a wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more or 605 nm or more. Is preferable.
These upper and lower limit values can be combined arbitrarily. In the same description below, the upper limit value and the lower limit value described individually can be arbitrarily combined.
 緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の波長範囲に発光ピークを有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の波長範囲に発光ピークを有することが好ましい。 Green-emitting nanocrystal particles have emission peaks in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It is preferable to have an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の波長範囲に発光ピークを有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の波長範囲に発光ピークを有することが好ましい。 Blue-emitting nanocrystal particles have emission peaks in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It is preferable to have an emission peak in a wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 ナノ結晶粒子の形状は、特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。ナノ結晶粒子の形状としては、例えば、直方体状、立方体状、球状、正四面体状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。なお、ナノ結晶粒子の形状としては、直方体状、立方体状または球状が好ましい。 The shape of the nanocrystal particles is not particularly limited, and may be any geometric shape or any irregular shape. Examples of the shape of the nanocrystal particles include a rectangular parallelepiped shape, a cubic shape, a spherical shape, a regular tetrahedron shape, an ellipsoidal shape, a pyramidal shape, a disc shape, a branch shape, a net shape, a rod shape and the like. The shape of the nanocrystal particles is preferably a rectangular parallelepiped shape, a cube shape, or a spherical shape.
 ナノ結晶粒子の平均粒子径(体積平均径)は、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。また、ナノ結晶粒子の平均粒子径は、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。かかる平均粒子径を有するナノ結晶粒子は、所望の波長の光を発し易いことから好ましい。
 なお、ナノ結晶粒子の平均粒子径は、透過型電子顕微鏡または走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
The average particle diameter (volume average diameter) of the nanocrystal particles is preferably 40 nm or less, more preferably 30 nm or less, and further preferably 20 nm or less. The average particle size of the nanocrystal particles is preferably 1 nm or more, more preferably 1.5 nm or more, and further preferably 2 nm or more. Nanocrystal particles having such an average particle size are preferable because they easily emit light having a desired wavelength.
The average particle size of the nanocrystal particles is obtained by measuring with a transmission electron microscope or a scanning electron microscope and calculating the volume average diameter.
 [表面層]
 発光性粒子は、ナノ結晶粒子の表面に形成された表面層を更に備える粒子であることが好ましい。表面層は、半導体ナノ結晶粒子の表面に結合可能な結合性基及び加水分解性シリル基を有するシラン化合物の重合体を含むことが好ましい。
[Surface layer]
The luminescent particles are preferably particles further comprising a surface layer formed on the surface of the nanocrystal particles. The surface layer preferably contains a polymer of a silane compound having a bondable group and a hydrolyzable silyl group that can be bonded to the surface of the semiconductor nanocrystal particles.
 ナノ結晶粒子の表面に結合可能な結合性基は、ナノ結晶粒子に含まれるカチオンに結合(配位)する結合性基であってよい。結合性基としては、例えば、カルボキシル基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基等が挙げられる。中でも、結合性基としては、カルボキシル基、メルカプト基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、上述の加水分解性シリル基よりもナノ結晶粒子に含まれるカチオンに対する親和性が高い。このため、シラン化合物は、結合性基をナノ結晶粒子側にして配位し、より容易かつ確実に表面層を有するナノ結晶粒子を形成することができる。 The binding group that can be bound to the surface of the nanocrystal particles may be a binding group that binds (coordinates) to a cation contained in the nanocrystal particles. Examples of the binding group include a carboxyl group, an amino group, an ammonium group, a mercapto group, a phosphin group, a phosphin oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group, a boronic acid group and the like. .. Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group. These binding groups have a higher affinity for the cations contained in the nanocrystal particles than the hydrolyzable silyl group described above. Therefore, the silane compound can be coordinated with the binding group on the nanocrystal particle side to more easily and surely form nanocrystal particles having a surface layer.
 シラン化合物は、結合性基と加水分解性シリル基とを有する前駆体化合物同士の反応によって形成される。加水分解性シリル基は、シロキサン結合を容易に形成できる。加水分解性シリル基としては、シラノール基、炭素原子数が1~6のアルコキシシリル基が好ましい。 The silane compound is formed by a reaction between precursor compounds having a binding group and a hydrolyzable silyl group. The hydrolyzable silyl group can easily form a siloxane bond. As the hydrolyzable silyl group, a silanol group and an alkoxysilyl group having 1 to 6 carbon atoms are preferable.
 前駆体化合物としては、結合性基及び加水分解性シリル基を有するシラン化合物を1種単独で用いてよいし、2種以上を組み合わせて用いてもよい。 As the precursor compound, a silane compound having a binding group and a hydrolyzable silyl group may be used alone, or two or more kinds may be used in combination.
 前駆体化合物は、カルボキシル基含有ケイ素化合物、アミノ基含有ケイ素化合物、及びメルカプト基含有ケイ素化合物からなる群より選択される1種又は2種以上の化合物を含有してもよい。 The precursor compound may contain one or more compounds selected from the group consisting of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound.
 カルボキシル基含有ケイ素化合物の具体例としては、例えば、3-(トリメトキシシリル)プロピオン酸、3-(トリエトキシシリル)プロピオン酸、2-、カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-[3-(トリメトキシシリル)プロピル]-N’-カルボキシメチルエチレンジアミン、N-[3-(トリメトキシシリル)プロピル]フタルアミド、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン-N,N’,N’-三酢酸等が挙げられる。 Specific examples of the carboxyl group-containing silicon compound include, for example, 3- (trimethoxysilyl) propionic acid, 3- (triethoxysilyl) propionic acid, 2-, carboxyethylphenylbis (2-methoxyethoxy) silane, N-. [3- (Trimethoxysilyl) propyl] -N'-carboxymethylethylenediamine, N- [3- (trimethoxysilyl) propyl] phthalamide, N- [3- (trimethoxysilyl) propyl] ethylenediamine-N, N' , N'-triacetic acid and the like.
 アミノ基含有ケイ素化合物の具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルシラントリオール、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェニルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、(アミノエチルアミノエチル)フェニルトリプロポキシシラン、(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェニルトリエトキシシラン、(アミノエチルアミノメチル)フェニルトリプロポキシシラン、(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン、N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノエチル)フェネチルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリプロポキシシラン、(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン等が挙げられる。 Specific examples of the amino group-containing silicon compound include, for example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, and N- (2). -Aminoethyl) -3-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldipropoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldiisopropoxysilane , N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltripropoxy Silane, N- (2-aminoethyl) -3-aminopropyltriisopropoxysilane, N- (2-aminoethyl) -3-aminoisobutyldimethylmethoxysilane, N- (2-aminoethyl) -3-aminoisobutyl Methyldimethoxysilane, N- (2-aminoethyl) -11-aminoundecyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylsilanetriol, 3-triethoxysilyl-N- (1,3) -Dimethyl-butylidene) propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, (aminoethylaminoethyl) phenyltrimethoxysilane, (amino) Ethylaminoethyl) phenyltriethoxysilane, (aminoethylaminoethyl) phenyltripropoxysilane, (aminoethylaminoethyl) phenyltriisopropoxysilane, (aminoethylaminomethyl) phenyltrimethoxysilane, (aminoethylaminomethyl) phenyl Triethoxysilane, (aminoethylaminomethyl) phenyltripropoxysilane, (aminoethylaminomethyl) phenyltriisopropoxysilane, N- (vinylbenzyl) -2-aminoethyl-3-aminopropyltrimethoxysilane, N- ( Vinylbenzyl) -2-aminoethyl-3-aminopropylmethyldimethoxylane, N-β- (N-vinylbenzylaminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane, N -Β- (N-di (vinylbenzyl) aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (N-di (vinylbenzyl)) Aminoethyl) -N-γ- (N-vinylbenzyl) -γ-aminopropyltrimethoxysilane, methylbenzylaminoethylaminopropyltrimethoxysilane, dimethylbenzylaminoethylaminopropyltrimethoxysilane, benzylaminoethylaminopropyltrimethoxy Silane, benzylaminoethylaminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, N, N-bis [3- (trimethoxysilyl) propyl] ethylenediamine, ( Aminoethyl Aminoethyl) Fenetilt Limethoxysilane, (Aminoethyl Aminoethyl) Fenetilt Liethoxysilane, (Aminoethyl Aminoethyl) Fenetilt Lippropoxysilane, (Aminoethyl Aminoethyl) Penetilt Liisopropoxysilane, (Aminoethyl Aminomethyl) Phenethyltrimethoxysilane, (Aminoethylaminomethyl) Phenetilthriethoxysilane, (Aminoethylaminomethyl) Fenetilt Lippropoxysilane, (Aminoethylaminomethyl) Phenetilthriisopropoxysilane, N- [2- [3- (Trimethoxy) Cyril) propylamino] ethyl] ethylenediamine, N- [2- [3- (triethoxysilyl) propylamino] ethyl] ethylenediamine, N- [2- [3- (tripropoxysilyl) propylamino] ethyl] ethylenediamine, N -[2- [3- (Triisopropoxysilyl) propylamino] ethyl] ethylenediamine and the like can be mentioned.
 メルカプト基含有ケイ素化合物の具体例としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール等が挙げられる。 Specific examples of the mercapto group-containing silicon compound include, for example, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. Trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis (3,6,9,12,15-pentaoxaoctacosan-1) -Iloxy) Cyril] -1-Propylthiol and the like can be mentioned.
 表面層の厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さの表面層を有する発光性粒子であれば、ナノ結晶粒子の熱に対する安定性を十分に高めることができる。
 なお、表面層の厚さは、前駆体化合物の結合性基と加水分解性シリル基とを連結する連結構造の原子数(鎖長)を調整することで変更することができる。
The thickness of the surface layer is preferably 0.5 to 50 nm, more preferably 1.0 to 30 nm. Luminescent particles having a surface layer having such a thickness can sufficiently enhance the heat stability of the nanocrystal particles.
The thickness of the surface layer can be changed by adjusting the number of atoms (chain length) of the linking structure in which the binding group and the hydrolyzable silyl group of the precursor compound are linked.
 表面層は、ナノ結晶粒子の原料化合物を含む溶液と、前駆体化合物を含む溶液とを混合した後に、析出したナノ結晶粒子の表面に配位した加水分解性シリル基を縮合させることを含む方法によって、形成することができる。 The surface layer comprises mixing a solution containing a raw material compound for nanocrystal particles and a solution containing a precursor compound, and then condensing a hydrolyzable silyl group coordinated with the surface of the precipitated nanocrystal particles. Can be formed by.
 [中空粒子]
 発光性粒子は、ナノ結晶粒子を収容した内側空間、及び該内側空間に連通する細孔を有する中空粒子を更に備えるものであってもよい。中空粒子の内部にナノ結晶粒子が収容されていることにより、発光性粒子の酸素ガス、水分に対する安定性を更に向上させることができる。
[Hollow particles]
The luminescent particles may further include an inner space containing the nanocrystal particles and hollow particles having pores communicating with the inner space. Since the nanocrystal particles are contained inside the hollow particles, the stability of the luminescent particles with respect to oxygen gas and moisture can be further improved.
 中空粒子は、球状(真球状)、細長い球状(楕円球状)または立方体状形態(直方体、立方体を含む)をなすものであってもよい。中空粒子は、バルーン構造を有する粒子と呼ぶこともできる。 The hollow particles may have a spherical shape (true spherical shape), an elongated spherical shape (elliptical spherical shape), or a cubic shape (including a rectangular parallelepiped and a cube). Hollow particles can also be referred to as particles having a balloon structure.
 内側空間には、1個のナノ結晶粒子が存在していてもよく、複数個のナノ結晶粒子が存在していてもよい。また、内側空間は、1個または複数のナノ結晶粒子によって全体が占有されていてもよく、一部のみが占有されていてもよい。 One nanocrystal particle may be present in the inner space, or a plurality of nanocrystal particles may be present. Further, the inner space may be entirely occupied by one or a plurality of nanocrystal particles, or may be partially occupied.
 中空粒子としては、ナノ結晶粒子を保護できるものであれば、どのような材料であってもかまわない。合成の容易さ、透過率、コスト等の観点から、中空粒子としては、中空シリカ粒子、中空アルミナ粒子、中空酸化チタン粒子または中空ポリマー粒子であることが好ましく、中空シリカ粒子または中空アルミナ粒子であることがより好ましく、中空シリカ粒子であることがさらに好ましい。 The hollow particles may be any material as long as they can protect the nanocrystal particles. From the viewpoint of ease of synthesis, permeability, cost and the like, the hollow particles are preferably hollow silica particles, hollow alumina particles, hollow titanium oxide particles or hollow polymer particles, and are hollow silica particles or hollow alumina particles. More preferably, hollow silica particles are further preferable.
 中空粒子の平均外径は、特に限定されないが、5~300nmであることが好ましく、6~100nmであることがより好ましく、8~50nmであることがさらに好ましく、10~25nmであることが特に好ましい。また、中空シリカ粒子の平均内径も、特に限定されないが、1~250nmであることが好ましく、2~100nmであることがより好ましく、3~50nmであることがさらに好ましく、5~15nmであることが特に好ましい。かかるサイズの中空粒子であれば、ナノ結晶粒子の熱に対する安定性を十分に高めることができる。 The average outer diameter of the hollow particles is not particularly limited, but is preferably 5 to 300 nm, more preferably 6 to 100 nm, further preferably 8 to 50 nm, and particularly preferably 10 to 25 nm. preferable. The average inner diameter of the hollow silica particles is also not particularly limited, but is preferably 1 to 250 nm, more preferably 2 to 100 nm, still more preferably 3 to 50 nm, and 5 to 15 nm. Is particularly preferable. Hollow particles of this size can sufficiently enhance the heat stability of the nanocrystal particles.
 細孔のサイズは、特に限定されないが、0.5~10nmであることが好ましく、1~5nmであることがより好ましい。この場合、ナノ結晶粒子の原料化合物を含有する溶液を内側空間内に円滑かつ確実に充填することができる。 The size of the pores is not particularly limited, but is preferably 0.5 to 10 nm, and more preferably 1 to 5 nm. In this case, the solution containing the raw material compound of the nanocrystal particles can be smoothly and surely filled in the inner space.
 中空シリカ粒子には、市販品を使用することもできる。かかる市販品としては、例えば、日鉄鉱業株式会社製の「SiliNax(登録商標) SP-PN(b)」等が挙げられる。中空粒子は、半導体ナノ結晶粒子の安定化に加えて、発光性及びインク等への分散特性の点から、中空シリカ粒子であることが好ましい。 Commercially available products can also be used for the hollow silica particles. Examples of such commercially available products include "SiliNax (registered trademark) SP-PN (b)" manufactured by Nittetsu Mining Co., Ltd. The hollow particles are preferably hollow silica particles from the viewpoint of luminescence and dispersion characteristics in ink and the like, in addition to stabilizing the semiconductor nanocrystal particles.
 例えば、中空粒子に、ナノ結晶粒子の原料化合物を含む溶液を含侵し、乾燥することにより、中空粒子の内側空間内に、ナノ結晶粒子を析出させることによって中空粒子の内側空間にナノ結晶粒子が収容される。
 [ポリマー層]
 発光性粒子は、疎水性ポリマーを含有するポリマー層を更に含んでいてよい。ポリマー層は、ナノ結晶粒子を含む発光性粒子の最外層に位置していてよい。例えば、発光性粒子が表面層を有する場合、ポリマー層は、表面層の少なくとも一部を被覆する層であってよい。発光性粒子が中空シリカを含む場合、ポリマー層は、中空シリカの少なくとも一部を被覆する層であってよい。ナノ結晶粒子がポリマー層を有する場合、酸素及び水分に対する高い安定性を発光性粒子に付与することができる。また、ポリマー層を有する発光性粒子を用いてインク組成物を調製した際には、発光性粒子の分散安定性も向上することができる。ポリマー層を有していると、インク組成物を調製した際に発光性粒子が凝集しにくくなり、凝集による発光特性の低下が生じ難くなる傾向がある。
For example, by impregnating a hollow particle with a solution containing a raw material compound of the nanocrystal particle and drying it, the nanocrystal particle is precipitated in the inner space of the hollow particle, so that the nanocrystal particle is formed in the inner space of the hollow particle. Be housed.
[Polymer layer]
The luminescent particles may further comprise a polymer layer containing a hydrophobic polymer. The polymer layer may be located on the outermost layer of the luminescent particles, including the nanocrystal particles. For example, if the luminescent particles have a surface layer, the polymer layer may be a layer that covers at least a portion of the surface layer. When the luminescent particles contain hollow silica, the polymer layer may be a layer that covers at least a portion of the hollow silica. When the nanocrystal particles have a polymer layer, high stability to oxygen and moisture can be imparted to the luminescent particles. Further, when the ink composition is prepared using the luminescent particles having a polymer layer, the dispersion stability of the luminescent particles can be improved. When the polymer layer is provided, the luminescent particles are less likely to aggregate when the ink composition is prepared, and the emission characteristics are less likely to be deteriorated due to the aggregation.
 ポリマー層は、被覆対象の粒子(以下、「母粒子」ともいう。)の表面を疎水性ポリマーで被覆することによって形成される。ポリマー層は、母粒子、非水溶媒および重合体(P)の存在下で、単量体(M)を重合させることによって形成される。 The polymer layer is formed by coating the surface of the particles to be coated (hereinafter, also referred to as "mother particles") with a hydrophobic polymer. The polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
 [非水溶媒]
 非水溶媒は、疎水性ポリマーを溶解し得る有機溶媒が好ましく、母粒子を均一に分散可能であれば、さらに好ましい。このような非水溶媒を用いることにより、非常に簡便に疎水性ポリマーを母粒子に吸着させてポリマー層を被覆させることができる。さらに、好ましくは、非水溶媒は低誘電率溶媒である。低誘電率溶媒を用いることにより、疎水性ポリマーと母粒子とを当該非水溶媒中で混合するだけで、疎水性ポリマーが母粒子表面に強固に吸着し、ポリマー層を被覆させることができる。
 このようにして得られたポリマー層は、発光性粒子を溶媒で洗浄しても、母粒子から除去され難い。さらに、非水溶媒の誘電率は低いほど好ましい。具体的には、非水溶媒の誘電率は、好ましくは10以下であり、さらに好ましくは6以下であり、特に好ましくは5以下である。好ましい非水溶媒としては、脂肪族炭化水素系溶媒および脂環式炭化水素系溶媒であり、少なくとも一方を含む有機溶媒であることが好ましい。
[Non-aqueous solvent]
The non-aqueous solvent is preferably an organic solvent capable of dissolving the hydrophobic polymer, and more preferably if the mother particles can be uniformly dispersed. By using such a non-aqueous solvent, the hydrophobic polymer can be very easily adsorbed on the mother particles to coat the polymer layer. Further, preferably, the non-aqueous solvent is a low dielectric constant solvent. By using a low dielectric constant solvent, the hydrophobic polymer can be strongly adsorbed on the surface of the mother particles and the polymer layer can be coated only by mixing the hydrophobic polymer and the mother particles in the non-aqueous solvent.
The polymer layer thus obtained is difficult to be removed from the mother particles even if the luminescent particles are washed with a solvent. Further, the lower the dielectric constant of the non-aqueous solvent, the more preferable. Specifically, the dielectric constant of the non-aqueous solvent is preferably 10 or less, more preferably 6 or less, and particularly preferably 5 or less. Preferred non-aqueous solvents are an aliphatic hydrocarbon solvent and an alicyclic hydrocarbon solvent, and an organic solvent containing at least one of them is preferable.
 脂肪族炭化水素系溶媒または脂環式炭化水素系溶媒としては、例えば、n-ヘキサン、n-ヘプタン、n-オクタン、シクロペンタン、シクロヘキサン等が挙げられる。
 また、本発明の効果を損なわない範囲で、非水溶媒として、脂肪族炭化水素系溶媒および脂環式炭化水素系溶媒の少なくとも一方に、他の有機溶媒を混合した混合溶媒を使用してもよい。かかる他の有機溶媒としては、例えば、トルエン、キシレンのような芳香族炭化水素系溶媒;酢酸メチル、酢酸エチル、酢酸-n-ブチル、酢酸アミルのようなエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、シクロヘキサノンのようなケトン系溶媒;メタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノールのようなアルコール系溶媒等が挙げられる。
 混合溶媒として使用する際には、脂肪族炭化水素系溶媒および脂環式炭化水素系溶媒の少なくとも一方の使用量を、50質量%以上とすることが好ましく、60質量%以上とすることがより好ましい。
Examples of the aliphatic hydrocarbon solvent or the alicyclic hydrocarbon solvent include n-hexane, n-heptane, n-octane, cyclopentane, cyclohexane and the like.
Further, as long as the effect of the present invention is not impaired, a mixed solvent in which at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is mixed with another organic solvent may be used as the non-aqueous solvent. good. Examples of such other organic solvents include aromatic hydrocarbon solvents such as toluene and xylene; ester solvents such as methyl acetate, ethyl acetate, -n-butyl acetate and amyl acetate; acetone, methyl ethyl ketone and methyl isobutyl. Ketone solvents such as ketones, methylamylketones and cyclohexanones; alcoholic solvents such as methanol, ethanol, n-propanol, i-propanol, n-butanol and the like can be mentioned.
When used as a mixed solvent, the amount of at least one of the aliphatic hydrocarbon solvent and the alicyclic hydrocarbon solvent is preferably 50% by mass or more, more preferably 60% by mass or more. preferable.
 [重合体(P)]
 重合体(P)は、非水溶媒に可溶な重合性不飽和基を含有する重合体である。重合体(P)として、炭素原子数4以上のアルキル基を有するアルキル(メタ)アクリレート(A)または重合性不飽和基を有する含フッ素化合物(B、C)を主成分とする重合性不飽和単量体の共重合体に重合性不飽和基を導入したポリマー、あるいは、炭素原子数4以上のアルキル基を有するアルキル(メタ)アクリレート(A)または重合性不飽和基を有する含フッ素化合物(B、C)を主成分とする重合性不飽和単量体の共重合体からなるマクロモノマー等を使用することができる。
[Polymer (P)]
The polymer (P) is a polymer containing a polymerizable unsaturated group soluble in a non-aqueous solvent. The polymer (P) is polymerizable unsaturated, mainly composed of an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms or a fluorine-containing compound (B, C) having a polymerizable unsaturated group. A polymer in which a polymerizable unsaturated group is introduced into a monomer copolymer, an alkyl (meth) acrylate (A) having an alkyl group having 4 or more carbon atoms, or a fluorine-containing compound having a polymerizable unsaturated group ( A macromonomer made of a copolymer of a polymerizable unsaturated monomer containing B and C) as a main component can be used.
 アルキル(メタ)アクリレート(A)としては、例えば、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートが挙げられる。ここで、本明細書中において、「(メタ)アクリレート」とは、メタクリレートおよびアクリレートの双方を意味する。「(メタ)アクリロイル」との表現についても同様である。 Examples of the alkyl (meth) acrylate (A) include n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isooctyl (meth) acrylate. , Isodecyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isostearyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentanyl Examples include (meth) acrylate. Here, in the present specification, "(meth) acrylate" means both methacrylate and acrylate. The same applies to the expression "(meth) acryloyl".
 重合性不飽和基を有する含フッ素化合物(B)としては、下記式(B1-1)~(B1-7)で表されるメタクリレート、下記(B1-8)~(B1-15)で表されるアクリレート等が挙げられる。なお、これらの化合物は、1種を単独で使用しても、2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000003
Examples of the fluorine-containing compound (B) having a polymerizable unsaturated group include methacrylates represented by the following formulas (B1-1) to (B1-7) and the following formulas (B1-8) to (B1-15). Examples include acrylates and the like. It should be noted that these compounds may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 また、重合性不飽和基を有する含フッ素化合物(C)としては、例えば、ポリ(パーフルオロアルキレンエーテル)鎖と、その両末端に重合性不飽和基とを有する化合物が挙げられる。
 含フッ素化合物(C)の具体例としては、下記式(C-1)~(C-13)で表される化合物が挙げられる。なお、下記式(C-1)~(C-13)中の「-PFPE-」は、ポリ(パーフルオロアルキレンエーテル)鎖である。
Examples of the fluorine-containing compound (C) having a polymerizable unsaturated group include a poly (perfluoroalkylene ether) chain and a compound having a polymerizable unsaturated group at both ends thereof.
Specific examples of the fluorine-containing compound (C) include compounds represented by the following formulas (C-1) to (C-13). In addition, "-PFPE-" in the following formulas (C-1) to (C-13) is a poly (perfluoroalkylene ether) chain.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 中でも、含フッ素化合物(C)としては、工業的製造が容易である点から、上記式(C-1)、(C-2)、(C-5)または(C-6)で表される化合物が好ましく、母粒子の表面への絡み易い重合体(P)を合成可能である点から、上記式(C-1)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にアクリロイル基を有する化合物、または上記式(C-2)で表されるポリ(パーフルオロアルキレンエーテル)鎖の両末端にメタクリロイル基を有する化合物がより好ましい。 Among them, the fluorine-containing compound (C) is represented by the above formulas (C-1), (C-2), (C-5) or (C-6) from the viewpoint of easy industrial production. Acryloyl groups are used at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-1) because the compound is preferable and the polymer (P) that is easily entangled with the surface of the mother particles can be synthesized. , Or a compound having methacryloyl groups at both ends of the poly (perfluoroalkylene ether) chain represented by the above formula (C-2) is more preferable.
 また、重合体(P)として、上記アルキル(メタ)アクリレート(A)および含フッ素化合物(B、C)以外の化合物としては、例えば、スチレン、α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエンのような芳香族ビニル系化合物;ベンジル(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、ジエチルアミノ(メタ)アクリレート、ジブロモプロピル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレートのような(メタ)アクリレート系化合物;マレイン酸、フマル酸、イタコン酸のような不飽和ジカルボン酸と1価アルコールとのジエステル系化合物、安息香酸ビニル、「ベオバ(登録商標)」(オランダ国シェル社製のビニルエステル)のようなビニルエステル系化合物等が挙げられる。
 これらの化合物は、アルキル(メタ)アクリレート(A)または含フッ素化合物(B、C)とのランダム共重合体として使用することが好ましい。これにより、得られる重合体(P)の非水溶媒への溶解性を十分に高めることができる。
Examples of the polymer (P) include styrene, α-methylstyrene, pt-butylstyrene, and vinyl as compounds other than the above-mentioned alkyl (meth) acrylate (A) and fluorine-containing compound (B, C). Aromatic vinyl compounds such as toluene; (meth) acrylates such as benzyl (meth) acrylate, dimethylamino (meth) acrylate, diethylamino (meth) acrylate, dibromopropyl (meth) acrylate, tribromophenyl (meth) acrylate. Systems compounds: Diester compounds of unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid and monovalent alcohols, vinyl benzoate, "Beova (registered trademark)" (vinyl ester manufactured by Shell, Netherlands). Examples thereof include vinyl ester compounds such as.
These compounds are preferably used as a random copolymer with an alkyl (meth) acrylate (A) or a fluorine-containing compound (B, C). Thereby, the solubility of the obtained polymer (P) in a non-aqueous solvent can be sufficiently enhanced.
 上記重合体(P)として使用可能な化合物は、1種を単独で使用しても、2種以上を併用してもよい。中でも、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリルメタクリレートのような直鎖状または分岐状の炭素原子数4~12のアルキル基を有するアルキル(メタ)アクリレート(A)を使用することが好ましい。 As the compound that can be used as the polymer (P), one type may be used alone or two or more types may be used in combination. Among them, the alkyl (meth) acrylate (A) having a linear or branched alkyl group having 4 to 12 carbon atoms such as n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and lauryl methacrylate is used. It is preferable to use it.
 これらの化合物を常法によって重合することによって当該化合物の共重合体を得た後に、当該共重合体に重合性不飽和基を導入することにより、重合体(P)が得られる。 After obtaining a copolymer of the compound by polymerizing these compounds by a conventional method, a polymer (P) can be obtained by introducing a polymerizable unsaturated group into the copolymer.
 重合性不飽和基の導入方法としては、例えば、予め共重合成分としてアクリル酸、メタクリル酸のようなカルボン酸基含有重合性単量体、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルアクリルアミドのようなアミノ基含有重合性単量体を配合し共重合させ、カルボン酸基またはアミノ基を有する共重合体を得た後、このカルボン酸基またはアミノ基にグリシジルメタクリレートのようなグリシジル基および重合性不飽和基を有する単量体を反応させる方法を挙げることができる。 As a method for introducing a polymerizable unsaturated group, for example, a carboxylic acid group-containing polymerizable monomer such as acrylic acid or methacrylic acid, or an amino group such as dimethylaminoethyl methacrylate or dimethylaminopropylacrylamide can be used as a copolymerization component in advance. After blending the containing polymerizable monomer and copolymerizing to obtain a copolymer having a carboxylic acid group or an amino group, a glycidyl group such as glycidyl methacrylate and a polymerizable unsaturated group are added to the carboxylic acid group or the amino group. Examples thereof include a method of reacting a monomer having.
 [単量体(M)]
 単量体(M)は、非水溶媒に可溶でありかつ重合後に不溶もしくは難溶になる重合性不飽和単量体である。単量体(M)としては、例えば、反応性極性基(官能基)を有さないビニル系モノマー類、アミド結合含有ビニル系モノマー類、(メタ)アクリロイロキシアルキルホスフェート類、(メタ)アクリロイロキシアルキルホスファイト類、リン原子含有ビニル系モノマー類、水酸基含有重合性不飽和単量体類、ジアルキルアミノアルキル(メタ)アクリレート類、エポキシ基含有重合性不飽和単量体類、イソシアネート基含有α,β-エチレン性不飽和単量体類、アルコキシシリル基含有重合性不飽和単量体類、カルボキシル基含有α,β-エチレン性不飽和単量体類等が挙げられる。
[Monomer (M)]
The monomer (M) is a polymerizable unsaturated monomer that is soluble in a non-aqueous solvent and becomes insoluble or sparingly soluble after polymerization. Examples of the monomer (M) include vinyl-based monomers having no reactive polar group (functional group), amide bond-containing vinyl-based monomers, (meth) acryloyloxyalkyl phosphates, and (meth) acrylic. Loyloxyalkyl phosphites, phosphorus atom-containing vinyl-based monomers, hydroxyl group-containing polymerizable unsaturated monomers, dialkylaminoalkyl (meth) acrylates, epoxy group-containing polymerizable unsaturated monomers, isocyanate group-containing Examples thereof include α, β-ethylenic unsaturated monomers, alkoxysilyl group-containing polymerizable unsaturated monomers, and carboxyl group-containing α, β-ethylenically unsaturated monomers.
 反応性極性基を有さないビニル系モノマー類の具体例としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレートのような(メタ)アクリレート類、(メタ)アクリロニトリル、酢酸ビニル、塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデンのようなオレフィン類等が挙げられる。
 アミド結合含有ビニル系モノマー類の具体例としては、例えば、(メタ)アクリルアミド、ジメチル(メタ)アクリルアミド、N-t-ブチル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、ジアセトンアクリルアミド、ジメチルアミノプロピルアクリルアミド、アルコキシ化N-メチロール化(メタ)アクリルアミド類等が挙げられる。
Specific examples of vinyl-based monomers having no reactive polar group include, for example, methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, and i-propyl (meth) acrylate. Examples thereof include (meth) acrylates, (meth) acrylonitrile, vinyl acetate, vinyl chloride, vinylidene chloride, vinyl fluoride, olefins such as vinylidene fluoride and the like.
Specific examples of the amide bond-containing vinyl-based monomers include (meth) acrylamide, dimethyl (meth) acrylamide, Nt-butyl (meth) acrylamide, N-octyl (meth) acrylamide, diacetone acrylamide, and dimethylamino. Examples thereof include propylacrylamide, alkoxylated N-methylolated (meth) acrylamides and the like.
 (メタ)アクリロイロキシアルキルホスフェート類の具体例としては、例えば、ジアルキル[(メタ)アクリロイロキシアルキル]ホスフェート類、(メタ)アクリロイロキシアルキルアシッドホスフェート類等が挙げられる。
 (メタ)アクリロイロキシアルキルホスファイト類の具体例としては、例えば、ジアルキル[(メタ)アクリロイロキシアルキル]ホスファイト類、(メタ)アクリロイロキシアルキルアシッドホスファイト類等が挙げられる。
 リン原子含有ビニル系モノマー類の具体例としては、例えば、上記(メタ)アクリロイロキシアルキルアシッドホスフェート類または(メタ)アクリロイロキシアルキルアシッドホスファイト類のアルキレンオキシド付加物、グリシジル(メタ)アクリレート、メチルグリシジル(メタ)アクリレートのようなエポキシ基含有ビニル系モノマーとリン酸、亜リン酸またはこれらの酸性エステル類とのエステル化合物、3-クロロ-2-アシッドホスホキシプロピル(メタ)アクリレート等が挙げられる。
Specific examples of the (meth) acryloyloxyalkyl phosphates include dialkyl [(meth) acryloyloxyalkyl] phosphates, (meth) acryloyloxyalkyl acid phosphates and the like.
Specific examples of (meth) acryloyloxyalkyl phosphites include dialkyl [(meth) acryloyloxyalkyl] phosphites, (meth) acryloyloxyalkyl acid phosphites, and the like.
Specific examples of the phosphorus atom-containing vinyl-based monomers include alkylene oxide adducts of the above-mentioned (meth) acryloyloxyalkyl acid phosphates or (meth) acryloyloxyalkyl acid phosphites, glycidyl (meth) acrylate, and the like. Examples thereof include ester compounds of an epoxy group-containing vinyl-based monomer such as methylglycidyl (meth) acrylate with phosphoric acid, phosphite or acidic esters thereof, 3-chloro-2-acid phosphoxypropyl (meth) acrylate and the like. Be done.
 水酸基含有重合性不飽和単量体類の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリプロピレングリコールモノ(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレートのような重合性不飽和カルボン酸のヒドロキシアルキルエステル類またはこれらとε-カプロラクトンとの付加物;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和モノまたはジカルボン酸、ジカルボン酸と1価のアルコールとのモノエステル類のような重合性不飽和カルボン酸類;上記重合性不飽和カルボン酸のヒドロキシアルキルエステル類とポリカルボン酸の無水物(マレイン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ヘンゼントリカルボン酸、ベンゼンテトラカルボン酸、「ハイミック酸」、テトラクロルフタル酸、ドデシニルコハク酸等)との付加物等の各種不飽和カルボン酸類と1価のカルボン酸のモノグリシジルエステル(やし油脂肪酸グリシジルエステル、オクチル酸グリシジルエステル等)、ブチルグリシジルエーテル、エチレンオキシド、プロピレンオキシド等のモノエポキシ化合物との付加物またはこれらとε-カプロラクトンとの付加物;ヒドロキシビニルエーテル等が挙げられる。 Specific examples of hydroxyl group-containing polymerizable unsaturated monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxybutyl (. Meta) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl Hydroxyalkyl esters of polymerizable unsaturated carboxylic acids such as monobutyl fumarate, polypropylene glycol mono (meth) acrylate, polyethylene glycol mono (meth) acrylate or adducts of these with ε-caprolactone; (meth) acrylic acid. , Crotonic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid and other unsaturated mono- or dicarboxylic acids, polymerizable unsaturated carboxylic acids such as monoesters of dicarboxylic acid and monovalent alcohol; Hydroxyalkyl esters of saturated carboxylic acids and anhydrides of polycarboxylic acids (maleic acid, succinic acid, phthalic acid, hexahydrophthalic acid, tetrahydrophthalic acid, hensentricarboxylic acid, benzenetetracarboxylic acid, "hymic acid", tetra Monoglycidyl esters of various unsaturated carboxylic acids such as additives with chlorphthalic acid, dodecynyl succinic acid, etc. and monovalent carboxylic acids (palm oil fatty acid glycidyl ester, octyl acid glycidyl ester, etc.), butyl glycidyl ether, ethylene oxide, Additives with monoepoxy compounds such as propylene oxide or adducts with these with ε-caprolactone; hydroxyvinyl ethers and the like can be mentioned.
 ジアルキルアミノアルキル(メタ)アクリレート類の具体例としては、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート等が挙げられる。
 エポキシ基含有重合性不飽和単量体類の具体例としては、例えば、重合性不飽和カルボン酸類、水酸基含有ビニルモノマーと上記ポリカルボン酸の無水物との等モル付加物(モノ-2-(メタ)アクリロイルオキシモノエチルフタレート等)のような各種不飽和カルボン酸に、1分子中に少なくとも2個のエポキシ基を有する各種ポリエポキシ化合物を等モル比で付加反応させて得られるエポキシ基含有重合性化合物、グリシジル(メタ)アクリレート、(β-メチル)グルシジル(メタ)アクリレート、(メタ)アリルグルシジルエーテル等が挙げられる。
Specific examples of the dialkylaminoalkyl (meth) acrylates include dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate.
Specific examples of the epoxy group-containing polymerizable unsaturated monomer include, for example, a polymerizable unsaturated carboxylic acid, an equimolar adduct of a hydroxyl group-containing vinyl monomer and the anhydride of the polycarboxylic acid (mono-2- (mono-2- (). Epoxide group-containing polymerization obtained by adding various polyepoxide compounds having at least two epoxy groups in one molecule to various unsaturated carboxylic acids such as meta) acryloyloxymonoethylphthalate) at an equimolar ratio. Examples thereof include sex compounds, glycidyl (meth) acrylate, (β-methyl) glucidyl (meth) acrylate, and (meth) allyl glucidyl ether.
 イソシアネート基含有α,β-エチレン性不飽和単量体類の具体例としては、例えば、2-ヒドロキシエチル(メタ)アクリレートとヘキサメチレンジイソシアネートとの等モル付加物、イソシアネートエチル(メタ)アクリレートのようなイソシアネート基およびビニル基を有するモノマー等が挙げられる。
 アルコキシシリル基含有重合性不飽和単量体類の具体例としては、例えば、ビニルエトキシシラン、α-メタクリロキシプロピルトリメトキシシラン、トリメチルシロキシエチル(メタ)アクリレートのようなシリコーン系モノマー類等が挙げられる。
Specific examples of the isocyanate group-containing α, β-ethylenically unsaturated monomers include, for example, an equimolar adduct of 2-hydroxyethyl (meth) acrylate and hexamethylene diisocyanate, and isocyanate ethyl (meth) acrylate. Examples thereof include monomers having an isocyanate group and a vinyl group.
Specific examples of the alkoxysilyl group-containing polymerizable unsaturated monomers include silicone-based monomers such as vinylethoxysilane, α-methacryloxypropyltrimethoxysilane, and trimethylsiloxyethyl (meth) acrylate. Be done.
 カルボキシル基含有α,β-エチレン性不飽和単量体類の具体例としては、例えば、(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸等の不飽和モノまたはジカルボン酸、ジカルボン酸と1価アルコールとのモノエステル類のようなα,β-エチレン性不飽和カルボン酸類;2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチル-モノブチルフマレート、ポリエチレングリコールモノ(メタ)アクリレートのようなα,β-不飽和カルボン酸ヒドロアルキルエステル類とマレイン酸、コハク酸、フタル酸、ヘキサヒドロフタル酸、テトラヒドロフタル酸、ベンゼントリカルボン酸、ベンゼンテトラカルボン酸、「ハイミック酸」、テトラクロルフタル酸、ドデシニルコハク酸のようなポリカルボン酸の無水物との付加物等が挙げられる。 Specific examples of the carboxyl group-containing α, β-ethylenic unsaturated monomers include unsaturated mono- or dicarboxylic acids such as (meth) acrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, and citraconic acid. Α, β-Ethenyl unsaturated carboxylic acids such as monoesters of acids, dicarboxylic acids and monovalent alcohols; 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl ( Meta) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl Α, β-Unsaturated carboxylic acid hydroalkyl esters such as fumarate, mono-2-hydroxyethyl-monobutyl fumarate, polyethylene glycol mono (meth) acrylate and maleic acid, succinic acid, phthalic acid, hexahydrophthal Examples thereof include additions of polycarboxylic acids such as acids, tetrahydrophthalic acid, benzenetricarboxylic acid, benzenetetracarboxylic acid, "hymic acid", tetrachlorophthalic acid and dodecynylsuccinic acid with an anhydride.
 中でも、単量体(M)としては、メチル(メタ)アクリレート、エチル(メタ)アクリレートのような炭素原子数3以下のアルキル基を有するアルキル(メタ)アクリレートであることが好ましい。 Among them, the monomer (M) is preferably an alkyl (meth) acrylate having an alkyl group having 3 or less carbon atoms, such as methyl (meth) acrylate and ethyl (meth) acrylate.
 ポリマー層は、母粒子、非水溶媒および重合体(P)の存在下で、単量体(M)を重合させることで形成される。
 母粒子と重合体(P)とは、重合を行う前に混合することが好ましい。混合には、例えば、ホモジナイザー、ディスパー、ビーズミル、ペイントシェーカー、ニーダー、ロールミル、ボールミル、アトライター、サンドミル等を使用することができる。
 ポリマー層を形成する際に使用する母粒子の形態は、特に限定されず、スラリー、ウエットケーキ、粉体等のいずれであってもよい。
 母粒子と重合体(P)との混合後に、単量体(M)および後述する重合開始剤をさらに混合し、重合を行うことにより、重合体(P)と単量体(M)との重合物で構成されるポリマー層が形成される。これにより、発光性粒子が得られる。
The polymer layer is formed by polymerizing the monomer (M) in the presence of mother particles, a non-aqueous solvent and the polymer (P).
It is preferable that the mother particles and the polymer (P) are mixed before the polymerization is carried out. For mixing, for example, a homogenizer, a disper, a bead mill, a paint shaker, a kneader, a roll mill, a ball mill, an attritor, a sand mill and the like can be used.
The form of the mother particles used when forming the polymer layer is not particularly limited, and may be any of slurry, wet cake, powder and the like.
After mixing the mother particle and the polymer (P), the monomer (M) and the polymerization initiator described later are further mixed and polymerized to obtain the polymer (P) and the monomer (M). A polymer layer composed of the polymer is formed. As a result, luminescent particles are obtained.
 この際、重合体(P)の数平均分子量は、1,000~500,000であることが好ましく、2,000~200,000であることがより好ましく、3,000~100,000であることがさらに好ましい。このような範囲の分子量を有する重合体(P)を用いることにより、母粒子の表面に良好にポリマー層を被覆し得る。
 また、重合体(P)の使用量は、目的に応じて適宜設定されるため、特に限定されないが、通常、100質量部の母粒子に対して、0.5~50質量部であることが好ましく、1~40質量部であることがより好ましく、2~35質量部であることがさらに好ましい。
 また、単量体(M)の使用量も、目的に応じて適宜設定されるため、特に限定されないが、通常、100質量部の母粒子に対して、0.5~40質量部であることが好ましく、1~35質量部であることがより好ましく、2~30質量部であることがさらに好ましい。
At this time, the number average molecular weight of the polymer (P) is preferably 1,000 to 500,000, more preferably 2,000 to 200,000, and more preferably 3,000 to 100,000. Is even more preferable. By using the polymer (P) having a molecular weight in such a range, the surface of the mother particles can be satisfactorily coated with the polymer layer.
The amount of the polymer (P) used is appropriately set according to the intended purpose and is not particularly limited, but is usually 0.5 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is preferably 1 to 40 parts by mass, more preferably 2 to 35 parts by mass.
Further, the amount of the monomer (M) used is also appropriately set according to the purpose and is not particularly limited, but is usually 0.5 to 40 parts by mass with respect to 100 parts by mass of the mother particle. It is preferably 1 to 35 parts by mass, more preferably 2 to 30 parts by mass.
 最終的に母粒子の表面を被覆する疎水性ポリマーの量は、100質量部の母粒子に対して、1~60質量部であることが好ましく、2~50質量部であることがより好ましく、3~40質量部であることがさらに好ましい。
 この場合、単量体(M)の量は、100質量部の重合体(P)に対して、通常、10~100質量部であることが好ましく、30~90質量部であることがより好ましく、50~80質量部であることがさらに好ましい。
 ポリマー層の厚さは、0.5~100nmであることが好ましく、0.7~50nmであることがより好ましく、1~30nmであることがさらに好ましい。ポリマー層の厚さが0.5nm未満であると、分散安定性が得られない場合が多い。ポリマー層の厚さが100nmを超えると母粒子を高濃度で含有させることが困難となる場合が多い。かかる厚さのポリマー層で母粒子を被覆することにより、発光性粒子の酸素、水分に対する安定性をより向上させることができる。
The amount of the hydrophobic polymer finally covering the surface of the mother particles is preferably 1 to 60 parts by mass, more preferably 2 to 50 parts by mass with respect to 100 parts by mass of the mother particles. It is more preferably 3 to 40 parts by mass.
In this case, the amount of the monomer (M) is usually preferably 10 to 100 parts by mass, more preferably 30 to 90 parts by mass with respect to 100 parts by mass of the polymer (P). , 50-80 parts by mass is more preferable.
The thickness of the polymer layer is preferably 0.5 to 100 nm, more preferably 0.7 to 50 nm, and even more preferably 1 to 30 nm. If the thickness of the polymer layer is less than 0.5 nm, dispersion stability is often not obtained. If the thickness of the polymer layer exceeds 100 nm, it is often difficult to contain the mother particles at a high concentration. By coating the mother particles with a polymer layer having such a thickness, the stability of the luminescent particles with respect to oxygen and moisture can be further improved.
 母粒子、非水溶媒および重合体(P)の存在下における単量体(M)の重合は、公知の重合方法によって行うことができるが、好ましくは重合開始剤の存在下で行われる。
 かかる重合開始剤としては、例えば、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、アゾビスイソブチロニトリル(AIBN)、2,2-アゾビス(2-メチルブチロニトリル)、ベンゾイルパーオキシド、t-ブチルパーベンゾエート、t-ブチル-2-エチルヘキサノエート、t-ブチルハイドロパーオキシド、ジ-t-ブチルパーオキシド、クメンハイドロパーオキシド等が挙げられる。これらの重合開始剤は、1種を単独で使用しても、2種以上を併用してもよい。
 非水溶媒に難溶の重合開始剤は、単量体(M)に溶解した状態で、母粒子と重合体(P)とを含む混合液に添加することが好ましい。
The polymerization of the monomer (M) in the presence of the mother particles, the non-aqueous solvent and the polymer (P) can be carried out by a known polymerization method, but is preferably carried out in the presence of a polymerization initiator.
Examples of such polymerization initiators include dimethyl-2,2-azobis (2-methylpropionate), azobisisobutyronitrile (AIBN), 2,2-azobis (2-methylbutyronitrile), and benzoyl. Examples thereof include peroxide, t-butyl perbenzoate, t-butyl-2-ethylhexanoate, t-butyl hydroperoxide, di-t-butyl peroxide, cumene hydroperoxide and the like. These polymerization initiators may be used alone or in combination of two or more.
The polymerization initiator, which is sparingly soluble in a non-aqueous solvent, is preferably added to the mixture containing the mother particles and the polymer (P) in a state of being dissolved in the monomer (M).
 また、単量体(M)または重合開始剤を溶解した単量体(M)は、重合温度に達した混合液に滴下法により添加して重合させてもよいが、昇温前の常温の混合液に添加し、充分に混合した後に昇温して重合させるのが安定であり好ましい。
 重合温度は、60~130℃の範囲であることが好ましく、70~100℃の範囲であることがより好ましい。かかる重合温度で単量体(M)の重合を行えば、ナノ結晶粒子の形態変化(例えば、変質、結晶成長等)を好適に防止することができる。
 単量体(M)の重合後、母粒子表面に吸着しなかったポリマーを除去して発光性粒子を得る。吸着しなかったポリマーを除去する方法としては、遠心沈降、限外ろ過が挙げられる。遠心沈降では、母粒子と吸着されなかったポリマーとを含む分散液を高速で回転させ、当該分散液中の母粒子を沈降させて、吸着しなかったポリマーを分離する。限外ろ過では、母粒子と吸着されなかったポリマーとを含む分散液を適切な溶媒で希釈し、適切な孔サイズを有するろ過膜に当該希釈液を通して、吸着されなかったポリマーと母粒子とを分離する。以上のようにして、ポリマー層を有する発光性粒子が得られる。発光性粒子は、分散媒あるいは光重合性化合物に分散させた状態で(すなわち、分散液として)保存してもよく、分散媒を除去して粉体(発光性粒子単体の集合体)として保存してもよい。
Further, the monomer (M) or the monomer (M) in which the polymerization initiator is dissolved may be added to the mixed solution having reached the polymerization temperature by a dropping method and polymerized, but at room temperature before the temperature rise. It is stable and preferable to add it to the mixed solution, mix it sufficiently, and then raise the temperature to polymerize it.
The polymerization temperature is preferably in the range of 60 to 130 ° C, more preferably in the range of 70 to 100 ° C. If the monomer (M) is polymerized at such a polymerization temperature, morphological changes (for example, alteration, crystal growth, etc.) of the nanocrystal particles can be suitably prevented.
After the polymerization of the monomer (M), the polymer not adsorbed on the surface of the mother particles is removed to obtain luminescent particles. Examples of the method for removing the polymer that has not been adsorbed include centrifugal sedimentation and ultrafiltration. In centrifugal sedimentation, the dispersion liquid containing the mother particles and the polymer that has not been adsorbed is rotated at high speed, the mother particles in the dispersion liquid are settled, and the polymer that has not been adsorbed is separated. In ultrafiltration, a dispersion containing the mother particles and the non-adsorbed polymer is diluted with an appropriate solvent, and the diluted solution is passed through a filtration membrane having an appropriate pore size to separate the unadsorbed polymer and the mother particles. To separate. As described above, luminescent particles having a polymer layer can be obtained. The luminescent particles may be stored in a state of being dispersed in a dispersion medium or a photopolymerizable compound (that is, as a dispersion liquid), or the dispersion medium may be removed and stored as a powder (aggregate of luminescent particles alone). You may.
 [発光性粒子の含有量]
 インク組成物中の発光性粒子の含有量は、好ましくは、0.1質量%以上、0.5質量%以上、又は1質量%以上であり、20質量%以下、15質量%以下、又は10質量%以下である。発光性粒子の含有量を前記範囲に設定することにより、インク組成物をインクジェット印刷法により吐出する場合には、その吐出安定性をより向上させることができる。また、発光性粒子同士が凝集し難くなり、得られる発光層(光変換層)の外部量子効率を高めることもできる。
[Content of luminescent particles]
The content of the luminescent particles in the ink composition is preferably 0.1% by mass or more, 0.5% by mass or more, or 1% by mass or more, and is 20% by mass or less, 15% by mass or less, or 10% by mass. It is less than mass%. By setting the content of the luminescent particles in the above range, when the ink composition is ejected by the inkjet printing method, the ejection stability can be further improved. In addition, the luminescent particles are less likely to aggregate with each other, and the external quantum efficiency of the obtained light emitting layer (light conversion layer) can be increased.
 インク組成物は、発光性粒子として、赤色発光性粒子、緑色発光性粒子及び青色発光性粒子のうちの2種以上を含んでいてもよいが、これらの粒子のうちの1種のみを含むことがより好ましい。インク組成物が赤色発光性粒子を含む場合、緑色発光性粒子の含有量及び青色発光性粒子の含有量は、発光性粒子の全質量を基準として、好ましくは5質量%以下であり、より好ましくは0質量%である。インク組成物が緑色発光性粒子を含む場合、赤色発光性粒子の含有量及び青色発光性粒子の含有量は、発光性粒子の全質量を基準として、好ましくは5質量%以下であり、より好ましくは0質量%である。 The ink composition may contain two or more of red luminescent particles, green luminescent particles, and blue luminescent particles as the luminescent particles, but may contain only one of these particles. Is more preferable. When the ink composition contains red luminescent particles, the content of the green luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass. When the ink composition contains green luminescent particles, the content of the red luminescent particles and the content of the blue luminescent particles are preferably 5% by mass or less, more preferably, based on the total mass of the luminescent particles. Is 0% by mass.
 <<NOR型ヒンダードアミン化合物>>
 インク組成物は、下式(1)で表されるNOR型ヒンダードアミン化合物を含有する。ヒンダードアミン化合物は、ヒンダードアミノ基として、炭化水素基(R)が酸素原子(O)を介して結合したイミノ基(NOR型のヒンダードアミノ基)を有する化合物である。NOR型ヒンダードアミン化合物は、NOR型のヒンダードアミノ基を1個有する化合物であってもよく、NOR型のヒンダードアミノ基を複数個(例えば、2個以上)有する化合物であってもよい。そして、インク組成物は、NOR型ヒンダードアミン化合物として1種類のみと用いてもよく、2種以上を用いてもよい。
Figure JPOXMLDOC01-appb-C000007
[式(1)中、R~Rはそれぞれ独立に炭化水素基を示し、*は結合手を示す。]
<< NOR type hindered amine compound >>
The ink composition contains a NOR type hindered amine compound represented by the following formula (1). The hindered amine compound is a compound having an imino group (NOR type hindered amino group) in which a hydrocarbon group (R) is bonded via an oxygen atom (O) as a hindered amino group. The NOR-type hindered amine compound may be a compound having one NOR-type hindered amino group, or may be a compound having a plurality of (for example, two or more) NOR-type hindered amino groups. Then, the ink composition may be used with only one kind as the NOR type hindered amine compound, or two or more kinds may be used.
Figure JPOXMLDOC01-appb-C000007
[In the formula (1), R 1 to R 5 each independently represent a hydrocarbon group, and * indicates a bond. ]
 R及びRとしての炭化水素基の炭素数は、例えば、1以上又は2以上であり、8以下又は7以下であることが好ましい。Rは、例えば、炭素数1~50のアルキル基、炭素数5~12のシクロアルキル基、炭素数7~25のアラルキル基又は炭素数6~12のアリール基であることが好ましい。アルキル基は、直鎖状又は分岐状であってよい。シクロアルキル基は、例えば、シクロヘキシル基であってよい。 The number of carbon atoms of the hydrocarbon group as R 1 and R 4 is, for example, 1 or more or 2 or more, and preferably 8 or less or 7 or less. R1 is preferably, for example, an alkyl group having 1 to 50 carbon atoms, a cycloalkyl group having 5 to 12 carbon atoms, an aralkyl group having 7 to 25 carbon atoms, or an aryl group having 6 to 12 carbon atoms. The alkyl group may be linear or branched. The cycloalkyl group may be, for example, a cyclohexyl group.
 R~R及びR~R10としての炭化水素基は、例えば、アルキル基であってよい。R~Rとしての炭化水素基の炭素数は、例えば、1以上であってよく、8以下であってもよい。R~Rは、例えば、メチル基であってよい。 The hydrocarbon group as R2 to R5 and R6 to R10 may be, for example, an alkyl group. The number of carbon atoms of the hydrocarbon group as R 2 to R 5 may be, for example, 1 or more, or 8 or less. R2 to R5 may be, for example, a methyl group.
 *は結合手を表し、例えば、炭素原子、窒素原子、酸素原子との結合部位であってよい。 * Represents a bond, and may be, for example, a binding site with a carbon atom, a nitrogen atom, or an oxygen atom.
 本実施形態のインク組成物は、上記式(1)で表されるNOR型のヒンダードヒンダードアミン化合物を含有することにより、NR型のヒンダードアミン化合物を含有する場合と比較して、インク組成物中の光重合性化合物への溶解性に優れ、かつ高温下で優れた耐光性を備える硬化膜を形成することができる。インク組成物として用いられる光重合性化合物は、発光粒子との相溶性の面で極性が低い化合物が好ましく、NOR型のヒンダードアミン化合物の使用がより好ましい。また、NOR型のヒンダードアミン化合物が、NR型のヒンダードアミン化合物と比較して、半導体ナノ結の表面等に配位しづらく、ヒンダードアミン化合物の光安定作用が阻害されないため優れた耐光性を備えるものと推察される。なお、NR型のヒンダードアミン化合物とは、NOR型のヒンダードアミン化合物の「-N-O-R」で表される構造に代えて「-N-R」で表される構造を有するものをいい、Rは水素又はアルキル基である。 By containing the NOR type hindered hindered amine compound represented by the above formula (1), the ink composition of the present embodiment is contained in the ink composition as compared with the case where the NR type hindered amine compound is contained. It is possible to form a cured film having excellent solubility in a photopolymerizable compound and excellent light resistance at high temperatures. The photopolymerizable compound used as the ink composition is preferably a compound having a low polarity in terms of compatibility with light emitting particles, and more preferably a NOR type hindered amine compound. Further, it is presumed that the NOR type hindered amine compound has better light resistance than the NR type hindered amine compound because it is more difficult to coordinate to the surface of the semiconductor nanotie and the photostabilizing action of the hindered amine compound is not hindered. Will be done. The NR-type hindered amine compound means a compound having a structure represented by "-N-R" instead of the structure represented by "-N-OR" of the NOR-type hindered amine compound. Is a hydrogen or alkyl group.
 NOR型ヒンダードアミン化合物は、置換基を有していてよい1,3,5-トリアジン環を更に有する化合物であってよい。例えば、式(1)で表される構造は、直接又は他の原子(例えば窒素原子)を介して、1,3,5-トリアジン環に結合していてもよい。 The NOR-type hindered amine compound may be a compound further having a 1,3,5-triazine ring which may have a substituent. For example, the structure represented by the formula (1) may be bonded to the 1,3,5-triazine ring directly or via another atom (for example, a nitrogen atom).
 NOR型ヒンダードアミン化合物は、例えば、20℃において液状、又は20℃において固体状であるものを使用することもできる。しかし、インク組成物の硬化物が光照射に伴って例えば50℃程度に加熱されるおそれがあることを考慮すると、NOR型ヒンダードアミン化合物の融点は高い方が好ましく、70℃以上、80℃以上又は85℃以上であることが好ましい。NOR型ヒンダードアミン化合物の融点が70℃以上であるものを用いると、インク組成物の硬化物が50℃程度の高温に加熱された場合でも、当該ヒンダードアミン化合物の液化が生じないため、硬化物中からヒンダードアミン化合物が硬化物表面ににじみ出る現象(ブリード現象)が生じるのを防ぐことができる(耐ブリード性)。一方、インク組成物中への溶解性を考慮すると、NOR型ヒンダードアミン化合物の融点は180℃以下であることが好ましい。 As the NOR type hindered amine compound, for example, a compound that is liquid at 20 ° C or solid at 20 ° C can also be used. However, considering that the cured product of the ink composition may be heated to, for example, about 50 ° C. by light irradiation, it is preferable that the melting point of the NOR type hindered amine compound is high, and it is 70 ° C. or higher, 80 ° C. or higher, or It is preferably 85 ° C. or higher. When a NOR-type hindered amine compound having a melting point of 70 ° C. or higher is used, even when the cured product of the ink composition is heated to a high temperature of about 50 ° C., the hindered amine compound does not liquefy. It is possible to prevent the phenomenon of the hindered amine compound oozing out on the surface of the cured product (bleeding phenomenon) (bleeding resistance). On the other hand, considering the solubility in the ink composition, the melting point of the NOR-type hindered amine compound is preferably 180 ° C. or lower.
 NOR型ヒンダードアミン化合物の分子量(若しくはモル質量)又は質量平均分子量は、1000以上であってもよい。本明細書において、「質量平均分子量」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用することができる。分子量又は質量平均分子量が上記範囲内であると、融点が高くなるため、高温環境下での耐ブリード性を確実に得ることができ、耐光性がより一層優れたものとなる。 The molecular weight (or molar mass) or mass average molecular weight of the NOR type hindered amine compound may be 1000 or more. In the present specification, the value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted as the “mass average molecular weight”. When the molecular weight or the mass average molecular weight is within the above range, the melting point becomes high, so that bleeding resistance in a high temperature environment can be surely obtained, and the light resistance becomes even more excellent.
 NOR型ヒンダードアミン化合物は、例えば、下記式(1a)、下記式(1b)、下記式(1c)、下記式(1d)又は下記式(1e)で表される化合物であることが好ましい。硬化性により一層優れる観点、及び高温下での耐光性により一層優れる観点から、NOR型ヒンダードアミン化合物は、下記式(1a)又は下記式(1b)で表される化合物であることがより好ましい。 The NOR type hindered amine compound is preferably a compound represented by the following formula (1a), the following formula (1b), the following formula (1c), the following formula (1d) or the following formula (1e). From the viewpoint of further excellent curability and further excellent light resistance at high temperature, the NOR type hindered amine compound is more preferably a compound represented by the following formula (1a) or the following formula (1b).
Figure JPOXMLDOC01-appb-C000008
[式(1a)中、nは、1~15の整数を示す。]
Figure JPOXMLDOC01-appb-C000008
[In equation (1a), n represents an integer from 1 to 15. ]
Figure JPOXMLDOC01-appb-C000009
[式(1b)中、Rは、下記式(1b-R):
Figure JPOXMLDOC01-appb-C000010
で表される基を示す。式(1b-R)中、*は窒素原子との結合部位を示す。]
Figure JPOXMLDOC01-appb-C000009
[In the formula (1b), R is the following formula (1b-R):
Figure JPOXMLDOC01-appb-C000010
Indicates a group represented by. In formula (1b-R), * indicates a binding site with a nitrogen atom. ]
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 NOR型ヒンダードアミン化合物の市販品としては、例えば、上記式(1a)で表される構造を有する、TINUVIN(登録商標) NOR371(融点:91~104℃、質量平均分子量:2800~4000、BASFジャパン株式会社製)、上記式(1b)で表される構造を有する、Flamestab NOR116FF(融点:108~123℃、分子量:2261、BASFジャパン株式会社製)、上記式(1c)で表される構造を有する、TINUVIN(登録商標) 123(融点<20℃(液状)、分子量:737、BASFジャパン株式会社製)、上記式(1d)で表される構造を有するLA-81(融点<20℃(液状)、分子量681、株式会社ADEKA製)、上記式(1e)で表される構造を有するTINUVIN(登録商標) 152(融点83~90℃、分子量757、BASFジャパン株式会社製)等が挙げられる。 As a commercial product of the NOR type hindered amine compound, for example, TINUVIN (registered trademark) NOR371 (melting point: 91 to 104 ° C., mass average molecular weight: 2800 to 4000, BASF Japan stock, which has a structure represented by the above formula (1a)). (Manufactured by the company), has a structure represented by the above formula (1b), Flamestab NOR116FF (melting point: 108 to 123 ° C., molecular weight: 2261, manufactured by BASF Japan Co., Ltd.), and has a structure represented by the above formula (1c). , TINUVIN (registered trademark) 123 (melting point <20 ° C. (liquid), molecular weight: 737, manufactured by BASF Japan Co., Ltd.), LA-81 (melting point <20 ° C. (liquid)) having a structure represented by the above formula (1d). , Molecular weight 681, manufactured by ADEKA Co., Ltd.), TINUVIN (registered trademark) 152 (melting point 83 to 90 ° C., molecular weight 757, manufactured by BASF Japan Co., Ltd.) having a structure represented by the above formula (1e) and the like.
 NOR型ヒンダードアミン化合物の含有量は、高温下での耐光性がより一層優れたものとなる観点から、インク組成物の全質量を基準として、0.1質量%以上、0.2質量%以上、又は0.3質量%以上であってよい。NOR型ヒンダードアミン化合物の含有量は、例えば、5.0質量%以下、3.0質量%以下、又は2.0質量%以下であってよい。 The content of the NOR-type hindered amine compound is 0.1% by mass or more, 0.2% by mass or more, based on the total mass of the ink composition, from the viewpoint of further excellent light resistance at high temperature. Alternatively, it may be 0.3% by mass or more. The content of the NOR type hindered amine compound may be, for example, 5.0% by mass or less, 3.0% by mass or less, or 2.0% by mass or less.
 <<光重合性化合物>>
 インク組成物は光重合性化合物を含有する。光重合性化合物は、好ましくは光の照射によって重合する光ラジカル重合性化合物であり、光重合性のモノマーまたはオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。光重合性化合物は1種を単独で用いてもよいし、2種以上を併用してもよい。
<< Photopolymerizable compound >>
The ink composition contains a photopolymerizable compound. The photopolymerizable compound is preferably a photoradical polymerizable compound that polymerizes by irradiation with light, and may be a photopolymerizable monomer or oligomer. These are used with photopolymerization initiators. One type of photopolymerizable compound may be used alone, or two or more types may be used in combination.
 光重合性化合物は、光重合性基を1つ有する単官能モノマーと、光重合性基を2つ以上有する多官能モノマーとを含むことが好ましい。光重合性化合物中の多官能モノマーに対する単官能モノマーの質量比は、1.0、5.0又は10.0であってよい。多官能モノマーに対する単官能モノマーの質量比がこの範囲内にあると、インクジェット適性に適したインク粘度となること、及び硬化膜が優れた硬化性を有することから硬化膜(光変換層)の発光特性がより一層優れたものとなる。 The photopolymerizable compound preferably contains a monofunctional monomer having one photopolymerizable group and a polyfunctional monomer having two or more photopolymerizable groups. The mass ratio of the monofunctional monomer to the polyfunctional monomer in the photopolymerizable compound may be 1.0, 5.0 or 10.0. When the mass ratio of the monofunctional monomer to the polyfunctional monomer is within this range, the ink viscosity is suitable for inkjet suitability, and the cured film has excellent curability, so that the cured film (light conversion layer) emits light. The characteristics will be even better.
 光重合性化合物(光ラジカル重合性化合物)としては、(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物には、メタクリロイル基を有するメタクリレート化合物、アクリロイル基を有するアクリレート化合物が含まれる。 Examples of the photopolymerizable compound (photoradical polymerizable compound) include (meth) acrylate compounds. The (meth) acrylate compound includes a methacrylate compound having a methacryloyl group and an acrylate compound having an acryloyl group.
 (メタ)アクリレート化合物は、(メタ)アクリロイル基を1つ有する単官能(メタ)アクリレートであってよく、(メタ)アクリロイル基を複数有する多官能(メタ)アクリレートであってもよい。インク組成物を調製した際の流動性に優れる観点、吐出安定性により優れる観点および硬化膜製造時における硬化収縮に起因する平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。 The (meth) acrylate compound may be a monofunctional (meth) acrylate having one (meth) acryloyl group, or may be a polyfunctional (meth) acrylate having a plurality of (meth) acryloyl groups. Monofunctional (meth) acrylates are used from the viewpoints of excellent fluidity when preparing an ink composition, excellent ejection stability, and suppression of deterioration of smoothness due to curing shrinkage during the production of a cured film. It is preferable to use it in combination with a functional (meth) acrylate.
 単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、こはく酸モノ(2-アクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド等が挙げられる。 Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and octyl. (Meta) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, phenoxy Ethyl (meth) acrylate, nonylphenoxyethyl (meth) acrylate, glycidyl (meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, benzyl (Meta) acrylate, phenylbenzyl (meth) acrylate, monosuccinate (2-acryloyloxyethyl), N- [2- (acryloyloxy) ethyl] phthalimide, N- [2- (acryloyloxy) ethyl] tetrahydrophthalimide, etc. Can be mentioned.
 多官能(メタ)アクリレートは、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート、5官能(メタ)アクリレート、6官能(メタ)アクリレート等であってよく、例えば、ジオール化合物の2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリオール化合物の2つまたは3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジまたはトリ(メタ)アクリレート等であってよい。 The polyfunctional (meth) acrylate may be a bifunctional (meth) acrylate, a trifunctional (meth) acrylate, a tetrafunctional (meth) acrylate, a pentafunctional (meth) acrylate, a hexafunctional (meth) acrylate, or the like, and may be, for example. A di (meth) acrylate in which two hydroxyl groups of a diol compound are substituted with a (meth) acryloyloxy group, and a di or tri (meth) acrylate in which two or three hydroxyl groups of a triol compound are substituted with a (meth) acryloyloxy group. And so on.
 2官能(メタ)アクリレートの具体例としては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールヒドロキシピバリン酸エステルジアクリレート、トリス(2-ヒドロキシエチル)イソシアヌレートの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのネオペンチルグリコールに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに2モルのエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、1モルのビスフェノールAに4モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるジオールの2つの水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等が挙げられる。 Specific examples of the bifunctional (meth) acrylate include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meth) acrylate. 3-Methyl-1,5-pentanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1 , 9-Nonandiol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, dipropylene glycol di Two hydroxyl groups of (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol hydroxypivalic acid ester diacrylate, and tris (2-hydroxyethyl) isocyanurate are (meth) acryloyl. Di (meth) acrylate substituted with an oxy group Two hydroxyl groups of a diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol were substituted with a (meth) acryloyloxy group. Di (meth) acrylate Di (meth) acrylate in which two hydroxyl groups of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A are replaced with a (meth) acryloyloxy group, 1 mol. Di (meth) acrylate in which two hydroxyl groups of triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to trimethylol propane is substituted with a (meth) acryloyloxy group, and 4 mol is added to 1 mol of bisphenol A. Examples thereof include di (meth) acrylate in which the two hydroxyl groups of the above ethylene oxide or the diol obtained by adding the propylene oxide are substituted with a (meth) acryloyloxy group.
 3官能(メタ)アクリレートの具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、グリセリントリアクリレート、ペンタエリスリトールトリ(メタ)アクリレート、1モルのトリメチロールプロパンに3モル以上のエチレンオキサイドまたはプロピレンオキサイドを付加して得られるトリオールの3つの水酸基が(メタ)アクリロイルオキシ基によって置換されたトリ(メタ)アクリレート等が挙げられる。
 4官能(メタ)アクリレートの具体例としては、例えば、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 5官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールペンタ(メタ)アクリレート等が挙げられる。
 6官能(メタ)アクリレートの具体例としては、例えば、ジペンタエリスリトールヘキサ(メタ)アクリレート等が挙げられる。
Specific examples of the trifunctional (meth) acrylate include, for example, trimethylolpropane tri (meth) acrylate, glycerin triacrylate, pentaerythritol tri (meth) acrylate, 1 mol of trimethylolpropane and 3 mol or more of ethylene oxide or propylene. Examples thereof include tri (meth) acrylate in which the three hydroxyl groups of triol obtained by adding an oxide are substituted with a (meth) acryloyloxy group.
Specific examples of the tetrafunctional (meth) acrylate include pentaerythritol tetra (meth) acrylate and the like.
Specific examples of the pentafunctional (meth) acrylate include dipentaerythritol penta (meth) acrylate and the like.
Specific examples of the hexafunctional (meth) acrylate include dipentaerythritol hexa (meth) acrylate and the like.
 多官能(メタ)アクリレートは、ジペンタエリスリトールヘキサ(メタ)アクリレート等のジペンタエリスリトールの複数の水酸基が(メタ)アクリロイルオキシ基によって置換されたポリ(メタ)アクリレートであってもよい。
 (メタ)アクリレート化合物は、リン酸基を有する、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキルリン酸(メタ)アクリレート等であってもよい。
The polyfunctional (meth) acrylate may be a poly (meth) acrylate in which a plurality of hydroxyl groups of dipentaerythritol such as dipentaerythritol hexa (meth) acrylate are substituted with (meth) acryloyloxy groups.
The (meth) acrylate compound may be an ethylene oxide-modified phosphoric acid (meth) acrylate, an ethylene oxide-modified alkyl phosphoric acid (meth) acrylate, or the like, which has a phosphoric acid group.
 インク組成物において、硬化可能成分を、光重合性化合物のみまたはそれを主成分として構成する場合には、上記したような光重合性化合物としては、重合性官能基を1分子中に2以上有する2官能以上の多官能の光重合性化合物を必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。 In the ink composition, when the curable component is composed of only the photopolymerizable compound or the main component thereof, the photopolymerizable compound as described above has two or more polymerizable functional groups in one molecule. It is more preferable to use a polyfunctional photopolymerizable compound having two or more functionalities as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
 また、該インク組成物を調製した際の粘度安定性に優れる観点、吐出安定性により優れる観点および硬化膜製造時における硬化収縮に起因する硬化膜の平滑性の低下を抑制し得る観点から、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせて用いることが好ましい。 Further, from the viewpoint of excellent viscosity stability when the ink composition is prepared, superior in ejection stability, and from the viewpoint of suppressing deterioration of the smoothness of the cured film due to curing shrinkage during the production of the cured film, it is simple. It is preferable to use a combination of a functional (meth) acrylate and a polyfunctional (meth) acrylate.
 光重合性化合物の分子量は、例えば、50以上であり、100以上又は150以上であってもよい。光重合性化合物の分子量は、例えば、500以下であり、400以下又は300以下であってもよい。インクジェットインクとしての粘度と、吐出後のインクの揮発性を両立しやすい観点から、好ましくは50~500であり、より好ましくは100~400である。 The molecular weight of the photopolymerizable compound is, for example, 50 or more, and may be 100 or more or 150 or more. The molecular weight of the photopolymerizable compound is, for example, 500 or less, and may be 400 or less or 300 or less. From the viewpoint of easily achieving both the viscosity of the inkjet ink and the volatility of the ink after ejection, it is preferably 50 to 500, and more preferably 100 to 400.
 光重合性化合物として、単官能(メタ)アクリレートと多官能(メタ)アクリレートとを組み合わせる場合には、単官能(メタ)アクリレートの粘度は、例えば、2mPa・s以上であり、3mPa・s以上又は5mPa・s以上であってもよい。単官能(メタ)アクリレートの粘度は、例えば、50以下であり、20以下又は10以下であってもよい。インクジェットインクとしての粘度、吐出性および粘度安定性を両立しやすい観点から、2~50mPa・sであることが好ましく、3~20mPa・sであることがより好ましく、5~10mPa・sであることが特に好ましい。 When a monofunctional (meth) acrylate and a polyfunctional (meth) acrylate are combined as the photopolymerizable compound, the viscosity of the monofunctional (meth) acrylate is, for example, 2 mPa · s or more, and 3 mPa · s or more or. It may be 5 mPa · s or more. The viscosity of the monofunctional (meth) acrylate is, for example, 50 or less, and may be 20 or less or 10 or less. From the viewpoint of easily achieving both viscosity, ejection property and viscosity stability as an inkjet ink, it is preferably 2 to 50 mPa · s, more preferably 3 to 20 mPa · s, and 5 to 10 mPa · s. Is particularly preferable.
 粘度が室温にて2~50mPa・sである単官能(メタ)アクリレート化合物としては、例えば、ラウリルアクリレート(粘度4~5mPa・s)、イソステアリルアクリレート(粘度17mPa・s、粘度4~5mPa・s)、イソデシルアクリレート(粘度2.7mPa・s)、イソボルニルアクリレート(粘度7.7mPa・s)、シクロヘキシルアクリレート(粘度2.5mPa・s)、ベンジルアクリレート(粘度2.2mPa・s)、フェノキシエチルアクリレート(粘度9mPa・s)、ジシクロペンテニルアクリレート(粘度8~18mPa・s)、ジシクロペンテニルオキシエチルアクリレート(粘度15~25mPa・s)、ジシクロペンタニルアクリレート(粘度7~17mPa・s)、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート(粘度5.1mPa・s)、テトラヒドロフルフリルアクリレート(粘度2.8mPa・s)、5-エチル-1,3-ジオキサン-5-イルメチルアクリレート(粘度10.0mPa・s)、2-エチルヘキシルアクリレート(粘度2mPa・s、)、2-[2-(エトキシ)エトキシ]エチルアクリレート(粘度4~5mPa・s)、メトキシトリエチレングリコールアクリレート(粘度5~6mPa・s)、2-エチルヘキシルカルビトールアクリレート(粘度4~5mPa・s)、メトキシポリエチレングリコール#400アクリレート(粘度25~30mPa・s)、メトキシジプロピレングリコールアクリレート(粘度2~3mPa・s)、ラウリルメタクリレート(粘度5mPa・s)、tert-ブチルメタクリレート(粘度2mPa・s)、2-エチルヘキシルメタクリレート(粘度3mPa・s)、イソデシルメタクリレート(粘度5mPa・s)、イソボルニルメタクリレート(粘度6mPa・s)、シクロヘキシルメタクリレート(粘度2~4mPa・s)、ベンジルメタクリレート(粘度2~4mPa・s)、フェノキシエチルメタクリレート(粘度7mPa・s)、ジシクロペンテニルオキシエチルメタクリレート(粘度15~20mPa・s)、ジシクロペンタニルメタクリレート(粘度7~17mPa・s)等が挙げられる。 Examples of the monofunctional (meth) acrylate compound having a viscosity of 2 to 50 mPa · s at room temperature include lauryl acrylate (viscosity 4 to 5 mPa · s) and isostearyl acrylate (viscosity 17 mPa · s, viscosity 4 to 5 mPa · s). ), Isodecyl acrylate (viscosity 2.7 mPa · s), isobornyl acrylate (viscosity 7.7 mPa · s), cyclohexyl acrylate (viscosity 2.5 mPa · s), benzyl acrylate (viscosity 2.2 mPa · s), phenoxy Ethyl acrylate (viscosity 9 mPa · s), dicyclopentenyl acrylate (viscosity 8-18 mPa · s), dicyclopentenyloxyethyl acrylate (viscosity 15-25 mPa · s), dicyclopentanyl acrylate (viscosity 7-17 mPa · s) , (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate (viscosity 5.1 mPa · s), tetrahydrofurfuryl acrylate (viscosity 2.8 mPa · s), 5-ethyl-1, 3-Dioxane-5-ylmethyl acrylate (viscosity 10.0 mPa · s), 2-ethylhexyl acrylate (viscosity 2 mPa · s,), 2- [2- (ethoxy) ethoxy] ethyl acrylate (viscosity 4-5 mPa · s) , Methoxytriethylene glycol acrylate (viscosity 5-6 mPa · s), 2-ethylhexylcarbitol acrylate (viscosity 4-5 mPa · s), methoxypolyethylene glycol # 400 acrylate (viscosity 25-30 mPa · s), methoxydipropylene glycol acrylate (Viscosity 2-3 mPa · s), Lauryl methacrylate (viscosity 5 mPa · s), tert-butyl methacrylate (viscosity 2 mPa · s), 2-ethylhexyl methacrylate (viscosity 3 mPa · s), Isodecyl methacrylate (viscosity 5 mPa · s), Isobornyl methacrylate (viscosity 6 mPa · s), cyclohexyl methacrylate (viscosity 2-4 mPa · s), benzyl methacrylate (viscosity 2-4 mPa · s), phenoxyethyl methacrylate (viscosity 7 mPa · s), dicyclopentenyloxyethyl methacrylate (viscosity 7 mPa · s) Viscosity 15 to 20 mPa · s), dicyclopentanyl methacrylate (viscosity 7 to 17 mPa · s) and the like.
 インク組成物の硬化物の表面のべたつき(タック)を低減する観点では、光重合性化合物として、環状構造を有するラジカル重合性化合物を用いることが好ましい。環状構造は、芳香環構造であっても非芳香環構造であってもよい。環状構造の数(芳香環及び非芳香環の数の合計)は、1又は2以上であるが、3以下であることが好ましい。環状構造を構成する炭素原子の数は、例えば、4以上であり、5以上又は6以上であることが好ましい。炭素原子の数は、例えば20以下であり、18以下であることが好ましい。 From the viewpoint of reducing the stickiness (tack) of the surface of the cured product of the ink composition, it is preferable to use a radically polymerizable compound having a cyclic structure as the photopolymerizable compound. The cyclic structure may be an aromatic ring structure or a non-aromatic ring structure. The number of cyclic structures (total number of aromatic rings and non-aromatic rings) is 1 or 2 or more, but preferably 3 or less. The number of carbon atoms constituting the cyclic structure is, for example, 4 or more, and preferably 5 or more or 6 or more. The number of carbon atoms is, for example, 20 or less, preferably 18 or less.
 芳香環構造は、炭素数6~18の芳香環を有する構造であることが好ましい。炭素数6~18の芳香環としては、ベンゼン環、ナフタレン環、フェナントレン環、アントラセン環等が挙げられる。芳香環構造は、芳香族複素環を有する構造であってもよい。芳香族複素環としては、例えば、フラン環、ピロール環、ピラン環、ピリジン環等が挙げられる。芳香環の数は、1であっても、2以上であってもよいが3以下であることが好ましい。有機基は、2以上の芳香環が単結合により結合した構造(例えば、ビフェニル構造)を有していてもよい。 The aromatic ring structure is preferably a structure having an aromatic ring having 6 to 18 carbon atoms. Examples of the aromatic ring having 6 to 18 carbon atoms include a benzene ring, a naphthalene ring, a phenanthrene ring, an anthracene ring and the like. The aromatic ring structure may be a structure having an aromatic heterocycle. Examples of the aromatic heterocycle include a furan ring, a pyrrole ring, a pyran ring, a pyridine ring and the like. The number of aromatic rings may be 1 or 2 or more, but is preferably 3 or less. The organic group may have a structure (for example, a biphenyl structure) in which two or more aromatic rings are bonded by a single bond.
 非芳香環構造は、例えば、炭素数5~20の脂環を有する構造であることが好ましい。炭素数5~20の脂環としては、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環等のシクロアルカン環、シクロペンテン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環等のシクロアルケン環などが挙げられる。脂環は、ビシクロウンデカン環、デカヒドロナフタレン環、ノルボルネン環、ノルボルナジエン環、イソボルニル環等の縮合環であってもよい。非芳香環構造は、非芳香族複素環を有する構造であってもよい。非芳香族複素環としては、例えば、テトラヒドロフラン環、ピロリジン環、テトラヒドロピラン環、ピぺリジン環等が挙げられる。 The non-aromatic ring structure is preferably a structure having, for example, an alicyclic having 5 to 20 carbon atoms. Examples of the alicyclic ring having 5 to 20 carbon atoms include a cycloalkane ring such as a cyclopentane ring, a cyclohexane ring, a cycloheptane ring, and a cyclooctane ring, a cycloalkene ring such as a cyclopentene ring, a cyclohexene ring, a cycloheptene ring, and a cyclooctene ring. Can be mentioned. The alicyclic ring may be a fused ring such as a bicycloundecane ring, a decahydronaphthalene ring, a norbornene ring, a norbornadiene ring, or an isobornyl ring. The non-aromatic ring structure may be a structure having a non-aromatic heterocycle. Examples of the non-aromatic heterocycle include a tetrahydrofuran ring, a pyrrolidine ring, a tetrahydropyran ring, a piperidine ring and the like.
 環状構造を有するラジカル重合性化合物は、好ましくは、環状構造を有する単官能又は多官能(メタ)アクリレートであり、より好ましくは環状構造を有する単官能(メタ)アクリレートである。具体的には、フェノキシエチル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ビフェニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート等が好ましく用いられる。 The radically polymerizable compound having a cyclic structure is preferably a monofunctional or polyfunctional (meth) acrylate having a cyclic structure, and more preferably a monofunctional (meth) acrylate having a cyclic structure. Specifically, phenoxyethyl (meth) acrylate, phenoxybenzyl (meth) acrylate, biphenyl (meth) acrylate, isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate and the like are available. It is preferably used.
 環状構造を有するラジカル重合性化合物の含有量は、インク組成物の表面のべたつき(タック)を抑制しやすい観点、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点から、インク組成物中における光重合性化合物の全質量を基準として、3~85質量%であることが好ましく、10~80質量%であることがより好ましく、20~75質量%であることがさらに好ましく、30~70質量%であることが特に好ましい。 The content of the radically polymerizable compound having a cyclic structure is from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, and from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and easily obtaining excellent ejection properties. Based on the total mass of the photopolymerizable compound in the ink composition, it is preferably 3 to 85% by mass, more preferably 10 to 80% by mass, and further preferably 20 to 75% by mass. It is preferably 30 to 70% by mass, and particularly preferably 30 to 70% by mass.
 優れた吐出性が得られやすい観点では、インク組成物として、炭素数が3以上である直鎖構造を有するラジカル重合性化合物を用いることが好ましく、炭素数が4以上である直鎖構造を有するラジカル重合性化合物を用いることがより好ましい。該直鎖構造とは、炭素数3以上の炭化水素鎖を表す。直鎖構造を有するラジカル重合性化合物は、直鎖構造を構成する炭素原子に直結した水素原子がメチル基又はエチル基に置換されていてもよいが、置換される数は3以下であることが好ましい。炭素数が4以上である直鎖構造を有するラジカル重合性化合物は、該直鎖構造が水素原子以外の原子が枝分かれせずに連なっている構造であることが好ましく、炭素原子及び水素原子の他に、酸素原子等のヘテロ原子を有していてもよい。すなわち、直鎖構造は、炭素原子が直鎖状に3つ以上連続する構造に限られず、3つ以上の炭素原子が酸素原子等のヘテロ原子を介して結直鎖状に連なる構造であってもよい。直鎖構造は、不飽和結合を有していてもよいが、好ましくは飽和結合のみからなる。直鎖構造を構成する炭素原子の数は、好ましくは5以上であり、より好ましくは6以上であり、更に好ましくは7以上である。直鎖構造を構成する炭素原子の数は、好ましくは25以下であり、より好ましくは20以下であり、更に好ましくは15以下である。なお、炭素数の合計が3以上である直鎖構造(直鎖構造を形成する炭素原子に直結した水素原子が置換されたメチル基又はエチル基の炭素原子は数に含まない)を有するラジカル重合性化合物は、吐出性の観点から、環状構造を有しないことが好ましい。 From the viewpoint of easily obtaining excellent ejection properties, it is preferable to use a radically polymerizable compound having a linear structure having 3 or more carbon atoms as the ink composition, and having a linear structure having 4 or more carbon atoms. It is more preferable to use a radically polymerizable compound. The linear structure represents a hydrocarbon chain having 3 or more carbon atoms. In the radically polymerizable compound having a linear structure, a hydrogen atom directly connected to a carbon atom constituting the linear structure may be substituted with a methyl group or an ethyl group, but the number of substitutions may be 3 or less. preferable. The radically polymerizable compound having a linear structure having 4 or more carbon atoms preferably has a structure in which atoms other than hydrogen atoms are connected without branching, and other than carbon atoms and hydrogen atoms. In addition, it may have a hetero atom such as an oxygen atom. That is, the linear structure is not limited to a structure in which three or more carbon atoms are linearly continuous, and is a structure in which three or more carbon atoms are linearly connected via a heteroatom such as an oxygen atom. May be good. The linear structure may have unsaturated bonds, but preferably consists only of saturated bonds. The number of carbon atoms constituting the linear structure is preferably 5 or more, more preferably 6 or more, and further preferably 7 or more. The number of carbon atoms constituting the linear structure is preferably 25 or less, more preferably 20 or less, still more preferably 15 or less. In addition, radical polymerization having a linear structure in which the total number of carbon atoms is 3 or more (the carbon atom of the methyl group or the ethyl group in which the hydrogen atom directly connected to the carbon atom forming the linear structure is substituted is not included in the number). The sex compound preferably does not have a cyclic structure from the viewpoint of ejection property.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキル基を有する構造であることが好ましい。炭素数が4以上の直鎖アルキル基としては、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記直鎖アルキル基が直接結合してなるアルキル(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure having a linear alkyl group having 4 or more carbon atoms. Examples of the linear alkyl group having 4 or more carbon atoms include a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, a nonyl group, a decyl group, an undecyl group, a dodecyl group, a tridecyl group, a tetradecyl group and a pentadecyl group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkyl (meth) acrylate in which the linear alkyl group is directly bonded to the (meth) acryloyloxy group is preferably used.
 直鎖構造は、例えば、炭素数が4以上の直鎖アルキレン基を有する構造であることが好ましい。炭素数が4以上の直鎖アルキレン基としては、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、ウンデシレン基、ドデシレン基、トリデシレン基、テトラデシレン基、ペンタデシレン基等が挙げられる。このような構造を有するラジカル重合性化合物としては、2つの(メタ)アクリロイルオキシ基が上記直鎖アルキレン基で結合されてなるアルキレングリコールジ(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure having a linear alkylene group having 4 or more carbon atoms. Examples of the linear alkylene group having 4 or more carbon atoms include a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group, an undecylene group, a dodecylene group, a tridecylene group, a tetradecylene group and a pentadecylene group. Can be mentioned. As the radically polymerizable compound having such a structure, an alkylene glycol di (meth) acrylate in which two (meth) acryloyloxy groups are bonded by the above-mentioned linear alkylene group is preferably used.
 直鎖構造は、例えば、直鎖アルキル基と1以上の直鎖アルキレン基が酸素原子を介して結合した構造(アルキル(ポリ)オキシアルキレン基を有する構造)であることが好ましい。直鎖アルキレン基の数は2以上であり、6以下であることが好ましい。直鎖アルキレン基の数が2以上である場合、2以上のアルキレン基は、同一であっても異なっていてもよい。直鎖アルキル基及び直鎖アルキレン基の炭素数は、1以上であればよく、2以上又は3以上であってもよいが、4以下であることが好ましい。直鎖アルキル基としては、上述した炭素数が4以上の直鎖アルキル基の他、メチル基、エチル基及びプロピル基が挙げられる。直鎖アルキレン基としては、上述した炭素数が4以上の直鎖アルキレン基の他、メチレン基、エチレン基及びプロピレン基が挙げられる。このような構造を有するラジカル重合性化合物としては、(メタ)アクリロイルオキシ基に上記アルキル(ポリ)オキシアルキレン基が直接結合してなるアルキル(ポリ)オキシアルキレン(メタ)アクリレートが好ましく用いられる。 The linear structure is preferably, for example, a structure in which a linear alkyl group and one or more linear alkylene groups are bonded via an oxygen atom (a structure having an alkyl (poly) oxyalkylene group). The number of linear alkylene groups is 2 or more, preferably 6 or less. When the number of linear alkylene groups is 2 or more, the 2 or more alkylene groups may be the same or different. The number of carbon atoms of the linear alkyl group and the linear alkylene group may be 1 or more, may be 2 or more or 3 or more, but is preferably 4 or less. Examples of the linear alkyl group include the above-mentioned linear alkyl group having 4 or more carbon atoms, as well as a methyl group, an ethyl group and a propyl group. Examples of the linear alkylene group include the above-mentioned linear alkylene group having 4 or more carbon atoms, a methylene group, an ethylene group and a propylene group. As the radically polymerizable compound having such a structure, an alkyl (poly) oxyalkylene (meth) acrylate in which the above-mentioned alkyl (poly) oxyalkylene group is directly bonded to the (meth) acryloyloxy group is preferably used.
 炭素数が3以上である直鎖構造を有するラジカル重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすく、優れた吐出性が得られやすい観点、インク組成物の硬化性に優れる観点、インク組成物の表面のべたつき(タック)を抑制しやすい観点から、インク組成物中における光重合性化合物の全質量を基準として、10~90質量%であることが好ましく、15~80質量%であることがより好ましく、20~70質量%であることが特に好ましい。 The content of the radically polymerizable compound having a linear structure having 3 or more carbon atoms is excellent in the viewpoint that an appropriate viscosity can be easily obtained as an ink jet ink, an excellent ejection property can be easily obtained, and the curability of the ink composition is excellent. From the viewpoint, from the viewpoint of easily suppressing the stickiness (tack) of the surface of the ink composition, it is preferably 10 to 90% by mass, preferably 15 to 80% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is more preferably%, and particularly preferably 20 to 70% by mass.
 光重合性化合物としては、画素部の表面の均一性に優れる観点から、2種以上のラジカル重合性化合物を用いることが好ましく、上述した環状構造を有するラジカル重合性化合物と、上述した炭素数が3以上である直鎖構造を有するラジカル重合性化合物と、を組み合わせて用いることがより好ましい。外部量子効率を向上させるために、発光性ナノ結晶を含むナノ結晶粒子の量を増やした場合には、画素部の表面の均一性が低下することがあるが、このような場合にも、上記光重合性化合物の組み合わせによれば、表面の均一性に優れた画素部が得られる傾向がある。 As the photopolymerizable compound, it is preferable to use two or more kinds of radically polymerizable compounds from the viewpoint of excellent surface uniformity of the pixel portion, and the above-mentioned radically polymerizable compound having a cyclic structure and the above-mentioned number of carbon atoms are used. It is more preferable to use in combination with a radically polymerizable compound having a linear structure of 3 or more. When the amount of nanocrystal particles containing luminescent nanocrystals is increased in order to improve the external quantum efficiency, the uniformity of the surface of the pixel portion may decrease. According to the combination of the photopolymerizable compounds, there is a tendency to obtain a pixel portion having excellent surface uniformity.
 光重合性化合物のSP値は、10.0以下であることが好ましい。光重合性化合物のSP値は、例えば、9.75以下、又は9.50以下であってよく、8.50以上又は8.70以上であってよい。SP値が上記範囲内であると、NOR型ヒンダードアミン化合物の溶解性、インクの保存安定性、及び光学特性(例えば外部量子効率)がより一層優れたものとなる。 The SP value of the photopolymerizable compound is preferably 10.0 or less. The SP value of the photopolymerizable compound may be, for example, 9.75 or less, or 9.50 or less, and may be 8.50 or more or 8.70 or more. When the SP value is within the above range, the solubility of the NOR-type hindered amine compound, the storage stability of the ink, and the optical properties (for example, external quantum efficiency) are further improved.
 本発明のインク組成物が前記SP値が10.0以下の光重合性化合物を含む場合、その光重合性化合物の含有量は、優れたインクの保存安定性となる観点、及び、優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物中の光重合性化合物の全質量を基準として、0~15質量%であることが好ましく、0~10質量%であることがより好ましく、0~5質量%であることが好ましい。 When the ink composition of the present invention contains the photopolymerizable compound having an SP value of 10.0 or less, the content of the photopolymerizable compound is from the viewpoint of excellent storage stability of the ink and excellent optics. From the viewpoint of obtaining characteristics (for example, external quantum efficiency), it is preferably 0 to 15% by mass, more preferably 0 to 10% by mass, based on the total mass of the photopolymerizable compound in the ink composition. It is preferably 0 to 5% by mass.
 なお、本発明におけるSP値(溶解度パラメータ/単位:((cal/cm0.5)とは、R.F.Fedors,Polymer Engineering Science,14,p147(1974)に記載される、所謂、Fedors法で計算された溶解度パラメータをいう。Fedors法では、凝集エネルギー密度とモル分子容とが置換基の種類及び数に依存していると考え、溶解度パラメータを以下の数式(1)で表す。溶解度パラメータは、各化合物に固有の値である。 The SP value (solubility parameter / unit: ((cal / cm 3 ) 0.5 ) in the present invention is described in RF Fedors, Polymer Engineering Science, 14, p147 (1974), so-called. It refers to the solubility parameter calculated by the Fedors method. In the Fedors method, it is considered that the aggregation energy density and the molar molecular weight depend on the type and number of substituents, and the solubility parameter is expressed by the following formula (1). The solubility parameter is a value unique to each compound.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 上記数式(1)中、ΣEcohは凝集エネルギーを、ΣVはモル分子容を示す。 In the above formula (1), ΣEcoh indicates the aggregation energy, and ΣV indicates the molar molecular content.
 SP値のSI単位は、(J/cm0.5又は(MPa)0.5であるが、本明細書では従来慣用的に使用される(cal/cm0.5を用いる。SP値の単位は、次の式:1(cal/cm0.5≒2.05(J/cm0.5≒2.05(MPa)0.5で換算することができる。 The SI unit of the SP value is (J / cm 3 ) 0.5 or (MPa) 0.5 , but here, (cal / cm 3 ) 0.5 , which is conventionally used conventionally, is used. The unit of the SP value can be converted by the following formula: 1 (cal / cm 3 ) 0.5 ≈ 2.05 (J / cm 3 ) 0.5 ≈ 2.05 (MPa) 0.5 .
 SP値が10.0以下である(メタ)アクリレート化合物としては、例えば、ラウリルアクリレート(SP値:8.70)、イソステアリルアクリレート(SP値:8.59)、イソデシルアクリレート(SP値:8.39)、n-ブチルアクリレート(SP値:8.82)、イソボルニルアクリレート(SP値:8.70)、シクロヘキシルアクリレート(SP値:9.26)、ベンジルアクリレート(SP値:9.71)、フェノキシエチルアクリレート(SP値:9.74)、ジシクロペンテニルアクリレート(SP値:9.71)、ジシクロペンテニルオキシエチルアクリレート(SP値:9.65)、ジシクロペンタニルアクリレート(SP値:9.66)、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチルアクリレート(SP値:9.21)、テトラヒドロフルフリルアクリレート(SP値:9.51)、5-エチル-1,3-ジオキサン-5-イルメチルアクリレート(SP値:9.35)、2-エチルヘキシルアクリレート(SP値:8.62)、2-[2-(エトキシ)エトキシ]エチルアクリレート(SP値:9.08)、メトキシトリエチレングリコールアクリレート(SP値:9.18)、2-エチルヘキシルカルビトールアクリレート(SP値:8.82)、メトキシポリエチレングリコール#400アクリレート(SP値:9.28)、メトキシジプロピレングリコールアクリレート(SP値:9.29)、アリルメタクリレート(SP値:8.99)、ラウリルメタクリレート(SP値:9.02)、tert-ブチルメタクリレート(SP値:8.48)、2-エチルヘキシルメタクリレート(SP値:8.63)、イソデシルメタクリレート(SP値:8.42)、イソボルニルメタクリレート(SP値:8.70)、シクロヘキシルメタクリレート(SP値:9.22)、ベンジルメタクリレート(SP値:9.64)、フェノキシエチルメタクリレート(SP値:9.68)、ジシクロペンテニルオキシエチルメタクリレート(SP値:9.60)、ジシクロペンタニルメタクリレート(SP値:9.60)、1,4-ブタンジオールジアクリレート(SP値:9.73)、1,6-ヘキサンジオールジアクリレート(SP値:9.56)、1,9-ノナンジオールジアクリレート(SP値:9.39)、1,10-デカンジオールジアクリレート(SP値:9.34)、ジプロピレングリコールジアクリレート(SP値:9.60)、ネオペンチルグリコールジアクリレート(SP値:9.40)、トリシクロデカンジメタノールジアクリレート(SP値:9.68)、トリエチレングリコールジアクリレート(SP値:9.77)、ポリエチレングリコール#200ジアクリレート(SP値:9.72)、ポリエチレングリコール#400ジアクリレート(SP値:9.58)、ポリエチレングリコール#600ジアクリレート(SP値:9.52)、ペンタエリスリトールトリアクリレート(SP値:8.78)、トリメチロールプロパントリアクリレート(SP値:9.88)、ジトリメチロールプロパンテトラアクリレート(SP値:9.81)、1,4-ブタンジオールジメタクリレート(SP値:9.61)、1,6-ヘキサンジオールジメタクリレート(SP値:9.48)、1,9-ノナンジオールジメタクリレート(SP値:9.33)、エチレングリコールジメタクリレート(SP値:9.78)、ジエチレングリコールジメタクリレート(SP値:9.71)、トリエチレングリコールジメタクリレート(SP値:9.66)、ポリエチレングリコール#200ジメタクリレート(SP値:9.63)、ポリエチレングリコール#400ジメタクリレート(SP値:9.53)、ポリエチレングリコール#600ジメタクリレート(SP値:9.49)等が挙げられる。 Examples of the (meth) acrylate compound having an SP value of 10.0 or less include lauryl acrylate (SP value: 8.70), isostearyl acrylate (SP value: 8.59), and isodecyl acrylate (SP value: 8). .39), n-butyl acrylate (SP value: 8.82), isobornyl acrylate (SP value: 8.70), cyclohexyl acrylate (SP value: 9.26), benzyl acrylate (SP value: 9.71) ), Phenoxyethyl acrylate (SP value: 9.74), dicyclopentenyl acrylate (SP value: 9.71), dicyclopentenyloxyethyl acrylate (SP value: 9.65), dicyclopentanyl acrylate (SP value) : 9.66), (2-Methyl-2-ethyl-1,3-dioxolan-4-yl) methyl acrylate (SP value: 9.21), tetrahydrofurfuryl acrylate (SP value: 9.51), 5 -Ethyl-1,3-dioxane-5-ylmethyl acrylate (SP value: 9.35), 2-ethylhexyl acrylate (SP value: 8.62), 2- [2- (ethoxy) ethoxy] ethyl acrylate (SP) Value: 9.08), methoxytriethylene glycol acrylate (SP value: 9.18), 2-ethylhexylcarbitol acrylate (SP value: 8.82), methoxypolyethylene glycol # 400 acrylate (SP value: 9.28) , Methoxydipropylene glycol acrylate (SP value: 9.29), allyl methacrylate (SP value: 8.99), lauryl methacrylate (SP value: 9.02), tert-butyl methacrylate (SP value: 8.48), 2-Ethylhexyl methacrylate (SP value: 8.63), isodecyl methacrylate (SP value: 8.42), isobornyl methacrylate (SP value: 8.70), cyclohexyl methacrylate (SP value: 9.22), benzyl Methacrylate (SP value: 9.64), Phenoxyethyl methacrylate (SP value: 9.68), Dicyclopentenyloxyethyl methacrylate (SP value: 9.60), Dicyclopentanyl methacrylate (SP value: 9.60) , 1,4-Butanediol diacrylate (SP value: 9.73), 1,6-hexanediol diacrylate (SP value: 9.56), 1,9-nonandiol diacrylate (SP value: 9.39) ), 1,10-Decandiol diacrylate (SP value : 9.34), Dipropylene glycol diacrylate (SP value: 9.60), Neopentyl glycol diacrylate (SP value: 9.40), Tricyclodecanedimethanol diacrylate (SP value: 9.68), Triethylene glycol diacrylate (SP value: 9.77), polyethylene glycol # 200 diacrylate (SP value: 9.72), polyethylene glycol # 400 diacrylate (SP value: 9.58), polyethylene glycol # 600 diacrylate (SP value: 9.52), pentaerythritol triacrylate (SP value: 8.78), trimethylol propanetriacrylate (SP value: 9.88), ditrimethylol propanetetraacrylate (SP value: 9.81), 1,4-Butandiol dimethacrylate (SP value: 9.61), 1,6-hexanediol dimethacrylate (SP value: 9.48), 1,9-nonandiol dimethacrylate (SP value: 9.33) , Ethylene glycol dimethacrylate (SP value: 9.78), Diethylene glycol dimethacrylate (SP value: 9.71), Triethylene glycol dimethacrylate (SP value: 9.66), Polyethylene glycol # 200 dimethacrylate (SP value:) 9.63), polyethylene glycol # 400 dimethacrylate (SP value: 9.53), polyethylene glycol # 600 dimethacrylate (SP value: 9.49) and the like can be mentioned.
 インク組成物において、硬化可能成分を、光重合性化合物のみまたはそれを主成分として構成する場合には、上記したような光重合性化合物としては、重合性官能基を1分子中に2以上有する2官能以上の多官能の光重合性化合物を必須成分として用いることが、硬化物の耐久性(強度、耐熱性等)をより高めることができることからより好ましい。 In the ink composition, when the curable component is composed of only the photopolymerizable compound or the main component thereof, the photopolymerizable compound as described above has two or more polymerizable functional groups in one molecule. It is more preferable to use a polyfunctional photopolymerizable compound having two or more functionalities as an essential component because the durability (strength, heat resistance, etc.) of the cured product can be further enhanced.
 インク組成物中に含まれる光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物の全質量を基準として、70~95質量%であることが好ましく、75~94質量%であることがより好ましく、80~93質量%であることがさらに好ましい。
 <<光重合開始剤>>
 光重合開始剤は、アルキルフェノン系化合物、アシルホスフィンオキサイド系化合物およびオキシムエステル系化合物からなる群より選ばれる少なくとも1種であることが好ましい。
 アルキルフェノン系光重合開始剤としては、例えば、式(b-1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
(式中、R1aは、下記式(R1a-1)~式(R1a-6)から選ばれる基を表し、R2a、R2bおよびR2cは、それぞれ独立して、下記式(R-1)~式(R-7)から選ばれる基を表す。)
The content of the photopolymerizable compound contained in the ink composition is from the viewpoint that an appropriate viscosity can be easily obtained as an inkjet ink, from the viewpoint that the curability of the ink composition is good, and the pixel portion (curing of the ink composition). 70 to 95% by mass based on the total mass of the ink composition from the viewpoint of improving the solvent resistance and abrasion resistance of the product) and obtaining better optical characteristics (for example, external quantum efficiency). It is preferably 75 to 94% by mass, and even more preferably 80 to 93% by mass.
<< Photopolymerization Initiator >>
The photopolymerization initiator is preferably at least one selected from the group consisting of alkylphenone-based compounds, acylphosphine oxide-based compounds and oxime ester-based compounds.
Examples of the alkylphenone-based photopolymerization initiator include compounds represented by the formula (b-1).
Figure JPOXMLDOC01-appb-C000015
(In the formula, R1a represents a group selected from the following formulas (R 1a -1) to (R 1a -6), and R 2a , R 2b and R 2c independently represent the following formula (R 2 ). -1) -Represents a group selected from the formula (R 2-7 ).)
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 上記式(b-1)で表される化合物の具体例としては、下記式(b-1-1)~式(b-1-6)で表される化合物が好ましく、下記式(b-1-1)、式(b-1-5)または式(b-1-6)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000018
As a specific example of the compound represented by the above formula (b-1), the compounds represented by the following formulas (b-1-1) to (b-1-6) are preferable, and the following formula (b-1) is preferable. -1), the compound represented by the formula (b-1-5) or the formula (b-1-6) is more preferable.
Figure JPOXMLDOC01-appb-C000018
 アシルホスフィンオキサイド系光重合開始剤としては、例えば、式(b-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000019
(式中、R24はアルキル基、アリール基または複素環基を表し、R25およびR26は、それぞれ独立して、アルキル基、アリール基、複素環基またはアルカノイル基を表すが、これらの基は、アルキル基、ヒドロキシル基、カルボキシル基、スルホン基、アリール基、アルコキシ基、アリールチオ基で置換されてもよい。)
Examples of the acylphosphine oxide-based photopolymerization initiator include compounds represented by the formula (b-2).
Figure JPOXMLDOC01-appb-C000019
(In the formula, R 24 represents an alkyl group, an aryl group or a heterocyclic group, and R 25 and R 26 each independently represent an alkyl group, an aryl group, a heterocyclic group or an alkanoyl group. May be substituted with an alkyl group, a hydroxyl group, a carboxyl group, a sulfon group, an aryl group, an alkoxy group, or an arylthio group.)
 上記式(b-2)で表される化合物の具体例としては、下記式(b-2-1)~式(b-2-5)で表される化合物が好ましく、下記式(b-2-1)または式(b-2-5)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000020
As specific examples of the compound represented by the above formula (b-2), the compounds represented by the following formulas (b-2-1) to (b-2-5) are preferable, and the following formula (b-2) is preferable. A compound represented by -1) or the formula (b-2-5) is more preferable.
Figure JPOXMLDOC01-appb-C000020
 オキシムエステル系光重合開始剤としては、例えば、下記式(b-3-1)または式(b-3-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式中、R27~R31は、それぞれ独立して、水素原子、炭素原子数1~12の環状、直鎖状あるいは分岐状のアルキル基、またはフェニル基を表し、各アルキル基およびフェニル基は、ハロゲン原子、炭素原子数1~6のアルコキシル基およびフェニル基からなる群から選ばれる置換基で置換されていてもよく、Xは、酸素原子または窒素原子を表し、Xは、酸素原子またはNRを表し、Rは炭素原子数1~6のアルキル基を表す。)
Examples of the oxime ester-based photopolymerization initiator include compounds represented by the following formula (b-3-1) or formula (b-3-2).
Figure JPOXMLDOC01-appb-C000021
(In the formula, R 27 to R 31 each independently represent a hydrogen atom, a cyclic, linear or branched alkyl group having 1 to 12 carbon atoms, or a phenyl group, and each alkyl group and phenyl group. May be substituted with a substituent selected from the group consisting of a halogen atom, an alkoxyl group having 1 to 6 carbon atoms and a phenyl group, where X1 represents an oxygen atom or a nitrogen atom and X2 is oxygen. It represents an atom or NR, and R represents an alkyl group having 1 to 6 carbon atoms.)
 上記式(b-3-1)および式(b-3-2)で表される化合物の具体例としては、下記式(b-3-1-1)~式(b-3-1-2)および下記式(b-3-2-1)~(b-3-2-2)で表される化合物が好ましく、下記式(b-3-1-1)、式(b-3-2-1)または式(b-3-2-2)で表される化合物がより好ましい。
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
Specific examples of the compounds represented by the above formulas (b-3-1) and (b-3-2) include the following formulas (b-3-1-1) to (b-3-1-2). ) And the compounds represented by the following formulas (b-3-2-1) to (b-3--2-2) are preferable, and the following formulas (b-3-1-1) and (b-3-2) are preferable. A compound represented by -1) or the formula (b-3-2-2) is more preferable.
Figure JPOXMLDOC01-appb-C000022

Figure JPOXMLDOC01-appb-C000023
 光重合開始剤の含有量は、インク組成物に含まれる光重合性化合物の総量に対して、0.05~10質量%であることが好ましく、0.1~8質量%であることがより好ましく、1~6質量%であることがさらに好ましい。なお、光重合開始剤は、1種を単独で使用することもできるし、2種以上を混合して使用することもできる。かかる量で光重合開始剤を含むインク組成物は、光硬化時の感光度を十分に維持するとともに、硬化膜の乾燥時に光重合開始剤の結晶が析出し難く、よって硬化膜の物性の劣化を抑制することができる。 The content of the photopolymerization initiator is preferably 0.05 to 10% by mass, more preferably 0.1 to 8% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. It is preferably 1 to 6% by mass, and more preferably 1 to 6% by mass. The photopolymerization initiator may be used alone or in combination of two or more. The ink composition containing the photopolymerization initiator in such an amount sufficiently maintains the photosensitivity at the time of photocuring, and the crystals of the photopolymerization initiator are less likely to precipitate when the cured film is dried, so that the physical properties of the cured film are deteriorated. Can be suppressed.
 インク組成物中に光重合開始剤を溶解する際には、予め光重合性化合物中に溶解してから使用することが好ましい。
 光重合性化合物に溶解させるには、熱による反応が開始されないように、光重合性化合物を攪拌しながら光重合開始剤を添加することにより均一溶解させることが好ましい。
 光重合開始剤の溶解温度は、用いる光重合開始剤の光重合性化合物に対する溶解性、および光重合性化合物の熱による重合性を考慮して適宜調節すればよいが、光重合性化合物の重合を開始させない観点から10~50℃であることが好ましく、10~40℃であることがより好ましく、10~30℃であることがさらに好ましい。
When dissolving the photopolymerization initiator in the ink composition, it is preferable to dissolve it in the photopolymerizable compound in advance before use.
In order to dissolve the photopolymerizable compound, it is preferable to uniformly dissolve the photopolymerizable compound by adding a photopolymerization initiator while stirring so that the reaction due to heat is not started.
The dissolution temperature of the photopolymerization initiator may be appropriately adjusted in consideration of the solubility of the photopolymerization initiator used in the photopolymerizable compound and the thermal polymerizable property of the photopolymerizable compound, but the polymerization of the photopolymerizable compound may be appropriately adjusted. The temperature is preferably 10 to 50 ° C., more preferably 10 to 40 ° C., and even more preferably 10 to 30 ° C. from the viewpoint of not starting the polymerization.
 <<光散乱性粒子>>
 インク組成物は、光散乱性粒子を更に含有してよい。光散乱性粒子は、例えば、光学的に不活性な無機微粒子であることが好ましい。光散乱性粒子は、発光層(光変換層)に照射された光源部からの光を散乱させることができる。
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金のような単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、酸化チタン、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛のような金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウムのような金属炭酸塩;水酸化アルミニウムのような金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマスのような金属塩等が挙げられる。
 中でも、光散乱性粒子を構成する材料としては、漏れ光の低減効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウムおよびシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、硫酸バリウムおよび炭酸カルシウムからなる群より選択される少なくとも一種を含むことがより好ましく、酸化チタンであることが特に好ましい。
<< Light-scattering particles >>
The ink composition may further contain light scattering particles. The light-scattering particles are preferably, for example, optically inactive inorganic fine particles. The light-scattering particles can scatter the light from the light source portion irradiated to the light emitting layer (light conversion layer).
Materials that make up the light-scattering particles include, for example, single metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate. Metal oxides such as talc, titanium oxide, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; Metal carbonates such as magnesium, barium carbonate, bismuth hypocarbonate, calcium carbonate; metal hydroxides such as aluminum hydroxide; barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, etc. Examples thereof include composite oxides and metal salts such as bismuth subnitrate.
Among them, as a material constituting the light-scattering particles, at least one selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate and silica from the viewpoint of being more excellent in the effect of reducing leakage light. It preferably contains seeds, more preferably contains at least one selected from the group consisting of titanium oxide, barium sulfate and calcium carbonate, and particularly preferably titanium oxide.
 酸化チタンを用いる場合には、分散性の観点から、表面処理がなされた酸化チタンであることが好ましい。酸化チタンの表面処理方法としては公知の方法があるが、少なくともアルミナを含んだ表面処理がなされていることがより好ましい。 When titanium oxide is used, it is preferably surface-treated titanium oxide from the viewpoint of dispersibility. There is a known method as a surface treatment method for titanium oxide, but it is more preferable that the surface treatment contains at least alumina.
 アルミナを含んだ表面処理がなされた酸化チタンとは、酸化チタン粒子表面に少なくともアルミナを析出させる処理をいい、アルミナの他にシリカ等を用いることができる。また、アルミナあるいはシリカには、それらの水和物も含まれる。 Titanium oxide that has been surface-treated to contain alumina means a treatment that precipitates at least alumina on the surface of titanium oxide particles, and silica or the like can be used in addition to alumina. Alumina or silica also contains their hydrates.
 この様に、酸化チタン粒子にアルミナを含んだ表面処理を行うことにより、酸化チタン粒子表面が均一に表面被覆処理され、少なくともアルミナにより表面処理された酸化チタン粒子を用いると、酸化チタン粒子の分散性が良好となる。 In this way, the surface of the titanium oxide particles is uniformly surface-coated by performing a surface treatment containing alumina on the titanium oxide particles, and at least when the titanium oxide particles surface-treated with alumina are used, the titanium oxide particles are dispersed. The sex becomes good.
 また、シリカによる処理とアルミナによる処理を酸化チタン粒子に施す場合には、アルミナ及びシリカ処理は同時に行っても良く、特にアルミナ処理を最初に行い、次いでシリカ処理を行うこともできる。また、アルミナとシリカの処理をそれぞれ行う場合には、アルミナ及びシリカの処理量は、アルミナよりもシリカの多いものが好ましい。 Further, when the treatment with silica and the treatment with alumina are applied to the titanium oxide particles, the alumina and silica treatment may be performed at the same time, and in particular, the alumina treatment may be performed first, and then the silica treatment may be performed. When the treatments of alumina and silica are performed, the amount of alumina and silica to be treated is preferably more silica than that of alumina.
 前記酸化チタンのアルミナ、シリカ等の金属酸化物による表面処理は湿式法により行うことができる。例えば、アルミナ、又はシリカの表面処理を行った酸化チタン粒子は以下のように作製することができる。 The surface treatment of titanium oxide with a metal oxide such as alumina or silica can be performed by a wet method. For example, titanium oxide particles surface-treated with alumina or silica can be produced as follows.
 酸化チタン粒子(数平均一次粒子径:200~400nm)を50~350g/Lの濃度で水中に分散させて水性スラリーとし、これに水溶性のケイ酸塩又は水溶性のアルミニウム化合物を添加する。その後、アルカリ又は酸を添加して中和し、酸化チタン粒子の表面にシリカ、又はアルミナを析出させる。続いて濾過、洗浄、乾燥を行い目的の表面処理酸化チタンを得る。前記水溶性のケイ酸塩としてケイ酸ナトリウムを使用した場合には、硫酸、硝酸、塩酸等の酸で中和することができる。一方、水溶性のアルミニウム化合物として硫酸アルミニウムを用いたときは水酸化ナトリウムや水酸化カリウム等のアルカリで中和することができる。 Titanium oxide particles (number average primary particle diameter: 200 to 400 nm) are dispersed in water at a concentration of 50 to 350 g / L to form an aqueous slurry, to which a water-soluble silicate or a water-soluble aluminum compound is added. Then, an alkali or an acid is added to neutralize the particles, and silica or alumina is deposited on the surface of the titanium oxide particles. Subsequently, it is filtered, washed and dried to obtain the desired surface-treated titanium oxide. When sodium silicate is used as the water-soluble silicate, it can be neutralized with an acid such as sulfuric acid, nitric acid, or hydrochloric acid. On the other hand, when aluminum sulfate is used as the water-soluble aluminum compound, it can be neutralized with an alkali such as sodium hydroxide or potassium hydroxide.
 光散乱性粒子の含有量は、インク組成物の全質量を基準として、0.5質量%以上、1質量%以上又は2質量%以上であってよく、10質量%以下、9質量%以下又は8質量%以下であってもよい。 The content of the light-scattering particles may be 0.5% by mass or more, 1% by mass or more, or 2% by mass or more, based on the total mass of the ink composition, and may be 10% by mass or less, 9% by mass or less, or. It may be 8% by mass or less.
 <<高分子分散剤>>
 インク組成物は、高分子分散剤を更に含有してよい。高分子分散剤は、重量平均分子量(Mw)が5,000超の分子であり、光散乱性粒子のインク組成物中での分散安定性を向上させ得る化合物である。該高分子分散剤は、発光性粒子の分散安定性にも寄与する。
<< Polymer Dispersant >>
The ink composition may further contain a polymer dispersant. The polymer dispersant is a molecule having a weight average molecular weight (Mw) of more than 5,000, and is a compound capable of improving the dispersion stability of light-scattering particles in an ink composition. The polymer dispersant also contributes to the dispersion stability of the luminescent particles.
 「重量平均分子量(Mw)」は、ポリスチレンを標準物質としたゲル浸透クロマトグラフィ(GPC)を用いて測定された値を採用することができる。 For the "weight average molecular weight (Mw)", a value measured by gel permeation chromatography (GPC) using polystyrene as a standard material can be adopted.
 高分子分散剤としては、例えば、アクリル系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリウレア系樹脂、アミノ系樹脂、ポリアミン系樹脂(ポリエチレンイミン、ポリアリルアミン等)、エポキシ系樹脂、ポリイミド系樹脂、ウッドロジン、ガムロジン、トール油ロジンのような天然ロジン、重合ロジン、不均化ロジン、水添ロジン、酸化ロジン、マレイン化ロジンのような変性ロジン、ロジンアミン、ライムロジン、ロジンアルキレンオキシド付加物、ロジンアルキド付加物、ロジン変性フェノールのようなロジン誘導体等が挙げられる。
 なお、高分子分散剤の市販品としては、例えば、ビックケミー社製のDISPERBYK(登録商標)シリーズ、エボニック社製のTEGO(登録商標)Dispersシリーズ、BASF社製のEFKA(登録商標)シリーズ、日本ルーブリゾール社製のSOLSPERSE(登録商標)シリーズ、味の素ファインテクノ社製のアジスパー(登録商標)シリーズ、楠本化成製のDISPARLON(登録商標)シリーズ、共栄社化学社製のフローレンシリーズ等を使用することができる。
Examples of the polymer dispersant include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyether resins, phenol resins, silicone resins, polyurea resins, amino resins, and polyamine resins ( Polyethylene imine, polyallylamine, etc.), epoxy resins, polyimide resins, wood rosins, gum rosins, natural rosins such as tall oil rosins, polymerized rosins, disproportionated rosins, hydrogenated rosins, oxide rosins, maleated rosins, etc. Examples thereof include modified rosin, rosinamine, lime rosin, rosin alkylene oxide adduct, rosin alkyd adduct, rosin derivatives such as rosin-modified phenol, and the like.
Examples of commercially available polymer dispersants include DISPERBYK (registered trademark) series manufactured by Big Chemie, TEGO (registered trademark) Dispers series manufactured by Ebony, EFKA (registered trademark) series manufactured by BASF, and Japan Lubrizol. SOLSPERSE (registered trademark) series manufactured by Zol, Ajinomoto Fine-Techno's Azispar (registered trademark) series, DISPARLON (registered trademark) series manufactured by Kusumoto Kasei, Floren series manufactured by Kyoeisha Chemical Co., Ltd., and the like can be used.
 また、該高分子分散剤としては、ブロック共重合体であることが特に好ましい。該高分子分散剤がブロック共重合体を適用することによる効果としては、ブロック共重合体は親水性領域と顔料吸着領域により構成されることにより、高い分散性を得ることができ、ランダム共重合体や交差共重合体よりも優れた分散性を得ることができる。 Further, it is particularly preferable that the polymer dispersant is a block copolymer. The effect of applying the block copolymer to the polymer dispersant is that the block copolymer is composed of a hydrophilic region and a pigment adsorption region, so that high dispersibility can be obtained and a random copolymer weight can be obtained. It is possible to obtain better dispersibility than coalescence or cross-copolymer.
 具体的には、ランダム共重合体等では、共重合体を構成する単量体モノマーは、重合体形成時に立体的あるいは電気的に共重合体中に安定的に配置される確率が高くなる。単量体モノマーが安定的に配置された部分(分子)は、立体的あるいは電気的に安定しているため、顔料表面に吸着する際に障害となる場合が多い。これに対し、分子配列が制御されたブロック共重合体タイプの高分子分散剤では、顔料に対する分散剤の吸着を妨げる部分を、顔料と分散剤との吸着部から離れた位置に配置することができる。すなわち、顔料と分散剤との吸着部には吸着に最適な部分を配置し、溶媒親和性が必要な部分にはそれに適した部分を配置することにより、特に、結晶サイズが小さな顔料を含有する系のインクジェットインクの分散においては、このブロック共重合体で構成される分子配列により良好な分散性を実現することができるものと推測される。 Specifically, in a random copolymer or the like, the monomer monomer constituting the copolymer has a high probability of being sterically or electrically stably arranged in the copolymer at the time of polymer formation. Monomer Since the portion (molecule) in which the monomer is stably arranged is sterically or electrically stable, it often becomes an obstacle when adsorbing on the pigment surface. On the other hand, in the block copolymer type polymer dispersant having a controlled molecular arrangement, the portion that hinders the adsorption of the dispersant to the pigment may be arranged at a position away from the adsorption portion between the pigment and the dispersant. can. That is, by arranging an optimum portion for adsorption in the adsorption portion between the pigment and the dispersant and arranging a portion suitable for the portion in which solvent affinity is required, a pigment having a particularly small crystal size is contained. In the dispersion of the based inkjet ink, it is presumed that good dispersibility can be realized by the molecular arrangement composed of this block copolymer.
 本発明に係る高分子分散剤としては、上記特性を備えていれば制限はなく、公知のエチレン性不飽和モノマーを用いて合成されたブロック共重合体を適用でき、エチレン性不飽和モノマーとしては、例えば、以下のものを挙げることができる。 The polymer dispersant according to the present invention is not limited as long as it has the above characteristics, and a block copolymer synthesized using a known ethylenically unsaturated monomer can be applied, and the ethylenically unsaturated monomer can be used. , For example, the following can be mentioned.
 スチレン及びスチレン誘導体、例えば、α-メチルスチレン又はビニルトルエン;カルボン酸のビニルエステル、例えば、酢酸ビニル、プロピオン酸ビニル;ハロゲン化ビニル;エチレン性不飽和モノカルボン酸及びジカルボン酸、例えば、アクリル酸、メタクリル酸、イタコン酸、マレイン酸又はフマル酸、及び上記したジカルボン酸のアルカノール(好ましくは1~4個の炭素原子を有するもの)とのモノアルキルエステル、及び上記したモノアルキルエステルの誘導体、及びそのN-置換誘導体、アリールエステル、及びそれらの誘導体;不飽和カルボン酸のアミド、例えば、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド若しくはメタクリルアミド、N-アルキルアクリルアミド;スルホン酸基を含むエチレン性モノマー及びそのアンモニウム又はアルカリ金属塩、例えば、ビニルスルホン酸、ビニルベンゼンスルホン酸、α-アクリルアミドメチルプロパンスルホン酸、2-スルホエチレンメタクリレート;ビニルアミンのアミド、例えば、ビニルホルムアミド、ビニルアセトアミド;第2、第3若しくは第4級アミノ基又は窒素含有ヘテロ環基を含む不飽和エチレン性モノマー、例えば、ビニルピリジン、ビニルイミダゾール、アミノアルキル(メタ)アクリレート、アミノアルキル(メタ)アクリルアミド、アクリル酸若しくはメタクリル酸ジメチルアミノエチル、アクリル酸若しくはメタクリル酸ジ-t-ブチルアミノエチル、又はジメチルアミノメチルアクリルアミド若しくはメタクリルアミド;ツビッターイオン性モノマー、例えば、スルホプロピル(ジメチル)アミノプロピルアクリレート;ジエン類、例えば、ブタジエン、イソプレン、クロロプレン;(メタ)アクリル酸エステル;ビニルニトリル類;ビニルホスホン酸及びその誘導体を挙げることができる。 Stylines and styrene derivatives such as α-methylstyrene or vinyltoluene; vinyl esters of carboxylic acids such as vinyl acetate, vinyl propionate; vinyl halides; ethylenically unsaturated monocarboxylic acids and dicarboxylic acids such as acrylic acids, Monoalkyl esters with methacrylic acid, itaconic acid, maleic acid or fumaric acid, and the above-mentioned alkanols of dicarboxylic acids (preferably those having 1 to 4 carbon atoms), derivatives of the above-mentioned monoalkyl esters, and their derivatives. N-substituted derivatives, aryl esters, and derivatives thereof; amides of unsaturated carboxylic acids such as acrylamide, methacrylamide, N-methylolacrylamide or methacrylamide, N-alkylacrylamide; ethylenic monomers containing sulfonic acid groups and theirs. Ammonium or alkali metal salts such as vinyl sulfonic acid, vinyl benzene sulfonic acid, α-acrylamide methyl propane sulfonic acid, 2-sulfoethylene methacrylate; vinyl amine amides such as vinyl formamide, vinyl acetamide; second, third or second An unsaturated ethylenic monomer containing a quaternary amino group or a nitrogen-containing heterocyclic group, such as vinylpyridine, vinylimidazole, aminoalkyl (meth) acrylate, aminoalkyl (meth) acrylamide, acrylic acid or dimethylaminoethyl methacrylate, acrylic. Acids or di-t-butylaminoethyl methacrylates, or dimethylaminomethylacrylamide or methacrylicamides; zwitterionic monomers such as sulfopropyl (dimethyl) aminopropylacrylate; dienes such as butadiene, isoprene, chloroprene; ( Meta) Acrylic acid esters; vinyl nitriles; vinyl phosphonic acid and derivatives thereof can be mentioned.
 このようなエチレン性不飽和モノマーを用いて、公知の方法、例えば、特開2005-60669号公報や特開2007-314617号公報などの合成方法に従って、ブロック共重合体を合成することができる。 Using such an ethylenically unsaturated monomer, a block copolymer can be synthesized according to a known method, for example, a synthesis method such as JP-A-2005-60669 and JP-A-2007-314617.
 その中でも、(メタ)アクリル系ブロック共重合体を用いることが好ましく、例えば、特開昭60-89452号公報、特開平9-62002号公報、P.Lutz,P.Massonetal,Polym.Bull.12,79(1984)、B.C.Anderson,G.D.Andrewsetal,Macromolecules,14,1601(1981)、K.Hatada,K.Ute,etal,Polym.J.17,977(1985)、K.Hatada,K.Ute,etal,Polym.J.18,1037(1986)、右手浩一、畑田耕一、高分子加工、36、366(1987)、東村敏延、沢本光男、高分子論文集、46、189(1989)、M.Kuroki,T.Aida,J.Am.Chem.Sic,109,4737(1987)、相田卓三、井上祥平、有機合成化学、43,300(1985)、D.Y.Sogoh,W.R.Hertleretal,Macromolecules,20,1473(1987)、K.Matyaszewskietal,Chem.Rev.2001,101,2921-2990などに記載されている公知の方法を参照して合成可能である。 Among them, it is preferable to use a (meth) acrylic block copolymer, for example, JP-A-60-89452, JP-A-9-62002, P.I. Lutz, P. et al. Massonetal, Polym. Bull. 12, 79 (1984), B.I. C. Anderson, G.M. D. Andrewsetal, Macromolecules, 14, 1601 (1981), K. et al. Hatada, K. et al. Ute, et al, Polym. J. 17,977 (1985), K.K. Hatada, K. et al. Ute, et al, Polym. J. 18, 1037 (1986), Koichi Right Hand, Koichi Hatada, Polymer Processing, 36, 366 (1987), Toshinobu Higashimura, Mitsuo Sawamoto, Journal of Polymer Papers, 46, 189 (1989), M.D. Kuroki, T.I. Aida, J.M. Am. Chem. Sic, 109,4737 (1987), Takuzo Aida, Shohei Inoue, Synthetic Organic Chemistry, 43,300 (1985), D.I. Y. Sogoh, W.M. R. Hertreletal, Macromolecules, 20, 1473 (1987), K. et al. Mathazewskietal, Chem. Rev. It can be synthesized by referring to a known method described in 2001, 101, 2211-2990 and the like.
 本発明で用いる高分子分散剤は、塩基性の極性基を有し、塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。該高分子分散剤のアミン価は6~90mgKOH/gであることが好ましく、7~70mgKOH/gであることがより好ましく、8~50mgKOH/gであることがさらに好ましい。該高分子分散剤のアミン価が6mgKOH/gより小さいと、光拡散粒子への高分子分散剤の吸着性が低く、またアミン価が90mgKOH/gより大きいと極性が高くなり、凝集、保存性劣化の原因となりやすく、その影響により発光性粒子の分散性も悪化することになる。 The polymer dispersant used in the present invention has a basic polar group, and the basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and pyridine, pyrimidine, pyrazine, and the like. Examples thereof include nitrogen-containing heterocyclic groups such as imidazole and triazole. The amine value of the polymer dispersant is preferably 6 to 90 mgKOH / g, more preferably 7 to 70 mgKOH / g, and even more preferably 8 to 50 mgKOH / g. When the amine value of the polymer dispersant is smaller than 6 mgKOH / g, the adsorptivity of the polymer dispersant to the light diffusing particles is low, and when the amine value is larger than 90 mgKOH / g, the polarity is high, and aggregation and storage stability are achieved. It tends to cause deterioration, and the dispersibility of the luminescent particles also deteriorates due to the influence.
 高分子分散剤のアミン価は、以下のように測定することができる。高分子分散剤xg及びブロモフェノールブルー試液1mLを、トルエンとエタノールとを体積比1:1で混合した混合溶液50mLに溶解させた試料液を準備し、0.5mol/L塩酸にて試料液が緑色を呈するまで滴定を行い、次式によりアミン価を算出できる。
     アミン価=y/x×28.05
 式中、yは滴定に要した0.5mol/L塩酸の滴定量(mL)を示し、xは高分子分散剤の質量(g)を示す。
The amine value of the polymer dispersant can be measured as follows. Prepare a sample solution prepared by dissolving xg of the polymer dispersant and 1 mL of the bromophenol blue test solution in 50 mL of a mixed solution of toluene and ethanol mixed at a volume ratio of 1: 1 and prepare the sample solution with 0.5 mol / L hydrochloric acid. Titration is performed until it turns green, and the amine value can be calculated by the following formula.
Amine value = y / x × 28.05
In the formula, y indicates the titration amount (mL) of 0.5 mol / L hydrochloric acid required for titration, and x indicates the mass (g) of the polymer dispersant.
 高分子分散剤の含有量は、光散乱性粒子100質量%に対して、0.5~50質量%であることが好ましく、2~30質量%であることがより好ましく、3~20質量部であることが特に好ましい。 The content of the polymer dispersant is preferably 0.5 to 50% by mass, more preferably 2 to 30% by mass, and 3 to 20 parts by mass with respect to 100% by mass of the light-scattering particles. Is particularly preferable.
 インク組成物は、本発明の効果を阻害しない範囲で、発光性粒子、光重合性化合物、光重合開始剤、光散乱性粒子、高分子分散剤以外の他の成分を含有してもよい。かかる他の成分としては、重合禁止剤、酸化防止剤、レベリング剤、連鎖移動剤、分散助剤、熱可塑性樹脂、増感剤等が挙げられる。 The ink composition may contain other components other than luminescent particles, photopolymerizable compounds, photopolymerization initiators, light-scattering particles, and polymer dispersants as long as the effects of the present invention are not impaired. Examples of such other components include polymerization inhibitors, antioxidants, leveling agents, chain transfer agents, dispersion aids, thermoplastic resins, sensitizers and the like.
 <<重合禁止剤>>
 重合禁止剤としては、例えば、p-メトキシフェノール、クレゾール、t-ブチルカテコール、3,5-ジ-t-ブチル-4-ヒドロキシトルエン、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4-メトキシ-1-ナフトール、4,4’-ジアルコキシ-2,2’-ビ-1-ナフトールのようなフェノール系化合物;ヒドロキノン、メチルヒドロキノン、tert-ブチルヒドロキノン、p-ベンゾキノン、メチル-p-ベンゾキノン、tert-ブチル-p-ベンゾキノン、2,5-ジフェニルベンゾキノン、2-ヒドロキシ-1,4-ナフトキノン、1,4-ナフトキノン、2,3-ジクロロ-1,4-ナフトキノン、アントラキノン、ジフェノキノンのようなキノン系化合物;p-フェニレンジアミン、4-アミノジフェニルアミン、N,N’-ジフェニル-p-フェニレンジアミン、N-i-プロピル-N’-フェニル-p-フェニレンジアミン、N-(1.3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、N,N’-ジ-2-ナフチル-p-フェニレンジアミン、ジフェニルアミン、N-フェニル-β-ナフチルアミン、4,4’-ジクミル-ジフェニルアミン、4,4’-ジオクチル-ジフェニルアミンのようなアミン系化合物;フェノチアジン、ジステアリルチオジプロピオネートのようなチオエーテル系化合物;2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカル、2,2,6,6-テトラメチルピペリジン、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-1-オキシルフリーラジカルのようなN-オキシル化合物;N-ニトロソジフェニルアミン、N-ニトロソフェニルナフチルアミン、N-ニトロソジナフチルアミン、p-ニトロソフェノール、ニトロソベンゼン、p-ニトロソジフェニルアミン、α-ニトロソ-β-ナフトール、N、N-ジメチル-p-ニトロソアニリン、p-ニトロソジフェニルアミン、p-ニトロンジメチルアミン、p-ニトロン-N,N-ジエチルアミン、N-ニトロソエタノールアミン、N-ニトロソ-ジ-n-ブチルアミン、N-ニトロソ-N-n-ブチル-4-ブタノールアミン、N-ニトロソ-ジイソプロパノールアミン、N-ニトロソ-N-エチル-4-ブタノールアミン、5-ニトロソ-8-ヒドロキシキノリン、N-ニトロソモルホリン、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩(富士フィルム和光純薬株式会社製、「Q-1300」)、ニトロソベンゼン、2,4,6-トリ-tert-ブチルニトロンベンゼン、N-ニトロソ-N-メチル-p-トルエンスルホンアミド、N-ニトロソ-N-エチルウレタン、N-ニトロソ-N-n-プロピルウレタン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、1-ニトロソ-2-ナフトール-3,6-スルホン酸ナトリウム、2-ニトロソ-1-ナフトール-4-スルホン酸ナトリウム、2-ニトロソ-5-メチルアミノフェノール塩酸塩、2-ニトロソ-5-メチルアミノフェノール塩酸塩、Q-1301(富士フィルム和光純薬株式会社製)のようなニトロソ系化合物等が挙げられる。
 重合禁止剤の添加量は、インク組成物に含まれる光重合性化合物の総量に対して、0.01~1.0質量%であることが好ましく、0.02~0.5質量%であることがより好ましい。
<< Polymerization inhibitor >>
Examples of the polymerization inhibitor include p-methoxyphenol, cresol, t-butylcatechol, 3,5-di-t-butyl-4-hydroxytoluene, and 2,2'-methylenebis (4-methyl-6-t-). Butylphenol), 2,2'-methylenebis (4-ethyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 4-methoxy-1-naphthol, 4,4 Phenolic compounds such as'-dialkoxy-2,2'-bi-1-naphthol; nitroso, methylhydroquinone, tert-butylhydroquinone, p-benzoquinone, methyl-p-benzoquinone, tert-butyl-p-benzoquinone, 2,5-Diphenylbenzoquinone, 2-hydroxy-1,4-naphthoquinone, 1,4-naphthoquinone, 2,3-dichloro-1,4-naphthoquinone, anthraquinone, quinone compounds such as diphenoquinone; p-phenylenediamine, 4-Aminodiphenylamine, N, N'-diphenyl-p-phenylenediamine, Ni-i-propyl-N'-phenyl-p-phenylenediamine, N- (1.3-dimethylbutyl) -N'-phenyl-p -Like phenylenediamine, N, N'-di-2-naphthyl-p-phenylenediamine, diphenylamine, N-phenyl-β-naphthylamine, 4,4'-dicumyl-diphenylamine, 4,4'-dioctyl-diphenylamine Amin-based compounds; thioether-based compounds such as phenothiazine and distearylthiodipropionate; 2,2,6,6-tetramethylpiperidine-1-oxylfree radical, 2,2,6,6-tetramethylpiperidine, 4 N-oxyl compounds such as -hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl free radical; N-nitrosodiphenylamine, N-nitrosophenylnaphthylamine, N-nitrosodinaftylamine, p-nitrosophenol, Nitrosobenzene, p-nitrosodiphenylamine, α-nitroso-β-naphthol, N, N-dimethyl-p-nitrosoaniline, p-nitrosodiphenylamine, p-nitrosodimethylamine, p-nitroso-N, N-diethylamine, N- Nitrosoethanolamine, N-nitrosodi-n-butylamine, N-nitroso-Nn-butyl-4-butanolamine, N-nitrosodiisopropanolamine, N-nitroso-N- Ethyl-4-butanolamine, 5-nitroso-8-hydroxyquinoline, N-nitrosomorpholin, N-nitroso-N-phenylhydroxylamine ammonium salt (manufactured by Fuji Film Wako Junyaku Co., Ltd., "Q-1300"), nitroso Benzene, 2,4,6-tri-tert-butylnitronebenzene, N-nitroso-N-methyl-p-toluenesulfonamide, N-nitroso-N-ethylurethane, N-nitroso-Nn-propylurethane, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 1-nitroso-2-naphthol-3,6-sodium sulfonate, 2-nitroso-1-naphthol-4-sosulfonate, 2-nitroso- Examples thereof include 5-methylaminophenol hydrochloride, 2-nitroso-5-methylaminophenol hydrochloride, and nitroso compounds such as Q-1301 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.).
The amount of the polymerization inhibitor added is preferably 0.01 to 1.0% by mass, preferably 0.02 to 0.5% by mass, based on the total amount of the photopolymerizable compounds contained in the ink composition. Is more preferable.
 <<酸化防止剤>>
 酸化防止剤としては、例えば、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名「IRGANOX(登録商標)1010」)、チオジエチレンビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名「IRGANOX(登録商標)1035」)、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名「IRGANOX(登録商標)1076」)、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名「IRGANOX(登録商標)1135」)、2,4,6-トリス(3’、5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン(製品名「IRGANOX1330」)、4,6-ビス(オクチルチオメチル)-o-クレゾール(製品名「IRGANOX(登録商標)1520L」)、2,4-ビス[(ドデシルチオ)メチル]-6-メチルフェノール(製品名「IRGANOX(登録商標)1726」)、ビス[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオン酸][エチレンビス(オキシエチレン)](製品名「IRGANOX(登録商標)245」)、1,6-ヘキサンジオールビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート](製品名「IRGANOX(登録商標)259」)、トリス(3,5-ジt-ブチル-4-ヒロドキシベンジル)イソシアネート(製品名「IRGANOX(登録商標)3114」)、1,3,5-トリス[[4-(1,1-ジメチルエチル)-3-ヒドロキシ-2,6-ジメチルフェニル]メチル]-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(製品名「IRGANOX(登録商標)3790」)、ビス[4-(1,1,3,3-テトラメチルブチル)フェニル]アミン(製品名「IRGANOX(登録商標)5057」)、4-[[4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イル]アミノ]-2,6-ジ-tert-ブチルフェノール(製品名「IRGANOX(登録商標)565」)(以上、BASF株式会社製);トリス(3,5-ジt-ブチル-4-ヒロドキシベンジル)イソシアネート(製品名「アデカスタブ(登録商標)AO-20」)、3,9-ビス[2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(製品名「アデカスタブ(登録商標)AO-30」)、4,4'-ブチリデンビス(3-メチル-6-tert-ブチル)フェノール(製品名「アデカスタブ(登録商標)AO-40」)、n-オクラデシル-3(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート(製品名「アデカスタブ(登録商標)AO-50」)、製品名「アデカスタブ(登録商標)AO-60」、3,9-ビス[2-[3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(製品名「アデカスタブ(登録商標)AO-80」)、亜リン酸トリス(4-ノニルフェニル)(製品名「アデカスタブ(登録商標)1178」)、亜リン酸トリス(2,4-ジ-tert-ブチルフェニル(製品名「アデカスタブ(登録商標)2112」)、2,4,8,10-テトラキス(1,1-ジメチルエチル)-6-[(2-エチルヘキシル)オキシ]-12H-ジベンゾ[d,g][1,3,2]ジオキサホスホシン(製品名「アデカスタブ(登録商標)HP-10」、3,9-ビス(オクタデシルオキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(製品名「アデカスタブ(登録商標)PEP-8」)、3,9-ビス(2,4-ジ-tert-ブチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(製品名「アデカスタブ(登録商標)PEP-24」、3,9-ビス(2,6-ジ-tert-ブチル-4-メチルフェノキシ)-2,4,8,10-テトラオキサ-3,9-ジホスファスピロ[5.5]ウンデカン(製品名「アデカスタブ(登録商標)PEP-36」、トリフェニルホスファイト(製品名「アデカスタブ(登録商標)TPP」)、テトラアルキル(C12-15)-4,4’-イソプロピリデンジフェニルジホスファイト(製品名「アデカスタブ(登録商標)1500」)(以上、株式会社ADEKA製);、トリスノニルフェニルホスファイト(製品名「JP-351」)、トリクレジルホスファイト」(製品名「JP-3CP」)、トリエチルホスファイト(製品名「JP-302」)、トリス(2-エチルヘキシルホスファイト(製品名「JP-308E」)、トリデシルホスファイト(製品名「JP-310」)、トリラウリルホスファイト(製品名「JP-312L」)、トリス(トリデシル)ホスファイト(製品名「JP-333」)、トリオレイルホスファイト(製品名「JP-318-O」)、ジフェニルモノ(2-エチルヘキシル)ホスファイト(製品名「JPM-308」)、ジフェニルモノデシルホスファイト(製品名「JPM-311」)」、ジフェニルモノ(トリデシル)ホスファイト(製品名「JPM-313」)、ビス(デシル)ペンタエリスリトールジホスファイト(製品名「JPE-10」)、トリステアリルホスファイト(製品名「JP-318E」)(以上、城北化学工業株式会社製);ブチルヒドロキシトルエン(「製品名「スミライザー(登録商標)BHT」)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)(製品名「スミライザー(登録商標)BBM-S」)、3,9-ビス[1,1-ジメチル-2-{β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン(製品名「スミライザー(登録商標)GA-80」)(以上、住友化学株式会社製)、テトラキス(2,4-ジ-t-ブチルフェニル-4,4’-ビフェニレンジホスホナイト)(製品名「Hostanox(登録商標) P-EPQ」)(以上、クラリアントケミカルズ株式会社)、テトラキス(2,4-ジ-tert-ブチル-5-メチルフェニル)-4,4’-ビフェニレンジホスフォナイト」(製品名「GSY-P100」)(以上、堺化学工業株式会社製)等が挙げられる。
 酸化防止剤の添加量は、インク組成物に含まれる光重合性化合物の総量に対して、0.01~2.0質量%であることが好ましく、0.02~1.0質量%であることがより好ましい。
<< Antioxidant >>
Examples of the antioxidant include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (product name "IRGANOX® 1010")) and thiodiethylenebis [3-. (3,5-Di-tert-butyl-4-hydroxyphenyl) propionate (product name "IRGANOX® 1035"), octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) Propionate (product name "IRGANOX® 1076"), Isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate (product name "IRGANOX® 1135"), 2, 4,6-Tris (3', 5'-di-tert-butyl-4'-hydroxybenzyl) Mesitylen (product name "IRGANOX1330"), 4,6-bis (octylthiomethyl) -o-cresol (product name) "IRGANOX® 1520L"), 2,4-bis [(dodecylthio) methyl] -6-methylphenol (product name "IRGANOX® 1726"), bis [3- (3-tert-butyl- 4-Hydroxy-5-methylphenyl) propionic acid] [ethylenebis (oxyethylene)] (product name "IRGANOX® 245"), 1,6-hexanediolbis [3- (3,5-di-) tert-butyl-4-hydroxyphenyl) propionate] (product name "IRGANOX (registered trademark) 259"), tris (3,5-di t-butyl-4-hirodoxybenzyl) isocyanate (product name "IRGANOX (registered trademark)" Trademark) 3114 "), 1,3,5-tris [[4- (1,1-dimethylethyl) -3-hydroxy-2,6-dimethylphenyl] methyl] -1,3,5-triazine-2, 4,6 (1H, 3H, 5H) -trione (product name "IRGANOX (registered trademark) 3790"), bis [4- (1,1,3,3-tetramethylbutyl) phenyl] amine (product name "IRGANOX") (Registered Trademark) 5057 "), 4-[[4,6-bis (octylthio) -1,3,5-triazine-2-yl] amino] -2,6-di-tert-butylphenol (product name" IRGANOX (Registered Trademark) 565 ") (above, manufactured by BASF Co., Ltd.); Tris (3,5-di t-butyl-4-hirodoxybenzyl) isocyanate (product name" Adecaster (Registered Trademark) AO-20 ”), 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl]- 2,4,8,10-Tetraoxaspiro [5.5] undecane (product name "Adecastab® AO-30"), 4,4'-butylidenebis (3-methyl-6-tert-butyl) phenol (Product name "Adecastab (registered trademark) AO-40"), n-Ocladecyl-3 (3', 5'-di-t-butyl-4'-hydroxyphenyl) propionate (Product name "Adecastab (registered trademark) AO" -50 "), product name" Adecastab® AO-60 ", 3,9-bis [2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1 , 1-Dimethylethyl] -2,4,8,10-Tetraoxaspiro [5.5] Undecane (Product name "Adecastab® AO-80"), Tris phosphite (4-nonylphenyl) ( Product name "Adecastab (registered trademark) 1178"), Tris phosphite (2,4-di-tert-butylphenyl (product name "Adecastab (registered trademark) 2112")), 2,4,8,10-tetrakis ( 1,1-dimethylethyl) -6-[(2-ethylhexyl) oxy] -12H-dibenzo [d, g] [1,3,2] dioxaphosphocin (product name "Adecastab (registered trademark) HP-10) , 3,9-bis (octadecyloxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] undecane (product name "Adecastab (registered trademark) PEP-8"), 3, 9-bis (2,4-di-tert-butylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] Undecane (Product name "Adecastab (registered trademark) PEP-24" , 3,9-bis (2,6-di-tert-butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphaspiro [5.5] Undecane (Product name "Adecastab (Product name" Adecastab ( Registered Trademark) PEP-36 ”, Triphenylphosphite (product name“ Adecastab (registered trademark) TPP ”), Tetraalkyl (C12-15) -4,4′-isopropridendiphenyldiphosphite (Product name“ Adecastab (registered trademark) TPP ”) Registered trademark) 1500 ") (above, manufactured by ADEKA Co., Ltd.) ;, Trisnonylphenyl phosphite ( Product name "JP-351"), tricresylphosphite "(product name" JP-3CP "), triethylphosphite (product name" JP-302 "), tris (2-ethylhexylphosphite (product name" JP "). -308E "), Tridecylphosphite (product name" JP-310 "), Trilaurylphosphite (product name" JP-312L "), Tris (tridecyl) phosphite (product name" JP-333 "), Trio Rail phosphite (product name "JP-318-O"), diphenylmono (2-ethylhexyl) phosphite (product name "JPM-308"), diphenylmonodecylphosphite (product name "JPM-311") ", Diphenylmono (tridecyl) phosphite (product name "JPM-313"), bis (decyl) pentaerythritol diphosphite (product name "JPE-10"), tristearylphosphite (product name "JP-318E") ( (Manufactured by Johoku Chemical Industry Co., Ltd.); Butylated hydroxytoluene (“Product name“ Sumilyzer (registered trademark) BHT ”), 4,4'-butylidenebis (3-methyl-6-t-butylphenol) (Product name“ Sumilyzer (registered trademark) BHT ”) Registered trademark) BBM-S "), 3,9-bis [1,1-dimethyl-2- {β- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} ethyl] -2, 4,8,10-Tetraoxaspiro [5,5] Undecane (Product name "Smilizer (registered trademark) GA-80") (above, manufactured by Sumitomo Chemical Co., Ltd.), Tetrakiss (2,4-di-t-butyl) Phenyl-4,4'-biphenylenediphosphonite) (product name "Hostanox® P-EPQ") (above, Clarant Chemicals, Inc.), Tetrakiss (2,4-di-tert-butyl-5-methyl) Phenyl) -4,4'-biphenylenediphosphonite "(product name" GSY-P100 ") (all manufactured by Sakai Chemical Industry Co., Ltd.) and the like can be mentioned.
The amount of the antioxidant added is preferably 0.01 to 2.0% by mass, preferably 0.02 to 1.0% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. Is more preferable.
 <<レベリング剤>>
 レベリング剤としては、特に限定はないが、発光性粒子の薄膜を形成する場合に、膜厚ムラを低減させ得る化合物が好ましい。
 かかるレベリング剤としては、例えば、アルキルカルボン酸塩、アルキルリン酸塩、アルキルスルホン酸塩、フルオロアルキルカルボン酸塩、フルオロアルキルリン酸塩、フルオロアルキルスルホン酸塩、ポリオキシエチレン誘導体、フルオロアルキルエチレンオキシド誘導体、ポリエチレングリコール誘導体、アルキルアンモニウム塩、フルオロアルキルアンモニウム塩類等が挙げられる。
 レベリング剤の添加量は、インク組成物に含まれる光重合性化合物の総量に対して、0.005~2質量%であることが好ましく、0.01~0.5質量%であることがより好ましい。
<< Leveling agent >>
The leveling agent is not particularly limited, but a compound capable of reducing film thickness unevenness when forming a thin film of luminescent particles is preferable.
Examples of such leveling agents include alkyl carboxylates, alkyl phosphates, alkyl sulfonates, fluoroalkyl carboxylates, fluoroalkyl phosphates, fluoroalkyl sulfonates, polyoxyethylene derivatives, and fluoroalkylethylene oxide derivatives. , Polyethylene glycol derivatives, alkylammonium salts, fluoroalkylammonium salts and the like.
The amount of the leveling agent added is preferably 0.005 to 2% by mass, more preferably 0.01 to 0.5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. preferable.
 <<連鎖移動剤>>
 連鎖移動剤は、インク組成物の基材との密着性をより向上させること等を目的として使用される成分である。
 連鎖移動剤としては、例えば、芳香族炭化水素類、ハロゲン化炭化水素類、メルカプタン化合物、チオール化合物、スルフィド化合物等が挙げられる。
 連鎖移動剤の添加量は、インク組成物に含まれる光重合性化合物の総量に対して、0.1~10質量%であることが好ましく、1.0~5質量%であることがより好ましい。
 <<熱可塑性樹脂>>
 熱可塑性樹脂としては、例えば、ウレタン系樹脂、アクリル系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、スチレンマレイン酸系樹脂、スチレン無水マレイン酸系樹脂、ポリエステルアクリレート系樹脂等が挙げられる。
 <<増感剤>>
 増感剤としては、チオキサントン系化合物、ベンゾフェノン系化合物、キノン系化合物、アミン類等を使用することができる。かかる増感剤としては、例えば、2-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-エチルアンスラキノン、トリメチルアミン、メチルジメタノールアミン、トリエタノールアミン、p-ジエチルアミノアセトフェノン、p-ジメチルアミノ安息香酸エチル、p-ジメチルアミノ安息香酸イソアミル、N,N-ジメチルベンジルアミン等が挙げられる。
<< Chain Transfer Agent >>
The chain transfer agent is a component used for the purpose of further improving the adhesion of the ink composition to the substrate.
Examples of the chain transfer agent include aromatic hydrocarbons, halogenated hydrocarbons, mercaptan compounds, thiol compounds, sulfide compounds and the like.
The amount of the chain transfer agent added is preferably 0.1 to 10% by mass, more preferably 1.0 to 5% by mass, based on the total amount of the photopolymerizable compound contained in the ink composition. ..
<< Thermoplastic resin >>
Examples of the thermoplastic resin include urethane resin, acrylic resin, polyamide resin, polyimide resin, styrene maleic acid resin, styrene anhydride maleic acid resin, polyester acrylate resin and the like.
<< Sensitizer >>
As the sensitizer, a thioxanthone-based compound, a benzophenone-based compound, a quinone-based compound, amines and the like can be used. Examples of such sensitizers include 2-isopropylthioxanthone, 2,4-diethylthioxanthone, benzophenone, 4,4'-bis (diethylamino) benzophenone, 2-ethylanthraquinone, trimethylamine, methyldimethylamine, and triethanolamine. , P-diethylaminoacetophenone, ethyl p-dimethylaminobenzoate, isoamyl p-dimethylaminobenzoate, N, N-dimethylbenzylamine and the like.
 <<インク組成物の粘度>>
 インク組成物の30℃における粘度は、インクジェット印刷時の吐出安定性の観点から、2~20mPa・sの範囲であることが好ましく、5~15mPa・sの範囲であることがより好ましく、7~12mPa・sの範囲であることがさらに好ましい。この場合、吐出ヘッドのインク吐出孔におけるインク組成物のメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。また、インク吐出孔からインク組成物を円滑に吐出させることができる。なお、インク組成物の粘度は、例えば、E型粘度計によって測定することができる。
<< Viscosity of ink composition >>
The viscosity of the ink composition at 30 ° C. is preferably in the range of 2 to 20 mPa · s, more preferably in the range of 5 to 15 mPa · s, and 7 to 7 to 7 to s, from the viewpoint of ejection stability during inkjet printing. It is more preferably in the range of 12 mPa · s. In this case, since the meniscus shape of the ink composition in the ink ejection hole of the ejection head is stable, the ejection control of the ink composition (for example, the control of the ejection amount and the ejection timing) becomes easy. In addition, the ink composition can be smoothly ejected from the ink ejection holes. The viscosity of the ink composition can be measured by, for example, an E-type viscometer.
 インク組成物の粘度上昇率は、5%以下、1%以下、又は0.5%以下であってよく、0.01%以上であってもよい。インク組成物の粘度上昇率は、下記式で算出される値である。
式:(η-η)/η×100
 ここで、ηは40℃で1週間 保管後のインク組成物を30℃で測定したときの粘度を示し、ηは、保管前のインク組成物のインク組成物の粘度を示す。
The viscosity increase rate of the ink composition may be 5% or less, 1% or less, or 0.5% or less, and may be 0.01% or more. The viscosity increase rate of the ink composition is a value calculated by the following formula.
Equation: (η 10 ) / η 0 × 100
Here, η 1 indicates the viscosity of the ink composition after storage at 40 ° C. for 1 week at 30 ° C., and η 0 indicates the viscosity of the ink composition of the ink composition before storage.
 <<インク組成物の表面張力>>
 インク組成物の表面張力は、インクジェット印刷法に適した表面張力であることが好ましい。表面張力の具体的な値は、20~40mN/mの範囲であることが好ましく、25~35mN/mの範囲であることがより好ましい。表面張力を前記範囲に設定することにより、インク組成物の液滴の飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のズレることをいう。
<< Surface tension of ink composition >>
The surface tension of the ink composition is preferably a surface tension suitable for the inkjet printing method. The specific value of the surface tension is preferably in the range of 20 to 40 mN / m, and more preferably in the range of 25 to 35 mN / m. By setting the surface tension in the above range, it is possible to suppress the occurrence of flight bending of droplets of the ink composition. The flight bending means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates by 30 μm or more from the target position.
 以上のようなインク組成物は、例えば、発光性粒子を、NOR型ヒンダードアミン化合物並びに必要により光重合性化合物および光重合開始剤等を混合した溶液中に分散させて調製することができる。発光性粒子の分散には、例えば、ボールミル、サンドミル、ビーズミル、3本ロールミル、ペイントコンディショナー、アトライター、分散攪拌機、超音波等の分散機を使用することにより行うことができる。 The ink composition as described above can be prepared, for example, by dispersing luminescent particles in a solution in which a NOR-type hindered amine compound and, if necessary, a photopolymerizable compound and a photopolymerization initiator are mixed. Dispersion of luminescent particles can be performed by using, for example, a ball mill, a sand mill, a bead mill, a three-roll mill, a paint conditioner, an attritor, a dispersion stirrer, a disperser such as an ultrasonic wave.
<インク組成物セット>
 本発明の他の一実施形態は、インク組成物セットである。一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性粒子を含有しないインク組成物(非発光性インク組成物)を備えていてよい。非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、従来公知のインク組成物であってよく、発光性粒子を含まないこと以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成であってもよい。
<Ink composition set>
Another embodiment of the present invention is an ink composition set. The ink composition set of one embodiment includes the ink composition of the above-described embodiment. The ink composition set may include an ink composition (non-luminescent ink composition) containing no luminescent particles in addition to the ink composition (luminescent ink composition) of the above-described embodiment. The non-emissive ink composition is, for example, a curable ink composition. The non-emission ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (emissive ink composition) of the above-described embodiment except that it does not contain luminescent particles. You may.
 非発光性インク組成物は、発光性粒子を含有しないため、非発光性インク組成物により形成される画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性インク組成物により形成される画素部は青色画素部となり得る。 Since the non-luminescent ink composition does not contain luminescent particles, when light is incident on the pixel portion formed by the non-luminescent ink composition (the pixel portion containing the cured product of the non-luminescent ink composition). The light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-emissive ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed by the non-emissive ink composition can be a blue pixel portion.
 非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、当該非発光性インク組成物により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。 The non-luminescent ink composition preferably contains light-scattering particles. When the non-emission ink composition contains light-scattering particles, the pixel portion formed by the non-emission ink composition can scatter the light incident on the pixel portion, whereby the pixel It is possible to reduce the difference in light intensity of the light emitted from the unit at the viewing angle.
<光変換層及びカラーフィルタ>
 本発明の他の一実施形態は、光変換層及びカラーフィルタである。以下、上述した実施形態のインク組成物又はインク組成物セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。ただし、以下の実施形態は、インク組成物が光散乱性粒子を含有する場合の実施形態である。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
<Optical conversion layer and color filter>
Another embodiment of the present invention is an optical conversion layer and a color filter. Hereinafter, the details of the light conversion layer and the color filter obtained by using the ink composition or the ink composition set of the above-described embodiment will be described with reference to the drawings. However, the following embodiment is an embodiment when the ink composition contains light-scattering particles. In the following description, the same reference numerals will be used for the same or equivalent elements, and duplicate description will be omitted.
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。 FIG. 1 is a schematic cross-sectional view of the color filter of one embodiment. As shown in FIG. 1, the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40. The light conversion layer 30 includes a plurality of pixel units 10 and a light-shielding unit 20.
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。 The optical conversion layer 30 has a first pixel unit 10a, a second pixel unit 10b, and a third pixel unit 10c as the pixel unit 10. The first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a grid pattern so as to repeat in this order. The light-shielding portion 20 is located between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and the third. It is provided between the pixel portion 10c of the above and the first pixel portion 10a. In other words, these adjacent pixel portions are separated from each other by the light-shielding portion 20.
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態のインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。図1に示す硬化物は、発光性粒子と、硬化成分と、光散乱性粒子とを含有する。第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体を含む。硬化成分には、上記重合体の他、インク組成物に含まれていた有機溶剤以外の成分が含まれていてよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。 The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (light emitting pixel portions) containing a cured product of the ink composition of the above-described embodiment, respectively. The cured product shown in FIG. 1 contains luminescent particles, a curing component, and light scattering particles. The first pixel portion 10a includes a first curing component 13a, a first luminescent particle 11a and a first light scattering particle 12a dispersed in the first curing component 13a, respectively. Similarly, the second pixel portion 10b includes a second curing component 13b and a second luminescent particle 11b and a second light scattering particle 12b dispersed in the second curing component 13b, respectively. .. The curing component is a component obtained by polymerizing a photopolymerizable compound, and includes a polymer of the photopolymerizable compound. In addition to the above polymer, the curing component may contain a component other than the organic solvent contained in the ink composition. In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different, and may be the same as or different from the first light scattering particles 12a. It may be the same as or different from the second light-scattering particle 12b.
 第1の発光性粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first luminescent particles 11a are red luminescent nanocrystal particles that absorb light having a wavelength in the range of 420 to 480 nm and emit light having a emission peak wavelength in the range of 605 to 665 nm. That is, the first pixel portion 10a may be paraphrased as a red pixel portion for converting blue light into red light. The second luminescent particle 11b is a green luminescent nanocrystal particle that absorbs light having a wavelength in the range of 420 to 480 nm and emits light having a emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel portion 10b may be paraphrased as a green pixel portion for converting blue light into green light.
 発光性画素部における発光性粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは、1質量%以上、2質量%以上、又は3質量%以上である。発光性粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは、15質量%以下、10質量%以下、又は7質量%以下である。 The content of the luminescent particles in the luminescent pixel portion is preferably based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being superior in the effect of improving the external quantum efficiency and obtaining excellent emission intensity. 1% by mass or more, 2% by mass or more, or 3% by mass or more. The content of the luminescent particles is preferably 15% by mass or less based on the total mass of the cured product of the luminescent ink composition from the viewpoint of excellent reliability of the pixel portion and excellent emission intensity. It is 10% by mass or less, or 7% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、0.1質量%以上、1質量%以上又は3質量%以上であってもよい。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、30質量%以下、25質量%以下、20質量部%以下、15質量部%以下又は10質量%以下であってもよい。 The content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass based on the total mass of the cured product of the luminescent ink composition from the viewpoint of being more excellent in the effect of improving the external quantum efficiency. It may be more than or equal to 3% by mass or more. The content of the light-scattering particles is 30% by mass or less, 25, based on the total mass of the cured product of the luminescent ink composition, from the viewpoint of improving the effect of improving the external quantum efficiency and the reliability of the pixel portion. It may be mass% or less, 20 parts by mass or less, 15 parts by mass or less, or 10% by mass or less.
 第3の画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。 The third pixel portion 10c is a non-light emitting pixel portion (non-light emitting pixel portion) containing a cured product of the above-mentioned non-light emitting ink composition. The cured product does not contain luminescent particles, but contains light-scattering particles and a cured component. That is, the third pixel portion 10c includes a third curing component 13c and a third light scattering particle 12c dispersed in the third curing component 13c. The third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound and contains a polymer of the polymerizable compound. The third light-scattering particle 12c may be the same as or different from the first light-scattering particle 12a and the second light-scattering particle 12b.
 第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。 The third pixel portion 10c has a transmittance of 30% or more with respect to light having a wavelength in the range of, for example, 420 to 480 nm. Therefore, the third pixel unit 10c functions as a blue pixel unit when a light source that emits light having a wavelength in the range of 420 to 480 nm is used. The transmittance of the third pixel unit 10c can be measured by a microspectroscopy device.
 非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上であってよく、5質量%以上であってもよく、10質量%以上であってもよい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、80質量%以下であってよく、75質量%以下であってもよく、70質量%以下であってもよい。 The content of the light-scattering particles in the non-emissive pixel portion is 1% by mass based on the total mass of the cured product of the non-emission ink composition from the viewpoint that the difference in light intensity at the viewing angle can be further reduced. It may be more than 5% by mass, or it may be 10% by mass or more. The content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-emissive ink composition from the viewpoint of further reducing light reflection. It may be 70% by mass or less.
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下であってよく、20μm以下であってもよく、15μm以下であってもよい。 The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. You may. The thickness of the pixel portion (first pixel portion 10a, second pixel portion 10b, and third pixel portion 10c) may be, for example, 30 μm or less, 20 μm or less, or 15 μm or less. You may.
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上であってよく、10μm以下であってよい。 The light-shielding portion 20 is a so-called black matrix provided for the purpose of separating adjacent pixel portions to prevent color mixing and for the purpose of preventing light leakage from a light source. The material constituting the light-shielding portion 20 is not particularly limited, and the curing of the resin composition containing light-shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments in the binder polymer in addition to a metal such as chromium. Objects and the like can be used. The binder polymer used here includes one or a mixture of one or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, and cellulose, photosensitive resin, and O / W. An emulsion-type resin composition (for example, an emulsion of a reactive silicone) or the like can be used. The thickness of the light-shielding portion 20 may be, for example, 0.5 μm or more, and may be 10 μm or less.
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。 The base material 40 is a transparent base material having light transmission, and is, for example, a transparent glass substrate such as quartz glass, Pylex (registered trademark) glass, a synthetic quartz plate, a transparent resin film, an optical resin film, or the like. A flexible base material or the like can be used. Among these, it is preferable to use a glass substrate made of non-alkali glass that does not contain an alkaline component in the glass. Specifically, "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning Inc., "AN100" manufactured by Asahi Glass Co., Ltd., "OA-10G" and "OA-10G" manufactured by Nippon Electric Glass Co., Ltd. OA-11 ”is suitable. These are materials with a small thermal expansion rate and are excellent in dimensional stability and workability in high temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。 The color filter 100 provided with the above optical conversion layer 30 is suitably used when a light source that emits light having a wavelength in the range of 420 to 480 nm is used.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、インク組成物(インクジェットインク)をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、インク組成物に対して活性エネルギー線(例えば紫外線)を照射し、インク組成物を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。インク組成物として上述した発光性インク組成物を用いることで発光性画素部が得られ、非発光性インク組成物を用いることで非発光性画素部が得られる。 The color filter 100 can be manufactured, for example, by forming the light-shielding portion 20 in a pattern on the base material 40 and then forming the pixel portion 10 in the pixel portion-forming region partitioned by the light-shielding portion 20 on the base material 40. .. The pixel portion 10 has a step of selectively adhering the ink composition (inkjet ink) to the pixel portion forming region on the base material 40 by an inkjet method, and irradiates the ink composition with active energy rays (for example, ultraviolet rays). It can be formed by a method comprising a step of curing an ink composition to obtain a light emitting pixel portion. A luminescent pixel portion can be obtained by using the above-mentioned luminescent ink composition as the ink composition, and a non-luminescent pixel portion can be obtained by using the non-luminescent ink composition.
 遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。 The method of forming the light-shielding portion 20 is to form a metal thin film such as chromium or a thin film of a resin composition containing light-shielding particles in a region serving as a boundary between a plurality of pixel portions on one surface side of the base material 40. However, a method of patterning this thin film and the like can be mentioned. The metal thin film can be formed by, for example, a sputtering method, a vacuum vapor deposition method, or the like, and the thin film of the resin composition containing the light-shielding particles can be formed, for example, by a method such as coating or printing. Examples of the method for patterning include a photolithography method.
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。 Examples of the inkjet method include a bubble jet (registered trademark) method using an electric heat converter as an energy generating element, a piezo jet method using a piezoelectric element, and the like.
 インク組成物の硬化は、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を用いて行うことができる。塗膜への熱負荷の低減、低消費電力の観点からLEDが好ましい。 The ink composition can be cured by using, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like. LEDs are preferable from the viewpoint of reducing the heat load on the coating film and low power consumption.
 照射する光の波長は、250nm~440nmであることが好ましく、300nm~400nmであることがより好ましい。LEDを用いる場合には、10μm以上の膜厚を十分に硬化させる観点から、例えば、350~400nm以下であることが好ましい。また、光の強度は、0.2~2kW/cmであることが好ましく、0.4~1kW/cmであることがより好ましい。0.2kW/cm未満の光の強度では十分に塗膜を硬化できず、2kW/cm以上の光の強度では塗膜表面と内部の硬化度にムラが発生し、塗膜表面の平滑性が劣るため好ましくない。光の照射量(露光量)は、10mJ/cm以上であることが好ましく、4000mJ/cm以下であることがより好ましい。 The wavelength of the irradiated light is preferably 250 nm to 440 nm, more preferably 300 nm to 400 nm. When an LED is used, it is preferably 350 to 400 nm or less, for example, from the viewpoint of sufficiently curing a film thickness of 10 μm or more. The light intensity is preferably 0.2 to 2 kW / cm 2 , more preferably 0.4 to 1 kW / cm 2 . A light intensity of less than 0.2 kW / cm 2 cannot sufficiently cure the coating film, and a light intensity of 2 kW / cm 2 or more causes unevenness in the curing degree between the surface and the inside of the coating film, resulting in smoothness of the coating film surface. It is not preferable because it is inferior in sex. The irradiation amount (exposure amount) of light is preferably 10 mJ / cm 2 or more, and more preferably 4000 mJ / cm 2 or less.
 塗膜の硬化は、空気中あるいは不活性ガス中で行うことができるが、塗膜表面の酸素阻害及び塗膜の酸化を抑制するために、不活性ガス中で行うことがより好ましい。不活性ガスとしては、窒素、アルゴン、二酸化炭素等が挙げられる。このような条件で塗膜を硬化させることにより、塗膜が完全に硬化できることから、得られる光変換層の外部量子効率をより向上させることができる。 The coating film can be cured in the air or in an inert gas, but it is more preferably performed in an inert gas in order to suppress oxygen inhibition on the surface of the coating film and oxidation of the coating film. Examples of the inert gas include nitrogen, argon, carbon dioxide and the like. By curing the coating film under such conditions, the coating film can be completely cured, so that the external quantum efficiency of the obtained light conversion layer can be further improved.
 例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。 For example, the light conversion layer is a pixel portion containing a cured product of a luminescent ink composition containing blue-emitting nanocrystal particles in place of the third pixel portion 10c or in addition to the third pixel portion 10c ( It may be provided with a blue pixel portion). Further, even if the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing nanocrystal particles that emit light of colors other than red, green, and blue. good. In these cases, it is preferable that each of the luminescent particles contained in each pixel portion of the optical conversion layer has an absorption maximum wavelength in the same wavelength range.
 また、光変換層の画素部の少なくとも一部は、発光性粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。 Further, at least a part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than luminescent particles.
 また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。 Further, the color filter may be provided with an ink-repellent layer made of a material having an ink-repellent property narrower than that of the light-shielding portion on the pattern of the light-shielding portion. Further, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a wettable variable layer is formed in a solid coating shape in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer via a photomask. Irradiation may be performed for exposure to selectively increase the parental ink property of the pixel portion forming region. Examples of the photocatalyst include titanium oxide and zinc oxide.
 また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。 Further, the color filter may be provided with an ink receiving layer containing hydroxypropyl cellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
 また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。 Further, the color filter may be provided with a protective layer on the pixel portion. This protective layer flattens the color filter and prevents the components contained in the pixel portion, or the components contained in the pixel portion and the components contained in the photocatalyst-containing layer from elution into the liquid crystal layer. It is provided. As the material constituting the protective layer, a material used as a known protective layer for a color filter can be used.
 また、本実施形態の光変換層の画素部には、上記した発光性粒子に加えて、発光性粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、インク組成物に顔料を含有させてもよい。 Further, in addition to the above-mentioned luminescent particles, the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent particles. In order to contain the pigment in the pixel portion, the pigment may be contained in the ink composition.
 また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)の全質量を基準として、1~5質量%であることが好ましい。 Further, among the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the optical conversion layer of the present embodiment, one or two types of luminescent pixel portions are luminescent particles. It may be a pixel portion containing a coloring material without containing the above. As the color material that can be used here, a known color material can be used. For example, as the color material used for the red pixel portion (R), a diketopyrrolopyrrole pigment and / or an anionic red organic dye is used. Can be mentioned. Examples of the coloring material used for the green pixel portion (G) include at least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine-based green dye, and a mixture of a phthalocyanine-based blue dye and an azo-based yellow organic dye. Examples of the coloring material used for the blue pixel portion (B) include an ε-type copper phthalocyanine pigment and / or a cationic blue organic dye. The amount of these coloring materials used is 1 to 5 mass based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance when contained in the optical conversion layer. % Is preferable.
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.
 ヒンダードアミン化合物(A)として次に示す化合物を準備した。
(A-1)Flamestab NOR116FF(NOR型、融点108~123℃、分子量2261)
(A-2)TINUVIN(登録商標) NOR371(NOR型、融点91~104℃、分子量2800~4000)
(A-3)TINUVIN(登録商標) 123(NOR型、融点<20℃(液状)、分子量737)
(A-4)TINUVIN(登録商標) 144(NR型、融点147~149℃、分子量685)
(A-5)アデカスタブ(登録商標) LA-72(NR型、融点<20℃(液状)、分子量509)
 なお、(A-4)及び(A-5)は、NOR型ヒンダードアミン化合物ではなく、NR型ヒンダードアミン化合物であり、窒素原子にメチル基が結合した構造を有している。
The following compound was prepared as the hindered amine compound (A).
(A-1) Flamestab NOR116FF (NOR type, melting point 108-123 ° C., molecular weight 2261)
(A-2) TINUVIN (registered trademark) NOR371 (NOR type, melting point 91 to 104 ° C., molecular weight 2800 to 4000)
(A-3) TINUVIN (registered trademark) 123 (NOR type, melting point <20 ° C. (liquid), molecular weight 737)
(A-4) TINUVIN (registered trademark) 144 (NR type, melting point 147 to 149 ° C., molecular weight 685)
(A-5) Adecaster (registered trademark) LA-72 (NR type, melting point <20 ° C (liquid), molecular weight 509)
Note that (A-4) and (A-5) are not NOR-type hindered amine compounds but NR-type hindered amine compounds, and have a structure in which a methyl group is bonded to a nitrogen atom.
 高分子分散剤(B)として、(B-1)EFKA(登録商標) PX-4701を準備した。 (B-1) EFKA (registered trademark) PX-4701 was prepared as the polymer dispersant (B).
 酸化防止剤(C)として、(C-1)IRGANOX(登録商標)1010(フェノール系)、(C-2)Hostanox(登録商標) P-EPQ(リン系)を準備した。 As the antioxidant (C), (C-1) IRGANOX (registered trademark) 1010 (phenolic) and (C-2) Hostanox (registered trademark) P-EPQ (phosphorus) were prepared.
 光重合性化合物(D)として次に示す化合物を準備した。
(D-1)イソボルニルメタクリレート(ライトエステルIB-X、単官能、環状、粘度:6mPa・s/25℃)
(D-2)ラウリルメタクリレート(ライトエステルL、単官能、鎖状、粘度:3-8mPa・s/25℃)
(D-3)フェノキシエチルメタクリレート(ライトエステルPO、単官能、環状、粘度:7mPa・s/25℃)
(D-4)1,6-ヘキサンジオールジメタクリレート(ライトエステル1,6-HX、2官能、鎖状、粘度:5-6mPa・s/25℃)
 (D-1)~(D-4)はいずれも共栄社化学株式会社製である。
The following compounds were prepared as the photopolymerizable compound (D).
(D-1) Isobornyl methacrylate (light ester IB-X, monofunctional, cyclic, viscosity: 6 mPa · s / 25 ° C.)
(D-2) Lauryl methacrylate (light ester L, monofunctional, chain, viscosity: 3-8 mPa · s / 25 ° C.)
(D-3) Phenoxyethyl methacrylate (light ester PO, monofunctional, cyclic, viscosity: 7 mPa · s / 25 ° C.)
(D-4) 1,6-Hexanediol dimethacrylate (light ester 1,6-HX, bifunctional, chain, viscosity: 5-6 mPa · s / 25 ° C.)
(D-1) to (D-4) are all manufactured by Kyoeisha Chemical Co., Ltd.
 光重合開始剤(E)として次に示す化合物を準備した。
(E-1)Omnirad TPO-H(TPO-H)
(E-2)Omnirad 819(O-819)
 (E-1)及び(E-2)はいずれもIGM RESINS社製である。
The following compounds were prepared as the photopolymerization initiator (E).
(E-1) Omnirad TPO-H (TPO-H)
(E-2) Omnirad 819 (O-819)
Both (E-1) and (E-2) are manufactured by IGM RESINS.
 光散乱性粒子(F)として、(F-1)酸化チタン(CR60-2)を準備した。 (F-1) Titanium oxide (CR60-2) was prepared as light-scattering particles (F).
<発光性粒子(X)分散液の調整>
(発光性粒子分散液の調整)
 まず、0.81gの炭酸セシウムと、40mLの1-オクタデセンと、2.5mLのオレイン酸とを混合して混合液を得た。次に、この混合液を120℃で10分間、減圧乾燥した後、アルゴン雰囲気下に150℃で加熱した。これにより、セシウム-オレイン酸溶液を得た。
 一方、138.0mgの臭化鉛(II)と10mLの1-オクタデセンとを混合して混合液をえた。次に、この混合液を120℃で10分間、減圧乾燥した後、アルゴン雰囲気下に混合液に1mLの3-アミノプロピルトリエトキシシランを添加した。その後、上記混合液に140℃で1.3mLのセシウム-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。
<Preparation of luminescent particle (X) dispersion liquid>
(Adjustment of luminescent particle dispersion)
First, 0.81 g of cesium carbonate, 40 mL of 1-octadecene and 2.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 120 ° C. for 10 minutes, and then heated at 150 ° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
On the other hand, 138.0 mg of lead (II) bromide and 10 mL of 1-octadecene were mixed to obtain a mixed solution. Next, the mixed solution was dried under reduced pressure at 120 ° C. for 10 minutes, and then 1 mL of 3-aminopropyltriethoxysilane was added to the mixed solution under an argon atmosphere. Then, 1.3 mL of a cesium-oleic acid solution was added to the above mixture at 140 ° C., and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath.
 次いで、反応液を大気下(23℃、湿度45%)で60分間撹拌した後、20mLのエタノールを添加した。
 得られた懸濁液を遠心分離(3,000回転/分、5分間)して固形物を回収し、発光性粒子X-1を得た。
 この発光性粒子X-1は、表面層を備えたペロブスカイト型の三臭化鉛セシウム結晶であり、透過型電子顕微鏡観察により平均粒子径は10nmであった。また、表面層は3-アミノプロピルトリエトキシシランで構成される層であり、その厚さは1nmであった。すなわち、発光性粒子X-1は、シリカで被覆された粒子であった。
さらに、発光性粒子X-1を固形分濃度が2.9質量%となるようにイソボルニルメタクリレートに分散することにより、発光性粒子X-1が分散した発光性粒子分散液1を得た。
Then, the reaction solution was stirred under the atmosphere (23 ° C., humidity 45%) for 60 minutes, and then 20 mL of ethanol was added.
The obtained suspension was centrifuged (3,000 rpm, 5 minutes) to recover the solid matter, and luminescent particles X-1 were obtained.
The luminescent particles X-1 were perovskite-type lead cesium tribromide crystals having a surface layer, and the average particle size was 10 nm as observed by a transmission electron microscope. The surface layer was a layer composed of 3-aminopropyltriethoxysilane, and its thickness was 1 nm. That is, the luminescent particles X-1 were silica-coated particles.
Further, the luminescent particles X-1 were dispersed in isobornyl methacrylate so that the solid content concentration was 2.9% by mass to obtain a luminescent particle dispersion liquid 1 in which the luminescent particles X-1 were dispersed. ..
<発光性粒子分散体の準備>
 発光性粒子と、光重合性化合物とを表1に示す組成になるよう混合し、ロータリーエバポレーターにて攪拌することにより、発光性子分散体分散体を得た。
<Preparation of luminescent particle dispersion>
The luminescent particles and the photopolymerizable compound were mixed so as to have the composition shown in Table 1 and stirred with a rotary evaporator to obtain a luminescent child dispersion dispersion.
<光散乱性粒子分散体の調製>
 窒素ガスで満たした容器内で、酸化チタン(石原産業株式会社製「CR60-2」)10.0質量部と、高分子分散剤「EFKA PX4701」(アミン価:40.0mgKOH/g、BASFジャパン株式会社製)1.0質量部と、フェノキシエチルメタクリレート(ライトエステルPO;共栄社化学株式会社製)14.0質量部とを混合した。さらに、得られた配合物にジルコニアビーズ(直径:1.25mm)を加え、前記容器を密栓しペイントコンディショナーを用いて2時間振とうさせて配合物の分散処理を行うことにより、光拡散粒子分散体1を得た。分散処理後の光拡散粒子の平均粒子径は、NANOTRAC WAVE IIを用いて測定したところ、0.245μmであった。
<Preparation of light-scattering particle dispersion>
In a container filled with nitrogen gas, 10.0 parts by mass of titanium oxide (“CR60-2” manufactured by Ishihara Sangyo Co., Ltd.) and polymer dispersant “EFKA PX4701” (amine value: 40.0 mgKOH / g, BASF Japan) 1.0 part by mass of phenoxyethyl methacrylate (light ester PO; manufactured by Kyoeisha Chemical Co., Ltd.) 14.0 parts by mass was mixed. Further, zirconia beads (diameter: 1.25 mm) are added to the obtained compound, and the container is sealed and shaken for 2 hours using a paint conditioner to disperse the compound to disperse light-diffusing particles. I got body 1. The average particle size of the light diffusing particles after the dispersion treatment was 0.245 μm as measured by using NANOTRAC WAVE II.
<インク組成物の調製>
(インク組成物(1)の調整)
 実施例1のインク組成物として、発光性粒子分散液1(発光性粒子濃度2.9質量%)5.15質量部と、光散乱性粒子分散体1(酸化チタン含有量40.0質量%)0.75質量部と、光重合性化合物として「ラウリルメタクリレート」(製品名:ライトエステルLM、共栄社化学株式会社製)1.60質量部及び「1,6-ヘキサンジオールジメタクリレート」(製品名:ライトエステル1,6-HX、共栄社化学株式会社製)2.0質量部と、光重合開始剤として「ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキサイド」(製品名:Omnirad TPO-H、BASFジャパン株式会社製)0.3質量部及び「ビス(2,4,6,-トリメチルベンゾイル)フェニルホスフィン オキサイド」(製品名:Omnirad 819、BASFジャパン株式会社製)0.15質量部と、酸化防止剤として「ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]」(製品名:Irganox(登録商標)1010、BASFジャパン株式会社製)0.05質量部と、「テトラキス(2,4-ジ-tert-ブチルフェニル)-1,1-ビフェニル-4,4’-ジイルビスホスフォナイト」(製品名:Hostanox(登録商標) P-EPQ、クラリアントケミカルズ株式会社製)0.05質量部を、アルゴンガスで満たした容器内で混合、均一に溶解した後、グローブボックス内で、溶解物を孔径5μmのフィルターでろ過した。さらに、得られたろ過物を入れた容器内にアルゴンガスを導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、インク組成物(1)を得た。発光性粒子の含有量は1.5質量%であり、IB-Xの含有量は50.0質量%であり、LMの含有量は16.0質量%であり、POの含有量は4.2質量%であり、1,6-HXの含有量は20.0質量%であり、TPO-Hの含有量は3.0質量%であり、O-819の含有量は1.5質量%であり、Irganox1010の含有量は0.5質量%であり、P-EPQの含有量は0.5質量%であり、光散乱性粒子の含有量は3.0質量%であり、高分子分散剤の含有量は、0.3質量%であった。なお、上記含有量はインク組成物の全質量を基準とする含有量である。
<Preparation of ink composition>
(Adjustment of ink composition (1))
As the ink composition of Example 1, the light-emitting particle dispersion 1 (light-emitting particle concentration 2.9% by mass) was 5.15 parts by mass and the light-scattering particle dispersion 1 (titanium oxide content was 40.0% by mass). ) 0.75 parts by mass, "lauryl methacrylate" as a photopolymerizable compound (product name: Light Ester LM, manufactured by Kyoeisha Chemical Co., Ltd.) 1.60 parts by mass and "1,6-hexanediol dimethacrylate" (product name) : Light ester 1,6-HX, manufactured by Kyoeisha Chemical Co., Ltd.) 2.0 parts by mass and "diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide" as a photopolymerization initiator (product name: Omnirad TPO-H) , BASF Japan Co., Ltd.) 0.3 parts by mass and "bis (2,4,6, -trimethylbenzoyl) phenylphosphine oxide" (product name: Omnirad 819, manufactured by BASF Japan Co., Ltd.) 0.15 parts by mass, As an antioxidant, "pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate]" (product name: Irganox (registered trademark) 1010, manufactured by BASF Japan Co., Ltd.) 0.05 Parts by mass and "Tetrakis (2,4-di-tert-butylphenyl) -1,1-biphenyl-4,4'-diylbisphosphonite" (Product name: Hostanox (registered trademark) P-EPQ, Clariant (Chemicals Co., Ltd.) 0.05 parts by mass was mixed in a container filled with argon gas and uniformly dissolved, and then the dissolved substance was filtered through a filter having a pore size of 5 μm in a glove box. Further, argon gas was introduced into the container containing the obtained filter, and the inside of the container was saturated with argon gas. Then, the pressure was reduced to remove the argon gas, whereby the ink composition (1) was obtained. The content of luminescent particles is 1.5% by mass, the content of IB-X is 50.0% by mass, the content of LM is 16.0% by mass, and the content of PO is 4. It is 2% by mass, the content of 1,6-HX is 20.0% by mass, the content of TPO-H is 3.0% by mass, and the content of O-819 is 1.5% by mass. The content of Irganox 1010 is 0.5% by mass, the content of P-EPQ is 0.5% by mass, the content of light-scattering particles is 3.0% by mass, and the polymer is dispersed. The content of the agent was 0.3% by mass. The content is based on the total mass of the ink composition.
(インク組成物(2)~(9)及び(C1)~(C3)の調整)
 発光性粒子分散液、光散乱性粒子分散液、光重合性化合物D-2及びD-3、光重合開始剤E-1及びE-2、光安定剤A-1~A-5、酸化防止剤C-1及びC-2の添加量を、下記表1に示す添加量に変更した以外は、インク組成物(1)の調製と同一条件で、実施例2~9のインク組成物(2)~(9)及び比較例1~3のインク組成物(C1)~(C3)を得た。
(Adjustment of ink compositions (2) to (9) and (C1) to (C3))
Luminous particle dispersion, light scattering particle dispersion, photopolymerizable compounds D-2 and D-3, photopolymerization initiators E-1 and E-2, light stabilizers A-1 to A-5, antioxidant The ink compositions (2) of Examples 2 to 9 were prepared under the same conditions as the preparation of the ink composition (1) except that the addition amounts of the agents C-1 and C-2 were changed to the addition amounts shown in Table 1 below. )-(9) and the ink compositions (C1)-(C3) of Comparative Examples 1 to 3.
<光変換層(評価用の試料)の作製>
 得られたインク組成物を、ガラス基板(コーニング社製、「EagleXG」)上に、乾燥後の膜厚が15μmとなるように、スピンコーターにて塗布した。
 得られた膜に窒素雰囲気下でLEDランプ波長395nmの紫外光を10J/cmの露光量で照射した。これにより、インク組成物を硬化させて、ガラス基板上にインク組成物の硬化物からなる層を形成し、これを光変換層とした。
<Preparation of optical conversion layer (sample for evaluation)>
The obtained ink composition was applied onto a glass substrate (“EagleXG” manufactured by Corning Inc.) with a spin coater so that the film thickness after drying was 15 μm.
The obtained film was irradiated with ultraviolet light having an LED lamp wavelength of 395 nm under a nitrogen atmosphere at an exposure amount of 10 J / cm 2 . As a result, the ink composition was cured to form a layer made of the cured product of the ink composition on the glass substrate, which was used as a light conversion layer.
<インク組成物及び光変換層の評価>
(実施例1)
<インク組成物の粘度>
 インク組成物の30℃における粘度(初期粘度)は、E型粘度計を用いて測定した。
<塗膜硬化性>
 得られた光変換層1の表面を、綿棒を用いた触診にて、以下の基準で評価したところ、表面に傷が付かず、タック感もなかった。
〔評価基準〕
  ◎:光変換層1の表面に傷が付かず、タック感もない
  ○:光変換層1の表面に傷は付かず、僅かなタック感があるものの、実用上問題ないレベル
  △:光変換層1の表面に僅かに傷が付き、タック感がある
  ×:光変換層1の表面に傷が付き、硬化膜の一部が綿棒に付着する
<Evaluation of ink composition and optical conversion layer>
(Example 1)
<Viscosity of ink composition>
The viscosity (initial viscosity) of the ink composition at 30 ° C. was measured using an E-type viscometer.
<Cure film curability>
When the surface of the obtained light conversion layer 1 was evaluated by palpation using a cotton swab according to the following criteria, the surface was not scratched and there was no tack feeling.
〔Evaluation criteria〕
⊚: The surface of the optical conversion layer 1 is not scratched and there is no tack feeling. ○: The surface of the optical conversion layer 1 is not scratched and there is a slight tack feeling, but there is no problem in practical use. The surface of 1 is slightly scratched and has a tacky feeling. ×: The surface of the optical conversion layer 1 is scratched and a part of the cured film adheres to the cotton swab.
<ブリード試験>
 得られた光変換層1を60℃で30日間静置した後、さらに25℃に1日静置し、その後光変換層1の表面を目視にて観察し、ブリードの有無(光変換層1中から溶出した成分が表面ににじみ出ているか否か)と白化の有無(溶出成分によって光変換層1の表面が白化しているか否か)を確認した。
 〇:ブリードがなく、白化もない。
 △:ブリードはあるが、白化はない。
 ×:ブリードがあり、白化もある。
<Bleed test>
The obtained optical conversion layer 1 was allowed to stand at 60 ° C. for 30 days, then allowed to stand at 25 ° C. for another day, and then the surface of the optical conversion layer 1 was visually observed to show the presence or absence of bleeding (optical conversion layer 1). It was confirmed whether or not the components eluted from the inside ooze out on the surface) and whether or not whitening (whether or not the surface of the light conversion layer 1 was whitened by the eluted components).
〇: No bleeding and no whitening.
Δ: There is bleeding, but there is no bleaching.
×: There is bleeding and there is whitening.
<高温下耐光性の評価>
(高温下耐光性試験:外部量子効率(EQE)の評価)
 面発光光源としてのシーシーエス株式会社社製の青色LED(ピーク発光波長:450nm)の上方に積分球を設置し、この積分球に大塚電子株式会社製の放射分光光度計(商品名「MCPD-9800」)を接続した。次に、青色LEDと積分球との間に上述の評価用試料1を挿入して、青色LEDを点灯させ、観測されるスペクトル及び各波長における照度を放射分光光度計によって測定した。得られたスペクトル及び照度から、以下のようにして外部量子効率(EQE)を求めた。
<Evaluation of light resistance under high temperature>
(Light resistance test under high temperature: Evaluation of external quantum efficiency (EQE))
An integrating sphere is installed above the blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. as a surface emission light source, and a radiation spectrophotometer manufactured by Otsuka Electronics Co., Ltd. (trade name "MCPD-9800") is placed on this integrating sphere. ") Was connected. Next, the above-mentioned evaluation sample 1 was inserted between the blue LED and the integrating sphere, the blue LED was turned on, and the observed spectrum and the illuminance at each wavelength were measured by a radiation spectrophotometer. From the obtained spectrum and illuminance, the external quantum efficiency (EQE) was obtained as follows.
 外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。外部量子効率(EQE)は、以下の式(a)で算出される。
     EQE[%]=P2/E(Blue)×100…(a)
 式中、E(Blue)は、380~490nmの波長域における「照度×波長÷hc」の合計値を表し、P2は、500~650nmの波長域における「照度×波長÷hc」の合計値を表し、これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
 ここで、EQEは、数値が大きいほど、塗膜の硬化工程における紫外線による半導体ナノ結晶の劣化が小さい、すなわち、紫外線に対する安定性に優れることを意味する。光変換層として使用するためには、EQEは20%以上が好ましく、25%以上がより好ましく、優れることを意味する。
 上記光変換層を作製した直後に測定したEQEを初期の外部量子効率EQEとし、EQEを測定したところ、32%であった。
The external quantum efficiency is a value indicating how much of the light (photons) incident on the optical conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index. The external quantum efficiency (EQE) is calculated by the following equation (a).
EQE [%] = P2 / E (Blue) x 100 ... (a)
In the formula, E (Blue) represents the total value of "illuminance x wavelength ÷ hc" in the wavelength range of 380 to 490 nm, and P2 represents the total value of "illuminance x wavelength ÷ hc" in the wavelength range of 500 to 650 nm. These are the values corresponding to the observed number of photons. In addition, h represents Planck's constant and c represents the speed of light.
Here, EQE means that the larger the value, the smaller the deterioration of the semiconductor nanocrystals due to ultraviolet rays in the curing step of the coating film, that is, the better the stability against ultraviolet rays. For use as an optical conversion layer, the EQE is preferably 20% or more, more preferably 25% or more, which means that it is excellent.
The EQE measured immediately after the optical conversion layer was produced was set to the initial external quantum efficiency EQE 0 , and the EQE 0 was measured and found to be 32%.
(外部量子効率保持率の評価)
 その後、作製した光変換層を50℃下でLED光を2週間照射した。照射後の外部量子効率をEQEとし、以下の式(b)によって、光変換層の外部量子保持率[%]を算出したところ、81%であった。
     外部量子保持率[%]=EQE/EQE×100…(b)
 光変換層は、EQEに加えて、さらにEQEが高いことが望ましい。光変換層は、外部量子効率保持率が高いほど、高温下での耐光性に優れることを意味する。
(Evaluation of external quantum efficiency retention rate)
Then, the prepared light conversion layer was irradiated with LED light at 50 ° C. for 2 weeks. The external quantum efficiency after irradiation was set to EQE h , and the external quantum retention rate [%] of the optical conversion layer was calculated by the following equation (b) and found to be 81%.
External quantum retention rate [%] = EQE h / EQE 0 × 100… (b)
It is desirable that the optical conversion layer has a higher EQE h in addition to the EQE 0 . The higher the external quantum efficiency retention rate of the optical conversion layer, the better the light resistance at high temperatures.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表1に示すように、NOR型ヒンダードアミン化合物を含有する実施例1~9のインク組成物は、上述のインク粘度を備えると共に、優れた硬化性を備えることから、インクジェット用インク組成物として好適である。そして、実施例1~9のインク組成物の硬化物は、高温下での耐光性に優れることから、当該インク組成物は光変換層の用途に好適である。そして、融点が90℃を超えるNOR型ヒンダードアミン化合物を含む実施例1~4及び7~8のインク組成物は、光変換層1の表面にブリード及び白化が生じておらず、特に好ましい。 As shown in Table 1, the ink compositions of Examples 1 to 9 containing the NOR-type hindered amine compound have the above-mentioned ink viscosities and excellent curability, and are therefore suitable as ink composition for inkjet. be. Since the cured products of the ink compositions of Examples 1 to 9 are excellent in light resistance at high temperatures, the ink compositions are suitable for use in the light conversion layer. The ink compositions of Examples 1 to 4 and 7 to 8 containing the NOR-type hindered amine compound having a melting point of more than 90 ° C. are particularly preferable because the surface of the light conversion layer 1 does not bleed or whiten.
 一方、ヒンダードアミン化合物を全く含有しない比較例1及びNR型ヒンダードアミン化合物を含有する比較例2~3のインク組成物は、いずれも高温下での耐光性が不十分である。 On the other hand, the ink compositions of Comparative Example 1 containing no hindered amine compound and Comparative Examples 2 to 3 containing an NR-type hindered amine compound both have insufficient light resistance at high temperatures.
 10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性粒子、11b…第2の発光性粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ。 10 ... pixel unit, 10a ... first pixel unit, 10b ... second pixel unit, 10c ... third pixel unit, 11a ... first light emitting particle, 11b ... second light emitting particle, 12a ... second 1 light-scattering particle, 12b ... second light-scattering particle, 12c ... third light-scattering particle, 20 ... light-shielding portion, 30 ... light conversion layer, 40 ... base material, 100 ... color filter.

Claims (12)

  1.  メタルハライドからなる半導体ナノ結晶粒子を含む発光性粒子と、光重合性化合物と、光重合開始剤と、下記式(1)で表される構造を有するNOR型ヒンダードアミン化合物と、を含有する、インクジェット用インク組成物。
    Figure JPOXMLDOC01-appb-C000001

    [式(1)中、R~Rはそれぞれ独立に炭化水素基を示し、*は結合手を示す。]
    For inkjet, which contains luminescent particles including semiconductor nanocrystal particles made of metal halide, a photopolymerizable compound, a photopolymerization initiator, and a NOR-type hindered amine compound having a structure represented by the following formula (1). Ink composition.
    Figure JPOXMLDOC01-appb-C000001

    [In the formula (1), R 1 to R 5 each independently represent a hydrocarbon group, and * indicates a bond. ]
  2.  前記NOR型ヒンダードアミン化合物の融点が70℃以上である、請求項1に記載のインクジェット用インク組成物。 The inkjet ink composition according to claim 1, wherein the NOR type hindered amine compound has a melting point of 70 ° C. or higher.
  3.  前記NOR型ヒンダードアミン化合物の質量平均分子量が、1000以上である、請求項1又は2に記載のインクジェット用インク組成物。 The inkjet ink composition according to claim 1 or 2, wherein the NOR-type hindered amine compound has a mass average molecular weight of 1000 or more.
  4.  前記発光性粒子が、前記半導体ナノ結晶粒子の表面に形成された表面層を備える粒子であり、
     前記表面層が半導体ナノ結晶粒子の表面に結合可能な結合性基及び加水分解性シリル基を有するシラン化合物の重合体を含有する、請求項1~3のいずれか一項に記載のインクジェット用インク組成物。
    The luminescent particles are particles having a surface layer formed on the surface of the semiconductor nanocrystal particles.
    The ink for inkjet according to any one of claims 1 to 3, wherein the surface layer contains a polymer of a silane compound having a bondable group and a hydrolyzable silyl group that can be bonded to the surface of semiconductor nanocrystal particles. Composition.
  5.  前記発光性粒子が、前記半導体ナノ結晶粒子を収容可能な内側空間、及び該内側空間に連通する細孔を有する中空粒子を更に備え、前記半導体ナノ結晶粒子が前記内側空間に収容されている、請求項1~4のいずれか一項に記載のインクジェット用インク組成物。 The luminescent particles further include an inner space capable of accommodating the semiconductor nanocrystal particles and hollow particles having pores communicating with the inner space, and the semiconductor nanocrystal particles are accommodated in the inner space. The ink composition for inkjet according to any one of claims 1 to 4.
  6.  前記光重合性化合物のSP値が、10.0以下である、請求項1~5のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 5, wherein the SP value of the photopolymerizable compound is 10.0 or less.
  7.  前記光重合性化合物が環状構造を有する、請求項1~6のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 6, wherein the photopolymerizable compound has a cyclic structure.
  8.  光散乱性粒子を更に含有する、請求項1~7のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 7, further containing light-scattering particles.
  9.  高分子分散剤を更に含有する、請求項1~8のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 8, further containing a polymer dispersant.
  10.  30℃における粘度が7~12mPa・sである、請求項1~9のいずれか一項に記載のインクジェット用インク組成物。 The inkjet ink composition according to any one of claims 1 to 9, which has a viscosity at 30 ° C. of 7 to 12 mPa · s.
  11.  複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
     前記複数の画素部は、請求項1~10のいずれか一項に記載のインクジェット用インク組成物の硬化物を含む発光性画素部を有する、光変換層。
    A plurality of pixel portions and a light-shielding portion provided between the plurality of pixel portions are provided.
    The plurality of pixel portions are light conversion layers having a light emitting pixel portion containing a cured product of the inkjet ink composition according to any one of claims 1 to 10.
  12.  請求項11に記載の光変換層を備える、カラーフィルタ。 A color filter including the optical conversion layer according to claim 11.
PCT/JP2021/040513 2020-11-17 2021-11-04 Inkjet ink composition, light-converting layer, and color filter WO2022107601A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237014369A KR102557679B1 (en) 2020-11-17 2021-11-04 Ink composition for inkjet, light conversion layer and color filter
JP2022503524A JP7151929B1 (en) 2020-11-17 2021-11-04 INK COMPOSITION FOR INKJET, LIGHT CONVERSION LAYER AND COLOR FILTER
CN202180067336.8A CN116249756A (en) 2020-11-17 2021-11-04 Ink composition for inkjet, light conversion layer, and color filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-190808 2020-11-17
JP2020190808 2020-11-17

Publications (1)

Publication Number Publication Date
WO2022107601A1 true WO2022107601A1 (en) 2022-05-27

Family

ID=81708745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040513 WO2022107601A1 (en) 2020-11-17 2021-11-04 Inkjet ink composition, light-converting layer, and color filter

Country Status (5)

Country Link
JP (1) JP7151929B1 (en)
KR (1) KR102557679B1 (en)
CN (1) CN116249756A (en)
TW (1) TW202233807A (en)
WO (1) WO2022107601A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155365A1 (en) * 2010-06-08 2011-12-15 Dic株式会社 Molded article having fine surface irregularities and method for producing same
JP2016011370A (en) * 2014-06-30 2016-01-21 キヤノン株式会社 Ink, ink cartridge, and inkjet recording method
WO2017038265A1 (en) * 2015-09-01 2017-03-09 Dic株式会社 Powder mixture
JP2018167548A (en) * 2017-03-30 2018-11-01 大日本印刷株式会社 Decorative sheet and decorative member including the same
JP2019522090A (en) * 2016-07-08 2019-08-08 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Multilayer polymer composites for encapsulating quantum dots
WO2020090431A1 (en) * 2018-10-31 2020-05-07 住友化学株式会社 Curable composition, film, laminate, and display device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3184602B1 (en) 2015-12-23 2018-07-04 Avantama AG Luminescent component
KR102511820B1 (en) * 2016-11-15 2023-03-17 동우 화인켐 주식회사 Photosensitive Resin Composition and Color Filter Using the Same
CN106634961B (en) * 2016-12-19 2019-02-19 中央民族大学 A kind of organic inorganic hybridization perovskite quantum dot and preparation method thereof
JP7196392B2 (en) * 2017-11-10 2022-12-27 Dic株式会社 Inkjet ink for color filter, light conversion layer and color filter
KR20200138248A (en) * 2018-03-27 2020-12-09 쇼와덴코머티리얼즈가부시끼가이샤 Wavelength conversion member, backlight unit, image display device, curable composition and cured product
JP7087775B2 (en) * 2018-07-26 2022-06-21 Dic株式会社 Ink composition, light conversion layer and color filter
JP7371432B2 (en) * 2018-10-12 2023-10-31 東洋インキScホールディングス株式会社 Ink composition, laminate using the composition, light wavelength conversion layer, light wavelength conversion member, and color filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155365A1 (en) * 2010-06-08 2011-12-15 Dic株式会社 Molded article having fine surface irregularities and method for producing same
JP2016011370A (en) * 2014-06-30 2016-01-21 キヤノン株式会社 Ink, ink cartridge, and inkjet recording method
WO2017038265A1 (en) * 2015-09-01 2017-03-09 Dic株式会社 Powder mixture
JP2019522090A (en) * 2016-07-08 2019-08-08 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Multilayer polymer composites for encapsulating quantum dots
JP2018167548A (en) * 2017-03-30 2018-11-01 大日本印刷株式会社 Decorative sheet and decorative member including the same
WO2020090431A1 (en) * 2018-10-31 2020-05-07 住友化学株式会社 Curable composition, film, laminate, and display device

Also Published As

Publication number Publication date
TW202233807A (en) 2022-09-01
KR20230066122A (en) 2023-05-12
KR102557679B1 (en) 2023-07-24
JPWO2022107601A1 (en) 2022-05-27
CN116249756A (en) 2023-06-09
JP7151929B1 (en) 2022-10-12

Similar Documents

Publication Publication Date Title
JP6822625B1 (en) Method for producing luminescent particles, luminescent particles, luminescent particle dispersion, ink composition and luminescent element
JP6874922B2 (en) Method for producing luminescent particles, luminescent particles, luminescent particle dispersion, ink composition and luminescent element
JP7024383B2 (en) Ink composition, light conversion layer and color filter
WO2015083426A1 (en) Non-aqueous dispersant, colorant dispersion for color filter, color filter, liquid crystal display device and organic light-emitting display device
JP2022527600A (en) Composition
JP6933311B2 (en) Inkjet ink for color filters, light conversion layer and color filter
JP2023156345A (en) Luminescent particles, method for producing the same, luminescent particle dispersion, light conversion film, laminate, light conversion layer, color filter, and light-emitting element
WO2022107601A1 (en) Inkjet ink composition, light-converting layer, and color filter
JP7052937B1 (en) Light emitting particle-containing ink composition, light conversion layer and light emitting element
WO2022244669A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
JP7052936B1 (en) Light emitting particle-containing ink composition, light conversion layer and light emitting element
WO2022107599A1 (en) Inkjet ink composition, cured product thereof, light conversion layer, color filter, and light emitting element
KR102433073B1 (en) Yellow curableresin composition, color filter and display device having the same
WO2022044759A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
WO2021230031A1 (en) Luminescent particle-containing resin composition, method for producing same, light conversion layer and light emitting device
WO2022107598A1 (en) Ink composition, light conversion layer, and color filter
WO2022107602A1 (en) Dispersion, optical conversion layer, color filter, and light-emitting element
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
JP2024072245A (en) Luminescent particles, curable resin composition and light conversion layer
JP2023036187A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022503524

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21894475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237014369

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21894475

Country of ref document: EP

Kind code of ref document: A1