WO2022244669A1 - Ink composition, light conversion layer, color filter, and light conversion film - Google Patents

Ink composition, light conversion layer, color filter, and light conversion film Download PDF

Info

Publication number
WO2022244669A1
WO2022244669A1 PCT/JP2022/020036 JP2022020036W WO2022244669A1 WO 2022244669 A1 WO2022244669 A1 WO 2022244669A1 JP 2022020036 W JP2022020036 W JP 2022020036W WO 2022244669 A1 WO2022244669 A1 WO 2022244669A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
light
mass
particles
group
Prior art date
Application number
PCT/JP2022/020036
Other languages
French (fr)
Japanese (ja)
Inventor
麻里子 利光
栄志 乙木
浩一 延藤
祐貴 野中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2022244669A1 publication Critical patent/WO2022244669A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials

Definitions

  • the present invention relates to an ink composition, a light conversion layer, a color filter and a light conversion film.
  • a pixel part (color filter pixel part) in a display such as a liquid crystal display device is, for example, a curable resist containing red organic pigment particles or green organic pigment particles, an alkali-soluble resin and / or an acrylic monomer. It has been manufactured by photolithographic methods using materials.
  • red organic pigment particles or green organic pigment particles for example, quantum dots, quantum rods, and other inorganic phosphor particles.
  • photoconversion films and photoconversion layers such as color filter pixel portions for extracting red light or green light.
  • This light conversion layer is mounted on the backlight unit of the image display device.
  • a light conversion film containing quantum dots that emit red light and quantum dots that emit green light is irradiated with blue light as excitation light
  • the red light and green light emitted from the quantum dots and the light conversion film White light can be obtained with the blue light that has passed through.
  • the light conversion layer includes, for example, a red-emitting quantum dot layer that emits red fluorescence when excited by blue light and a green quantum dot layer that emits green fluorescence when excited by blue light on a substrate on which a black matrix is formed. It is formed by forming a luminescent quantum dot layer and a blue light transmission layer that transmits blue light.
  • a liquid crystal display device or a self-luminous display device is configured by combining such a light conversion layer with an LED backlight that emits blue light or an organic EL element that emits blue light.
  • a display device with such a light conversion layer can increase light utilization efficiency more than a display device with a conventional color filter.
  • fluorescence emitted from the quantum dots and having a spectrum with a small half-value width can be used as it is for color display of the display device, the display device can have a wide color reproduction range.
  • a method is known in which a photosensitive resin composition containing quantum dots is applied to one entire surface of a substrate and cured by ultraviolet irradiation to produce a light conversion film.
  • the light conversion layer is formed by forming a coating film on one side of the substrate using a photosensitive resin composition containing quantum dots, patterning the coating film by photolithography, and then heating the resulting coating film.
  • a method of hardening by treatment is known (see, for example, Patent Document 1).
  • an optical film including a color filter pixel portion (hereinafter also simply referred to as "pixel portion") or a light conversion layer with an ink composition using luminescent nanocrystalline particles such as quantum dots
  • the quantum dots are unstable. Therefore, depending on the type of resin used as a binder, for example, external quantum efficiency (EQE) may decrease over time due to heating during color filter manufacturing or excitation light during display driving. may be lost.
  • EQE external quantum efficiency
  • one object of the present invention is to provide an ink composition having excellent stability against heat and excitation light, and a light conversion layer, color filter and light conversion film using the ink composition. do.
  • One aspect of the present invention contains luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group, and the photopolymerizable compound has an acrylic equivalent of 110 or more (meth)
  • the present invention relates to ink compositions containing acrylate compounds.
  • the ink composition of the aspect it is possible to form a light conversion layer with excellent heat resistance and excitation light resistance, that is, a light conversion layer with little decrease in external quantum efficiency during heating and excitation light irradiation.
  • the metal compound having a dithiocarbamic acid group may preferably be a zinc compound, a sodium compound, or a copper compound, more preferably a zinc compound.
  • the (meth)acrylate compound is preferably a compound represented by the following formula (I).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an optionally substituted linear or branched alkylene group having 1 to 20 carbon atoms
  • m is 1 Represents an integer from ⁇ 10. Two R 1s may be the same or different.
  • the photopolymerizable compound may further contain a monofunctional (meth)acrylate compound.
  • the monofunctional (meth)acrylate compound may be a monofunctional (meth)acrylate compound containing an alicyclic structure.
  • the ink composition may further contain a phenolic antioxidant.
  • the ink composition may further contain a phosphorus antioxidant.
  • the ink composition can be used to form a light conversion layer. That is, the ink composition may be an ink composition for forming a light conversion layer.
  • the ink composition can be used in an inkjet method. That is, the ink composition may be an inkjet ink.
  • Another aspect of the present invention includes a plurality of pixel portions and a light shielding portion provided between the plurality of pixel portions, wherein the plurality of pixel portions includes a cured product of the ink composition of the above aspect.
  • the present invention relates to a light conversion layer having an optical pixel portion.
  • the light conversion layer contains luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 605 to 665 nm as the luminescent pixel portion. and a second luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. Be prepared.
  • the light conversion layer may further comprise a non-luminous pixel portion containing light scattering particles.
  • Another aspect of the present invention relates to a color filter comprising the light conversion layer described above.
  • Another aspect of the present invention relates to a light conversion film containing a cured product of the ink composition described above.
  • an ink composition capable of forming a light conversion layer with excellent stability against heat and excitation light.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a color filter according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the light conversion film of one embodiment of the present invention.
  • a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the term “cured product of the ink composition” refers to a product obtained by curing a curable component in the ink composition (when the ink composition contains a solvent component, the ink composition after drying). It is something that can be done.
  • the cured ink composition after drying may not contain an organic solvent.
  • the ink composition of one embodiment contains luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group, and the photopolymerizable compound has an acrylic equivalent of 110 or more (meta ) including acrylate compounds.
  • the ink composition is used for forming a light conversion layer (for example, for forming a color filter pixel portion or for forming a light conversion film), which is used for forming a pixel portion of a light conversion layer of a color filter or the like. It is an ink composition.
  • the above ink composition it is possible to obtain a light conversion layer whose external quantum efficiency is less likely to decrease when heated or irradiated with excitation light.
  • the present inventors speculate as follows. That is, radicals and oxygen remain in the cured light conversion layer, and the radicals react rapidly with oxygen to form peroxy radicals and hydroperoxides, thereby degrading the luminescent nanocrystalline particles. Heating or irradiation of excitation light enhances the activity of the luminescent nanocrystalline particles, and thus accelerates the deterioration of the luminescent nanocrystalline particles, resulting in more significant deterioration. It is believed that the metal compound having a dithiocarbamic acid group of the present embodiment has a function of scavenging radicals and suppresses deterioration of the luminescent nanocrystalline particles.
  • the metal compound having a dithiocarbamic acid group is decomposed by heat and light and reacts with the surface of the luminescent nanocrystalline particles, thereby having the effect of protecting the luminescent nanocrystalline particles from oxidation.
  • a (meth)acrylate compound having an acrylic equivalent of 110 or more the adhesion between the substrate and the light conversion layer is improved, and by suppressing the intrusion of oxygen and moisture from the interface, the luminescent nano It is considered that the deterioration of crystal grains is suppressed.
  • the ink composition a light conversion layer having excellent external quantum efficiency can be obtained. Furthermore, according to the ink composition, it is possible to obtain excellent ejection stability in the inkjet method. That is, the ink composition can be suitably used for the inkjet method.
  • the ink composition of the present invention since the luminescent nanocrystalline particles are uniformly dispersed, excellent applicability can be obtained in a printing method using a coating method (hereinafter referred to as “coating method”). can. That is, the ink composition of the present invention can be suitably used in coating methods.
  • the ink composition tends to suppress the decrease in external quantum efficiency due to external light. That is, according to the ink composition, a light conversion layer having excellent light stability can be formed.
  • the ink composition of one embodiment can be applied as an ink for manufacturing color filters.
  • the pixel portion (light conversion layer) can be formed only by using the amount necessary for the above, it is preferable to prepare and use it so as to be suitable for the inkjet method rather than the photolithographic method.
  • the ink composition of one embodiment is preferably carried between barrier films and used as a wavelength conversion film.
  • the ink composition contains, in addition to luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group, an organic ligand (hereinafter sometimes referred to as a "ligand"), light scattering particles, Other components such as polymeric dispersants, organic solvents, etc. may be further included.
  • a metal compound having a dithiocarbamic acid group an organic ligand (hereinafter sometimes referred to as a "ligand")
  • light scattering particles Other components such as polymeric dispersants, organic solvents, etc. may be further included.
  • An ink composition according to one embodiment will be described below, taking an ink composition for color filters (inkjet ink for color filters) used in an inkjet method as an example.
  • Luminescent nanocrystalline particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence.
  • the maximum particle diameter measured by a transmission electron microscope or scanning electron microscope is 100 nm or less. It is crystalline.
  • a luminescent nanocrystalline particle can, for example, emit light (fluorescence or phosphorescence) of a wavelength different from the absorbed wavelength by absorbing light of a predetermined wavelength.
  • the luminescent nanocrystalline particles may be red luminescent nanocrystalline particles (red luminescent nanocrystalline particles) that emit light having an emission peak wavelength in the range of 605-665 nm (red light), Green luminescent nanocrystalline particles (green luminescent nanocrystalline particles) that emit light with an emission peak wavelength in the range of 420-480 nm (blue light). ), may be blue-emitting nanocrystalline particles (blue-emitting nanocrystalline particles).
  • the ink composition preferably contains at least one of these luminescent nanocrystalline particles.
  • the light absorbed by the luminescent nanocrystalline particles is, for example, light (blue light) with a wavelength in the range of 400 nm or more and less than 500 nm (especially light with a wavelength in the range of 420 to 480 nm), or in the range of 200 nm to 400 nm. (ultraviolet light).
  • the emission peak wavelength of the luminescent nanocrystalline particles can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured using a spectrofluorometer.
  • the red-emitting nanocrystalline particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • Green-emitting nanocrystalline particles have an emission peak wavelength of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • the blue-emitting nanocrystalline particles have an emission peak wavelength of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • the wavelength (emission color) of the light emitted by the luminescent nanocrystalline particles depends on the size (e.g., particle diameter) of the luminescent nanocrystalline particles. It also depends on the energy gap of the crystal grains. Therefore, the emission color can be selected by changing the constituent material and size of the luminescent nanocrystalline particles used.
  • the luminescent nanocrystalline particles may be luminescent nanocrystalline particles containing a semiconductor material (luminescent semiconductor nanocrystalline particles).
  • Luminescent semiconductor nanocrystal particles include quantum dots and quantum rods. Among these, quantum dots are preferable from the viewpoint that the emission spectrum can be easily controlled, the reliability can be secured, the production cost can be reduced, and the mass productivity can be improved.
  • the luminescent semiconductor nanocrystal particles may consist solely of a core comprising the first semiconductor material, comprising a core comprising the first semiconductor material and a second semiconductor material different from the first semiconductor material, wherein and a shell covering at least a portion of the core.
  • the structure of the luminescent semiconductor nanocrystal particles may be a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core/shell structure).
  • the luminescent semiconductor nanocrystal particle contains a third semiconductor material different from the first and second semiconductor materials in addition to the shell (first shell) containing the second semiconductor material, It may further have a shell (second shell) that covers at least part of it.
  • the structure of the luminescent semiconductor nanocrystal particles may be a structure consisting of a core, a first shell and a second shell (core/shell/shell structure).
  • Each of the core and shell may be a mixed crystal containing two or more semiconductor materials (eg, CdSe+CdS, CIS+ZnS, etc.).
  • Luminescent nanocrystalline particles are selected as semiconductor materials from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors and I-II-IV-VI semiconductors. It preferably contains at least one semiconductor material that
  • Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe ⁇ CdHgS ⁇ CdHgSe ⁇ CdHgTe ⁇ HgZnS ⁇ HgZnSe ⁇ CdHgZnTe ⁇ CdZnSeS ⁇ CdZnSeTe ⁇ CdZnSTe ⁇ CdHgSeS ⁇ CdHgSeTe ⁇ CdHgSTe ⁇ HgZnSeS ⁇ HgZnSeTe ⁇ HgZnSTe ⁇ HgSeS ⁇ CdHgSeTe ⁇ C
  • Luminescent semiconductor nanocrystalline particles are CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS.
  • red-emitting semiconductor nanocrystal particles include nanocrystal particles of CdSe and nanocrystal particles having a core/shell structure in which the shell portion is CdS and the inner core portion is CdSe. particles, nanocrystalline particles with a core/shell structure, where the shell portion is CdS and the inner core portion is ZnSe, mixed crystal nanocrystalline particles of CdSe and ZnS, InP nanocrystalline particles A crystalline particle, a nanocrystalline particle with a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, a nanocrystalline particle with a core/shell structure, Nanocrystalline particles whose shell portion is a mixed crystal of ZnS and ZnSe and whose inner core portion is InP, nanocrystalline particles of mixed crystal of CdSe and CdS, nanocrystalline particles of mixed crystal of ZnSe and CdS, core /Nanocrystalline particles with a shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is Zn
  • green-emitting semiconductor nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles of a mixed crystal of CdSe and ZnS, and nanocrystalline particles having a core/shell structure, the shell portion of which is ZnS. and a nanocrystalline particle having an inner core of InP, a nanocrystalline particle having a core/shell structure, wherein the shell is a mixed crystal of ZnS and ZnSe and the inner core is InP Crystalline particles, nanocrystalline particles with a core/shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP , a nanocrystalline particle with a core/shell/shell structure, wherein the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP certain nanocrystalline particles and the like.
  • blue-emitting semiconductor nanocrystalline particles include ZnSe nanocrystalline particles, ZnS nanocrystalline particles, and nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnSe and the inner core portion is is ZnS, nanocrystalline particles of CdS, nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, core/shell A nanocrystalline particle with a structure, wherein the shell part is a mixed crystal of ZnS and ZnSe and the inner core part is InP, a nanocrystalline particle with a core/shell/shell structure.
  • nanocrystalline particle having a first shell portion of ZnSe, a second shell portion of ZnS, and an inner core portion of InP a nanocrystalline particle having a core/shell/shell structure
  • examples include nanocrystalline particles in which the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
  • the semiconductor nanocrystal particles can change the color of light emitted from the particles to either red or green by changing the average particle size of the particles themselves.
  • semiconductor nanocrystal particles that themselves have the least adverse effect on the human body or the like.
  • semiconductor nanocrystal particles containing cadmium, selenium, etc. are used as luminescent nanocrystal particles
  • semiconductor nanocrystal particles that do not contain the above elements (cadmium, selenium, etc.) as much as possible are selected and used alone. is preferably used in combination with other luminescent nanocrystalline particles so as to minimize the
  • the luminescent nanocrystalline particles may be nanocrystals made of metal halide from the viewpoint of obtaining an emission peak with a narrower half-width.
  • a nanocrystal made of metal halide is a compound semiconductor containing A, M and X, and is a compound represented by the general formula: AaMbXc.
  • A represents a monovalent cation and is at least one of an organic cation and a metal cation.
  • Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
  • M represents a metal ion and is at least one metal cation.
  • Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
  • X is at least one anion. Examples of anions include halide ions such as chloride ions, bromide ions, iodide ions, and cyanide ions.
  • a is 1-7, b is 1-4, and c is 3-16.
  • the emission wavelength (emission color) of such nanocrystals can be controlled by adjusting the particle size and the type and abundance of anions that constitute the X site.
  • the compound represented by the general formula AaMmXx is AMX , A4MX , AMX2 , AMX3 , A2MX3 , AM2X3 , A2MX4 , A2MX 5 , A3MX5 , A3M2X5 , A3MX6 , A4MX6 , AM2X6 , A2MX6 , A4M2X6 , A3MX8 , A3M2 _ _ Compounds represented by X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 and A 7 M 3 X 16 are preferred. wherein A is at least one of an organic cation and a metal cation.
  • Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation. Specifically, one metal cation ( M1 ), two metal cations ( M1 ⁇ M2 ⁇ ), three metal cations (M1 ⁇ M2 ⁇ M3 ⁇ ) , four metal cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ M 4 ⁇ ) and the like.
  • Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
  • X is an anion containing at least one halogen.
  • halogen anion X 1
  • X 2 ⁇ halogen anions
  • anions include chloride ions, bromide ions, iodide ions, cyanide ions, and the like, including at least one halide ion.
  • the compound composed of the metal halide represented by the above general formula AaMmXx is doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb in order to improve the light emission characteristics.
  • metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb in order to improve the light emission characteristics.
  • the compound having a perovskite-type crystal structure is adjusted by adjusting the particle size, the type and abundance of metal cations constituting the M site, Furthermore, it is particularly preferable for use as a semiconductor nanocrystal in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance of anions that constitute the X site.
  • compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 and A 2 MX 6 are preferred.
  • A, M and X in the formula are as described above.
  • the compound having the perovskite crystal structure may be doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, as described above.
  • A is Cs, Rb, K, Na, or Li
  • M is one kind of metal cation (M 1 ), or two kinds of It is preferably a metal cation (M 1 ⁇ M 2 ⁇ ) and X is chloride, bromide or iodide.
  • M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, Zr. preferable.
  • Nanocrystals 911 using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 , etc., as specific compositions of nanocrystals made of metal halide and having a perovskite crystal structure, have a light intensity It is preferable because it is excellent in quantum efficiency as well as excellent in In addition, CsSnBr 3 , CsSnCl 3 , CsSnBr 1.5 Cl 1.5 , Cs 3 Sb 2 Br 9 , (CH 3 NH 3 ) 3 Bi 2 Br 9 , (C 4 H 9 NH 3 ) 2 AgBiBr 6 , Nanocrystals using metal cations other than Pb as M are preferred due to their low toxicity and low environmental impact.
  • the shape of the luminescent nanocrystalline particles is not particularly limited, and may be any geometric shape or any irregular shape.
  • the shape of the luminescent nanocrystalline particles may be, for example, spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, rod-like, and the like.
  • the uniformity and fluidity of the ink composition can be further enhanced by using particles with a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.). is preferred.
  • the average particle diameter (volume average diameter) of the luminescent nanocrystalline particles may be 1 nm or more, or 1.5 nm, from the viewpoints of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. or more, or 2 nm or more. From the viewpoint of easily obtaining a desired emission wavelength, it may be 40 nm or less, 30 nm or less, or 20 nm or less.
  • the average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is obtained by measuring with a transmission electron microscope or scanning electron microscope and calculating the volume average diameter.
  • the luminescent nanocrystalline particles preferably have organic ligands on their surfaces.
  • Organic ligands may be coordinated to the surface of the luminescent nanocrystalline particles, for example.
  • the surface of the luminescent nanocrystalline particles may be passivated by organic ligands.
  • the luminescent nanocrystalline particles may have the polymer dispersant on their surfaces.
  • the organic ligand is removed from the luminescent nanocrystalline particles having the above-described organic ligand, and the organic ligand is exchanged with the polymeric dispersant, thereby dispersing the polymeric dispersant on the surface of the luminescent nanocrystalline particles.
  • the organic ligand is exchanged with the polymeric dispersant, thereby dispersing the polymeric dispersant on the surface of the luminescent nanocrystalline particles.
  • a polymer dispersant is added to the luminescent nanocrystalline particles with the organic ligands still coordinated.
  • a functional group for ensuring affinity with a photopolymerizable compound, a thermosetting resin, an organic solvent, etc. (hereinafter also simply referred to as an "affinity group"), and a luminescent nanocrystalline particle. It is preferably a compound having a bondable functional group (a functional group for ensuring adsorption to the luminescent nanocrystalline particles).
  • the affinity group may be a substituted or unsubstituted aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear or have a branched structure. Also, the aliphatic hydrocarbon group may or may not have an unsaturated bond.
  • the substituted aliphatic hydrocarbon may be a group in which some carbon atoms of an aliphatic hydrocarbon group are substituted with oxygen atoms.
  • Substituted aliphatic hydrocarbon groups may include, for example, (poly)oxyalkylene groups.
  • the "(poly)oxyalkylene group” means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
  • Functional groups that can bind to luminescent nanocrystalline particles include, for example, hydroxyl groups, amino groups, carboxyl groups, thiol groups, phosphate groups, phosphonic acid groups, phosphine groups, phosphine oxide groups, and alkoxysilyl groups.
  • organic ligands examples include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, linoleic acid, linolenic acid, ricinoleic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N - lauroylsarcosine, N-oleylsarcosine, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine acid (OPA).
  • TOP trioctylphosphine
  • TOPO trioctylphosphine oxide
  • oleic acid linoleic
  • the organic ligand may be an organic ligand represented by formula (1-1) below.
  • formula (1-1) p represents an integer of 0 to 50, and q represents an integer of 0 to 50.
  • At least one of p and q is preferably 1 or more, more preferably both p and q are 1 or more.
  • the organic ligand may be, for example, an organic ligand represented by formula (1-2) below.
  • a 1 represents a monovalent group containing a carboxyl group
  • a 2 represents a monovalent group containing a hydroxyl group
  • R is a hydrogen atom, a methyl group, or an ethyl group.
  • L represents a substituted or unsubstituted alkylene group
  • r represents an integer of 0 or more.
  • the number of carboxyl groups in the monovalent group containing a carboxyl group may be 2 or more, 2 or more and 4 or less, or 2.
  • the number of carbon atoms in the alkylene group represented by L may be, for example, 1-10.
  • some of the carbon atoms may be substituted with hetero atoms, and at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
  • r may be, for example, an integer of 1-100, or an integer of 10-20.
  • the organic ligand may be an organic ligand represented by the following formula (1-2A) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
  • the content of the organic ligand in the ink composition is 15 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles, from the viewpoint of the dispersion stability of the luminescent nanocrystalline particles and the maintenance of the light emission properties. Above, it is preferable that it is 25 mass parts or more, 30 mass parts or more, 35 mass parts or more, or 40 mass parts or more. From the viewpoint of keeping the viscosity of the ink composition low, the content of the organic ligand in the ink composition is 50 parts by mass or less, 45 parts by mass or less, or 40 parts by mass or less relative to 100 parts by mass of the luminescent nanocrystalline particles. It is preferably 30 parts by mass or less.
  • the luminescent nanocrystalline particles those dispersed in a colloidal form in an organic solvent, a photopolymerizable compound, or the like can be used.
  • the surfaces of the luminescent nanocrystalline particles dispersed in the organic solvent are preferably passivated with the above-described organic ligands.
  • the organic solvent the below-described organic solvent contained in the ink composition is used.
  • luminescent nanocrystalline particles include, for example, indium phosphide/zinc sulfide, D-dot, CuInS/ZnS from NN-Labs, and InP/ZnS from Aldrich.
  • a ligand having a binding group that binds to the cation may be used, and the ligand can stabilize the surface of the nanocrystal.
  • binding group examples include a carboxyl group, a carboxylic anhydride group, an amino group, an ammonium group, a mercapto group, a phosphine group, a phosphine oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and At least one of boronic acid groups is preferred, and at least one of carboxyl and amino groups is more preferred.
  • ligands include carboxyl group- or amino group-containing compounds and the like, and these ligands can be used singly or in combination of two or more.
  • carboxyl group-containing compounds include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms. Specific examples of such carboxyl group-containing compounds include arachidonic acid, crotonic acid, trans-2-decenoic acid, erucic acid, 3-decenoic acid, cis-4,7,10,13,16,19-docosahexaenoic acid.
  • amino group-containing compounds include linear or branched aliphatic amines having 1 to 30 carbon atoms. Specific examples of such amino group-containing compounds include 1-aminoheptadecane, 1-aminononadecane, heptadecane-9-amine, stearylamine, oleylamine, 2-n-octyl-1-dodecylamine, allylamine, and amylamine.
  • the ligand having a bonding group that binds to the cation on the surface of the nanocrystal may be a silane compound containing Si and having a reactive group that forms a siloxane bond by hydrolysis. can further stabilize the nanocrystal surface.
  • a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
  • binding groups include carboxyl groups, amino groups, ammonium groups, mercapto groups, phosphine groups, phosphine oxide groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, sulfonic acid groups, boronic acid groups, and the like. .
  • the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group.
  • silane compound containing Si and having a reactive group that forms a siloxane bond one or more silicon compounds containing a bonding group may be used, or two or more may be used in combination.
  • any one of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound is contained, or two or more of them can be used in combination.
  • carboxyl group-containing silicon compounds include 3-(trimethoxysilyl)propionic acid, 3-(triethoxysilyl)propionic acid, 2-, carboxyethylphenylbis(2-methoxyethoxy)silane, N- [3-(trimethoxysilyl)propyl]-N'-carboxymethylethylenediamine, N-[3-(trimethoxysilyl)propyl]phthalamide, N-[3-(trimethoxysilyl)propyl]ethylenediamine-N,N' , N′-triacetic acid and the like.
  • amino group-containing silicon compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldipropoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiiso Propoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyl Tripropoxysilane, N-(2-aminoethyl)
  • mercapto group-containing silicon compounds include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis(3,6,9,12,15-pentoxaoctacosane-1 -yloxy)silyl]-1-propanethiol and the like.
  • the silica layer can be formed by coordinating ligands such as oleic acid and 3-aminopropyltrimethoxysilane to the surface of the nanocrystals and further reacting with 3-aminopropyltrimethoxysilane. can.
  • the thickness of the silica layer is preferably 0.5-50 nm, more preferably 1.0-30 nm.
  • a luminescent particle having such a thick silica layer can sufficiently improve the stability of the nanocrystal against heat and light.
  • the thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
  • the luminescent particles having a silica layer are composed of a solution containing a raw material compound of nanocrystals, a compound having a bonding group that binds to cations contained in the nanocrystals, and Si to form a siloxane bond.
  • the reactive group in the compound containing Si coordinated to the surface of the precipitated nanocrystal and having a reactive group capable of forming a siloxane bond is condensed. It can be easily produced by At this time, there are a method of manufacturing with heating and a method of manufacturing without heating.
  • Solutions containing two kinds of raw material compounds for synthesizing semiconductor nanocrystals by reaction are prepared respectively.
  • a compound having a bonding group that binds to cations contained in the nanocrystals is added to one of the two solutions, and a compound containing Si and having a reactive group capable of forming a siloxane bond is added to the other.
  • Keep These are then mixed under an inert gas atmosphere and reacted at a temperature of 140 to 260°C.
  • a method of precipitating nanocrystals by cooling to ⁇ 20 to 30° C. and stirring may be used.
  • the precipitated nanocrystals have a silica layer having siloxane bonds formed on the surface of the nanocrystals, and the nanocrystals can be obtained by a conventional method such as centrifugation.
  • a solution containing a raw material compound for semiconductor nanocrystals and a compound having a bonding group that binds to a cation contained in the nanocrystal was added to the solution containing Si.
  • a method of precipitating nanocrystals by dropping and mixing a compound containing a reactive group capable of forming a siloxane bond in an organic solvent, which is a poor solvent for nanocrystals, in the atmosphere. mentioned.
  • the amount of the organic solvent used is preferably 10 to 1000 times the mass of the semiconductor nanocrystals.
  • the deposited nanocrystals have a silica layer having a siloxane bond formed on the surface of the nanocrystals, and can be obtained by a standard method such as centrifugation.
  • a silica layer may be additionally formed on the surface of the nanocrystal on which the shell layer having siloxane bonds is formed.
  • a silica layer is additionally formed, first, a silane compound is mixed with nanocrystals on which a silica layer having siloxane bonds is formed, and siloxane bonds are formed by hydrolysis to form a shell layer.
  • a reaction field is formed by adsorbing a polymer having a structural unit containing a basic group, and then a silane compound is mixed and hydrolyzed to form a siloxane bond to form a silica layer. good too.
  • the silane compound is preferably, for example, a compound represented by the following formula (C1).
  • R C1 and R C2 each independently represent an alkyl group
  • R C3 and R C4 each independently represent a hydrogen atom or an alkyl group
  • n represents 0 or 1
  • m is an integer of 1 or more represents m is preferably an integer of 10 or less.
  • Specific examples of the compound represented by formula (C1) include tetrabutoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyl trimethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, n-propyltrimethoxysilane, isopropyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-octyl trimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, n-dodecyltrimethoxysilane
  • a compound represented by the following formula (C2) and a compound represented by (C3) can be used in combination.
  • R C21 , R C22 and R C31 each independently represent an alkyl group
  • R C23 , R C24 , R C32 , R C33 and R C34 each independently have a hydrogen atom and a substituent.
  • the carbon atoms in the alkyl group may be substituted with an oxygen atom or a nitrogen atom
  • m2 represents an integer of 1 or more and 10 or less.
  • Specific examples of the compound represented by formula (C2) and the compound represented by formula (C3) include dimethyldiethoxysilane, diphenyldimethoxysilane, methylethyldimethoxysilane, and trimethylmethoxysilane.
  • the compounds represented by formula (C1) can be used singly or in combination of two or more.
  • the compound represented by formula (C2) and the compound represented by (C3) can be used alone or in combination with the compound represented by general formula (C1).
  • the total thickness of the silica layers is preferably 0.5-50 nm, more preferably 1.0-30 nm.
  • a luminescent nanocrystal having such a thickness of silica layer can sufficiently enhance the stability of the nanocrystal against heat and light.
  • the thickness can be measured, for example, with a high-resolution electron microscope.
  • the total thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
  • the content of the luminescent nanocrystalline particles is 0.1 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. , 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more. From the viewpoint of further improving the coating properties, ejection stability, and external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles is 100 parts by mass in total of the components other than the organic solvent contained in the ink composition.
  • components other than the organic solvent contained in the ink composition may also be referred to as components to be contained in the cured product of the ink composition.
  • the “total of components other than the organic solvent contained in the ink composition” includes, for example, luminescent nanocrystalline particles, organic ligands (ligands), photopolymerizable compounds and/or thermosetting resins, and light scattering may be the sum of the physical particles and
  • the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is It is preferably 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more with respect to a total of 100 parts by mass.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is 100% of the components other than the organic solvent. It is preferably 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, or 60 parts by mass or less.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is adjusted from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained therein. preferable.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is the above organic solvent from the viewpoint of further improving the coatability and the external quantum efficiency of the light conversion layer. It is preferably 15 parts by mass or less, 12.5 parts by mass or less, 10 parts by mass or less, 7.5 parts by mass or less, or 5 parts by mass or less with respect to a total of 100 parts by mass of the other components.
  • the content of the luminescent nanocrystalline particles in the ink composition is the same as that of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is preferably 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, or 5 parts by mass or more with respect to a total of 100 parts by mass.
  • the content of the luminescent nanocrystalline particles in the ink composition is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the coatability, the ejection stability, and the external quantum efficiency of the light conversion layer. It is preferably 30 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less.
  • the content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 5% by mass or more, from the viewpoint of further improving the external quantum efficiency. % by mass or more, preferably 10% by mass or more.
  • the content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 36% by mass or less, 34% by mass or less, and 32% by mass, from the viewpoint of improving coatability, ejection stability, and external quantum efficiency. % or less, 30 mass % or less, or 28 mass % or less.
  • the ink composition may contain, as luminescent nanocrystalline particles, two or more of red luminescent nanocrystalline particles, green luminescent nanocrystalline particles and blue luminescent nanocrystalline particles, but these are preferably used. It may contain only one type of particles.
  • the ink composition contains red-emitting nanocrystalline particles, the content of green-emitting nanocrystalline particles and the content of blue-emitting nanocrystalline particles are 0 wt% based on the total weight of the luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
  • the content of red luminescent nanocrystalline particles and the content of blue luminescent nanocrystalline particles are 0 wt% based on the total weight of luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
  • the photopolymerizable compound is a compound that polymerizes upon irradiation with light, and the photopolymerizable compound may be a photopolymerizable monomer or oligomer. These are used together with a photoinitiator.
  • a photopolymerizable compound may be used individually by 1 type, and may use 2 or more types together.
  • Acrylic equivalent molecular weight of (meth)acrylate compound/number of functional groups of (meth)acryloyl group
  • (Meth)acrylate compounds having an acrylic equivalent of 110 or more include, for example, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, dodecyl (meth)acrylate, hexadecyl (meth)acrylate, octadecyl (meth)acrylate, cyclohexyl (meth)acrylate, methoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, nonylphenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, ethoxye
  • the (meth)acrylate compound having an acrylic equivalent of 110 or more is preferably a compound represented by the following formula (I).
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an optionally substituted linear or branched alkylene group having 1 to 20 carbon atoms
  • m is 1 An integer from ⁇ 10.
  • Two R 1s may be the same or different.
  • (meth)acrylate compounds having an acrylic equivalent of 110 or more include 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, propylene glycol di(meth)acrylate, (Meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate and the like.
  • the content of the (meth)(meth)acrylate compound having an acrylic equivalent of 110 or more is 5% by mass or more based on the total mass of the photopolymerizable compound, from the viewpoint of obtaining sufficient curability. , 10% by mass or more, or 20% by mass or more, and from the viewpoint of making the viscosity of the ink composition low, it may be 90% by mass or less, 80% by mass or less, or 70% by mass or less.
  • the photopolymerizable compound other than the (meth)acrylate compound having an acrylic equivalent of 110 or more is not particularly limited, and known compounds can be used.
  • monofunctional (meth)acrylate compounds include methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, octyl, nonyl, decyl, lauryl, hexadecyl, stearyl, cyclohexyl, benzyl, methoxyethyl, butoxyethyl, phenoxyethyl.
  • nonylphenoxyethyl glycidyl, dimethylaminoethyl, diethylaminoethyl, isobornyl, dicyclopentanyl, dicyclopentenyl, dicyclopentenyloxyethyl, tetrahydrofurfuryl, ethoxylated terorahydrofuran (meth) Acrylates are mentioned.
  • Polyfunctional (meth)acrylates include di(meth)acrylates such as tricyclodecanedimethanol, polyethylene glycol, tripropylene glycol and polypropylene glycol; a di(meth)acrylate of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A, 3 mol or more of ethylene oxide per 1 mol of trimethylolpropane, or Di or tri(meth)acrylate of triol obtained by adding propylene oxide, di(meth)acrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A, poly of dipentaerythritol (Meth)acrylates, ethylene oxide-modified phosphate (meth)acrylates, ethylene oxide-modified alkyl phosphate (meth)acrylates, and the like.
  • di(meth)acrylates such as tricyclodecanedimethanol, polyethylene glycol, tripropylene glyco
  • Polymerizable oligomers such as (meth)acrylate oligomers can also be used.
  • Polymerizable oligomers include polyurethane (meth)acrylate, polyester (meth)acrylate, polyacrylic (meth)acrylate, epoxy (meth)acrylate, polyalkylene glycol poly(meth)acrylate, polyether (meth)acrylate, and the like. , can be used in combination of two or more.
  • the photopolymerizable compound in the present embodiment the photopolymerizable compounds described in paragraphs 0042 to 0049 of JP-A-2013-182215 can also be used.
  • the photopolymerizable compound preferably contains a monofunctional (meth)acrylate compound.
  • the monofunctional (meth)acrylate compound is not particularly limited, and a known compound can be used, preferably a monofunctional (meth)acrylate compound containing a cyclic structure.
  • the monofunctional (meth)acrylate compound containing a cyclic structure is preferably a monofunctional methacrylate compound containing an aliphatic polycyclic structure from the viewpoint of the height of the glass transition point of the resulting resin. Specifically, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate and the like.
  • the content of the monofunctional (meth)acrylate compound in the photopolymerizable compound is adjusted from the viewpoint of making the viscosity of the ink composition low. Based on the total mass of the chemical compound, it may be 5% by mass or more, 10% by mass or more, or 20% by mass or more, and from the viewpoint of suppressing tackiness, it is 90% by mass or less, 80% by mass or less, or 70% by mass or less. It's okay.
  • a monomer having an ethylenically unsaturated group other than the "(meth)acryloyl group” and the "acryloyl group”, a monomer having an isocyanate group, and the like can be optionally used.
  • ethylenically unsaturated groups other than "(meth)acryloyl group” and "acryloyl group” include vinyl group, vinylene group, and vinylidene group.
  • Examples of the vinyl ether compound which is a monomer having an ethylenically unsaturated group having a vinyl group, include 2-(2-vinyloxyethoxy)ethyl acrylate, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether.
  • Polymerizable compounds having a vinyl ether group such as vinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, trimethylolpropane trivinyl ether, and other di- or trivinyl ether compounds.
  • the allyl ether compound which is a monomer having an ethylenically unsaturated group having a vinyl group, include methyl 2-(allyloxymethyl)acrylate, diallyl phthalate, 1,3-diallyloxy-2-propanol, and pentaerythritol tetraallyl.
  • examples include polymerizable compounds having an allyl ether group such as ethers.
  • a (meth)acrylamide compound can also be used as the photopolymerizable compound.
  • a photo-cationically polymerizable compound can also be used as the photopolymerizable compound.
  • a photocationically polymerizable compound is used together with a photocationic polymerization initiator. Examples of photo-cationically polymerizable compounds include epoxy compounds, oxetane compounds, and vinyl ether compounds.
  • epoxy compounds include aliphatic epoxy compounds such as bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, phenol novolac type epoxy compounds, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, 1,2-epoxy- Alicyclic epoxy compounds such as 4-vinylcyclohexane, 1-methyl-4-(2-methyloxiranyl)-7-oxabicyclo[4.1.0]heptane, and the like.
  • aliphatic epoxy compounds such as bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, phenol novolac type epoxy compounds, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, 1,2-epoxy- Alicyclic epoxy compounds such as 4-vinylcyclohexane, 1-methyl-4-(2-methyloxiranyl)-7-oxabicyclo[4.1.0]heptane, and the like.
  • epoxy compound It is also possible to use a commercially available product as the epoxy compound.
  • Commercially available epoxy compounds include, for example, “Celoxide 2000”, “Celoxide 3000” and “Celoxide 4000” manufactured by Daicel Chemical Industries, Ltd.
  • Examples of cationic polymerizable oxetane compounds include 2-ethylhexyloxetane, 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, 3-hydroxymethyl-3 -N-butyloxetane, 3-hydroxymethyl-3-phenyloxetane, 3-hydroxymethyl-3-benzyloxetane, 3-hydroxyethyl-3-methyloxetane, 3-hydroxyethyl-3-ethyloxetane, 3-hydroxyethyl- 3-propyloxetane, 3-hydroxyethyl-3-phenyloxetane, 3-hydroxypropyl-3-methyloxetane, 3-hydroxypropyl-3-ethyloxetane, 3-hydroxypropyl-3-propyloxetane, 3-hydroxypropyl-3-propyloxetane, 3-hydroxypropyl-3-propyloxetane
  • oxetane compound A commercially available product can also be used as the oxetane compound.
  • Commercially available oxetane compounds include, for example, the Aron oxetane series manufactured by Toagosei Co., Ltd. ("OXT-101", “OXT-212", “OXT-121", “OXT-221", etc.); Daicel Chemical Industries, Ltd.
  • vinyl ether compounds include 2-(2-vinyloxyethoxy)ethyl acrylate, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether. , hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, trimethylolpropane trivinyl ether, and other di- or trivinyl ether compounds having a vinyl ether group.
  • the photopolymerizable compound may be alkali-insoluble from the viewpoint of easily obtaining a highly reliable pixel portion (cured product of the ink composition).
  • the photopolymerizable compound being alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is 30, based on the total mass of the photopolymerizable compound. % or less.
  • the dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
  • the content of the photopolymerizable compound is determined from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink, the viewpoint of good curability of the ink composition, and the solvent resistance and From the viewpoint of improving abrasion resistance, it may be 10 parts by mass or more, or may be 15 parts by mass or more, with respect to a total of 100 parts by mass of components other than the organic solvent contained in the ink composition. 20 mass parts or more may be sufficient.
  • the content of the photopolymerizable compound is, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining better optical properties (e.g., external quantum efficiency), the content of the photopolymerizable compound other than the organic solvent contained in the ink composition.
  • a total of 100 parts by mass of the components it may be 60 parts by mass or less, may be 50 parts by mass or less, may be 40 parts by mass or less, may be 30 parts by mass or less, or may be 20 parts by mass or less. It may be less than or equal to parts by mass.
  • the photopolymerization initiator is, for example, a photoradical polymerization initiator or a photocationic polymerization initiator.
  • a photoradical polymerization initiator a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • Molecular cleavage type photoradical polymerization initiators include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1.
  • -(4-morpholinophenyl)-butan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenylphosphine oxide etc. are preferably used.
  • molecular cleavage type radical photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4 -isopropylphenyl)-2-hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination.
  • Benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenyl sulfide and the like are examples of hydrogen abstraction type photoradical polymerization initiators.
  • a molecular cleavage type radical photopolymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
  • a commercial product can also be used as a photocationic polymerization initiator.
  • Commercially available products include sulfonium salt photocationic polymerization initiators such as "CPI-100P” manufactured by San-Apro, acylphosphine oxide compounds such as "Lucirin TPO” manufactured by BASF, "Irgacure 907” manufactured by BASF, "Irgacure 819", “Irgacure 379EG”, “Irgacure 184" and "Irgacure PAG290".
  • the content of the photopolymerization initiator may be 0.1 parts by mass or more, or 0.5 parts by mass or more with respect to 100 parts by mass of the photopolymerizable compound. It may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more.
  • the content of the photopolymerization initiator may be 40 parts by mass or less, or 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). or less, 20 parts by mass or less, or 10 parts by mass or less.
  • the metal compound having a dithiocarbamic acid group of this embodiment is a compound in which a dithiocarbamic acid group is coordinated to a metal atom, and is represented by the following formula (II).
  • R 3 and R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may be linked to each other via a hydrocarbon group; and R4 may be the same or different, M represents a metal atom, and n represents an integer of 1-4. ]
  • the number of dithiocarbamic acid groups coordinating to the metal atom is equal to the valence of the metal atom.
  • the metal atom is zinc
  • the zinc atom is a divalent metal
  • two dithiocarbamate groups are coordinated to the zinc.
  • the sulfur atom is coordinated to the zinc atom by direct bonding (eg, ionic bond) to the zinc atom.
  • the two ligands may be the same or different from each other.
  • the metal atom preferably includes zinc atom, sodium atom, copper atom and tellurium atom, more preferably zinc atom, sodium atom and copper atom, and particularly preferably zinc atom.
  • the number of carbon atoms in the hydrocarbon group may be 1-6, or 1-4.
  • the hydrocarbon group may be an alkyl group, an aryl group, an aralkyl group, etc., preferably an alkyl group.
  • Alkyl groups may be straight or branched. Examples of alkyl groups include methyl, ethyl, propyl, butyl, pentyl, and hexyl groups.
  • R 3 and R 4 is not particularly limited, all of R 3 and R 4 are preferably hydrocarbon groups, and more preferably all of R 3 and R 4 are alkyl groups.
  • the molecular weight of the metal compound having a dithiocarbamic acid group is, for example, 700 or less. When the molecular weight is 700 or less, there is a tendency to be more excellent in thermal stability and light stability.
  • the molecular weight of the metal compound having a dithiocarbamic acid group may be 600 or less or 500 or less.
  • the molecular weight of the metal compound having a dithiocarbamic acid group may be 200 or more from the viewpoint of easily increasing the solubility in the ink composition.
  • the ligand may be monodentate or bidentate to the metal atom. That is, compounds represented by formula (II) include compounds represented by the following formulas (II-1) to (II-3) when the metal atom is zinc.
  • the metal compound having a dithiocarbamic acid group it is possible to use commercially available products, and commercially available products include Noxcellar PZ, Noxcella EZ, Noxcella BZ-P, Noxcella PX, Noxcella ZP, Noxcella ZTC, Noxcella TP, and Noxcella.
  • TTCU, Noxeler TTTE, etc. can be used.
  • the content of the metal compound having a dithiocarbamic acid group is 0.1 mass parts per 100 mass parts in total of the components other than the organic solvent contained in the ink composition. It may be 1 part or more, 1 part by mass or more, or 2 parts by mass or more. From the viewpoint of solubility, the content of the metal compound having a dithiocarbamic acid group may be 20 parts by mass or less, or 10 parts by mass, with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. It may be less than or equal to 7 parts by mass or less.
  • the ink composition may further contain an antioxidant.
  • an antioxidant conventionally known antioxidants such as phenol antioxidants, amine antioxidants, phosphorus antioxidants, and thiol antioxidants can be used. Among these, it is preferable to use a phenol-based antioxidant and a phosphorus-based antioxidant. You may use antioxidant individually by 1 type or in combination of 2 or more types. For example, a phosphorus antioxidant and a phenolic antioxidant may be used in combination.
  • the content of the antioxidant is 0.1 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. may be 1 part by mass or more, or 3 parts by mass or more. From the viewpoint of solubility, the content of the antioxidant may be 20 parts by mass or less, or 10 parts by mass or less, with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. It may be 7 parts by mass or less.
  • Phenolic antioxidants include, for example, 2,4,6-tris(3′,5′-di-t-butyl-4′-hydroxybenzyl)mesitylene (product name: AO-330), 2,4- Bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine (product name: Irganox565), pentaerythritol tetrakis[3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionate (product name: AO-60), octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (product name: AO-50) , 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis[3-(3,5-di-t-butyl-4-hydroxypheny
  • Phenolic antioxidants are hindered phenol antioxidants in which the hydrogen atoms at both ortho-positions of the phenolic hydroxyl group are substituted with sterically bulky groups.
  • a semi-hindered phenolic antioxidant substituted with a sterically bulky group and the other ortho-position hydrogen atom substituted with a methyl group, and one ortho-position hydrogen atom of the phenolic hydroxyl group is steric It may be any hindered phenolic antioxidant that is substituted with a bulky group and the other hydrogen atom at the ortho position is unsubstituted.
  • a sterically bulky group means a branched alkyl group other than a linear alkyl group or an aromatic ring group.
  • tertiary alkyl groups such as t-butyl group, t-pentyl group and t-hexyl group
  • secondary alkyl groups such as i-propyl group, sec-butyl group and sec-pentyl group
  • i-butyl cycloalkyl groups such as cyclohexyl group and cyclopentyl group
  • aromatic ring groups such as phenyl group, benzyl group and naphthyl group.
  • the phenolic antioxidant is preferably a hindered phenolic antioxidant.
  • Hindered phenol antioxidants include, for example, 2,4,6-tris(3′,5′-di-t-butyl-4′-hydroxybenzyl)mesitylene, 2,4-bis-(n-octylthio )-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, pentaerythritol tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl) Propionate, octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis[3-(3,5-di- t-butyl-4-hydroxyphenyl)propionate], N,N-hexamethylenebis(3,5-
  • phenolic antioxidants include antioxidants manufactured by ADEKA Co., Ltd., ADEKA STAB AO-20, ADEKA STAB AO-30, ADEKA STAB AO-40, ADEKA STAB AO-50, ADEKA STAB AO-60, ADEKA STAB AO- 60G ⁇ AO-70 ⁇ AO-80 ⁇ AO-330 ⁇ BASF ⁇ Irganox1010 ⁇ Irganox1010FF ⁇ Irganox1035 ⁇ Irganox1035FF(W&C) ⁇ Irganox1076 ⁇ Irganox1076FD ⁇ Irganox1098 ⁇ Irganox1135 ⁇ Irganox1330 ⁇ Irganox1520L , Irganox 245, Irganox 245FF, Irganox 259, Irganox 3114, etc., SUMILIZER GP, SUMILIZER GS (F), SUMILIZER GM (F), SUMILIZER GA-80,
  • the phosphorus antioxidant may be a compound represented by the following formula (III).
  • R 5 , R 6 and R 7 each independently represent a monovalent organic group. Two kinds selected from R 5 , R 6 and R 7 may combine with each other to form a ring. ]
  • the monovalent organic group fully satisfies the performance requirements specific to inkjet inks, such as compatibility with other components (photopolymerizable compounds, etc.) in inkjet inks, and further suppresses the decrease in fluorescence quantum yield of inkjet inks.
  • It is preferably a monovalent hydrocarbon group from the viewpoint of being able to.
  • monovalent hydrocarbon groups include alkyl groups, aryl groups, and alkenyl groups.
  • the number of carbon atoms in the monovalent hydrocarbon group may be 1 to 30, and may be 4 to 18 from the viewpoint of solubility.
  • the alkyl group may be linear or branched.
  • alkyl groups include 2-ethylhexyl, butyl, octyl, nonyl, decyl, isodecyl, dodecyl, hexadecyl and octadecyl groups.
  • aryl group examples include a phenyl group, a naphthyl group, a tert-butylphenyl group, a di-tert-butylphenyl group, an octylphenyl group, a nonylphenyl group, an isodecylphenyl group, an isodecylphenyl group and an isodecylnaphthyl group. mentioned.
  • the monovalent hydrocarbon group is preferably an alkyl group or an aryl group, more preferably an alkyl group or a phenyl group, from the viewpoint of further suppressing a decrease in fluorescence quantum yield.
  • the phosphorus antioxidant is preferably a compound represented by the following formula (IV).
  • R 8 and R 9 each independently represent an alkyl group or an aryl group, and R 8 and R 9 may be the same or different.
  • Specific examples of the compound represented by formula (IV) include cyclic neopentanetetraylbis(octadecylphosphite), pentaerythritolbis(2,4-di-tert-butylphenylphosphite), (2, 6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, diisodecylpentaerythritol diphosphite and the like.
  • Phosphorus-based antioxidants may be liquid or solid at room temperature (25° C.), but are preferably compatible with other components (photopolymerizable compounds, etc.) in the inkjet ink. It is a liquid at room temperature (25° C.) from the viewpoint of sufficiently satisfying the required performance specific to the ink and further suppressing the decrease in fluorescence quantum yield of the ink jet ink.
  • the melting point of the phosphorus antioxidant may be 20°C or lower, or 10°C or lower.
  • the ink composition may further contain light scattering particles.
  • Light-scattering particles are, for example, optically inactive inorganic fine particles.
  • the ink composition contains light-scattering particles, it is possible to scatter the light emitted from the light source with which the pixel portion is irradiated, so excellent optical properties (for example, external quantum efficiency) can be obtained.
  • Materials constituting the light-scattering particles include, for example, simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate, Metal oxides such as talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; magnesium carbonate, barium carbonate, Metal carbonates such as bismuth subcarbonate and calcium carbonate; Metal hydroxides such as aluminum hydroxide; Composite oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate and strontium titanate, bismuth subnitrate metal salts such as The light-scattering particles include titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate,
  • the shape of the light-scattering particles may be spherical, filamentous, amorphous, or the like.
  • the use of particles having a less directional particle shape e.g., spherical, regular tetrahedral particles, etc.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is 0.05 ⁇ m (50 nm) or more from the viewpoint of excellent dispersion stability and ejection stability and from the viewpoint of improving the external quantum efficiency. , 0.2 ⁇ m (200 nm) or more, or 0.3 ⁇ m (300 nm) or more.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 1.0 ⁇ m (1000 nm) or less, or 0.6 ⁇ m ( 600 nm) or less, or 0.4 ⁇ m (400 nm) or less.
  • the average particle diameter (volume average diameter) of the light scattering particles in the ink composition is 0.05 to 1.0 ⁇ m, 0.05 to 0.6 ⁇ m, 0.05 to 0.4 ⁇ m, 0.2 to 1 0.0 ⁇ m, 0.2-0.6 ⁇ m, 0.2-0.4 ⁇ m, 0.3-1.0 ⁇ m, 0.3-0.6 ⁇ m, or 0.3-0.4 ⁇ m.
  • the average particle diameter (volume average diameter) of the light-scattering particles used may be 0.05 ⁇ m or more and 1.0 ⁇ m or less.
  • the average particle diameter (volume average diameter) of the light scattering particles in the ink composition is obtained by measuring with a dynamic light scattering Nanotrack particle size distribution meter and calculating the volume average diameter.
  • the average particle size (volume average size) of the light-scattering particles to be used can be obtained by measuring the particle size of each particle with, for example, a transmission electron microscope or scanning electron microscope and calculating the volume average size.
  • the content of the light-scattering particles in the ink composition is 0.00 parts per 100 parts by mass of the components other than the organic solvent contained in the ink composition. It may be 1 part by mass or more, 1 part by mass or more, or 3 parts by mass or more.
  • the content of the light-scattering particles is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of excellent dispersion stability and ejection stability, and from the viewpoint of improving the external quantum efficiency of the light conversion layer.
  • parts may be 60 parts by mass or less, may be 50 parts by mass or less, may be 40 parts by mass or less, may be 30 parts by mass or less, or may be 25 parts by mass or less. may be 20 parts by mass or less, or may be 15 parts by mass or less.
  • the content of the light-scattering particles based on the total mass of the ink composition is preferably 3% by mass or more, 4% by mass or more, or 7% by mass, from the viewpoint of further improving the external quantum efficiency of the light conversion layer. or more.
  • the content of the light-scattering particles based on the total mass of the ink composition is preferably 20% by mass or less from the viewpoint of further improving the external quantum efficiency of the pixel portion and further improving the ejection stability. , 18% by mass or less, or 15% by mass or less.
  • the mass ratio of the content of the light-scattering particles to the content of the luminescent nanocrystalline particles is 0.5 from the viewpoint of improving the external quantum efficiency of the light conversion layer. It may be 1 or more, 0.2 or more, or 0.5 or more.
  • the mass ratio (light-scattering particles/luminescent nanocrystalline particles) is 5.0 from the viewpoint of excellent effect of improving the external quantum efficiency of the light conversion layer, and particularly excellent continuous ejection property (ejection stability) during inkjet printing. It may be less than or equal to 2.0, or less than or equal to 1.5.
  • the total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. , preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and still more preferably 30 parts by mass or more.
  • the total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. , preferably 75 parts by mass or less, more preferably 65 parts by mass or less, and even more preferably 55 parts by mass or less.
  • the ink composition may further contain a polymeric dispersant.
  • a polymeric dispersant is a polymeric compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for light scattering particles.
  • the polymer dispersant has a function of dispersing the light scattering particles.
  • the polymer dispersant adsorbs to the light-scattering particles via a functional group having affinity for the light-scattering particles, and the light-scattering particles are dispersed by electrostatic repulsion and/or steric repulsion between the polymer dispersants. Disperse in the ink composition.
  • the ink composition contains a polymer dispersant
  • the content of the light-scattering particles is relatively large (for example, about 60% by mass)
  • the light-scattering particles can be dispersed satisfactorily.
  • the polymer dispersant is preferably bound to the surface of the light-scattering particles and adsorbed to the light-scattering particles. may be free in the ink composition.
  • Functional groups that have affinity for light-scattering particles include acidic functional groups, basic functional groups, and nonionic functional groups.
  • Acidic functional groups have dissociative protons and may be neutralized with bases such as amines and hydroxide ions, while basic functional groups are neutralized with acids such as organic acids and inorganic acids.
  • acidic functional groups include carboxyl group (--COOH), sulfo group (--SO 3 H), sulfate group (--OSO 3 H), phosphonic acid group (--PO(OH) 3 ), phosphoric acid group (--OPO ( OH) 3 ), phosphinic acid group (--PO(OH)--), mercapto group (--SH).
  • Basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
  • Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate group, amide group, Carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group and phosphine sulfide group.
  • the polymeric dispersant may be a polymer (homopolymer) of a single monomer, or a copolymer (copolymer) of a plurality of types of monomers. Further, the polymeric dispersant may be any of random copolymers, block copolymers and graft copolymers. When the polymeric dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer.
  • polymer dispersants include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, epoxy resins, polyamines such as polyethyleneimine and polyallylamine, and polyimides. It's okay.
  • polymer dispersant Commercially available products can be used as the polymer dispersant, and commercial products include Ajinomoto Fine-Techno Co., Inc.'s Ajisper PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series. etc. can be used.
  • the ink composition may further contain an organic solvent.
  • organic solvents include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether, diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, and succinic acid. diethyl, 1,4-butanediol diacetate, glyceryl triacetate and the like.
  • the boiling point of the organic solvent is preferably 150°C or higher, more preferably 180°C or higher, from the viewpoint of continuous ejection stability. Further, since the solvent must be removed from the ink composition before it is cured when forming the pixel portion, the boiling point of the organic solvent is preferably 300° C. or less from the viewpoint of easy removal of the organic solvent.
  • the organic solvent preferably contains an acetate compound with a boiling point of 150°C or higher.
  • an acetate compound with a boiling point of 150°C or higher include monoacetate compounds such as diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, and dipropylene glycol methyl ether acetate, and 1,4-butanediol diol.
  • Acetate, diacetate compounds such as propylene glycol diacetate, triacetate compounds such as glycerol triacetate, and the like.
  • the photopolymerizable compound since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse the light-scattering particles and the luminescent nanocrystalline particles without a solvent. In this case, there is an advantage that the step of removing the solvent by drying is not required when forming the pixel portion.
  • the viscosity of the ink composition described above at the ink temperature during inkjet printing may be, for example, 2 mPa ⁇ s or more, 5 mPa ⁇ s or more, or 7 mPa from the viewpoint of ejection stability during inkjet printing. * It may be s or more.
  • the viscosity of the ink composition at the ink temperature during inkjet printing may be 20 mPa ⁇ s or less, 15 mPa ⁇ s or less, or 12 mPa ⁇ s or less.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is, for example, 2 to 20 mPa ⁇ s, 2 to 15 mPa ⁇ s, 2 to 12 mPa ⁇ s, 5 to 20 mPa ⁇ s, 5 to 15 mPa ⁇ s, and 5 to 12 mPa ⁇ s. s, 7 to 20 mPa ⁇ s, 7 to 15 mPa ⁇ s, or 7 to 12 mPa ⁇ s.
  • the viscosity of the ink composition is measured at 25° C., for example, by an E-type viscometer.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is 2 mPa s or more, the meniscus shape of the inkjet ink at the tip of the ink ejection hole of the ejection head is stabilized. control of the amount and timing of ejection) becomes easier.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is 20 mPa ⁇ s or less, the inkjet ink can be smoothly ejected from the ink ejection holes.
  • the surface tension of the ink composition is preferably a surface tension suitable for an inkjet system, specifically preferably in the range of 20 to 40 mN/m, more preferably 25 to 35 mN/m. .
  • ejection control for example, control of ejection amount and ejection timing
  • flight deflection means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 ⁇ m or more.
  • the surface tension is 40 mN/m or less, the meniscus shape at the tip of the ink ejection hole is stabilized, so that the ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy.
  • the surface tension is 20 mN/m or more, contamination of the periphery of the ink ejection holes with the ink jet ink can be prevented, so that the occurrence of flight deflection can be suppressed.
  • the ink composition is not accurately deposited on the pixel portion forming region where the ink composition should be deposited, resulting in an insufficiently filled pixel portion, or the pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region where the ink composition should be deposited.
  • the ink composition does not land on the surface, and the color reproducibility is not deteriorated.
  • the surface tension described in the specification of the present application refers to the surface tension measured at 23° C., which is measured by the ring method (also referred to as the ring method).
  • the ink composition of the present embodiment is used as an ink composition for an ink jet system, it is preferably applied to a piezo jet ink jet recording apparatus with a mechanical ejection mechanism using a piezoelectric element.
  • the ink composition is not instantaneously exposed to high temperatures during ejection. Therefore, the luminescent nanocrystalline particles are less likely to be degraded, and expected luminous properties can be more easily obtained in the pixel portion (light conversion layer).
  • the inkjet ink composition of the embodiment described above can also be used in, for example, a photolithography method in addition to the inkjet method.
  • the ink composition contains an alkali-soluble resin as a binder polymer.
  • the ink composition When the ink composition is used in the photolithography method, first, the ink composition is applied onto a substrate, and the ink composition is dried to form a coating film.
  • the coating film thus obtained is soluble in an alkaline developer, and is patterned by being treated with an alkaline developer.
  • the alkali developer is mostly an aqueous solution from the viewpoint of ease of disposal of the waste liquid of the developer, and therefore the coating film of the ink composition is treated with an aqueous solution.
  • the ink jet method is preferable because it does not require treatment with an alkaline developer (aqueous solution).
  • the coating film of the ink composition is preferably alkali-insoluble. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film.
  • Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound and a thermosetting resin as the photopolymerizable compound and the thermosetting resin.
  • the coating film of the ink composition is alkali-insoluble means that the amount of the coating film of the ink composition dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is, based on the total mass of the coating film of the ink composition, It means that it is 30% by mass or less.
  • the amount of the ink composition dissolved in the coating film is preferably 10% by mass or less, and more preferably 3% by mass or less.
  • the fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that the thickness obtained by applying the ink composition on a substrate and then drying it under the conditions of 80° C. for 3 minutes It can be confirmed by measuring the amount of dissolution of the coating film of 1 ⁇ m.
  • the ink composition of the present embodiment includes, for example, the above-described components (luminescent nanocrystalline particles (e.g., organic ligand-modified luminescent nanocrystalline particles), photopolymerizable compounds, hindered amine compounds, and other optional component).
  • the method for producing the ink composition may further include a step of dispersing the mixture of the above components.
  • a method for producing an ink composition containing light-scattering particles will be described below.
  • a method for producing an ink composition containing light-scattering particles includes, for example, a first step of preparing a dispersion of light-scattering particles, and a second step of mixing the dispersion of light-scattering particles and luminescent nanocrystalline particles. 2 steps.
  • the dispersion of light scattering particles may further contain a polymeric dispersant.
  • the dispersion of light-scattering particles may further contain a photopolymerizable compound, and the photopolymerizable compound may be further mixed in the second step.
  • the light-scattering particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
  • light-scattering particles may be mixed with, if necessary, a polymer dispersant, and a photopolymerizable compound, and subjected to dispersion treatment to prepare a dispersion of light-scattering particles. good.
  • Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
  • the light-scattering particles can be dispersed more sufficiently. Therefore, excellent ejection stability and excellent external quantum efficiency can be obtained more easily.
  • the method for producing an ink composition may further include, before the second step, a step of preparing a dispersion of luminescent nanocrystalline particles containing luminescent nanocrystalline particles and a photopolymerizable compound.
  • a dispersion of light-scattering particles and a dispersion of luminescent nanocrystalline particles are mixed.
  • the dispersion of luminescent nanocrystalline particles may be prepared by mixing luminescent nanocrystalline particles and a photopolymerizable compound and performing dispersion treatment.
  • the luminescent nanocrystalline particles luminescent nanocrystalline particles having organic ligands on their surfaces may be used, or ligands may be used. That is, the dispersion of luminescent nanocrystalline particles may further contain an organic ligand or may contain a ligand.
  • Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill, a paint conditioner, or a jet mill from the viewpoint of improving the dispersibility of the luminescent nanocrystalline particles and facilitating adjustment of the average particle size of the luminescent nanocrystalline particles to a desired range. According to such a method, the luminescent nanocrystalline particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
  • dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill, a paint conditioner, or a jet mill from the viewpoint of improving the dispersibility of the luminescent nanocrystalline particles and facilitating adjustment of the average particle size of the luminescent
  • the hindered amine compound may be mixed in the first step or the second step. That is, the first step may be a step of preparing a dispersion of light-scattering particles containing light-scattering particles and a hindered amine compound, and optionally a polymer dispersant and a photopolymerizable compound.
  • the second step may be a step of mixing the dispersion of light-scattering particles, the luminescent nanocrystalline particles, the hindered amine-based compound, and, if necessary, the photopolymerizable compound.
  • the hindered amine compound may be mixed with the dispersion of luminescent nanocrystalline particles prepared before the second step.
  • these components may be mixed with the dispersion of the luminescent nanocrystalline particles or the dispersion of the light-scattering particles.
  • it may be mixed in a mixed dispersion obtained by mixing a dispersion of luminescent nanocrystalline particles and a dispersion of light-scattering particles.
  • An ink composition set of one embodiment includes the ink composition of the embodiment described above.
  • the ink composition set may include an ink composition that does not contain luminescent nanocrystalline particles (non-luminescent ink composition) in addition to the ink composition (luminescent ink composition) of the embodiment described above.
  • a non-luminescent ink composition is, for example, a curable ink composition.
  • the non-luminescent ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (luminescent ink composition) of the above-described embodiment except that it does not contain luminescent nanocrystalline particles. may be
  • the non-luminous ink composition does not contain luminous nanocrystal particles, light is allowed to enter the pixel portion formed by the non-luminous ink composition (the pixel portion containing the cured product of the non-luminous ink composition). In this case, the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-luminous ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed with the non-luminescent ink composition can be a blue pixel portion.
  • the non-luminescent ink composition preferably contains light-scattering particles.
  • the pixel portion formed from the non-luminous ink composition can scatter light incident on the pixel portion, thereby It is possible to reduce the light intensity difference in the viewing angle of the light emitted from the portion.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40 .
  • the light conversion layer 30 includes a plurality of pixel portions 10 and a light shielding portion 20 .
  • the light conversion layer 30 has, as pixel sections 10, a first pixel section 10a, a second pixel section 10b, and a third pixel section 10c.
  • the first pixel section 10a, the second pixel section 10b, and the third pixel section 10c are arranged in a grid so as to repeat this order.
  • the light shielding portion 20 is provided between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion 10c. is provided between the first pixel portion 10c and the first pixel portion 10a. In other words, these adjacent pixel portions are separated by the light shielding portion 20 .
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (luminescent pixel portions) each containing a cured product of the ink composition of the embodiment described above.
  • the cured product shown in FIG. 1 contains luminescent nanocrystalline particles, a curing component, and light scattering particles.
  • the first pixel portion 10a includes a first curing component 13a, and first luminescent nanocrystalline particles 11a and first light scattering particles 12a respectively dispersed in the first curing component 13a.
  • the second pixel portion 10b includes a second curing component 13b, and second luminescent nanocrystalline particles 11b and second light scattering particles 12b dispersed in the second curing component 13b, respectively. including.
  • the cured component is a component obtained by polymerization of a photopolymerizable compound, and contains a polymer of the photopolymerizable compound and metal atoms derived from a metal compound having a dithiocarbamic acid group.
  • a metal compound having a dithiocarbamic acid group may exist in a state in which the metal atom and the ligand are bonded, or may exist in a state in which the metal atom and the ligand are separated.
  • the metal atoms and ligands may each be adsorbed or coordinated (eg, bound) to the surface of the luminescent nanocrystalline particles.
  • the curing component may include organic components (organic ligands, polymer dispersants, unreacted polymerizable compounds, etc.) contained in the ink composition, in addition to the above polymers.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the first light scattering particles 12a. It may be the same as or different from the second light scattering particles 12b.
  • the first luminescent nanocrystalline particles 11a are red luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420-480 nm and emit light with an emission peak wavelength in the range of 605-665 nm. That is, the first pixel section 10a can be rephrased as a red pixel section for converting blue light into red light.
  • the second luminescent nanocrystalline particles 11b are green luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel section 10b can be rephrased as a green pixel section for converting blue light into green light.
  • the content of the luminescent nanocrystalline particles in the luminescent pixel portion is based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining an excellent effect of improving the external quantum efficiency and obtaining excellent emission intensity. It is preferably 5% by mass or more, and may be 10% by mass or more, 15% by mass or more, 20% by mass or more, or 30% by mass or more.
  • the content of the luminescent nanocrystalline particles is preferably 80% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent reliability of the pixel portion and excellent emission intensity. and may be 75% by mass or less, 70% by mass or less, or 60% by mass or less.
  • the content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass, based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency. or more, or 3% by mass or more.
  • the content of the light-scattering particles is 60% by mass or less, 50% by mass or less, based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency and the reliability of the pixel portion. % by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, or 15% by mass or less.
  • the third pixel portion 10c is a non-luminous pixel portion (non-luminous pixel portion) containing the cured non-luminous ink composition described above.
  • the cured product does not contain luminescent nanocrystalline particles, but contains light-scattering particles and a curing component. That is, the third pixel portion 10c includes a third curing component 13c and third light scattering particles 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound, and includes a polymer of the polymerizable compound.
  • the third light scattering particles 12c may be the same as or different from the first light scattering particles 12a and the second light scattering particles 12b.
  • the third pixel section 10c has a transmittance of 30% or more for light with a wavelength in the range of 420 to 480 nm. Therefore, the third pixel section 10c functions as a blue pixel section when using a light source that emits light with a wavelength in the range of 420 to 480 nm. Note that the transmittance of the third pixel section 10c can be measured with a microspectroscope.
  • the content of the light-scattering particles in the non-luminous pixel portion is 1% by mass based on the total mass of the cured non-luminous ink composition, from the viewpoint of further reducing the difference in light intensity at viewing angles. or more, may be 5% by mass or more, or may be 10% by mass or more. From the viewpoint of further reducing light reflection, the content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-luminous ink composition. It may be 70% by mass or less.
  • the thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) may be, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more.
  • the thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) may be, for example, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the light shielding section 20 is a so-called black matrix that is provided for the purpose of separating adjacent pixel sections to prevent color mixture and for the purpose of preventing leakage of light from the light source.
  • the material constituting the light shielding part 20 is not particularly limited, and in addition to metals such as chromium, curing of a resin composition in which light shielding particles such as carbon fine particles, metal oxides, inorganic pigments, organic pigments, etc. are contained in a binder polymer. objects, etc. can be used.
  • the binder polymer used here one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, cellulose, etc., photosensitive resin, O/W
  • An emulsion-type resin composition (for example, an emulsified reactive silicone) can be used.
  • the thickness of the light shielding portion 20 may be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the base material 40 is a transparent base material having optical transparency.
  • a flexible base material or the like can be used.
  • a glass substrate made of alkali-free glass that does not contain an alkali component.
  • "7059 glass”, “1737 glass”, “Eagle 200” and “Eagle XG” manufactured by Corning, "AN100” manufactured by Asahi Glass Co., Ltd., “OA-10G” manufactured by Nippon Electric Glass Co., Ltd. and " OA-11” is preferred. These materials have a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
  • the color filter 100 including the light conversion layer 30 described above is suitably used when using a light source that emits light with a wavelength in the range of 420 to 480 nm.
  • the color filter 100 can be manufactured, for example, by forming the light-shielding portions 20 in a pattern on the substrate 40 and then forming the pixel portions 10 in the pixel-forming regions partitioned by the light-shielding portions 20 on the substrate 40.
  • the pixel portion 10 includes a step of selectively applying an ink composition (inkjet ink) to a pixel portion forming region on the base material 40 by an inkjet method, a step of drying the ink composition to remove the organic solvent, and a step of drying the ink composition. and a step of irradiating the ink composition of (1) with an active energy ray (eg, ultraviolet rays) to cure the ink composition to obtain a luminescent pixel portion.
  • a luminescent pixel portion can be obtained by using the luminescent ink composition described above as the ink composition, and a non-luminescent pixel portion can be obtained by using a non-luminescent ink composition.
  • the method of forming the light shielding portion 20 is to form a thin film of a metal such as chromium or a thin film of a resin composition containing light shielding particles in a region that serves as a boundary between a plurality of pixel portions on one side of the substrate 40. and a method of patterning this thin film.
  • the metal thin film can be formed, for example, by a sputtering method, a vacuum deposition method, or the like, and the thin film of the resin composition containing light-shielding particles can be formed, for example, by a method such as coating or printing.
  • a photolithography method or the like can be used as a method for patterning.
  • Examples of the ink jet method include the bubble jet (registered trademark) method using an electrothermal transducer as an energy generating element, and the piezo jet method using a piezoelectric element.
  • the method for drying the ink composition is preferably drying under reduced pressure (reduced pressure drying). From the viewpoint of controlling the composition of the ink composition, the drying under reduced pressure is usually carried out under a pressure of 1.0 to 500 Pa at 20 to 30° C. for 3 to 30 minutes.
  • a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like may be used.
  • the wavelength of the irradiated light may be, for example, 200 nm or more and 440 nm or less.
  • the exposure dose may be, for example, 10 mJ/cm 2 or more and 4000 mJ/cm 2 or less.
  • the present invention is not limited to the above embodiment.
  • the light conversion layer may be a pixel portion ( blue pixel portion).
  • the light conversion layer may include pixel portions (e.g., yellow pixel portions) containing a cured product of a luminescent ink composition containing nanocrystalline particles that emit light of a color other than red, green, and blue. good.
  • each of the luminescent nanocrystalline particles contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength in the same wavelength range.
  • At least part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than the luminescent nanocrystalline particles.
  • the color filter may have an ink-repellent layer made of an ink-repellent material having a narrower width than the light-shielding portion on the pattern of the light-shielding portion.
  • an ink-repellent layer instead of providing an ink-repellent layer, a photocatalyst-containing layer as a variable wettability layer is formed in a solid manner in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer through a photomask. By irradiating and exposing, the ink affinity of the pixel portion forming region may be selectively increased.
  • photocatalysts include titanium oxide and zinc oxide.
  • the color filter may have an ink-receiving layer containing hydroxypropylcellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
  • the color filter may have a protective layer on the pixel portion.
  • This protective layer flattens the color filter and prevents components contained in the pixel portion, or components contained in the pixel portion and components contained in the photocatalyst-containing layer from eluting into the liquid crystal layer. It is provided. Materials used for known color filter protective layers can be used for the protective layer.
  • the pixel portion may be formed by the photolithography method instead of the inkjet method.
  • the ink composition is applied to the base material in layers to form an ink composition layer.
  • the ink composition layer is exposed in a pattern, it is developed using a developer.
  • a pixel portion made of a cured product of the ink composition is formed.
  • the developer is usually alkaline, an alkali-soluble material is used as the material for the ink composition.
  • the ink jet method is superior to the photolithography method from the viewpoint of efficiency in using materials. This is because the photolithographic method, in principle, removes approximately two-thirds or more of the material, thus wasting the material. Therefore, in the present embodiment, it is preferable to use inkjet ink and form the pixel portion by an inkjet method.
  • the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystalline particles.
  • the ink composition may contain the pigment.
  • the pixel portion may contain a coloring material without containing crystal grains.
  • a coloring material that can be used here, known coloring materials can be used.
  • the coloring material used in the red pixel portion (R) includes a diketopyrrolopyrrole pigment and/or an anionic red organic dye. mentioned.
  • the coloring material used in the green pixel portion (G) includes at least one selected from the group consisting of halogenated copper phthalocyanine pigments, phthalocyanine green dyes, and mixtures of phthalocyanine blue dyes and azo yellow organic dyes.
  • Coloring materials used in the blue pixel portion (B) include ⁇ -type copper phthalocyanine pigments and/or cationic blue organic dyes. When these colorants are contained in the light conversion layer, the amount used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance. %.
  • the ink composition of the invention is also suitable for light conversion films.
  • methods for carrying the ink composition of the present invention on a substrate include spin coating, die coating, extrusion coating, roll coating, wire bar coating, gravure coating, spray coating, and dipping.
  • an organic solvent may be added to the ink composition during coating.
  • organic solvents include hydrocarbon solvents, halogenated hydrocarbon solvents, ether solvents, alcohol solvents, ketone solvents, ester solvents, and aprotic solvents. , hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents are preferred.
  • organic solvents include toluene, hexane, heptane, cyclohexane, and methylcyclohexane. These may be used alone or in combination, and may be appropriately selected in consideration of the vapor pressure and the solubility of the luminescent particle-containing composition.
  • a method for volatilizing the added organic solvent natural drying, drying by heating, drying under reduced pressure, and drying by heating under reduced pressure can be used.
  • the thickness of the film may be appropriately adjusted depending on the application, but is preferably, for example, 0.1 ⁇ m or more and 10 mm or less, and particularly preferably 1 ⁇ m or more and 1 mm or less.
  • the shape of the substrate when the ink composition of the present invention is carried on the substrate it may have a curved surface as a constituent part, in addition to the flat plate.
  • the material constituting the substrate can be used regardless of whether it is an organic material or an inorganic material.
  • organic materials for the substrate include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, and triacetyl.
  • Cellulose, cellulose, polyether ether ketone, etc., and inorganic materials include, for example, silicon, glass, calcite, and the like.
  • the ink composition of the present invention When the ink composition of the present invention is carried on a substrate and polymerized, it is desirable that the polymerization progresses rapidly.
  • the temperature during irradiation is preferably within a temperature range in which the particle shape of the luminescent nanocrystalline particles is maintained.
  • the intensity of the active energy ray is preferably 0.1 mW/cm 2 or more and 2.0 W/cm 2 or less. If the intensity is less than 0.1 mW/cm 2 , it takes a long time to complete the photopolymerization, resulting in poor productivity. Alternatively, there is a risk that the ink composition will deteriorate.
  • the light conversion film that uses the ink composition of the present invention obtained by polymerization as a forming material can be subjected to heat treatment for the purpose of reducing initial changes in properties and stably developing properties.
  • the heat treatment temperature is preferably in the range of 50 to 250° C.
  • the heat treatment time is preferably in the range of 30 seconds to 12 hours.
  • the light conversion film formed by the ink composition of the present invention produced by such a method may be used alone after peeling from the substrate, or may be used without peeling. Moreover, the obtained light conversion film may be laminated, or may be used by bonding to another substrate.
  • the laminated structure may have arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
  • the material constituting the substrate include those mentioned above.
  • the structure of the laminated structure include a structure in which a light conversion film having the ink composition of the present invention as a forming material is sandwiched between two substrates. In that case, in order to protect the light conversion film formed from the ink composition from moisture and oxygen in the air, the peripheral portion between the substrates may be sealed with a sealing material.
  • the barrier layer include polyethylene terephthalate and glass.
  • a light scattering layer may be provided to uniformly scatter light.
  • the light-scattering layer includes, for example, a layer containing the light-scattering particles and a light-scattering film.
  • FIG. 2 is a cross-sectional view schematically showing the structure of the laminated structure of this embodiment. In FIG. 2, hatching indicating a cross section is omitted in order to avoid complication of the drawing.
  • the laminated structure 50 has a light conversion film 54 of the present embodiment sandwiched between a first substrate 51 and a second substrate 52 .
  • the light conversion film 54 is formed using an ink composition containing light scattering particles 541 and luminescent nanocrystalline particles 542 as a forming material. distributed over The light conversion film 54 is sealed with a sealing layer 53 made of a sealing material.
  • a laminated structure containing a light conversion film formed from the ink composition of the present invention is suitable for light emitting device applications.
  • Examples of the configuration of the light-emitting device include a structure having a prism sheet, a light guide plate, a laminated structure containing the light-emitting particles of the present invention, and a light source.
  • Light sources include, for example, light emitting diodes, lasers, and electroluminescent devices.
  • a laminated structure containing a light conversion film formed from the ink composition of the present invention is preferably used as a wavelength conversion member for displays.
  • a wavelength conversion member for example, a laminated structure in which a light conversion film containing the luminescent particle-containing composition of the present invention as a forming material is sealed between two barrier layers is attached to a light guide plate.
  • a structure to be installed on top is mentioned. In this case, the blue light from the light emitting diodes installed on the side surface of the light guide plate is converted into green light or red light by passing through the laminated structure, and the blue light, green light, and red light are mixed. Since white light can be obtained, it can be used as a backlight for displays.
  • the precipitated indium laurate in the solution should be heated to about 90° C. to obtain a transparent solution. After forming the solution, the desired amount was weighed out.
  • the hexane dispersion of InP nanocrystal particles obtained above and the indium laurate solution were charged into a reaction flask to obtain a mixture.
  • the amounts of the hexane dispersion of InP nanocrystal particles and the indium laurate solution were adjusted to 0.5 g (25 mg of InP nanocrystal particles) and 5 g (178 mg of indium laurate), respectively.
  • the inside of the flask was returned to normal pressure with nitrogen gas, the temperature of the mixture was raised to 230°C, and the temperature was maintained for 2 hours to remove hexane from the inside of the flask. .
  • InP cores InP nanocrystalline particles
  • InP cores the cores of the green-emitting InP/ZnSeS/ZnS nanocrystalline particles.
  • the obtained InP nanocrystalline particles (InP cores) were dispersed in hexane to obtain a dispersion (hexane dispersion) containing 5% by mass of InP nanocrystalline particles (InP cores).
  • the nanocrystals constituting the luminescent particles 3 were perovskite-type formamidium lead bromide crystals, and the average particle diameter thereof was 10 nm when analyzed by scanning transmission electron microscope observation.
  • ⁇ Synthesis Example 4 Preparation of Green Light Emitting Particle 4 (Silica Multi-layer Coating FAPbBr 3 )> 4 g of a block copolymer (S2VP, manufactured by PolymerSource.) having a structure represented by the following formula (B4) was added to 400 mL of toluene and dissolved by heating at 60°C.
  • Luminescent particles 3 were added to a toluene solution in which the block copolymer was dissolved so that the concentration of the luminescent particles 3 was 0.16% by mass, stirred for 15 minutes, centrifuged, and the supernatant was collected. , luminescent particles 3 and a block copolymer were obtained.
  • Luminescent particles 4 were obtained by removing toluene from this dispersion.
  • the average particle size of the luminescent particles 4 was measured using a dynamic light scattering nanotrack particle size distribution meter and found to be 95 nm.
  • STEM-EDS energy dispersive X-ray analysis method
  • the thickness of the surface layer was measured, it was about 5 nm. Further, for the luminescent particles, weight reduction was confirmed in the range of 200 to 550 ° C. by thermogravimetric differential thermal analysis (TG-DTA; temperature increase rate 10 ° C./min, under nitrogen atmosphere) measurement. was suggested to contain On the other hand, the used block copolymer was identified as a component by pyrolysis gas chromatograph mass spectrometer (TD/Py-GC/MS) measurement.
  • TG-DTA thermogravimetric differential thermal analysis
  • TD/Py-GC/MS pyrolysis gas chromatograph mass spectrometer
  • ⁇ Production Example 1 Preparation of Light-scattering Particle Dispersion 1>
  • a container filled with argon gas 50.0 g of titanium oxide (trade name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (product Name: Ajisper PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) was mixed with 45.0 g of HDDA, then zirconia beads (diameter: 1.25 mm) were added to the resulting mixture and a paint conditioner was used. The mixture was subjected to dispersion treatment by shaking for 2 hours, and the zirconia beads were removed with a polyester mesh filter to obtain a light-scattering particle dispersion 1 (titanium oxide content: 50% by mass).
  • ⁇ Production Example 2 Preparation of Light-scattering Particle Dispersion 2>
  • a container filled with argon gas 50.0 g of titanium oxide (trade name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (product Name: Ajisper PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) was mixed with 5.0 g of BDDA, and then zirconia beads (diameter: 1.25 mm) were added to the resulting mixture and a paint conditioner was used. The mixture was subjected to dispersion treatment by shaking for 2 hours, and the zirconia beads were removed with a polyester mesh filter to obtain a light-scattering particle dispersion 2 (titanium oxide content: 50% by mass).
  • Example 1 (Adjustment of ink composition 1) Luminous particle 1, HDDA, compound 1, photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (IGM Resin, trade name: Omnirad TPO)), light scattering Particle Dispersion Production Example 1 was blended so that the content of each component was as shown in Table 1 (unit: parts by mass), uniformly mixed in a container filled with argon gas, and then placed in a glove box.
  • Table 1 unit: parts by mass
  • Example 1 Ink composition 1 of Example 1 was obtained by removing.
  • the ink composition 1 was applied on a glass substrate in the air by a spin coater so as to have a film thickness of 10 ⁇ m.
  • the coating film was cured by irradiating UV light with a UV irradiation device using an LED lamp having a dominant wavelength of 395 nm so that the integrated light amount was 1500 mJ/cm 2 , and a cured product of ink composition 1 was formed on a glass substrate.
  • a layer (light conversion layer 1) consisting of was formed.
  • an integrating sphere was connected to a radiation spectrophotometer (trade name “MCPD-9800”) manufactured by Otsuka Electronics Co., Ltd., and the integrating sphere was placed above the blue LED.
  • the produced evaluation sample (light conversion layer 1) was inserted between the blue LED and the integrating sphere, and the spectrum observed by lighting the blue LED and the illuminance at each wavelength were measured.
  • the external quantum efficiency was obtained as follows from the spectrum and illuminance measured by the above measuring device.
  • the external quantum efficiency is a value indicating how much of the light (photons) incident on the light conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
  • EQE (%) P1 (Green)/E (Blue) x 100
  • E (Blue) and P1 (Green) respectively represent the following.
  • E (Blue) Represents the total value of “illuminance ⁇ wavelength/hc” in the wavelength range of 380 to 490 nm.
  • P1 (Green) Represents the total value of “illuminance ⁇ wavelength/hc” in the wavelength range of 500 to 650 nm. These are values corresponding to the number of photons observed.
  • h represents Planck's constant and c represents the speed of light.
  • the prepared evaluation sample (light conversion layer 1) was transferred onto a 180° C. hot plate placed in a glove box under a nitrogen atmosphere and heated for 30 minutes. After cooling the evaluation sample to room temperature, EQE was measured in the same manner as the above EQE evaluation in the atmosphere, and the rate of change in EQE (1-[EQE after heating]/[EQE before heating] x 100). asked for The heat resistance of the evaluation samples was evaluated according to the following criteria. [Evaluation criteria] ⁇ : 95% or more ⁇ : 90% or more and less than 95% ⁇ : 80% or more and less than 90% ⁇ : less than 80%
  • Trimethylolpropane EO-added trimethylolpropane EO-added trimethylolpropane-EO solution in which 1.0 part by mass of TPO was dissolved as a photopolymerization initiator was placed on the film of the sample (light conversion layer 1) prepared by heating at 180° C. for 30 minutes in the same manner as in the heat resistance evaluation. 30 ⁇ L of acrylate solution was added dropwise. Furthermore, a cover glass is attached from above, and a UV irradiation device using an LED lamp with a main wavelength of 395 nm is irradiated with UV so that the integrated light amount becomes 1500 mJ / cm 2 . A sample was prepared.
  • the prepared sealed sample was irradiated with blue light at an intensity of 400 mW / cm 2 for 150 hours, and EQE was measured in the same manner as the above EQE evaluation.
  • a rate of change in EQE (1 ⁇ [EQE after blue light irradiation]/[EQE before blue light irradiation] ⁇ 100) was obtained.
  • Stability evaluation of the evaluation sample against excitation light was performed according to the following criteria. [Evaluation criteria] ⁇ : 85% or more ⁇ : 75% or more and less than 85% ⁇ : 65% or more and less than 75% ⁇ : less than 65%
  • Example 2 to 9 and Comparative Example 1 Adjustment of ink composition 2
  • Ink composition 1 was prepared in the same manner as in Example 2, except that a photopolymerizable compound obtained by mixing 60 parts by mass, 30 parts by mass, and 10 parts by mass of HDDA, DCPEA, and AOMA, respectively, was used instead of HDDA. was obtained.
  • Ink composition 1 was prepared in the same manner as in Example 3, except that a photopolymerizable compound obtained by mixing 60 parts by mass, 30 parts by mass, and 10 parts by mass of HDDA, DCPEMA, and AOMA, respectively, was used instead of HDDA. was obtained.
  • Ink composition 1 was prepared in the same manner as in Example 4, except that a photopolymerizable compound obtained by mixing 60 parts by mass, 30 parts by mass, and 10 parts by mass of DPGDA, DCPEA, and AOMA, respectively, was used instead of HDDA. was obtained.
  • Ink Composition 5 of Example 5 was obtained in the same manner as Ink Composition 2, except that Compound 2 was used instead of Compound 1 as the metal compound having a dithiocarbamic acid group.
  • Ink Composition 6 of Example 6 was obtained in the same manner as Ink Composition 2, except that Compound 3 was used instead of Compound 1 as the metal compound having a dithiocarbamic acid group.
  • Ink Composition 7 of Example 7 was obtained in the same manner as Ink Composition 2, except that Compound 4 was used instead of Compound 1 as the metal compound having a dithiocarbamic acid group.
  • Ink Composition 8 of Example 8 was obtained in the same manner as Ink Composition 2, except that PEP-8 was added as a phosphorus antioxidant.
  • Ink Composition 9 of Example 9 was obtained in the same manner as Ink Composition 8, except that Irganox 1010 was further added as a phenolic antioxidant.
  • the light conversion layers using the ink compositions 1 to 9 of the present invention have higher heat resistance than the light conversion layer using the ink composition C1 of Comparative Example 1. It can be seen that the property evaluation and the stability to excitation light are good. This is because, in an ink composition containing both a photopolymerizable compound having an acrylic equivalent within a specific range and a dithiocarbamate group-containing metal compound, radicals of the dithiocarbamate group-containing metal compound are formed in the light conversion layer formed from the composition. It is considered that the trapping function works effectively, and as a result, deterioration is suppressed. Further, as shown in Examples 8 and 9, the light conversion layers using the ink compositions 8 and 9 of the present invention are formed from the ink composition further containing an antioxidant, and have excellent heat resistance and It can be seen that the stability against excitation light is good.
  • Example 10 to 12 and Comparative Example 2 Adjustment of ink composition 10
  • Green light-emitting particles 2, compound 1, production example 1 of light-scattering particle dispersion, HDDA, IB-XA, and photopolymerization initiator phenyl(2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide (manufactured by IGM resin, trade name: Omnirad TPO), Irganox 1010, and PEP-8 were blended so that the content of each component was shown in Table 2 (unit: parts by mass), and argon gas was added.
  • Ink Composition 10 of Example 10 was obtained by saturating with gas and then removing the argon gas under reduced pressure.
  • Ink Composition 11 of Example 11 was obtained in the same manner as Ink Composition 10 except that Green Light-Emitting Particles 3 were used instead of Green Light-Emitting Particles 2 .
  • Ink Composition 12 of Example 12 was obtained in the same manner as Ink Composition 10 except that Green Light-Emitting Particles 4 were used instead of Green Light-Emitting Particles 2 .
  • Adjustment of ink composition C2 Preparation of Ink Composition 10, except that BDDA was used as the photopolymerizable compound instead of HDDA and IB-XA, and Light-scattering Particle Dispersion Production Example 2 was used instead of Light-scattering Particle Dispersion 1.
  • Ink composition C2 of Comparative Example 2 was obtained in the same manner as above.
  • the light conversion layer using the ink compositions 10 to 12 of the present invention has a higher heat resistance than the light conversion layer using the ink composition C2 of Comparative Example 2. It can be seen that the property evaluation and the stability to excitation light are good. In particular, the light conversion layers of Examples 11 and 12 have better heat resistance and stability against excitation light than the light conversion layer of Comparative Example 2. It is speculated that in the presence of a photopolymerizable compound having an acrylic equivalent within the range, radical scavenging by the dithiocarbamic acid group-containing metal compound occurs effectively, thereby suppressing deterioration.
  • Green light-emitting particles 2, compound 1, production example 1 of light-scattering particle dispersion, HDDA, IB-XA, DCPA, and a photopolymerization initiator phenyl(2,4,6-trimethylbenzoyl-diphenyl -Phosphine oxide (manufactured by IGM resin, trade name: Omnirad TPO), Irganox 1010, and PEP-8 were blended so that the content of each component was the amount shown in Table 3 (unit: parts by mass).
  • Ink Composition 14 of Example 14 was obtained in the same manner as Ink Composition 13 except that Green Light-Emitting Particles 3 were used instead of Green Light-Emitting Particles 2 .
  • Ink Composition 15 of Example 15 was obtained in the same manner as Ink Composition 13 except that Green Light-Emitting Particles 4 were used instead of Green Light-Emitting Particles 2 .
  • Ink Composition 16 of Example 16 was obtained in the same manner as Ink Composition 13, except that EO-BPADA was used as the photopolymerizable compound instead of DCPA.
  • Ink Compositions 13 to 16 and C3 were applied onto a glass substrate to a film thickness of 100 ⁇ m, and another glass substrate was attached. Under a nitrogen atmosphere, the coated glass was cured by irradiating UV with a UV irradiation device using an LED lamp with a dominant wavelength of 395 nm so that the integrated light amount was 1 J/cm 2 to obtain light conversion films 13 to 16 and C3. .
  • the obtained light conversion films 13 to 16 and C3 were evaluated for heat resistance and stability against excitation light. Table 3 shows the results.
  • the light conversion films using the ink compositions 13 to 16 of the present invention had better heat resistance and It can be seen that the stability against excitation light is good.
  • the light conversion film of Example 15 is extremely good as compared with the light conversion film of Comparative Example 3. Therefore, even in the durability imparting particles coated with silica, the photopolymerizable compound having an acrylic equivalent within a specific range In the presence of the dithiocarbamic acid group-containing metal compound, radical scavenging effectively occurs, presumably suppressing deterioration.
  • the light conversion layer and the light conversion film obtained by the ink composition of the present invention have high stability against heat and light.

Abstract

Provided is an ink composition from which a light conversion layer having excellent stability with respect to heat and excitation light can be formed. An ink composition according to the present invention is characterized by containing: light-emitting nanocrystal particles; a photopolymerizable compound; and a metal compound having a dithiocarbamic acid group, wherein the photopolymerizable compound includes a (meth)acrylate compound having an acrylic equivalent of at least 110. The metal compound is preferably a metal compound selected from the group consisting of a zinc compound, a sodium compound, and a copper compound.

Description

インク組成物、光変換層、カラーフィルタおよび光変換フィルムInk composition, light conversion layer, color filter and light conversion film
 本発明は、インク組成物、光変換層、カラーフィルタおよび光変換フィルムに関する。 The present invention relates to an ink composition, a light conversion layer, a color filter and a light conversion film.
 従来、液晶表示装置等のディスプレイにおける画素部(カラーフィルタ画素部)は、例えば、赤色有機顔料粒子又は緑色有機顔料粒子と、アルカリ可溶性樹脂及び/又はアクリル系単量体とを含有する硬化性レジスト材料を用いて、フォトリソグラフィ法により製造されてきた。 Conventionally, a pixel part (color filter pixel part) in a display such as a liquid crystal display device is, for example, a curable resist containing red organic pigment particles or green organic pigment particles, an alkali-soluble resin and / or an acrylic monomer. It has been manufactured by photolithographic methods using materials.
 近年、ディスプレイの低消費電力化が強く求められるようになり、上記赤色有機顔料粒子又は緑色有機顔料粒子に代えて、例えば量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いて、赤色光又は緑色光を取り出す光変換フィルムやカラーフィルター画素部のような光変換層が活発に研究されている。 In recent years, there has been a strong demand for lower power consumption of displays, and instead of the red organic pigment particles or green organic pigment particles, for example, quantum dots, quantum rods, and other inorganic phosphor particles. are being actively researched into photoconversion films and photoconversion layers such as color filter pixel portions for extracting red light or green light.
 この光変換層は、画像表示装置のバックライトユニットに搭載される。例えば、赤色光を発光する量子ドット及び緑色光を発光する量子ドットを含む光変換フィルムに対して励起光として青色光を照射すると、量子ドットから発光された赤色光及び緑色光と、光変換フィルムを透過した青色光とにより白色光を得ることができる。 This light conversion layer is mounted on the backlight unit of the image display device. For example, when a light conversion film containing quantum dots that emit red light and quantum dots that emit green light is irradiated with blue light as excitation light, the red light and green light emitted from the quantum dots and the light conversion film White light can be obtained with the blue light that has passed through.
 また、この光変換層は、例えば、ブラックマトリクスを形成した基板上に、青色光により励起され、赤色の蛍光を発する赤色発光性量子ドット層と、青色光により励起され、緑色の蛍光を発する緑色発光性量子ドット層と、青色光を透過する青色光透過層とを形成してなる。かかる光変換層と、青色発光するLEDバックライトや青色発光する有機EL素子と組み合わせることにより、液晶表示装置や自発光表示装置が構成されている。 Further, the light conversion layer includes, for example, a red-emitting quantum dot layer that emits red fluorescence when excited by blue light and a green quantum dot layer that emits green fluorescence when excited by blue light on a substrate on which a black matrix is formed. It is formed by forming a luminescent quantum dot layer and a blue light transmission layer that transmits blue light. A liquid crystal display device or a self-luminous display device is configured by combining such a light conversion layer with an LED backlight that emits blue light or an organic EL element that emits blue light.
 このような光変換層を備える表示装置では、従来のカラーフィルタを備える表示装置よりも光利用効率を高めることができる。また、量子ドットから発せられる半値幅の小さいスペクトルを有する蛍光を、そのまま表示装置の色表示に利用できるため、色再現範囲の広い表示装置とすることができる。 A display device with such a light conversion layer can increase light utilization efficiency more than a display device with a conventional color filter. In addition, since fluorescence emitted from the quantum dots and having a spectrum with a small half-value width can be used as it is for color display of the display device, the display device can have a wide color reproduction range.
 例えば、量子ドットを含む感光性樹脂組成物を用いて、基板の一方の全面に塗布し紫外線照射により硬化させて光変換フィルムを製造する方法が知られている。 For example, a method is known in which a photosensitive resin composition containing quantum dots is applied to one entire surface of a substrate and cured by ultraviolet irradiation to produce a light conversion film.
 また、例えば、光変換層を、量子ドットを含む感光性樹脂組成物を用いて、基板の一方の面側に塗膜を形成し、フォトリソグラフィ法によりパターニングした後、得られた塗膜を加熱処理により硬化させて製造する方法が知られている(例えば、特許文献1参照)。 Alternatively, for example, the light conversion layer is formed by forming a coating film on one side of the substrate using a photosensitive resin composition containing quantum dots, patterning the coating film by photolithography, and then heating the resulting coating film. A method of hardening by treatment is known (see, for example, Patent Document 1).
 しかしながら、フォトリソグラフィ法でのカラーフィルタの製造方法では、その製造方法の特徴から、比較的高価な発光性ナノ結晶粒子を含めた画素部以外のレジスト材料が無駄になるという欠点があった。このような状況下、上記のようなレジスト材料の無駄をなくすため、インクジェット法(インクジェット方式)により、硬化性のインク組成物を用いて、光変換基板画素部を形成することが検討され始めている(特許文献2)。 However, the method of manufacturing color filters by photolithography has the disadvantage that the resist material other than the pixel portion, including the relatively expensive luminescent nanocrystal particles, is wasted due to the characteristics of the manufacturing method. Under these circumstances, in order to eliminate the waste of the resist material as described above, it is being investigated to form the pixel portion of the light conversion substrate using a curable ink composition by an inkjet method (inkjet method). (Patent Document 2).
特開2016-53716号公報JP 2016-53716 A 国際公開第2008/001693号WO2008/001693
 量子ドット等の発光性ナノ結晶粒子を用いたインク組成物によりカラーフィルタ画素部(以下、単に「画素部」ともいう。)や光変換層を含む光学フィルムを形成した場合、量子ドットが不安定であるため、バインダーとして使用した樹脂の種類によっては、例えば、カラーフィルタ製造時の加熱や、ディスプレイ駆動時の励起光により、外部量子効率(EQE:External Quantum Efficiency))が経時的に低下してしまう場合がある。 When forming an optical film including a color filter pixel portion (hereinafter also simply referred to as "pixel portion") or a light conversion layer with an ink composition using luminescent nanocrystalline particles such as quantum dots, the quantum dots are unstable. Therefore, depending on the type of resin used as a binder, for example, external quantum efficiency (EQE) may decrease over time due to heating during color filter manufacturing or excitation light during display driving. may be lost.
そこで、本発明の目的の一つは、熱及び励起光に対する安定性に優れたインク組成物、並びに該インク組成物を用いた光変換層、カラーフィルタおよび光変換フィルムを提供することを目的とする。 Accordingly, one object of the present invention is to provide an ink composition having excellent stability against heat and excitation light, and a light conversion layer, color filter and light conversion film using the ink composition. do.
 本発明の一側面は、発光性ナノ結晶粒子と、光重合性化合物と、ジチオカルバミン酸基を有する金属化合物と、を含有し、前記光重合性化合物として、アクリル当量が110以上である(メタ)アクリレート化合物を含むインク組成物に関する。 One aspect of the present invention contains luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group, and the photopolymerizable compound has an acrylic equivalent of 110 or more (meth) The present invention relates to ink compositions containing acrylate compounds.
 上記側面のインク組成物によれば、耐熱性および励起光耐性に優れた光変換層、すなわち、加熱時および励起光照射時の外部量子効率の低下が少ない光変換層を形成することができる。 According to the ink composition of the aspect, it is possible to form a light conversion layer with excellent heat resistance and excitation light resistance, that is, a light conversion layer with little decrease in external quantum efficiency during heating and excitation light irradiation.
 上記ジチオカルバミン酸基を有する金属化合物は、好ましくは、亜鉛化合物、ナトリウム化合物、または銅化合物であってよく、更に好ましくは亜鉛化合物である。 The metal compound having a dithiocarbamic acid group may preferably be a zinc compound, a sodium compound, or a copper compound, more preferably a zinc compound.
 上記(メタ)アクリレート化合物は、好ましくは、下記式(I)で表される化合物である。
Figure JPOXMLDOC01-appb-C000002
[式(I)中、Rは、水素原子又はメチル基を示し、Rは置換されていてもよい直鎖状または分岐状の炭素原子数1~20のアルキレン基を示し、mは1~10の整数を表す。2つのRは互いに同一であっても異なっていてもよい。]
The (meth)acrylate compound is preferably a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000002
[In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents an optionally substituted linear or branched alkylene group having 1 to 20 carbon atoms, m is 1 Represents an integer from ~10. Two R 1s may be the same or different. ]
 上記光重合性化合物は、単官能(メタ)アクリレート化合物を更に含有していても良い。 The photopolymerizable compound may further contain a monofunctional (meth)acrylate compound.
 上記単官能(メタ)アクリレート化合物は、脂環式構造を含む単官能(メタ)アクリレート化合物であってよい。 The monofunctional (meth)acrylate compound may be a monofunctional (meth)acrylate compound containing an alicyclic structure.
 インク組成物は、フェノール系酸化防止剤を更に含有してよい。 The ink composition may further contain a phenolic antioxidant.
 インク組成物は、リン系酸化防止剤を更に含有してよい。 The ink composition may further contain a phosphorus antioxidant.
 インク組成物は光変換層を形成するために用いることができる。すなわち、インク組成物は光変換層形成用のインク組成物であってよい。 The ink composition can be used to form a light conversion layer. That is, the ink composition may be an ink composition for forming a light conversion layer.
 インク組成物はインクジェット方式で用いることができる。すなわち、インク組成物はインクジェットインクであってよい。 The ink composition can be used in an inkjet method. That is, the ink composition may be an inkjet ink.
 本発明の他の一側面は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部が、上記側面のインク組成物の硬化物を含む発光性画素部を有する、光変換層に関する。 Another aspect of the present invention includes a plurality of pixel portions and a light shielding portion provided between the plurality of pixel portions, wherein the plurality of pixel portions includes a cured product of the ink composition of the above aspect. The present invention relates to a light conversion layer having an optical pixel portion.
 光変換層は、発光性画素部として、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、を備えてよい。 The light conversion layer contains luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 605 to 665 nm as the luminescent pixel portion. and a second luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. Be prepared.
 光変換層は、光散乱性粒子を含有する非発光性画素部を更に備えてよい。 The light conversion layer may further comprise a non-luminous pixel portion containing light scattering particles.
 本発明の他の一側面は、上述した光変換層を備える、カラーフィルタに関する。 Another aspect of the present invention relates to a color filter comprising the light conversion layer described above.
 本発明の他の一側面は、上述したインク組成物の硬化物を含む、光変換フィルムに関する。 Another aspect of the present invention relates to a light conversion film containing a cured product of the ink composition described above.
 本発明によれば、熱及び励起光に対する安定性に優れた光変換層を形成することができるインク組成物を提供することができる。 According to the present invention, it is possible to provide an ink composition capable of forming a light conversion layer with excellent stability against heat and excitation light.
図1は、本発明の一実施形態のカラーフィルタの一実施形態を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a color filter according to one embodiment of the present invention. 図2は、本発明の一実施形態の光変換フィルムの一実施形態を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing one embodiment of the light conversion film of one embodiment of the present invention.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において「インク組成物の硬化物」とは、インク組成物(インク組成物が溶剤成分を含む場合には、乾燥後のインク組成物)中の硬化性成分を硬化させて得られるものである。乾燥後のインク組成物の硬化物中には、有機溶剤が含まれなくてよい。 Hereinafter, embodiments of the present invention will be described in detail. In this specification, a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively. In the present specification, the term “cured product of the ink composition” refers to a product obtained by curing a curable component in the ink composition (when the ink composition contains a solvent component, the ink composition after drying). It is something that can be done. The cured ink composition after drying may not contain an organic solvent.
 <インク組成物>
 一実施形態のインク組成物は、発光性ナノ結晶粒子と、光重合性化合物と、ジチオカルバミン酸基を有する金属化合物と、を含有し、光重合性化合物として、アクリル当量が110以上である(メタ)アクリレート化合物を含む。
<Ink composition>
The ink composition of one embodiment contains luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group, and the photopolymerizable compound has an acrylic equivalent of 110 or more (meta ) including acrylate compounds.
 上記インク組成物は、例えば、カラーフィルタ等が有する光変換層の画素部を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用や光変換フィルムの形成用)のインク組成物である。 The ink composition is used for forming a light conversion layer (for example, for forming a color filter pixel portion or for forming a light conversion film), which is used for forming a pixel portion of a light conversion layer of a color filter or the like. It is an ink composition.
 上記インク組成物によれば、加熱や励起光を照射した際に外部量子効率が低下しにくい光変換層を得ることができる。 According to the above ink composition, it is possible to obtain a light conversion layer whose external quantum efficiency is less likely to decrease when heated or irradiated with excitation light.
 上記インク組成物により上述した効果が得られる理由は、明らかではないが、本発明者らは以下のように推察している。すなわち、硬化させた光変換層中には、ラジカル及び酸素が残存し、ラジカルは酸素と速やかに反応し、ペルオキシラジカル及びヒドロペルオキシドを形成することで発光性ナノ結晶粒子を劣化させる。加熱または励起光の照射は、発光性ナノ結晶粒子の活性を高める為、発光性ナノ結晶粒子の劣化が促進され、より顕著な劣化が生じる。本実施形態のジチオカルバミン酸基を有する金属化合物は、ラジカルを捕捉する機能があり、発光性ナノ結晶粒子の劣化が抑制されると考えられる。加えて、ジチオカルバミン酸基を有する金属化合物は熱及び光により分解し、発光性ナノ結晶粒子の表面と反応することで、発光性ナノ結晶粒子を酸化から保護する効果があると推測される。さらに、アクリル当量が110以上である(メタ)アクリレート化合物を用いることで、基材と光変換層との密着性が向上し、界面からの酸素及び水分の侵入を抑制することで、発光性ナノ結晶粒子の劣化を抑制していると考えられる。 Although the reason why the ink composition achieves the effects described above is not clear, the present inventors speculate as follows. That is, radicals and oxygen remain in the cured light conversion layer, and the radicals react rapidly with oxygen to form peroxy radicals and hydroperoxides, thereby degrading the luminescent nanocrystalline particles. Heating or irradiation of excitation light enhances the activity of the luminescent nanocrystalline particles, and thus accelerates the deterioration of the luminescent nanocrystalline particles, resulting in more significant deterioration. It is believed that the metal compound having a dithiocarbamic acid group of the present embodiment has a function of scavenging radicals and suppresses deterioration of the luminescent nanocrystalline particles. In addition, it is presumed that the metal compound having a dithiocarbamic acid group is decomposed by heat and light and reacts with the surface of the luminescent nanocrystalline particles, thereby having the effect of protecting the luminescent nanocrystalline particles from oxidation. Furthermore, by using a (meth)acrylate compound having an acrylic equivalent of 110 or more, the adhesion between the substrate and the light conversion layer is improved, and by suppressing the intrusion of oxygen and moisture from the interface, the luminescent nano It is considered that the deterioration of crystal grains is suppressed.
 また、上記インク組成物によれば、優れた外部量子効率を有する光変換層が得ることができる。さらに、上記インク組成物によれば、インクジェット法において優れた吐出安定性が得ることができる。すなわち、上記インク組成物は、インクジェット法に好適に使用できる。 Further, according to the ink composition, a light conversion layer having excellent external quantum efficiency can be obtained. Furthermore, according to the ink composition, it is possible to obtain excellent ejection stability in the inkjet method. That is, the ink composition can be suitably used for the inkjet method.
 さらに、本発明のインク組成物によれば、発光性ナノ結晶粒子が均一に分散するため、コーティング方式による印刷法(以下、「コーティング法」と記載する。)において優れた塗布性を得ることができる。すなわち、本発明のインク組成物は、コーティング法に好適に使用することができる。 Furthermore, according to the ink composition of the present invention, since the luminescent nanocrystalline particles are uniformly dispersed, excellent applicability can be obtained in a printing method using a coating method (hereinafter referred to as “coating method”). can. That is, the ink composition of the present invention can be suitably used in coating methods.
 ところで、画素部は外光に曝される環境で使用されるため、外光によって外部量子効率が低下しないこと(光安定性)が求められるが、従来の発光性ナノ結晶粒子を含むインク組成物を用いた場合、必ずしも充分な光安定性を有する画素部が得られるとはいえない。一方、上記インク組成物によれば、外光による外部量子効率の低下が抑制される傾向がある。すなわち、上記インク組成物によれば、光安定性に優れる光変換層を形成することができる。 By the way, since the pixel portion is used in an environment exposed to external light, it is required that the external quantum efficiency does not deteriorate due to external light (light stability). However, it cannot be said that a pixel portion having sufficient photostability can be obtained. On the other hand, the ink composition tends to suppress the decrease in external quantum efficiency due to external light. That is, according to the ink composition, a light conversion layer having excellent light stability can be formed.
 一実施形態のインク組成物は、カラーフィルタの製造用のインクとして適用が可能であるが、比較的高額である発光性ナノ結晶粒子、溶剤等の材料を無駄に消費せずに、必要な箇所に必要な量を用いるだけで、画素部(光変換層)を形成できる点においても、フォトリソグラフィ法よりインクジェット法に適合するように適切に調製して用いることが好ましい。また、一実施形態のインク組成物は、バリアフィルム間に担持させ、波長変換フィルムとして用いることが好ましい。 The ink composition of one embodiment can be applied as an ink for manufacturing color filters. In view of the fact that the pixel portion (light conversion layer) can be formed only by using the amount necessary for the above, it is preferable to prepare and use it so as to be suitable for the inkjet method rather than the photolithographic method. Also, the ink composition of one embodiment is preferably carried between barrier films and used as a wavelength conversion film.
 インク組成物は、発光性ナノ結晶粒子、光重合性化合物、及びジチオカルバミン酸基を有する金属化合物に加えて、有機リガンド(以下、「配位子」と言うことがある)、光散乱性粒子、高分子分散剤、有機溶剤等の他の成分を更に含有することができる。以下では、インクジェット方式に用いられるカラーフィルタ用インク組成物(カラーフィルタ用インクジェットインク)を例に挙げて、一実施形態のインク組成物について説明する。 The ink composition contains, in addition to luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group, an organic ligand (hereinafter sometimes referred to as a "ligand"), light scattering particles, Other components such as polymeric dispersants, organic solvents, etc. may be further included. An ink composition according to one embodiment will be described below, taking an ink composition for color filters (inkjet ink for color filters) used in an inkjet method as an example.
[発光性ナノ結晶粒子]
 発光性ナノ結晶粒子は、励起光を吸収して蛍光又は燐光を発光するナノサイズの結晶体であり、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
[Luminescent nanocrystalline particles]
Luminescent nanocrystalline particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence. For example, the maximum particle diameter measured by a transmission electron microscope or scanning electron microscope is 100 nm or less. It is crystalline.
 発光性ナノ結晶粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光又は燐光)を発することができる。発光性ナノ結晶粒子は、605~665nmの範囲に発光ピーク波長を有する光(赤色光)を発する、赤色発光性のナノ結晶粒子(赤色発光性ナノ結晶粒子)であってよく、500~560nmの範囲に発光ピーク波長を有する光(緑色光)を発する、緑色発光性のナノ結晶粒子(緑色発光性ナノ結晶粒子)であってよく、420~480nmの範囲に発光ピーク波長を有する光(青色光)を発する、青色発光性のナノ結晶粒子(青色発光性ナノ結晶粒子)であってもよい。本実施形態では、インク組成物がこれらの発光性ナノ結晶粒子のうちの少なくとも1種を含むことが好ましい。また、発光性ナノ結晶粒子が吸収する光は、例えば、400nm以上500nm未満の範囲(特に、420~480nmの範囲の波長の光)の波長の光(青色光)、又は、200nm~400nmの範囲の波長の光(紫外光)であってよい。なお、発光性ナノ結晶粒子の発光ピーク波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトル又は燐光スペクトルにおいて確認することができる。 A luminescent nanocrystalline particle can, for example, emit light (fluorescence or phosphorescence) of a wavelength different from the absorbed wavelength by absorbing light of a predetermined wavelength. The luminescent nanocrystalline particles may be red luminescent nanocrystalline particles (red luminescent nanocrystalline particles) that emit light having an emission peak wavelength in the range of 605-665 nm (red light), Green luminescent nanocrystalline particles (green luminescent nanocrystalline particles) that emit light with an emission peak wavelength in the range of 420-480 nm (blue light). ), may be blue-emitting nanocrystalline particles (blue-emitting nanocrystalline particles). In this embodiment, the ink composition preferably contains at least one of these luminescent nanocrystalline particles. In addition, the light absorbed by the luminescent nanocrystalline particles is, for example, light (blue light) with a wavelength in the range of 400 nm or more and less than 500 nm (especially light with a wavelength in the range of 420 to 480 nm), or in the range of 200 nm to 400 nm. (ultraviolet light). The emission peak wavelength of the luminescent nanocrystalline particles can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured using a spectrofluorometer.
 赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下又は630nm以下に発光ピーク波長を有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上又は605nm以上に発光ピーク波長を有することが好ましい。これらの上限値及び下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 The red-emitting nanocrystalline particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. , 632 nm or less, or 630 nm or less, preferably 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more, or 605 nm or more. These upper and lower limits can be combined arbitrarily. In addition, in the following similar description, the upper limit and the lower limit that are individually described can be arbitrarily combined.
 緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下又は530nm以下に発光ピーク波長を有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上又は500nm以上に発光ピーク波長を有することが好ましい。 Green-emitting nanocrystalline particles have an emission peak wavelength of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It preferably has an emission peak wavelength of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下又は450nm以下に発光ピーク波長を有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上又は420nm以上に発光ピーク波長を有することが好ましい。 The blue-emitting nanocrystalline particles have an emission peak wavelength of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It preferably has an emission peak wavelength of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 発光性ナノ結晶粒子が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、発光性ナノ結晶粒子のサイズ(例えば粒子径)に依存するが、発光性ナノ結晶粒子が有するエネルギーギャップにも依存する。そのため、使用する発光性ナノ結晶粒子の構成材料及びサイズを変更することにより、発光色を選択することができる。 According to the solution of the Schrödinger wave equation of the well-type potential model, the wavelength (emission color) of the light emitted by the luminescent nanocrystalline particles depends on the size (e.g., particle diameter) of the luminescent nanocrystalline particles. It also depends on the energy gap of the crystal grains. Therefore, the emission color can be selected by changing the constituent material and size of the luminescent nanocrystalline particles used.
 発光性ナノ結晶粒子は、半導体材料を含む発光性ナノ結晶粒子(発光性半導体ナノ結晶粒子)であってよい。発光性半導体ナノ結晶粒子としては、量子ドット、量子ロッド等が挙げられる。これらの中でも、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、量子ドットが好ましい。 The luminescent nanocrystalline particles may be luminescent nanocrystalline particles containing a semiconductor material (luminescent semiconductor nanocrystalline particles). Luminescent semiconductor nanocrystal particles include quantum dots and quantum rods. Among these, quantum dots are preferable from the viewpoint that the emission spectrum can be easily controlled, the reliability can be secured, the production cost can be reduced, and the mass productivity can be improved.
 発光性半導体ナノ結晶粒子は、第一の半導体材料を含むコアのみからなっていてよく、第一の半導体材料を含むコアと、第一の半導体材料とは異なる第二の半導体材料を含み、上記コアの少なくとも一部を被覆するシェルと、を有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアのみからなる構造(コア構造)であってよく、コアとシェルからなる構造(コア/シェル構造)であってもよい。また、発光性半導体ナノ結晶粒子は、第二の半導体材料を含むシェル(第一のシェル)の他に、第一及び第二の半導体材料とは異なる第三の半導体材料を含み、上記コアの少なくとも一部を被覆するシェル(第二のシェル)を更に有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアと第一のシェルと第二のシェルとからなる構造(コア/シェル/シェル構造)であってもよい。コア及びシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)であってよい。 The luminescent semiconductor nanocrystal particles may consist solely of a core comprising the first semiconductor material, comprising a core comprising the first semiconductor material and a second semiconductor material different from the first semiconductor material, wherein and a shell covering at least a portion of the core. In other words, the structure of the luminescent semiconductor nanocrystal particles may be a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core/shell structure). In addition, the luminescent semiconductor nanocrystal particle contains a third semiconductor material different from the first and second semiconductor materials in addition to the shell (first shell) containing the second semiconductor material, It may further have a shell (second shell) that covers at least part of it. In other words, the structure of the luminescent semiconductor nanocrystal particles may be a structure consisting of a core, a first shell and a second shell (core/shell/shell structure). Each of the core and shell may be a mixed crystal containing two or more semiconductor materials (eg, CdSe+CdS, CIS+ZnS, etc.).
 発光性ナノ結晶粒子は、半導体材料として、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料を含むことが好ましい。 Luminescent nanocrystalline particles are selected as semiconductor materials from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors and I-II-IV-VI semiconductors. It preferably contains at least one semiconductor material that
 具体的な半導体材料としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgInGaS、AgGaSe、AgGaS、C、Si及びGeが挙げられる。発光性半導体ナノ結晶粒子は、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInGaS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、Ge及びCuZnSnSからなる群より選択される少なくとも1種を含むことが好ましい。 Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、 InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnPbSTe; includes Si, Ge, SiC, SiGe, AgInSe2, CuGaSe2 , CuInS2 , CuGaS2 , CuInSe2 , AgInS2 , AgInGaS , AgGaSe2 , AgGaS2 , C, Si and Ge. Luminescent semiconductor nanocrystalline particles are CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS. ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS2 , AgInGaS , AgInSe2 , AgInTe2 , AgGaS2 , AgGaSe2 , AgGaTe2 , CuInS2 , CuInSe It preferably contains at least one selected from the group consisting of CuInTe2 , CuGaS2 , CuGaSe2 , CuGaTe2 , Si, C, Ge and Cu2ZnSnS4 .
 赤色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がCdSeであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がZnSeであるナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、CdSeとCdSとの混晶のナノ結晶粒子、ZnSeとCdSとの混晶のナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of red-emitting semiconductor nanocrystal particles include nanocrystal particles of CdSe and nanocrystal particles having a core/shell structure in which the shell portion is CdS and the inner core portion is CdSe. particles, nanocrystalline particles with a core/shell structure, where the shell portion is CdS and the inner core portion is ZnSe, mixed crystal nanocrystalline particles of CdSe and ZnS, InP nanocrystalline particles A crystalline particle, a nanocrystalline particle with a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, a nanocrystalline particle with a core/shell structure, Nanocrystalline particles whose shell portion is a mixed crystal of ZnS and ZnSe and whose inner core portion is InP, nanocrystalline particles of mixed crystal of CdSe and CdS, nanocrystalline particles of mixed crystal of ZnSe and CdS, core /Nanocrystalline particles with a shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP, core/shell / A nanocrystalline particle having a shell structure, wherein the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP etc.
 緑色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of green-emitting semiconductor nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles of a mixed crystal of CdSe and ZnS, and nanocrystalline particles having a core/shell structure, the shell portion of which is ZnS. and a nanocrystalline particle having an inner core of InP, a nanocrystalline particle having a core/shell structure, wherein the shell is a mixed crystal of ZnS and ZnSe and the inner core is InP Crystalline particles, nanocrystalline particles with a core/shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP , a nanocrystalline particle with a core/shell/shell structure, wherein the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP certain nanocrystalline particles and the like.
 青色発光性の半導体ナノ結晶粒子としては、例えば、ZnSeのナノ結晶粒子、ZnSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSeであり内側のコア部がZnSであるナノ結晶粒子、CdSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of blue-emitting semiconductor nanocrystalline particles include ZnSe nanocrystalline particles, ZnS nanocrystalline particles, and nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnSe and the inner core portion is is ZnS, nanocrystalline particles of CdS, nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, core/shell A nanocrystalline particle with a structure, wherein the shell part is a mixed crystal of ZnS and ZnSe and the inner core part is InP, a nanocrystalline particle with a core/shell/shell structure. a nanocrystalline particle having a first shell portion of ZnSe, a second shell portion of ZnS, and an inner core portion of InP, a nanocrystalline particle having a core/shell/shell structure, Examples include nanocrystalline particles in which the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
 半導体ナノ結晶粒子は、同一の化学組成で、それ自体の平均粒子径を変えることにより、当該粒子から発光させるべき色を赤色にも緑色にも変えることができる。また、半導体ナノ結晶粒子は、それ自体として、人体等に対する悪影響が極力低いものを用いることが好ましい。カドミウム、セレン等を含有する半導体ナノ結晶粒子を発光性ナノ結晶粒子として用いる場合は、上記元素(カドミウム、セレン等)が極力含まれない半導体ナノ結晶粒子を選択して単独で用いるか、上記元素が極力少なくなるようにその他の発光性ナノ結晶粒子と組み合わせて用いることが好ましい。 With the same chemical composition, the semiconductor nanocrystal particles can change the color of light emitted from the particles to either red or green by changing the average particle size of the particles themselves. In addition, it is preferable to use semiconductor nanocrystal particles that themselves have the least adverse effect on the human body or the like. When semiconductor nanocrystal particles containing cadmium, selenium, etc. are used as luminescent nanocrystal particles, semiconductor nanocrystal particles that do not contain the above elements (cadmium, selenium, etc.) as much as possible are selected and used alone. is preferably used in combination with other luminescent nanocrystalline particles so as to minimize the
 発光性ナノ結晶粒子は、より半値幅の狭い発光ピークを得ることができる観点から、メタルハライドからなるナノ結晶であってもよい。 The luminescent nanocrystalline particles may be nanocrystals made of metal halide from the viewpoint of obtaining an emission peak with a narrower half-width.
 メタルハライドからなるナノ結晶は、A、M及びXを含む化合物半導体であり、一般式:AaMbXcで表される化合物である。
 式中、Aは1価の陽イオンを表し、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
Mは金属イオンを表し、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等のハロゲン化物イオンが挙げられる。
aは、1~7であり、bは、1~4であり、cは、3~16である。
かかるナノ結晶は、その粒子サイズ、Xサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる。
A nanocrystal made of metal halide is a compound semiconductor containing A, M and X, and is a compound represented by the general formula: AaMbXc.
In the formula, A represents a monovalent cation and is at least one of an organic cation and a metal cation. Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
M represents a metal ion and is at least one metal cation. Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included. X is at least one anion. Examples of anions include halide ions such as chloride ions, bromide ions, iodide ions, and cyanide ions.
a is 1-7, b is 1-4, and c is 3-16.
The emission wavelength (emission color) of such nanocrystals can be controlled by adjusting the particle size and the type and abundance of anions that constitute the X site.
 一般式Aで表される化合物は、具体的には、AMX、AMX、AMX、AMX、AMX、AM、AMX、AMX、AMX、A、AMX、AMX、AM、AMX、A、AMX、A、A、A10、A16で表される化合物が好ましい。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
式中、Mは、少なくとも1種の金属カチオンである。具体的には、1種の金属カチオン(M1)、2種の金属カチオン(M α β)、3種の金属カチオン(M α β γ)、4種の金属カチオン(M α β γ δ)などが挙げられる。ただし、α、β、γ、δは、それぞれ0~1の実数を表し、かつα+β+γ+δ=1を表す。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 式中、Xは、少なくとも1種のハロゲンを含むアニオンである。具体的には、1種のハロゲンアニオン(X)、2種のハロゲンアニオン(X α β)などが挙げられる。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲン化物イオンを含む。
Specifically, the compound represented by the general formula AaMmXx is AMX , A4MX , AMX2 , AMX3 , A2MX3 , AM2X3 , A2MX4 , A2MX 5 , A3MX5 , A3M2X5 , A3MX6 , A4MX6 , AM2X6 , A2MX6 , A4M2X6 , A3MX8 , A3M2 _ _ Compounds represented by X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 and A 7 M 3 X 16 are preferred.
wherein A is at least one of an organic cation and a metal cation. Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
wherein M is at least one metal cation. Specifically, one metal cation ( M1 ), two metal cations ( M1αM2β ), three metal cations (M1αM2βM3γ ) , four metal cations (M 1 α M 2 β M 3 γ M 4 δ ) and the like. However, α, β, γ, and δ each represent a real number between 0 and 1, and α+β+γ+δ=1. Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
In the formula, X is an anion containing at least one halogen. Specifically, one type of halogen anion (X 1 ), two types of halogen anions (X 1 α X 2 β ), and the like are included. Examples of anions include chloride ions, bromide ions, iodide ions, cyanide ions, and the like, including at least one halide ion.
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 The compound composed of the metal halide represented by the above general formula AaMmXx is doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb in order to improve the light emission characteristics. may be
 上記一般式Aで表されるメタルハライドからなる化合物の中で、ペロブスカイト型結晶構造を有する化合物は、その粒子サイズ、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、半導体ナノ結晶として利用する上で特に好ましい。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 Among the compounds composed of metal halides represented by the general formula AaMmXx , the compound having a perovskite-type crystal structure is adjusted by adjusting the particle size, the type and abundance of metal cations constituting the M site, Furthermore, it is particularly preferable for use as a semiconductor nanocrystal in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance of anions that constitute the X site. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 and A 2 MX 6 are preferred. A, M and X in the formula are as described above. Also, the compound having the perovskite crystal structure may be doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, as described above.
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、Zrから選ばれることが好ましい。 Among compounds exhibiting a perovskite crystal structure, A is Cs, Rb, K, Na, or Li, and M is one kind of metal cation (M 1 ), or two kinds of It is preferably a metal cation (M 1 α M 2 β ) and X is chloride, bromide or iodide. However, α and β each represent a real number between 0 and 1, and α+β=1. Specifically, M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, Zr. preferable.
 メタルハライドからなり、ペロブスカイト型結晶構造を有するナノ結晶の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いたナノ結晶911は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsSnCl、CsSnBr1.5Cl1.5、CsSbBr、(CHNHBiBr、(CNHAgBiBr、等のMとしてPb以外の金属カチオンを用いたナノ結晶は、低毒性であって環境への影響が少ないことから、好ましい。 Nanocrystals 911 using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 , etc., as specific compositions of nanocrystals made of metal halide and having a perovskite crystal structure, have a light intensity It is preferable because it is excellent in quantum efficiency as well as excellent in In addition, CsSnBr 3 , CsSnCl 3 , CsSnBr 1.5 Cl 1.5 , Cs 3 Sb 2 Br 9 , (CH 3 NH 3 ) 3 Bi 2 Br 9 , (C 4 H 9 NH 3 ) 2 AgBiBr 6 , Nanocrystals using metal cations other than Pb as M are preferred due to their low toxicity and low environmental impact.
 発光性ナノ結晶粒子の形状は特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。発光性ナノ結晶粒子の形状は、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等であってもよい。しかしながら、発光性ナノ結晶粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性及び流動性をより高められる点で好ましい。 The shape of the luminescent nanocrystalline particles is not particularly limited, and may be any geometric shape or any irregular shape. The shape of the luminescent nanocrystalline particles may be, for example, spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, rod-like, and the like. However, as the luminescent nanocrystalline particles, the uniformity and fluidity of the ink composition can be further enhanced by using particles with a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.). is preferred.
 発光性ナノ結晶粒子の平均粒子径(体積平均径)は、所望の波長の発光が得られやすい観点、並びに、分散性及び保存安定性に優れる観点から、1nm以上であってよく、1.5nm以上であってよく、2nm以上であってもよい。所望の発光波長が得られやすい観点から、40nm以下であってよく、30nm以下であってよく、20nm以下であってもよい。発光性ナノ結晶粒子の平均粒子径(体積平均径)は、透過型電子顕微鏡又は走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。 The average particle diameter (volume average diameter) of the luminescent nanocrystalline particles may be 1 nm or more, or 1.5 nm, from the viewpoints of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. or more, or 2 nm or more. From the viewpoint of easily obtaining a desired emission wavelength, it may be 40 nm or less, 30 nm or less, or 20 nm or less. The average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is obtained by measuring with a transmission electron microscope or scanning electron microscope and calculating the volume average diameter.
 発光性ナノ結晶粒子は、分散安定性の観点から、その表面に有機リガンドを有することが好ましい。有機リガンドは、例えば、発光性ナノ結晶粒子の表面に配位結合されていてよい。換言すれば、発光性ナノ結晶粒子の表面は、有機リガンドによってパッシベーションされていてよい。また、インク組成物が後述する高分子分散剤を更に含有する場合には、発光性ナノ結晶粒子は、その表面に高分子分散剤を有していてもよい。本実施形態では、例えば、上述の有機リガンドを有する発光性ナノ結晶粒子から有機リガンドを除去し、有機リガンドと高分子分散剤とを交換することで発光性ナノ結晶粒子の表面に高分子分散剤を結合させてよい。ただし、インクジェットインクにした際の分散安定性の観点では、有機リガンドが配位したままの発光性ナノ結晶粒子に対して高分子分散剤が配合されることが好ましい。 From the viewpoint of dispersion stability, the luminescent nanocrystalline particles preferably have organic ligands on their surfaces. Organic ligands may be coordinated to the surface of the luminescent nanocrystalline particles, for example. In other words, the surface of the luminescent nanocrystalline particles may be passivated by organic ligands. Moreover, when the ink composition further contains a polymer dispersant, which will be described later, the luminescent nanocrystalline particles may have the polymer dispersant on their surfaces. In this embodiment, for example, the organic ligand is removed from the luminescent nanocrystalline particles having the above-described organic ligand, and the organic ligand is exchanged with the polymeric dispersant, thereby dispersing the polymeric dispersant on the surface of the luminescent nanocrystalline particles. may be combined. However, from the viewpoint of dispersion stability when used as an inkjet ink, it is preferable that a polymer dispersant is added to the luminescent nanocrystalline particles with the organic ligands still coordinated.
 有機リガンドとしては、光重合性化合物、熱硬化性樹脂、有機溶剤等との親和性を確保するための官能基(以下、単に「親和性基」ともいう。)と、発光性ナノ結晶粒子と結合可能な官能基(発光性ナノ結晶粒子への吸着性を確保するための官能基)と、を有する化合物であることが好ましい。親和性基としては、置換又は無置換の脂肪族炭化水素基であってよい。当該脂肪族炭化水素基は、直鎖型であってもよく分岐構造を有していてもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。置換の脂肪族炭化水素は、脂肪族炭化水素基の一部の炭素原子が酸素原子で置換された基であってもよい。置換の脂肪族炭化水素基は、例えば、(ポリ)オキシアルキレン基を含んでいてよい。ここで、「(ポリ)オキシアルキレン基」とは、オキシアルキレン基、及び、2以上のアルキレン基がエーテル結合で連結したポリオキシアルキレン基の少なくとも1種を意味する。発光性ナノ結晶粒子と結合可能な官能基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、リン酸基、ホスホン酸基、ホスフィン基、ホスフィンオキサイド基及びアルコキシシリル基が挙げられる。有機リガンドとしては、例えば、TOP(トリオクチルホスフィン)、TOPO(トリオクチルホスフィンオキサイド)、オレイン酸、リノール酸、リノレン酸、リシノール酸、グルコン酸、16-ヒドロキシヘキサデカン酸、12-ヒドロキシステアリン酸、N-ラウロイルサルコシン、N-オレイルサルコシン、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、フェニルホスホン酸、及びオクチルホスフィン酸(OPA)が挙げられる。 As the organic ligand, a functional group for ensuring affinity with a photopolymerizable compound, a thermosetting resin, an organic solvent, etc. (hereinafter also simply referred to as an "affinity group"), and a luminescent nanocrystalline particle. It is preferably a compound having a bondable functional group (a functional group for ensuring adsorption to the luminescent nanocrystalline particles). The affinity group may be a substituted or unsubstituted aliphatic hydrocarbon group. The aliphatic hydrocarbon group may be linear or have a branched structure. Also, the aliphatic hydrocarbon group may or may not have an unsaturated bond. The substituted aliphatic hydrocarbon may be a group in which some carbon atoms of an aliphatic hydrocarbon group are substituted with oxygen atoms. Substituted aliphatic hydrocarbon groups may include, for example, (poly)oxyalkylene groups. Here, the "(poly)oxyalkylene group" means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond. Functional groups that can bind to luminescent nanocrystalline particles include, for example, hydroxyl groups, amino groups, carboxyl groups, thiol groups, phosphate groups, phosphonic acid groups, phosphine groups, phosphine oxide groups, and alkoxysilyl groups. Examples of organic ligands include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, linoleic acid, linolenic acid, ricinoleic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N - lauroylsarcosine, N-oleylsarcosine, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine acid (OPA).
 一実施形態において、有機リガンドは、下記式(1-1)で表される有機リガンドであってもよい。
Figure JPOXMLDOC01-appb-C000003
[式(1-1)中、pは0~50の整数を示し、qは0~50の整数を示す。]
In one embodiment, the organic ligand may be an organic ligand represented by formula (1-1) below.
Figure JPOXMLDOC01-appb-C000003
[In formula (1-1), p represents an integer of 0 to 50, and q represents an integer of 0 to 50. ]
 式(1-1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であることが好ましく、p及びqの両方が1以上であることがより好ましい。 In the organic ligand represented by formula (1-1), at least one of p and q is preferably 1 or more, more preferably both p and q are 1 or more.
 有機リガンドは、例えば、下記式(1-2)で表される有機リガンドであってもよい。
Figure JPOXMLDOC01-appb-C000004
The organic ligand may be, for example, an organic ligand represented by formula (1-2) below.
Figure JPOXMLDOC01-appb-C000004
 式(1-2)中、Aは、カルボキシル基を含む1価の基を示し、Aは、ヒドロキシル基を含む1価の基を示し、Rは、水素原子、メチル基、又はエチル基を示し、Lは、置換又は無置換のアルキレン基を示し、rは0以上の整数を示す。カルボキシル基を含む1価の基におけるカルボキシル基の数は、2個以上であってよく、2個以上4個以下であってよく、2個であってよい。Lで示されるアルキレン基の炭素数は、例えば、1~10であってよい。Lで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。rは、例えば、1~100の整数であってよく、10~20の整数であってもよい。 In formula (1-2), A 1 represents a monovalent group containing a carboxyl group, A 2 represents a monovalent group containing a hydroxyl group, and R is a hydrogen atom, a methyl group, or an ethyl group. , L represents a substituted or unsubstituted alkylene group, and r represents an integer of 0 or more. The number of carboxyl groups in the monovalent group containing a carboxyl group may be 2 or more, 2 or more and 4 or less, or 2. The number of carbon atoms in the alkylene group represented by L may be, for example, 1-10. In the alkylene group represented by L, some of the carbon atoms may be substituted with hetero atoms, and at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too. r may be, for example, an integer of 1-100, or an integer of 10-20.
 有機リガンドは、画素部(インク組成物の硬化物)の外部量子効率に優れる観点から、下記式(1-2A)で表される有機リガンドであってもよい。
Figure JPOXMLDOC01-appb-C000005
The organic ligand may be an organic ligand represented by the following formula (1-2A) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
Figure JPOXMLDOC01-appb-C000005
 式(1-2A)中、rは上記と同義である。 In formula (1-2A), r has the same meaning as above.
 インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子の分散安定性の観点及び発光特性維持の観点から、発光性ナノ結晶粒子100質量部に対して、15質量部以上、20質量部以上、25質量部以上、30質量部以上、35質量部以上又は40質量部以上であることが好ましい。インク組成物における有機リガンドの含有量は、インク組成物の粘度を低く保ちやすい観点から、発光性ナノ結晶粒子100質量部に対して、50質量部以下、45質量部以下、40質量部以下又は30質量部以下であることが好ましい。 The content of the organic ligand in the ink composition is 15 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles, from the viewpoint of the dispersion stability of the luminescent nanocrystalline particles and the maintenance of the light emission properties. Above, it is preferable that it is 25 mass parts or more, 30 mass parts or more, 35 mass parts or more, or 40 mass parts or more. From the viewpoint of keeping the viscosity of the ink composition low, the content of the organic ligand in the ink composition is 50 parts by mass or less, 45 parts by mass or less, or 40 parts by mass or less relative to 100 parts by mass of the luminescent nanocrystalline particles. It is preferably 30 parts by mass or less.
 発光性ナノ結晶粒子としては、有機溶剤、光重合性化合物等の中にコロイド形態で分散しているものを用いることができる。有機溶剤中で分散状態にある発光性ナノ結晶粒子の表面は、上述の有機リガンドによってパッシベーションされていることが好ましい。有機溶剤としては、インク組成物に含有される後述の有機溶剤が用いられる。 As the luminescent nanocrystalline particles, those dispersed in a colloidal form in an organic solvent, a photopolymerizable compound, or the like can be used. The surfaces of the luminescent nanocrystalline particles dispersed in the organic solvent are preferably passivated with the above-described organic ligands. As the organic solvent, the below-described organic solvent contained in the ink composition is used.
 発光性ナノ結晶粒子としては、市販品を用いることができる。発光性ナノ結晶粒子の市販品としては、例えば、NN-ラボズ社の、インジウムリン/硫化亜鉛、D-ドット、CuInS/ZnS、アルドリッチ社の、InP/ZnS等が挙げられる。 Commercially available products can be used as the luminescent nanocrystalline particles. Commercially available luminescent nanocrystalline particles include, for example, indium phosphide/zinc sulfide, D-dot, CuInS/ZnS from NN-Labs, and InP/ZnS from Aldrich.
 また、ナノ結晶の表面にカチオンが存在する場合、そのカチオンに結合する結合性基を有する配位子を使用してもよく、該配位子によりナノ結晶の表面を安定化することができる。 In addition, when cations are present on the surface of the nanocrystal, a ligand having a binding group that binds to the cation may be used, and the ligand can stabilize the surface of the nanocrystal.
 前記結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基およびボロン酸基のうちの少なくとも1種であることが好ましく、カルボキシル基およびアミノ基のうちの少なくとも1種であることがより好ましい。かかる配位子としては、カルボキシル基またはアミノ基含有化合物等が挙げられ、これらの1種を単独で使用し、または2種以上を併用することができる。 Examples of the binding group include a carboxyl group, a carboxylic anhydride group, an amino group, an ammonium group, a mercapto group, a phosphine group, a phosphine oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and At least one of boronic acid groups is preferred, and at least one of carboxyl and amino groups is more preferred. Examples of such ligands include carboxyl group- or amino group-containing compounds and the like, and these ligands can be used singly or in combination of two or more.
 カルボキシル基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族カルボン酸が挙げられる。かかるカルボキシル基含有化合物の具体例としては、例えば、アラキドン酸、クロトン酸、trans-2-デセン酸、エルカ酸、3-デセン酸、cis-4,7,10,13,16,19-ドコサヘキサエン酸、4-デセン酸、all cis-5,8,11,14,17-エイコサペンタエン酸、all cis-8,11,14-エイコサトリエン酸、cis-9-ヘキサデセン酸、trans-3-ヘキセン酸、trans-2-ヘキセン酸、2-ヘプテン酸、3-ヘプテン酸、2-ヘキサデセン酸、リノレン酸、リノール酸、γ-リノレン酸、3-ノネン酸、2-ノネン酸、trans-2-オクテン酸、ペトロセリン酸、エライジン酸、オレイン酸、3-オクテン酸、trans-2-ペンテン酸、trans-3-ペンテン酸、リシノール酸、ソルビン酸、2-トリデセン酸、cis-15-テトラコセン酸、10-ウンデセン酸、2-ウンデセン酸、酢酸、酪酸、ベヘン酸、セロチン酸、デカン酸、アラキジン酸、ヘンエイコサン酸、ヘプタデカン酸、ヘプタン酸、ヘキサン酸、ヘプタコサン酸、ラウリン酸、ミリスチン酸、メリシン酸、オクタコサン酸、ノナデカン酸、ノナコサン酸、n-オクタン酸、パルミチン酸、イソパルミチン酸、ペンタデカン酸、プロピオン酸、ペンタコサン酸、ノナン酸、ステアリン酸、リグノセリン酸、トリコサン酸、トリデカン酸、ウンデカン酸、吉草酸等が挙げられる。 Examples of carboxyl group-containing compounds include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms. Specific examples of such carboxyl group-containing compounds include arachidonic acid, crotonic acid, trans-2-decenoic acid, erucic acid, 3-decenoic acid, cis-4,7,10,13,16,19-docosahexaenoic acid. , 4-decenoic acid, all cis-5,8,11,14,17-eicosapentaenoic acid, all cis-8,11,14-eicosatrienoic acid, cis-9-hexadecenoic acid, trans-3-hexenoic acid , trans-2-hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 2-hexadecenoic acid, linolenic acid, linoleic acid, γ-linolenic acid, 3-nonenoic acid, 2-nonenoic acid, trans-2-octenoic acid , petroselinic acid, elaidic acid, oleic acid, 3-octenoic acid, trans-2-pentenoic acid, trans-3-pentenoic acid, ricinoleic acid, sorbic acid, 2-tridecenoic acid, cis-15-tetracosenoic acid, 10-undecene acid, 2-undecenoic acid, acetic acid, butyric acid, behenic acid, cerotic acid, decanoic acid, arachidic acid, heneicosanoic acid, heptadecanoic acid, heptanoic acid, hexanoic acid, heptacosanoic acid, lauric acid, myristic acid, melisic acid, octacosanoic acid, Nonadecanic acid, nonacosanoic acid, n-octanoic acid, palmitic acid, isopalmitic acid, pentadecanoic acid, propionic acid, pentacosanoic acid, nonanoic acid, stearic acid, lignoceric acid, tricosanoic acid, tridecanoic acid, undecanoic acid, valeric acid, etc. be done.
 アミノ基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族アミンが挙げられる。かかるアミノ基含有化合物の具体例としては、例えば、1-アミノヘプタデカン、1-アミノノナデカン、ヘプタデカン-9-アミン、ステアリルアミン、オレイルアミン、2-n-オクチル-1-ドデシルアミン、アリルアミン、アミルアミン、2-エトキシエチルアミン、3-エトキシプロピルアミン、イソブチルアミン、イソアミルアミン、3-メトキシプロピルアミン、2-メトキシエチルアミン、2-メチルブチルアミン、ネオペンチルアミン、プロピルアミン、メチルアミン、エチルアミン、ブチルアミン、ヘキシルアミン、ヘプチルアミン、n-オクチルアミン、1-アミノデカン、ノニルアミン、1-アミノウンデカン、ドデシルアミン、1-アミノペンタデカン、1-アミノトリデカン、ヘキサデシルアミン、テトラデシルアミン等が挙げられる。 Examples of amino group-containing compounds include linear or branched aliphatic amines having 1 to 30 carbon atoms. Specific examples of such amino group-containing compounds include 1-aminoheptadecane, 1-aminononadecane, heptadecane-9-amine, stearylamine, oleylamine, 2-n-octyl-1-dodecylamine, allylamine, and amylamine. , 2-ethoxyethylamine, 3-ethoxypropylamine, isobutylamine, isoamylamine, 3-methoxypropylamine, 2-methoxyethylamine, 2-methylbutylamine, neopentylamine, propylamine, methylamine, ethylamine, butylamine, hexylamine , heptylamine, n-octylamine, 1-aminodecane, nonylamine, 1-aminoundecane, dodecylamine, 1-aminopentadecane, 1-aminotridecane, hexadecylamine, tetradecylamine and the like.
 また、ナノ結晶表面のカチオンに結合する結合性基を有する配位子は、Siを含有し、加水分解によりシロキサン結合を形成する反応性基を有するシラン化合物であってもよく、該配位子によりナノ結晶表面をさらに安定化することができる。 In addition, the ligand having a bonding group that binds to the cation on the surface of the nanocrystal may be a silane compound containing Si and having a reactive group that forms a siloxane bond by hydrolysis. can further stabilize the nanocrystal surface.
 反応性基としては、シロキサン結合が容易に形成されることから、シラノール基、炭素原子数が1~6のアルコキシシリル基のような加水分解性シリル基が好ましい。 As the reactive group, a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
 結合性基としては、例えば、カルボキシル基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基等が挙げられる。中でも、結合性基としては、カルボキシル基、メルカプト基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、上述の反応性基よりもナノ結晶に含まれるカチオンに対する親和性が高い。このため、配位子は、結合性基をナノ結晶側にして配位し、より容易かつ確実にシリカ層を形成することができる。 Examples of binding groups include carboxyl groups, amino groups, ammonium groups, mercapto groups, phosphine groups, phosphine oxide groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, sulfonic acid groups, boronic acid groups, and the like. . Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group. These binding groups have a higher affinity for the cations contained in the nanocrystals than the reactive groups described above. Therefore, the ligands are coordinated with the bonding groups on the nanocrystal side, and the silica layer can be formed more easily and reliably.
 Siを含有し、シロキサン結合を形成する反応性基を有するシラン化合物としては、結合性基を含有するケイ素化合物を1種以上含有し、または2種以上を併用することができる。
 好ましくは、カルボキシル基含有ケイ素化合物、アミノ基含有ケイ素化合物、メルカプト基含有ケイ素化合物の何れか1種を含有し、または2種以上を併用することができる。
As the silane compound containing Si and having a reactive group that forms a siloxane bond, one or more silicon compounds containing a bonding group may be used, or two or more may be used in combination.
Preferably, any one of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound is contained, or two or more of them can be used in combination.
 カルボキシル基含有ケイ素化合物の具体例としては、例えば、3-(トリメトキシシリル)プロピオン酸、3-(トリエトキシシリル)プロピオン酸、2-、カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-[3-(トリメトキシシリル)プロピル]-N’-カルボキシメチルエチレンジアミン、N-[3-(トリメトキシシリル)プロピル]フタルアミド、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン-N,N’,N’-三酢酸等が挙げられる。 Specific examples of carboxyl group-containing silicon compounds include 3-(trimethoxysilyl)propionic acid, 3-(triethoxysilyl)propionic acid, 2-, carboxyethylphenylbis(2-methoxyethoxy)silane, N- [3-(trimethoxysilyl)propyl]-N'-carboxymethylethylenediamine, N-[3-(trimethoxysilyl)propyl]phthalamide, N-[3-(trimethoxysilyl)propyl]ethylenediamine-N,N' , N′-triacetic acid and the like.
 一方、アミノ基含有ケイ素化合物の具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルシラントリオール、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェニルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、(アミノエチルアミノエチル)フェニルトリプロポキシシラン、(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェニルトリエトキシシラン、(アミノエチルアミノメチル)フェニルトリプロポキシシラン、(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン、N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノエチル)フェネチルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリプロポキシシラン、(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン等が挙げられる。 On the other hand, specific examples of amino group-containing silicon compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldipropoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiiso Propoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyl Tripropoxysilane, N-(2-aminoethyl)-3-aminopropyltriisopropoxysilane, N-(2-aminoethyl)-3-aminoisobutyldimethylmethoxysilane, N-(2-aminoethyl)-3- Aminoisobutylmethyldimethoxysilane, N-(2-aminoethyl)-11-aminoundecyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylsilanetriol, 3-triethoxysilyl-N-(1 ,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N,N-bis[3-(trimethoxysilyl)propyl]ethylenediamine, (aminoethylaminoethyl)phenyltrimethoxysilane, (aminoethylaminoethyl)phenyltriethoxysilane, (aminoethylaminoethyl)phenyltripropoxysilane, (aminoethylaminoethyl)phenyltriisopropoxysilane, (aminoethylaminomethyl)phenyltrimethoxysilane, (aminoethylaminomethyl) ) phenyltriethoxysilane, (aminoethylaminomethyl)phenyltripropoxysilane, (aminoethylaminomethyl)phenyltriisopropoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane, N -(vinylbenzyl)-2-aminoethyl-3-aminopropylmethyldimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-N-γ-(N-vinylbenzyl)-γ-aminopropyltrimethoxysilane , N-β-(N-di(vinylbenzyl)aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(N-di(vinylbenzyl) Dyl)aminoethyl)-N-γ-(N-vinylbenzyl)-γ-aminopropyltrimethoxysilane, methylbenzylaminoethylaminopropyltrimethoxysilane, dimethylbenzylaminoethylaminopropyltrimethoxysilane, benzylaminoethylaminopropyl Trimethoxysilane, benzylaminoethylaminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3-(N-phenyl)aminopropyltrimethoxysilane, N,N-bis[3-(trimethoxysilyl)propyl]ethylenediamine , (aminoethylaminoethyl)phenethyltrimethoxysilane, (aminoethylaminoethyl)phenethyltriethoxysilane, (aminoethylaminoethyl)phenethyltripropoxysilane, (aminoethylaminoethyl)phenethyltriisopropoxysilane, (aminoethylamino methyl)phenethyltrimethoxysilane, (aminoethylaminomethyl)phenethyltriethoxysilane, (aminoethylaminomethyl)phenethyltripropoxysilane, (aminoethylaminomethyl)phenethyltriisopropoxysilane, N-[2-[3-( Trimethoxysilyl)propylamino]ethyl]ethylenediamine, N-[2-[3-(triethoxysilyl)propylamino]ethyl]ethylenediamine, N-[2-[3-(tripropoxysilyl)propylamino]ethyl]ethylenediamine , N-[2-[3-(triisopropoxysilyl)propylamino]ethyl]ethylenediamine and the like.
 メルカプト基含有ケイ素化合物の具体例としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール等が挙げられる。 Specific examples of mercapto group-containing silicon compounds include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis(3,6,9,12,15-pentoxaoctacosane-1 -yloxy)silyl]-1-propanethiol and the like.
 シリカ層は、前記ナノ結晶の表面に、配位子として、例えば、オレイン酸、3-アミノプロピルトリメトキシシランを配位させ、さらに3-アミノプロピルトリメトキシシランを反応させることにより形成することができる。 The silica layer can be formed by coordinating ligands such as oleic acid and 3-aminopropyltrimethoxysilane to the surface of the nanocrystals and further reacting with 3-aminopropyltrimethoxysilane. can.
 シリカ層の厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さのシリカ層を有する発光粒子であれば、ナノ結晶の熱や光に対する安定性を十分に高めることができる。 The thickness of the silica layer is preferably 0.5-50 nm, more preferably 1.0-30 nm. A luminescent particle having such a thick silica layer can sufficiently improve the stability of the nanocrystal against heat and light.
 なお、シリカ層の厚さは、配位子の結合基と反応性基とを連結する連結構造の原子数(鎖長)を調整することで変更することができる。 The thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
 シリカ層を備えた発光粒子は、具体的には、ナノ結晶の原料化合物を含む溶液と、ナノ結晶に含まれるカチオンに結合する結合性基を有する化合物と、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物とを含む溶液とを混合した後に、析出したナノ結晶の表面に配位したSiを含有しシロキサン結合を形成し得る反応性基を有する化合物中の反応性基を縮合させることにより、容易に作製することができる。このとき、加熱を行って製造する方法と、加熱を行わずに製造する方法とがある。 Specifically, the luminescent particles having a silica layer are composed of a solution containing a raw material compound of nanocrystals, a compound having a bonding group that binds to cations contained in the nanocrystals, and Si to form a siloxane bond. After mixing with a solution containing a compound having a reactive group to be obtained, the reactive group in the compound containing Si coordinated to the surface of the precipitated nanocrystal and having a reactive group capable of forming a siloxane bond is condensed. It can be easily produced by At this time, there are a method of manufacturing with heating and a method of manufacturing without heating.
 まず、加熱を行ってシリカ層を有する発光粒子を製造する方法について説明する。半導体ナノ結晶を反応によって合成する2種の原料化合物を含む溶液をそれぞれ調製する。この際、2種の溶液の何れか一方にナノ結晶に含まれるカチオンに結合する結合性基を有する化合物を、もう一方にSiを含有しシロキサン結合を形成し得る反応性基を有する化合物を加えておく。次いで、これらを不活性ガス雰囲気下で混合、140~260℃の温度条件下に反応させる。次いで、-20~30℃に冷却し、攪拌することにより、ナノ結晶を析出させる方法が挙げられる。析出したナノ結晶はナノ結晶の表面にシロキサン結合を有するシリカ層が形成されたものとなり、遠心分離等の定法によりナノ結晶を得ることができる。 First, a method for producing luminescent particles having a silica layer by heating will be described. Solutions containing two kinds of raw material compounds for synthesizing semiconductor nanocrystals by reaction are prepared respectively. At this time, a compound having a bonding group that binds to cations contained in the nanocrystals is added to one of the two solutions, and a compound containing Si and having a reactive group capable of forming a siloxane bond is added to the other. Keep These are then mixed under an inert gas atmosphere and reacted at a temperature of 140 to 260°C. Next, a method of precipitating nanocrystals by cooling to −20 to 30° C. and stirring may be used. The precipitated nanocrystals have a silica layer having siloxane bonds formed on the surface of the nanocrystals, and the nanocrystals can be obtained by a conventional method such as centrifugation.
 次に、加熱を行わずにシリカ層を備えた発光粒子を製造する方法について説明する。半導体ナノ結晶の原料化合物及びナノ結晶に含まれるカチオンに結合する結合性基を有する化合物(Siを含有しシロキサン結合を形成し得る反応性基を有する化合物は含まない)を含む溶液を、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物をナノ結晶に対して貧溶媒である有機溶剤に溶解した溶液中に大気下にて滴下・混合することにより、ナノ結晶を析出させる方法が挙げられる。有機溶剤の使用量は半導体ナノ結晶に対して質量基準で10~1000倍量であることが好ましい。また、析出したナノ結晶はナノ結晶の表面にシロキサン結合を有するシリカ層が形成されたものとなり、遠心分離等の定法によりナノ結晶を得ることができる。 Next, a method for producing luminescent particles having a silica layer without heating will be described. A solution containing a raw material compound for semiconductor nanocrystals and a compound having a bonding group that binds to a cation contained in the nanocrystal (excluding compounds containing Si and having a reactive group capable of forming a siloxane bond) was added to the solution containing Si. A method of precipitating nanocrystals by dropping and mixing a compound containing a reactive group capable of forming a siloxane bond in an organic solvent, which is a poor solvent for nanocrystals, in the atmosphere. mentioned. The amount of the organic solvent used is preferably 10 to 1000 times the mass of the semiconductor nanocrystals. In addition, the deposited nanocrystals have a silica layer having a siloxane bond formed on the surface of the nanocrystals, and can be obtained by a standard method such as centrifugation.
 シリカ層は、シロキサン結合を有するシェル層が形成されたナノ結晶の表面に追加的に形成してもよい。シリカ層を追加的に形成する場合、まずシロキサン結合を有するシリカ層が形成されたナノ結晶にシラン化合物を混合し、加水分解によりシロキサン結合を形成しシェル層を設けてもよい。また、シリカ層を追加的に形成する場合、塩基性基を含む構造単位を有するポリマーを吸着させ反応場を形成し、ついでシラン化合物を混合し加水分解によりシロキサン結合を形成しシリカ層を設けてもよい。 A silica layer may be additionally formed on the surface of the nanocrystal on which the shell layer having siloxane bonds is formed. When a silica layer is additionally formed, first, a silane compound is mixed with nanocrystals on which a silica layer having siloxane bonds is formed, and siloxane bonds are formed by hydrolysis to form a shell layer. In the case of additionally forming a silica layer, a reaction field is formed by adsorbing a polymer having a structural unit containing a basic group, and then a silane compound is mixed and hydrolyzed to form a siloxane bond to form a silica layer. good too.
 前記シラン化合物としては、例えば、下記式(C1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式中、RC1及びRC2は、それぞれ独立にアルキル基を表し、RC3及びRC4は、それぞれ独立に水素原子又はアルキル基を表し、nは0又は1を表し、mは1以上の整数を表す。mは、10以下の整数であることが好ましい。
The silane compound is preferably, for example, a compound represented by the following formula (C1).
Figure JPOXMLDOC01-appb-C000006
In the formula, R C1 and R C2 each independently represent an alkyl group, R C3 and R C4 each independently represent a hydrogen atom or an alkyl group, n represents 0 or 1, m is an integer of 1 or more represents m is preferably an integer of 10 or less.
 式(C1)で表される化合物は、具体的には、例えば、テトラブトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシラン、n-プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルルトリメトキシシラン、n-ドデシルトリメトキシシラン、n-ドデシルトリエトキシシラン、n-ヘキサデシルトリメトキシシラン、n-ヘキサデシルトリエトキシシラン、n-オクタデシルトリメトキシシラン、トリメトキシ(3、3、3-トリフルオロプロピル)シラン、トリメトキシ(ペンタフルオロフェニル)シラン、トリメトキシ(11-ペンタフルオロフェノキシウンデシル)シラン、トリメトキシ(1H、1H、2H、2H-ノナフルオロヘキシル)シラン、テトラメトキシシランの部分加水分解オリゴマー(製品名:メチルシリケート51、メチルシリケート53A(以上、コルコート株式会社製))、テトラエトキシシランの部分加水分解オリゴマー(製品名:エチルシリケート40、エチルシリケート48(以上、コルコート株式会社製)、テトラメトキシシランとテトラエトキシシラン混合物の部分加水分解オリゴマー(製品名:EMS-485(コルコート株式会社製))等が挙げられる。 Specific examples of the compound represented by formula (C1) include tetrabutoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyl trimethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, n-propyltrimethoxysilane, isopropyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-octyl trimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, n-dodecyltrimethoxysilane, n-dodecyltriethoxysilane, n-hexadecyltrimethoxysilane, n-hexadecyltriethoxysilane, n- Octadecyltrimethoxysilane, trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy(pentafluorophenyl)silane, trimethoxy(11-pentafluorophenoxyundecyl)silane, trimethoxy(1H,1H,2H,2H-nona) fluorohexyl)silane, partially hydrolyzed oligomers of tetramethoxysilane (product names: Methyl Silicate 51, Methyl Silicate 53A (manufactured by Colcoat Co., Ltd.)), partially hydrolyzed oligomers of tetraethoxysilane (product names: Ethyl Silicate 40, Examples include Ethyl Silicate 48 (manufactured by Colcoat Co., Ltd.), partially hydrolyzed oligomer of a mixture of tetramethoxysilane and tetraethoxysilane (product name: EMS-485 (manufactured by Colcoat Co., Ltd.)), and the like.
 シラン化合物として、上述の式(C1)で表される化合物に加えて、例えば、下記式(C2)で表される化合物及び(C3)で表される化合物を併用することも可能である。
Figure JPOXMLDOC01-appb-C000007
 式中、RC21、RC22、RC31は、それぞれ独立にアルキル基を表し、RC23、RC24、RC32、RC33、及びRC34は、それぞれ独立に水素原子、置換基を有してもよいアルキル基、フェニル基、シクロヘキシル基を表し、前記アルキル基中の炭素原子は酸素原子あるいは窒素原子に置換されていてもよく、m2は1以上10以下の整数を表す。
As the silane compound, in addition to the compound represented by the above formula (C1), for example, a compound represented by the following formula (C2) and a compound represented by (C3) can be used in combination.
Figure JPOXMLDOC01-appb-C000007
In the formula, R C21 , R C22 and R C31 each independently represent an alkyl group, and R C23 , R C24 , R C32 , R C33 and R C34 each independently have a hydrogen atom and a substituent. may be an alkyl group, a phenyl group or a cyclohexyl group, the carbon atoms in the alkyl group may be substituted with an oxygen atom or a nitrogen atom, and m2 represents an integer of 1 or more and 10 or less.
 式(C2)で表される化合物及び式(C3)で表される化合物としては、具体的には、例えば、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、メチルエチルジメトキシシラン、トリメチルメトキシシランが挙げられる。式(C1)で表される化合物は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。式(C2)で表される化合物及び(C3)で表される化合物は、一般式(C1)で表される化合物と1種あるいは2種以上を組み合わせて用いることができる。 Specific examples of the compound represented by formula (C2) and the compound represented by formula (C3) include dimethyldiethoxysilane, diphenyldimethoxysilane, methylethyldimethoxysilane, and trimethylmethoxysilane. The compounds represented by formula (C1) can be used singly or in combination of two or more. The compound represented by formula (C2) and the compound represented by (C3) can be used alone or in combination with the compound represented by general formula (C1).
 シリカ層を合計した厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さのシリカ層を有する発光ナノ結晶であれば、ナノ結晶の熱や光に対する安定性を十分に高めることができる。なお、上記厚さは、例えば高分解能電子顕微鏡により測定することができる。 The total thickness of the silica layers is preferably 0.5-50 nm, more preferably 1.0-30 nm. A luminescent nanocrystal having such a thickness of silica layer can sufficiently enhance the stability of the nanocrystal against heat and light. The thickness can be measured, for example, with a high-resolution electron microscope.
 なお、シリカ層を合計した厚さは、配位子の結合基と反応性基とを連結する連結構造の原子数(鎖長)を調整することで変更することができる。 The total thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
 発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上、1質量部以上、5質量部以上、10質量部以上、20質量部以上又は30質量部以上であることが好ましい。発光性ナノ結晶粒子の含有量は、塗布性、吐出安定性及び光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、80質量部以下であり、75質量部以下、70質量部以下、60質量部以下、50質量部以下又は40質量部以下であってもよい。なお、本明細書中、「インク組成物に含まれる有機溶剤以外の成分」は、インク組成物の硬化物に含有させるべき成分と言い換えてもよい。「インク組成物に含まれる有機溶剤以外の成分の合計」は、例えば、発光性ナノ結晶粒子と、有機リガンド(配位子)と、光重合性化合物及び/又は熱硬化性樹脂と、光散乱性粒子と、の合計であってよい。 From the viewpoint of further improving the external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles is 0.1 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. , 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more. From the viewpoint of further improving the coating properties, ejection stability, and external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles is 100 parts by mass in total of the components other than the organic solvent contained in the ink composition. , 80 parts by mass or less, and may be 75 parts by mass or less, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less. In this specification, the term "components other than the organic solvent contained in the ink composition" may also be referred to as components to be contained in the cured product of the ink composition. The “total of components other than the organic solvent contained in the ink composition” includes, for example, luminescent nanocrystalline particles, organic ligands (ligands), photopolymerizable compounds and/or thermosetting resins, and light scattering may be the sum of the physical particles and
 カラーフィルターの画素部として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、インク組成物中に含まれる有機溶剤以外の成分の合計100質量部に対して、5質量部以上、10質量部以上、15質量部以上、20質量部以上または30質量部以上であることが好ましい。カラーフィルターの画素部として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、吐出安定性および画素部の外部量子効率がより向上する観点から、上記有機溶剤以外の成分の合計100質量部に対して、80質量部以下、75質量部以下、70質量部以下または60質量部以下であることが好ましい。 From the viewpoint of further improving the external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is It is preferably 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more with respect to a total of 100 parts by mass. From the viewpoint of further improving the ejection stability and the external quantum efficiency of the pixel portion, the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is 100% of the components other than the organic solvent. It is preferably 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, or 60 parts by mass or less.
 また、シート状の光変換フィルム中の光変換層として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、該インク組成物中に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、2質量部以上または3質量部以上であることが好ましい。シート状の光変換フィルム中の光変換層として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、塗布性および光変換層の外部量子効率がより向上する観点から、上記有機溶剤以外の成分の合計100質量部に対して、15質量部以下、12.5質量部以下、10質量部以下、7.5質量部以下または5質量部以下であることが好ましい。 In addition, the content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is adjusted from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained therein. preferable. The content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is the above organic solvent from the viewpoint of further improving the coatability and the external quantum efficiency of the light conversion layer. It is preferably 15 parts by mass or less, 12.5 parts by mass or less, 10 parts by mass or less, 7.5 parts by mass or less, or 5 parts by mass or less with respect to a total of 100 parts by mass of the other components.
 発光性ナノ結晶粒子がメタルハライドを含む場合、インク組成物における発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、5質量部以上であることが好ましい。インク組成物における発光性ナノ結晶粒子の含有量は、塗布性、吐出安定性および光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、30質量部以下、20質量部以下、15質量部以下、10質量部以下であることが好ましい。 When the luminescent nanocrystalline particles contain a metal halide, the content of the luminescent nanocrystalline particles in the ink composition is the same as that of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is preferably 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, or 5 parts by mass or more with respect to a total of 100 parts by mass. The content of the luminescent nanocrystalline particles in the ink composition is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the coatability, the ejection stability, and the external quantum efficiency of the light conversion layer. It is preferably 30 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less.
 インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、外部量子効率がより向上する観点から、0.1質量%以上、0.5質量%以上、1質量%以上、5質量%以上、10質量%以上であることが好ましい。インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、塗布性、吐出安定性及び外部量子効率を向上させる観点から、36質量%以下であり、34質量%以下、32質量%以下、30質量%以下又は28質量%以下であってもよい。 The content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 5% by mass or more, from the viewpoint of further improving the external quantum efficiency. % by mass or more, preferably 10% by mass or more. The content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 36% by mass or less, 34% by mass or less, and 32% by mass, from the viewpoint of improving coatability, ejection stability, and external quantum efficiency. % or less, 30 mass % or less, or 28 mass % or less.
 インク組成物は、発光性ナノ結晶粒子として、赤色発光性ナノ結晶粒子、緑色発光性ナノ結晶粒子及び青色発光性ナノ結晶粒子のうちの2種以上を含んでいてもよいが、好ましくはこれらの粒子のうちの1種のみを含んでいてもよい。インク組成物が赤色発光性ナノ結晶粒子を含む場合、緑色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、0質量%以上50質量%以下が好ましく、0質量%以上25質量%以下がより好ましく、0質量%以上10質量%以下が特に好ましい。インク組成物が緑色発光性ナノ結晶粒子を含む場合、赤色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、0質量%以上50質量%以下が好ましく、0質量%以上25質量%以下がより好ましく、0質量%以上10質量%以下が特に好ましい。 The ink composition may contain, as luminescent nanocrystalline particles, two or more of red luminescent nanocrystalline particles, green luminescent nanocrystalline particles and blue luminescent nanocrystalline particles, but these are preferably used. It may contain only one type of particles. When the ink composition contains red-emitting nanocrystalline particles, the content of green-emitting nanocrystalline particles and the content of blue-emitting nanocrystalline particles are 0 wt% based on the total weight of the luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable. When the ink composition contains green luminescent nanocrystalline particles, the content of red luminescent nanocrystalline particles and the content of blue luminescent nanocrystalline particles are 0 wt% based on the total weight of luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
[光重合性化合物]
 光重合性化合物は、光の照射によって重合する化合物であり、光重合性化合物は、光重合性のモノマー又はオリゴマーであってよい。これらは、光重合開始剤と共に用いられる。光重合性化合物は1種を単独で用いてもよいし、2種以上を併用してもよい。
[Photopolymerizable compound]
The photopolymerizable compound is a compound that polymerizes upon irradiation with light, and the photopolymerizable compound may be a photopolymerizable monomer or oligomer. These are used together with a photoinitiator. A photopolymerizable compound may be used individually by 1 type, and may use 2 or more types together.
 本発明では、光重合性化合物として、アクリル当量が110以上である(メタ)アクリロイル基を有する(メタ)アクリレート化合物を使用することを必須とする。 In the present invention, it is essential to use a (meth)acrylate compound having a (meth)acryloyl group with an acrylic equivalent of 110 or more as the photopolymerizable compound.
 アクリル当量は、以下の式で求められる。
 アクリル当量=(メタ)アクリレート化合物の分子量/(メタ)アクリロイル基の官能基数
The acrylic equivalent is calculated by the following formula.
Acrylic equivalent = molecular weight of (meth)acrylate compound/number of functional groups of (meth)acryloyl group
 すなわち、アクリル当量の大きい(メタ)アクリレート化合物は、分子内に占める二重結合の割合が小さい。 That is, a (meth)acrylate compound with a large acrylic equivalent has a small proportion of double bonds in the molecule.
 アクリル当量が110以上である(メタ)アクリレート化合物をインク組成物に含有することにより、光硬化時の硬化収縮が小さくなり、基材と光変換層との密着性を向上できる。 By including a (meth)acrylate compound having an acrylic equivalent of 110 or more in the ink composition, curing shrinkage during photocuring is reduced, and adhesion between the substrate and the light conversion layer can be improved.
 アクリル当量が110以上である(メタ)アクリレート化合物としては、例えば、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、エトキシエトキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニロキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、コハク酸モノ(2-アクリロイルオキシエチル)、コハク酸モノ(2-メタクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド、4-ヒドロキシブチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルアクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルヒドロキシピバリン酸エステルジアクリレ-トなどが挙げられる。 (Meth)acrylate compounds having an acrylic equivalent of 110 or more include, for example, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, octyl (meth)acrylate, nonyl (meth)acrylate, dodecyl (meth)acrylate, hexadecyl (meth)acrylate, octadecyl (meth)acrylate, cyclohexyl (meth)acrylate, methoxyethyl (meth)acrylate, butoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, nonylphenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, ethoxyethoxyethyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate Acrylates, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, 2-hydroxy-3-phenoxypropyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2-hydroxyethyl (meth)acrylate , benzyl (meth)acrylate, phenylbenzyl (meth)acrylate, mono(2-acryloyloxyethyl) succinate, mono(2-methacryloyloxyethyl) succinate, N-[2-(acryloyloxy)ethyl]phthalimide, N -[2-(acryloyloxy)ethyl]tetrahydrophthalimide, 4-hydroxybutyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxyethyl acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol diol (Meth)acrylates, tricyclodecanedimethanol di(meth)acrylate, propylene glycol di(meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, neopentyl glycol hydroxypivalic acid Ester diacrylate and the like can be mentioned.
 アクリル当量が110以上である(メタ)アクリレート化合物は、好ましくは、下記式(I)で表される化合物である。 The (meth)acrylate compound having an acrylic equivalent of 110 or more is preferably a compound represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000008
[式(I)中、Rは、水素原子又はメチル基を示し、Rは置換されていてもよい直鎖状または分岐状の炭素原子数1~20のアルキレン基を示し、mは1~10の整数である。2つのRは互いに同一であっても異なっていてもよい。]
Figure JPOXMLDOC01-appb-C000008
[In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents an optionally substituted linear or branched alkylene group having 1 to 20 carbon atoms, m is 1 An integer from ˜10. Two R 1s may be the same or different. ]
 アクリル当量が110以上である(メタ)アクリレート化合物の、好ましい例として、具体的には、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレートなどが挙げられる。 Preferable examples of (meth)acrylate compounds having an acrylic equivalent of 110 or more include 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, propylene glycol di(meth)acrylate, (Meth)acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate and the like.
 光重合性化合物中の、アクリル当量が110以上である(メタ)(メタ)アクリレート化合物の含有量は、充分な硬化性が得る観点から、光重合性化合物全質量を基準として、5質量%以上、10質量%以上又は20質量%以上であってよく、インク組成物の粘度を低粘度とする観点から、90質量%以下、80質量%以下又は70質量%以下であってよい。 In the photopolymerizable compound, the content of the (meth)(meth)acrylate compound having an acrylic equivalent of 110 or more is 5% by mass or more based on the total mass of the photopolymerizable compound, from the viewpoint of obtaining sufficient curability. , 10% by mass or more, or 20% by mass or more, and from the viewpoint of making the viscosity of the ink composition low, it may be 90% by mass or less, 80% by mass or less, or 70% by mass or less.
 アクリル当量が110以上である(メタ)アクリレート化合物以外の、光重合性化合物は、特に限定はなく公知のものを使用することができる。
 例えば、単官能(メタ)アクリレート化合物としては、メチル、エチル、プロピル、ブチル、アミル、2-エチルヘキシル、オクチル、ノニル、デシル、ラウリル、ヘキサデシル、ステアリル、シクロヘキシル、ベンジル、メトキシエチル、ブトキシエチル、フェノキシエチル、ノニルフェノキシエチル、グリシジル、ジメチルアミノエチル、ジエチルアミノエチル、イソボルニル、ジシクロペンタニル、ジシクロペンテニル、ジシクロペンテニロキシエチル、テトラヒドロフルフリル、エトキシル化テロラヒドロフランなどの置換基を有する(メタ)アクリレート類が挙げられる。多官能(メタ)アクリレートとしては、トリシクロデカンジメタノール、ポリエチレングリコール、トリプロピレングリコール、ポリプロピレングリコール等のジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たトリオールのジまたはトリ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイドもしくはプロピレンオキサイドを付加して得たジオールのジ(メタ)アクリレート、ジペンタエリスリトールのポリ(メタ)アクリレート、エチレンオキサイド変性リン酸(メタ)アクリレート、エチレンオキサイド変性アルキルリン酸(メタ)アクリレート等が挙げられる。
The photopolymerizable compound other than the (meth)acrylate compound having an acrylic equivalent of 110 or more is not particularly limited, and known compounds can be used.
For example, monofunctional (meth)acrylate compounds include methyl, ethyl, propyl, butyl, amyl, 2-ethylhexyl, octyl, nonyl, decyl, lauryl, hexadecyl, stearyl, cyclohexyl, benzyl, methoxyethyl, butoxyethyl, phenoxyethyl. , nonylphenoxyethyl, glycidyl, dimethylaminoethyl, diethylaminoethyl, isobornyl, dicyclopentanyl, dicyclopentenyl, dicyclopentenyloxyethyl, tetrahydrofurfuryl, ethoxylated terorahydrofuran (meth) Acrylates are mentioned. Polyfunctional (meth)acrylates include di(meth)acrylates such as tricyclodecanedimethanol, polyethylene glycol, tripropylene glycol and polypropylene glycol; a di(meth)acrylate of a diol obtained by adding 2 mol of ethylene oxide or propylene oxide to 1 mol of bisphenol A, 3 mol or more of ethylene oxide per 1 mol of trimethylolpropane, or Di or tri(meth)acrylate of triol obtained by adding propylene oxide, di(meth)acrylate of diol obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A, poly of dipentaerythritol (Meth)acrylates, ethylene oxide-modified phosphate (meth)acrylates, ethylene oxide-modified alkyl phosphate (meth)acrylates, and the like.
 また、(メタ)アクリレートオリゴマー等の重合性オリゴマーを使用することもできる。重合性オリゴマーとしては、ポリウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリアクリル(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリアルキレングリコールポリ(メタ)アクリレート、ポリエーテル(メタ)アクリレート等が挙げられ、2種類以上併用して用いることができる。 Polymerizable oligomers such as (meth)acrylate oligomers can also be used. Polymerizable oligomers include polyurethane (meth)acrylate, polyester (meth)acrylate, polyacrylic (meth)acrylate, epoxy (meth)acrylate, polyalkylene glycol poly(meth)acrylate, polyether (meth)acrylate, and the like. , can be used in combination of two or more.
 また、本実施形態における光重合性化合物として、特開2013-182215号公報の段落0042~0049に記載の光重合性化合物を用いることもできる。 Further, as the photopolymerizable compound in the present embodiment, the photopolymerizable compounds described in paragraphs 0042 to 0049 of JP-A-2013-182215 can also be used.
 本実施形態では、光重合性化合物が、単官能(メタ)アクリレート化合物を含むことが好ましい。 In the present embodiment, the photopolymerizable compound preferably contains a monofunctional (meth)acrylate compound.
 単官能(メタ)アクリレート化合物は特に限定はなく公知のものを使用することができるが、好ましくは、環式構造を含む単官能(メタ)アクリレート化合物である。 The monofunctional (meth)acrylate compound is not particularly limited, and a known compound can be used, preferably a monofunctional (meth)acrylate compound containing a cyclic structure.
 環式構造を含む単官能(メタ)アクリレート化合物としては、得られる樹脂のガラス転移点の高さの観点から、脂肪族多環式構造を含む単官能メタクリレート化合物が好ましく、具体的には、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレートなどが挙げられる。 The monofunctional (meth)acrylate compound containing a cyclic structure is preferably a monofunctional methacrylate compound containing an aliphatic polycyclic structure from the viewpoint of the height of the glass transition point of the resulting resin. Specifically, isobornyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, dicyclopentanyl (meth)acrylate and the like.
 光重合性化合物として単官能(メタ)アクリレート化合物を含む場合、光重合性化合物中の、単官能(メタ)アクリレート化合物の含有量は、インク組成物の粘度を低粘度とする観点から、光重合性化合物全質量を基準として、5質量%以上、10質量%以上又は20質量%以上であってよく、タック性を抑制する観点から、90質量%以下、80質量%以下又は70質量%以下であってよい。
 光重合性化合物として、任意に、「(メタ)アクリロイル基」および「アクリロイル基」以外のエチレン性不飽和基を有するモノマーやイソシアネート基を有するモノマー等を用いることもできる。「(メタ)アクリロイル基」および「アクリロイル基」以外のエチレン性不飽和基として、例えば、ビニル基、ビニレン基、ビニリデン基等が挙げられる。
 ビニル基を有するエチレン性不飽和基を有するモノマーであるビニルエーテル化合物としては、アクリル酸2-(2-ビニロキシエトキシ)エチル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等のジ又はトリビニルエーテル化合物の、ビニルエーテル基を有する重合性化合物等が挙げられる。ビニル基を有するエチレン性不飽和基を有するモノマーであるアリルエーテル化合物としては、2-(アリルオキシメチル)アクリル酸メチル、フタル酸ジアリル、1,3-ジアリルオキシ-2-プロパノール、ペンタエリスリトールテトラアリルエーテル等の、アリルエーテル基を有する重合性化合物等が挙げられる。
When a monofunctional (meth)acrylate compound is included as the photopolymerizable compound, the content of the monofunctional (meth)acrylate compound in the photopolymerizable compound is adjusted from the viewpoint of making the viscosity of the ink composition low. Based on the total mass of the chemical compound, it may be 5% by mass or more, 10% by mass or more, or 20% by mass or more, and from the viewpoint of suppressing tackiness, it is 90% by mass or less, 80% by mass or less, or 70% by mass or less. It's okay.
As the photopolymerizable compound, a monomer having an ethylenically unsaturated group other than the "(meth)acryloyl group" and the "acryloyl group", a monomer having an isocyanate group, and the like can be optionally used. Examples of ethylenically unsaturated groups other than "(meth)acryloyl group" and "acryloyl group" include vinyl group, vinylene group, and vinylidene group.
Examples of the vinyl ether compound, which is a monomer having an ethylenically unsaturated group having a vinyl group, include 2-(2-vinyloxyethoxy)ethyl acrylate, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether. Polymerizable compounds having a vinyl ether group such as vinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether, hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, trimethylolpropane trivinyl ether, and other di- or trivinyl ether compounds. Examples of the allyl ether compound, which is a monomer having an ethylenically unsaturated group having a vinyl group, include methyl 2-(allyloxymethyl)acrylate, diallyl phthalate, 1,3-diallyloxy-2-propanol, and pentaerythritol tetraallyl. Examples include polymerizable compounds having an allyl ether group such as ethers.
 光重合性化合物として、任意に、(メタ)アクリルアミド化合物を用いることもできる。
 光重合性化合物として、任意に、光カチオン重合性化合物を用いることもできる。光カチオン重合性化合物は光カチオン重合開始剤と共に用いられる。
 光カチオン重合性化合物としては、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。
Optionally, a (meth)acrylamide compound can also be used as the photopolymerizable compound.
Optionally, a photo-cationically polymerizable compound can also be used as the photopolymerizable compound. A photocationically polymerizable compound is used together with a photocationic polymerization initiator.
Examples of photo-cationically polymerizable compounds include epoxy compounds, oxetane compounds, and vinyl ether compounds.
 エポキシ化合物としては、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、フェノールノボラック型エポキシ化合物、トリメチロールプロパンポリグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル等の脂肪族系エポキシ化合物、1,2-エポキシ-4-ビニルシクロへキサン、1-メチル-4-(2-メチルオキシラニル)-7-オキサビシクロ[4.1.0]ヘプタン等の脂環式エポキシ化合物などが挙げられる。 Examples of epoxy compounds include aliphatic epoxy compounds such as bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, phenol novolac type epoxy compounds, trimethylolpropane polyglycidyl ether, neopentyl glycol diglycidyl ether, 1,2-epoxy- Alicyclic epoxy compounds such as 4-vinylcyclohexane, 1-methyl-4-(2-methyloxiranyl)-7-oxabicyclo[4.1.0]heptane, and the like.
 エポキシ化合物として市販品を使用することも可能である。エポキシ化合物の市販品としては、例えば、ダイセル化学工業株式会社製の「セロキサイド2000」、「セロキサイド3000」、「セロキサイド4000」等を用いることができる。 It is also possible to use a commercially available product as the epoxy compound. Commercially available epoxy compounds include, for example, “Celoxide 2000”, “Celoxide 3000” and “Celoxide 4000” manufactured by Daicel Chemical Industries, Ltd.
 カチオン重合性のオキセタン化合物としては、2―エチルヘキシルオキセタン、3-ヒドロキシメチル-3-メチルオキセタン、3-ヒドロキシメチル-3-エチルオキセタン、3-ヒドロキシメチル-3-プロピルオキセタン、3-ヒドロキシメチル-3-ノルマルブチルオキセタン、3-ヒドロキシメチル-3-フェニルオキセタン、3-ヒドロキシメチル-3-ベンジルオキセタン、3-ヒドロキシエチル-3-メチルオキセタン、3-ヒドロキシエチル-3-エチルオキセタン、3-ヒドロキシエチル-3-プロピルオキセタン、3-ヒドロキシエチル-3-フェニルオキセタン、3-ヒドロキシプロピル-3-メチルオキセタン、3-ヒドロキシプロピル-3-エチルオキセタン、3-ヒドロキシプロピル-3-プロピルオキセタン、3-ヒドロキシプロピル-3-フェニルオキセタン、3-ヒドロキシブチル-3-メチルオキセタン等が挙げられる。 Examples of cationic polymerizable oxetane compounds include 2-ethylhexyloxetane, 3-hydroxymethyl-3-methyloxetane, 3-hydroxymethyl-3-ethyloxetane, 3-hydroxymethyl-3-propyloxetane, 3-hydroxymethyl-3 -N-butyloxetane, 3-hydroxymethyl-3-phenyloxetane, 3-hydroxymethyl-3-benzyloxetane, 3-hydroxyethyl-3-methyloxetane, 3-hydroxyethyl-3-ethyloxetane, 3-hydroxyethyl- 3-propyloxetane, 3-hydroxyethyl-3-phenyloxetane, 3-hydroxypropyl-3-methyloxetane, 3-hydroxypropyl-3-ethyloxetane, 3-hydroxypropyl-3-propyloxetane, 3-hydroxypropyl- 3-phenyloxetane, 3-hydroxybutyl-3-methyloxetane and the like.
 オキセタン化合物として市販品を使用することも可能である。オキセタン化合物の市販品としては、例えば、東亜合成株式会社製のアロンオキセタンシリーズ(「OXT-101」、「OXT-212」、「OXT-121」、「OXT-221」等);ダイセル化学工業株式会社製の「セロキサイド2021」、「セロキサイド2021A」、「セロキサイド2021P」、「セロキサイド2080」、「セロキサイド2081」、「セロキサイド2083」、「セロキサイド2085」、「エポリードGT300」、「エポリードGT301」、「エポリードGT302」、「エポリードGT400」、「エポリードGT401」及び「エポリードGT403」;ダウ・ケミカル日本株式会社製の「サイラキュアUVR-6105」、「サイラキュアUVR-6107」、「サイラキュアUVR-6110」、「サイラキュアUVR-6128」、「ERL4289」及び「ERL4299」などを用いることができる。また、公知のオキセタン化合物(例えば、特開2009-40830等に記載のオキセタン化合物)を使用することもできる。 A commercially available product can also be used as the oxetane compound. Commercially available oxetane compounds include, for example, the Aron oxetane series manufactured by Toagosei Co., Ltd. ("OXT-101", "OXT-212", "OXT-121", "OXT-221", etc.); Daicel Chemical Industries, Ltd. "Celoxide 2021", "Celoxide 2021A", "Celoxide 2021P", "Celoxide 2080", "Celoxide 2081", "Celoxide 2083", "Celoxide 2085", "Epolead GT300", "Epolead GT301", "Epolead" manufactured by the company GT302", "Epolead GT400", "Epolead GT401" and "Epolead GT403"; "Cyracure UVR-6105", "Cyracure UVR-6107", "Cyracure UVR-6110", "Cyracure UVR" manufactured by Dow Chemical Japan Co., Ltd. -6128”, “ERL4289” and “ERL4299” can be used. In addition, known oxetane compounds (eg, oxetane compounds described in JP-A-2009-40830, etc.) can also be used.
 また、ビニルエーテル化合物としては、アクリル酸2-(2-ビニロキシエトキシ)エチル、エチレングリコールジビニルエーテル、ジエチレングリコールジビニルエーテル、トリエチレングリコールジビニルエーテル、プロピレングリコールジビニルエーテル、ジプロピレングリコールジビニルエーテル、ブタンジオールジビニルエーテル、ヘキサンジオールジビニルエーテル、シクロヘキサンジメタノールジビニルエーテル、トリメチロールプロパントリビニルエーテル等のジ又はトリビニルエーテル化合物の、ビニルエーテル基を有する重合性化合物等が挙げられる。 Examples of vinyl ether compounds include 2-(2-vinyloxyethoxy)ethyl acrylate, ethylene glycol divinyl ether, diethylene glycol divinyl ether, triethylene glycol divinyl ether, propylene glycol divinyl ether, dipropylene glycol divinyl ether, butanediol divinyl ether. , hexanediol divinyl ether, cyclohexanedimethanol divinyl ether, trimethylolpropane trivinyl ether, and other di- or trivinyl ether compounds having a vinyl ether group.
 光重合性化合物は、信頼性に優れる画素部(インク組成物の硬化物)が得られやすい観点から、アルカリ不溶性であってよい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。 The photopolymerizable compound may be alkali-insoluble from the viewpoint of easily obtaining a highly reliable pixel portion (cured product of the ink composition). In the present specification, the photopolymerizable compound being alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is 30, based on the total mass of the photopolymerizable compound. % or less. The dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
 光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよい。光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよく、20質量部以下であってもよい。 The content of the photopolymerizable compound is determined from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink, the viewpoint of good curability of the ink composition, and the solvent resistance and From the viewpoint of improving abrasion resistance, it may be 10 parts by mass or more, or may be 15 parts by mass or more, with respect to a total of 100 parts by mass of components other than the organic solvent contained in the ink composition. 20 mass parts or more may be sufficient. The content of the photopolymerizable compound is, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining better optical properties (e.g., external quantum efficiency), the content of the photopolymerizable compound other than the organic solvent contained in the ink composition. With respect to a total of 100 parts by mass of the components, it may be 60 parts by mass or less, may be 50 parts by mass or less, may be 40 parts by mass or less, may be 30 parts by mass or less, or may be 20 parts by mass or less. It may be less than or equal to parts by mass.
[光重合開始剤]
 光重合開始剤は、例えば光ラジカル重合開始剤又は光カチオン重合開始剤である。光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。
[Photoinitiator]
The photopolymerization initiator is, for example, a photoradical polymerization initiator or a photocationic polymerization initiator. As the photoradical polymerization initiator, a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
 分子開裂型の光ラジカル重合開始剤としては、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド等が好適に用いられる。これら以外の分子開裂型の光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。 Molecular cleavage type photoradical polymerization initiators include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1. -(4-morpholinophenyl)-butan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenylphosphine oxide etc. are preferably used. Other molecular cleavage type radical photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4 -isopropylphenyl)-2-hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination.
 水素引き抜き型の光ラジカル重合開始剤としては、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。 Benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenyl sulfide and the like are examples of hydrogen abstraction type photoradical polymerization initiators. A molecular cleavage type radical photopolymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
 光カチオン重合開始剤として市販品を用いることもできる。市販品としては、サンアプロ社製の「CPI-100P」等のスルホニウム塩系光カチオン重合開始剤、BASF社製の「Lucirin TPO」等のアシルフォスフィンオキサイド化合物、BASF社製の「Irgacure 907」、「Irgacure 819」、「Irgacure 379EG」「、Irgacure 184」及び「Irgacure PAG290」などが挙げられる。 A commercial product can also be used as a photocationic polymerization initiator. Commercially available products include sulfonium salt photocationic polymerization initiators such as "CPI-100P" manufactured by San-Apro, acylphosphine oxide compounds such as "Lucirin TPO" manufactured by BASF, "Irgacure 907" manufactured by BASF, "Irgacure 819", "Irgacure 379EG", "Irgacure 184" and "Irgacure PAG290".
 光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよく、1質量部以上であってもよく、3質量部以上であってもよく、5質量部以上であってもよい。光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよい。 From the viewpoint of curability of the ink composition, the content of the photopolymerization initiator may be 0.1 parts by mass or more, or 0.5 parts by mass or more with respect to 100 parts by mass of the photopolymerizable compound. It may be 1 part by mass or more, 3 parts by mass or more, or 5 parts by mass or more. The content of the photopolymerization initiator may be 40 parts by mass or less, or 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). or less, 20 parts by mass or less, or 10 parts by mass or less.
[ジチオカルバミン酸基を有する金属化合物]
 本実施形態のジチオカルバミン酸基を有する金属化合物は、ジチオカルバミン酸基が金属原子に配位した化合物であり、下記式(II)で示される。
[Metal compound having a dithiocarbamic acid group]
The metal compound having a dithiocarbamic acid group of this embodiment is a compound in which a dithiocarbamic acid group is coordinated to a metal atom, and is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000009
[式(II)中、R及びRは、それぞれ独立して、水素原子又は炭素数1~10の炭化水素基を示し、炭化水素基を介して互いに連結していてもよく、R及びRは互いに同一であっても異なっていてもよく、Mは金属原子を示し、nは1~4の整数を表す。]
Figure JPOXMLDOC01-appb-C000009
[In formula (II), R 3 and R 4 each independently represent a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms and may be linked to each other via a hydrocarbon group; and R4 may be the same or different, M represents a metal atom, and n represents an integer of 1-4. ]
 金属原子に配位するジチオカルバミン酸基の数は、金属原子の価数と等しい。例えば、金属原子が亜鉛の場合、亜鉛原子は二価金属である為、2つのジチオカルバミン酸基が亜鉛に配位する。当該硫黄原子が亜鉛原子に直接結合(例えばイオン結合)することにより亜鉛原子に配位している。2つの配位子は互いに同一であっても異なっていてもよい。 The number of dithiocarbamic acid groups coordinating to the metal atom is equal to the valence of the metal atom. For example, if the metal atom is zinc, the zinc atom is a divalent metal, so two dithiocarbamate groups are coordinated to the zinc. The sulfur atom is coordinated to the zinc atom by direct bonding (eg, ionic bond) to the zinc atom. The two ligands may be the same or different from each other.
 金属原子として、好ましくは、亜鉛原子、ナトリウム原子、銅原子、テルル原子が挙げられ、さらに好ましくは、亜鉛原子、ナトリウム原子、銅原子が挙げられ、亜鉛原子が特に好ましい。 The metal atom preferably includes zinc atom, sodium atom, copper atom and tellurium atom, more preferably zinc atom, sodium atom and copper atom, and particularly preferably zinc atom.
 炭化水素基の炭素数は、1~6であってよく、1~4であってよい。炭化水素基は、アルキル基、アリール基、アラルキル基等であってよく、アルキル基であることが好ましい。アルキル基は、直鎖状であっても分岐鎖状であってもよい。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等が挙げられる。R及びRの組み合わせは特に限定されないが、R及びRの全てが炭化水素基であることが好ましく、R及びRの全てがアルキル基であることがより好ましい。 The number of carbon atoms in the hydrocarbon group may be 1-6, or 1-4. The hydrocarbon group may be an alkyl group, an aryl group, an aralkyl group, etc., preferably an alkyl group. Alkyl groups may be straight or branched. Examples of alkyl groups include methyl, ethyl, propyl, butyl, pentyl, and hexyl groups. Although the combination of R 3 and R 4 is not particularly limited, all of R 3 and R 4 are preferably hydrocarbon groups, and more preferably all of R 3 and R 4 are alkyl groups.
 ジチオカルバミン酸基を有する金属化合物の分子量は、例えば、700以下である。分子量が700以下であると、熱安定性及び光安定性により優れる傾向がある。ジチオカルバミン酸基を有する金属化合物の分子量は、600以下又は500以下であってもよい。ジチオカルバミン酸基を有する金属化合物の分子量は、インク組成物への溶解性を高めやすい観点から、200以上であってよい。 The molecular weight of the metal compound having a dithiocarbamic acid group is, for example, 700 or less. When the molecular weight is 700 or less, there is a tendency to be more excellent in thermal stability and light stability. The molecular weight of the metal compound having a dithiocarbamic acid group may be 600 or less or 500 or less. The molecular weight of the metal compound having a dithiocarbamic acid group may be 200 or more from the viewpoint of easily increasing the solubility in the ink composition.
 式(II)において、配位子は金属原子に単座で配位子していてよく、二座で配位子していてもよい。すなわち、式(II)で表される化合物は、金属原子が亜鉛の場合、下記式(II-1)~式(II-3)で表される化合物を包含する。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
In formula (II), the ligand may be monodentate or bidentate to the metal atom. That is, compounds represented by formula (II) include compounds represented by the following formulas (II-1) to (II-3) when the metal atom is zinc.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 ジチオカルバミン酸基を有する金属化合物としては、市販品を使用することが可能であり、市販品としては、ノクセラーPZ、ノクセラーEZ、ノクセラーBZ-P、ノクセラーPX、ノクセラーZP、ノクセラーZTC、ノクセラーTP、ノクセラーTTCU、ノクセラーTTTE等を使用することができる。 As the metal compound having a dithiocarbamic acid group, it is possible to use commercially available products, and commercially available products include Noxcellar PZ, Noxcella EZ, Noxcella BZ-P, Noxcella PX, Noxcella ZP, Noxcella ZTC, Noxcella TP, and Noxcella. TTCU, Noxeler TTTE, etc. can be used.
 ジチオカルバミン酸基を有する金属化合物の含有量は、熱及び励起光に安定性が更に向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上であってよく、1質量部以上であってもよく、2質量部以上であってもよい。ジチオカルバミン酸基を有する金属化合物の含有量は、溶解性の観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、20質量部以下であってよく、10質量部以下であってもよく、7質量部以下であってもよい。 From the viewpoint of further improving the stability to heat and excitation light, the content of the metal compound having a dithiocarbamic acid group is 0.1 mass parts per 100 mass parts in total of the components other than the organic solvent contained in the ink composition. It may be 1 part or more, 1 part by mass or more, or 2 parts by mass or more. From the viewpoint of solubility, the content of the metal compound having a dithiocarbamic acid group may be 20 parts by mass or less, or 10 parts by mass, with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. It may be less than or equal to 7 parts by mass or less.
[酸化防止剤]
 インク組成物は、酸化防止剤を更に含有してよい。酸化防止剤は、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、チオール系酸化防止剤等の従来公知の酸化防止剤を用いることができる。これらの中でも、フェノール系酸化防止剤、リン系酸化防止剤を用いることが好ましい。酸化防止剤は、1種を単独で又は2種以上を組み合わせて用いてもよい。例えば、リン系酸化防止剤とフェノール系酸化防止剤とを併用してもよい。
[Antioxidant]
The ink composition may further contain an antioxidant. As the antioxidant, conventionally known antioxidants such as phenol antioxidants, amine antioxidants, phosphorus antioxidants, and thiol antioxidants can be used. Among these, it is preferable to use a phenol-based antioxidant and a phosphorus-based antioxidant. You may use antioxidant individually by 1 type or in combination of 2 or more types. For example, a phosphorus antioxidant and a phenolic antioxidant may be used in combination.
 酸化防止剤の含有量は、熱及び励起光に安定性が更に向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上であってよく、1質量部以上であってもよく、3質量部以上であってもよい。酸化防止剤の含有量は、溶解性の観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、20質量部以下であってよく、10質量部以下であってもよく、7質量部以下であってもよい。 From the viewpoint of further improving the stability against heat and excitation light, the content of the antioxidant is 0.1 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. may be 1 part by mass or more, or 3 parts by mass or more. From the viewpoint of solubility, the content of the antioxidant may be 20 parts by mass or less, or 10 parts by mass or less, with respect to the total 100 parts by mass of the components other than the organic solvent contained in the ink composition. It may be 7 parts by mass or less.
[フェノール系防止剤]
 フェノール系酸化防止剤としては、例えば、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン(製品名:AO-330)、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン(製品名:Irganox565)、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名:AO-60)、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(製品名:AO-50)、2,6-ジ-t-ブチル-4-ノニルフェノール、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-メチレンビス-(6-(1-メチルシクロヘキシル)-p-クレゾール)、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)(製品名:Irganox1098)、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミル-ヒドロキノン、2,4-ジメチル-6-(1-メチルシクロヘキシル)-フェノール、6-t-ブチル-o-クレゾール、6-t-ブチル-2,4-キシレノール、2,4-ジメチル-6-(1-メチルペンタデシル)フェノール、2,4-ビス(オクチルチオメチル)-o-クレゾール(製品名:Irganox1520)、2,4-ビス(ドデシルチオメチル)-o-クレゾール、エチレンビス(オキシエチレン)ビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]、3,9-ビス[2-〔3-(t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ〕-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン(製品名:AO-80)、トリエチレングリコールビス[3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート(製品名:Irganox245)、2-t-アミルフェノール、2-t-ブチルフェノール、2,4-ジ-t-ブチルフェノール、1,1,3-トリス-(2’-メチル-4’-ヒドロキシ-5’-t-ブチルフェニル)-ブタン(製品名:AO-30)、4,4’-ブチリデン-ビス-(2-t-ブチル-5-メチルフェノール)等を挙げることができる。
[Phenolic inhibitor]
Phenolic antioxidants include, for example, 2,4,6-tris(3′,5′-di-t-butyl-4′-hydroxybenzyl)mesitylene (product name: AO-330), 2,4- Bis-(n-octylthio)-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine (product name: Irganox565), pentaerythritol tetrakis[3-(3,5 -di-t-butyl-4-hydroxyphenyl)propionate (product name: AO-60), octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate (product name: AO-50) , 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 2,2′-methylenebis-(6- (1-methylcyclohexyl)-p-cresol), N,N-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) (product name: Irganox 1098), 2,5- Di-t-butylhydroquinone, 2,5-di-t-amyl-hydroquinone, 2,4-dimethyl-6-(1-methylcyclohexyl)-phenol, 6-t-butyl-o-cresol, 6-t- Butyl-2,4-xylenol, 2,4-dimethyl-6-(1-methylpentadecyl)phenol, 2,4-bis(octylthiomethyl)-o-cresol (product name: Irganox 1520), 2,4- Bis(dodecylthiomethyl)-o-cresol, ethylenebis(oxyethylene)bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate], 3,9-bis[2-[3 -(t-butyl-4-hydroxy-5-methylphenyl)propionyloxy]-1,1-dimethylethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane (product name: AO- 80), triethylene glycol bis[3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionate (product name: Irganox245), 2-t-amylphenol, 2-t-butylphenol, 2,4 -di-t-butylphenol, 1,1,3-tris-(2'-methyl-4'-hydroxy-5'-t-butylphenyl)-butane (product name: AO-30), 4,4'- butylidene-bis-(2-t-butyl-5-methylphenol) and the like. can be
 フェノール系酸化防止剤は、フェノール水酸基の両方のオルト位にある水素原子が立体的に嵩高い基で置換されているヒンダードフェノール系酸化防止剤、フェノール水酸基の一方のオルト位にある水素原子が立体的に嵩高い基で置換されており、もう一方のオルト位の水素原子がメチル基で置換されているセミヒンダードフェノール系酸化防止剤及びフェノール水酸基の一方のオルト位にある水素原子が立体的に嵩高い基で置換されており、もう一方のオルト位の水素原子は置換されていないレスヒンダードフェノール系酸化防止剤のいずれであってもよい。立体的に嵩高い基とは、直鎖状アルキル基以外の枝分かれしたアルキル基又は芳香環基のことを意味する。具体的には、t-ブチル基、t-ペンチル基、t-ヘキシル基等の3級アルキル基;i-プロピル基、sec-ブチル基、sec-ペンチル基等の2級アルキル基;i-ブチル基、i-ペンチル基等の分枝1級アルキル基;シクロヘキシル基、シクロペンチル基等のシクロアルキル基;及びフェニル基、ベンジル基、ナフチル基等の芳香環基が挙げられる。 Phenolic antioxidants are hindered phenol antioxidants in which the hydrogen atoms at both ortho-positions of the phenolic hydroxyl group are substituted with sterically bulky groups. A semi-hindered phenolic antioxidant substituted with a sterically bulky group and the other ortho-position hydrogen atom substituted with a methyl group, and one ortho-position hydrogen atom of the phenolic hydroxyl group is steric It may be any hindered phenolic antioxidant that is substituted with a bulky group and the other hydrogen atom at the ortho position is unsubstituted. A sterically bulky group means a branched alkyl group other than a linear alkyl group or an aromatic ring group. Specifically, tertiary alkyl groups such as t-butyl group, t-pentyl group and t-hexyl group; secondary alkyl groups such as i-propyl group, sec-butyl group and sec-pentyl group; i-butyl cycloalkyl groups such as cyclohexyl group and cyclopentyl group; and aromatic ring groups such as phenyl group, benzyl group and naphthyl group.
 フェノール系酸化防止剤は、好ましくはヒンダードフェノール系酸化防止剤である。ヒンダードフェノール系酸化防止剤としては、例えば、2,4,6-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)メシチレン、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、オクタデシル3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-t-ブチル-4-ノニルフェノール、チオジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、N,N-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナムアミド)等が挙げられ、これらの中でも、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートが好ましく用いられる。 The phenolic antioxidant is preferably a hindered phenolic antioxidant. Hindered phenol antioxidants include, for example, 2,4,6-tris(3′,5′-di-t-butyl-4′-hydroxybenzyl)mesitylene, 2,4-bis-(n-octylthio )-6-(4-hydroxy-3,5-di-t-butylanilino)-1,3,5-triazine, pentaerythritol tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl) Propionate, octadecyl 3-(3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,6-di-t-butyl-4-nonylphenol, thiodiethylenebis[3-(3,5-di- t-butyl-4-hydroxyphenyl)propionate], N,N-hexamethylenebis(3,5-di-t-butyl-4-hydroxy-hydrocinnamamide), etc. Among these, pentaerythritol Tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is preferably used.
 フェノール系酸化防止剤の市販品としては、株式会社ADEKA製の酸化防止剤である、アデカスタブAO-20、アデカスタブAO-30、アデカスタブAO-40、アデカスタブAO-50、アデカスタブAO-60、アデカスタブAO-60G、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-330等、BASF社製の酸化防止剤である、Irganox1010、Irganox1010FF、Irganox1035、Irganox1035FF(W&C)、Irganox1076、Irganox1076FD、Irganox1098、Irganox1135、Irganox1330、Irganox1520L、Irganox245、Irganox245FF、Irganox259、Irganox3114等、住友化学株式会社製の酸化防止剤である、SUMILIZER GP、SUMILIZER GS(F)、SUMILIZER GM(F)、SUMILIZER GA-80、SUMILIZER MDP-S、SUMILIZER WX-R、SUMILIZER WX-RC等などが挙げられる。 Commercially available phenolic antioxidants include antioxidants manufactured by ADEKA Co., Ltd., ADEKA STAB AO-20, ADEKA STAB AO-30, ADEKA STAB AO-40, ADEKA STAB AO-50, ADEKA STAB AO-60, ADEKA STAB AO- 60G、アデカスタブAO-70、アデカスタブAO-80、アデカスタブAO-330等、BASF社製の酸化防止剤である、Irganox1010、Irganox1010FF、Irganox1035、Irganox1035FF(W&C)、Irganox1076、Irganox1076FD、Irganox1098、Irganox1135、Irganox1330、Irganox1520L , Irganox 245, Irganox 245FF, Irganox 259, Irganox 3114, etc., SUMILIZER GP, SUMILIZER GS (F), SUMILIZER GM (F), SUMILIZER GA-80, SUMILIZER MDP-S, SUMILIZER MDP-I, which are antioxidants manufactured by Sumitomo Chemical Co., Ltd. R, SUMILIZER WX-RC and the like.
[リン系酸化防止剤]
 リン系酸化防止剤は、下記式(III)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000013
[式(2)中、R、R及びRは、それぞれ独立に1価の有機基を示す。R、R及びRから選ばれる2種は、互いに結合して環を形成していてもよい。]
[Phosphorus antioxidant]
The phosphorus antioxidant may be a compound represented by the following formula (III).
Figure JPOXMLDOC01-appb-C000013
[In Formula (2), R 5 , R 6 and R 7 each independently represent a monovalent organic group. Two kinds selected from R 5 , R 6 and R 7 may combine with each other to form a ring. ]
 1価の有機基は、インクジェットインク中の他の成分(光重合性化合物等)との相溶性というインクジェットインクに特有の要求性能を充分に満たし、インクジェットインクの蛍光量子収率の低下が更に抑制できる観点から、好ましくは1価の炭化水素基である。1価の炭化水素基は、例えば、アルキル基、アリール基、アルケニル基等が挙げられる。1価の炭化水素基の炭素数は、1~30であってよく、溶解性の観点から4~18であってよい。 The monovalent organic group fully satisfies the performance requirements specific to inkjet inks, such as compatibility with other components (photopolymerizable compounds, etc.) in inkjet inks, and further suppresses the decrease in fluorescence quantum yield of inkjet inks. It is preferably a monovalent hydrocarbon group from the viewpoint of being able to. Examples of monovalent hydrocarbon groups include alkyl groups, aryl groups, and alkenyl groups. The number of carbon atoms in the monovalent hydrocarbon group may be 1 to 30, and may be 4 to 18 from the viewpoint of solubility.
 アルキル基は、直鎖状であっても分岐状であってもよい。アルキル基としては、例えば、2-エチルヘキシル基、ブチル基、オクチル基、ノニル基、デシル基、イソデシル基、ドデシル基、ヘキサデシル基、オクタデシル基が挙げられる。 The alkyl group may be linear or branched. Examples of alkyl groups include 2-ethylhexyl, butyl, octyl, nonyl, decyl, isodecyl, dodecyl, hexadecyl and octadecyl groups.
 アリール基としては、例えば、フェニル基、ナフチル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、オクチルフェニル基、ノニルフェニル基、イソデシルフェニル基、イソデシルフェニル基、イソデシルナフチル基が挙げられる。 Examples of the aryl group include a phenyl group, a naphthyl group, a tert-butylphenyl group, a di-tert-butylphenyl group, an octylphenyl group, a nonylphenyl group, an isodecylphenyl group, an isodecylphenyl group and an isodecylnaphthyl group. mentioned.
 1価の炭化水素基は、蛍光量子収率の低下を更に抑制できる観点から、好ましくは、アルキル基又はアリール基であり、より好ましくはアルキル基又はフェニル基である。 The monovalent hydrocarbon group is preferably an alkyl group or an aryl group, more preferably an alkyl group or a phenyl group, from the viewpoint of further suppressing a decrease in fluorescence quantum yield.
 リン系酸化防止剤は、好ましくは、下記式(IV)で表される化合物である。
Figure JPOXMLDOC01-appb-C000014
[式(IV)中、R及びRは、それぞれ独立して、アルキル基又はアリール基を示し、R及びRは互いに同一であっても異なっていてもよい。]
The phosphorus antioxidant is preferably a compound represented by the following formula (IV).
Figure JPOXMLDOC01-appb-C000014
[In formula (IV), R 8 and R 9 each independently represent an alkyl group or an aryl group, and R 8 and R 9 may be the same or different. ]
 式(IV)で表される化合物としては、具体的に、サイクリックネオペンタンテトライルビス(オクタデシルホスファイト)、ペンタエリトリトールビス(2,4-ジ-tert-ブチルフェニルホスファイト)、(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリトリトールジホスファイト、ジイソデシルペンタエリトリトールジホスファイト等が挙げられる。 Specific examples of the compound represented by formula (IV) include cyclic neopentanetetraylbis(octadecylphosphite), pentaerythritolbis(2,4-di-tert-butylphenylphosphite), (2, 6-di-tert-butyl-4-methylphenyl)pentaerythritol diphosphite, diisodecylpentaerythritol diphosphite and the like.
 リン系酸化防止剤は、室温(25℃)で液体であっても、固体であってもよいが、好ましくは、インクジェットインク中の他の成分(光重合性化合物等)との相溶性というインクジェットインクに特有の要求性能を充分に満たし、インクジェットインクの蛍光量子収率の低下が更に抑制できる観点から、室温(25℃)で液体である。リン系酸化防止剤の融点は、20℃以下、又は10℃以下であってよい。 Phosphorus-based antioxidants may be liquid or solid at room temperature (25° C.), but are preferably compatible with other components (photopolymerizable compounds, etc.) in the inkjet ink. It is a liquid at room temperature (25° C.) from the viewpoint of sufficiently satisfying the required performance specific to the ink and further suppressing the decrease in fluorescence quantum yield of the ink jet ink. The melting point of the phosphorus antioxidant may be 20°C or lower, or 10°C or lower.
[光散乱性粒子]
 インク組成物は、光散乱性粒子を更に含有してよい。光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。インク組成物が光散乱性粒子を含有する場合、画素部に照射された光源からの光を散乱させることができるため、優れた光学特性(例えば外部量子効率)を得ることができる。
[Light scattering particles]
The ink composition may further contain light scattering particles. Light-scattering particles are, for example, optically inactive inorganic fine particles. When the ink composition contains light-scattering particles, it is possible to scatter the light emitted from the light source with which the pixel portion is irradiated, so excellent optical properties (for example, external quantum efficiency) can be obtained.
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、インク組成物の分散安定性、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム、チタン酸バリウム及びシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、酸化ジルコニウム、酸化亜鉛及びチタン酸バリウムからなる群より選択される少なくとも1種を含むことがより好ましい。 Materials constituting the light-scattering particles include, for example, simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate, Metal oxides such as talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; magnesium carbonate, barium carbonate, Metal carbonates such as bismuth subcarbonate and calcium carbonate; Metal hydroxides such as aluminum hydroxide; Composite oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate and strontium titanate, bismuth subnitrate metal salts such as The light-scattering particles include titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate, and titanium oxide, from the viewpoint of excellent dispersion stability and ejection stability of the ink composition and from the viewpoint of improving the external quantum efficiency. It preferably contains at least one selected from the group consisting of barium oxide and silica, and more preferably contains at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide and barium titanate.
 光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性、流動性及び光散乱性をより高めることができ、優れた分散安定性、吐出安定性を得ることができる点で好ましい。 The shape of the light-scattering particles may be spherical, filamentous, amorphous, or the like. However, as the light-scattering particles, the use of particles having a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.) improves the uniformity, fluidity, and light-scattering properties of the ink composition. It is preferable in that it can be improved and excellent dispersion stability and ejection stability can be obtained.
 インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、分散安定性、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、0.05μm(50nm)以上であってよく、0.2μm(200nm)以上であってもよく、0.3μm(300nm)以上であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、分散安定性、吐出安定性に優れる観点から、1.0μm(1000nm)以下であってもよく、0.6μm(600nm)以下であってもよく、0.4μm(400nm)以下であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、又は0.3~0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、0.05μm以上であってよく、1.0μm以下であってもよい。本明細書中、インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。 The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is 0.05 μm (50 nm) or more from the viewpoint of excellent dispersion stability and ejection stability and from the viewpoint of improving the external quantum efficiency. , 0.2 μm (200 nm) or more, or 0.3 μm (300 nm) or more. The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition may be 1.0 μm (1000 nm) or less, or 0.6 μm ( 600 nm) or less, or 0.4 μm (400 nm) or less. The average particle diameter (volume average diameter) of the light scattering particles in the ink composition is 0.05 to 1.0 μm, 0.05 to 0.6 μm, 0.05 to 0.4 μm, 0.2 to 1 0.0 μm, 0.2-0.6 μm, 0.2-0.4 μm, 0.3-1.0 μm, 0.3-0.6 μm, or 0.3-0.4 μm. From the viewpoint of easily obtaining such an average particle diameter (volume average diameter), the average particle diameter (volume average diameter) of the light-scattering particles used may be 0.05 μm or more and 1.0 μm or less. may In this specification, the average particle diameter (volume average diameter) of the light scattering particles in the ink composition is obtained by measuring with a dynamic light scattering Nanotrack particle size distribution meter and calculating the volume average diameter. . The average particle size (volume average size) of the light-scattering particles to be used can be obtained by measuring the particle size of each particle with, for example, a transmission electron microscope or scanning electron microscope and calculating the volume average size.
 インク組成物における光散乱性粒子の含有量は、光変換層の外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上であってよく、1質量部以上であってもよく、3質量部以上であってもよい。光散乱性粒子の含有量は、分散安定性、吐出安定性に優れる観点及び光変換層の外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよく、15質量部以下であってもよい。 From the viewpoint of improving the external quantum efficiency of the light conversion layer, the content of the light-scattering particles in the ink composition is 0.00 parts per 100 parts by mass of the components other than the organic solvent contained in the ink composition. It may be 1 part by mass or more, 1 part by mass or more, or 3 parts by mass or more. The content of the light-scattering particles is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of excellent dispersion stability and ejection stability, and from the viewpoint of improving the external quantum efficiency of the light conversion layer. parts, may be 60 parts by mass or less, may be 50 parts by mass or less, may be 40 parts by mass or less, may be 30 parts by mass or less, or may be 25 parts by mass or less. may be 20 parts by mass or less, or may be 15 parts by mass or less.
 インク組成物の全質量を基準とする光散乱性粒子の含有量は、光変換層の外部量子効率をより向上させる観点から、好ましくは3質量%以上であり、4質量%以上又は7質量%以上であってもよい。インク組成物の全質量を基準とする光散乱性粒子の含有量は、画素部の外部量子効率をより向上させる、及び、吐出安定性をより向上させる観点から、好ましくは20質量%以下であり、18質量%以下又は15質量%以下であってもよい。 The content of the light-scattering particles based on the total mass of the ink composition is preferably 3% by mass or more, 4% by mass or more, or 7% by mass, from the viewpoint of further improving the external quantum efficiency of the light conversion layer. or more. The content of the light-scattering particles based on the total mass of the ink composition is preferably 20% by mass or less from the viewpoint of further improving the external quantum efficiency of the pixel portion and further improving the ejection stability. , 18% by mass or less, or 15% by mass or less.
 発光性ナノ結晶粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶粒子)は、光変換層の外部量子効率の向上効果に優れる観点から、0.1以上であってよく、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光性ナノ結晶粒子)は、光変換層の外部量子効率の向上効果により優れ、特にインクジェット印刷時の連続吐出性(吐出安定性)に優れる観点から、5.0以下であってよく、2.0以下であってもよく、1.5以下であってもよい。 The mass ratio of the content of the light-scattering particles to the content of the luminescent nanocrystalline particles (light-scattering particles/luminescent nanocrystalline particles) is 0.5 from the viewpoint of improving the external quantum efficiency of the light conversion layer. It may be 1 or more, 0.2 or more, or 0.5 or more. The mass ratio (light-scattering particles/luminescent nanocrystalline particles) is 5.0 from the viewpoint of excellent effect of improving the external quantum efficiency of the light conversion layer, and particularly excellent continuous ejection property (ejection stability) during inkjet printing. It may be less than or equal to 2.0, or less than or equal to 1.5.
 インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは20質量部以上、より好ましくは25質量部以上、更に好ましくは30質量部以上である。インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは75質量部以下、より好ましくは65質量部以下、更に好ましくは55質量部以下である。 The total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. , preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and still more preferably 30 parts by mass or more. The total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. , preferably 75 parts by mass or less, more preferably 65 parts by mass or less, and even more preferably 55 parts by mass or less.
[高分子分散剤]
 インク組成物は、高分子分散剤を更に含有してよい。高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物である。高分子分散剤は、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子をインク組成物中に分散させる。インク組成物が高分子分散剤を含む場合、光散乱性粒子の含有量を比較的多くした場合(例えば60質量%程度とした場合)であっても光散乱性粒子を良好に分散させることができる。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、発光性ナノ結晶粒子の表面に結合して発光性ナノ粒子に吸着していてもよく、インク組成物中に遊離していてもよい。
[Polymer dispersant]
The ink composition may further contain a polymeric dispersant. A polymeric dispersant is a polymeric compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for light scattering particles. The polymer dispersant has a function of dispersing the light scattering particles. The polymer dispersant adsorbs to the light-scattering particles via a functional group having affinity for the light-scattering particles, and the light-scattering particles are dispersed by electrostatic repulsion and/or steric repulsion between the polymer dispersants. Disperse in the ink composition. When the ink composition contains a polymer dispersant, even when the content of the light-scattering particles is relatively large (for example, about 60% by mass), the light-scattering particles can be dispersed satisfactorily. can. The polymer dispersant is preferably bound to the surface of the light-scattering particles and adsorbed to the light-scattering particles. may be free in the ink composition.
 光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。 Functional groups that have affinity for light-scattering particles include acidic functional groups, basic functional groups, and nonionic functional groups. Acidic functional groups have dissociative protons and may be neutralized with bases such as amines and hydroxide ions, while basic functional groups are neutralized with acids such as organic acids and inorganic acids. may
 酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)、が挙げられる。 Examples of acidic functional groups include carboxyl group (--COOH), sulfo group (--SO 3 H), sulfate group (--OSO 3 H), phosphonic acid group (--PO(OH) 3 ), phosphoric acid group (--OPO ( OH) 3 ), phosphinic acid group (--PO(OH)--), mercapto group (--SH).
 塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。 Basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基が挙げられる。 Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate group, amide group, Carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group and phosphine sulfide group.
 高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、ポリイミドなどであってよい。 The polymeric dispersant may be a polymer (homopolymer) of a single monomer, or a copolymer (copolymer) of a plurality of types of monomers. Further, the polymeric dispersant may be any of random copolymers, block copolymers and graft copolymers. When the polymeric dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer. Examples of polymer dispersants include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, epoxy resins, polyamines such as polyethyleneimine and polyallylamine, and polyimides. It's okay.
 高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社製のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK-シリーズ、BASF社製のEfkaシリーズ等を使用することができる。 Commercially available products can be used as the polymer dispersant, and commercial products include Ajinomoto Fine-Techno Co., Inc.'s Ajisper PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series. etc. can be used.
[有機溶剤]
 インク組成物は有機溶剤を更に含有してよい。有機溶剤としては、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジブチルエーテル、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、1,4-ブタンジオールジアセテート、グリセリルトリアセテート等が挙げられる。
[Organic solvent]
The ink composition may further contain an organic solvent. Examples of organic solvents include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether, diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, and succinic acid. diethyl, 1,4-butanediol diacetate, glyceryl triacetate and the like.
 有機溶剤の沸点は、インクジェットインクに使用する場合には、連続吐出安定性の観点から、好ましくは150℃以上であり、より好ましくは180℃以上である。また、画素部の形成時には、インク組成物の硬化前にインク組成物から溶剤を除去する必要があるため、有機溶剤を除去しやすい観点から、有機溶剤の沸点は好ましくは300℃以下である。 When used for inkjet ink, the boiling point of the organic solvent is preferably 150°C or higher, more preferably 180°C or higher, from the viewpoint of continuous ejection stability. Further, since the solvent must be removed from the ink composition before it is cured when forming the pixel portion, the boiling point of the organic solvent is preferably 300° C. or less from the viewpoint of easy removal of the organic solvent.
 有機溶剤は、好ましくは、沸点が150℃以上のアセテート化合物を含む。この場合、発光性ナノ結晶粒子と溶剤との間の親和性が向上し、発光性ナノ結晶粒子が優れた発光特性を発揮し得る。沸点が150℃以上のアセテート化合物の具体例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート等のモノアセテート化合物、1,4-ブタンジオールジアセテート、プロピレングリコールジアセテート等のジアセテート化合物、グリセリルトリアセテート等のトリアセテート化合物などが挙げられる。 The organic solvent preferably contains an acetate compound with a boiling point of 150°C or higher. In this case, the affinity between the luminescent nanocrystalline particles and the solvent is improved, and the luminescent nanocrystalline particles can exhibit excellent luminous properties. Specific examples of acetate compounds having a boiling point of 150° C. or higher include monoacetate compounds such as diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, and dipropylene glycol methyl ether acetate, and 1,4-butanediol diol. Acetate, diacetate compounds such as propylene glycol diacetate, triacetate compounds such as glycerol triacetate, and the like.
 本実施形態のインク組成物では光重合性化合物が分散媒としても機能するため、無溶剤で光散乱性粒子及び発光性ナノ結晶粒子を分散させることが可能である。この場合、画素部を形成する際に溶剤を乾燥により除去する工程が不要となる利点を有する。 In the ink composition of the present embodiment, since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse the light-scattering particles and the luminescent nanocrystalline particles without a solvent. In this case, there is an advantage that the step of removing the solvent by drying is not required when forming the pixel portion.
 以上説明したインク組成物のインクジェット印刷時のインク温度における粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2mPa・s以上であってよく、5mPa・s以上であってもよく、7mPa・s以上であってもよい。インク組成物のインクジェット印刷時のインク温度における粘度は、20mPa・s以下であってよく、15mPa・s以下であってもよく、12mPa・s以下であってもよい。インク組成物のインクジェット印刷時のインク温度における粘度は、例えば、2~20mPa・s、2~15mPa・s、2~12mPa・s、5~20mPa・s、5~15mPa・s、5~12mPa・s、7~20mPa・s、7~15mPa・s、又は7~12mPa・sであってもよい。本明細書中、インク組成物の粘度は、例えば、E型粘度計によって測定される粘度であり、25℃で測定されたものを言う。 The viscosity of the ink composition described above at the ink temperature during inkjet printing may be, for example, 2 mPa·s or more, 5 mPa·s or more, or 7 mPa from the viewpoint of ejection stability during inkjet printing. * It may be s or more. The viscosity of the ink composition at the ink temperature during inkjet printing may be 20 mPa·s or less, 15 mPa·s or less, or 12 mPa·s or less. The viscosity of the ink composition at the ink temperature during inkjet printing is, for example, 2 to 20 mPa·s, 2 to 15 mPa·s, 2 to 12 mPa·s, 5 to 20 mPa·s, 5 to 15 mPa·s, and 5 to 12 mPa·s. s, 7 to 20 mPa·s, 7 to 15 mPa·s, or 7 to 12 mPa·s. In this specification, the viscosity of the ink composition is measured at 25° C., for example, by an E-type viscometer.
 インク組成物のインクジェット印刷時のインク温度における粘度が2mPa・s以上でである場合、吐出ヘッドのインク吐出孔の先端におけるインクジェットインクのメニスカス形状が安定するため、インクジェットインクの吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、インク組成物のインクジェット印刷時のインク温度における粘度が20mPa・s以下である場合、インク吐出孔からインクジェットインクを円滑に吐出させることができる。 When the viscosity of the ink composition at the ink temperature during inkjet printing is 2 mPa s or more, the meniscus shape of the inkjet ink at the tip of the ink ejection hole of the ejection head is stabilized. control of the amount and timing of ejection) becomes easier. On the other hand, when the viscosity of the ink composition at the ink temperature during inkjet printing is 20 mPa·s or less, the inkjet ink can be smoothly ejected from the ink ejection holes.
 インク組成物の表面張力は、インクジェット方式に適した表面張力であることが好ましく、具体的には、20~40mN/mの範囲であることが好ましく、25~35mN/mであることがより好ましい。表面張力を当該範囲とすることで吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易になると共に、飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。表面張力が40mN/m以下である場合、インク吐出孔の先端におけるメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、表面張力が20mN/m以上である場合、インク吐出孔周辺部がインクジェットインクで汚染することが防げるため、飛行曲がりの発生を抑制できる。すなわち、着弾すべき画素部形成領域に正確に着弾されずにインク組成物の充填が不充分な画素部が生じたり、着弾すべき画素部形成領域に隣接する画素部形成領域(又は画素部)にインク組成物が着弾し、色再現性が低下したりすることがない。なお、本願明細書記載の表面張力は、23℃で測定された表面張力をいい、リング法(輪環法ともいう)で測定されたものをいう。 The surface tension of the ink composition is preferably a surface tension suitable for an inkjet system, specifically preferably in the range of 20 to 40 mN/m, more preferably 25 to 35 mN/m. . By setting the surface tension within this range, it is possible to facilitate ejection control (for example, control of ejection amount and ejection timing) and to suppress the occurrence of flight deflection. The term "flight deflection" means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 μm or more. When the surface tension is 40 mN/m or less, the meniscus shape at the tip of the ink ejection hole is stabilized, so that the ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy. On the other hand, when the surface tension is 20 mN/m or more, contamination of the periphery of the ink ejection holes with the ink jet ink can be prevented, so that the occurrence of flight deflection can be suppressed. That is, the ink composition is not accurately deposited on the pixel portion forming region where the ink composition should be deposited, resulting in an insufficiently filled pixel portion, or the pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region where the ink composition should be deposited. The ink composition does not land on the surface, and the color reproducibility is not deteriorated. The surface tension described in the specification of the present application refers to the surface tension measured at 23° C., which is measured by the ring method (also referred to as the ring method).
 本実施形態のインク組成物をインクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがない。そのため、発光性ナノ結晶粒子の変質が起こり難く、画素部(光変換層)において、期待した通りの発光特性がより容易に得られやすい。 When the ink composition of the present embodiment is used as an ink composition for an ink jet system, it is preferably applied to a piezo jet ink jet recording apparatus with a mechanical ejection mechanism using a piezoelectric element. In the piezo jet method, the ink composition is not instantaneously exposed to high temperatures during ejection. Therefore, the luminescent nanocrystalline particles are less likely to be degraded, and expected luminous properties can be more easily obtained in the pixel portion (light conversion layer).
 以上、インクジェット用インク組成物の一実施形態について説明したが、上述した実施形態のインクジェット用インク組成物は、インクジェット方式の他に、例えば、フォトリソグラフィ方式で用いることもできる。この場合、インク組成物は、バインダーポリマーとしてアルカリ可溶性樹脂を含有する。 Although one embodiment of the inkjet ink composition has been described above, the inkjet ink composition of the embodiment described above can also be used in, for example, a photolithography method in addition to the inkjet method. In this case, the ink composition contains an alkali-soluble resin as a binder polymer.
 インク組成物をフォトリソグラフィ方式で用いる場合、まず、インク組成物を基材上に塗布し、さらにインク組成物を乾燥させて塗布膜を形成する。このようにして得られる塗布膜は、アルカリ現像液に可溶性であり、アルカリ現像液で処理されることでパターニングされる。この際、アルカリ現像液は、現像液の廃液処理の容易さ等の観点から、水溶液であることが大半を占めるため、インク組成物の塗布膜は水溶液で処理されることとなる。一方、発光性ナノ結晶粒子(量子ドット等)を用いたインク組成物の場合、発光性ナノ結晶粒子が水に対して不安定であり、発光性(例えば蛍光性)が水分により損なわれる。このため本実施形態においては、アルカリ現像液(水溶液)で処理する必要のない、インクジェット方式が好ましい。 When the ink composition is used in the photolithography method, first, the ink composition is applied onto a substrate, and the ink composition is dried to form a coating film. The coating film thus obtained is soluble in an alkaline developer, and is patterned by being treated with an alkaline developer. At this time, the alkali developer is mostly an aqueous solution from the viewpoint of ease of disposal of the waste liquid of the developer, and therefore the coating film of the ink composition is treated with an aqueous solution. On the other hand, in the case of an ink composition using luminescent nanocrystalline particles (quantum dots, etc.), the luminescent nanocrystalline particles are unstable against water, and luminescence (for example, fluorescence) is impaired by moisture. For this reason, in the present embodiment, the ink jet method is preferable because it does not require treatment with an alkaline developer (aqueous solution).
 また、インク組成物の塗布膜に対してアルカリ現像液による処理を行わない場合でも、インク組成物がアルカリ可溶性である場合、インク組成物の塗布膜が大気中の水分を吸収しやすくなるため、時間が経過するにつれて発光性ナノ結晶粒子(量子ドット等)の発光性(例えば蛍光性)が損なわれてゆく。この観点から、本実施形態においては、インク組成物の塗布膜はアルカリ不溶性であることが好ましい。すなわち、本実施形態のインク組成物は、アルカリ不溶性の塗布膜を形成可能なインク組成物であることが好ましい。このようなインク組成物は、光重合性化合物及び熱硬化性樹脂として、アルカリ不溶性の光重合性化合物及び熱硬化性樹脂を用いることにより得ることができる。インク組成物の塗布膜がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃におけるインク組成物の塗布膜の溶解量が、インク組成物の塗布膜の全質量を基準として、30質量%以下であることを意味する。インク組成物の塗布膜の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。なお、インク組成物がアルカリ不溶性の塗布膜を形成可能なインク組成物であることは、インク組成物を基材上に塗布した後、80℃、3分の条件で乾燥して得られる厚さ1μmの塗布膜の、上記溶解量を測定することにより確認できる。 In addition, even when the coating film of the ink composition is not treated with an alkaline developer, if the ink composition is alkali-soluble, the coating film of the ink composition easily absorbs moisture in the atmosphere. Luminescent properties (for example, fluorescence) of luminescent nanocrystalline particles (quantum dots, etc.) deteriorate over time. From this point of view, in the present embodiment, the coating film of the ink composition is preferably alkali-insoluble. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film. Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound and a thermosetting resin as the photopolymerizable compound and the thermosetting resin. The fact that the coating film of the ink composition is alkali-insoluble means that the amount of the coating film of the ink composition dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is, based on the total mass of the coating film of the ink composition, It means that it is 30% by mass or less. The amount of the ink composition dissolved in the coating film is preferably 10% by mass or less, and more preferably 3% by mass or less. It should be noted that the fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that the thickness obtained by applying the ink composition on a substrate and then drying it under the conditions of 80° C. for 3 minutes It can be confirmed by measuring the amount of dissolution of the coating film of 1 μm.
 <インク組成物の製造方法>
 本実施形態のインク組成物は、例えば、上述した構成成分(発光性ナノ結晶粒子(例えば、有機リガンドで修飾された発光性ナノ結晶粒子)と、光重合性化合物と、ヒンダードアミン系化合物と、その他の任意成分)を混合する工程を備える。
 インク組成物の製造方法は、上記構成成分の混合物の分散処理を行う工程をさらに備えてもよい。
 以下では、一例として、光散乱性粒子を含有するインク組成物の製造方法を説明する。
<Method for producing ink composition>
The ink composition of the present embodiment includes, for example, the above-described components (luminescent nanocrystalline particles (e.g., organic ligand-modified luminescent nanocrystalline particles), photopolymerizable compounds, hindered amine compounds, and other optional component).
The method for producing the ink composition may further include a step of dispersing the mixture of the above components.
As an example, a method for producing an ink composition containing light-scattering particles will be described below.
 光散乱性粒子を含有するインク組成物の製造方法は、例えば、光散乱性粒子の分散体を準備する第1工程と、光散乱性粒子の分散体と発光性ナノ結晶粒子とを混合する第2工程とを備える。
 光散乱性粒子の分散体は、さらに、高分子分散剤を含有してもよい。この方法では、光散乱性粒子の分散体が、さらに、光重合性化合物を含有してよく、第2工程において、さらに、光重合性化合物を混合してもよい。
 上記方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば、外部量子効率)を向上させることができるとともに、吐出安定性に優れるインク組成物を容易に得ることができる。
A method for producing an ink composition containing light-scattering particles includes, for example, a first step of preparing a dispersion of light-scattering particles, and a second step of mixing the dispersion of light-scattering particles and luminescent nanocrystalline particles. 2 steps.
The dispersion of light scattering particles may further contain a polymeric dispersant. In this method, the dispersion of light-scattering particles may further contain a photopolymerizable compound, and the photopolymerizable compound may be further mixed in the second step.
According to the above method, the light-scattering particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
 第1工程では、光散乱性粒子と、必要に応じて、高分子分散剤と、光重合性化合物とを混合し、分散処理を行うことにより、光散乱性粒子の分散体を調製してもよい。
 混合および分散処理は、例えば、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミルのような分散装置等を使用して行うことができる。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整し易い観点から、ビーズミルまたはペイントコンディショナーを使用することが好ましい。
 また、発光性ナノ結晶粒子と光散乱性粒子とを混合する前に、光散乱性粒子と高分子分散剤とを混合することにより、光散乱性粒子をより十分に分散させることができる。そのため、優れた吐出安定性および優れた外部量子効率をより一層容易に得ることができる。
In the first step, light-scattering particles may be mixed with, if necessary, a polymer dispersant, and a photopolymerizable compound, and subjected to dispersion treatment to prepare a dispersion of light-scattering particles. good.
Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
Further, by mixing the light-scattering particles and the polymer dispersant before mixing the light-emitting nanocrystalline particles and the light-scattering particles, the light-scattering particles can be dispersed more sufficiently. Therefore, excellent ejection stability and excellent external quantum efficiency can be obtained more easily.
 インク組成物の製造方法では、第2工程の前に、さらに、発光性ナノ結晶粒子と光重合性化合物とを含有する発光性ナノ結晶粒子の分散体を準備する工程を備えていてもよい。この場合、第2工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体とを混合する。
 発光性ナノ結晶粒子の分散体を準備する工程では、発光性ナノ結晶粒子と光重合性化合物とを混合し、分散処理を行うことにより、発光性ナノ結晶粒子の分散体を調製してよい。
 発光性ナノ結晶粒子としては、その表面に有機リガンドを有する発光性ナノ結晶粒子を使用してもよく、配位子を使用してもよい。すなわち、発光性ナノ結晶粒子の分散体は、さらに、有機リガンド含んでいてもよく、配位子を含んでいてもよい。
The method for producing an ink composition may further include, before the second step, a step of preparing a dispersion of luminescent nanocrystalline particles containing luminescent nanocrystalline particles and a photopolymerizable compound. In this case, in the second step, a dispersion of light-scattering particles and a dispersion of luminescent nanocrystalline particles are mixed.
In the step of preparing a dispersion of luminescent nanocrystalline particles, the dispersion of luminescent nanocrystalline particles may be prepared by mixing luminescent nanocrystalline particles and a photopolymerizable compound and performing dispersion treatment.
As the luminescent nanocrystalline particles, luminescent nanocrystalline particles having organic ligands on their surfaces may be used, or ligands may be used. That is, the dispersion of luminescent nanocrystalline particles may further contain an organic ligand or may contain a ligand.
 混合および分散処理は、例えば、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミルのような分散装置等を使用して行うことができる。発光性ナノ結晶粒子の分散性が良好となり、発光性ナノ結晶粒子の平均粒子径を所望の範囲に調整し易い観点から、ビーズミル、ペイントコンディショナーまたはジェットミルを使用することが好ましい。
 かかる方法によれば、発光性ナノ結晶粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば、外部量子効率)を向上させることができるとともに、吐出安定性に優れるインク組成物を容易に得ることができる。
Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill, a paint conditioner, or a jet mill from the viewpoint of improving the dispersibility of the luminescent nanocrystalline particles and facilitating adjustment of the average particle size of the luminescent nanocrystalline particles to a desired range.
According to such a method, the luminescent nanocrystalline particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
 上記製造方法において、ヒンダードアミン系化合物は、第1工程で混合しても、第2工程で混合してもよい。すなわち、第1工程は、光散乱性粒子およびヒンダードアミン系化合物と、必要に応じて、高分子分散剤および光重合性化合物とを含有する光散乱性粒子の分散体を準備する工程であってもよく、第2工程は、光散乱性粒子の分散体と、発光性ナノ結晶粒子およびヒンダードアミン系化合物と、必要に応じて、光重合性化合物とを混合する工程であってもよい。
 なお、ヒンダードアミン系化合物は、第2工程の前に調製される発光性ナノ結晶粒子の分散体に混合してもよい。
In the above production method, the hindered amine compound may be mixed in the first step or the second step. That is, the first step may be a step of preparing a dispersion of light-scattering particles containing light-scattering particles and a hindered amine compound, and optionally a polymer dispersant and a photopolymerizable compound. The second step may be a step of mixing the dispersion of light-scattering particles, the luminescent nanocrystalline particles, the hindered amine-based compound, and, if necessary, the photopolymerizable compound.
The hindered amine compound may be mixed with the dispersion of luminescent nanocrystalline particles prepared before the second step.
 上記製造方法において、酸化防止剤、有機溶媒等の他の成分を使用する場合、これらの成分は、発光性ナノ結晶粒子の分散体に混合してもよく、光散乱性粒子の分散体に混合してもよく、発光性ナノ結晶粒子の分散体と光散乱性粒子の分散体とを混合して得られる混合分散体に混合してもよい。 In the above production method, when other components such as antioxidants and organic solvents are used, these components may be mixed with the dispersion of the luminescent nanocrystalline particles or the dispersion of the light-scattering particles. Alternatively, it may be mixed in a mixed dispersion obtained by mixing a dispersion of luminescent nanocrystalline particles and a dispersion of light-scattering particles.
<インク組成物セット>
 一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性ナノ結晶粒子を含有しないインク組成物(非発光性インク組成物)を備えていてよい。非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、従来公知のインク組成物であってよく、発光性ナノ結晶粒子を含まないこと以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成であってもよい。
<Ink composition set>
An ink composition set of one embodiment includes the ink composition of the embodiment described above. The ink composition set may include an ink composition that does not contain luminescent nanocrystalline particles (non-luminescent ink composition) in addition to the ink composition (luminescent ink composition) of the embodiment described above. A non-luminescent ink composition is, for example, a curable ink composition. The non-luminescent ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (luminescent ink composition) of the above-described embodiment except that it does not contain luminescent nanocrystalline particles. may be
 非発光性インク組成物は、発光性ナノ結晶粒子を含有しないため、非発光性インク組成物により形成される画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性インク組成物により形成される画素部は青色画素部となり得る。 Since the non-luminous ink composition does not contain luminous nanocrystal particles, light is allowed to enter the pixel portion formed by the non-luminous ink composition (the pixel portion containing the cured product of the non-luminous ink composition). In this case, the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-luminous ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed with the non-luminescent ink composition can be a blue pixel portion.
 非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、当該非発光性インク組成物により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。 The non-luminescent ink composition preferably contains light-scattering particles. When the non-luminous ink composition contains light-scattering particles, the pixel portion formed from the non-luminous ink composition can scatter light incident on the pixel portion, thereby It is possible to reduce the light intensity difference in the viewing angle of the light emitted from the portion.
<光変換層及びカラーフィルタ>
 以下、上述した実施形態のインク組成物セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
<Light conversion layer and color filter>
Hereinafter, details of the light conversion layer and the color filter obtained using the ink composition set of the embodiment described above will be described with reference to the drawings. In the following description, the same reference numerals are used for the same or corresponding elements, and overlapping descriptions are omitted.
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。 FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment. As shown in FIG. 1 , the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40 . The light conversion layer 30 includes a plurality of pixel portions 10 and a light shielding portion 20 .
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。 The light conversion layer 30 has, as pixel sections 10, a first pixel section 10a, a second pixel section 10b, and a third pixel section 10c. The first pixel section 10a, the second pixel section 10b, and the third pixel section 10c are arranged in a grid so as to repeat this order. The light shielding portion 20 is provided between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion 10c. is provided between the first pixel portion 10c and the first pixel portion 10a. In other words, these adjacent pixel portions are separated by the light shielding portion 20 .
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態のインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。図1に示す硬化物は、発光性ナノ結晶粒子と、硬化成分と、光散乱性粒子と、を含有する。第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性ナノ結晶粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性ナノ結晶粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体と、ジチオカルバミン酸基を有する金属化合物由来の金属原子と、を含む。ジチオカルバミン酸基を有する金属化合物は、金属原子と配位子とが結合した状態で存在してよく、金属原子と配位子とが分離した状態で存在してもよい。金属原子及び配位子は、それぞれ、発光性ナノ結晶粒子表面に吸着又は配位(例えば結合)していてもよい。硬化成分には、上記重合体の他、インク組成物に含まれていた有機成分(有機リガンド、高分子分散剤、未反応の重合性化合物等)が含まれていてよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。 The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (luminescent pixel portions) each containing a cured product of the ink composition of the embodiment described above. The cured product shown in FIG. 1 contains luminescent nanocrystalline particles, a curing component, and light scattering particles. The first pixel portion 10a includes a first curing component 13a, and first luminescent nanocrystalline particles 11a and first light scattering particles 12a respectively dispersed in the first curing component 13a. Similarly, the second pixel portion 10b includes a second curing component 13b, and second luminescent nanocrystalline particles 11b and second light scattering particles 12b dispersed in the second curing component 13b, respectively. including. The cured component is a component obtained by polymerization of a photopolymerizable compound, and contains a polymer of the photopolymerizable compound and metal atoms derived from a metal compound having a dithiocarbamic acid group. A metal compound having a dithiocarbamic acid group may exist in a state in which the metal atom and the ligand are bonded, or may exist in a state in which the metal atom and the ligand are separated. The metal atoms and ligands may each be adsorbed or coordinated (eg, bound) to the surface of the luminescent nanocrystalline particles. The curing component may include organic components (organic ligands, polymer dispersants, unreacted polymerizable compounds, etc.) contained in the ink composition, in addition to the above polymers. In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different, and may be the first light scattering particles 12a. It may be the same as or different from the second light scattering particles 12b.
 第1の発光性ナノ結晶粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性ナノ結晶粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first luminescent nanocrystalline particles 11a are red luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420-480 nm and emit light with an emission peak wavelength in the range of 605-665 nm. That is, the first pixel section 10a can be rephrased as a red pixel section for converting blue light into red light. The second luminescent nanocrystalline particles 11b are green luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel section 10b can be rephrased as a green pixel section for converting blue light into green light.
 発光性画素部における発光性ナノ結晶粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは5質量%以上であり、10質量%以上、15質量%以上、20質量%以上又は30質量%以上であってもよい。発光性ナノ結晶粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは80質量%以下であり、75質量%以下、70質量%以下又は60質量%以下であってもよい。 The content of the luminescent nanocrystalline particles in the luminescent pixel portion is based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining an excellent effect of improving the external quantum efficiency and obtaining excellent emission intensity. It is preferably 5% by mass or more, and may be 10% by mass or more, 15% by mass or more, 20% by mass or more, or 30% by mass or more. The content of the luminescent nanocrystalline particles is preferably 80% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent reliability of the pixel portion and excellent emission intensity. and may be 75% by mass or less, 70% by mass or less, or 60% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、0.1質量%以上、1質量%以上又は3質量%以上であってもよい。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、60質量%以下、50質量%以下、40質量%以下、30質量%以下、25質量部%以下、20質量部%以下又は15質量%以下であってもよい。 The content of the light-scattering particles in the luminescent pixel portion is 0.1% by mass or more and 1% by mass, based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency. or more, or 3% by mass or more. The content of the light-scattering particles is 60% by mass or less, 50% by mass or less, based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency and the reliability of the pixel portion. % by mass or less, 40% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, or 15% by mass or less.
 第3の画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性ナノ結晶粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。 The third pixel portion 10c is a non-luminous pixel portion (non-luminous pixel portion) containing the cured non-luminous ink composition described above. The cured product does not contain luminescent nanocrystalline particles, but contains light-scattering particles and a curing component. That is, the third pixel portion 10c includes a third curing component 13c and third light scattering particles 12c dispersed in the third curing component 13c. The third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound, and includes a polymer of the polymerizable compound. The third light scattering particles 12c may be the same as or different from the first light scattering particles 12a and the second light scattering particles 12b.
 第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。 For example, the third pixel section 10c has a transmittance of 30% or more for light with a wavelength in the range of 420 to 480 nm. Therefore, the third pixel section 10c functions as a blue pixel section when using a light source that emits light with a wavelength in the range of 420 to 480 nm. Note that the transmittance of the third pixel section 10c can be measured with a microspectroscope.
 非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上であってよく、5質量%以上であってもよく、10質量%以上であってもよい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、80質量%以下であってよく、75質量%以下であってもよく、70質量%以下であってもよい。 The content of the light-scattering particles in the non-luminous pixel portion is 1% by mass based on the total mass of the cured non-luminous ink composition, from the viewpoint of further reducing the difference in light intensity at viewing angles. or more, may be 5% by mass or more, or may be 10% by mass or more. From the viewpoint of further reducing light reflection, the content of the light-scattering particles may be 80% by mass or less, and 75% by mass or less, based on the total mass of the cured product of the non-luminous ink composition. It may be 70% by mass or less.
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下であってよく、20μm以下であってもよく、15μm以下であってもよい。 The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) may be, for example, 1 μm or more, 2 μm or more, or 3 μm or more. may The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) may be, for example, 30 μm or less, 20 μm or less, or 15 μm or less. may
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上であってよく、10μm以下であってよい。 The light shielding section 20 is a so-called black matrix that is provided for the purpose of separating adjacent pixel sections to prevent color mixture and for the purpose of preventing leakage of light from the light source. The material constituting the light shielding part 20 is not particularly limited, and in addition to metals such as chromium, curing of a resin composition in which light shielding particles such as carbon fine particles, metal oxides, inorganic pigments, organic pigments, etc. are contained in a binder polymer. objects, etc. can be used. As the binder polymer used here, one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, cellulose, etc., photosensitive resin, O/W An emulsion-type resin composition (for example, an emulsified reactive silicone) can be used. The thickness of the light shielding portion 20 may be, for example, 0.5 μm or more and 10 μm or less.
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。 The base material 40 is a transparent base material having optical transparency. A flexible base material or the like can be used. Among these, it is preferable to use a glass substrate made of alkali-free glass that does not contain an alkali component. Specifically, "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning, "AN100" manufactured by Asahi Glass Co., Ltd., "OA-10G" manufactured by Nippon Electric Glass Co., Ltd. and " OA-11” is preferred. These materials have a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。 The color filter 100 including the light conversion layer 30 described above is suitably used when using a light source that emits light with a wavelength in the range of 420 to 480 nm.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、インク組成物(インクジェットインク)をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、乾燥によりインク組成物から有機溶剤を除去する工程と、乾燥後のインク組成物に対して活性エネルギー線(例えば紫外線)を照射し、インク組成物を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。インク組成物として上述した発光性インク組成物を用いることで発光性画素部が得られ、非発光性インク組成物を用いることで非発光性画素部が得られる。 The color filter 100 can be manufactured, for example, by forming the light-shielding portions 20 in a pattern on the substrate 40 and then forming the pixel portions 10 in the pixel-forming regions partitioned by the light-shielding portions 20 on the substrate 40. . The pixel portion 10 includes a step of selectively applying an ink composition (inkjet ink) to a pixel portion forming region on the base material 40 by an inkjet method, a step of drying the ink composition to remove the organic solvent, and a step of drying the ink composition. and a step of irradiating the ink composition of (1) with an active energy ray (eg, ultraviolet rays) to cure the ink composition to obtain a luminescent pixel portion. A luminescent pixel portion can be obtained by using the luminescent ink composition described above as the ink composition, and a non-luminescent pixel portion can be obtained by using a non-luminescent ink composition.
 遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。 The method of forming the light shielding portion 20 is to form a thin film of a metal such as chromium or a thin film of a resin composition containing light shielding particles in a region that serves as a boundary between a plurality of pixel portions on one side of the substrate 40. and a method of patterning this thin film. The metal thin film can be formed, for example, by a sputtering method, a vacuum deposition method, or the like, and the thin film of the resin composition containing light-shielding particles can be formed, for example, by a method such as coating or printing. As a method for patterning, a photolithography method or the like can be used.
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。 Examples of the ink jet method include the bubble jet (registered trademark) method using an electrothermal transducer as an energy generating element, and the piezo jet method using a piezoelectric element.
 インク組成物の乾燥では、有機溶剤の少なくとも一部が除去されればよく、有機溶剤の全てが除去されることが好ましい。インク組成物の乾燥方法は、減圧による乾燥(減圧乾燥)であることが好ましい。減圧乾燥は、通常、インク組成物の組成を制御する観点から、1.0~500Paの圧力下、20~30℃で3~30分間行う。 In drying the ink composition, at least part of the organic solvent should be removed, and it is preferable to remove all of the organic solvent. The method for drying the ink composition is preferably drying under reduced pressure (reduced pressure drying). From the viewpoint of controlling the composition of the ink composition, the drying under reduced pressure is usually carried out under a pressure of 1.0 to 500 Pa at 20 to 30° C. for 3 to 30 minutes.
 インク組成物の硬化は、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を用いてよい。照射する光の波長は、例えば、200nm以上であってよく、440nm以下であってよい。露光量は、例えば、10mJ/cm以上であってよく、4000mJ/cm以下であってよい。 For curing the ink composition, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like may be used. The wavelength of the irradiated light may be, for example, 200 nm or more and 440 nm or less. The exposure dose may be, for example, 10 mJ/cm 2 or more and 4000 mJ/cm 2 or less.
 以上、カラーフィルタ及び光変換層、並びにこれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。 Although one embodiment of the color filter, the light conversion layer, and the manufacturing method thereof has been described above, the present invention is not limited to the above embodiment.
 例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性ナノ結晶粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。 For example, the light conversion layer may be a pixel portion ( blue pixel portion). In addition, the light conversion layer may include pixel portions (e.g., yellow pixel portions) containing a cured product of a luminescent ink composition containing nanocrystalline particles that emit light of a color other than red, green, and blue. good. In these cases, each of the luminescent nanocrystalline particles contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength in the same wavelength range.
 また、光変換層の画素部の少なくとも一部は、発光性ナノ結晶粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。 In addition, at least part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than the luminescent nanocrystalline particles.
 また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。 In addition, the color filter may have an ink-repellent layer made of an ink-repellent material having a narrower width than the light-shielding portion on the pattern of the light-shielding portion. Further, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a variable wettability layer is formed in a solid manner in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer through a photomask. By irradiating and exposing, the ink affinity of the pixel portion forming region may be selectively increased. Examples of photocatalysts include titanium oxide and zinc oxide.
 また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。 In addition, the color filter may have an ink-receiving layer containing hydroxypropylcellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
 また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。 Also, the color filter may have a protective layer on the pixel portion. This protective layer flattens the color filter and prevents components contained in the pixel portion, or components contained in the pixel portion and components contained in the photocatalyst-containing layer from eluting into the liquid crystal layer. It is provided. Materials used for known color filter protective layers can be used for the protective layer.
 また、カラーフィルタ及び光変換層の製造では、インクジェット方式ではなく、フォトリソグラフィ方式で画素部を形成してもよい。この場合、まず、基材にインク組成物を層状に塗工し、インク組成物層を形成する。次いで、インク組成物層をパターン状に露光した後、現像液を用いて現像する。このようにして、インク組成物の硬化物からなる画素部が形成される。現像液は、通常アルカリ性であるため、インク組成物の材料としてはアルカリ可溶性の材料が用いられる。ただし、材料の使用効率の観点では、インクジェット方式がフォトリソグラフィ方式よりも優れている。これはフォトリソグラフィ方式では、その原理上、材料のほぼ2/3以上を除去することとなり、材料が無駄になるからである。このため、本実施形態では、インクジェットインクを用い、インクジェット方式により画素部を形成することが好ましい。 Also, in manufacturing the color filter and the light conversion layer, the pixel portion may be formed by the photolithography method instead of the inkjet method. In this case, first, the ink composition is applied to the base material in layers to form an ink composition layer. Next, after the ink composition layer is exposed in a pattern, it is developed using a developer. Thus, a pixel portion made of a cured product of the ink composition is formed. Since the developer is usually alkaline, an alkali-soluble material is used as the material for the ink composition. However, the ink jet method is superior to the photolithography method from the viewpoint of efficiency in using materials. This is because the photolithographic method, in principle, removes approximately two-thirds or more of the material, thus wasting the material. Therefore, in the present embodiment, it is preferable to use inkjet ink and form the pixel portion by an inkjet method.
 また、本実施形態の光変換層の画素部には、上記した発光性ナノ結晶粒子に加えて、発光性ナノ結晶粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、インク組成物に顔料を含有させてもよい。 In addition to the luminescent nanocrystalline particles described above, the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystalline particles. In order to contain the pigment in the pixel portion, the ink composition may contain the pigment.
 また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性ナノ結晶粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)の全質量を基準として、1~5質量%であることが好ましい。 Further, one or two of the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the light conversion layer of the present embodiment are The pixel portion may contain a coloring material without containing crystal grains. As the coloring material that can be used here, known coloring materials can be used. For example, the coloring material used in the red pixel portion (R) includes a diketopyrrolopyrrole pigment and/or an anionic red organic dye. mentioned. The coloring material used in the green pixel portion (G) includes at least one selected from the group consisting of halogenated copper phthalocyanine pigments, phthalocyanine green dyes, and mixtures of phthalocyanine blue dyes and azo yellow organic dyes. Coloring materials used in the blue pixel portion (B) include ε-type copper phthalocyanine pigments and/or cationic blue organic dyes. When these colorants are contained in the light conversion layer, the amount used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance. %.
 また、本発明のインク組成物は、光変換フィルムにも好適である。本発明のインク組成物を基板上に担持させる際の方法としては、スピンコーティング、ダイコーティング、エクストルージョンコーティング、ロールコーティング、ワイヤーバーコーティング、グラビアコーティング、スプレーコーティング、ディッピング等を挙げることができる。またコーティングの際、インク組成物に有機溶媒を添加しても良い。有機溶媒としては、炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エーテル系溶媒、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、非プロトン性溶媒が挙げられるが、発光粒子の安定性の観点から、炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒が好ましい。有機溶媒として具体的には、トルエン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサンが挙げられる。これらは単独でも、組み合わせて用いても良く、その蒸気圧と発光粒子含有組成物の溶解性を考慮し、適宜選択すれば良い。添加した有機溶媒を揮発させる方法としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥を用いることができる。フィルムの膜厚は、用途に応じて適宜調整して良いが、例えば0.1μm以上、10mm以下であることが好ましく、1μm以上、1mm以下であることが特に好ましい。 The ink composition of the invention is also suitable for light conversion films. Examples of methods for carrying the ink composition of the present invention on a substrate include spin coating, die coating, extrusion coating, roll coating, wire bar coating, gravure coating, spray coating, and dipping. Further, an organic solvent may be added to the ink composition during coating. Examples of organic solvents include hydrocarbon solvents, halogenated hydrocarbon solvents, ether solvents, alcohol solvents, ketone solvents, ester solvents, and aprotic solvents. , hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents are preferred. Specific examples of organic solvents include toluene, hexane, heptane, cyclohexane, and methylcyclohexane. These may be used alone or in combination, and may be appropriately selected in consideration of the vapor pressure and the solubility of the luminescent particle-containing composition. As a method for volatilizing the added organic solvent, natural drying, drying by heating, drying under reduced pressure, and drying by heating under reduced pressure can be used. The thickness of the film may be appropriately adjusted depending on the application, but is preferably, for example, 0.1 μm or more and 10 mm or less, and particularly preferably 1 μm or more and 1 mm or less.
 本発明のインク組成物を基板上に担持させる際の基板の形状としては、平板の他に、曲面を構成部分として有していても良い。基板を構成する材料は、有機材料、無機材料を問わずに用いることができる。基板の材料となる有機材料としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリアリレート、ポリスルホン、トリアセチルセルロース、セルロース、ポリエーテルエーテルケトン等が挙げられ、また、無機材料としては、例えば、シリコン、ガラス、方解石等が挙げられる。 As for the shape of the substrate when the ink composition of the present invention is carried on the substrate, it may have a curved surface as a constituent part, in addition to the flat plate. The material constituting the substrate can be used regardless of whether it is an organic material or an inorganic material. Examples of organic materials for the substrate include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, and triacetyl. Cellulose, cellulose, polyether ether ketone, etc., and inorganic materials include, for example, silicon, glass, calcite, and the like.
 本発明のインク組成物を基板上に担持させ重合させる際、迅速に重合が進行することが望ましいため、紫外線又は電子線等の活性エネルギー線を照射することにより重合させる方法が好ましい。照射時の温度は、発光性ナノ結晶粒子の粒子形状が保持される温度範囲内であることが好ましい。光重合によってフィルムを製造しようとする場合には、意図しない熱重合の誘起を避ける意味からも可能な限り室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。活性エネルギー線の強度は、0.1mW/cm以上、2.0W/cm以下であることが好ましい。強度が0.1mW/cm未満の場合、光重合を完了させるのに多大な時間が必要になり生産性が悪化してしまい、2.0W/cmよりも高い場合、発光性ナノ結晶粒子又はインク組成物が劣化してしまう危険がある。 When the ink composition of the present invention is carried on a substrate and polymerized, it is desirable that the polymerization progresses rapidly. The temperature during irradiation is preferably within a temperature range in which the particle shape of the luminescent nanocrystalline particles is maintained. When a film is to be produced by photopolymerization, it is preferable to polymerize at a temperature as close to room temperature as possible, typically at 25° C., in order to avoid unintended induction of thermal polymerization. The intensity of the active energy ray is preferably 0.1 mW/cm 2 or more and 2.0 W/cm 2 or less. If the intensity is less than 0.1 mW/cm 2 , it takes a long time to complete the photopolymerization, resulting in poor productivity. Alternatively, there is a risk that the ink composition will deteriorate.
 重合によって得られた本発明のインク組成物を形成材料とする光変換フィルムは、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理を施すこともできる。熱処理の温度は50~250℃の範囲であることが好ましく、熱処理時間は30秒~12時間の範囲であることが好ましい。 The light conversion film that uses the ink composition of the present invention obtained by polymerization as a forming material can be subjected to heat treatment for the purpose of reducing initial changes in properties and stably developing properties. The heat treatment temperature is preferably in the range of 50 to 250° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours.
 このような方法によって製造された本発明のインク組成物を形成材料とする光変換フィルムは、基板から剥離して単体で用いても良く、剥離せずに用いても良い。また、得られた光変換フィルムを積層しても良く、他の基板に貼り合わせて用いても良い。 The light conversion film formed by the ink composition of the present invention produced by such a method may be used alone after peeling from the substrate, or may be used without peeling. Moreover, the obtained light conversion film may be laminated, or may be used by bonding to another substrate.
 本発明のインク組成物を形成材料とする光変換フィルムを積層構造体に用いる場合、積層構造体は、例えば基板、バリア層、光散乱層等の任意の層を有していても良い。基板を構成する材料としては例えば前記のものが挙げられる。積層構造体の構成例としては、例えば、2枚の基板間に本発明のインク組成物を形成材料とする光変換フィルムを挟持した構造が挙げられる。その場合、空気中の水分や酸素からインク組成物を形成材料とする光変換フィルムを保護するために、基板間の外周部を封止材によって封止しても良い。また、バリア層としては、例えば、ポリエチレンテレフタレート、ガラスが挙げられる。光を均一に散乱させるために、光散乱層を有しても良い。光散乱層としては、例えば、前記光散乱粒子を含有する層及び光散乱フィルムが挙げられる。図2は、本実施形態の積層構造体の構成を模式的に示す断面図である。図2では、図面が煩雑になることを避けるため、断面を示すハッチングの記載を省略している。積層構造体50は、第1の基板51及び第2の基板52の間に、本実施形態の光変換フィルム54が挟持されている。光変換フィルム54は、光散乱粒子541と発光性ナノ結晶粒子542とを含有するインク組成物を形成材料として形成され、光散乱粒子541及び発光性ナノ結晶粒子542は、光変換フィルム中に均一に分散している。光変換フィルム54は、封止材によって形成された封止層53によって封止されている。 When the light conversion film using the ink composition of the present invention as a forming material is used in a laminated structure, the laminated structure may have arbitrary layers such as a substrate, a barrier layer, and a light scattering layer. Examples of the material constituting the substrate include those mentioned above. Examples of the structure of the laminated structure include a structure in which a light conversion film having the ink composition of the present invention as a forming material is sandwiched between two substrates. In that case, in order to protect the light conversion film formed from the ink composition from moisture and oxygen in the air, the peripheral portion between the substrates may be sealed with a sealing material. Examples of the barrier layer include polyethylene terephthalate and glass. A light scattering layer may be provided to uniformly scatter light. The light-scattering layer includes, for example, a layer containing the light-scattering particles and a light-scattering film. FIG. 2 is a cross-sectional view schematically showing the structure of the laminated structure of this embodiment. In FIG. 2, hatching indicating a cross section is omitted in order to avoid complication of the drawing. The laminated structure 50 has a light conversion film 54 of the present embodiment sandwiched between a first substrate 51 and a second substrate 52 . The light conversion film 54 is formed using an ink composition containing light scattering particles 541 and luminescent nanocrystalline particles 542 as a forming material. distributed over The light conversion film 54 is sealed with a sealing layer 53 made of a sealing material.
 本発明のインク組成物から形成される光変換フィルムを含む積層構造体は、発光デバイス用途に好適である。発光デバイスの構成例としては、例えば、プリズムシート、導光板、本発明の発光粒子を含む積層構造体及び光源を有する構造が挙げられる。光源としては、例えば、発光ダイオード、レーザー、電界発光デバイスが挙げられる。 A laminated structure containing a light conversion film formed from the ink composition of the present invention is suitable for light emitting device applications. Examples of the configuration of the light-emitting device include a structure having a prism sheet, a light guide plate, a laminated structure containing the light-emitting particles of the present invention, and a light source. Light sources include, for example, light emitting diodes, lasers, and electroluminescent devices.
 本発明のインク組成物から形成される光変換フィルムを含む積層構造体は、ディスプレイ用の波長変換部材として使用されることが好ましい。波長変換部材として使用する場合の構成例としては、例えば、2枚のバリア層の間に本発明の発光粒子含有組成物を形成材料とする光変換フィルムを封止した積層構造体を、導光板上に設置する構造が挙げられる。この場合、導光板の側面に設置された発光ダイオードからの青色光を、前記積層構造体を通すことによって、緑色光や赤色光へと変換し、青色光、緑色光及び赤色光が混色されて白色光を得ることができることから、ディスプレイ用のバックライトとして使用することができる。 A laminated structure containing a light conversion film formed from the ink composition of the present invention is preferably used as a wavelength conversion member for displays. As an example of the structure when used as a wavelength conversion member, for example, a laminated structure in which a light conversion film containing the luminescent particle-containing composition of the present invention as a forming material is sealed between two barrier layers is attached to a light guide plate. A structure to be installed on top is mentioned. In this case, the blue light from the light emitting diodes installed on the side surface of the light guide plate is converted into green light or red light by passing through the laminated structure, and the blue light, green light, and red light are mixed. Since white light can be obtained, it can be used as a backlight for displays.
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。なお、実施例で用いた材料は全て、アルゴンガスを導入して溶存酸素をアルゴンガスに置換したものを用いた。酸化チタンについては、混合前に、1mmHgの減圧下、4時間、175℃で加熱し、アルゴンガス雰囲気下で放冷したものを用いた。実施例で用いた液状の材料は、混合前にあらかじめ、モレキュラーシーブス3Aで48時間以上脱水して用いた。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited only to the following examples. All the materials used in the examples were obtained by introducing argon gas to replace dissolved oxygen with argon gas. Titanium oxide was used after being heated at 175° C. for 4 hours under a reduced pressure of 1 mmHg and left to cool in an argon gas atmosphere before mixing. The liquid materials used in the examples were dehydrated with molecular sieves 3A for 48 hours or more before mixing.
<光重合性化合物の用意>
[アクリル当量が110以上である(メタ)アクリレート化合物]
・HDDA:1,6-ヘキサンジオールジアクリレート(アクリル当量:113)
・DPGDA:ジプロピレングリコールジアクリレート(アクリル当量:121)
・DCPEA:ジシクロペンテニルオキシエチルアクリレート(アクリル当量:242)
・DCPEM:ジシクロペンテニルオキシエチルメタクリレート(アクリル当量:262)
・IB-XA:イソボルニルアクリレート(アクリル当量:208)
・DCPA:ジメチロール-トリシクロデカンジアクリレート(アクリル当量:152)
・EOBPADA:EO変性ビスフェノールAジアクリレート(アクリル当量:254)
[アクリル当量が110未満である(メタ)アクリレート化合物]
・BDDA:1,4-ブタンジオールジアクリレート(アクリル当量:99)
・TMPTA:トリメチロールプロパントリアクリレート(アクリル当量:99)
[アリルエーテル化合物]
・AOMA:2-(アリルオキシメチル)アクリル酸メチル
<Preparation of photopolymerizable compound>
[(Meth)acrylate compound having an acrylic equivalent of 110 or more]
・HDDA: 1,6-hexanediol diacrylate (acrylic equivalent: 113)
・DPGDA: dipropylene glycol diacrylate (acrylic equivalent: 121)
- DCPEA: dicyclopentenyloxyethyl acrylate (acrylic equivalent: 242)
- DCPEM: dicyclopentenyloxyethyl methacrylate (acrylic equivalent: 262)
・IB-XA: isobornyl acrylate (acrylic equivalent: 208)
· DCPA: dimethylol-tricyclodecane diacrylate (acrylic equivalent: 152)
・EOBPADA: EO-modified bisphenol A diacrylate (acrylic equivalent: 254)
[(Meth)acrylate compound having an acrylic equivalent of less than 110]
・ BDDA: 1,4-butanediol diacrylate (acrylic equivalent: 99)
・TMPTA: trimethylolpropane triacrylate (acrylic equivalent: 99)
[Allyl ether compound]
・AOMA: 2-(allyloxymethyl) methyl acrylate
<ジチオカルバミン酸基を有する金属化合物の用意>
・化合物1:ジブチルジチオカルバミン酸亜鉛(製品名:ノクセラー BZ-P)
・化合物2:N-ペンタメチレンジチオカルバミン酸亜鉛(製品名:ノクセラー ZP)
・化合物3:ジブチルジチオカルバミン酸ナトリウム(製品名:ノクセラー TP)
・化合物4:ジメチルジチオカルバミン酸銅(製品名:ノクセラー TTCU)
<Preparation of a metal compound having a dithiocarbamic acid group>
・Compound 1: zinc dibutyldithiocarbamate (product name: Noxcellar BZ-P)
・Compound 2: Zinc N-pentamethylenedithiocarbamate (product name: Noxcellar ZP)
・Compound 3: sodium dibutyldithiocarbamate (product name: Noxcella TP)
・Compound 4: copper dimethyldithiocarbamate (product name: NOXCELLER TTCU)
<酸化防止剤の用意>
・フェノール系酸化防止剤:Irganox1010((株)アデカ)
・リン系酸化防止剤: PEP-8(BASFジャパン(株)アデカ)
<Preparation of antioxidant>
・Phenolic antioxidant: Irganox 1010 (Adeka Co., Ltd.)
・ Phosphorus antioxidant: PEP-8 (BASF Japan Co., Ltd. Adeka)
<合成例1:緑色発光性のInP/ZnSeS/ZnSナノ結晶粒子の準備>
[ラウリン酸インジウム溶液の調製]
 1-オクタデセン(ODE)10g、酢酸インジウム146mg(0.5mmol)及びラウリン酸300mg(1.5mmol)を反応フラスコに添加し混合物を得た。真空下において混合物を140℃にて2時間加熱することで透明な溶液(ラウリン酸インジウム溶液)を得た。この溶液は、必要になるまで室温でグローブボックス中に維持した。なお、ラウリン酸インジウムは室温では溶解性が低く沈殿しやすいため、ラウリン酸インジウム溶液を使用する際は、当該溶液(ODE混合物)中の沈殿したラウリン酸インジウムを約90℃に加熱して透明な溶液を形成した後、所望量を計量して用いた。
<Synthesis Example 1: Preparation of green-emitting InP/ZnSeS/ZnS nanocrystalline particles>
[Preparation of indium laurate solution]
10 g of 1-octadecene (ODE), 146 mg (0.5 mmol) of indium acetate and 300 mg (1.5 mmol) of lauric acid were added to the reaction flask to obtain a mixture. A clear solution (indium laurate solution) was obtained by heating the mixture at 140° C. for 2 hours under vacuum. This solution was kept in the glove box at room temperature until needed. In addition, since indium laurate has low solubility at room temperature and tends to precipitate, when using an indium laurate solution, the precipitated indium laurate in the solution (ODE mixture) should be heated to about 90° C. to obtain a transparent solution. After forming the solution, the desired amount was weighed out.
[緑色発光性ナノ結晶粒子のコア(InPコア)の作製]
 トリオクチルホスフィンオキサイド(TOPO)5g、酢酸インジウム1.46g(5mmol)及びラウリン酸3.16g(15.8mmol)を反応フラスコに添加し混合物を得た。窒素(N)環境下において混合物を160℃にて40分間加熱した後、真空下で250℃にて20分間加熱した。次いで、反応温度(混合物の温度)を窒素(N)環境の下で300℃に昇温した。この温度で、1-オクタデセン(ODE)3gとトリス(トリメチルシリル)ホスフィン0.25g(1mmol)との混合物を反応フラスコに迅速に導入し、反応温度を260℃に維持した。5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。次いで、トルエン8ml及びエタノール20mlをグローブボックス中の反応溶液に添加した。続いて遠心分離を行いInPナノ結晶粒子を沈殿させた後、上澄みの傾瀉によってInPナノ結晶粒子を得た。次いで、得られたInPナノ結晶粒子をヘキサンに分散させた。これにより、InPナノ結晶粒子を5質量%含有する分散液(ヘキサン分散液)を得た。
[Preparation of core (InP core) of green-emitting nanocrystalline particles]
5 g of trioctylphosphine oxide (TOPO), 1.46 g (5 mmol) of indium acetate and 3.16 g (15.8 mmol) of lauric acid were added to the reaction flask to obtain a mixture. The mixture was heated at 160° C. for 40 minutes under a nitrogen (N 2 ) environment and then at 250° C. for 20 minutes under vacuum. The reaction temperature (temperature of the mixture) was then raised to 300° C. under a nitrogen (N 2 ) environment. At this temperature, a mixture of 3 g of 1-octadecene (ODE) and 0.25 g (1 mmol) of tris(trimethylsilyl)phosphine was rapidly introduced into the reaction flask and the reaction temperature was maintained at 260°C. After 5 minutes, the reaction was stopped by removing the heater and the resulting reaction solution was cooled to room temperature. 8 ml of toluene and 20 ml of ethanol were then added to the reaction solution in the glove box. Subsequently, centrifugation was performed to precipitate the InP nanocrystalline particles, and the supernatant was decanted to obtain InP nanocrystalline particles. The resulting InP nanocrystal particles were then dispersed in hexane. As a result, a dispersion (hexane dispersion) containing 5% by mass of InP nanocrystal particles was obtained.
 上記で得られたInPナノ結晶粒子のヘキサン分散液、及びラウリン酸インジウム溶液を反応フラスコに仕込み、混合物を得た。InPナノ結晶粒子のヘキサン分散液及びラウリン酸インジウム溶液の仕込量は、それぞれ、0.5g(InPナノ結晶粒子が25mg)、5g(ラウリン酸インジウムが178mg)となるように調整した。真空下、室温にて混合物を10分間静置した後、窒素ガスでフラスコ内を常圧に戻し、混合物の温度を230℃に上げ、その温度で2時間保持してヘキサンをフラスコ内部から除去した。次いで、フラスコ内温を250℃まで昇温し、1-オクタデセン(ODE)3g及びトリス(トリメチルシリル)ホスフィン0.03g(0.125mmol)の混合物を反応フラスコに迅速に導入し、反応温度を230℃に維持した。5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。次いで、トルエン8ml、エタノール20mlをグローブボックス中の反応溶液に添加した。続いて遠心分離を行い、緑色発光性InP/ZnSeS/ZnSナノ結晶粒子のコアとなる、InPナノ結晶粒子(InPコア)を沈殿させた後、上澄みの傾瀉によって、InPナノ結晶粒子(InPコア)を得た。次いで、得られたInPナノ結晶粒子(InPコア)をヘキサンに分散させて、InPナノ結晶粒子(InPコア)を5質量%含有する分散液(ヘキサン分散液)を得た。 The hexane dispersion of InP nanocrystal particles obtained above and the indium laurate solution were charged into a reaction flask to obtain a mixture. The amounts of the hexane dispersion of InP nanocrystal particles and the indium laurate solution were adjusted to 0.5 g (25 mg of InP nanocrystal particles) and 5 g (178 mg of indium laurate), respectively. After allowing the mixture to stand at room temperature under vacuum for 10 minutes, the inside of the flask was returned to normal pressure with nitrogen gas, the temperature of the mixture was raised to 230°C, and the temperature was maintained for 2 hours to remove hexane from the inside of the flask. . Next, the temperature inside the flask was raised to 250°C, and a mixture of 3 g of 1-octadecene (ODE) and 0.03 g (0.125 mmol) of tris(trimethylsilyl)phosphine was rapidly introduced into the reaction flask, and the reaction temperature was raised to 230°C. maintained at After 5 minutes, the reaction was stopped by removing the heater and the resulting reaction solution was cooled to room temperature. Then, 8 ml of toluene and 20 ml of ethanol were added to the reaction solution in the glove box. Subsequently, centrifugation is performed to precipitate the InP nanocrystalline particles (InP cores), which are the cores of the green-emitting InP/ZnSeS/ZnS nanocrystalline particles. got Next, the obtained InP nanocrystalline particles (InP cores) were dispersed in hexane to obtain a dispersion (hexane dispersion) containing 5% by mass of InP nanocrystalline particles (InP cores).
[緑色発光性ナノ結晶粒子のシェル(ZnSeS/ZnSシェル)の形成]
 上記で得られたInPナノ結晶粒子(InPコア)のヘキサン分散液を反応フラスコに2.5g加えた後、室温にて、オレイン酸0.7gを反応フラスコに添加し、温度を80℃に上げて2時間保持した。次いで、この反応混合物中に、ODE1mlに溶解したジエチル亜鉛14mg、ビス(トリメチルシリル)セレニド8mg及びヘキサメチルジシラチアン7mg(ZnSeS前駆体溶液)を滴下し、200℃に昇温して10分保持することによって、厚さが0.5モノレイヤーのZnSeSシェルを形成させた。
[Formation of green-emitting nanocrystalline particle shell (ZnSeS/ZnS shell)]
After adding 2.5 g of the hexane dispersion of the InP nanocrystalline particles (InP cores) obtained above to the reaction flask, 0.7 g of oleic acid was added to the reaction flask at room temperature, and the temperature was raised to 80°C. and held for 2 hours. Then, 14 mg of diethylzinc dissolved in 1 ml of ODE, 8 mg of bis(trimethylsilyl)selenide and 7 mg of hexamethyldisilathiane (ZnSeS precursor solution) are added dropwise to this reaction mixture, and the temperature is raised to 200° C. and maintained for 10 minutes. This formed a ZnSeS shell with a thickness of 0.5 monolayer.
 次いで、温度を140℃に上げ、30分間保持した。次に、この反応混合物中に、ODE2mlにジエチル亜鉛69mg及びヘキサメチルジシラチアン66mgを溶解させて得られたZnS前駆体溶液を滴下し、温度を200℃に上げて30分保持することにより、厚さ2モノレイヤーのZnSシェルを形成させた。ZnS前駆体溶液の滴下の10分後に、ヒーターの除去により反応を停止させた。次いで、反応混合物を室温に冷却し、得られた白色沈殿物を遠心分離によって除去することにより、緑色発光性InP/ZnSeS/ZnSナノ結晶粒子が分散した透明なナノ結晶粒子分散液(InP/ZnSeS/ZnSナノ結晶粒子のODE分散液)を得た。 The temperature was then raised to 140°C and held for 30 minutes. Next, a ZnS precursor solution obtained by dissolving 69 mg of diethyl zinc and 66 mg of hexamethyldisilathiane in 2 ml of ODE was added dropwise to this reaction mixture, and the temperature was raised to 200° C. and maintained for 30 minutes to obtain A ZnS shell with a thickness of 2 monolayers was formed. Ten minutes after the addition of the ZnS precursor solution, the reaction was stopped by removing the heater. The reaction mixture was then cooled to room temperature and the resulting white precipitate was removed by centrifugation to yield a transparent nanocrystalline particle dispersion (InP/ZnSeS) with green-emitting InP/ZnSeS/ZnS nanocrystalline particles dispersed therein. /ODE dispersion of ZnS nanocrystalline particles) was obtained.
[InP/ZnSeS/ZnSナノ結晶粒子用の有機リガンドの合成]
(有機リガンドの合成)
 ポリエチレングリコール|average Mn400|(Sigma-Aldrich社製)をフラスコに投入した後、窒素ガス環境にて攪拌しながら、そこにポリエチレングリコール|average Mn400|と等モル量の無水コハク酸(Sigma-Aldrich社製)を添加した。フラスコの内温を80℃に昇温し、8時間攪拌することにより、淡い黄色の粘稠な油状物として下記式(A)で表される有機リガンドを得た。
Figure JPOXMLDOC01-appb-C000015
[Synthesis of organic ligands for InP/ZnSeS/ZnS nanocrystalline particles]
(Synthesis of organic ligand)
After introducing polyethylene glycol |average Mn400| (manufactured by Sigma-Aldrich) into the flask, while stirring in a nitrogen gas environment, polyethylene glycol |average Mn400| made) was added. The internal temperature of the flask was raised to 80° C. and stirred for 8 hours to obtain an organic ligand represented by the following formula (A) as a pale yellow viscous oil.
Figure JPOXMLDOC01-appb-C000015
[リガンド交換による緑色発光性InP/ZnSeS/ZnSナノ結晶粒子分散体の作製]
 上記有機リガンド30mgを上記で得られたInP/ZnSeS/ZnSナノ結晶粒子のODE分散液1mlに添加した。次いで、90℃で5時間加熱することによりリガンド交換を行った。リガンド交換の進行に伴い、ナノ結晶粒子の凝集が見られた。リガンド交換終了後、上澄みの傾瀉を行い、ナノ結晶粒子を得た。次いで、得られたナノ結晶粒子にエタノール3mlを加え、超音波処理して再分散させた。得られたナノ結晶粒子のエタノール分散液3mLにn-ヘキサン10mlを添加した。続いて、遠心分離を行いナノ結晶粒子を沈殿させた後、上澄みの傾瀉及び真空下での乾燥によって発光粒子1(上記有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)を得た。有機リガンドで修飾されたナノ結晶粒子全量に占める有機リガンドの含有量は35質量%であった。
[Preparation of Green-Emitting InP/ZnSeS/ZnS Nanocrystalline Particle Dispersion by Ligand Exchange]
30 mg of the above organic ligand was added to 1 ml of the ODE dispersion of InP/ZnSeS/ZnS nanocrystalline particles obtained above. Ligand exchange was then performed by heating at 90° C. for 5 hours. Aggregation of nanocrystalline particles was observed as the ligand exchange progressed. After completion of ligand exchange, the supernatant was decanted to obtain nanocrystalline particles. Then, 3 ml of ethanol was added to the resulting nanocrystalline particles, and ultrasonically treated to redisperse them. 10 ml of n-hexane was added to 3 ml of the obtained ethanol dispersion of nanocrystalline particles. Subsequently, after centrifugation was performed to precipitate the nanocrystalline particles, the supernatant was decanted and dried under vacuum to obtain luminescent particles 1 (InP/ZnSeS/ZnS nanocrystalline particles modified with the above organic ligands). The content of organic ligands in the total amount of nanocrystalline particles modified with organic ligands was 35% by mass.
<合成例2.緑色発光粒子2の調整(シリカ被覆CsPbBr)>
 まず、6.0gの炭酸セシウムと、250mLの1-オクタデセンと、25mLのオレイン酸とを混合して混合液を得た。次に、この混合液を120℃で30分間、減圧乾燥した後、アルゴン雰囲気下に150℃で加熱した。これにより、セシウム-オレイン酸溶液を得た。
<Synthesis Example 2. Preparation of Green Light-Emitting Particle 2 (Silica-Coated CsPbBr 3 )>
First, 6.0 g of cesium carbonate, 250 mL of 1-octadecene, and 25 mL of oleic acid were mixed to obtain a mixture. Next, this mixed solution was dried under reduced pressure at 120° C. for 30 minutes, and then heated at 150° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
 一方、5.0gの臭化鉛(II)と375mLの1-オクタデセンと、37.5mLのオレイン酸とを混合して混合液を得た。次に、この混合液を90℃で10分間、減圧乾燥した後、アルゴン雰囲気下に混合液に37.5mLの3-アミノプロピルトリエトキシシラン(APTES)を添加した。その後さらに20分間減圧乾燥を行った後、アルゴン雰囲気下に140℃で加熱した。 On the other hand, 5.0 g of lead (II) bromide, 375 mL of 1-octadecene, and 37.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 90° C. for 10 minutes, and then 37.5 mL of 3-aminopropyltriethoxysilane (APTES) was added to the mixed solution under an argon atmosphere. After drying under reduced pressure for another 20 minutes, it was heated at 140° C. under an argon atmosphere.
 その後、上記臭化鉛(II)を含む混合液に150℃で37.5mLの前記セシウム-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。次いで、3Lの酢酸メチルを添加した。得られた懸濁液を遠心分離(10,000回転/分、1分間)した後、上澄み液を除去しトルエンを混合し2時間攪拌した。その後、トルエンを除去することによりシリカ被覆緑色発光粒子2を得た。発光粒子2を構成するナノ結晶はペロブスカイト型の三臭化鉛セシウム結晶であり、走査透過電子顕微鏡観察により分析したところその平均粒子径は10nmであった。 After that, 37.5 mL of the cesium-oleic acid solution was added to the mixed solution containing lead (II) bromide at 150°C, and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath. 3 L of methyl acetate was then added. After centrifuging the resulting suspension (10,000 rpm, 1 minute), the supernatant was removed, mixed with toluene, and stirred for 2 hours. Thereafter, silica-coated green light-emitting particles 2 were obtained by removing toluene. The nanocrystals constituting the luminescent particles 2 were perovskite-type lead tribromide cesium crystals, and their average particle diameter was 10 nm when analyzed by scanning transmission electron microscopy.
<合成例3.緑色発光粒子3の調整(シリカ被覆FAPbBr)>
 アルゴン雰囲気下、3口フラスコにホルムアミジン酢酸塩0.4g、オレイン酸12.5mlを加えた。真空ポンプで減圧しながら、室温で18時間攪拌減圧脱気したのち、120℃で30分間加熱攪拌した。アルゴン雰囲気のまま減圧を解除しホルムアミジン-オレイン酸溶液を得た。
<Synthesis Example 3. Preparation of green light-emitting particles 3 (silica-coated FAPbBr 3 )>
In an argon atmosphere, 0.4 g of formamidine acetate and 12.5 ml of oleic acid were added to a three-necked flask. After degassing under reduced pressure with stirring at room temperature for 18 hours while reducing the pressure with a vacuum pump, the mixture was heated and stirred at 120° C. for 30 minutes. The vacuum was released in the argon atmosphere to obtain a formamidine-oleic acid solution.
 一方、アルゴン雰囲気下、3口フラスコに臭化鉛(II)1.0g、オレイン酸7.5mL、1-オクタデセン75mLを加えた。真空ポンプで減圧しながら、90℃で10分間加熱撹拌した。アルゴン雰囲気のまま減圧を解除し、3-アミノプロピルトリエトキシシラン(APTES)7.5mLを加えた。90℃のまま均一な溶液となるまで撹拌した。 Meanwhile, 1.0 g of lead bromide (II), 7.5 mL of oleic acid, and 75 mL of 1-octadecene were added to a three-necked flask under an argon atmosphere. The mixture was heated and stirred at 90° C. for 10 minutes while reducing the pressure with a vacuum pump. The vacuum was released while the argon atmosphere was maintained, and 7.5 mL of 3-aminopropyltriethoxysilane (APTES) was added. The mixture was stirred at 90° C. until a uniform solution was obtained.
 その後、上記臭化鉛(II)を含む混合液に140℃で11.6mLの前記ホルムアミジン-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。次いで、3Lの酢酸メチルを添加した。得られた懸濁液を遠心分離(10,000回転/分、1分間)した後、上澄み液を除去しトルエンを混合し2時間攪拌した。その後、トルエンを除去することによりシリカ被覆緑色発光粒子3を得た。発光粒子3を構成するナノ結晶はペロブスカイト型のホルムアミジウム臭化鉛結晶であり、走査透過電子顕微鏡観察により分析したところその平均粒子径は10nmであった。
<合成例4.緑色発光粒子4の調整(シリカ多層被覆FAPbBr)>
 下記式(B4)で表される構造を有するブロックコポリマー(S2VP、PolymerSource.社製)4gをトルエン400mLに添加し、60℃で加熱溶解させた。上記発光粒子3の濃度が0.16質量%となるように、ブロックコポリマーが溶解したトルエン溶液に発光粒子3を添加し、15分間撹拌した後、遠心分離して、上澄み液を回収することにより、発光粒子3及びブロックコポリマーを含むトルエン分散液を得た。
Figure JPOXMLDOC01-appb-C000016
After that, 11.6 mL of the formamidine-oleic acid solution was added to the mixed solution containing lead (II) bromide at 140° C., and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath. 3 L of methyl acetate was then added. After centrifuging the resulting suspension (10,000 rpm, 1 minute), the supernatant was removed, mixed with toluene, and stirred for 2 hours. Thereafter, silica-coated green light-emitting particles 3 were obtained by removing toluene. The nanocrystals constituting the luminescent particles 3 were perovskite-type formamidium lead bromide crystals, and the average particle diameter thereof was 10 nm when analyzed by scanning transmission electron microscope observation.
<Synthesis Example 4. Preparation of Green Light Emitting Particle 4 (Silica Multi-layer Coating FAPbBr 3 )>
4 g of a block copolymer (S2VP, manufactured by PolymerSource.) having a structure represented by the following formula (B4) was added to 400 mL of toluene and dissolved by heating at 60°C. Luminescent particles 3 were added to a toluene solution in which the block copolymer was dissolved so that the concentration of the luminescent particles 3 was 0.16% by mass, stirred for 15 minutes, centrifuged, and the supernatant was collected. , luminescent particles 3 and a block copolymer were obtained.
Figure JPOXMLDOC01-appb-C000016
 上記トルエン分散液100mLに対して、下記式(C4)で表される化合物(MS-51、コルコート株式会社製、式(C4)中のmの平均値は4)5mLを添加し、5分間撹拌し、次いで、イオン交換水0.25mLを更に添加して2時間撹拌した。
Figure JPOXMLDOC01-appb-C000017
To 100 mL of the toluene dispersion, 5 mL of a compound represented by the following formula (C4) (MS-51, manufactured by Colcoat Co., Ltd., the average value of m in formula (C4) is 4) was added and stirred for 5 minutes. Then, 0.25 mL of ion-exchanged water was further added and stirred for 2 hours.
Figure JPOXMLDOC01-appb-C000017
 得られた溶液を、9,000回転/分、5分間の条件で遠心分離した後、上澄み液100mLを回収することにより、発光粒子3がさらにシリカ被覆された発光粒子4のトルエン分散液を得た。この分散液中からトルエンを除去することにより発光粒子4を得た。動的光散乱式ナノトラック粒度分布計を用いて発光粒子4の平均粒子径を測定したところ、95nmであった。また、発光粒子4について、走査透過電子顕微鏡を用いたエネルギー分散型X線分析法(STEM-EDS)によって元素分布を評価したところ、発光粒子の表面層にSiが含まれていることを確認した。当該表面層の厚さを測定したところ、約5nmであった。また、前記発光粒子について、熱重量示差熱分析(TG-DTA;昇温速度10℃/分、窒素雰囲気下)測定により、200~550℃の範囲で重量減少が確認されたことから、有機成分が含まれていることが示唆された。一方、熱分解ガスクロマトグラフ質量分析計(TD/Py-GC/MS)測定により、使用したブロックコポリマーが成分として同定された。 After centrifuging the resulting solution at 9,000 rpm for 5 minutes, 100 mL of the supernatant was recovered to obtain a toluene dispersion of luminescent particles 4 in which the luminescent particles 3 were further coated with silica. rice field. Luminescent particles 4 were obtained by removing toluene from this dispersion. The average particle size of the luminescent particles 4 was measured using a dynamic light scattering nanotrack particle size distribution meter and found to be 95 nm. In addition, when the element distribution of the luminescent particles 4 was evaluated by an energy dispersive X-ray analysis method (STEM-EDS) using a scanning transmission electron microscope, it was confirmed that the surface layer of the luminescent particles contained Si. . When the thickness of the surface layer was measured, it was about 5 nm. Further, for the luminescent particles, weight reduction was confirmed in the range of 200 to 550 ° C. by thermogravimetric differential thermal analysis (TG-DTA; temperature increase rate 10 ° C./min, under nitrogen atmosphere) measurement. was suggested to contain On the other hand, the used block copolymer was identified as a component by pyrolysis gas chromatograph mass spectrometer (TD/Py-GC/MS) measurement.
<製造例1:光散乱性粒子分散体1の準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:CR-60-2、石原産業株式会社製、平均粒子径(体積平均径):210nm)を50.0gと、高分子分散剤(商品名:アジスパーPB-821、味の素ファインテクノ株式会社製)を5.0gと、HDDAを45.0g混合した後、得られた混合物にジルコニアビーズ(直径:1.25mm)を加え、ペイントコンディショナーを用いて2時間振とうさせることで混合物を分散処理し、ポリエステルメッシュフィルターにてジルコニアビーズを除去することで光散乱性粒子分散体1(酸化チタン含有量:50質量%)を得た。
<Production Example 1: Preparation of Light-scattering Particle Dispersion 1>
In a container filled with argon gas, 50.0 g of titanium oxide (trade name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (product Name: Ajisper PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) was mixed with 45.0 g of HDDA, then zirconia beads (diameter: 1.25 mm) were added to the resulting mixture and a paint conditioner was used. The mixture was subjected to dispersion treatment by shaking for 2 hours, and the zirconia beads were removed with a polyester mesh filter to obtain a light-scattering particle dispersion 1 (titanium oxide content: 50% by mass).
<製造例2:光散乱性粒子分散体2の準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:CR-60-2、石原産業株式会社製、平均粒子径(体積平均径):210nm)を50.0gと、高分子分散剤(商品名:アジスパーPB-821、味の素ファインテクノ株式会社製)を5.0gと、BDDAを45.0g混合した後、得られた混合物にジルコニアビーズ(直径:1.25mm)を加え、ペイントコンディショナーを用いて2時間振とうさせることで混合物を分散処理し、ポリエステルメッシュフィルターにてジルコニアビーズを除去することで光散乱性粒子分散体2(酸化チタン含有量:50質量%)を得た。
<Production Example 2: Preparation of Light-scattering Particle Dispersion 2>
In a container filled with argon gas, 50.0 g of titanium oxide (trade name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (product Name: Ajisper PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) was mixed with 5.0 g of BDDA, and then zirconia beads (diameter: 1.25 mm) were added to the resulting mixture and a paint conditioner was used. The mixture was subjected to dispersion treatment by shaking for 2 hours, and the zirconia beads were removed with a polyester mesh filter to obtain a light-scattering particle dispersion 2 (titanium oxide content: 50% by mass).
<緑色インク組成物の調製>
(実施例1)
(インク組成物1の調整)
 発光粒子1と、HDDAと、化合物1と、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(IGM resin社製、商品名:Omnirad TPO)と、光散乱性粒子分散体の製造例1とを、各成分の含有量が表1に示す量(単位:質量部)となるように配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例1のインク組成物1を得た。
<Preparation of green ink composition>
(Example 1)
(Adjustment of ink composition 1)
Luminous particle 1, HDDA, compound 1, photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (IGM Resin, trade name: Omnirad TPO)), light scattering Particle Dispersion Production Example 1 was blended so that the content of each component was as shown in Table 1 (unit: parts by mass), uniformly mixed in a container filled with argon gas, and then placed in a glove box. Inside, the mixture was filtered through a filter with a pore size of 5 μm, and argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas. Ink composition 1 of Example 1 was obtained by removing.
(光変換層1の作成)
 インク組成物1を、ガラス基板上に、膜厚が10μmとなるように、スピンコーターにて大気中で塗布した。塗布膜を窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUVを照射して硬化させて、ガラス基板上にインク組成物1の硬化物からなる層(光変換層1)を形成した。
(Preparation of light conversion layer 1)
The ink composition 1 was applied on a glass substrate in the air by a spin coater so as to have a film thickness of 10 μm. In a nitrogen atmosphere, the coating film was cured by irradiating UV light with a UV irradiation device using an LED lamp having a dominant wavelength of 395 nm so that the integrated light amount was 1500 mJ/cm 2 , and a cured product of ink composition 1 was formed on a glass substrate. A layer (light conversion layer 1) consisting of was formed.
(EQEの測定)
 面発光光源としてシーシーエス株式会社製の青色LED(ピーク発光波長:450nm)を用いた。測定装置は、大塚電子株式会社製の放射分光光度計(商品名「MCPD-9800」)に積分球を接続し、青色LEDの上側に積分球を設置した。青色LEDと積分球との間に、作製した評価用試料(光変換層1)を挿入し、青色LEDを点灯させて観測されるスペクトル、各波長における照度を測定した。
(Measurement of EQE)
A blue LED (peak emission wavelength: 450 nm) manufactured by CCS Co., Ltd. was used as a surface emitting light source. As a measurement device, an integrating sphere was connected to a radiation spectrophotometer (trade name “MCPD-9800”) manufactured by Otsuka Electronics Co., Ltd., and the integrating sphere was placed above the blue LED. The produced evaluation sample (light conversion layer 1) was inserted between the blue LED and the integrating sphere, and the spectrum observed by lighting the blue LED and the illuminance at each wavelength were measured.
 上記の測定装置で測定されるスペクトル及び照度より、以下のようにして外部量子効率を求めた。外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。
EQE(%)=P1(Green)/E(Blue)×100
The external quantum efficiency was obtained as follows from the spectrum and illuminance measured by the above measuring device. The external quantum efficiency is a value indicating how much of the light (photons) incident on the light conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
EQE (%) = P1 (Green)/E (Blue) x 100
 ここで、E(Blue)及びP1(Green)はそれぞれ以下を表す。
E(Blue):380~490nmの波長域における「照度×波長÷hc」の合計値を表す。
P1(Green):500~650nmの波長域における「照度×波長÷hc」の合計値を表す。
 これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
Here, E (Blue) and P1 (Green) respectively represent the following.
E (Blue): Represents the total value of “illuminance×wavelength/hc” in the wavelength range of 380 to 490 nm.
P1 (Green): Represents the total value of “illuminance×wavelength/hc” in the wavelength range of 500 to 650 nm.
These are values corresponding to the number of photons observed. In addition, h represents Planck's constant and c represents the speed of light.
(耐熱性評価)
 作製した評価用試料(光変換層1)を、窒素雰囲気下のグローブボックス中に設置した180℃のホットプレート上に移し、30分間加熱した。評価用試料を常温まで冷却した後、大気中にて上記EQEの評価と同様にしてEQEを測定し、EQEの変化率(1-[加熱後のEQE]/[加熱前のEQE]×100)を求めた。以下の基準に従って、評価用試料の耐熱性評価を行った。
[評価基準]
 ◎:95%以上
 〇:90%以上、95%未満
 △:80%以上、90%未満
 ×:80%未満
(Heat resistance evaluation)
The prepared evaluation sample (light conversion layer 1) was transferred onto a 180° C. hot plate placed in a glove box under a nitrogen atmosphere and heated for 30 minutes. After cooling the evaluation sample to room temperature, EQE was measured in the same manner as the above EQE evaluation in the atmosphere, and the rate of change in EQE (1-[EQE after heating]/[EQE before heating] x 100). asked for The heat resistance of the evaluation samples was evaluated according to the following criteria.
[Evaluation criteria]
◎: 95% or more ○: 90% or more and less than 95% △: 80% or more and less than 90% ×: less than 80%
(励起光に対する安定性評価)
 上記耐熱性評価と同様に180℃で30分間加熱して作製した試料(光変換層1)の膜上に、光重合開始剤としてTPOを1.0質量部溶解させたトリメチロールプロパンEO付加トリアクリレート溶液を30μL滴下した。さらに、上からカバーガラスを貼り合わせ、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUVを照射して硬化させることで、両面をガラスで封止された試料を作製した。続いて、主波長450nmのLED照射装置を用いて、400mW/cmの強度で150時間青色光を、作製した封止試料に照射し、上記EQEの評価と同様にしてEQEを測定することでEQEの変化率(1-[青色光照射後のEQE]/[青色光照射前のEQE]×100)を求めた。以下の基準に従って、励起光に対する評価用試料の安定性評価を行った。
[評価基準]
 ◎:85%以上
 〇:75%以上、85%未満
 △:65%以上、75%未満
 ×:65%未満
(Evaluation of stability against excitation light)
Trimethylolpropane EO-added trimethylolpropane EO-added trimethylolpropane-EO solution in which 1.0 part by mass of TPO was dissolved as a photopolymerization initiator was placed on the film of the sample (light conversion layer 1) prepared by heating at 180° C. for 30 minutes in the same manner as in the heat resistance evaluation. 30 μL of acrylate solution was added dropwise. Furthermore, a cover glass is attached from above, and a UV irradiation device using an LED lamp with a main wavelength of 395 nm is irradiated with UV so that the integrated light amount becomes 1500 mJ / cm 2 . A sample was prepared. Subsequently, using an LED irradiation device with a dominant wavelength of 450 nm, the prepared sealed sample was irradiated with blue light at an intensity of 400 mW / cm 2 for 150 hours, and EQE was measured in the same manner as the above EQE evaluation. A rate of change in EQE (1−[EQE after blue light irradiation]/[EQE before blue light irradiation]×100) was obtained. Stability evaluation of the evaluation sample against excitation light was performed according to the following criteria.
[Evaluation criteria]
◎: 85% or more ○: 75% or more and less than 85% △: 65% or more and less than 75% ×: less than 65%
(実施例2~9及び比較例1)
(インク組成物2の調整)
 HDDAに代えてHDDA、DCPEA及びAOMAをそれぞれ60質量部、30質量部、10質量部で混合した光重合性化合物を用いたこと以外は、インク組成物1の調整と同様にして、実施例2のインク組成物2を得た。
(Examples 2 to 9 and Comparative Example 1)
(Adjustment of ink composition 2)
Ink composition 1 was prepared in the same manner as in Example 2, except that a photopolymerizable compound obtained by mixing 60 parts by mass, 30 parts by mass, and 10 parts by mass of HDDA, DCPEA, and AOMA, respectively, was used instead of HDDA. was obtained.
(インク組成物3の調整)
 HDDAに代えてHDDA、DCPEMA及びAOMAをそれぞれ60質量部、30質量部、10質量部で混合した光重合性化合物を用いたこと以外は、インク組成物1の調整と同様にして、実施例3のインク組成物3を得た。
(Adjustment of ink composition 3)
Ink composition 1 was prepared in the same manner as in Example 3, except that a photopolymerizable compound obtained by mixing 60 parts by mass, 30 parts by mass, and 10 parts by mass of HDDA, DCPEMA, and AOMA, respectively, was used instead of HDDA. was obtained.
(インク組成物4の調整)
 HDDAに代えてDPGDA、DCPEA及びAOMAをそれぞれ60質量部、30質量部、10質量部で混合した光重合性化合物を用いたこと以外は、インク組成物1の調整と同様にして、実施例4のインク組成物4を得た。
(Adjustment of ink composition 4)
Ink composition 1 was prepared in the same manner as in Example 4, except that a photopolymerizable compound obtained by mixing 60 parts by mass, 30 parts by mass, and 10 parts by mass of DPGDA, DCPEA, and AOMA, respectively, was used instead of HDDA. was obtained.
(インク組成物5の調整)
 ジチオカルバミン酸基を有する金属化合物として、化合物1に代えて化合物2を用いたこと以外は、インク組成物2の調整と同様にして、実施例5のインク組成物5を得た。
(Adjustment of ink composition 5)
Ink Composition 5 of Example 5 was obtained in the same manner as Ink Composition 2, except that Compound 2 was used instead of Compound 1 as the metal compound having a dithiocarbamic acid group.
(インク組成物6の調整)
 ジチオカルバミン酸基を有する金属化合物として、化合物1に代えて化合物3を用いたこと以外は、インク組成物2の調整と同様にして、実施例6のインク組成物6を得た。
(Adjustment of ink composition 6)
Ink Composition 6 of Example 6 was obtained in the same manner as Ink Composition 2, except that Compound 3 was used instead of Compound 1 as the metal compound having a dithiocarbamic acid group.
(インク組成物7の調整)
 ジチオカルバミン酸基を有する金属化合物として、化合物1に代えて化合物4を用いたこと以外は、インク組成物2の調整と同様にして、実施例7のインク組成物7を得た。
(Adjustment of ink composition 7)
Ink Composition 7 of Example 7 was obtained in the same manner as Ink Composition 2, except that Compound 4 was used instead of Compound 1 as the metal compound having a dithiocarbamic acid group.
(インク組成物8の調整)
 リン系酸化防止剤として、PEP-8を加えた以外は、インク組成物2の調整と同様にして、実施例8のインク組成物8を得た。
(Adjustment of ink composition 8)
Ink Composition 8 of Example 8 was obtained in the same manner as Ink Composition 2, except that PEP-8 was added as a phosphorus antioxidant.
(インク組成物9の調整)
 フェノール系酸化防止剤として、Irganox1010をさらに加えた以外は、インク組成物8の調整と同様にして、実施例9のインク組成物9を得た。
(Adjustment of ink composition 9)
Ink Composition 9 of Example 9 was obtained in the same manner as Ink Composition 8, except that Irganox 1010 was further added as a phenolic antioxidant.
(インク組成物C1の調整)
 光重合性化合物として、HDDAの代わりにBDDAを用い、光散乱性粒子分散体の製造例1の代わりに光散乱性粒子分散体の製造例2を用いたこと以外は、インク組成物1の調整と同様にして、比較例1のインク組成物C1を得た。
(Adjustment of ink composition C1)
Preparation of Ink Composition 1, except that BDDA was used as the photopolymerizable compound instead of HDDA, and Light-scattering Particle Dispersion Production Example 2 was used instead of Light-scattering Particle Dispersion Production Example 1. Ink composition C1 of Comparative Example 1 was obtained in the same manner as above.
(光変換層2~9及びC1の製造)
 インク組成物を該組成物2~9及びC1に変更した以外は、光変換層1の製造と同一条件で、光変換層2~9及びC1を製造した。得られた光変換層2~9及びC1について、耐熱性評価及び励起光に対する安定性評価を行った。
 結果を表1に示す。
(Production of light conversion layers 2 to 9 and C1)
Light conversion layers 2 to 9 and C1 were produced under the same conditions as in the production of light conversion layer 1, except that the ink compositions were changed to compositions 2 to 9 and C1. The obtained light conversion layers 2 to 9 and C1 were evaluated for heat resistance and stability against excitation light.
Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 実施例1から実施例9に示したように、本発明のインク組成物1から9を用いた光変換層は、比較例1のインク組成物C1を用いた光変換層と比較して、耐熱性評価および励起光に対する安定性が良好であることがわかる。これは、特定範囲のアクリル当量を有する光重合性化合物とジチオカルバミン酸基含有金属化合物とを同時に含むインク組成物において、該組成物から形成される光変換層中でジチオカルバミン酸基含有金属化合物のラジカル捕捉機能が効果的に作用し、結果的に劣化が抑制されるものと考えられる。また、実施例8および9に示したように、本発明のインク組成物8および9を用いた光変換層では、さらに酸化防止剤を含むインク組成物から形成され、非常に優れた耐熱性および励起光に対する安定性が良好であることがわかる。 As shown in Examples 1 to 9, the light conversion layers using the ink compositions 1 to 9 of the present invention have higher heat resistance than the light conversion layer using the ink composition C1 of Comparative Example 1. It can be seen that the property evaluation and the stability to excitation light are good. This is because, in an ink composition containing both a photopolymerizable compound having an acrylic equivalent within a specific range and a dithiocarbamate group-containing metal compound, radicals of the dithiocarbamate group-containing metal compound are formed in the light conversion layer formed from the composition. It is considered that the trapping function works effectively, and as a result, deterioration is suppressed. Further, as shown in Examples 8 and 9, the light conversion layers using the ink compositions 8 and 9 of the present invention are formed from the ink composition further containing an antioxidant, and have excellent heat resistance and It can be seen that the stability against excitation light is good.
(実施例10~12及び比較例2)
(インク組成物10の調整)
 緑色発光粒子2と、化合物1と、光散乱性粒子分散体の製造例1と、HDDAと、IB-XAと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(IGM resin社製、商品名:Omnirad TPO)と、Irganox1010と、PEP-8とを、各成分の含有量が表2に示す量(単位:質量部)となるように配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例10のインク組成物10を得た。
(Examples 10 to 12 and Comparative Example 2)
(Adjustment of ink composition 10)
Green light-emitting particles 2, compound 1, production example 1 of light-scattering particle dispersion, HDDA, IB-XA, and photopolymerization initiator (phenyl(2,4,6-trimethylbenzoyl-diphenyl-phosphine Oxide (manufactured by IGM resin, trade name: Omnirad TPO), Irganox 1010, and PEP-8 were blended so that the content of each component was shown in Table 2 (unit: parts by mass), and argon gas was added. After uniformly mixing in a container filled with argon, the mixture was filtered through a filter with a pore size of 5 μm in a glove box. Ink Composition 10 of Example 10 was obtained by saturating with gas and then removing the argon gas under reduced pressure.
(インク組成物11の調整)
 緑色発光粒子2に代えて緑色発光粒子3を用いたこと以外は、インク組成物10の調整と同様にして、実施例11のインク組成物11を得た。
(Adjustment of ink composition 11)
Ink Composition 11 of Example 11 was obtained in the same manner as Ink Composition 10 except that Green Light-Emitting Particles 3 were used instead of Green Light-Emitting Particles 2 .
(インク組成物12の調整)
 緑色発光粒子2に代えて緑色発光粒子4を用いたこと以外は、インク組成物10の調整と同様にして、実施例12のインク組成物12を得た。
(インク組成物C2の調整)
 光重合性化合物としてHDDAとIB-XAの代わりにBDDAを用い、光散乱性粒子分散体1の代わりに光散乱性粒子分散体の製造例2を用いたこと以外は、インク組成物10の調整と同様にして、比較例2のインク組成物C2を得た。
(光変換層10~12及びC2の製造)
 インク組成物を該組成物10~12及びC2に変更した以外は、光変換層1の製造と同一条件で、光変換層10~12及びC2を製造した。得られた光変換層10~12及びC2について、耐熱性評価及び励起光に対する安定性評価を行った。
 結果を表2に示す。
(Adjustment of ink composition 12)
Ink Composition 12 of Example 12 was obtained in the same manner as Ink Composition 10 except that Green Light-Emitting Particles 4 were used instead of Green Light-Emitting Particles 2 .
(Adjustment of ink composition C2)
Preparation of Ink Composition 10, except that BDDA was used as the photopolymerizable compound instead of HDDA and IB-XA, and Light-scattering Particle Dispersion Production Example 2 was used instead of Light-scattering Particle Dispersion 1. Ink composition C2 of Comparative Example 2 was obtained in the same manner as above.
(Production of light conversion layers 10 to 12 and C2)
Light conversion layers 10 to 12 and C2 were produced under the same conditions as in the production of light conversion layer 1, except that the ink composition was changed to Compositions 10 to 12 and C2. The obtained light conversion layers 10 to 12 and C2 were evaluated for heat resistance and stability against excitation light.
Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 実施例10から実施例12に示したように、本発明のインク組成物10から12を用いた光変換層は、比較例2のインク組成物C2を用いた光変換層と比較して、耐熱性評価および励起光に対する安定性が良好であることがわかる。特に、実施例11および12の光変換層は、比較例2の光変換層と比較して耐熱性および励起光に対する安定性が良好であることから、シリカ被覆による耐久性付与粒子においても、特定範囲のアクリル当量を有する光重合性化合物の存在下で、ジチオカルバミン酸基含有金属化合物によるラジカル捕捉が効果的に生じ、劣化を抑制しているものと推察する。 As shown in Examples 10 to 12, the light conversion layer using the ink compositions 10 to 12 of the present invention has a higher heat resistance than the light conversion layer using the ink composition C2 of Comparative Example 2. It can be seen that the property evaluation and the stability to excitation light are good. In particular, the light conversion layers of Examples 11 and 12 have better heat resistance and stability against excitation light than the light conversion layer of Comparative Example 2. It is speculated that in the presence of a photopolymerizable compound having an acrylic equivalent within the range, radical scavenging by the dithiocarbamic acid group-containing metal compound occurs effectively, thereby suppressing deterioration.
(実施例13~16及び比較例3)
(インク組成物13の調整)
 緑色発光粒子2と、化合物1と、光散乱性粒子分散体の製造例1と、HDDAと、IB-XAと、DCPAと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(IGM resin社製、商品名:Omnirad TPO)と、Irganox1010と、PEP-8とを、各成分の含有量が表3に示す量(単位:質量部)となるように配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例13のインク組成物13を得た。
(Examples 13 to 16 and Comparative Example 3)
(Adjustment of ink composition 13)
Green light-emitting particles 2, compound 1, production example 1 of light-scattering particle dispersion, HDDA, IB-XA, DCPA, and a photopolymerization initiator (phenyl(2,4,6-trimethylbenzoyl-diphenyl -Phosphine oxide (manufactured by IGM resin, trade name: Omnirad TPO), Irganox 1010, and PEP-8 were blended so that the content of each component was the amount shown in Table 3 (unit: parts by mass). , After uniformly mixing in a container filled with argon gas, the mixture was filtered through a filter with a pore size of 5 μm in a glove box, and argon gas was introduced into the container containing the obtained filtrate. The inside of the flask was saturated with argon gas, and the pressure was reduced to remove the argon gas, thereby obtaining Ink Composition 13 of Example 13.
(インク組成物14の調整)
 緑色発光粒子2に代えて緑色発光粒子3を用いたこと以外は、インク組成物13の調整と同様にして、実施例14のインク組成物14を得た。
(Adjustment of ink composition 14)
Ink Composition 14 of Example 14 was obtained in the same manner as Ink Composition 13 except that Green Light-Emitting Particles 3 were used instead of Green Light-Emitting Particles 2 .
(インク組成物15の調整)
 緑色発光粒子2に代えて緑色発光粒子4を用いたこと以外は、インク組成物13の調整と同様にして、実施例15のインク組成物15を得た。
(Adjustment of ink composition 15)
Ink Composition 15 of Example 15 was obtained in the same manner as Ink Composition 13 except that Green Light-Emitting Particles 4 were used instead of Green Light-Emitting Particles 2 .
(インク組成物16の調整)
 光重合性化合物として、DCPAに代えてEO-BPADAを用いたこと以外は、インク組成物13の調整と同様にして、実施例16のインク組成物16を得た。
(Adjustment of ink composition 16)
Ink Composition 16 of Example 16 was obtained in the same manner as Ink Composition 13, except that EO-BPADA was used as the photopolymerizable compound instead of DCPA.
(インク組成物C3の調整)
 光重合性化合物としてHDDAとIB-XAとDCPAの代わりにBDDAとTMPTAを用い、光散乱性粒子分散体の製造例1の代わりに光散乱性粒子分散体の製造例2を用いたこと以外は、インク組成物13の調整と同様にして、比較例3のインク組成物C3を得た。
(Adjustment of ink composition C3)
Except that BDDA and TMPTA were used as photopolymerizable compounds instead of HDDA, IB-XA, and DCPA, and that Production Example 2 of Light-scattering Particle Dispersion was used instead of Production Example 1 of Light-scattering Particle Dispersion. Ink Composition C3 of Comparative Example 3 was obtained in the same manner as Ink Composition 13.
(光変換フィルム13~16及びC3の製造)
 インク組成物13~16及びC3を、ガラス基材上に膜厚が100μmとなるように塗布し、さらにもう一枚のガラス基材を貼り合わせた。この塗布ガラスを窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量1J/cmになるようにUVを照射して硬化させ、光変換フィルム13~16及びC3を得た。得られた光変換フィルム13~16及びC3について、耐熱性評価及び励起光に対する安定性評価を行った。
 結果を表3に示す。
(Production of light conversion films 13 to 16 and C3)
Ink Compositions 13 to 16 and C3 were applied onto a glass substrate to a film thickness of 100 μm, and another glass substrate was attached. Under a nitrogen atmosphere, the coated glass was cured by irradiating UV with a UV irradiation device using an LED lamp with a dominant wavelength of 395 nm so that the integrated light amount was 1 J/cm 2 to obtain light conversion films 13 to 16 and C3. . The obtained light conversion films 13 to 16 and C3 were evaluated for heat resistance and stability against excitation light.
Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例13から16に示したように、本発明のインク組成物13から16を用いた光変換フィルムは、比較例3のインク組成物C3を用いた光変換フィルムと比較して、耐熱性および励起光に対する安定性が良好であることがわかる。特に、実施例15の光変換フィルムは、比較例3の光変換フィルムと比較して極めて良好であることから、シリカ被覆による耐久性付与粒子においても、特定範囲のアクリル当量を有する光重合性化合物の存在下で、ジチオカルバミン酸基含有金属化合物によるラジカル捕捉が効果的に生じ、劣化を抑制しているものと推察する。 As shown in Examples 13 to 16, the light conversion films using the ink compositions 13 to 16 of the present invention had better heat resistance and It can be seen that the stability against excitation light is good. In particular, the light conversion film of Example 15 is extremely good as compared with the light conversion film of Comparative Example 3. Therefore, even in the durability imparting particles coated with silica, the photopolymerizable compound having an acrylic equivalent within a specific range In the presence of the dithiocarbamic acid group-containing metal compound, radical scavenging effectively occurs, presumably suppressing deterioration.
 以上の結果から、本発明のインク組成物によれば、得られる光変換層および光変換フィルムは、熱や光に対する高い安定性を有することが明らかである。
From the above results, it is clear that the light conversion layer and the light conversion film obtained by the ink composition of the present invention have high stability against heat and light.
 10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性ナノ結晶粒子、11b…第2の発光性ナノ結晶粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ、50…積層構造体、51…第1の基板、52…第2の基板、53…封止層、54…光変換フィルム、541…光散乱粒子、542…発光粒子 DESCRIPTION OF SYMBOLS 10... Pixel part 10a... 1st pixel part 10b... 2nd pixel part 10c... 3rd pixel part 11a... 1st luminescent nanocrystal particle 11b... 2nd luminescent nanocrystal particle , 12a... First light-scattering particles, 12b... Second light-scattering particles, 12c... Third light-scattering particles, 20... Light shielding part, 30... Light conversion layer, 40... Base material, 100... Color Filter 50 Laminated structure 51 First substrate 52 Second substrate 53 Sealing layer 54 Light conversion film 541 Light scattering particles 542 Luminescent particles

Claims (14)

  1.  発光性ナノ結晶粒子と、光重合性化合物と、ジチオカルバミン酸基を有する金属化合物と、を含有し、
     前記光重合性化合物として、アクリル当量が110以上である(メタ)アクリレート化合物を含む、インク組成物。
    containing luminescent nanocrystalline particles, a photopolymerizable compound, and a metal compound having a dithiocarbamic acid group;
    An ink composition comprising a (meth)acrylate compound having an acrylic equivalent of 110 or more as the photopolymerizable compound.
  2.  前記金属化合物が、亜鉛化合物、ナトリウム化合物、および銅化合物の群から選ばれる金属化合物である請求項1に記載のインク組成物。 The ink composition according to claim 1, wherein the metal compound is a metal compound selected from the group consisting of zinc compounds, sodium compounds, and copper compounds.
  3.  前記(メタ)アクリレート化合物として、下記式(I)で表される化合物を含む請求項1又は2に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000001
    [式(I)中、Rは、水素原子又はメチル基を示し、Rは置換されていてもよい直鎖状または分岐状の炭素原子数1~20のアルキレン基を示し、mは1~10の整数を表す。2つのRは互いに同一であっても異なっていてもよい。]
    3. The ink composition according to claim 1, wherein the (meth)acrylate compound contains a compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    [In formula (I), R 1 represents a hydrogen atom or a methyl group, R 2 represents an optionally substituted linear or branched alkylene group having 1 to 20 carbon atoms, m is 1 Represents an integer from ~10. Two R 1s may be the same or different. ]
  4.  前記光重合性化合物として、単官能(メタ)アクリレート化合物を含む請求項1又は2に記載のインク組成物。 The ink composition according to claim 1 or 2, which contains a monofunctional (meth)acrylate compound as the photopolymerizable compound.
  5.  前記単官能(メタ)アクリレート化合物が、脂環式構造を含む単官能(メタ)アクリレートである請求項1又は2に記載のインク組成物。 The ink composition according to claim 1 or 2, wherein the monofunctional (meth)acrylate compound is a monofunctional (meth)acrylate containing an alicyclic structure.
  6.  フェノール系酸化防止剤を更に含有する、請求項1又は2に記載のインク組成物。 The ink composition according to claim 1 or 2, further containing a phenolic antioxidant.
  7.  リン系酸化防止剤を更に含有する、請求項1又は2に記載のインク組成物。 The ink composition according to claim 1 or 2, further containing a phosphorus antioxidant.
  8.  光変換層を形成するために用いられる、請求項1又は2に記載のインク組成物。 The ink composition according to claim 1 or 2, which is used for forming a light conversion layer.
  9.  インクジェット方式で用いられる、請求項1又は2に記載のインク組成物。 The ink composition according to claim 1 or 2, which is used in an inkjet method.
  10.  複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
     前記複数の画素部は、請求項1又は2に記載のインク組成物の硬化物を含む発光性画素部を有する、光変換層。
    comprising a plurality of pixel portions and a light shielding portion provided between the plurality of pixel portions;
    The light conversion layer, wherein the plurality of pixel portions have luminescent pixel portions containing a cured product of the ink composition according to claim 1 or 2.
  11.  前記発光性画素部として、
     420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、
     420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、
     を備える、請求項10に記載の光変換層。
    As the luminescent pixel portion,
    a first luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 605 to 665 nm;
    a second luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm;
    11. The light conversion layer of claim 10, comprising:
  12.  光散乱性粒子を含有する非発光性画素部を更に備える、請求項10に記載の光変換層。 The light conversion layer according to claim 10, further comprising a non-luminous pixel portion containing light scattering particles.
  13.  請求項10に記載の光変換層を備える、カラーフィルタ。 A color filter comprising the light conversion layer according to claim 10.
  14.  請求項1又は2に記載のインク組成物の硬化物を含む光変換フィルム。 A light conversion film comprising a cured product of the ink composition according to claim 1 or 2.
PCT/JP2022/020036 2021-05-20 2022-05-12 Ink composition, light conversion layer, color filter, and light conversion film WO2022244669A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021085213 2021-05-20
JP2021-085213 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022244669A1 true WO2022244669A1 (en) 2022-11-24

Family

ID=84140677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020036 WO2022244669A1 (en) 2021-05-20 2022-05-12 Ink composition, light conversion layer, color filter, and light conversion film

Country Status (1)

Country Link
WO (1) WO2022244669A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157561A1 (en) * 2022-02-21 2023-08-24 住友化学株式会社 Curable composition, curable film, and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101348A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Wavelength conversion member and backlight unit
US20180186998A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Compositions, composites prepared therefrom, and electronic devices including the same
JP2020186335A (en) * 2019-05-16 2020-11-19 Dic株式会社 Curable ink composition, photoconversion layer and color filter
JP2020537015A (en) * 2017-10-13 2020-12-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Semi-conducting luminescent material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101348A1 (en) * 2016-11-30 2018-06-07 富士フイルム株式会社 Wavelength conversion member and backlight unit
US20180186998A1 (en) * 2017-01-04 2018-07-05 Samsung Electronics Co., Ltd. Compositions, composites prepared therefrom, and electronic devices including the same
JP2020537015A (en) * 2017-10-13 2020-12-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Semi-conducting luminescent material
JP2020186335A (en) * 2019-05-16 2020-11-19 Dic株式会社 Curable ink composition, photoconversion layer and color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157561A1 (en) * 2022-02-21 2023-08-24 住友化学株式会社 Curable composition, curable film, and display device

Similar Documents

Publication Publication Date Title
JP7020016B2 (en) Ink composition, light conversion layer and color filter
JP6973500B2 (en) Ink composition and its manufacturing method, as well as optical conversion layer and color filter
JP6927305B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP7294864B2 (en) Ink composition, light conversion layer and color filter
JP7180795B2 (en) Ink composition for forming light conversion layer, light conversion layer and color filter
JP7024383B2 (en) Ink composition, light conversion layer and color filter
JP6838691B2 (en) Ink composition, light conversion layer, and color filter
WO2022244669A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
JP7087797B2 (en) Ink composition, light conversion layer and color filter
JP7087775B2 (en) Ink composition, light conversion layer and color filter
JP7024336B2 (en) Ink composition, light conversion layer and color filter
WO2022244668A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
JP6933311B2 (en) Inkjet ink for color filters, light conversion layer and color filter
JP7331452B2 (en) Curable ink composition, light conversion layer and color filter
JP7035400B2 (en) Ink composition, light conversion layer and color filter
JP2021096323A (en) Color filter ink composition, light conversion layer, and color filter
JP7238445B2 (en) Ink composition, light conversion layer, color filter, and method for forming luminescent pixel portion
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
WO2022181430A1 (en) Color filter inkjet ink composition, cured material, phototransformation layer, and color filter
JP7180798B2 (en) Ink composition, cured product, light conversion layer, and color filter
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP2023036307A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP6981082B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP2023036187A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2021017481A (en) Ink composition and method for producing the same, photoconversion layer, and color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE