WO2022181430A1 - Color filter inkjet ink composition, cured material, phototransformation layer, and color filter - Google Patents

Color filter inkjet ink composition, cured material, phototransformation layer, and color filter Download PDF

Info

Publication number
WO2022181430A1
WO2022181430A1 PCT/JP2022/006292 JP2022006292W WO2022181430A1 WO 2022181430 A1 WO2022181430 A1 WO 2022181430A1 JP 2022006292 W JP2022006292 W JP 2022006292W WO 2022181430 A1 WO2022181430 A1 WO 2022181430A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
ink composition
particles
mass
luminescent
Prior art date
Application number
PCT/JP2022/006292
Other languages
French (fr)
Japanese (ja)
Inventor
麻里子 利光
栄志 乙木
崇之 三木
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Publication of WO2022181430A1 publication Critical patent/WO2022181430A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to an inkjet ink composition for color filters, a cured product, a light conversion layer, and a color filter.
  • color filters used in displays are, for example, red organic pigment particles or green organic pigment particles, using a curable resist material containing an alkali-soluble resin and / or an acrylic monomer, by photolithography. has been manufactured.
  • red organic pigment particles or green organic pigment particles for example, quantum dots, quantum rods, and other inorganic phosphor particles.
  • the manufacturing method of the color filter by the photolithography method has the drawback that the resist material other than the pixel portion including the relatively expensive luminescent nanocrystal particles is wasted due to the characteristics of the manufacturing method.
  • the resist material other than the pixel portion including the relatively expensive luminescent nanocrystal particles is wasted due to the characteristics of the manufacturing method.
  • inkjet method inkjet method
  • the inkjet ink composition for color filters may contain light-scattering particles together with luminescent nanocrystalline particles.
  • aggregation of inorganic particle components tends to occur during storage, and the ability to redisperse homogeneously during use, so-called redispersibility, may deteriorate. was there.
  • the problem to be solved by the present invention is to form a color filter pixel portion having excellent external quantum efficiency while containing luminescent nanocrystalline particles and light-scattering particles, and a color filter having excellent redispersibility.
  • An object of the present invention is to provide an inkjet ink composition for filters.
  • an inkjet ink composition for color filters containing luminescent nanocrystalline particles and light-scattering particles contains an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles and a polymer dispersant. By containing each specific amount, it is possible to form a color filter pixel portion having excellent external quantum efficiency while containing light-emitting nanocrystalline particles and light-scattering particles, and a color excellent in redispersibility. It was found that a filter ink jet ink composition was obtained.
  • One aspect of the present invention comprises luminescent nanocrystalline particles, an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles, a light scattering particle, a polymeric dispersant, and a photopolymerizable compound.
  • the content of the organic ligand is 15 to 50 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles
  • the content of the polymer dispersant is 3 to 3 parts by mass with respect to 100 parts by mass of the light scattering particles. It relates to an inkjet ink composition for color filters, which is 15 parts by mass.
  • the molecular weight of the organic ligand is preferably 1000 or less.
  • the weight average molecular weight of the polymer dispersant is preferably 1000 or more.
  • the polymeric dispersant preferably has both an acid value and an amine value.
  • the polymer dispersant preferably contains two or more polymer dispersants.
  • the average particle size of the light-scattering particles is preferably 0.15 ⁇ m or more and 0.5 ⁇ m or less.
  • One aspect of the present invention relates to a cured product of the inkjet ink composition for color filters described above.
  • One aspect of the present invention includes a plurality of pixel portions and a light shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions includes a cured product of the inkjet ink composition for a color filter.
  • the present invention relates to a light conversion layer having an optical pixel portion.
  • the light conversion layer contains luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 605 to 665 nm as the luminescent pixel portion. and a second luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. Be prepared.
  • One aspect of the present invention relates to a color filter including the light conversion layer.
  • a filter inkjet ink composition can be provided.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment of the invention.
  • the term “cured product of the ink composition” refers to a product obtained by curing a curable component in the ink composition (when the ink composition contains a solvent component, the ink composition after drying). is. Therefore, it is preferable that the cured product of the ink composition does not contain an organic solvent, but a part of the organic solvent that has not been dried may remain.
  • non-volatile matter of the ink composition means components other than the organic solvent contained in the ink composition. That is, the “non-volatile content of the ink composition” may be rephrased as a component before curing that should be contained in the cured product of the ink composition.
  • An inkjet ink composition for a color filter comprises luminescent nanocrystalline particles, an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles, and light scattering It contains organic particles, a polymer dispersant, and a photopolymerizable compound.
  • the ink composition is, for example, an ink composition for forming a light conversion layer (for example, for forming a pixel portion of a color filter) used for forming a light conversion layer (pixel portion of the light conversion layer) of a color filter.
  • This ink composition is a composition used in an inkjet system.
  • the ink composition of one embodiment is capable of forming a pixel portion (light conversion layer) without wasting expensive luminescent nanocrystalline particles, an inkjet head, etc., compared to the photolithographic method. It can contribute to finishing the inkjet method to a low-cost process.
  • embodiments of the ink composition will be described, taking as an example an ink composition that is used to form a light conversion layer by an inkjet method.
  • Luminescent nanocrystalline particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence.
  • the maximum particle diameter measured by a transmission electron microscope or scanning electron microscope is 100 nm or less. It is crystalline.
  • a luminescent nanocrystalline particle can, for example, emit light (fluorescence or phosphorescence) of a wavelength different from the absorbed wavelength by absorbing light of a predetermined wavelength.
  • Luminescent nanocrystalline particles emit light having an emission peak wavelength in the range of 605-665 nm (red light), red-emitting nanocrystalline particles (red-emitting nanocrystalline particles), emission peak in the range of 500-560 nm green-emitting nanocrystalline particles (green-emitting nanocrystalline particles) that emit light having a wavelength (green light), or blue-emitting light that emits light having an emission peak wavelength in the range of 420-480 nm (blue light) It is preferable that the nanocrystalline particles (blue-emitting nanocrystalline particles) are used.
  • the ink composition preferably contains at least one of these luminescent nanocrystalline particles.
  • the light absorbed by the luminescent nanocrystalline particles is, for example, light with a wavelength in the range of 400 nm or more and less than 500 nm (especially light in the wavelength range of 420 to 480 nm) (blue light), or in the range of 200 nm to 400 nm. (ultraviolet light).
  • the emission peak wavelength of the luminescent nanocrystalline particles can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured using a spectrofluorometer.
  • the red-emitting nanocrystalline particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • Green-emitting nanocrystalline particles have an emission peak wavelength of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • the blue-emitting nanocrystalline particles have an emission peak wavelength of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • the wavelength (emission color) of the light emitted by the luminescent nanocrystalline particles depends on the size (e.g., particle diameter) of the luminescent nanocrystalline particles. It also depends on the energy gap of the crystal grains. Therefore, the emission color can be selected by changing the constituent material and size of the luminescent nanocrystalline particles used.
  • the luminescent nanocrystalline particles are preferably luminescent nanocrystalline particles containing a semiconductor material (luminescent semiconductor nanocrystalline particles).
  • Luminescent semiconductor nanocrystal particles include quantum dots and quantum rods. Among these, quantum dots are preferable from the viewpoint that the emission spectrum can be easily controlled, the reliability can be secured, the production cost can be reduced, and the mass productivity can be improved.
  • the luminescent semiconductor nanocrystal particles may consist solely of a core comprising the first semiconductor material, comprising a core comprising the first semiconductor material and a second semiconductor material different from the first semiconductor material, wherein and a shell covering at least a portion of the core.
  • the structure of the luminescent semiconductor nanocrystal particles is preferably a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core/shell structure).
  • the luminescent semiconductor nanocrystal particle contains a third semiconductor material different from the first and second semiconductor materials in addition to the shell (first shell) containing the second semiconductor material, It may further have a shell (second shell) that covers at least part of it.
  • the structure of the luminescent semiconductor nanocrystal particles is preferably a structure consisting of a core, a first shell and a second shell (core/shell/shell structure).
  • Each of the core and shell can be a mixed crystal containing two or more semiconductor materials (eg, CdSe+CdS, CIS+ZnS, etc.).
  • Luminescent nanocrystalline particles are selected as semiconductor materials from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors and I-II-IV-VI semiconductors. It preferably contains at least one semiconductor material that
  • Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe ⁇ CdHgS ⁇ CdHgSe ⁇ CdHgTe ⁇ HgZnS ⁇ HgZnSe ⁇ CdHgZnTe ⁇ CdZnSeS ⁇ CdZnSeTe ⁇ CdZnSTe ⁇ CdHgSeS ⁇ CdHgSeTe ⁇ CdHgSTe ⁇ HgZnSeS ⁇ HgZnSeTe ⁇ HgZnSTe ⁇ HgSeS ⁇ CdHgSeTe ⁇ C
  • Luminescent semiconductor nanocrystalline particles are CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS.
  • red-emitting semiconductor nanocrystal particles include nanocrystal particles of CdSe and nanocrystal particles having a core/shell structure in which the shell portion is CdS and the inner core portion is CdSe. particles, nanocrystalline particles with a core/shell structure, where the shell portion is CdS and the inner core portion is ZnSe, mixed crystal nanocrystalline particles of CdSe and ZnS, InP nanocrystalline particles A crystalline particle, a nanocrystalline particle with a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, a nanocrystalline particle with a core/shell structure, Nanocrystalline particles whose shell portion is a mixed crystal of ZnS and ZnSe and whose inner core portion is InP, nanocrystalline particles of mixed crystal of CdSe and CdS, nanocrystalline particles of mixed crystal of ZnSe and CdS, core /Nanocrystalline particles with a shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is Zn
  • green-emitting semiconductor nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles of a mixed crystal of CdSe and ZnS, and nanocrystalline particles having a core/shell structure, the shell portion of which is ZnS. and a nanocrystalline particle having an inner core of InP, a nanocrystalline particle having a core/shell structure, wherein the shell is a mixed crystal of ZnS and ZnSe and the inner core is InP Crystalline particles, nanocrystalline particles with a core/shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP , a nanocrystalline particle with a core/shell/shell structure, wherein the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP certain nanocrystalline particles and the like.
  • blue-emitting semiconductor nanocrystalline particles include ZnSe nanocrystalline particles, ZnS nanocrystalline particles, and nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnSe and the inner core portion is is ZnS, nanocrystalline particles of CdS, nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, core/shell A nanocrystalline particle with a structure, wherein the shell part is a mixed crystal of ZnS and ZnSe and the inner core part is InP, a nanocrystalline particle with a core/shell/shell structure.
  • nanocrystalline particle having a first shell portion of ZnSe, a second shell portion of ZnS, and an inner core portion of InP a nanocrystalline particle having a core/shell/shell structure
  • examples include nanocrystalline particles in which the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
  • the semiconductor nanocrystal particles can change the color of light emitted from the particles to either red or green by changing the average particle size of the particles themselves.
  • semiconductor nanocrystal particles that themselves have the least adverse effect on the human body or the like.
  • semiconductor nanocrystal particles containing cadmium, selenium, etc. are used as luminescent nanocrystal particles
  • semiconductor nanocrystal particles that do not contain the above elements (cadmium, selenium, etc.) as much as possible are selected and used alone. is preferably used in combination with other luminescent nanocrystalline particles so as to minimize the
  • the shape of the luminescent nanocrystalline particles is not particularly limited, and may be any geometric shape or any irregular shape.
  • Examples of the shape of the luminescent nanocrystalline particles include spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, and rod-like.
  • the uniformity and fluidity of the ink composition can be further enhanced by using particles with a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.). is preferred.
  • the average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is 1 nm or more, 1.5 nm or more, or 2 nm from the viewpoint of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. It is preferable that it is above. From the viewpoint of easily obtaining a desired emission wavelength, the average particle size (volume average size) of the luminescent nanocrystalline particles is preferably 40 nm or less, 30 nm or less, or 20 nm or less. The average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is obtained by measuring with a transmission electron microscope or scanning electron microscope and calculating the volume average diameter.
  • the luminescent nanocrystalline particles those dispersed in a colloidal form in a photopolymerizable compound or the like can be used.
  • the surfaces of the dispersed luminescent nanocrystalline particles are preferably passivated with the above-described organic ligands.
  • luminescent nanocrystalline particles include, for example, indium phosphide/zinc sulfide, D-dot, CuInS/ZnS from NN-Labs, and InP/ZnS from Aldrich.
  • the content of the luminescent nanocrystalline particles is preferably 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 25 parts by mass or more with respect to 100 parts by mass of the nonvolatile matter of the ink composition. .
  • the content of the luminescent nanocrystalline particles can be increased while exhibiting excellent suitability for the inkjet process.
  • the content of the luminescent nanocrystalline particles is preferably 50 parts by mass or less, 45 parts by mass or less, or 40 parts by mass or less with respect to 100 parts by mass of the nonvolatile matter in the ink composition.
  • the content of luminescent nanocrystalline particles means the content of only the luminescent nanocrystalline particles themselves, and even if the luminescent nanocrystalline particles have organic ligands, the content of the organic ligands is Quantity not included.
  • the ink composition may contain, as luminescent nanocrystalline particles, two or more of red luminescent nanocrystalline particles, green luminescent nanocrystalline particles and blue luminescent nanocrystalline particles, but these are preferably used. It contains only one type of particles.
  • the ink composition comprises red-emitting nanocrystalline particles
  • the content of green-emitting nanocrystalline particles and the content of blue-emitting nanocrystalline particles are preferably 10, based on the total weight of the luminescent nanocrystalline particles. % by mass or less, more preferably 0% by mass.
  • the ink composition comprises green luminescent nanocrystalline particles
  • the content of red luminescent nanocrystalline particles and the content of blue luminescent nanocrystalline particles, based on the total mass of luminescent nanocrystalline particles is preferably 10. % by mass or less, more preferably 0% by mass.
  • the organic ligand is present near the surface of the luminescent nanocrystalline particles and has the function of dispersing the luminescent nanocrystalline particles.
  • the organic ligand includes, for example, a functional group for ensuring affinity with a photopolymerizable compound (hereinafter also simply referred to as an “affinity group”) and a functional group capable of binding to a luminescent nanocrystal particle (light emitting functional group for ensuring adsorption to the luminescent nanocrystalline particles), and exists in the vicinity of the surface of the luminescent nanocrystalline particles by coordinating to the surface of the luminescent nanocrystalline particles.
  • the affinity group is preferably a substituted or unsubstituted aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group may be linear or have a branched structure. Also, the aliphatic hydrocarbon group may or may not have an unsaturated bond.
  • the substituted aliphatic hydrocarbon may be a group in which some carbon atoms of an aliphatic hydrocarbon group are substituted with oxygen atoms.
  • Substituted aliphatic hydrocarbon groups may include, for example, (poly)oxyalkylene groups.
  • the "(poly)oxyalkylene group” means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
  • Functional groups that can be bonded to luminescent nanocrystalline particles include, for example, hydroxyl groups, amino groups, carboxyl groups, thiol groups, phosphoric acid groups, phosphonic acid groups, phosphine groups, phosphine oxide groups and alkoxysilyl groups.
  • the molecular weight of the organic ligand is preferably 1000 or less, more preferably 800 or less, 700 or less, 600 or less, or 500 or less.
  • the organic ligand preferably has a molecular weight of, for example, 100 or more, or 200 or more. When the molecular weight of the organic ligand is within the above range, the viscosity as an inkjet ink is further improved.
  • organic ligands examples include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, linoleic acid, linolenic acid, ricinoleic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N - lauroylsarcosine, N-oleylsarcosine, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine acid (OPA).
  • TOP trioctylphosphine
  • TOPO trioctylphosphine oxide
  • oleic acid linoleic
  • the organic ligand is preferably an organic ligand represented by the following formula (1-1).
  • At least one of p and q is preferably 1 or more, more preferably both p and q are 1 or more.
  • the organic ligand may be, for example, an organic ligand represented by the following formula (1-2).
  • a 1 represents a monovalent group containing a carboxyl group
  • a 2 represents a monovalent group containing a hydroxy group
  • R is a hydrogen atom, a methyl group, or an ethyl group.
  • L represents a substituted or unsubstituted alkylene group
  • r represents an integer of 0 or more.
  • the number of carboxyl groups in the monovalent group containing a carboxyl group is preferably 2 or more, more preferably 2 or more and 4 or less, and still more preferably 2.
  • the alkylene group represented by L preferably has, for example, 1 to 10 carbon atoms.
  • some of the carbon atoms may be substituted with hetero atoms, and substituted with at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
  • r is, for example, an integer of 1-100 or an integer of 10-20.
  • the organic ligand is preferably, for example, an organic ligand represented by the following formula (1-2A).
  • the organic ligand is preferably an organic ligand represented by the following formula (1-3).
  • n represents an integer of 0-50
  • m represents an integer of 0-50
  • n is preferably 0-20, more preferably 0-10.
  • m is preferably 0-20, more preferably 0-10.
  • At least one of n and m is preferably 1 or more. That is, n+m is preferably 1 or more. n+m may be 10 or less.
  • Z represents a substituted or unsubstituted alkylene group.
  • the number of carbon atoms in the alkylene group may be, for example, 1-10.
  • some of the carbon atoms may be substituted with hetero atoms, and substituted with at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
  • the organic ligand is preferably an organic ligand represented by the following formula (1-4).
  • l represents an integer of 1 to 50.
  • l is preferably 1-20, 3-15, 5-10, or 7.
  • the content of the organic ligand in the ink composition is 15 to 50 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles.
  • the lower limit of the content of the organic ligand in the ink composition is from the viewpoint of further suppressing the aggregation of the components in the ink composition, from the viewpoint of further improving the effect of suppressing leakage light and improving the external quantum efficiency, and redispersion 16 parts by mass or more, 17 parts by mass or more, 18 parts by mass or more, 19 parts by mass or more, 20 parts by mass or more, 21 parts by mass or more, or 22 It is preferably at least 23 parts by mass or at least 23 parts by mass.
  • the upper limit of the content of the organic ligand in the ink composition is 100 mass of the luminescent nanocrystalline particles from the viewpoint of further suppressing the occurrence of phase separation and/or gel-like matter and further improving the redispersibility. It is preferably 48 parts by mass or less, 46 parts by mass or less, 44 parts by mass or less, 42 parts by mass or less, 40 parts by mass or less, 38 parts by mass or less, or 36 parts by mass or less. From the viewpoint of further improving the effect of suppressing leakage light and improving the external quantum efficiency, and from the viewpoint of further improving the redispersibility, the content of the organic ligand in the ink composition is 100 parts by mass of the luminescent nanocrystalline particles. For example, it is preferably 18 to 45 parts by weight, 20 to 40 parts by weight, or 22 to 35 parts by weight.
  • Light-scattering particles are, for example, optically inactive inorganic fine particles.
  • the ink composition contains light-scattering particles, it is possible to scatter the light emitted from the light source with which the pixel portion is irradiated, so that excellent optical properties can be obtained.
  • Materials constituting the light-scattering particles include, for example, simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate, Metal oxides such as talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; magnesium carbonate, barium carbonate, Metal carbonates such as bismuth subcarbonate and calcium carbonate; Metal hydroxides such as aluminum hydroxide; Composite oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate and strontium titanate, bismuth subnitrate metal salts such as The light-scattering particles are selected from the group consisting of titanium oxide, alumina, zirconium oxide,
  • the shape of the light-scattering particles may be spherical, filamentous, amorphous, or the like.
  • the use of particles having a less directional particle shape e.g., spherical, regular tetrahedral particles, etc.
  • the average particle size of the light-scattering particles in the ink composition is preferably 0.15 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is, for example, 0.16 ⁇ m or more and 0.4 ⁇ m or less, 0.17 ⁇ m or more and 0.3 ⁇ m or less, or 0.18 ⁇ m or more and 0.25 ⁇ m or less. is preferably When the average particle size of the light-scattering particles in the ink composition is within the above range, the ejection stability of the inkjet ink is further improved.
  • the average particle diameter (volume average diameter) of the light scattering particles in the ink composition is obtained by measuring with a dynamic light scattering Nanotrack particle size distribution meter and calculating the volume average diameter. .
  • the content of the light-scattering particles is 0.1 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to 100 parts by mass of the nonvolatile matter of the ink composition.
  • the content of the light-scattering particles is preferably less than 10 parts by mass, 9 parts by mass or less, 7 parts by mass or less, or 5 parts by mass or less with respect to 100 parts by mass of the nonvolatile matter of the ink composition.
  • the mass ratio of the content of light-scattering particles to the content of luminescent nanocrystalline particles is 0.05 or more from the viewpoint of further improving the effect of improving the external quantum efficiency. It is preferably 0.07 or more, 0.1 or more, 0.13 or more, or 0.15 or more.
  • the mass ratio (light-scattering particles/luminescent nanocrystalline particles) is 5.0 or less, 2.0 or less, 1.0 or less, 2.0 or less, and 1.0 or less, from the viewpoint of being more excellent in terms of suitability for inkjet processes, optical properties, and reproducibility thereof. It is preferably 0 or less, 0.5 or less, 0.2 or less, 0.19 or less, 0.18 or less, 0.17 or less, or 0.16 or less.
  • the total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 15 parts by mass with respect to 100 parts by mass of the nonvolatile content of the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. Above, it is preferable that it is 20 mass parts or more, or 25 mass parts or more.
  • the total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 60 parts by mass with respect to 100 parts by mass of the nonvolatile content of the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink.
  • it is preferably 50 parts by mass or less or 40 parts by mass or less.
  • a polymeric dispersant is a polymeric compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for light scattering particles.
  • the polymer dispersant has a function of dispersing the light scattering particles.
  • the polymer dispersant adsorbs to the light-scattering particles via a functional group having affinity for the light-scattering particles, and the light-scattering particles are dispersed by electrostatic repulsion and/or steric repulsion between the polymer dispersants. Disperse in the ink composition.
  • the ink composition contains a polymer dispersant
  • the light-scattering particles can be dispersed satisfactorily.
  • the polymer dispersant is preferably bound to the surface of the light-scattering particles and adsorbed to the light-scattering particles, but is bound to the surface of the luminescent nanocrystalline particles and adsorbed to the luminescent nanocrystalline particles. may be free in the ink composition.
  • Functional groups that have affinity for light-scattering particles include acidic functional groups, basic functional groups, and nonionic functional groups.
  • Acidic functional groups have dissociative protons and may be neutralized with bases such as amines and hydroxide ions, while basic functional groups are neutralized with acids such as organic acids and inorganic acids.
  • acidic functional groups include carboxyl group (--COOH), sulfo group (--SO 3 H), sulfate group (--OSO 3 H), phosphonic acid group (--PO(OH) 3 ), phosphoric acid group (--OPO ( OH) 3 ), phosphinic acid group (--PO(OH)--), mercapto group (--SH).
  • Basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
  • Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate group, amide group, Carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group and phosphine sulfide group.
  • the polymeric dispersant is preferably a polymer (homopolymer) of a single monomer or a copolymer (copolymer) of multiple types of monomers. Moreover, the polymer dispersant may be a random copolymer, a block copolymer or a graft copolymer. When the polymeric dispersant is a graft copolymer, it is preferably a comb-shaped graft copolymer or a star-shaped graft copolymer.
  • polymer dispersants include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, epoxy resins, polyamines such as polyethyleneimine and polyallylamine, and polyimides. is mentioned.
  • the weight average molecular weight of the polymeric dispersant is 750 or more, preferably 1000 or more, 1500 or more, 2000 or more, or 3000 or more.
  • the weight average molecular weight of the polymeric dispersant is preferably 40,000 or less, or 30,000 or less, for example.
  • the weight average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) under the following conditions.
  • the polymer dispersant is preferably a compound having at least a basic functional group. That is, the polymeric dispersant preferably has an amine value.
  • the amine value of the polymer dispersant is preferably 0.1 mgKOH/g or more, 1 mgKOH/g or more, 5 mgKOH/g or more, or 10 mgKOH/g or more.
  • the amine value of the polymeric dispersant is preferably 120 mgKOH/g or less, 100 mgKOH/g or less, 90 mgKOH/g or less, or 80 mgKOH/g or less.
  • the amine value of the polymeric dispersant can be measured as follows.
  • a sample solution was prepared by dissolving a polymer dispersant xg and 1 mL of a bromophenol blue sample solution in 50 mL of a mixed solution in which toluene and ethanol were mixed at a volume ratio of 1:1, and the sample solution was dissolved with 0.5 mol / L hydrochloric acid. Titration is performed until a green color is exhibited, and the amine value can be calculated by the following formula.
  • Amine value y/x x 28.05
  • y indicates the titration amount (mL) of 0.5 mol/L hydrochloric acid required for titration
  • x indicates the mass (g) of the polymer dispersant.
  • the polymer dispersant preferably has an acid value, more preferably both an acid value and an amine value.
  • the acid value of the polymer dispersant is, for example, preferably 0 mgKOH/g or more, or 10 mgKOH/g or more, and preferably 70 mgKOH/g or less, 60 mgKOH/g or less, or 50 mgKOH/g or less.
  • Acid value can be measured as follows.
  • a sample solution was prepared by dissolving pg of a polymer dispersant and 1 mL of a phenolphthalein test solution in 50 mL of a mixed solution in which toluene and ethanol were mixed at a volume ratio of 1:1, and a 0.1 mol / L ethanolic potassium hydroxide solution.
  • Acid value q x r x 5.611/p
  • q represents the titration amount (mL) of the 0.1 mol/L ethanol potassium hydroxide solution required for titration
  • r represents the titer of the 0.1 mol/L ethanol potassium hydroxide solution required for titration.
  • p indicates the mass (g) of the polymer dispersant.
  • the polymer dispersant having an acid value and an amine value include a dispersant having a linear aliphatic polyester skeleton and an aliphatic polyether skeleton as a basic skeleton and having a carboxyl group and an amino group, and an arylamine. Copolymers of moieties, maleic acid and amino group-containing maleic acid, copolymers of polyarylamine and aliphatic polyester, and the like.
  • the polymeric dispersant may be used singly or in combination of two or more.
  • the polymeric dispersant preferably contains two or more polymeric dispersants.
  • polymer dispersant Commercially available products can be used as the polymer dispersant, and commercial products include Ajinomoto Fine-Techno Co., Inc.'s Ajisper PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series. , Solsperse S24000GR manufactured by Nippon Lubrizol Co., Ltd., or the like can be used.
  • the content of the polymer dispersant in the ink composition is 3 to 15 parts by mass with respect to 100 parts by mass of the light-scattering particles.
  • the lower limit of the content of the polymer dispersant in the ink composition is from the viewpoint of further suppressing the aggregation of the components in the ink composition, from the viewpoint of being more excellent in the effect of suppressing leakage light and the effect of improving the external quantum efficiency, and From the viewpoint of further excellent redispersibility, it is preferably 4 parts by mass or more or 5 parts by mass or more with respect to 100 parts by mass of the light-scattering particles.
  • the upper limit of the content of the polymer dispersant in the ink composition is 13 parts by mass or less, from the viewpoint of further suppressing deterioration of the luminescent nanocrystalline particles and from the viewpoint of further improving the effect of improving the external quantum efficiency. It is preferably 11 parts by mass or less, 9 parts by mass or less, or 7 parts by mass or less. From the above-described viewpoint, the content of the polymer dispersant in the ink composition is, for example, 3 to 13 parts by mass, 3 to 11 parts by mass, 4 to 9 parts by mass, or It is preferably 4 to 7 parts by mass.
  • a photopolymerizable compound is a compound that polymerizes when irradiated with light.
  • the photopolymerizable compound is preferably, for example, a photoradical polymerizable compound.
  • the photopolymerizable compound is preferably a photopolymerizable monomer or oligomer.
  • a photopolymerizable compound is used together with a photopolymerization initiator.
  • a photoradical polymerizable compound is used together with a photoradical polymerization initiator.
  • the ink composition may contain a photopolymerizable component containing a photopolymerizable compound and a photopolymerization initiator, and contains a photoradical polymerizable component containing a photoradical polymerizable compound and a photoradical polymerization initiator.
  • the ink composition may contain one type of photopolymerizable compound, may contain two or more types, and preferably contains two or more types.
  • photoradical polymerizable compounds include monomers having ethylenically unsaturated groups (hereinafter also referred to as “ethylenically unsaturated monomers”), monomers having isocyanate groups, and the like.
  • ethylenically unsaturated monomers means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond).
  • the number of ethylenically unsaturated bonds (eg, the number of ethylenically unsaturated groups) in the ethylenically unsaturated monomer is, for example, 1-3.
  • One type of ethylenically unsaturated monomer may be used alone, or a plurality of types may be used in combination.
  • the photopolymerizable compound is a monomer having one ethylenically unsaturated group (single functional monomer) and a monomer having two or more ethylenically unsaturated groups (polyfunctional monomer), and a monofunctional monomer and a monomer having two ethylenically unsaturated groups (bifunctional monomer) and ethylene and at least one selected from the group consisting of monomers having three polyunsaturated groups (trifunctional monomers).
  • the ethylenically unsaturated group is preferably a vinyl group, a vinylene group, a vinylidene group, a (meth)acryloyl group, or the like, and more preferably a (meth)acryloyl group.
  • a "(meth)acryloyl group” means an "acryloyl group” and a “methacryloyl group” corresponding thereto. The same applies to expressions such as “(meth)acrylate” and “(meth)acrylamide”.
  • the photopolymerizable compound preferably contains at least one compound having a (meth)acryloyl group as an ethylenically unsaturated group, more preferably at least one selected from the group consisting of (meth)acrylates and (meth)acrylamides.
  • One type is included, more preferably at least one type of (meth)acrylate is included, and at least one type of (meth)acrylate with a linear alkyl group having 8 or more carbon atoms is particularly preferably included.
  • the photopolymerizable compound preferably contains two or more (meth)acrylates from the viewpoint of facilitating both excellent ejection stability and excellent curability and from the viewpoint of further improving the external quantum efficiency.
  • the photopolymerizable compound preferably contains a (meth)acrylate having a hydroxy group.
  • monofunctional monomers examples include lauryl (meth)acrylate, glycerin mono(meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate.
  • monomers having two ethylenically unsaturated groups include 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,5-pentane Diol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,8-octanediol Di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) ) acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate,
  • di(meth)acrylate in which the hydroxyl group of is substituted by a (meth)acryloyloxy group, and two hydroxyl groups of the diol obtained by adding 2 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A are (meth)acryloyloxy groups
  • a di(meth)acrylate substituted with a triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane, and two hydroxyl groups of the triol are substituted with a (meth)acryloyloxy group ( meth)acrylate, di(meth)acrylate obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A and two hydroxyl groups of the diol are substituted with (meth)acryloyloxy groups, N,N' -methylenebisacrylamide, N,N'-ethylenebisacrylamide, and the like.
  • trifunctional monomers include glycerin tri(meth)acrylate, trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, and EO-modified trimethylol. propane tri(meth)acrylate and the like.
  • the photopolymerizable compound is preferably alkali-insoluble from the viewpoint of easily obtaining a highly reliable pixel portion (cured product of the ink composition).
  • the photopolymerizable compound being alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is 30, based on the total mass of the photopolymerizable compound. % or less.
  • the dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
  • the content of the photopolymerizable compound is determined from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink, the viewpoint of good curability of the ink composition, and the solvent resistance and From the viewpoint of improving abrasion resistance, it is preferably 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the nonvolatile matter of the ink composition.
  • the content of the photopolymerizable compound is 100% by mass of the non-volatile matter of the ink composition from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining better optical properties (e.g., external quantum efficiency). It is preferably 60 parts by mass or less, 50 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass or less.
  • the photopolymerizable compound since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse the light-scattering particles and the luminescent nanocrystalline particles without a solvent. In this case, there is an advantage that the step of removing the solvent by drying is not required when forming the pixel portion.
  • the ink composition may further contain a photopolymerization initiator.
  • a photoinitiator is used together with a photopolymerizable compound.
  • the photopolymerization initiator is, for example, a photoradical polymerization initiator or a photocationic polymerization initiator.
  • a photoradical polymerization initiator a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • Molecular cleavage type photoradical polymerization initiators include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1.
  • -(4-morpholinophenyl)-butan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenylphosphine oxide etc. are preferably used.
  • molecular cleavage type radical photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4 -isopropylphenyl)-2-hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination.
  • Benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenyl sulfide and the like are examples of hydrogen abstraction type photoradical polymerization initiators.
  • a molecular cleavage type radical photopolymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
  • a commercial product can also be used as a photocationic polymerization initiator.
  • Commercially available products include sulfonium salt photocationic polymerization initiators such as "CPI-100P” manufactured by San-Apro, acylphosphine oxide compounds such as "Lucirin TPO” manufactured by BASF, "Irgacure 907” manufactured by BASF, "Irgacure 819", “Irgacure 379EG”, “Irgacure 184" and "Irgacure PAG290".
  • the content of the photopolymerization initiator is 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 3 parts by mass or more, relative to 100 parts by mass of the photopolymerizable compound. It is preferably at least 5 parts by mass, or at least 5 parts by mass.
  • the content of the photopolymerization initiator is 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). parts or less, or preferably 10 parts by mass or less.
  • the ink composition contains components other than the components described above (for example, organic solvents, thermosetting resins, curing agents, curing accelerators (curing catalysts), polymerization inhibitors, chain transfer agents, and , antioxidants, etc.) may be further contained.
  • components other than the components described above for example, organic solvents, thermosetting resins, curing agents, curing accelerators (curing catalysts), polymerization inhibitors, chain transfer agents, and , antioxidants, etc.
  • the viscosity of the ink composition described above at the ink temperature during inkjet printing is preferably, for example, 2 mPa ⁇ s or more, 5 mPa ⁇ s or more, or 7 mPa ⁇ s or more from the viewpoint of ejection stability during inkjet printing. .
  • the viscosity of the ink composition at the ink temperature during inkjet printing is preferably 20 mPa ⁇ s or less, 15 mPa ⁇ s or less, or 12 mPa ⁇ s or less. In this specification, the viscosity of the ink composition is measured at 25° C., for example, by an E-type viscometer.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is 2 mPa s or more, the meniscus shape of the inkjet ink at the tip of the ink ejection hole of the ejection head is stabilized. control of the amount and timing of ejection) becomes easier.
  • the viscosity of the ink composition at the ink temperature during inkjet printing is 20 mPa ⁇ s or less, the inkjet ink can be smoothly ejected from the ink ejection holes.
  • the surface tension of the ink composition is preferably a surface tension suitable for an inkjet system, specifically preferably in the range of 20 to 40 mN/m, more preferably 25 to 35 mN/m. .
  • ejection control for example, control of ejection amount and ejection timing
  • flight deflection means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 ⁇ m or more.
  • the surface tension is 40 mN/m or less, the meniscus shape at the tip of the ink ejection hole is stabilized, so that the ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy.
  • the surface tension is 20 mN/m or more, contamination of the periphery of the ink ejection holes with the ink jet ink can be prevented, so that the occurrence of flight deflection can be suppressed.
  • the ink composition is not accurately deposited on the pixel portion forming region where the ink composition should be deposited, resulting in an insufficiently filled pixel portion, or the pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region where the ink composition should be deposited.
  • the ink composition does not land on the surface, and the color reproducibility is not deteriorated.
  • the surface tension described in the specification of the present application refers to the surface tension measured at 23° C., which is measured by the ring method (also referred to as the ring method).
  • the ink composition of the present embodiment is preferably applied to a piezojet type inkjet recording apparatus with a mechanical ejection mechanism using a piezoelectric element.
  • the ink composition is not instantaneously exposed to high temperatures during ejection. Therefore, the luminescent nanocrystalline particles are less likely to be degraded, and expected luminous properties can be more easily obtained in the pixel portion (light conversion layer).
  • the ink composition of the embodiment described above includes, for example, a step of mixing the components of the ink composition described above.
  • the method for producing the ink composition may further comprise a step of dispersing the mixture of the above components.
  • a method for producing an ink composition includes, for example, a dispersion of light-scattering particles containing light-scattering particles and a polymer dispersant, and a dispersion of light-emitting nanocrystal particles containing light-emitting nanocrystal particles and an organic ligand. and mixing. According to this method, it is possible to improve the optical properties of the pixel portion (improvement of external quantum efficiency, suppression of leakage light, etc.) and to obtain an ink composition excellent in redispersibility.
  • the ink composition before the step of mixing the dispersion of light-scattering particles and the dispersion of luminescent nanocrystalline particles, light-scattering particles, a polymer dispersant and a photopolymerizable compound are added.
  • a step of providing a dispersion of light-scattering particles to be contained may be provided.
  • light-scattering particles, a polymer dispersant, and a photopolymerizable compound are mixed and subjected to dispersion treatment to prepare a dispersion of light-scattering particles.
  • You can Mixing and dispersing treatments may be carried out using dispersing equipment such as bead mills, paint conditioners, planetary stirrers, jet mills and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
  • dispersing equipment such as bead mills, paint conditioners, planetary stirrers, jet mills and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
  • a method for producing an ink composition comprises mixing luminescent nanocrystalline particles, an organic ligand, and a photopolymerizable compound before the step of mixing a dispersion of light-scattering particles and a dispersion of luminescent nanocrystalline particles. and the step of providing a dispersion of luminescent nanocrystalline particles.
  • luminescent nanocrystalline particles, a photopolymerizable compound, and an organic ligand are mixed, and dispersion treatment is performed to prepare a dispersion of luminescent nanocrystalline particles.
  • You can Mixing and dispersion treatment may be carried out using ordinary stirring devices such as an electromagnetic stirrer and a three-one motor, and dispersion devices such as a vortex mixer, a bead mill, a paint conditioner, a planetary stirrer and a jet mill.
  • a normal stirring device such as an electromagnetic stirrer or a three-one motor, or a vortex mixer. According to this method, it is possible to sufficiently disperse the luminescent nanocrystalline particles without deteriorating their performance. Therefore, it is possible to improve the optical properties of the pixel portion (improved external quantum efficiency, suppress leaked light, etc.), and obtain an ink composition having excellent redispersibility.
  • An ink composition set of one embodiment includes the ink composition of the embodiment described above.
  • the ink composition set may include an ink composition that does not contain luminescent nanocrystalline particles (non-luminescent ink composition) in addition to the ink composition (luminescent ink composition) of the embodiment described above.
  • a non-luminescent ink composition is, for example, a curable ink composition.
  • the non-luminescent ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (luminescent ink composition) of the above-described embodiment except that it does not contain luminescent nanocrystalline particles. may be
  • the non-luminous ink composition does not contain luminous nanocrystal particles, light is allowed to enter the pixel portion formed by the non-luminous ink composition (the pixel portion containing the cured product of the non-luminous ink composition). In this case, the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-luminous ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed with the non-luminescent ink composition can be a blue pixel portion.
  • the non-luminescent ink composition preferably contains light-scattering particles.
  • the pixel portion formed from the non-luminous ink composition can scatter light incident on the pixel portion, thereby It is possible to reduce the light intensity difference in the viewing angle of the light emitted from the portion.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment.
  • the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40 .
  • the light conversion layer 30 includes a plurality of pixel portions 10 and a light shielding portion 20 .
  • the light conversion layer 30 has, as pixel sections 10, a first pixel section 10a, a second pixel section 10b, and a third pixel section 10c.
  • the first pixel section 10a, the second pixel section 10b, and the third pixel section 10c are arranged in a grid so as to repeat this order.
  • the light shielding portion 20 is provided between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion 10c. is provided between the first pixel portion 10c and the first pixel portion 10a. In other words, these adjacent pixel portions are separated by the light shielding portion 20 .
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (luminescent pixel portions) each containing a cured product of the ink composition of the embodiment described above.
  • the first pixel portion 10a includes a first curing component 13a, and first luminescent nanocrystalline particles 11a and first light scattering particles 12a respectively dispersed in the first curing component 13a.
  • the second pixel portion 10b includes a second curing component 13b, and second luminescent nanocrystalline particles 11b and second light scattering particles 12b dispersed in the second curing component 13b, respectively. including.
  • a curing component is a component obtained by polymerization of a photopolymerizable compound, and includes a polymer of the photopolymerizable compound, an organic ligand and a polymer dispersant.
  • the curing component may further contain an organic component (such as an unreacted photopolymerizable compound) contained in the ink composition.
  • the first curing component 13a and the second curing component 13b may be the same or different, and may be the first light scattering particles 12a. It may be the same as or different from the second light scattering particles 12b.
  • the first luminescent nanocrystalline particles 11a are red luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420-480 nm and emit light with an emission peak wavelength in the range of 605-665 nm. That is, the first pixel section 10a can be rephrased as a red pixel section for converting blue light into red light.
  • the second luminescent nanocrystalline particles 11b are green luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel section 10b can be rephrased as a green pixel section for converting blue light into green light.
  • the content of the luminescent nanocrystalline particles in the luminescent pixel portion is based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining an excellent effect of improving the external quantum efficiency and obtaining excellent emission intensity. It is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, or 24% by mass or more.
  • the content of the luminescent nanocrystalline particles is preferably 80% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent reliability of the pixel portion and excellent emission intensity. , 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less.
  • the content of the light-scattering particles in the light-emitting pixel portion is, for example, 0.1% by mass or more based on the total mass of the cured product of the light-emitting ink composition, from the viewpoint of improving the external quantum efficiency. , 1% by mass or more, or 2% by mass or more.
  • the content of the light-scattering particles is preferably, for example, 60% by mass or less based on the total mass of the cured luminescent ink composition.
  • the content of the light-scattering particles is preferably 10% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency and the reliability of the pixel portion. , more preferably 7% by mass or less, and still more preferably 5% by mass or less.
  • the third pixel portion 10c is a non-luminous pixel portion (non-luminous pixel portion) containing the cured non-luminous ink composition described above.
  • the cured product does not contain luminescent nanocrystalline particles, but contains light-scattering particles and a curing component. That is, the third pixel portion 10c includes a third curing component 13c and third light scattering particles 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound, and includes a polymer of the polymerizable compound.
  • the third light scattering particles 12c may be the same as or different from the first light scattering particles 12a and the second light scattering particles 12b.
  • the third pixel section 10c has a transmittance of 30% or more for light with a wavelength in the range of 420 to 480 nm. Therefore, the third pixel section 10c functions as a blue pixel section when using a light source that emits light with a wavelength in the range of 420 to 480 nm. Note that the transmittance of the third pixel section 10c can be measured with a microspectroscope.
  • the content of the light-scattering particles in the non-luminous pixel portion is 1% by mass based on the total mass of the cured non-luminous ink composition, from the viewpoint of further reducing the difference in light intensity at viewing angles. Above, it is preferable that it is 5 mass % or more, or 10 mass % or more. From the viewpoint of further reducing light reflection, the content of the light-scattering particles is 50% by mass or less, 30% by mass or less, or 20% by mass, based on the total mass of the cured non-luminescent ink composition. % or less.
  • the thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) is preferably, for example, 1 ⁇ m or more, 2 ⁇ m or more, or 3 ⁇ m or more.
  • the thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) is preferably, for example, 30 ⁇ m or less, 20 ⁇ m or less, or 15 ⁇ m or less.
  • the light shielding section 20 is a so-called black matrix that is provided for the purpose of separating adjacent pixel sections to prevent color mixture and for the purpose of preventing leakage of light from the light source.
  • the material constituting the light shielding part 20 is not particularly limited, and in addition to metals such as chromium, curing of a resin composition in which light shielding particles such as carbon fine particles, metal oxides, inorganic pigments, organic pigments, etc. are contained in a binder polymer. objects, etc. can be used.
  • the binder polymer used here one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, cellulose, etc., photosensitive resin, O/W
  • An emulsion-type resin composition (for example, an emulsified reactive silicone) can be used. It is preferable that the thickness of the light shielding portion 20 is, for example, 0.5 ⁇ m or more or 10 ⁇ m or less.
  • the base material 40 is a transparent base material having optical transparency.
  • a flexible base material or the like can be used.
  • a glass substrate made of alkali-free glass that does not contain an alkali component.
  • "7059 glass”, “1737 glass”, “Eagle 200” and “Eagle XG” manufactured by Corning, "AN100” manufactured by Asahi Glass Co., Ltd., “OA-10G” manufactured by Nippon Electric Glass Co., Ltd. and " OA-11” is preferred. These materials have a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
  • the color filter 100 including the light conversion layer 30 described above is suitably used when using a light source that emits light with a wavelength in the range of 420 to 480 nm.
  • the color filter 100 can be manufactured, for example, by forming the light-shielding portions 20 in a pattern on the substrate 40 and then forming the pixel portions 10 in the pixel-forming regions partitioned by the light-shielding portions 20 on the substrate 40. .
  • the pixel portion 10 is formed by a method comprising a step of selectively applying an ink composition to a pixel portion forming region on the substrate 40 by an inkjet method, and a step of curing the ink composition to obtain a luminescent pixel portion. can be formed.
  • a luminescent pixel portion can be obtained by using the luminescent ink composition described above as the ink composition, and a non-luminescent pixel portion can be obtained by using a non-luminescent ink composition.
  • the method of forming the light shielding portion 20 is to form a thin film of a metal such as chromium or a thin film of a resin composition containing light shielding particles in a region that serves as a boundary between a plurality of pixel portions on one side of the substrate 40. and a method of patterning this thin film.
  • the metal thin film can be formed, for example, by a sputtering method, a vacuum deposition method, or the like, and the thin film of the resin composition containing light-shielding particles can be formed, for example, by a method such as coating or printing.
  • a photolithography method or the like can be used as a method for patterning.
  • Examples of the ink jet method include the bubble jet (registered trademark) method using an electrothermal transducer as an energy generating element, and the piezo jet method using a piezoelectric element.
  • Curing of the ink composition may be performed by irradiating with active energy rays (eg, ultraviolet rays).
  • active energy rays eg, ultraviolet rays
  • a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like may be used.
  • the wavelength of the light to be irradiated is, for example, 200 nm or more or 440 nm or less.
  • the exposure dose is preferably, for example, 10 mJ/cm 2 or more, or 20000 mJ/cm 2 or less.
  • the present invention is not limited to the above embodiment.
  • the light conversion layer may be a pixel portion ( blue pixel portion).
  • the light conversion layer may include pixel portions (e.g., yellow pixel portions) containing a cured product of a luminescent ink composition containing nanocrystalline particles that emit light of a color other than red, green, and blue. good.
  • each of the luminescent nanocrystalline particles contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength in the same wavelength range.
  • At least part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than the luminescent nanocrystalline particles.
  • the color filter may have an ink-repellent layer made of an ink-repellent material having a narrower width than the light-shielding portion on the pattern of the light-shielding portion.
  • an ink-repellent layer instead of providing an ink-repellent layer, a photocatalyst-containing layer as a variable wettability layer is formed in a solid manner in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer through a photomask. By irradiating and exposing, the ink affinity of the pixel portion forming region may be selectively increased.
  • photocatalysts include titanium oxide and zinc oxide.
  • the color filter may have an ink-receiving layer containing hydroxypropylcellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
  • the color filter may have a protective layer on the pixel portion.
  • This protective layer flattens the color filter and prevents components contained in the pixel portion, or components contained in the pixel portion and components contained in the photocatalyst-containing layer from eluting into the liquid crystal layer. It is provided. Materials used for known color filter protective layers can be used for the protective layer.
  • the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystalline particles.
  • the ink composition may contain the pigment.
  • the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the light conversion layer of the present embodiment are A pixel portion containing a coloring material without containing crystal grains may be used.
  • the coloring material that can be used here known coloring materials can be used.
  • the coloring material used in the red pixel portion (R) includes a diketopyrrolopyrrole pigment and/or an anionic red organic dye. mentioned.
  • the coloring material used in the green pixel portion (G) includes at least one selected from the group consisting of halogenated copper phthalocyanine pigments, phthalocyanine green dyes, and mixtures of phthalocyanine blue dyes and azo yellow organic dyes.
  • Coloring materials used in the blue pixel portion (B) include ⁇ -type copper phthalocyanine pigments and/or cationic blue organic dyes. When these colorants are contained in the light conversion layer, the amount used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance. %.
  • the color filter may include a normal color filter layer containing the above-described colorant without containing the luminescent nanocrystalline particles between the base material and the pixel portion of the present embodiment. That is, the color filter of the present embodiment includes a base material, a color filter layer containing a colorant and not containing luminescent nanocrystal particles, provided on the base material, and provided on the color filter layer, and the pixel portion of the present embodiment.
  • Example 1 Preparation of QD powder A> [Synthesis of organic ligand 1] After introducing polyethylene glycol
  • A organic ligand 1 represented by the following formula (A) as a pale yellow aged oil.
  • zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
  • ⁇ Preparation of Ink Composition of Example 1> 1.71 g of QD powder A, 0.52 g of light scattering particle dispersion A, and a photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM resin, Product name: Omnirad TPO) 0.30 g, a mixture of photopolymerizable compounds (PhEM: LM: HDMMA 43: 22: 35 (mass ratio)) 2.37 g, a hindered phenolic antioxidant (BASF Japan Co., Ltd., product name: Irganox 1010) 0.05 g, and after uniformly mixing in a container filled with argon gas, the mixture was filtered through a filter with a pore size of 5 ⁇ m in a glove box. The obtained filtrate was introduced into a container containing the filtrate, and the inside of the container was saturated with argon gas, and then the pressure was reduced to remove the argon gas, thereby
  • ⁇ Preparation of Ink Composition of Example 2> 1.71 g of QD powder B, 0.59 g of light scattering particle dispersion, and a photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM resin, product Name: Omnirad TPO) 0.12 g, a mixture of photopolymerizable compounds (PhEM: LA: HDMMA 39: 23: 38 (mass ratio)) 2.39 g, a hindered phenolic antioxidant (BASF Japan 0.05 g of Irganox 1010 (manufactured by Irganox 1010) was blended and uniformly mixed in a container filled with argon gas, and then the mixture was filtered through a filter with a pore size of 5 ⁇ m in a glove box. The obtained filtrate was introduced into a container containing the filtrate, the inside of the container was saturated with argon gas, and the pressure was reduced to remove the argon gas
  • Example 3 Preparation of Light-scattering Particle Dispersion B>
  • a container filled with argon gas 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 11.2 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed.
  • PF-690 manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm
  • PB -821 manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • phenoxyethyl acrylate trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.
  • zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
  • An ink composition of Example 3 was prepared in the same manner as in Example 2, except that
  • Example 4 ⁇ Preparation of Light-scattering Particle Dispersion C>
  • titanium oxide trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm
  • a polymer dispersant trade name: PB -821, Ajinomoto Fine-Techno Co., Inc., amine value: 10, acid value: 17
  • a polymer dispersant trade name: Solsperse S24000GR, manufactured by Nippon Lubrizol Co., Ltd., amine value: 42, acid value : 26
  • phenoxyethyl acrylate trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.
  • zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
  • Example 4 An ink composition of Example 4 was prepared in the same manner as in Example 3, except that the light-scattering particle dispersion C was used instead of the light-scattering particle dispersion B.
  • Comparative example 1 ⁇ Preparation of Light-scattering Particle Dispersion D>
  • a container filled with argon gas 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 11.8 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed.
  • zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
  • Comparative example 3 ⁇ Preparation of Light-scattering Particle Dispersion E>
  • a container filled with argon gas 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 10.6 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed.
  • zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
  • the ink composition was applied to a glass substrate in the air by a spin coater so as to have a film thickness of 10 ⁇ m. Under a nitrogen atmosphere, the coating film is cured by irradiating UV with a UV irradiation device using an LED lamp with a dominant wavelength of 395 nm so that the integrated light amount becomes 10000 mJ / cm 2, and then placed in a glove box with an oxygen concentration of 1% by volume or less. The mixture was heated at 180° C. for 30 minutes to form a layer (light conversion layer) composed of a cured product of the ink composition on the glass substrate. Thus, an evaluation sample was obtained.
  • EQE External Quantum Efficiency
  • the external quantum efficiency is a value indicating how much of the light (photons) incident on the light conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
  • Red QD EQE (%) [P1 (Red)]/E (Blue) x 100
  • Green QD EQE (%) [P1 (Green) / E (Blue)] ⁇ 100
  • E (Blue), P1 (Red) and P1 (Green) each represent the following.
  • P1 (Red) Represents the total value of “illuminance ⁇ wavelength/hc” in the wavelength range of 590 to 780 nm.
  • P1 (Green) Represents the total value of “illuminance ⁇ wavelength/hc” in the wavelength range of 500 to 650 nm. These are values corresponding to the number of photons observed.
  • h represents Planck's constant and c represents the speed of light.
  • EQE was evaluated according to the following criteria.
  • MCPD-9800 radiation spectrophotometer
  • the amount of organic ligand relative to the luminescent nanocrystalline particles in the table means the content of the organic ligand relative to 100 parts by mass of the luminescent nanocrystalline particles in the ink composition.
  • the amount of the dispersant relative to the light-scattering particles in the table means the content of the polymer dispersant with respect to 100 parts by mass of the light-scattering particles in the ink composition.
  • the ink compositions of Examples can improve the external quantum efficiency of the coating film and have excellent redispersibility (comparison with Comparative Examples). It was also confirmed that the ink compositions of Examples further have the effect of suppressing leaked light.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Biophysics (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Luminescent Compositions (AREA)
  • Ink Jet (AREA)
  • Optical Filters (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)

Abstract

Provided is a color filter inkjet ink composition from which can be formed a color filter pixel part having excellent external quantum efficiency, and that has excellent re-dispersibility, despite the composition containing luminescent nanocrystal particles and light-scattering particles. A color filter inkjet ink composition containing luminescent nanocrystal particles, an organic ligand capable of bonding with the surfaces of the luminescent nanocrystal particles, light-scattering particles, a polymer dispersant, and a photopolymerizable compound, the content of the organic ligand being 15-50 parts by mass with respect to 100 parts by mass of the luminescent nanocrystal particles, and the content of the polymer dispersant being 3-15 parts by mass with respect to 100 parts by mass of the light-scattering particles.

Description

カラーフィルタ用インクジェットインク組成物、硬化物、光変換層、及びカラーフィルタInkjet ink composition for color filter, cured product, light conversion layer, and color filter
 本発明は、カラーフィルタ用インクジェットインク組成物、硬化物、光変換層、及びカラーフィルタに関する。 The present invention relates to an inkjet ink composition for color filters, a cured product, a light conversion layer, and a color filter.
 従来、ディスプレイに用いられるカラーフィルタは、例えば、赤色有機顔料粒子又は緑色有機顔料粒子と、アルカリ可溶性樹脂及び/又はアクリル系単量体とを含有する硬化性レジスト材料を用いて、フォトリソグラフィ法により製造されてきた。 Conventionally, color filters used in displays are, for example, red organic pigment particles or green organic pigment particles, using a curable resist material containing an alkali-soluble resin and / or an acrylic monomer, by photolithography. has been manufactured.
 近年、ディスプレイの低消費電力化が強く求められるようになり、上記赤色有機顔料粒子又は緑色有機顔料粒子に代えて、例えば量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いて、赤色画素、緑色画素といった画素部を形成させる方法が、活発に研究されている(例えば特許文献1)。 In recent years, there has been a strong demand for lower power consumption of displays, and instead of the red organic pigment particles or green organic pigment particles, for example, quantum dots, quantum rods, and other inorganic phosphor particles. A method of forming pixel portions such as red pixels and green pixels using .
 ところで、上記フォトリソグラフィ法でのカラーフィルタの製造方法では、その製造方法の特徴から、比較的高価な発光性ナノ結晶粒子を含めた画素部以外のレジスト材料が無駄になるという欠点があった。このような状況下、上記のようなレジスト材料の無駄をなくすため、インクジェット法(インクジェット方式)により、硬化性のインク組成物を用いて、光変換層を形成することが検討され始めている。 By the way, the manufacturing method of the color filter by the photolithography method has the drawback that the resist material other than the pixel portion including the relatively expensive luminescent nanocrystal particles is wasted due to the characteristics of the manufacturing method. Under such circumstances, in order to eliminate the waste of the resist material as described above, it is being considered to form a light conversion layer using a curable ink composition by an inkjet method (inkjet method).
特許第6754499号公報Japanese Patent No. 6754499
 光変換効率等の点から、カラーフィルタ用のインクジェットインク組成物に、発光性ナノ結晶粒子とともに光散乱性粒子を含有させる場合がある。しかし、発光性ナノ結晶粒子と、光散乱性粒子とを含むインク組成物では、保存時に無機粒子成分の凝集が起こりやすくなり、使用時に均質に再分散させる性能、いわゆる再分散性が低下する場合があった。 From the viewpoint of light conversion efficiency, etc., the inkjet ink composition for color filters may contain light-scattering particles together with luminescent nanocrystalline particles. However, in an ink composition containing luminescent nanocrystalline particles and light-scattering particles, aggregation of inorganic particle components tends to occur during storage, and the ability to redisperse homogeneously during use, so-called redispersibility, may deteriorate. was there.
 本発明が解決しようとする課題は、発光性ナノ結晶粒子と、光散乱性粒子とを含有しながら、優れた外部量子効率を有するカラーフィルタ画素部を形成し得るとともに、再分散性に優れるカラーフィルタ用インクジェットインク組成物を提供することにある。 The problem to be solved by the present invention is to form a color filter pixel portion having excellent external quantum efficiency while containing luminescent nanocrystalline particles and light-scattering particles, and a color filter having excellent redispersibility. An object of the present invention is to provide an inkjet ink composition for filters.
 本発明者らの検討により、発光性ナノ結晶粒子と、光散乱性粒子とを含むカラーフィルタ用インクジェットインク組成物に、発光性ナノ結晶粒子の表面に結合可能な有機リガンド及び高分子分散剤をそれぞれ特定の量含有させることによって、発光性ナノ結晶粒子と、光散乱性粒子とを含有しながら、優れた外部量子効率を有するカラーフィルタ画素部を形成し得るとともに、再分散性にも優れるカラーフィルタ用インクジェットインク組成物が得られることが判明した。 The present inventors have found that an inkjet ink composition for color filters containing luminescent nanocrystalline particles and light-scattering particles contains an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles and a polymer dispersant. By containing each specific amount, it is possible to form a color filter pixel portion having excellent external quantum efficiency while containing light-emitting nanocrystalline particles and light-scattering particles, and a color excellent in redispersibility. It was found that a filter ink jet ink composition was obtained.
 本発明の一側面は、発光性ナノ結晶粒子と、発光性ナノ結晶粒子の表面に結合可能な有機リガンドと、光散乱性粒子と、高分子分散剤と、光重合性化合物と、を含有し、有機リガンドの含有量が、発光性ナノ結晶粒子100質量部に対して、15~50質量部であり、高分子分散剤の含有量が、光散乱性粒子100質量部に対して、3~15質量部である、カラーフィルタ用インクジェットインク組成物に関する。 One aspect of the present invention comprises luminescent nanocrystalline particles, an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles, a light scattering particle, a polymeric dispersant, and a photopolymerizable compound. , the content of the organic ligand is 15 to 50 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles, and the content of the polymer dispersant is 3 to 3 parts by mass with respect to 100 parts by mass of the light scattering particles. It relates to an inkjet ink composition for color filters, which is 15 parts by mass.
 有機リガンドの分子量が1000以下であることが好ましい。 The molecular weight of the organic ligand is preferably 1000 or less.
 高分子分散剤の重量平均分子量が1000以上であることが好ましい。高分子分散剤は、酸価及びアミン価の両方を有することが好ましい。高分子分散剤は、2種類以上の高分子分散剤を含むことが好ましい。 The weight average molecular weight of the polymer dispersant is preferably 1000 or more. The polymeric dispersant preferably has both an acid value and an amine value. The polymer dispersant preferably contains two or more polymer dispersants.
 光散乱性粒子の平均粒子径は、0.15μm以上0.5μm以下であることが好ましい。 The average particle size of the light-scattering particles is preferably 0.15 µm or more and 0.5 µm or less.
 本発明の一側面は、上述したカラーフィルタ用インクジェットインク組成物の硬化物に関する。 One aspect of the present invention relates to a cured product of the inkjet ink composition for color filters described above.
 本発明の一側面は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部は、上記カラーフィルタ用インクジェットインク組成物の硬化物を含む発光性画素部を有する、光変換層に関する。 One aspect of the present invention includes a plurality of pixel portions and a light shielding portion provided between the plurality of pixel portions, and the plurality of pixel portions includes a cured product of the inkjet ink composition for a color filter. The present invention relates to a light conversion layer having an optical pixel portion.
 光変換層は、発光性画素部として、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、を備えていてよい。 The light conversion layer contains luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 605 to 665 nm as the luminescent pixel portion. and a second luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. Be prepared.
 本発明の一側面は、上記光変換層を備える、カラーフィルタに関する。 One aspect of the present invention relates to a color filter including the light conversion layer.
 本発明の一側面によれば、発光性ナノ結晶粒子と、光散乱性粒子とを含有しながら、優れた外部量子効率を有するカラーフィルタ画素部を形成し得るとともに、再分散性にも優れるカラーフィルタ用インクジェットインク組成物を提供することができる。 According to one aspect of the present invention, it is possible to form a color filter pixel portion having excellent external quantum efficiency while containing luminescent nanocrystalline particles and light-scattering particles, and to obtain a color filter having excellent redispersibility. A filter inkjet ink composition can be provided.
図1は、本発明の一実施形態のカラーフィルタの模式断面図である。FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment of the invention.
 以下、本発明の実施形態について詳細に説明する。本明細書において「インク組成物の硬化物」とは、インク組成物(インク組成物が溶剤成分を含む場合には、乾燥後のインク組成物)中の硬化性成分を硬化させて得られるものである。よって、インク組成物の硬化物中には有機溶剤が含まれていないことが好ましいが、乾燥しきれなかった有機溶媒が一部残存していてもよい。また、本明細書において、「インク組成物の不揮発分」とは、インク組成物に含まれる有機溶剤以外の成分を意味する。すなわち、「インク組成物の不揮発分」は、インク組成物の硬化物に含有させるべき硬化前の成分と言い換えてもよい。 Hereinafter, embodiments of the present invention will be described in detail. As used herein, the term “cured product of the ink composition” refers to a product obtained by curing a curable component in the ink composition (when the ink composition contains a solvent component, the ink composition after drying). is. Therefore, it is preferable that the cured product of the ink composition does not contain an organic solvent, but a part of the organic solvent that has not been dried may remain. Further, in the present specification, "non-volatile matter of the ink composition" means components other than the organic solvent contained in the ink composition. That is, the “non-volatile content of the ink composition” may be rephrased as a component before curing that should be contained in the cured product of the ink composition.
<カラーフィルタ用インクジェットインク組成物>
 一実施形態のカラーフィルタ用インクジェットインク組成物(以下、単に「インク組成物」とも称する。)は、発光性ナノ結晶粒子と、発光性ナノ結晶粒子の表面に結合可能な有機リガンドと、光散乱性粒子と、高分子分散剤と、光重合性化合物と、を含有する。
<Inkjet ink composition for color filters>
An inkjet ink composition for a color filter according to one embodiment (hereinafter also simply referred to as “ink composition”) comprises luminescent nanocrystalline particles, an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles, and light scattering It contains organic particles, a polymer dispersant, and a photopolymerizable compound.
 上記インク組成物は、例えば、カラーフィルタが有する光変換層(光変換層の画素部)を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用)のインク組成物である。このインク組成物は、インクジェット方式に用いられる組成物である。一実施形態のインク組成物は、高額である発光性ナノ結晶粒子、インクジェットヘッド等を無駄に消費せずに、画素部(光変換層)を形成できる点において、フォトリソグラフィ方式用に対して、インクジェット方式を低コストなプロセスに仕上げることに貢献できる。以下では、インクジェット方式で光変換層を形成するために用いられるインク組成物を例に挙げて、インク組成物の実施形態について説明する。 The ink composition is, for example, an ink composition for forming a light conversion layer (for example, for forming a pixel portion of a color filter) used for forming a light conversion layer (pixel portion of the light conversion layer) of a color filter. is. This ink composition is a composition used in an inkjet system. The ink composition of one embodiment is capable of forming a pixel portion (light conversion layer) without wasting expensive luminescent nanocrystalline particles, an inkjet head, etc., compared to the photolithographic method. It can contribute to finishing the inkjet method to a low-cost process. Hereinafter, embodiments of the ink composition will be described, taking as an example an ink composition that is used to form a light conversion layer by an inkjet method.
[発光性ナノ結晶粒子]
 発光性ナノ結晶粒子は、励起光を吸収して蛍光又は燐光を発光するナノサイズの結晶体であり、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
[Luminescent nanocrystalline particles]
Luminescent nanocrystalline particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence. For example, the maximum particle diameter measured by a transmission electron microscope or scanning electron microscope is 100 nm or less. It is crystalline.
 発光性ナノ結晶粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光又は燐光)を発することができる。発光性ナノ結晶粒子は、605~665nmの範囲に発光ピーク波長を有する光(赤色光)を発する、赤色発光性のナノ結晶粒子(赤色発光性ナノ結晶粒子)、500~560nmの範囲に発光ピーク波長を有する光(緑色光)を発する、緑色発光性のナノ結晶粒子(緑色発光性ナノ結晶粒子)、又は、420~480nmの範囲に発光ピーク波長を有する光(青色光)を発する、青色発光性のナノ結晶粒子(青色発光性ナノ結晶粒子)であることが好ましい。本実施形態では、インク組成物がこれらの発光性ナノ結晶粒子のうちの少なくとも1種を含むことが好ましい。また、発光性ナノ結晶粒子が吸収する光は、例えば、400nm以上500nm未満の範囲(特に、420~480nmの範囲の波長の光)の波長の光(青色光)、又は、200nm~400nmの範囲の波長の光(紫外光)であることが好ましい。なお、発光性ナノ結晶粒子の発光ピーク波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトル又は燐光スペクトルにおいて確認することができる。 A luminescent nanocrystalline particle can, for example, emit light (fluorescence or phosphorescence) of a wavelength different from the absorbed wavelength by absorbing light of a predetermined wavelength. Luminescent nanocrystalline particles emit light having an emission peak wavelength in the range of 605-665 nm (red light), red-emitting nanocrystalline particles (red-emitting nanocrystalline particles), emission peak in the range of 500-560 nm green-emitting nanocrystalline particles (green-emitting nanocrystalline particles) that emit light having a wavelength (green light), or blue-emitting light that emits light having an emission peak wavelength in the range of 420-480 nm (blue light) It is preferable that the nanocrystalline particles (blue-emitting nanocrystalline particles) are used. In this embodiment, the ink composition preferably contains at least one of these luminescent nanocrystalline particles. In addition, the light absorbed by the luminescent nanocrystalline particles is, for example, light with a wavelength in the range of 400 nm or more and less than 500 nm (especially light in the wavelength range of 420 to 480 nm) (blue light), or in the range of 200 nm to 400 nm. (ultraviolet light). The emission peak wavelength of the luminescent nanocrystalline particles can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured using a spectrofluorometer.
 赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下又は630nm以下に発光ピーク波長を有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上又は605nm以上に発光ピーク波長を有することが好ましい。これらの上限値及び下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 The red-emitting nanocrystalline particles are 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. , 632 nm or less, or 630 nm or less, preferably 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more, or 605 nm or more. These upper and lower limits can be combined arbitrarily. In addition, in the following similar description, the upper limit and the lower limit that are individually described can be arbitrarily combined.
 緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下又は530nm以下に発光ピーク波長を有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上又は500nm以上に発光ピーク波長を有することが好ましい。 Green-emitting nanocrystalline particles have an emission peak wavelength of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It preferably has an emission peak wavelength of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下又は450nm以下に発光ピーク波長を有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上又は420nm以上に発光ピーク波長を有することが好ましい。 The blue-emitting nanocrystalline particles have an emission peak wavelength of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It preferably has an emission peak wavelength of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 発光性ナノ結晶粒子が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、発光性ナノ結晶粒子のサイズ(例えば粒子径)に依存するが、発光性ナノ結晶粒子が有するエネルギーギャップにも依存する。そのため、使用する発光性ナノ結晶粒子の構成材料及びサイズを変更することにより、発光色を選択することができる。 According to the solution of the Schrödinger wave equation of the well-type potential model, the wavelength (emission color) of the light emitted by the luminescent nanocrystalline particles depends on the size (e.g., particle diameter) of the luminescent nanocrystalline particles. It also depends on the energy gap of the crystal grains. Therefore, the emission color can be selected by changing the constituent material and size of the luminescent nanocrystalline particles used.
 発光性ナノ結晶粒子は、半導体材料を含む発光性ナノ結晶粒子(発光性半導体ナノ結晶粒子)であることが好ましい。発光性半導体ナノ結晶粒子としては、量子ドット、量子ロッド等が挙げられる。これらの中でも、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、量子ドットが好ましい。 The luminescent nanocrystalline particles are preferably luminescent nanocrystalline particles containing a semiconductor material (luminescent semiconductor nanocrystalline particles). Luminescent semiconductor nanocrystal particles include quantum dots and quantum rods. Among these, quantum dots are preferable from the viewpoint that the emission spectrum can be easily controlled, the reliability can be secured, the production cost can be reduced, and the mass productivity can be improved.
 発光性半導体ナノ結晶粒子は、第一の半導体材料を含むコアのみからなっていてよく、第一の半導体材料を含むコアと、第一の半導体材料とは異なる第二の半導体材料を含み、上記コアの少なくとも一部を被覆するシェルと、を有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアのみからなる構造(コア構造)、コアとシェルからなる構造(コア/シェル構造)であることが好ましい。また、発光性半導体ナノ結晶粒子は、第二の半導体材料を含むシェル(第一のシェル)の他に、第一及び第二の半導体材料とは異なる第三の半導体材料を含み、上記コアの少なくとも一部を被覆するシェル(第二のシェル)を更に有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアと第一のシェルと第二のシェルとからなる構造(コア/シェル/シェル構造)であることが好ましい。コア及びシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)であることができる。 The luminescent semiconductor nanocrystal particles may consist solely of a core comprising the first semiconductor material, comprising a core comprising the first semiconductor material and a second semiconductor material different from the first semiconductor material, wherein and a shell covering at least a portion of the core. In other words, the structure of the luminescent semiconductor nanocrystal particles is preferably a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core/shell structure). In addition, the luminescent semiconductor nanocrystal particle contains a third semiconductor material different from the first and second semiconductor materials in addition to the shell (first shell) containing the second semiconductor material, It may further have a shell (second shell) that covers at least part of it. In other words, the structure of the luminescent semiconductor nanocrystal particles is preferably a structure consisting of a core, a first shell and a second shell (core/shell/shell structure). Each of the core and shell can be a mixed crystal containing two or more semiconductor materials (eg, CdSe+CdS, CIS+ZnS, etc.).
 発光性ナノ結晶粒子は、半導体材料として、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料を含むことが好ましい。 Luminescent nanocrystalline particles are selected as semiconductor materials from the group consisting of II-VI semiconductors, III-V semiconductors, I-III-VI semiconductors, IV semiconductors and I-II-IV-VI semiconductors. It preferably contains at least one semiconductor material that
 具体的な半導体材料としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgGaSe、AgGaS、C、Si及びGeが挙げられる。発光性半導体ナノ結晶粒子は、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、Ge及びCuZnSnSからなる群より選択される少なくとも1種を含むことが好ましい。 Specific semiconductor materials include CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe, CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、 InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnPbSTe; includes Si, Ge, SiC, SiGe, AgInSe2, CuGaSe2 , CuInS2 , CuGaS2 , CuInSe2 , AgInS2 , AgGaSe2 , AgGaS2 , C , Si and Ge. Luminescent semiconductor nanocrystalline particles are CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS, CdSe, CdTe, ZnS, and CdS. ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS2 , AgInSe2 , AgInTe2 , AgGaS2 , AgGaSe2 , AgGaTe2 , CuInS2 , CuInSe2 , CuInTe , CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge and Cu 2 ZnSnS 4 .
 赤色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がCdSeであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がZnSeであるナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、CdSeとCdSとの混晶のナノ結晶粒子、ZnSeとCdSとの混晶のナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of red-emitting semiconductor nanocrystal particles include nanocrystal particles of CdSe and nanocrystal particles having a core/shell structure in which the shell portion is CdS and the inner core portion is CdSe. particles, nanocrystalline particles with a core/shell structure, where the shell portion is CdS and the inner core portion is ZnSe, mixed crystal nanocrystalline particles of CdSe and ZnS, InP nanocrystalline particles A crystalline particle, a nanocrystalline particle with a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, a nanocrystalline particle with a core/shell structure, Nanocrystalline particles whose shell portion is a mixed crystal of ZnS and ZnSe and whose inner core portion is InP, nanocrystalline particles of mixed crystal of CdSe and CdS, nanocrystalline particles of mixed crystal of ZnSe and CdS, core /Nanocrystalline particles with a shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP, core/shell / A nanocrystalline particle having a shell structure, wherein the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP etc.
 緑色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of green-emitting semiconductor nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles of a mixed crystal of CdSe and ZnS, and nanocrystalline particles having a core/shell structure, the shell portion of which is ZnS. and a nanocrystalline particle having an inner core of InP, a nanocrystalline particle having a core/shell structure, wherein the shell is a mixed crystal of ZnS and ZnSe and the inner core is InP Crystalline particles, nanocrystalline particles with a core/shell/shell structure, wherein the first shell portion is ZnSe, the second shell portion is ZnS, and the inner core portion is InP , a nanocrystalline particle with a core/shell/shell structure, wherein the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP certain nanocrystalline particles and the like.
 青色発光性の半導体ナノ結晶粒子としては、例えば、ZnSeのナノ結晶粒子、ZnSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSeであり内側のコア部がZnSであるナノ結晶粒子、CdSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。 Examples of blue-emitting semiconductor nanocrystalline particles include ZnSe nanocrystalline particles, ZnS nanocrystalline particles, and nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnSe and the inner core portion is is ZnS, nanocrystalline particles of CdS, nanocrystalline particles having a core/shell structure, wherein the shell portion is ZnS and the inner core portion is InP, core/shell A nanocrystalline particle with a structure, wherein the shell part is a mixed crystal of ZnS and ZnSe and the inner core part is InP, a nanocrystalline particle with a core/shell/shell structure. a nanocrystalline particle having a first shell portion of ZnSe, a second shell portion of ZnS, and an inner core portion of InP, a nanocrystalline particle having a core/shell/shell structure, Examples include nanocrystalline particles in which the first shell portion is a mixed crystal of ZnS and ZnSe, the second shell portion is ZnS, and the inner core portion is InP.
 半導体ナノ結晶粒子は、同一の化学組成で、それ自体の平均粒子径を変えることにより、当該粒子から発光させるべき色を赤色にも緑色にも変えることができる。また、半導体ナノ結晶粒子は、それ自体として、人体等に対する悪影響が極力低いものを用いることが好ましい。カドミウム、セレン等を含有する半導体ナノ結晶粒子を発光性ナノ結晶粒子として用いる場合は、上記元素(カドミウム、セレン等)が極力含まれない半導体ナノ結晶粒子を選択して単独で用いるか、上記元素が極力少なくなるようにその他の発光性ナノ結晶粒子と組み合わせて用いることが好ましい。 With the same chemical composition, the semiconductor nanocrystal particles can change the color of light emitted from the particles to either red or green by changing the average particle size of the particles themselves. In addition, it is preferable to use semiconductor nanocrystal particles that themselves have the least adverse effect on the human body or the like. When semiconductor nanocrystal particles containing cadmium, selenium, etc. are used as luminescent nanocrystal particles, semiconductor nanocrystal particles that do not contain the above elements (cadmium, selenium, etc.) as much as possible are selected and used alone. is preferably used in combination with other luminescent nanocrystalline particles so as to minimize the
 発光性ナノ結晶粒子の形状は特に限定されず、任意の幾何学的形状、又は任意の不規則な形状であってよい。発光性ナノ結晶粒子の形状としては、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等が挙げられる。しかしながら、発光性ナノ結晶粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性及び流動性をより高められる点で好ましい。 The shape of the luminescent nanocrystalline particles is not particularly limited, and may be any geometric shape or any irregular shape. Examples of the shape of the luminescent nanocrystalline particles include spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, and rod-like. However, as the luminescent nanocrystalline particles, the uniformity and fluidity of the ink composition can be further enhanced by using particles with a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.). is preferred.
 発光性ナノ結晶粒子の平均粒子径(体積平均径)は、所望の波長の発光が得られやすい観点、並びに、分散性及び保存安定性に優れる観点から、1nm以上、1.5nm以上、又は2nm以上であることが好ましい。所望の発光波長が得られやすい観点から、発光性ナノ結晶粒子の平均粒子径(体積平均径)は、40nm以下、30nm以下、又は20nm以下であることが好ましい。発光性ナノ結晶粒子の平均粒子径(体積平均径)は、透過型電子顕微鏡又は走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。 The average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is 1 nm or more, 1.5 nm or more, or 2 nm from the viewpoint of easily obtaining light emission of a desired wavelength and from the viewpoint of excellent dispersibility and storage stability. It is preferable that it is above. From the viewpoint of easily obtaining a desired emission wavelength, the average particle size (volume average size) of the luminescent nanocrystalline particles is preferably 40 nm or less, 30 nm or less, or 20 nm or less. The average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is obtained by measuring with a transmission electron microscope or scanning electron microscope and calculating the volume average diameter.
 発光性ナノ結晶粒子としては、光重合性化合物等の中にコロイド形態で分散しているものを用いることができる。分散状態にある発光性ナノ結晶粒子の表面は、上述の有機リガンドによってパッシベーションされていることが好ましい。 As the luminescent nanocrystalline particles, those dispersed in a colloidal form in a photopolymerizable compound or the like can be used. The surfaces of the dispersed luminescent nanocrystalline particles are preferably passivated with the above-described organic ligands.
 発光性ナノ結晶粒子としては、市販品を用いることができる。発光性ナノ結晶粒子の市販品としては、例えば、NN-ラボズ社の、インジウムリン/硫化亜鉛、D-ドット、CuInS/ZnS、アルドリッチ社の、InP/ZnS等が挙げられる。 Commercially available products can be used as the luminescent nanocrystalline particles. Commercially available luminescent nanocrystalline particles include, for example, indium phosphide/zinc sulfide, D-dot, CuInS/ZnS from NN-Labs, and InP/ZnS from Aldrich.
 発光性ナノ結晶粒子の含有量は、インク組成物の不揮発分の質量100質量部に対して、10質量部以上、15質量部以上、20質量部以上、又は25質量部以上であることが好ましい。本発明では、発光性ナノ結晶粒子の含有量を高めながらも優れたインクジェットプロセスへの適合性を発現できる点は特筆すべき事項である。一方、発光性ナノ結晶粒子の含有量は、インク組成物の不揮発分の質量100質量部に対して、50質量部以下、45質量部以下、又は40質量部以下であることが好ましい。本明細書において、発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子それ自体のみの含有量を意味し、発光性ナノ結晶粒子が有機リガンドを有する場合であっても、有機リガンドの含有量は含まない。 The content of the luminescent nanocrystalline particles is preferably 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 25 parts by mass or more with respect to 100 parts by mass of the nonvolatile matter of the ink composition. . In the present invention, it is noteworthy that the content of the luminescent nanocrystalline particles can be increased while exhibiting excellent suitability for the inkjet process. On the other hand, the content of the luminescent nanocrystalline particles is preferably 50 parts by mass or less, 45 parts by mass or less, or 40 parts by mass or less with respect to 100 parts by mass of the nonvolatile matter in the ink composition. As used herein, the content of luminescent nanocrystalline particles means the content of only the luminescent nanocrystalline particles themselves, and even if the luminescent nanocrystalline particles have organic ligands, the content of the organic ligands is Quantity not included.
 インク組成物は、発光性ナノ結晶粒子として、赤色発光性ナノ結晶粒子、緑色発光性ナノ結晶粒子及び青色発光性ナノ結晶粒子のうちの2種以上を含んでいてもよいが、好ましくはこれらの粒子のうちの1種のみを含む。インク組成物が赤色発光性ナノ結晶粒子を含む場合、緑色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、好ましくは10質量%以下であり、より好ましくは0質量%である。インク組成物が緑色発光性ナノ結晶粒子を含む場合、赤色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、好ましくは10質量%以下であり、より好ましくは0質量%である。 The ink composition may contain, as luminescent nanocrystalline particles, two or more of red luminescent nanocrystalline particles, green luminescent nanocrystalline particles and blue luminescent nanocrystalline particles, but these are preferably used. It contains only one type of particles. When the ink composition comprises red-emitting nanocrystalline particles, the content of green-emitting nanocrystalline particles and the content of blue-emitting nanocrystalline particles are preferably 10, based on the total weight of the luminescent nanocrystalline particles. % by mass or less, more preferably 0% by mass. When the ink composition comprises green luminescent nanocrystalline particles, the content of red luminescent nanocrystalline particles and the content of blue luminescent nanocrystalline particles, based on the total mass of luminescent nanocrystalline particles, is preferably 10. % by mass or less, more preferably 0% by mass.
[有機リガンド]
 有機リガンドは、発光性ナノ結晶粒子の表面近傍に存在し、発光性ナノ結晶粒子を分散させる機能を有する。有機リガンドは、例えば、光重合性化合物等との親和性を確保するための官能基(以下、単に「親和性基」ともいう。)と、発光性ナノ結晶粒子と結合可能な官能基(発光性ナノ結晶粒子への吸着性を確保するための官能基)と、を有しており、発光性ナノ結晶粒子の表面に配位結合することにより発光性ナノ結晶粒子の表面近傍に存在する。
[Organic ligand]
The organic ligand is present near the surface of the luminescent nanocrystalline particles and has the function of dispersing the luminescent nanocrystalline particles. The organic ligand includes, for example, a functional group for ensuring affinity with a photopolymerizable compound (hereinafter also simply referred to as an “affinity group”) and a functional group capable of binding to a luminescent nanocrystal particle (light emitting functional group for ensuring adsorption to the luminescent nanocrystalline particles), and exists in the vicinity of the surface of the luminescent nanocrystalline particles by coordinating to the surface of the luminescent nanocrystalline particles.
 親和性基は、置換又は無置換の脂肪族炭化水素基であることが好ましい。脂肪族炭化水素基は、直鎖型であってもよく分岐構造を有していてもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。置換の脂肪族炭化水素は、脂肪族炭化水素基の一部の炭素原子が酸素原子で置換された基であってもよい。置換の脂肪族炭化水素基は、例えば、(ポリ)オキシアルキレン基を含んでいてよい。ここで、「(ポリ)オキシアルキレン基」とは、オキシアルキレン基、及び、2以上のアルキレン基がエーテル結合で連結したポリオキシアルキレン基の少なくとも1種を意味する。 The affinity group is preferably a substituted or unsubstituted aliphatic hydrocarbon group. The aliphatic hydrocarbon group may be linear or have a branched structure. Also, the aliphatic hydrocarbon group may or may not have an unsaturated bond. The substituted aliphatic hydrocarbon may be a group in which some carbon atoms of an aliphatic hydrocarbon group are substituted with oxygen atoms. Substituted aliphatic hydrocarbon groups may include, for example, (poly)oxyalkylene groups. Here, the "(poly)oxyalkylene group" means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
 発光性ナノ結晶粒子と結合可能な官能基としては、例えば、ヒドロキシ基、アミノ基、カルボキシル基、チオール基、リン酸基、ホスホン酸基、ホスフィン基、ホスフィンオキサイド基及びアルコキシシリル基が挙げられる。 Functional groups that can be bonded to luminescent nanocrystalline particles include, for example, hydroxyl groups, amino groups, carboxyl groups, thiol groups, phosphoric acid groups, phosphonic acid groups, phosphine groups, phosphine oxide groups and alkoxysilyl groups.
 有機リガンドの分子量は、1000以下であることが好ましく、800以下、700以下、600以下、又は500以下であることがより好ましい。有機リガンドの分子量は、例えば、100以上、又は200以上であることが好ましい。有機リガンドの分子量が上記範囲内である場合、インクジェットインクとしての粘度が更に優れたものとなる。 The molecular weight of the organic ligand is preferably 1000 or less, more preferably 800 or less, 700 or less, 600 or less, or 500 or less. The organic ligand preferably has a molecular weight of, for example, 100 or more, or 200 or more. When the molecular weight of the organic ligand is within the above range, the viscosity as an inkjet ink is further improved.
 有機リガンドとしては、例えば、TOP(トリオクチルホスフィン)、TOPO(トリオクチルホスフィンオキサイド)、オレイン酸、リノール酸、リノレン酸、リシノール酸、グルコン酸、16-ヒドロキシヘキサデカン酸、12-ヒドロキシステアリン酸、N-ラウロイルサルコシン、N-オレイルサルコシン、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、フェニルホスホン酸、及びオクチルホスフィン酸(OPA)が挙げられる。 Examples of organic ligands include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, linoleic acid, linolenic acid, ricinoleic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N - lauroylsarcosine, N-oleylsarcosine, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine acid (OPA).
 一実施形態において、有機リガンドは、下記式(1-1)で表される有機リガンドであることが好ましい。 In one embodiment, the organic ligand is preferably an organic ligand represented by the following formula (1-1).
Figure JPOXMLDOC01-appb-C000001

[式(1-1)中、pは0~50の整数を示し、qは0~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000001

[In formula (1-1), p represents an integer of 0 to 50, and q represents an integer of 0 to 50. ]
 式(1-1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であることが好ましく、p及びqの両方が1以上であることがより好ましい。 In the organic ligand represented by formula (1-1), at least one of p and q is preferably 1 or more, more preferably both p and q are 1 or more.
 有機リガンドは、例えば、下記式(1-2)で表される有機リガンドであってもよい。 The organic ligand may be, for example, an organic ligand represented by the following formula (1-2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(1-2)中、Aは、カルボキシル基を含む1価の基を示し、Aは、ヒドロキシ基を含む1価の基を示し、Rは、水素原子、メチル基、又はエチル基を示し、Lは、置換又は無置換のアルキレン基を示し、rは0以上の整数を示す。カルボキシル基を含む1価の基におけるカルボキシル基の数は、2個以上であることが好ましく、2個以上4個以下であることがより好ましく、2個であることが更に好ましい。Lで示されるアルキレン基の炭素数は、例えば、1~10であることが好ましい。Lで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。rは、例えば、1~100の整数、又は10~20の整数であることが好ましい。 In formula (1-2), A 1 represents a monovalent group containing a carboxyl group, A 2 represents a monovalent group containing a hydroxy group, and R is a hydrogen atom, a methyl group, or an ethyl group. , L represents a substituted or unsubstituted alkylene group, and r represents an integer of 0 or more. The number of carboxyl groups in the monovalent group containing a carboxyl group is preferably 2 or more, more preferably 2 or more and 4 or less, and still more preferably 2. The alkylene group represented by L preferably has, for example, 1 to 10 carbon atoms. In the alkylene group represented by L, some of the carbon atoms may be substituted with hetero atoms, and substituted with at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too. Preferably, r is, for example, an integer of 1-100 or an integer of 10-20.
 有機リガンドは、例えば、下記式(1-2A)で表される有機リガンドであることが好ましい。 The organic ligand is preferably, for example, an organic ligand represented by the following formula (1-2A).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式(1-2A)中、rは上記と同義である。 In formula (1-2A), r has the same meaning as above.
 一実施形態において、有機リガンドは、下記式(1-3)で表される有機リガンドであることが好ましい。 In one embodiment, the organic ligand is preferably an organic ligand represented by the following formula (1-3).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式(1-3)中、nは0~50の整数を示し、mは0~50の整数を示す。nは好ましくは0~20であり、より好ましくは0~10である。mは好ましくは0~20であり、より好ましくは0~10である。n及びmのうち少なくとも一方が1以上であることが好ましい。すなわち、n+mは1以上であることが好ましい。n+mは10以下であってよい。Zは、置換又は無置換のアルキレン基を示す。アルキレン基の炭素数は、例えば、1~10であってよい。Zで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。 In formula (1-3), n represents an integer of 0-50, and m represents an integer of 0-50. n is preferably 0-20, more preferably 0-10. m is preferably 0-20, more preferably 0-10. At least one of n and m is preferably 1 or more. That is, n+m is preferably 1 or more. n+m may be 10 or less. Z represents a substituted or unsubstituted alkylene group. The number of carbon atoms in the alkylene group may be, for example, 1-10. In the alkylene group represented by Z, some of the carbon atoms may be substituted with hetero atoms, and substituted with at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
 一実施形態において、有機リガンドは、下記式(1-4)で表される有機リガンドであることが好ましい。 In one embodiment, the organic ligand is preferably an organic ligand represented by the following formula (1-4).
Figure JPOXMLDOC01-appb-C000005

[式(1-4)中、lは、1~50の整数を示す。]
Figure JPOXMLDOC01-appb-C000005

[In the formula (1-4), l represents an integer of 1 to 50. ]
 式(1-4)で表される有機リガンドにおいて、lは、1~20、3~15、5~10、又は7であることが好ましい。 In the organic ligand represented by formula (1-4), l is preferably 1-20, 3-15, 5-10, or 7.
 インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子100質量部に対して、15~50質量部である。インク組成物における有機リガンドの含有量の下限は、インク組成物中の成分の凝集がより一層抑制される観点、漏れ光の抑制効果及び外部量子効率の向上効果に更に優れる観点、並びに、再分散性に更に優れる観点から、発光性ナノ結晶粒子100質量部に対して、16質量部以上、17質量部以上、18質量部以上、19質量部以上、20質量部以上、21質量部以上、22質量部以上、又は23質量部以上であることが好ましい。インク組成物における有機リガンドの含有量の上限は、相分離及び/又はゲル状物の発生がより一層抑制され、再分散性がより一層優れたものとなる観点から、発光性ナノ結晶粒子100質量部に対して、48質量部以下、46質量部以下、44質量部以下、42質量部以下、40質量部以下、38質量部以下又は36質量部以下であることが好ましい。漏れ光の抑制効果及び外部量子効率の向上効果に更に優れる観点、並びに、再分散性に更に優れる観点から、インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子100質量部に対して、例えば、18~45質量部、20~40質量部、又は22~35質量部であることが好ましい。 The content of the organic ligand in the ink composition is 15 to 50 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles. The lower limit of the content of the organic ligand in the ink composition is from the viewpoint of further suppressing the aggregation of the components in the ink composition, from the viewpoint of further improving the effect of suppressing leakage light and improving the external quantum efficiency, and redispersion 16 parts by mass or more, 17 parts by mass or more, 18 parts by mass or more, 19 parts by mass or more, 20 parts by mass or more, 21 parts by mass or more, or 22 It is preferably at least 23 parts by mass or at least 23 parts by mass. The upper limit of the content of the organic ligand in the ink composition is 100 mass of the luminescent nanocrystalline particles from the viewpoint of further suppressing the occurrence of phase separation and/or gel-like matter and further improving the redispersibility. It is preferably 48 parts by mass or less, 46 parts by mass or less, 44 parts by mass or less, 42 parts by mass or less, 40 parts by mass or less, 38 parts by mass or less, or 36 parts by mass or less. From the viewpoint of further improving the effect of suppressing leakage light and improving the external quantum efficiency, and from the viewpoint of further improving the redispersibility, the content of the organic ligand in the ink composition is 100 parts by mass of the luminescent nanocrystalline particles. For example, it is preferably 18 to 45 parts by weight, 20 to 40 parts by weight, or 22 to 35 parts by weight.
[光散乱性粒子]
 光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。インク組成物が光散乱性粒子を含有する場合、画素部に照射された光源からの光を散乱させることができるため、優れた光学特性を得ることができる。
[Light scattering particles]
Light-scattering particles are, for example, optically inactive inorganic fine particles. When the ink composition contains light-scattering particles, it is possible to scatter the light emitted from the light source with which the pixel portion is irradiated, so that excellent optical properties can be obtained.
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム、チタン酸バリウム及びシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、酸化ジルコニウム、酸化亜鉛及びチタン酸バリウムからなる群より選択される少なくとも1種を含むことがより好ましい。 Materials constituting the light-scattering particles include, for example, simple metals such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold; silica, barium sulfate, barium carbonate, calcium carbonate, Metal oxides such as talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide; magnesium carbonate, barium carbonate, Metal carbonates such as bismuth subcarbonate and calcium carbonate; Metal hydroxides such as aluminum hydroxide; Composite oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate and strontium titanate, bismuth subnitrate metal salts such as The light-scattering particles are selected from the group consisting of titanium oxide, alumina, zirconium oxide, zinc oxide, calcium carbonate, barium sulfate, barium titanate, and silica, from the viewpoint of excellent ejection stability and excellent effect of improving external quantum efficiency. It preferably contains at least one selected, and more preferably contains at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide and barium titanate.
 光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性、流動性及び光散乱性をより高めることができ、優れた吐出安定性を得ることができる点で好ましい。 The shape of the light-scattering particles may be spherical, filamentous, amorphous, or the like. However, as the light-scattering particles, the use of particles having a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.) improves the uniformity, fluidity, and light-scattering properties of the ink composition. It is preferable in that it can be increased and excellent ejection stability can be obtained.
 インク組成物中での光散乱性粒子の平均粒子径は、0.15μm以上0.5μm以下であることが好ましい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、例えば、0.16μm以上0.4μm以下、0.17μm以上0.3μm以下、又は0.18μm以上0.25μm以下であることが好ましい。インク組成物中での光散乱性粒子の平均粒子径が上記範囲内である場合には、インクジェットインクの吐出安定性が更に優れたものとなる。本明細書中、インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。 The average particle size of the light-scattering particles in the ink composition is preferably 0.15 µm or more and 0.5 µm or less. The average particle diameter (volume average diameter) of the light-scattering particles in the ink composition is, for example, 0.16 μm or more and 0.4 μm or less, 0.17 μm or more and 0.3 μm or less, or 0.18 μm or more and 0.25 μm or less. is preferably When the average particle size of the light-scattering particles in the ink composition is within the above range, the ejection stability of the inkjet ink is further improved. In this specification, the average particle diameter (volume average diameter) of the light scattering particles in the ink composition is obtained by measuring with a dynamic light scattering Nanotrack particle size distribution meter and calculating the volume average diameter. .
 光散乱性粒子の含有量は、インク組成物の不揮発分の質量100質量部に対して、0.1質量部以上、1質量部以上、2質量部以上、又は3質量部以上であることが好ましい。光散乱性粒子の含有量は、インク組成物の不揮発分の質量100質量部に対して、10質量部未満、9質量部以下、7質量部以下、又は5質量部以下であることが好ましい。 The content of the light-scattering particles is 0.1 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to 100 parts by mass of the nonvolatile matter of the ink composition. preferable. The content of the light-scattering particles is preferably less than 10 parts by mass, 9 parts by mass or less, 7 parts by mass or less, or 5 parts by mass or less with respect to 100 parts by mass of the nonvolatile matter of the ink composition.
 発光性ナノ結晶粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果に更に優れる観点から、0.05以上、0.07以上、0.1以上、0.13以上、又は0.15以上であることが好ましい。当該質量比(光散乱性粒子/発光性ナノ結晶粒子)は、インクジェットプロセスへの適合性と光学特性及びその再現性の点で更に優れる観点から、5.0以下、2.0以下、1.0以下、0.5以下、0.2以下、0.19以下、0.18以下、0.17以下、又は0.16以下であることが好ましい。 The mass ratio of the content of light-scattering particles to the content of luminescent nanocrystalline particles (light-scattering particles/luminescent nanocrystalline particles) is 0.05 or more from the viewpoint of further improving the effect of improving the external quantum efficiency. It is preferably 0.07 or more, 0.1 or more, 0.13 or more, or 0.15 or more. The mass ratio (light-scattering particles/luminescent nanocrystalline particles) is 5.0 or less, 2.0 or less, 1.0 or less, 2.0 or less, and 1.0 or less, from the viewpoint of being more excellent in terms of suitability for inkjet processes, optical properties, and reproducibility thereof. It is preferably 0 or less, 0.5 or less, 0.2 or less, 0.19 or less, 0.18 or less, 0.17 or less, or 0.16 or less.
 インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物の不揮発分の質量100質量部に対して、15質量部以上、20質量部以上、又は25質量部以上であることが好ましい。インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物の不揮発分の質量100質量部に対して、60質量部以下、50質量部以下又は40質量部以下であることが好ましい。 The total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 15 parts by mass with respect to 100 parts by mass of the nonvolatile content of the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. Above, it is preferable that it is 20 mass parts or more, or 25 mass parts or more. The total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 60 parts by mass with respect to 100 parts by mass of the nonvolatile content of the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. Hereinafter, it is preferably 50 parts by mass or less or 40 parts by mass or less.
[高分子分散剤]
 高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物である。高分子分散剤は、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子をインク組成物中に分散させる。インク組成物が高分子分散剤を含む場合、光散乱性粒子の含有量を比較的多くした場合(例えば60質量%程度とした場合)であっても光散乱性粒子を良好に分散させることができる。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、発光性ナノ結晶粒子の表面に結合して発光性ナノ結晶粒子に吸着していてもよく、インク組成物中に遊離していてもよい。
[Polymer dispersant]
A polymeric dispersant is a polymeric compound having a weight average molecular weight of 750 or more and having a functional group having an affinity for light scattering particles. The polymer dispersant has a function of dispersing the light scattering particles. The polymer dispersant adsorbs to the light-scattering particles via a functional group having affinity for the light-scattering particles, and the light-scattering particles are dispersed by electrostatic repulsion and/or steric repulsion between the polymer dispersants. Disperse in the ink composition. When the ink composition contains a polymer dispersant, even when the content of the light-scattering particles is relatively large (for example, about 60% by mass), the light-scattering particles can be dispersed satisfactorily. can. The polymer dispersant is preferably bound to the surface of the light-scattering particles and adsorbed to the light-scattering particles, but is bound to the surface of the luminescent nanocrystalline particles and adsorbed to the luminescent nanocrystalline particles. may be free in the ink composition.
 光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。 Functional groups that have affinity for light-scattering particles include acidic functional groups, basic functional groups, and nonionic functional groups. Acidic functional groups have dissociative protons and may be neutralized with bases such as amines and hydroxide ions, while basic functional groups are neutralized with acids such as organic acids and inorganic acids. may
 酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)、が挙げられる。 Examples of acidic functional groups include carboxyl group (--COOH), sulfo group (--SO 3 H), sulfate group (--OSO 3 H), phosphonic acid group (--PO(OH) 3 ), phosphoric acid group (--OPO ( OH) 3 ), phosphinic acid group (--PO(OH)--), mercapto group (--SH).
 塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。 Basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基が挙げられる。 Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate group, amide group, Carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group and phosphine sulfide group.
 高分子分散剤は、単一のモノマーの重合体(ホモポリマー)、又は複数種のモノマーの共重合体(コポリマー)であることが好ましい。また、高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれでもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体、又は星形のグラフト共重合体であることが好ましい。高分子分散剤としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、ポリイミド等が挙げられる。 The polymeric dispersant is preferably a polymer (homopolymer) of a single monomer or a copolymer (copolymer) of multiple types of monomers. Moreover, the polymer dispersant may be a random copolymer, a block copolymer or a graft copolymer. When the polymeric dispersant is a graft copolymer, it is preferably a comb-shaped graft copolymer or a star-shaped graft copolymer. Examples of polymer dispersants include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, epoxy resins, polyamines such as polyethyleneimine and polyallylamine, and polyimides. is mentioned.
 高分子分散剤の重量平均分子量は、750以上であり、1000以上、1500以上、2000以上、又は3000以上であることが好ましい。高分子分散剤の重量平均分子量は、例えば、40000以下、又は30000以下であることが好ましい。高分子分散剤の分子量が上記範囲内(例えば、1000以上)である場合、光散乱性粒子の分散安定性が優れ、インクジェットインクの吐出性がより一層優れたものとなる。本明細書中、重量平均分子量(Mw)は、下記条件のゲルパーミアーションクロマトグラフィー(GPC)により測定される値である。
 測定装置;東ソー株式会社製 HLC-8220GPC
 カラム;東ソー株式会社製 TSK-GUARDCOLUMN SuperHZ-L+東ソー株式会社製 TSK-GEL SuperHZM-M×4
 検出器;RI(示差屈折計)
 データ処理;東ソー株式会社製 マルチステーションGPC-8020modelII
 測定条件;カラム温度40℃
 溶媒;テトラヒドロフラン
 流速;0.35ml/分
 標準;単分散ポリスチレン
 試料;樹脂固形分換算で0.2質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
The weight average molecular weight of the polymeric dispersant is 750 or more, preferably 1000 or more, 1500 or more, 2000 or more, or 3000 or more. The weight average molecular weight of the polymeric dispersant is preferably 40,000 or less, or 30,000 or less, for example. When the molecular weight of the polymer dispersant is within the above range (for example, 1000 or more), the dispersion stability of the light-scattering particles is excellent, and the ejection property of the inkjet ink is even more excellent. As used herein, the weight average molecular weight (Mw) is a value measured by gel permeation chromatography (GPC) under the following conditions.
Measuring device; HLC-8220GPC manufactured by Tosoh Corporation
Column; TSK-GUARDCOLUMN SuperHZ-L manufactured by Tosoh Corporation + TSK-GEL SuperHZM-M manufactured by Tosoh Corporation × 4
Detector; RI (differential refractometer)
Data processing; Multi-station GPC-8020modelII manufactured by Tosoh Corporation
Measurement conditions; column temperature 40°C
Solvent: Tetrahydrofuran Flow rate: 0.35 ml/min Standard: Monodisperse polystyrene Sample: A tetrahydrofuran solution of 0.2% by mass in terms of resin solid content filtered through a microfilter (100 μl)
 高分子分散剤は、塩基性官能基を少なくとも有する化合物であることが好ましい。すなわち、高分子分散剤は、アミン価を有することが好ましい。高分子分散剤のアミン価は、0.1mgKOH/g以上、1mgKOH/g以上、5mgKOH/g以上、又は10mgKOH/g以上であることが好ましい。高分子分散剤のアミン価は、120mgKOH/g以下、100mgKOH/g以下、90mgKOH/g以下、又は80mgKOH/g以下であることが好ましい。 The polymer dispersant is preferably a compound having at least a basic functional group. That is, the polymeric dispersant preferably has an amine value. The amine value of the polymer dispersant is preferably 0.1 mgKOH/g or more, 1 mgKOH/g or more, 5 mgKOH/g or more, or 10 mgKOH/g or more. The amine value of the polymeric dispersant is preferably 120 mgKOH/g or less, 100 mgKOH/g or less, 90 mgKOH/g or less, or 80 mgKOH/g or less.
 高分子分散剤のアミン価は、以下のように測定することができる。高分子分散剤xg及びブロモフェノールブルー試液1mLを、トルエンとエタノールとを体積比1:1で混合した混合溶液50mLに溶解させた試料液を準備し、0.5mol/L塩酸にて試料液が緑色を呈するまで滴定を行い、次式によりアミン価を算出できる。
アミン価=y/x×28.05
式中、yは滴定に要した0.5mol/L塩酸の滴定量(mL)を示し、xは高分子分散剤の質量(g)を示す。
The amine value of the polymeric dispersant can be measured as follows. A sample solution was prepared by dissolving a polymer dispersant xg and 1 mL of a bromophenol blue sample solution in 50 mL of a mixed solution in which toluene and ethanol were mixed at a volume ratio of 1:1, and the sample solution was dissolved with 0.5 mol / L hydrochloric acid. Titration is performed until a green color is exhibited, and the amine value can be calculated by the following formula.
Amine value = y/x x 28.05
In the formula, y indicates the titration amount (mL) of 0.5 mol/L hydrochloric acid required for titration, and x indicates the mass (g) of the polymer dispersant.
 高分子分散剤は、酸価を有することが好ましく、酸価及びアミン価の両方を有することがより好ましい。高分子分散剤の酸価は、例えば、0mgKOH/g以上、又は10mgKOH/g以上であることが好ましく、70mgKOH/g以下、60mgKOH/g以下、又は50mgKOH/g以下であることが好ましい。 The polymer dispersant preferably has an acid value, more preferably both an acid value and an amine value. The acid value of the polymer dispersant is, for example, preferably 0 mgKOH/g or more, or 10 mgKOH/g or more, and preferably 70 mgKOH/g or less, 60 mgKOH/g or less, or 50 mgKOH/g or less.
 酸価は、以下のように測定することができる。高分子分散剤pg及びフェノールフタレイン試液1mLを、トルエンとエタノールとを体積比1:1で混合した混合溶液50mLに溶解させた試料液を準備し、0.1mol/Lエタノール製水酸化カリウム溶液(水酸化カリウム7.0gを蒸留水5.0mLに溶解させ、95vol%エタノールを加えることで1000mLに調整したもの)にて試料液が淡紅色を呈するまで滴定を行い、次式により酸価を算出できる。
酸価=q×r×5.611/p
式中、qは滴定に要した0.1mol/Lエタノール製水酸化カリウム溶液の滴定量(mL)を示し、rは滴定に要した0.1mol/Lエタノール製水酸化カリウム溶液の力価を示し、pは高分子分散剤の質量(g)を示す。
 上記した酸価及びアミン価を有する高分子分散剤としては、直鎖状脂肪族ポリエステル骨格と脂肪族ポリエーテル骨格とを基本骨格として有し、かつカルボキシル基及びアミノ基を有する分散剤、アリールアミン部位とマレイン酸とアミノ基含有マレイン酸との共重合体、ポリアリールアミンと脂肪族ポリエステルとの共重合体等が挙げられる。
Acid value can be measured as follows. A sample solution was prepared by dissolving pg of a polymer dispersant and 1 mL of a phenolphthalein test solution in 50 mL of a mixed solution in which toluene and ethanol were mixed at a volume ratio of 1:1, and a 0.1 mol / L ethanolic potassium hydroxide solution. (Dissolve 7.0 g of potassium hydroxide in 5.0 mL of distilled water and adjust the volume to 1000 mL by adding 95 vol% ethanol) until the sample solution turns pale red, and the acid value is calculated by the following formula. can be calculated.
Acid value = q x r x 5.611/p
In the formula, q represents the titration amount (mL) of the 0.1 mol/L ethanol potassium hydroxide solution required for titration, and r represents the titer of the 0.1 mol/L ethanol potassium hydroxide solution required for titration. and p indicates the mass (g) of the polymer dispersant.
Examples of the polymer dispersant having an acid value and an amine value include a dispersant having a linear aliphatic polyester skeleton and an aliphatic polyether skeleton as a basic skeleton and having a carboxyl group and an amino group, and an arylamine. Copolymers of moieties, maleic acid and amino group-containing maleic acid, copolymers of polyarylamine and aliphatic polyester, and the like.
 高分子分散剤は、1種を単独で使用してもよく、2種以上を組み合わせて使用してもよい。高分子分散剤は、2種以上の高分子分散剤を含むことが好ましい。 The polymeric dispersant may be used singly or in combination of two or more. The polymeric dispersant preferably contains two or more polymeric dispersants.
 高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社製のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK-シリーズ、BASF社製のEfkaシリーズ、日本ルーブリゾール株式会社製のソルスパースS24000GR等を使用することができる。 Commercially available products can be used as the polymer dispersant, and commercial products include Ajinomoto Fine-Techno Co., Inc.'s Ajisper PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series. , Solsperse S24000GR manufactured by Nippon Lubrizol Co., Ltd., or the like can be used.
 インク組成物における高分子分散剤の含有量は、光散乱性粒子100質量部に対して、3~15質量部である。インク組成物における高分子分散剤の含有量の下限は、インク組成物中の成分の凝集がより一層抑制される観点、漏れ光の抑制効果及び外部量子効率の向上効果に更に優れる観点、並びに、再分散性に更に優れる観点から、光散乱性粒子100質量部に対して、4質量部以上又は5質量部以上であることが好ましい。インク組成物における高分子分散剤の含有量の上限は、発光性ナノ結晶粒子の劣化がより一層抑制されやすくなる観点、及び、外部量子効率の向上効果に更に優れる観点から、13質量部以下、11質量部以下、9質量部以下、又は7質量部以下であることが好ましい。上述した観点から、インク組成物における高分子分散剤の含有量は、光散乱性粒子100質量部に対して、例えば、3~13質量部、3~11質量部、4~9質量部、又は4~7質量部であることが好ましい。 The content of the polymer dispersant in the ink composition is 3 to 15 parts by mass with respect to 100 parts by mass of the light-scattering particles. The lower limit of the content of the polymer dispersant in the ink composition is from the viewpoint of further suppressing the aggregation of the components in the ink composition, from the viewpoint of being more excellent in the effect of suppressing leakage light and the effect of improving the external quantum efficiency, and From the viewpoint of further excellent redispersibility, it is preferably 4 parts by mass or more or 5 parts by mass or more with respect to 100 parts by mass of the light-scattering particles. The upper limit of the content of the polymer dispersant in the ink composition is 13 parts by mass or less, from the viewpoint of further suppressing deterioration of the luminescent nanocrystalline particles and from the viewpoint of further improving the effect of improving the external quantum efficiency. It is preferably 11 parts by mass or less, 9 parts by mass or less, or 7 parts by mass or less. From the above-described viewpoint, the content of the polymer dispersant in the ink composition is, for example, 3 to 13 parts by mass, 3 to 11 parts by mass, 4 to 9 parts by mass, or It is preferably 4 to 7 parts by mass.
[光重合性化合物]
 光重合性化合物は、光の照射によって、重合する化合物である。光重合性化合物は、例えば、光ラジカル重合性化合物であることが好ましい。光重合性化合物は、光重合性のモノマー又はオリゴマーであることが好ましい。光重合性化合物は、光重合開始剤と共に用いられる。光ラジカル重合性化合物は、光ラジカル重合開始剤と共に用いられる。言い換えれば、インク組成物は、光重合性化合物及び光重合開始剤を含む光重合性成分を含有していてよく、光ラジカル重合性化合物及び光ラジカル重合開始剤を含む光ラジカル重合性成分を含有していてもよい。インク組成物は、光重合性化合物を1種含有してもよく、2種以上含有してもよく、好ましくは2種以上含有する。
[Photopolymerizable compound]
A photopolymerizable compound is a compound that polymerizes when irradiated with light. The photopolymerizable compound is preferably, for example, a photoradical polymerizable compound. The photopolymerizable compound is preferably a photopolymerizable monomer or oligomer. A photopolymerizable compound is used together with a photopolymerization initiator. A photoradical polymerizable compound is used together with a photoradical polymerization initiator. In other words, the ink composition may contain a photopolymerizable component containing a photopolymerizable compound and a photopolymerization initiator, and contains a photoradical polymerizable component containing a photoradical polymerizable compound and a photoradical polymerization initiator. You may have The ink composition may contain one type of photopolymerizable compound, may contain two or more types, and preferably contains two or more types.
 光ラジカル重合性化合物としては、例えば、エチレン性不飽和基を有するモノマー(以下、「エチレン性不飽和モノマー」ともいう。)、イソシアネート基を有するモノマー等が挙げられる。ここで、エチレン性不飽和モノマーとは、エチレン性不飽和結合(炭素-炭素二重結合)を有するモノマーを意味する。 Examples of photoradical polymerizable compounds include monomers having ethylenically unsaturated groups (hereinafter also referred to as "ethylenically unsaturated monomers"), monomers having isocyanate groups, and the like. Here, the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond).
 エチレン性不飽和モノマーにおけるエチレン性不飽和結合の数(例えばエチレン性不飽和基の数)は、例えば、1~3である。エチレン性不飽和モノマーは1種を単独で用いてよく、複数種を組み合わせて用いてもよい。光重合性化合物は、優れた吐出安定性と優れた硬化性を両立することが容易となる観点、及び、外部量子効率がより向上する観点から、エチレン性不飽和基を1個有するモノマー(単官能モノマー)と、エチレン性不飽和基を2個以上有するモノマー(多官能モノマー)とを含んでいてよく、単官能モノマーと、エチレン性不飽和基を2個有するモノマー(二官能モノマー)及びエチレン性不飽和基を3個有するモノマー(三官能モノマー)からなる群より選択される少なくとも1種とを含んでいてよい。 The number of ethylenically unsaturated bonds (eg, the number of ethylenically unsaturated groups) in the ethylenically unsaturated monomer is, for example, 1-3. One type of ethylenically unsaturated monomer may be used alone, or a plurality of types may be used in combination. The photopolymerizable compound is a monomer having one ethylenically unsaturated group (single functional monomer) and a monomer having two or more ethylenically unsaturated groups (polyfunctional monomer), and a monofunctional monomer and a monomer having two ethylenically unsaturated groups (bifunctional monomer) and ethylene and at least one selected from the group consisting of monomers having three polyunsaturated groups (trifunctional monomers).
 エチレン性不飽和基は、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基等であることが好ましく、(メタ)アクリロイル基であることがより好ましい。なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」及びそれに対応する「メタクリロイル基」を意味する。「(メタ)アクリレート」、「(メタ)アクリルアミド」との表現についても同様である。 The ethylenically unsaturated group is preferably a vinyl group, a vinylene group, a vinylidene group, a (meth)acryloyl group, or the like, and more preferably a (meth)acryloyl group. In addition, in this specification, a "(meth)acryloyl group" means an "acryloyl group" and a "methacryloyl group" corresponding thereto. The same applies to expressions such as “(meth)acrylate” and “(meth)acrylamide”.
 光重合性化合物は、エチレン性不飽和基として、好ましくは(メタ)アクリロイル基を有する化合物の少なくとも1種を含み、より好ましくは(メタ)アクリレート及び(メタ)アクリルアミドからなる群より選択される少なくとも1種を含む、更に好ましくは(メタ)アクリレートの少なくとも1種を含み、特に好ましくは炭素数8以上の直鎖アルキル基を有する(メタ)アクリレートの少なくとも1種を含む。光重合性化合物は、優れた吐出安定性と優れた硬化性を両立することが容易となる観点、及び、外部量子効率がより向上する観点から、好ましくは、(メタ)アクリレートを2種以上含み、より好ましくは、(メタ)アクリロイル基を1個有する(メタ)アクリレート(単官能(メタ)アクリレート)と、(メタ)アクリロイル基を2個以上有する(メタ)アクリレート(多官能(メタ)アクリレート)とを含み、更に好ましくは、単官能(メタ)アクリレートと、(メタ)アクリロイル基を2個有する(メタ)アクリレート(二官能(メタ)アクリレート)及び(メタ)アクリロイル基を3個有する(メタ)アクリレート(三官能(メタ)アクリレート)からなる群より選択される少なくとも1種とを含む。光学特性の更なる向上(例えば、波長の制御)の観点から、光重合性化合物は、ヒドロキシ基を有する(メタ)アクリレートを含むことが好ましい。 The photopolymerizable compound preferably contains at least one compound having a (meth)acryloyl group as an ethylenically unsaturated group, more preferably at least one selected from the group consisting of (meth)acrylates and (meth)acrylamides. One type is included, more preferably at least one type of (meth)acrylate is included, and at least one type of (meth)acrylate with a linear alkyl group having 8 or more carbon atoms is particularly preferably included. The photopolymerizable compound preferably contains two or more (meth)acrylates from the viewpoint of facilitating both excellent ejection stability and excellent curability and from the viewpoint of further improving the external quantum efficiency. , More preferably, a (meth)acrylate having one (meth)acryloyl group (monofunctional (meth)acrylate) and a (meth)acrylate having two or more (meth)acryloyl groups (polyfunctional (meth)acrylate) More preferably, monofunctional (meth) acrylate, (meth) acrylate having two (meth) acryloyl groups (bifunctional (meth) acrylate) and (meth) having three acryloyl groups (meth) and at least one selected from the group consisting of acrylates (trifunctional (meth)acrylates). From the viewpoint of further improving optical properties (for example, wavelength control), the photopolymerizable compound preferably contains a (meth)acrylate having a hydroxy group.
 単官能モノマーとしては、例えば、ラウリル(メタ)アクリレート、グリセリンモノ(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、アミル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、ノニル(メタ)アクリレート、ドデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、オクタデシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ノニルフェノキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、ブトキシジエチレングリコール(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、コハク酸モノ(2-アクリロイルオキシエチル)、コハク酸モノ(2-メタクリロイルオキシエチル)、N-[2-(アクリロイルオキシ)エチル]フタルイミド、N-[2-(アクリロイルオキシ)エチル]テトラヒドロフタルイミド、4-ヒドロキシブチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシエチルアクリレート、アクリルアミド、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジエチルアクリルアミド、ダイアセトンアクリルアミド、4-アクリロイルモルホリン、N-tert-ブチルアクリルアミド、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシエチルアクリルアミド、N-tert-オクチルアクリルアミド、N-ブトキシメチルアクリルアミド、N-フェニルアクリルアミド、N-ドデシルアクリルアミド等が挙げられる。 Examples of monofunctional monomers include lauryl (meth)acrylate, glycerin mono(meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate. , 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, nonyl (meth) acrylate, dodecyl (meth) acrylate, hexadecyl (meth) acrylate, octadecyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) Acrylates, butoxyethyl (meth)acrylate, phenoxyethyl (meth)acrylate, nonylphenoxyethyl (meth)acrylate, glycidyl (meth)acrylate, dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, ethoxydiethylene glycol (meth)acrylate Acrylates, methoxytriethylene glycol (meth)acrylate, butoxydiethylene glycol (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate , 2-hydroxy-3-phenoxypropyl (meth)acrylate, tetrahydrofurfuryl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, benzyl (meth)acrylate, phenylbenzyl (meth)acrylate, succinic acid mono(2- acryloyloxyethyl), mono(2-methacryloyloxyethyl) succinate, N-[2-(acryloyloxy)ethyl]phthalimide, N-[2-(acryloyloxy)ethyl]tetrahydrophthalimide, 4-hydroxybutyl acrylate, 2 -hydroxypropyl acrylate, 2-hydroxyethyl acrylate, acrylamide, N-isopropylacrylamide, N,N-dimethylacrylamide, N,N-diethylacrylamide, diacetoneacrylamide, 4-acryloylmorpholine, N-tert-butylacrylamide, N- hydroxymethylacrylamide, N-hydroxyethylacrylamide, N-tert-octylacrylamide, N-butoxymethylacrylamide, N-phenylacrylamide, N-dodecylacrylamide, etc. mentioned.
 エチレン性不飽和基を2個有するモノマー(二官能モノマー)の具体例としては、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコ-ルヒドロキシピバリン酸エステルジアクリレ-ト、トリス(2-ヒドロキシエチル)イソシアヌレートの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、N,N’-メチレンビスアクリルアミド、N,N’-エチレンビスアクリルアミドなどが挙げられる。 Specific examples of monomers having two ethylenically unsaturated groups (bifunctional monomers) include 1,3-butylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,5-pentane Diol di(meth)acrylate, 3-methyl-1,5-pentanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, 1,8-octanediol Di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, tricyclodecanedimethanol di (meth) acrylate, ethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, propylene glycol di (meth) ) acrylate, dipropylene glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, neopentyl glycol hydroxypivalate diacrylate, tris(2-hydroxyethyl ) Two diols obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of neopentyl glycol and di(meth)acrylate in which two hydroxyl groups of isocyanurate are substituted by (meth)acryloyloxy groups. di(meth)acrylate in which the hydroxyl group of is substituted by a (meth)acryloyloxy group, and two hydroxyl groups of the diol obtained by adding 2 moles of ethylene oxide or propylene oxide to 1 mole of bisphenol A are (meth)acryloyloxy groups A di(meth)acrylate substituted with a triol obtained by adding 3 mol or more of ethylene oxide or propylene oxide to 1 mol of trimethylolpropane, and two hydroxyl groups of the triol are substituted with a (meth)acryloyloxy group ( meth)acrylate, di(meth)acrylate obtained by adding 4 mol or more of ethylene oxide or propylene oxide to 1 mol of bisphenol A and two hydroxyl groups of the diol are substituted with (meth)acryloyloxy groups, N,N' -methylenebisacrylamide, N,N'-ethylenebisacrylamide, and the like.
 エチレン性不飽和基を3個有するモノマー(三官能モノマー)の具体例としては、グリセリントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート等が挙げられる。 Specific examples of monomers having three ethylenically unsaturated groups (trifunctional monomers) include glycerin tri(meth)acrylate, trimethylolethane tri(meth)acrylate, trimethylolpropane tri(meth)acrylate, and EO-modified trimethylol. propane tri(meth)acrylate and the like.
 光重合性化合物は、信頼性に優れる画素部(インク組成物の硬化物)が得られやすい観点から、アルカリ不溶性であることが好ましい。本明細書中、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。光重合性化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。 The photopolymerizable compound is preferably alkali-insoluble from the viewpoint of easily obtaining a highly reliable pixel portion (cured product of the ink composition). In the present specification, the photopolymerizable compound being alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is 30, based on the total mass of the photopolymerizable compound. % or less. The dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
 光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、インク組成物の硬化性が良好となる観点、並びに、画素部(インク組成物の硬化物)の耐溶剤性及び耐磨耗性が向上する観点から、インク組成物の不揮発分の質量100質量部に対して、10質量部以上、15質量部以上、又は20質量部以上であることが好ましい。光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られやすい観点、及び、より優れた光学特性(例えば外部量子効率)が得られる観点から、インク組成物の不揮発分の質量100質量部に対して、60質量部以下、50質量部以下、40質量部以下、30質量部以下、又は20質量部以下であることが好ましい。 The content of the photopolymerizable compound is determined from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink, the viewpoint of good curability of the ink composition, and the solvent resistance and From the viewpoint of improving abrasion resistance, it is preferably 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the nonvolatile matter of the ink composition. The content of the photopolymerizable compound is 100% by mass of the non-volatile matter of the ink composition from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining better optical properties (e.g., external quantum efficiency). It is preferably 60 parts by mass or less, 50 parts by mass or less, 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass or less.
 本実施形態のインク組成物では光重合性化合物が分散媒としても機能するため、無溶剤で光散乱性粒子及び発光性ナノ結晶粒子を分散させることが可能である。この場合、画素部を形成する際に溶剤を乾燥により除去する工程が不要となる利点を有する。 In the ink composition of the present embodiment, since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse the light-scattering particles and the luminescent nanocrystalline particles without a solvent. In this case, there is an advantage that the step of removing the solvent by drying is not required when forming the pixel portion.
[光重合開始剤]
 インク組成物は、光重合開始剤を更に含有してよい。光重合開始剤は、光重合性化合物とともに用いられる。光重合開始剤は、例えば光ラジカル重合開始剤又は光カチオン重合開始剤である。光ラジカル重合開始剤としては、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤が好適である。
[Photoinitiator]
The ink composition may further contain a photopolymerization initiator. A photoinitiator is used together with a photopolymerizable compound. The photopolymerization initiator is, for example, a photoradical polymerization initiator or a photocationic polymerization initiator. As the photoradical polymerization initiator, a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
 分子開裂型の光ラジカル重合開始剤としては、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド等が好適に用いられる。これら以外の分子開裂型の光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。 Molecular cleavage type photoradical polymerization initiators include benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, and 2-benzyl-2-dimethylamino-1. -(4-morpholinophenyl)-butan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenylphosphine oxide etc. are preferably used. Other molecular cleavage type radical photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4 -isopropylphenyl)-2-hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination.
 水素引き抜き型の光ラジカル重合開始剤としては、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。 Benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4'-methyl-diphenyl sulfide and the like are examples of hydrogen abstraction type photoradical polymerization initiators. A molecular cleavage type radical photopolymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
 光カチオン重合開始剤として市販品を用いることもできる。市販品としては、サンアプロ社製の「CPI-100P」等のスルホニウム塩系光カチオン重合開始剤、BASF社製の「Lucirin TPO」等のアシルフォスフィンオキサイド化合物、BASF社製の「Irgacure 907」、「Irgacure 819」、「Irgacure 379EG」「、Irgacure 184」及び「Irgacure PAG290」などが挙げられる。 A commercial product can also be used as a photocationic polymerization initiator. Commercially available products include sulfonium salt photocationic polymerization initiators such as "CPI-100P" manufactured by San-Apro, acylphosphine oxide compounds such as "Lucirin TPO" manufactured by BASF, "Irgacure 907" manufactured by BASF, "Irgacure 819", "Irgacure 379EG", "Irgacure 184" and "Irgacure PAG290".
 光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、3質量部以上、又は5質量部以上であることが好ましい。光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下、30質量部以下、20質量部以下、又は10質量部以下であることが好ましい。 From the viewpoint of the curability of the ink composition, the content of the photopolymerization initiator is 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 3 parts by mass or more, relative to 100 parts by mass of the photopolymerizable compound. It is preferably at least 5 parts by mass, or at least 5 parts by mass. The content of the photopolymerization initiator is 40 parts by mass or less, 30 parts by mass or less, or 20 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). parts or less, or preferably 10 parts by mass or less.
 インク組成物は、本発明の効果を阻害しない範囲で、上述した成分以外の成分(例えば、有機溶剤、熱硬化性樹脂、硬化剤、硬化促進剤(硬化触媒)、重合禁止剤、連鎖移動剤、酸化防止剤等)を更に含有していてもよい。 The ink composition contains components other than the components described above (for example, organic solvents, thermosetting resins, curing agents, curing accelerators (curing catalysts), polymerization inhibitors, chain transfer agents, and , antioxidants, etc.) may be further contained.
 以上説明したインク組成物のインクジェット印刷時のインク温度における粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2mPa・s以上、5mPa・s以上、又は7mPa・s以上であることが好ましい。インク組成物のインクジェット印刷時のインク温度における粘度は、20mPa・s以下、15mPa・s以下、又は12mPa・s以下であることが好ましい。本明細書中、インク組成物の粘度は、例えば、E型粘度計によって測定される粘度であり、25℃で測定されたものを言う。 The viscosity of the ink composition described above at the ink temperature during inkjet printing is preferably, for example, 2 mPa·s or more, 5 mPa·s or more, or 7 mPa·s or more from the viewpoint of ejection stability during inkjet printing. . The viscosity of the ink composition at the ink temperature during inkjet printing is preferably 20 mPa·s or less, 15 mPa·s or less, or 12 mPa·s or less. In this specification, the viscosity of the ink composition is measured at 25° C., for example, by an E-type viscometer.
 インク組成物のインクジェット印刷時のインク温度における粘度が2mPa・s以上でである場合、吐出ヘッドのインク吐出孔の先端におけるインクジェットインクのメニスカス形状が安定するため、インクジェットインクの吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、インク組成物のインクジェット印刷時のインク温度における粘度が20mPa・s以下である場合、インク吐出孔からインクジェットインクを円滑に吐出させることができる。 When the viscosity of the ink composition at the ink temperature during inkjet printing is 2 mPa s or more, the meniscus shape of the inkjet ink at the tip of the ink ejection hole of the ejection head is stabilized. control of the amount and timing of ejection) becomes easier. On the other hand, when the viscosity of the ink composition at the ink temperature during inkjet printing is 20 mPa·s or less, the inkjet ink can be smoothly ejected from the ink ejection holes.
 インク組成物の表面張力は、インクジェット方式に適した表面張力であることが好ましく、具体的には、20~40mN/mの範囲であることが好ましく、25~35mN/mであることがより好ましい。表面張力を当該範囲とすることで吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易になると共に、飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。表面張力が40mN/m以下である場合、インク吐出孔の先端におけるメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、表面張力が20mN/m以上である場合、インク吐出孔周辺部がインクジェットインクで汚染することが防げるため、飛行曲がりの発生を抑制できる。すなわち、着弾すべき画素部形成領域に正確に着弾されずにインク組成物の充填が不充分な画素部が生じたり、着弾すべき画素部形成領域に隣接する画素部形成領域(又は画素部)にインク組成物が着弾し、色再現性が低下したりすることがない。なお、本願明細書記載の表面張力は、23℃で測定された表面張力をいい、リング法(輪環法ともいう)で測定されたものをいう。 The surface tension of the ink composition is preferably a surface tension suitable for an inkjet system, specifically preferably in the range of 20 to 40 mN/m, more preferably 25 to 35 mN/m. . By setting the surface tension within this range, it is possible to facilitate ejection control (for example, control of ejection amount and ejection timing) and to suppress the occurrence of flight deflection. The term "flight deflection" means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 μm or more. When the surface tension is 40 mN/m or less, the meniscus shape at the tip of the ink ejection hole is stabilized, so that the ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy. On the other hand, when the surface tension is 20 mN/m or more, contamination of the periphery of the ink ejection holes with the ink jet ink can be prevented, so that the occurrence of flight deflection can be suppressed. That is, the ink composition is not accurately deposited on the pixel portion forming region where the ink composition should be deposited, resulting in an insufficiently filled pixel portion, or the pixel portion forming region (or pixel portion) adjacent to the pixel portion forming region where the ink composition should be deposited. The ink composition does not land on the surface, and the color reproducibility is not deteriorated. The surface tension described in the specification of the present application refers to the surface tension measured at 23° C., which is measured by the ring method (also referred to as the ring method).
 本実施形態のインク組成物は、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがない。そのため、発光性ナノ結晶粒子の変質が起こり難く、画素部(光変換層)において、期待した通りの発光特性がより容易に得られやすい。 The ink composition of the present embodiment is preferably applied to a piezojet type inkjet recording apparatus with a mechanical ejection mechanism using a piezoelectric element. In the piezo jet method, the ink composition is not instantaneously exposed to high temperatures during ejection. Therefore, the luminescent nanocrystalline particles are less likely to be degraded, and expected luminous properties can be more easily obtained in the pixel portion (light conversion layer).
<インク組成物の製造方法>
 上述した実施形態のインク組成物は、例えば、上述したインク組成物の構成成分を混合する工程を備える。インク組成物の製造方法は、上記構成成分の混合物の分散処理を行う工程を更に備えてよい。
<Method for producing ink composition>
The ink composition of the embodiment described above includes, for example, a step of mixing the components of the ink composition described above. The method for producing the ink composition may further comprise a step of dispersing the mixture of the above components.
 インク組成物の製造方法は、例えば、光散乱性粒子及び高分子分散剤を含有する光散乱性粒子の分散体と、発光性ナノ結晶粒子及び有機リガンドを含有する発光性ナノ結晶粒子の分散体と、を混合する工程を備える。この方法によれば、画素部の光学特性(外部量子効率の向上、漏れ光の抑制等)を向上させることができるとともに、再分散性に優れるインク組成物を得ることができる。 A method for producing an ink composition includes, for example, a dispersion of light-scattering particles containing light-scattering particles and a polymer dispersant, and a dispersion of light-emitting nanocrystal particles containing light-emitting nanocrystal particles and an organic ligand. and mixing. According to this method, it is possible to improve the optical properties of the pixel portion (improvement of external quantum efficiency, suppression of leakage light, etc.) and to obtain an ink composition excellent in redispersibility.
 インク組成物の製造方法は、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する工程の前に、光散乱性粒子、高分子分散剤及び光重合性化合物を含有する、光散乱性粒子の分散体を用意する工程を備えていてよい。光散乱性粒子の分散体を用意する工程では、光散乱性粒子と、高分子分散剤と、光重合性化合物と、を混合し、分散処理を行うことにより光散乱性粒子の分散体を調製してよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。 In the method for producing the ink composition, before the step of mixing the dispersion of light-scattering particles and the dispersion of luminescent nanocrystalline particles, light-scattering particles, a polymer dispersant and a photopolymerizable compound are added. A step of providing a dispersion of light-scattering particles to be contained may be provided. In the step of preparing a dispersion of light-scattering particles, light-scattering particles, a polymer dispersant, and a photopolymerizable compound are mixed and subjected to dispersion treatment to prepare a dispersion of light-scattering particles. You can Mixing and dispersing treatments may be carried out using dispersing equipment such as bead mills, paint conditioners, planetary stirrers, jet mills and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
 インク組成物の製造方法は、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する工程の前に、発光性ナノ結晶粒子と、有機リガンドと、光重合性化合物と、を含有する、発光性ナノ結晶粒子の分散体を用意する工程を更に備えていてもよい。発光性ナノ結晶粒子の分散体を用意する工程では、発光性ナノ結晶粒子と、光重合性化合物と、有機リガンドとを混合し、分散処理を行うことにより発光性ナノ結晶粒子の分散体を調製してよい。混合及び分散処理は、電磁式スターラー、スリーワンモーター等の通常の攪拌装置や、ボルテックスミキサー、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。発光性ナノ結晶粒子に過度のエネルギーを与えすぎない観点から、電磁式スターラー、スリーワンモーター等の通常の攪拌装置又はボルテックスミキサーを用いることが好ましい。この方法によれば、発光性ナノ結晶粒子の性能を落とさず、充分に分散させることができる。そのため、画素部の光学特性(外部量子効率の向上、漏れ光の抑制等)を向上させることができるとともに、再分散性に優れるインク組成物を得ることができる。 A method for producing an ink composition comprises mixing luminescent nanocrystalline particles, an organic ligand, and a photopolymerizable compound before the step of mixing a dispersion of light-scattering particles and a dispersion of luminescent nanocrystalline particles. and the step of providing a dispersion of luminescent nanocrystalline particles. In the step of preparing a dispersion of luminescent nanocrystalline particles, luminescent nanocrystalline particles, a photopolymerizable compound, and an organic ligand are mixed, and dispersion treatment is performed to prepare a dispersion of luminescent nanocrystalline particles. You can Mixing and dispersion treatment may be carried out using ordinary stirring devices such as an electromagnetic stirrer and a three-one motor, and dispersion devices such as a vortex mixer, a bead mill, a paint conditioner, a planetary stirrer and a jet mill. From the viewpoint of not applying excessive energy to the luminescent nanocrystalline particles, it is preferable to use a normal stirring device such as an electromagnetic stirrer or a three-one motor, or a vortex mixer. According to this method, it is possible to sufficiently disperse the luminescent nanocrystalline particles without deteriorating their performance. Therefore, it is possible to improve the optical properties of the pixel portion (improved external quantum efficiency, suppress leaked light, etc.), and obtain an ink composition having excellent redispersibility.
<インク組成物セット>
 一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性ナノ結晶粒子を含有しないインク組成物(非発光性インク組成物)を備えていてよい。非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、従来公知のインク組成物であってよく、発光性ナノ結晶粒子を含まないこと以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成であってもよい。
<Ink composition set>
An ink composition set of one embodiment includes the ink composition of the embodiment described above. The ink composition set may include an ink composition that does not contain luminescent nanocrystalline particles (non-luminescent ink composition) in addition to the ink composition (luminescent ink composition) of the embodiment described above. A non-luminescent ink composition is, for example, a curable ink composition. The non-luminescent ink composition may be a conventionally known ink composition, and has the same composition as the ink composition (luminescent ink composition) of the above-described embodiment except that it does not contain luminescent nanocrystalline particles. may be
 非発光性インク組成物は、発光性ナノ結晶粒子を含有しないため、非発光性インク組成物により形成される画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性インク組成物により形成される画素部は青色画素部となり得る。 Since the non-luminous ink composition does not contain luminous nanocrystal particles, light is allowed to enter the pixel portion formed by the non-luminous ink composition (the pixel portion containing the cured product of the non-luminous ink composition). In this case, the light emitted from the pixel portion has substantially the same wavelength as the incident light. Therefore, the non-luminous ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, when the light from the light source is light having a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed with the non-luminescent ink composition can be a blue pixel portion.
 非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、当該非発光性インク組成物により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。 The non-luminescent ink composition preferably contains light-scattering particles. When the non-luminous ink composition contains light-scattering particles, the pixel portion formed from the non-luminous ink composition can scatter light incident on the pixel portion, thereby It is possible to reduce the light intensity difference in the viewing angle of the light emitted from the portion.
<光変換層及びカラーフィルタ>
 以下、上述した実施形態のインク組成物セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
<Light conversion layer and color filter>
Hereinafter, details of the light conversion layer and the color filter obtained using the ink composition set of the embodiment described above will be described with reference to the drawings. In the following description, the same reference numerals are used for the same or corresponding elements, and overlapping descriptions are omitted.
 図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。 FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment. As shown in FIG. 1 , the color filter 100 includes a base material 40 and a light conversion layer 30 provided on the base material 40 . The light conversion layer 30 includes a plurality of pixel portions 10 and a light shielding portion 20 .
 光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。 The light conversion layer 30 has, as pixel sections 10, a first pixel section 10a, a second pixel section 10b, and a third pixel section 10c. The first pixel section 10a, the second pixel section 10b, and the third pixel section 10c are arranged in a grid so as to repeat this order. The light shielding portion 20 is provided between adjacent pixel portions, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion 10c. is provided between the first pixel portion 10c and the first pixel portion 10a. In other words, these adjacent pixel portions are separated by the light shielding portion 20 .
 第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態のインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性ナノ結晶粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性ナノ結晶粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体、有機リガンド及び高分子分散剤を含む。硬化成分は、インク組成物に含まれていた有機成分(未反応の光重合性化合物等)を更に含んでいてもよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。 The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (luminescent pixel portions) each containing a cured product of the ink composition of the embodiment described above. The first pixel portion 10a includes a first curing component 13a, and first luminescent nanocrystalline particles 11a and first light scattering particles 12a respectively dispersed in the first curing component 13a. Similarly, the second pixel portion 10b includes a second curing component 13b, and second luminescent nanocrystalline particles 11b and second light scattering particles 12b dispersed in the second curing component 13b, respectively. including. A curing component is a component obtained by polymerization of a photopolymerizable compound, and includes a polymer of the photopolymerizable compound, an organic ligand and a polymer dispersant. The curing component may further contain an organic component (such as an unreacted photopolymerizable compound) contained in the ink composition. In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different, and may be the first light scattering particles 12a. It may be the same as or different from the second light scattering particles 12b.
 第1の発光性ナノ結晶粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性ナノ結晶粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。 The first luminescent nanocrystalline particles 11a are red luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420-480 nm and emit light with an emission peak wavelength in the range of 605-665 nm. That is, the first pixel section 10a can be rephrased as a red pixel section for converting blue light into red light. The second luminescent nanocrystalline particles 11b are green luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm. That is, the second pixel section 10b can be rephrased as a green pixel section for converting blue light into green light.
 発光性画素部における発光性ナノ結晶粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは15質量%以上であり、18質量%以上、20質量%以上又は24質量%以上である。発光性ナノ結晶粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは80質量%以下、70質量%以下、60質量%以下、50質量%以下又は40質量%以下である。 The content of the luminescent nanocrystalline particles in the luminescent pixel portion is based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining an excellent effect of improving the external quantum efficiency and obtaining excellent emission intensity. It is preferably 15% by mass or more, 18% by mass or more, 20% by mass or more, or 24% by mass or more. The content of the luminescent nanocrystalline particles is preferably 80% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent reliability of the pixel portion and excellent emission intensity. , 70% by mass or less, 60% by mass or less, 50% by mass or less, or 40% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、例えば、0.1質量%以上であり、1質量%以上又は2質量%以上であることが好ましい。光散乱性粒子の含有量は、発光性インク組成物の硬化物の全質量を基準として、例えば、60質量%以下であることが好ましい。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは10質量%以下であり、より好ましくは7質量%以下であり、更に好ましくは5質量%以下である。 The content of the light-scattering particles in the light-emitting pixel portion is, for example, 0.1% by mass or more based on the total mass of the cured product of the light-emitting ink composition, from the viewpoint of improving the external quantum efficiency. , 1% by mass or more, or 2% by mass or more. The content of the light-scattering particles is preferably, for example, 60% by mass or less based on the total mass of the cured luminescent ink composition. The content of the light-scattering particles is preferably 10% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency and the reliability of the pixel portion. , more preferably 7% by mass or less, and still more preferably 5% by mass or less.
 第3の画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性ナノ結晶粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。 The third pixel portion 10c is a non-luminous pixel portion (non-luminous pixel portion) containing the cured non-luminous ink composition described above. The cured product does not contain luminescent nanocrystalline particles, but contains light-scattering particles and a curing component. That is, the third pixel portion 10c includes a third curing component 13c and third light scattering particles 12c dispersed in the third curing component 13c. The third curing component 13c is, for example, a component obtained by polymerizing a polymerizable compound, and includes a polymer of the polymerizable compound. The third light scattering particles 12c may be the same as or different from the first light scattering particles 12a and the second light scattering particles 12b.
 第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。 For example, the third pixel section 10c has a transmittance of 30% or more for light with a wavelength in the range of 420 to 480 nm. Therefore, the third pixel section 10c functions as a blue pixel section when using a light source that emits light with a wavelength in the range of 420 to 480 nm. Note that the transmittance of the third pixel section 10c can be measured with a microspectroscope.
 非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上、5質量%以上、又は10質量%以上であることが好ましい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、50質量%以下、30質量%以下、又は20質量%以下であることが好ましい。 The content of the light-scattering particles in the non-luminous pixel portion is 1% by mass based on the total mass of the cured non-luminous ink composition, from the viewpoint of further reducing the difference in light intensity at viewing angles. Above, it is preferable that it is 5 mass % or more, or 10 mass % or more. From the viewpoint of further reducing light reflection, the content of the light-scattering particles is 50% by mass or less, 30% by mass or less, or 20% by mass, based on the total mass of the cured non-luminescent ink composition. % or less.
 画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上、2μm以上、又は3μm以上であることが好ましい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下、20μm以下、又は15μm以下であることが好ましい。 The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) is preferably, for example, 1 μm or more, 2 μm or more, or 3 μm or more. The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) is preferably, for example, 30 μm or less, 20 μm or less, or 15 μm or less.
 遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上、又は10μm以下であることが好ましい。 The light shielding section 20 is a so-called black matrix that is provided for the purpose of separating adjacent pixel sections to prevent color mixture and for the purpose of preventing leakage of light from the light source. The material constituting the light shielding part 20 is not particularly limited, and in addition to metals such as chromium, curing of a resin composition in which light shielding particles such as carbon fine particles, metal oxides, inorganic pigments, organic pigments, etc. are contained in a binder polymer. objects, etc. can be used. As the binder polymer used here, one or a mixture of two or more resins such as polyimide resin, acrylic resin, epoxy resin, polyacrylamide, polyvinyl alcohol, gelatin, casein, cellulose, etc., photosensitive resin, O/W An emulsion-type resin composition (for example, an emulsified reactive silicone) can be used. It is preferable that the thickness of the light shielding portion 20 is, for example, 0.5 μm or more or 10 μm or less.
 基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。 The base material 40 is a transparent base material having optical transparency. A flexible base material or the like can be used. Among these, it is preferable to use a glass substrate made of alkali-free glass that does not contain an alkali component. Specifically, "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning, "AN100" manufactured by Asahi Glass Co., Ltd., "OA-10G" manufactured by Nippon Electric Glass Co., Ltd. and " OA-11” is preferred. These materials have a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。 The color filter 100 including the light conversion layer 30 described above is suitably used when using a light source that emits light with a wavelength in the range of 420 to 480 nm.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、インク組成物をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、インク組成物を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。インク組成物として上述した発光性インク組成物を用いることで発光性画素部が得られ、非発光性インク組成物を用いることで非発光性画素部が得られる。 The color filter 100 can be manufactured, for example, by forming the light-shielding portions 20 in a pattern on the substrate 40 and then forming the pixel portions 10 in the pixel-forming regions partitioned by the light-shielding portions 20 on the substrate 40. . The pixel portion 10 is formed by a method comprising a step of selectively applying an ink composition to a pixel portion forming region on the substrate 40 by an inkjet method, and a step of curing the ink composition to obtain a luminescent pixel portion. can be formed. A luminescent pixel portion can be obtained by using the luminescent ink composition described above as the ink composition, and a non-luminescent pixel portion can be obtained by using a non-luminescent ink composition.
 遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。 The method of forming the light shielding portion 20 is to form a thin film of a metal such as chromium or a thin film of a resin composition containing light shielding particles in a region that serves as a boundary between a plurality of pixel portions on one side of the substrate 40. and a method of patterning this thin film. The metal thin film can be formed, for example, by a sputtering method, a vacuum deposition method, or the like, and the thin film of the resin composition containing light-shielding particles can be formed, for example, by a method such as coating or printing. As a method for patterning, a photolithography method or the like can be used.
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。 Examples of the ink jet method include the bubble jet (registered trademark) method using an electrothermal transducer as an energy generating element, and the piezo jet method using a piezoelectric element.
 インク組成物の硬化は、活性エネルギー線(例えば紫外線)を照射することにより行われてよい。インク組成物の硬化は、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を用いてよい。照射する光の波長は、例えば、200nm以上、又は440nm以下であることが好ましい。露光量は、例えば、10mJ/cm以上、又は20000mJ/cm以下であることが好ましい。 Curing of the ink composition may be performed by irradiating with active energy rays (eg, ultraviolet rays). For curing the ink composition, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like may be used. It is preferable that the wavelength of the light to be irradiated is, for example, 200 nm or more or 440 nm or less. The exposure dose is preferably, for example, 10 mJ/cm 2 or more, or 20000 mJ/cm 2 or less.
 以上、カラーフィルタ及び光変換層、並びにこれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。 Although one embodiment of the color filter, the light conversion layer, and the manufacturing method thereof has been described above, the present invention is not limited to the above embodiment.
 例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性ナノ結晶粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。 For example, the light conversion layer may be a pixel portion ( blue pixel portion). In addition, the light conversion layer may include pixel portions (e.g., yellow pixel portions) containing a cured product of a luminescent ink composition containing nanocrystalline particles that emit light of a color other than red, green, and blue. good. In these cases, each of the luminescent nanocrystalline particles contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength in the same wavelength range.
 また、光変換層の画素部の少なくとも一部は、発光性ナノ結晶粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。 In addition, at least part of the pixel portion of the light conversion layer may contain a cured product of a composition containing a pigment other than the luminescent nanocrystalline particles.
 また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。 In addition, the color filter may have an ink-repellent layer made of an ink-repellent material having a narrower width than the light-shielding portion on the pattern of the light-shielding portion. Further, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a variable wettability layer is formed in a solid manner in a region including a pixel portion forming region, and then light is applied to the photocatalyst-containing layer through a photomask. By irradiating and exposing, the ink affinity of the pixel portion forming region may be selectively increased. Examples of photocatalysts include titanium oxide and zinc oxide.
 また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。 In addition, the color filter may have an ink-receiving layer containing hydroxypropylcellulose, polyvinyl alcohol, gelatin, etc. between the base material and the pixel portion.
 また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。 Also, the color filter may have a protective layer on the pixel portion. This protective layer flattens the color filter and prevents components contained in the pixel portion, or components contained in the pixel portion and components contained in the photocatalyst-containing layer from eluting into the liquid crystal layer. It is provided. Materials used for known color filter protective layers can be used for the protective layer.
 また、本実施形態の光変換層の画素部には、上記した発光性ナノ結晶粒子に加えて、発光性ナノ結晶粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、インク組成物に顔料を含有させてもよい。 In addition to the luminescent nanocrystalline particles described above, the pixel portion of the light conversion layer of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystalline particles. In order to contain the pigment in the pixel portion, the ink composition may contain the pigment.
 また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性ナノ結晶粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)の全質量を基準として、1~5質量%であることが好ましい。 Further, one or two of the red pixel portion (R), the green pixel portion (G), and the blue pixel portion (B) in the light conversion layer of the present embodiment are A pixel portion containing a coloring material without containing crystal grains may be used. As the coloring material that can be used here, known coloring materials can be used. For example, the coloring material used in the red pixel portion (R) includes a diketopyrrolopyrrole pigment and/or an anionic red organic dye. mentioned. The coloring material used in the green pixel portion (G) includes at least one selected from the group consisting of halogenated copper phthalocyanine pigments, phthalocyanine green dyes, and mixtures of phthalocyanine blue dyes and azo yellow organic dyes. Coloring materials used in the blue pixel portion (B) include ε-type copper phthalocyanine pigments and/or cationic blue organic dyes. When these colorants are contained in the light conversion layer, the amount used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) from the viewpoint of preventing a decrease in transmittance. %.
 また、カラーフィルタは、基材と本実施形態の画素部との間に、発光性ナノ結晶粒子を含まず、上記色材を含む通常のカラーフィルタ層を備えてもよい。すなわち、本実施形態のカラーフィルタは、基材と、基材上に設けられた、発光性ナノ結晶粒子を含まず、色材を含むカラーフィルタ層と、当該カラーフィルタ層上に設けられた、本実施形態の画素部と、を備えるものであってよい。 In addition, the color filter may include a normal color filter layer containing the above-described colorant without containing the luminescent nanocrystalline particles between the base material and the pixel portion of the present embodiment. That is, the color filter of the present embodiment includes a base material, a color filter layer containing a colorant and not containing luminescent nanocrystal particles, provided on the base material, and provided on the color filter layer, and the pixel portion of the present embodiment.
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。なお、実施例で用いた材料は全て、アルゴンガスを導入して溶存酸素をアルゴンガスに置換したものを用いた。実施例で用いた液状の材料は、混合前にあらかじめ、モレキュラーシーブス3Aで48時間以上脱水して用いた。 The present invention will be specifically described below with reference to examples. However, the present invention is not limited only to the following examples. All the materials used in the examples were obtained by introducing argon gas to replace dissolved oxygen with argon gas. The liquid materials used in the examples were dehydrated with molecular sieves 3A for 48 hours or more before mixing.
<光重合性化合物の用意>
 表1に示す光重合性化合物を用意した。
<Preparation of photopolymerizable compound>
Photopolymerizable compounds shown in Table 1 were prepared.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
実施例1
<QD粉体Aの作製>
[有機リガンド1の合成]
 ポリエチレングリコール|average Mn350|(Sigma-Aldrich社製)をフラスコに投入した後、窒素ガス環境にて攪拌しながら、そこにポリエチレングリコール|average Mn350|と等モル量の無水コハク酸(Sigma-Aldrich社製)を添加した。フラスコの内温を80℃に昇温し、8時間攪拌することにより、淡い黄色の年長な油状物として下記式(A)で表される有機リガンド1を得た。
Example 1
<Preparation of QD powder A>
[Synthesis of organic ligand 1]
After introducing polyethylene glycol |average Mn350| (manufactured by Sigma-Aldrich) into the flask, while stirring in a nitrogen gas environment, polyethylene glycol |average Mn350| made) was added. The internal temperature of the flask was raised to 80° C. and stirred for 8 hours to obtain an organic ligand 1 represented by the following formula (A) as a pale yellow aged oil.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
[リガンド交換によるQD粉体Aの作製]
 Nanosys社製のInPナノ結晶分散体(InP QD in Heptane Red InP QD、QD粒子(発光性ナノ結晶粒子)濃度30%、有機リガンド:オレイン酸)に対して、2.0倍量のPGMEAとQD粒子の量(有機リガンドの量は含まない)に対し35質量%相当分の有機リガンド1とを添加し、80℃にて1時間攪拌することにより、リガンド交換を実施した。この溶液に対して、4倍量のヘプタンを添加することにより、QD粒子を凝集させ、遠心分離にて沈殿させた後、上澄みの傾瀉によってQD粒子を分離した。得られたQD粒子を真空乾燥機にて乾燥させ、赤色発光性のQD粉体A(QD粒子/有機リガンド=76質量%/24質量%)を得た。
[Preparation of QD powder A by ligand exchange]
Nanosys InP nanocrystal dispersion (InP QD in Heptane Red InP QD, QD particles (luminescent nanocrystal particles) concentration 30%, organic ligand: oleic acid), 2.0 times the amount of PGMEA and QD Ligand exchange was performed by adding organic ligand 1 in an amount corresponding to 35% by mass with respect to the amount of particles (excluding the amount of organic ligand) and stirring at 80° C. for 1 hour. By adding four times the amount of heptane to this solution, the QD particles were aggregated and precipitated by centrifugation, and then the QD particles were separated by decanting the supernatant. The resulting QD particles were dried in a vacuum dryer to obtain red-light-emitting QD powder A (QD particles/organic ligand=76% by mass/24% by mass).
<光散乱性粒子分散体Aの準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:PF-690、石原産業株式会社製、平均粒子径(体積平均径):210nm)8.0gと、高分子分散剤(商品名:PB-821、味の素ファインテクノ株式会社製)0.4gと、フェノキシエチルアクリレート(商品名:ライトアクリレートPO-A、共栄社化学社製)11.6gと、を混合した。その後、得られた混合物に、ジルコニアビーズ(直径:0.03mm)を加え、ペイントコンディショナーを用いて4時間振とうさせることで、混合物を分散処理した。次いで、ポリエステルメッシュフィルターにて混合物からジルコニアビーズを除去することで、光散乱性粒子分散体を得た。
<Preparation of Light-scattering Particle Dispersion A>
In a container filled with argon gas, 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 11.6 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed. After that, zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
<実施例1のインク組成物の調製>
 QD粉体Aを1.71gと、光散乱性粒子分散体Aを0.52gと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、IGM resin社製、製品名:Omnirad TPO)を0.30gと、光重合性化合物の混合物(PhEM:LM:HDMMA=43:22:35(質量比))を2.37gと、ヒンダートフェノール系酸化防止剤(BASFジャパン社製、製品名:Irganox1010)0.05gとを配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例1のインク組成物を得た。
<Preparation of Ink Composition of Example 1>
1.71 g of QD powder A, 0.52 g of light scattering particle dispersion A, and a photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM resin, Product name: Omnirad TPO) 0.30 g, a mixture of photopolymerizable compounds (PhEM: LM: HDMMA = 43: 22: 35 (mass ratio)) 2.37 g, a hindered phenolic antioxidant (BASF Japan Co., Ltd., product name: Irganox 1010) 0.05 g, and after uniformly mixing in a container filled with argon gas, the mixture was filtered through a filter with a pore size of 5 μm in a glove box. The obtained filtrate was introduced into a container containing the filtrate, and the inside of the container was saturated with argon gas, and then the pressure was reduced to remove the argon gas, thereby obtaining an ink composition of Example 1.
実施例2
<リガンド交換によるQD粉体Bの作製>
 Nanosys社製のInPナノ結晶分散体(InP QD in Heptane Green InP QD、QD粒子(発光性ナノ結晶粒子)濃度30%、有機リガンド:オレイン酸)に対して、2.0倍量のPGMEAとQD粒子の量(有機リガンドの量は含まない)に対し40質量%相当分の有機リガンド1とを添加し、80℃にて1時間攪拌することにより、リガンド交換を実施した。この溶液に対して、4倍量のヘプタンを添加することにより、QD粒子を凝集させ、遠心分離にて沈殿させた後、上澄みの傾瀉によってQD粒子を分離した。得られたQD粒子を真空乾燥機にて乾燥させ、緑色発光性のQD粉体B(QD粒子/有機リガンド=66質量%/34質量%)を得た。
Example 2
<Preparation of QD powder B by ligand exchange>
Nanosys InP nanocrystal dispersion (InP QD in Heptane Green InP QD, QD particles (luminescent nanocrystal particles) concentration 30%, organic ligand: oleic acid), 2.0 times the amount of PGMEA and QD Ligand exchange was carried out by adding organic ligand 1 in an amount corresponding to 40% by mass with respect to the amount of particles (excluding the amount of organic ligand) and stirring at 80° C. for 1 hour. By adding four times the amount of heptane to this solution, the QD particles were aggregated and precipitated by centrifugation, and then the QD particles were separated by decanting the supernatant. The obtained QD particles were dried in a vacuum dryer to obtain a green-emitting QD powder B (QD particles/organic ligand=66% by mass/34% by mass).
<実施例2のインク組成物の調製>
 QD粉体Bを1.71gと、光散乱性粒子分散体をA0.59gと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、IGM resin社製、製品名:Omnirad TPO)を0.12gと、光重合性化合物の混合物(PhEM:LA:HDMMA=39:23:38(質量比))を2.39gと、ヒンダートフェノール系酸化防止剤(BASFジャパン社製、製品名:Irganox1010)0.05gとを配合し、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例2のインク組成物を得た。
<Preparation of Ink Composition of Example 2>
1.71 g of QD powder B, 0.59 g of light scattering particle dispersion, and a photopolymerization initiator (phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by IGM resin, product Name: Omnirad TPO) 0.12 g, a mixture of photopolymerizable compounds (PhEM: LA: HDMMA = 39: 23: 38 (mass ratio)) 2.39 g, a hindered phenolic antioxidant (BASF Japan 0.05 g of Irganox 1010 (manufactured by Irganox 1010) was blended and uniformly mixed in a container filled with argon gas, and then the mixture was filtered through a filter with a pore size of 5 μm in a glove box. The obtained filtrate was introduced into a container containing the filtrate, the inside of the container was saturated with argon gas, and the pressure was reduced to remove the argon gas, thereby obtaining an ink composition of Example 2.
実施例3
<光散乱性粒子分散体Bの準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:PF-690、石原産業株式会社製、平均粒子径(体積平均径):210nm)8.0gと、高分子分散剤(商品名:PB-821、味の素ファインテクノ株式会社製)0.8gと、フェノキシエチルアクリレート(商品名:ライトアクリレートPO-A、共栄社化学社製)11.2gと、を混合した。その後、得られた混合物に、ジルコニアビーズ(直径:0.03mm)を加え、ペイントコンディショナーを用いて4時間振とうさせることで、混合物を分散処理した。次いで、ポリエステルメッシュフィルターにて混合物からジルコニアビーズを除去することで、光散乱性粒子分散体を得た。
Example 3
<Preparation of Light-scattering Particle Dispersion B>
In a container filled with argon gas, 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 11.2 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed. After that, zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
<実施例3のインク組成物の調製>
 光散乱性粒子分散体Aに代えて光散乱性粒子分散体Bを用いたこと、光重合性化合物の混合物にGLMを加え、重量比PhEM:LA:HDDMA:GLM=34:22:38:6に変更したこと以外は、実施例2と同様にして、実施例3のインク組成物を調製した。
<Preparation of Ink Composition of Example 3>
Light-scattering particle dispersion B was used instead of light-scattering particle dispersion A, GLM was added to the mixture of photopolymerizable compounds, and the weight ratio PhEM:LA:HDDMA:GLM = 34:22:38:6. An ink composition of Example 3 was prepared in the same manner as in Example 2, except that
実施例4
<光散乱性粒子分散体Cの準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:PF-690、石原産業株式会社製、平均粒子径(体積平均径):210nm)8.0gと、高分子分散剤(商品名:PB-821、味の素ファインテクノ株式会社製、アミン価:10、酸価:17)0.4gと、高分子分散剤(商品名:ソルスパースS24000GR、日本ルーブリゾール株式会社製、アミン価:42、酸価:26)0.4gと、フェノキシエチルアクリレート(商品名:ライトアクリレートPO-A、共栄社化学社製)11.2gと、を混合した。その後、得られた混合物に、ジルコニアビーズ(直径:0.03mm)を加え、ペイントコンディショナーを用いて4時間振とうさせることで、混合物を分散処理した。次いで、ポリエステルメッシュフィルターにて混合物からジルコニアビーズを除去することで、光散乱性粒子分散体を得た。
Example 4
<Preparation of Light-scattering Particle Dispersion C>
In a container filled with argon gas, 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, Ajinomoto Fine-Techno Co., Inc., amine value: 10, acid value: 17) 0.4 g, and a polymer dispersant (trade name: Solsperse S24000GR, manufactured by Nippon Lubrizol Co., Ltd., amine value: 42, acid value : 26) 0.4 g and 11.2 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed. After that, zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
<実施例4のインク組成物の調製>
 光散乱性粒子分散体Bに代えて光散乱性粒子分散体Cを用いたこと以外は、実施例3と同様にして、実施例4のインク組成物を調製した。
<Preparation of Ink Composition of Example 4>
An ink composition of Example 4 was prepared in the same manner as in Example 3, except that the light-scattering particle dispersion C was used instead of the light-scattering particle dispersion B.
比較例1
<光散乱性粒子分散体Dの準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:PF-690、 石原産業株式会社製、平均粒子径(体積平均径):210nm)8.0gと、高分子分散剤(商品名:PB-821、味の素ファインテクノ株式会社製)0.16gと、フェノキシエチルアクリレート(商品名:ライトアクリレートPO-A、共栄社化学社製)11.8gと、を混合した。その後、得られた混合物に、ジルコニアビーズ(直径:0.03mm)を加え、ペイントコンディショナーを用いて4時間振とうさせることで、混合物を分散処理した。次いで、ポリエステルメッシュフィルターにて混合物からジルコニアビーズを除去することで、光散乱性粒子分散体を得た。
Comparative example 1
<Preparation of Light-scattering Particle Dispersion D>
In a container filled with argon gas, 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 11.8 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed. After that, zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
<比較例1のインク組成物の調製>
 光散乱性粒子分散体Aに代えて、光散乱性粒子分散体Dを用いたこと以外は、実施例1と同様にして、比較例1のインク組成物を調製した。
<Preparation of Ink Composition of Comparative Example 1>
An ink composition of Comparative Example 1 was prepared in the same manner as in Example 1, except that the light-scattering particle dispersion D was used instead of the light-scattering particle dispersion A.
比較例2
<リガンド交換によるQD粉体Cの作製>
 Nanosys社製のInPナノ結晶分散体(InP QD in Heptane Red InP QD、QD粒子(発光性ナノ結晶粒子)濃度30%、有機リガンド:オレイン酸)に対して、2.0倍量のPGMEAとQD粒子の量(有機リガンドの量は含まない)に対し20質量%相当分の有機リガンド1とを添加し、80℃にて1時間攪拌することにより、リガンド交換を実施した。この溶液に対して、4倍量のヘプタンを添加することにより、QD粒子を凝集させ、遠心分離にて沈殿させた後、上澄みの傾瀉によってQD粒子を分離した。得られたQD粒子を真空乾燥機にて乾燥させ、赤色発光性のQD粉体C(QD粒子/有機リガンド=86質量%/14質量%)を得た。
Comparative example 2
<Preparation of QD powder C by ligand exchange>
Nanosys InP nanocrystal dispersion (InP QD in Heptane Red InP QD, QD particles (luminescent nanocrystal particles) concentration 30%, organic ligand: oleic acid), 2.0 times the amount of PGMEA and QD Ligand exchange was carried out by adding organic ligand 1 in an amount corresponding to 20% by mass with respect to the amount of particles (excluding the amount of organic ligand) and stirring at 80° C. for 1 hour. By adding four times the amount of heptane to this solution, the QD particles were aggregated and precipitated by centrifugation, and then the QD particles were separated by decanting the supernatant. The resulting QD particles were dried in a vacuum dryer to obtain red-light-emitting QD powder C (QD particles/organic ligand=86% by mass/14% by mass).
<比較例2のインク組成物の調製>
 QD粉体Aに代えて、QD粉体Cを用いたこと以外は、実施例1と同様にして、比較例1のインク組成物を調製した。
<Preparation of Ink Composition of Comparative Example 2>
An ink composition of Comparative Example 1 was prepared in the same manner as in Example 1, except that QD powder C was used instead of QD powder A.
比較例3
<光散乱性粒子分散体Eの準備>
 アルゴンガスで満たした容器内で、酸化チタン(商品名:PF-690、石原産業株式会社製、平均粒子径(体積平均径):210nm)8.0gと、高分子分散剤(商品名:PB-821、味の素ファインテクノ株式会社製)1.44gと、フェノキシエチルアクリレート(商品名:ライトアクリレートPO-A、共栄社化学社製)10.6gと、を混合した。その後、得られた混合物に、ジルコニアビーズ(直径:0.03mm)を加え、ペイントコンディショナーを用いて4時間振とうさせることで、混合物を分散処理した。次いで、ポリエステルメッシュフィルターにて混合物からジルコニアビーズを除去することで、光散乱性粒子分散体を得た。
Comparative example 3
<Preparation of Light-scattering Particle Dispersion E>
In a container filled with argon gas, 8.0 g of titanium oxide (trade name: PF-690, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (trade name: PB -821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 10.6 g of phenoxyethyl acrylate (trade name: Light Acrylate PO-A, manufactured by Kyoeisha Chemical Co., Ltd.) were mixed. After that, zirconia beads (diameter: 0.03 mm) were added to the obtained mixture, and the mixture was subjected to dispersion treatment by shaking for 4 hours using a paint conditioner. Then, the zirconia beads were removed from the mixture with a polyester mesh filter to obtain a light-scattering particle dispersion.
<比較例3のインク組成物の調製>
 光散乱性粒子分散体Aに代えて、光散乱性粒子分散体Eを用いたこと以外は、実施例1と同様にして、比較例3のインク組成物を調製した。
<Preparation of Ink Composition of Comparative Example 3>
An ink composition of Comparative Example 3 was prepared in the same manner as in Example 1 except that the light-scattering particle dispersion E was used instead of the light-scattering particle dispersion A.
比較例4
<リガンド交換によるQD粉体Dの作製>
 Nanosys社製のInPナノ結晶分散体(InP QD in Heptane Red InP QD、QD粒子(発光性ナノ結晶粒子)濃度30%、有機リガンド:オレイン酸)に対して、2.0倍量のPGMEAとQD粒子の量(有機リガンドの量は含まない)に対し60質量%相当分の有機リガンド1とを添加し、80℃にて1時間攪拌することにより、リガンド交換を実施した。この溶液に対して、4倍量のヘプタンを添加することにより、QD粒子を凝集させ、遠心分離にて沈殿させた後、上澄みの傾瀉によってQD粒子を分離した。得られたQD粒子を真空乾燥機にて乾燥させ、赤色発光性のQD粉体D(QD粒子/有機リガンド=48質量%/52質量%)を得た。
Comparative example 4
<Preparation of QD powder D by ligand exchange>
Nanosys InP nanocrystal dispersion (InP QD in Heptane Red InP QD, QD particles (luminescent nanocrystal particles) concentration 30%, organic ligand: oleic acid), 2.0 times the amount of PGMEA and QD Ligand exchange was carried out by adding organic ligand 1 in an amount corresponding to 60% by mass with respect to the amount of particles (excluding the amount of organic ligand) and stirring at 80° C. for 1 hour. By adding four times the amount of heptane to this solution, the QD particles were aggregated and precipitated by centrifugation, and then the QD particles were separated by decanting the supernatant. The obtained QD particles were dried in a vacuum dryer to obtain a red-light-emitting QD powder D (QD particles/organic ligand=48% by mass/52% by mass).
<比較例4のインク組成物の調製>
 発光性ナノ結晶粒子分散体Aに代えて、発光性ナノ結晶粒子分散体Dを用いたこと以外は、実施例1と同様にして、比較例4のインク組成物を調製した。
<Preparation of Ink Composition of Comparative Example 4>
An ink composition of Comparative Example 4 was prepared in the same manner as in Example 1, except that the luminescent nanocrystalline particle dispersion D was used instead of the luminescent nanocrystalline particle dispersion A.
評価用試料の作製
 インク組成物を、ガラス基板上に、膜厚が10μmとなるように、スピンコーターにて大気中で塗布した。塗布膜を窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量10000mJ/cm2になるようにUVを照射して硬化させた後、酸素濃度1体積%以下のグローブボックス中にて30分間、180℃にて加熱して、ガラス基板上にインク組成物の硬化物からなる層(光変換層)を形成した。これにより、評価用試料を得た。
Preparation of Samples for Evaluation The ink composition was applied to a glass substrate in the air by a spin coater so as to have a film thickness of 10 μm. Under a nitrogen atmosphere, the coating film is cured by irradiating UV with a UV irradiation device using an LED lamp with a dominant wavelength of 395 nm so that the integrated light amount becomes 10000 mJ / cm 2, and then placed in a glove box with an oxygen concentration of 1% by volume or less. The mixture was heated at 180° C. for 30 minutes to form a layer (light conversion layer) composed of a cured product of the ink composition on the glass substrate. Thus, an evaluation sample was obtained.
外部量子効率(EQE)の評価
 面発光光源としてシーシーエス株式会社製の青色LED(ピーク発光波長:450nm)を用いた。測定装置は、大塚電子株式会社製の放射分光光度計(製品名「MCPD-9800」)に積分球を接続し、青色LEDの上側に積分球を設置した。青色LEDと積分球との間に、作製した評価用試料を挿入し、青色LEDを点灯させて観測されるスペクトル、各波長における照度を測定した。
 上記の測定装置で測定されるスペクトル及び照度より、以下のようにして外部量子効率を求めた。外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。
Red QD EQE(%)=[P1(Red)]/E(Blue)×100 
Green QD EQE(%)=[P1(Green)/E(Blue)]×100
 ここで、E(Blue)、P1(Red)及びP1(Green)はそれぞれ以下を表す。
E(Blue):380~490nmの波長域における「照度×波長÷hc」の合計値を表す。
P1(Red):590~780nmの波長域における「照度×波長÷hc」の合計値を表す。
P1(Green):500~650nmの波長域における「照度×波長÷hc」の合計
値を表す。
 これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
Evaluation of External Quantum Efficiency (EQE) A blue LED (peak emission wavelength: 450 nm) manufactured by CCS Corporation was used as a surface emitting light source. As a measurement device, an integrating sphere was connected to a radiation spectrophotometer (product name “MCPD-9800”) manufactured by Otsuka Electronics Co., Ltd., and the integrating sphere was placed above the blue LED. The produced evaluation sample was inserted between the blue LED and the integrating sphere, and the spectrum observed by lighting the blue LED and the illuminance at each wavelength were measured.
The external quantum efficiency was obtained as follows from the spectrum and illuminance measured by the above measuring device. The external quantum efficiency is a value indicating how much of the light (photons) incident on the light conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
Red QD EQE (%) = [P1 (Red)]/E (Blue) x 100
Green QD EQE (%) = [P1 (Green) / E (Blue)] × 100
Here, E (Blue), P1 (Red) and P1 (Green) each represent the following.
E (Blue): Represents the total value of “illuminance×wavelength/hc” in the wavelength range of 380 to 490 nm.
P1 (Red): Represents the total value of “illuminance×wavelength/hc” in the wavelength range of 590 to 780 nm.
P1 (Green): Represents the total value of “illuminance×wavelength/hc” in the wavelength range of 500 to 650 nm.
These are values corresponding to the number of photons observed. In addition, h represents Planck's constant and c represents the speed of light.
 EQEは以下の基準で評価を行った。
A:RedQD EQE≧35%、GreenQD EQE≧30%
B:RedQD30%<EQE<35%、GreenQD25%<EQE<30%
C:RedQD EQE≦30%、GreenQD EQE≦25%
EQE was evaluated according to the following criteria.
A: RedQD EQE≧35%, GreenQD EQE≧30%
B: Red QD 30% < EQE < 35%, Green QD 25% < EQE < 30%
C: Red QD EQE ≤ 30%, Green QD EQE ≤ 25%
再分散性(ろ過)の評価
 発光性ナノ結晶粒子および光散乱性粒子が凝集することで再分散性が悪くなると、インクジェットインクとしての吐出性が悪化する場合がある。そこで、粒子の再分散性を評価するために、インク組成物のろ過性を評価した。凝集物はろ過性を低下させるため、ろ過性が良いほど、再分散性が良好である。40℃恒温槽で2週間保管したインク組成物5mlをボルテックスミキサーで攪拌後、0.1MPaの圧力でポリプロプレンフィルターφ25mm孔径1.2μm(日本ポール社製)を用いてろ過し、2分間に全量ろ過したものを「A」、10分間に全量ろ過したものを「B」、全量ろ過できなかったものを「C」とした。
Evaluation of redispersibility (filtration) If the redispersibility deteriorates due to aggregation of the luminescent nanocrystalline particles and the light-scattering particles, the dischargeability as an inkjet ink may deteriorate. Therefore, in order to evaluate the redispersibility of the particles, the filterability of the ink composition was evaluated. Agglomerates reduce the filterability, so the better the filterability, the better the redispersibility. After stirring 5 ml of the ink composition stored in a 40° C. constant temperature bath for 2 weeks with a vortex mixer, it was filtered at a pressure of 0.1 MPa using a polypropylene filter φ25 mm with a pore size of 1.2 μm (manufactured by Nippon Pall Co., Ltd.). "A" was given to those that were filtered, "B" was given to those whose entire amount was filtered in 10 minutes, and "C" was given to those whose entire amount could not be filtered.
漏れ光の評価
 面発光光源としてシーシーエス(株)社製の青色LED(ピーク発光波長:450nm)を用いた。この光源上にガラス基板側を下側にして評価用試料を設置した。大塚電子(株)製の放射分光光度計(商品名「MCPD-9800」)に積分球を接続し、青色LED上に設置した光変換フィルター上に積分球を近接させた。この状態で青色LEDを点灯させ、観測される波長450nmの光のピーク強度(S)を測定した。次いで、光変換フィルターの代わりに、光変換フィルターの作製に用いたガラス基板(スライドガラス)を光源上に設置したこと以外は、上記方法と同様にして、波長450nmの光を観測し、該光のピーク強度(R)を測定した。波長450nmの光の漏れ率T(ピーク強度比:S/R×100)を算出し、以下の基準で評価を行った。光の漏れ率が小さいほど色純度が高くなり好ましい。
A:Red QD T≦10%、Green QD T≦20%
C:Red QD T>10%、Green QD T>20%
Evaluation of Leakage Light A blue LED (peak emission wavelength: 450 nm) manufactured by CCS Corporation was used as a surface emitting light source. An evaluation sample was placed on the light source with the glass substrate side facing downward. The integrating sphere was connected to a radiation spectrophotometer (trade name: “MCPD-9800”) manufactured by Otsuka Electronics Co., Ltd., and brought close to the light conversion filter placed on the blue LED. In this state, the blue LED was turned on, and the observed peak intensity (S) of light with a wavelength of 450 nm was measured. Next, light with a wavelength of 450 nm was observed in the same manner as described above, except that the glass substrate (slide glass) used for making the light conversion filter was placed above the light source instead of the light conversion filter. was measured. The leakage rate T (peak intensity ratio: S/R×100) of light with a wavelength of 450 nm was calculated and evaluated according to the following criteria. The smaller the light leakage rate, the higher the color purity, which is preferable.
A: Red QD T ≤ 10%, Green QD T ≤ 20%
C: Red QD T>10%, Green QD T>20%
 表2~3に評価結果を示す。表中の発光性ナノ結晶粒子に対する有機リガンド量は、インク組成物における、発光性ナノ結晶粒子100質量部に対する有機リガンドの含有量を意味する。表中の光散乱性粒子に対する分散剤の量は、インク組成物における、光散乱性粒子100質量部に対する、高分子分散剤の含有量を意味する。 Tables 2 and 3 show the evaluation results. The amount of organic ligand relative to the luminescent nanocrystalline particles in the table means the content of the organic ligand relative to 100 parts by mass of the luminescent nanocrystalline particles in the ink composition. The amount of the dispersant relative to the light-scattering particles in the table means the content of the polymer dispersant with respect to 100 parts by mass of the light-scattering particles in the ink composition.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例のインク組成物は、塗膜の外部量子効率を向上させることができるとともに再分散性にも優れていることが示された(比較例との対比)。実施例のインク組成物は、漏れ光の抑制効果を更に有していることも確認された。 It was shown that the ink compositions of Examples can improve the external quantum efficiency of the coating film and have excellent redispersibility (comparison with Comparative Examples). It was also confirmed that the ink compositions of Examples further have the effect of suppressing leaked light.
 10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性ナノ結晶粒子、11b…第2の発光性ナノ結晶粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ。

 
DESCRIPTION OF SYMBOLS 10... Pixel part 10a... 1st pixel part 10b... 2nd pixel part 10c... 3rd pixel part 11a... 1st luminescent nanocrystal particle 11b... 2nd luminescent nanocrystal particle , 12a... First light-scattering particles, 12b... Second light-scattering particles, 12c... Third light-scattering particles, 20... Light shielding part, 30... Light conversion layer, 40... Base material, 100... Color filter.

Claims (10)

  1.  発光性ナノ結晶粒子と、前記発光性ナノ結晶粒子の表面に結合可能な有機リガンドと、光散乱性粒子と、高分子分散剤と、光重合性化合物と、を含有し、
     前記有機リガンドの含有量が、前記発光性ナノ結晶粒子100質量部に対して、15~50質量部であり、
     前記高分子分散剤の含有量が、前記光散乱性粒子100質量部に対して、3~15質量部である、カラーフィルタ用インクジェットインク組成物。
    containing luminescent nanocrystalline particles, an organic ligand capable of binding to the surface of the luminescent nanocrystalline particles, light-scattering particles, a polymer dispersant, and a photopolymerizable compound;
    The content of the organic ligand is 15 to 50 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles,
    An inkjet ink composition for a color filter, wherein the content of the polymer dispersant is 3 to 15 parts by mass with respect to 100 parts by mass of the light-scattering particles.
  2.  前記有機リガンドの分子量が1000以下である、請求項1に記載のカラーフィルタ用インクジェットインク組成物。 The inkjet ink composition for color filters according to claim 1, wherein the organic ligand has a molecular weight of 1000 or less.
  3.  前記高分子分散剤の重量平均分子量が1000以上である、請求項1又は2に記載のカラーフィルタ用インクジェットインク組成物。 The inkjet ink composition for color filters according to claim 1 or 2, wherein the polymer dispersant has a weight average molecular weight of 1000 or more.
  4.  前記高分子分散剤が、酸価及びアミン価の両方を有する、請求項1~3のいずれか一項に記載のカラーフィルタ用インクジェットインク組成物。 The inkjet ink composition for color filters according to any one of claims 1 to 3, wherein the polymer dispersant has both an acid value and an amine value.
  5.  前記高分子分散剤が、2種類以上の高分子分散剤を含む、請求項1~3のいずれか一項に記載のカラーフィルタ用インクジェットインク組成物。 The inkjet ink composition for color filters according to any one of claims 1 to 3, wherein the polymer dispersant contains two or more types of polymer dispersants.
  6.  前記光散乱性粒子の平均粒子径が0.15μm以上0.5μm以下である、請求項1~5のいずれか一項に記載のカラーフィルタ用インクジェットインク組成物。 The inkjet ink composition for a color filter according to any one of claims 1 to 5, wherein the light-scattering particles have an average particle size of 0.15 µm or more and 0.5 µm or less.
  7.  請求項1~6のいずれか一項に記載のカラーフィルタ用インクジェットインク組成物の硬化物。 A cured product of the inkjet ink composition for color filters according to any one of claims 1 to 6.
  8.  複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
     前記複数の画素部は、請求項1~6のいずれか一項に記載のカラーフィルタ用インクジェットインク組成物の硬化物を含む発光性画素部を有する、光変換層。
    comprising a plurality of pixel portions and a light shielding portion provided between the plurality of pixel portions;
    A light conversion layer, wherein the plurality of pixel portions have luminescent pixel portions containing a cured product of the inkjet ink composition for a color filter according to any one of claims 1 to 6.
  9.  前記発光性画素部として、
     420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、
     420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、
    を備える、請求項8に記載の光変換層。
    As the luminescent pixel portion,
    a first luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 605 to 665 nm;
    a second luminescent pixel portion containing luminescent nanocrystalline particles that absorb light with a wavelength in the range of 420 to 480 nm and emit light with an emission peak wavelength in the range of 500 to 560 nm;
    9. The light conversion layer of claim 8, comprising:
  10.  請求項8又は9に記載の光変換層を備える、カラーフィルタ。

     
    A color filter comprising the light conversion layer according to claim 8 or 9.

PCT/JP2022/006292 2021-02-26 2022-02-17 Color filter inkjet ink composition, cured material, phototransformation layer, and color filter WO2022181430A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-029974 2021-02-26
JP2021029974A JP2024049408A (en) 2021-02-26 2021-02-26 Ink-jet ink composition for color filters, cured product, light conversion layer, and color filter

Publications (1)

Publication Number Publication Date
WO2022181430A1 true WO2022181430A1 (en) 2022-09-01

Family

ID=83049324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006292 WO2022181430A1 (en) 2021-02-26 2022-02-17 Color filter inkjet ink composition, cured material, phototransformation layer, and color filter

Country Status (2)

Country Link
JP (1) JP2024049408A (en)
WO (1) WO2022181430A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093140A1 (en) * 2017-11-10 2019-05-16 Dic株式会社 Ink composition and production method therefor, photoconversion layer, and color filter
JP2019159326A (en) * 2018-03-16 2019-09-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light converting resin composition, light converting laminated base material, and image display device using the same
JP2019168685A (en) * 2018-03-20 2019-10-03 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light-converting resin composition, light-converting laminated substrate, and image display device using the same
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter
KR102153632B1 (en) * 2019-03-20 2020-09-08 동우 화인켐 주식회사 A light conversion ink composition, a color filter manufactured by using thereof and a display device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019093140A1 (en) * 2017-11-10 2019-05-16 Dic株式会社 Ink composition and production method therefor, photoconversion layer, and color filter
JP2019159326A (en) * 2018-03-16 2019-09-19 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light converting resin composition, light converting laminated base material, and image display device using the same
JP2019168685A (en) * 2018-03-20 2019-10-03 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Light-converting resin composition, light-converting laminated substrate, and image display device using the same
JP2020076976A (en) * 2018-10-12 2020-05-21 東洋インキScホールディングス株式会社 Ink composition and laminate using the same, optical wavelength conversion layer, optical wavelength conversion member, and color filter
KR102153632B1 (en) * 2019-03-20 2020-09-08 동우 화인켐 주식회사 A light conversion ink composition, a color filter manufactured by using thereof and a display device comprising the same

Also Published As

Publication number Publication date
JP2024049408A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP6973500B2 (en) Ink composition and its manufacturing method, as well as optical conversion layer and color filter
TWI817951B (en) Ink composition and manufacturing method thereof, light conversion layer and color filter
JP7294864B2 (en) Ink composition, light conversion layer and color filter
JP6838691B2 (en) Ink composition, light conversion layer, and color filter
JP7024383B2 (en) Ink composition, light conversion layer and color filter
JP7318225B2 (en) Inkjet ink for color filter, light conversion layer and color filter
JP7180795B2 (en) Ink composition for forming light conversion layer, light conversion layer and color filter
JP7024336B2 (en) Ink composition, light conversion layer and color filter
JP7331452B2 (en) Curable ink composition, light conversion layer and color filter
JP6933311B2 (en) Inkjet ink for color filters, light conversion layer and color filter
JP7367894B2 (en) Ink compositions, light conversion layers, color filters and light conversion films
WO2022244669A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
WO2022181430A1 (en) Color filter inkjet ink composition, cured material, phototransformation layer, and color filter
JP7238445B2 (en) Ink composition, light conversion layer, color filter, and method for forming luminescent pixel portion
JP7180798B2 (en) Ink composition, cured product, light conversion layer, and color filter
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
TWI839429B (en) Ink composition, light conversion layer and color filter
WO2022138185A1 (en) White ink composition, cured article, light scattering layer and color filter
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP2023036307A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2023092096A (en) Printing method of ink composition for forming phototransformation layer, and color philter
JP2023036187A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2022044970A (en) Ink composition, cured material, light conversion layer, and color filter
JP2021017481A (en) Ink composition and method for producing the same, photoconversion layer, and color filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22759469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP