WO2022244668A1 - Ink composition, light conversion layer, color filter, and light conversion film - Google Patents

Ink composition, light conversion layer, color filter, and light conversion film Download PDF

Info

Publication number
WO2022244668A1
WO2022244668A1 PCT/JP2022/020035 JP2022020035W WO2022244668A1 WO 2022244668 A1 WO2022244668 A1 WO 2022244668A1 JP 2022020035 W JP2022020035 W JP 2022020035W WO 2022244668 A1 WO2022244668 A1 WO 2022244668A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink composition
light
luminescent
mass
particles
Prior art date
Application number
PCT/JP2022/020035
Other languages
French (fr)
Japanese (ja)
Inventor
方大 小林
栄志 乙木
麻里子 利光
浩一 延藤
祐貴 野中
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020237034720A priority Critical patent/KR20240011666A/en
Priority to JP2023522619A priority patent/JP7367894B2/en
Priority to CN202280028064.5A priority patent/CN117178035A/en
Publication of WO2022244668A1 publication Critical patent/WO2022244668A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to an ink composition, a light conversion layer, a color filter and a light conversion film.
  • Liquid crystal display devices are widely used for applications such as mobile terminals, televisions, and monitors.
  • Color filters used in these liquid crystal display devices are manufactured by a photolithographic method that forms a black matrix and red, green and blue pixel patterns. Specifically, in the photolithography method, a photosensitive resin composition containing coloring materials such as pigments and dyes is coated on a substrate, dried, mask-exposed with UV irradiation, and uncured portions are removed by alkali development. Firing is then performed. Further, in recent years, self-luminous display devices in which an organic EL element that emits white light and a color filter are combined are also widely used for applications such as televisions and monitors.
  • luminescent nanoparticles such as quantum dots, quantum rods, and other inorganic phosphor particles have been used to emit red or green light.
  • Active research is being conducted on light conversion layers such as light conversion films to be taken out and color filter pixel portions.
  • This light conversion layer is mounted on the backlight unit of the image display device.
  • a light conversion film containing quantum dots that emit red light and quantum dots that emit green light is irradiated with blue light as excitation light
  • the red light and green light emitted from the quantum dots and the light conversion film White light can be obtained with the blue light that has passed through.
  • the light conversion layer includes, for example, a red-emitting quantum dot layer that emits red fluorescence when excited by blue light and a green quantum dot layer that emits green fluorescence when excited by blue light on a substrate on which a black matrix is formed. It is formed by forming a luminescent quantum dot layer and a blue light transmission layer that transmits blue light.
  • a liquid crystal display device or a self-luminous display device is configured by combining such a light conversion layer with an LED backlight that emits blue light or an organic EL element that emits blue light.
  • a display device with such a light conversion layer can increase light utilization efficiency more than a display device with a conventional color filter.
  • fluorescence emitted from the quantum dots and having a spectrum with a small half-value width can be used as it is for color display of the display device, the display device can have a wide color reproduction range.
  • a method is known in which a photosensitive resin composition containing quantum dots is applied to one entire surface of a substrate and cured by ultraviolet irradiation to produce a light conversion film.
  • the light conversion layer is formed by forming a coating film on one side of the substrate using a photosensitive resin composition containing quantum dots, patterning the coating film by photolithography, and then heating the resulting coating film.
  • a method of hardening by treatment is known (see, for example, Patent Document 1).
  • the photolithography method the number of steps is large and complicated, and since the photosensitive resin composition is removed by alkali development, raw materials are inevitably wasted.
  • a manufacturing method using an inkjet method is known as a method capable of reducing waste of raw materials.
  • the red light-emitting quantum dot layer and the green light-emitting quantum dot layer in the light conversion layer can be formed at the same time, so that the manufacturing efficiency can be improved.
  • all of the ejected ink photosensitive resin composition
  • waste of raw materials such as in photolithography is less likely to occur.
  • an inkjet ink in which quantum dots are dispersed an example of use for patterning a light conversion layer used in combination with an organic EL element emitting blue light is disclosed (see, for example, Patent Document 2).
  • one of the objects of the present invention is to use a hindered amine compound and a photopolymerizable compound having predetermined properties in combination to achieve excellent dispersibility of luminescent nanocrystalline particles and prevent deterioration of luminescent properties. It is an object of the present invention to provide an ink composition capable of Further objects of the present invention are to provide a light conversion layer containing a cured product of the ink composition and a color filter having the same, and to provide a light conversion film containing the cured product of the ink composition. .
  • the present invention relates to the following (1) to (13).
  • the ink composition of the present invention comprises luminescent nanocrystalline particles, a photopolymerizable component; containing a hindered amine compound,
  • the photopolymerizable component has at least one Hansen Solubility Parameter (HSP) ⁇ D of 16 to 17.5 MPa 0.5 , ⁇ P of 2.5 to 5 MPa 0.5 and ⁇ H of 3 to 6 MPa 0.5 It is characterized by containing a photopolymerizable compound of the type.
  • HSP Hansen Solubility Parameter
  • the photopolymerizable compound is preferably a monofunctional or polyfunctional (meth)acrylate.
  • the photopolymerizable compound is preferably a bifunctional (meth)acrylate represented by the following formula (1).
  • R 1 represents an alkylene group having 4 to 8 carbon atoms, and two R 2 independently represent a hydrogen atom or a methyl group.
  • the proportion of the photopolymerizable compound in the photopolymerizable component is preferably 30% by mass or more.
  • the hindered amine compound preferably has a partial structure represented by the following formula (2). [In Formula (2), R 3 represents a hydrogen atom or a substituent, R 4 represents a linking group, and * represents a bond. ]
  • R 3 in formula (2) is preferably an alkoxy group.
  • the ink composition of the invention preferably further contains an antioxidant.
  • the ink composition of the present invention is preferably used in a droplet ejection method using an inkjet system.
  • the light conversion layer of the present invention includes a plurality of pixel portions and a light shielding portion provided between the adjacent pixel portions, The plurality of pixel portions have a luminescent pixel portion containing a cured product of the ink composition.
  • the plurality of luminescent pixel portions are A first luminescent pixel containing, as the luminescent nanocrystalline particles, first luminescent nanocrystalline particles that absorb light in a wavelength range of 420 to 480 nm and emit light having an emission peak in a wavelength range of 605 to 665 nm. Department and A second luminescent pixel containing, as the luminescent nanocrystalline particles, second luminescent nanocrystalline particles that absorb light in a wavelength range of 420 to 480 nm and emit light having an emission peak in a wavelength range of 500 to 560 nm. It is preferable to include the part.
  • the plurality of pixel portions further have non-luminous pixel portions containing light-scattering particles.
  • a color filter of the present invention is characterized by comprising the light conversion layer described above.
  • the light conversion film of the present invention is characterized by containing a cured product of the above ink composition.
  • the ink composition which is excellent in the dispersibility of a luminescent nanocrystal particle, and can prevent the deterioration of a light emission characteristic
  • the light conversion layer which is excellent in a light emission characteristic, a color filter, and a light conversion film
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of a color filter according to one embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing one embodiment of the light conversion film of one embodiment of the present invention.
  • a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the term “cured product of the ink composition” refers to a product obtained by curing the curable component in the ink composition (the ink composition after drying when the ink composition contains a solvent component). This is the resulting cured product. It should be noted that the cured product of the dried ink composition may not contain a solvent component.
  • the ink composition of the present invention contains luminescent nanocrystalline particles, a photopolymerizable component, and a hindered amine compound.
  • the photopolymerizable component has a Hansen Solubility Parameter ( HSP ) of at least It contains one photopolymerizable compound.
  • the ink composition of the present invention is used, for example, to form the pixel portion of the light conversion layer of a color filter or the like. That is, the ink composition of the present invention is preferably used as an ink composition for forming a light conversion layer (for example, for forming a color filter pixel portion or for forming a light conversion film). According to such an ink composition, the dispersibility of the luminescent nanocrystalline particles is excellent, and deterioration of optical properties can be prevented. Although the reason why the above effects are obtained is not clear, the present inventors speculate as follows.
  • the hindered amine compound has the effect of suppressing deterioration due to oxidation of the luminescent nanocrystalline particles.
  • affinity with both the luminescent nanocrystalline particles and the hindered amine compound is enhanced, and these are uniformly distributed in the ink composition. can be done. Therefore, the luminescent nanocrystalline particles are uniformly dispersed in the ink composition, and the uniformly dissolved hindered amine compound acts favorably on the luminescent nanocrystalline particles to prevent deterioration of the luminescent nanocrystalline particles. can do.
  • the dispersibility of the luminescent nanocrystalline particles is excellent, and deterioration of the optical properties can be sufficiently prevented.
  • Such an effect of preventing deterioration of optical properties is suitably exhibited during storage of the ink composition, during fabrication of the pixel portion, and the like.
  • the ink composition of the present invention there is a tendency to obtain a light conversion layer having excellent external quantum efficiency. Furthermore, according to the ink composition of the present invention, since the luminescent nanocrystalline particles are uniformly dispersed, excellent ejection stability can be achieved in a droplet ejection method by an inkjet system (hereinafter referred to as an "inkjet method"). easy to obtain. That is, the ink composition of the invention can be suitably used in the inkjet method. Furthermore, according to the ink composition of the present invention, since the luminescent nanocrystalline particles are uniformly dispersed, it is easy to obtain excellent applicability in a printing method using a coating method (hereinafter referred to as a “coating method”). . That is, the ink composition of the present invention can be suitably used in coating methods.
  • a coating method hereinafter referred to as a “coating method”.
  • the pixel portion is used in an environment where it is exposed to light, it is required that the external quantum efficiency does not decrease due to light (light stability). When used, it cannot be said that a pixel portion having sufficient photostability is necessarily obtained.
  • the ink composition of the present invention the existence of the hindered amine compound tends to suppress the decrease in the external quantum efficiency due to light. That is, according to the ink composition of the present invention, a light conversion layer having excellent light stability can be formed.
  • the ink composition of one embodiment can be applied as an ink for manufacturing color filters.
  • the pixel portion (light conversion layer) can be formed only by using the amount necessary for the above, it is preferable to prepare and use it so as to be suitable for the inkjet method rather than the photolithographic method.
  • the ink composition of one embodiment is preferably carried between barrier films and used as a wavelength conversion film.
  • Such an ink composition contains, in addition to luminescent nanocrystalline particles, a photopolymerizable component and a hindered amine compound, if necessary, an organic ligand (hereinafter sometimes referred to as a “ligand”), a light scattering Other ingredients such as organic particles, polymeric dispersants, organic solvents, etc. may be further included.
  • ligand organic ligand
  • An ink composition according to one embodiment will be described below, taking an ink composition (inkjet ink) used in an inkjet method as an example.
  • Luminescent nanocrystalline particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence.
  • the luminescent nanocrystalline particles are, for example, crystals having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or scanning electron microscope.
  • Luminescent nanocrystalline particles can, for example, emit light (fluorescence or phosphorescence) of a wavelength different from the absorbed wavelength by absorbing light of a predetermined wavelength.
  • the luminescent nanocrystalline particles may be red luminescent nanocrystalline particles that emit light having an emission peak in the wavelength range of 605-665 nm (red light), and light having an emission peak in the wavelength range of 500-560 nm ( green light), and blue light-emitting nanocrystalline particles that emit light having an emission peak in the wavelength range of 420-480 nm (blue light).
  • the ink composition preferably contains at least one of these luminescent nanocrystalline particles.
  • the light absorbed by the luminescent nanocrystalline particles is, for example, light with a wavelength of 400 nm or more and less than 500 nm (especially, wavelength of 420 to 480 nm) (blue light), or light with a wavelength of 200 nm to 400 nm (ultraviolet light).
  • the wavelength of the emission peak of the luminescent nanocrystalline particles can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured using a spectrofluorometer.
  • the red-emitting nanocrystalline particles have a wavelength of 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less.
  • preferably has an emission peak in the range of 632 nm or less or 630 nm or less, and has an emission peak in the wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more, or 605 nm or more.
  • these upper limit and lower limit can be combined arbitrarily.
  • the upper limit and the lower limit individually described can be arbitrarily combined.
  • the green-emitting nanocrystalline particles have an emission peak in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less.
  • It preferably has an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
  • the blue-emitting nanocrystalline particles have an emission peak in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less.
  • It preferably has an emission peak in the wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
  • the wavelength (emission color) of the light emitted by the luminescent nanocrystalline particles depends on the size (e.g., particle diameter) of the luminescent nanocrystalline particles. It also depends on the energy gap that the nanocrystalline particles have. Therefore, the emission color can be selected (adjusted) by changing the constituent material and size of the luminescent nanocrystalline particles used.
  • the luminescent nanocrystalline particles may be luminescent nanocrystalline particles containing a semiconductor material (luminescent semiconductor nanocrystalline particles).
  • luminescent nanocrystalline particles include quantum dots and quantum rods.
  • quantum dots are preferred as the luminescent nanocrystalline particles from the viewpoint that the emission spectrum can be easily controlled, reliability can be ensured, production costs can be reduced, and mass productivity can be improved.
  • the luminescent nanocrystalline particles may consist only of a core comprising a first semiconductor material and a second semiconductor covering at least a portion of the core and different from the first semiconductor material. and a shell containing the material.
  • the structure of the luminescent nanocrystalline particles may be a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core/shell structure).
  • the luminescent nanocrystalline particles also include a shell (first shell) containing a second semiconductor material, and a third semiconductor material covering at least a portion of this shell and different from the first and second semiconductor materials. It may further have a shell (second shell).
  • the structure of the luminescent nanocrystalline particles may be a structure consisting of a core, a first shell and a second shell (core/shell/shell structure). moreover.
  • Each of the core and shell may be a mixed crystal containing two or more semiconductor materials (eg, CdSe+CdS, CIS+ZnS, etc.).
  • the luminescent nanocrystalline particles are at least one selected from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors and I-II-IV-VI group semiconductors. semiconductor material.
  • Specific semiconductor materials include, for example, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe ⁇ CdZnTe ⁇ CdHgS ⁇ CdHgSe ⁇ CdHgTe ⁇ HgZnS ⁇ HgZnSe ⁇ CdHgZnTe ⁇ CdZnSeS ⁇ CdZnSeTe ⁇ CdZnSTe ⁇ CdHgSeS ⁇ CdHgSeTe ⁇ CdHgSTe ⁇ HgZnSeS ⁇ HgZnSeTe ⁇ HgZnSTe ⁇ HgSeS ⁇ CdHgSe
  • Luminescent nanocrystalline particles are CdS, CdSe, CdTe, ZnS, ZnSe, and ZnTe from the viewpoint that the emission spectrum can be easily controlled, reliability can be ensured, production costs can be reduced, and mass productivity can be improved.
  • HgS, HgSe, HgTe InP, InAs, InSb, GaP, GaAs, GaSb, AgInS2, AgInSe2 , AgInTe2 , AgInGaS , AgGaS2 , AgGaSe2 , AgGaTe2 , CuInS2 , CuInSe2 , CuInTe It preferably contains at least one semiconductor material selected from the group consisting of CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge and Cu 2 ZnSnS 4 .
  • red-emitting nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles with a core of CdSe and a shell of CdS, nanocrystalline particles with a core of ZnSe and a shell of CdS, mixed crystals of CdSe and ZnS.
  • nanocrystalline particles of InP nanocrystalline particles with a core of InP and a shell of ZnS
  • nanocrystalline particles with a core of InP and a shell of a mixed crystal of ZnS and ZnSe nanocrystalline particles with a core of InP and a shell of a mixed crystal of ZnS and ZnSe
  • mixed crystals of CdSe and CdS nanocrystalline particles of a mixed crystal of ZnSe and CdS nanocrystalline particles comprising a core of InP, a first shell of ZnSe and a second shell of ZnS, a core of InP, a mixed crystal of ZnS and ZnSe Nanocrystalline particles with a first shell and a second shell of ZnS, and the like.
  • Examples of green-emitting nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles of a mixed crystal of CdSe and ZnS, nanocrystalline particles having a core of InP and a shell of ZnS, a core of InP and ZnS and ZnSe. a core of InP, a first shell of ZnSe and a second shell of ZnS, a core of InP, a first shell of a mixed crystal of ZnS and ZnSe and ZnS Examples include nanocrystalline particles with a second shell.
  • Blue-emitting nanocrystalline particles include, for example, nanocrystalline particles of ZnSe, nanocrystalline particles of ZnS, nanocrystalline particles with a core of ZnS and a shell of ZnSe, nanocrystalline particles of CdS, a core of InP and a shell of ZnS.
  • Nanocrystalline particles comprising a core of InP and a shell of a mixed crystal of ZnS and ZnSe Nanocrystalline particles comprising a core of InP, a first shell of ZnSe and a second shell of ZnS, a core of InP, ZnS and ZnSe mixed crystal first shell and ZnS second shell.
  • the color to be emitted from the nanocrystalline particles can be changed to either red or green.
  • the luminescent nanocrystalline particles may be nanocrystals made of metal halide from the viewpoint of obtaining an emission peak with a narrower half-width.
  • a nanocrystal made of metal halide is a compound semiconductor containing A , M and X, and is a compound represented by the general formula : AaMbXc .
  • A represents a monovalent cation and is at least one of an organic cation and a metal cation.
  • Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
  • M represents a metal ion and is at least one metal cation.
  • Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
  • X is at least one anion. Examples of anions include halide ions such as chloride ions, bromide ions, iodide ions, and cyanide ions.
  • a is 1-7, b is 1-4, and c is 3-16.
  • the emission wavelength (emission color) of such nanocrystals can be controlled by adjusting the particle size and the type and abundance of anions that constitute the X site.
  • the compound represented by the general formula AaMmXx is AMX , A4MX , AMX2 , AMX3 , A2MX3 , AM2X3 , A2MX4 , A2MX 5 , A3MX5 , A3M2X5 , A3MX6 , A4MX6 , AM2X6 , A2MX6 , A4M2X6 , A3MX8 , A3M2 _ _ Compounds represented by X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 and A 7 M 3 X 16 are preferred. wherein A is at least one of an organic cation and a metal cation.
  • Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
  • M is at least one metal cation. Specifically, one metal cation (M 1 ), two metal cations (M 1 ⁇ M 2 ⁇ ), three metal cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ ), four metal cations cations (M 1 ⁇ M 2 ⁇ M 3 ⁇ M 4 ⁇ ) and the like.
  • Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
  • X is an anion containing at least one halogen.
  • halogen anion X 1
  • X 2 ⁇ halogen anions
  • anions include chloride ions, bromide ions, iodide ions, cyanide ions, and the like, including at least one halide ion.
  • the compound composed of the metal halide represented by the above general formula AaMmXx is doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb in order to improve light emission characteristics.
  • metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb in order to improve light emission characteristics.
  • the compound having a perovskite-type crystal structure is adjusted by adjusting the particle size, the type and abundance of metal cations constituting the M site, Furthermore, it is particularly preferable for use as a semiconductor nanocrystal in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance of anions that constitute the X site.
  • compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 and A 2 MX 6 are preferred.
  • A, M and X in the formula are as described above.
  • the compound having the perovskite crystal structure may be doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, as described above.
  • A is Cs, Rb, K, Na, or Li
  • M is one kind of metal cation (M 1 ), or two kinds of It is preferably a metal cation (M 1 ⁇ M 2 ⁇ ) and X is chloride, bromide or iodide.
  • M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, Zr. preferable.
  • Nanocrystals 911 using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 , etc., as specific compositions of nanocrystals made of metal halide and having a perovskite crystal structure, have a light intensity It is preferable because it is excellent in quantum efficiency as well as excellent in In addition, CsSnBr3 , CsSnCl3 , CsSnBr1.5Cl1.5 , Cs3Sb2Br9 , ( CH3NH3 ) 3Bi2Br9 , ( C4H9NH3 ) 2AgBiBr6 , etc. Nanocrystals using metal cations other than Pb as M are preferred due to their low toxicity and low environmental impact.
  • the shape of the luminescent nanocrystalline particles is not particularly limited and may be any geometric shape or any irregular shape.
  • the shape of the luminescent nanocrystalline particles may be, for example, spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, rod-like, and the like.
  • the uniformity and fluidity of the ink composition can be further enhanced by using particles with a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.). point is preferable.
  • the average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is preferably 1 nm or more, and preferably 1.5 nm or more, from the viewpoints of easily obtaining light emission of a desired wavelength and excellent dispersibility and storage stability. and more preferably 2 nm or more.
  • the average particle size of the luminescent nanocrystalline particles is preferably 40 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less, from the viewpoint of easily obtaining light emission of a desired wavelength. .
  • the average particle size (primary particle size) of the luminescent nanocrystalline particles can be determined by directly observing any plurality of luminescent nanocrystalline particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Each particle diameter is calculated from the length and breadth ratio of the projected two-dimensional image, and the average value is obtained.
  • the size and shape of the luminescent nanocrystalline particles are considered to depend on their chemical composition, structure, manufacturing method, manufacturing conditions, and the like.
  • Luminescent nanocrystalline particles preferably have organic ligands near their surfaces.
  • This organic ligand has the function of dispersing the luminescent nanocrystalline particles.
  • the organic ligand includes, for example, a functional group (hereinafter simply referred to as "affinity group”) for ensuring affinity with a photopolymerizable compound, an organic solvent, etc., and a functional group capable of binding to luminescent nanocrystalline particles.
  • affinity group functional group for ensuring adsorptivity to the luminescent nanocrystalline particles
  • Affinity groups may be substituted or unsubstituted aliphatic hydrocarbon groups.
  • An aliphatic hydrocarbon group may be linear or branched. Moreover, the aliphatic hydrocarbon group may or may not have an unsaturated bond.
  • a substituted aliphatic hydrocarbon may be a group in which some carbon atoms of an aliphatic hydrocarbon group are substituted with oxygen atoms.
  • Substituted aliphatic hydrocarbon groups may include, for example, (poly)oxyalkylene groups.
  • the "(poly)oxyalkylene group” means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
  • Functional groups that can bind to luminescent nanocrystalline particles include, for example, hydroxyl groups, amino groups, carboxyl groups, thiol groups, phosphoric acid groups, phosphonic acid groups, phosphine groups, phosphine oxide groups and alkoxysilyl groups.
  • organic ligands examples include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, linoleic acid, linolenic acid, ricinoleic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N - lauroylsarcosine, N-oleylsarcosine, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine acid (OPA).
  • TOP trioctylphosphine
  • TOPO trioctylphosphine oxide
  • oleic acid linoleic
  • the organic ligand may be, for example, a compound represented by formula (L1) below.
  • L1 a compound represented by formula (L1) below.
  • p represents an integer of 0 to 50
  • q represents an integer of 0 to 50.
  • At least one of p and q is preferably 1 or more, more preferably both p and q are 1 or more.
  • the organic ligand may be, for example, a compound represented by formula (L2) below.
  • a 1 represents a monovalent group containing a carboxyl group
  • a 2 represents a monovalent group containing a hydroxyl group
  • R represents a hydrogen atom, a methyl group, or an ethyl group.
  • L represents a substituted or unsubstituted alkylene group
  • r represents an integer of 0 or more.
  • the number of carboxyl groups in the monovalent group containing a carboxyl group may be 2 or more, 2 to 4, or 2.
  • the number of carbon atoms in the alkylene group represented by L may be, for example, 1-10.
  • some of the carbon atoms may be substituted with hetero atoms, and at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
  • r may be, for example, an integer of 1-100, or an integer of 10-20.
  • the organic ligand may be, for example, a compound represented by the following formula (L3) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
  • L3 a compound represented by the following formula (L3) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
  • r has the same definition as above.
  • the organic ligand may be, for example, a compound represented by formula (L4) below.
  • n represents an integer of 0 to 50
  • m represents an integer of 0 to 50.
  • n is preferably 0-20, more preferably 0-10.
  • m is preferably 0-20, more preferably 0-10.
  • At least one of n and m is preferably 1 or more. That is, n+m is preferably 1 or more.
  • n+m is preferably 10 or less.
  • Z represents a substituted or unsubstituted alkylene group. The number of carbon atoms in the alkylene group may be, for example, 1-10. In the alkylene group represented by Z, some of the carbon atoms may be substituted with heteroatoms, and substituted with at least one heteroatom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
  • the organic ligand may be, for example, a compound represented by formula (L5) below. [In the formula (L5), l represents an integer of 1 to 50. ]
  • l may be 1 to 20, 3 to 15, 5 to 10, or 7.
  • the content of the organic ligand in the ink composition is 10 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles, from the viewpoint of the dispersion stability of the luminescent nanocrystalline particles and the maintenance of the light emission properties. Above, it may be 25 parts by mass or more, 30 parts by mass or more, 35 parts by mass or more, or 40 parts by mass or more. From the viewpoint of easily keeping the viscosity of the ink composition low, the content of the organic ligand in the ink composition is 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or It may be 30 parts by mass or less. From these viewpoints, the content of the organic ligand in the ink composition may be, for example, 10 to 50 parts by mass, or even 10 to 15 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles. good.
  • Particles that can be dispersed in a colloidal form in an organic solvent, a photopolymerizable compound, or the like can be suitably used as the luminescent nanocrystalline particles.
  • the surface of the luminescent nanocrystalline particles in the dispersed state is preferably passivated (modified) with the organic ligand.
  • the organic solvent is as described below.
  • Commercially available products can also be used as the luminescent nanocrystalline particles.
  • Commercially available luminescent nanocrystalline particles include, for example, indium phosphide/zinc sulfide, D-dot, CuInS/ZnS manufactured by NN-Labs, and InP/ZnS manufactured by Aldrich.
  • a ligand having a binding group that binds to the cation may be used, and the ligand can stabilize the surface of the nanocrystal.
  • binding group examples include a carboxyl group, a carboxylic anhydride group, an amino group, an ammonium group, a mercapto group, a phosphine group, a phosphine oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and At least one of boronic acid groups is preferred, and at least one of carboxyl and amino groups is more preferred.
  • ligands include carboxyl group- or amino group-containing compounds and the like, and these ligands can be used singly or in combination of two or more.
  • carboxyl group-containing compounds include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms. Specific examples of such carboxyl group-containing compounds include arachidonic acid, crotonic acid, trans-2-decenoic acid, erucic acid, 3-decenoic acid, cis-4,7,10,13,16,19-docosahexaenoic acid.
  • amino group-containing compounds include linear or branched aliphatic amines having 1 to 30 carbon atoms. Specific examples of such amino group-containing compounds include 1-aminoheptadecane, 1-aminononadecane, heptadecane-9-amine, stearylamine, oleylamine, 2-n-octyl-1-dodecylamine, allylamine, and amylamine.
  • the ligand having a bonding group that binds to the cation on the surface of the nanocrystal may be a silane compound containing Si and having a reactive group that forms a siloxane bond by hydrolysis. can further stabilize the nanocrystal surface.
  • a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
  • binding groups include carboxyl groups, amino groups, ammonium groups, mercapto groups, phosphine groups, phosphine oxide groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, sulfonic acid groups, boronic acid groups, and the like. .
  • the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group.
  • silane compound containing Si and having a reactive group that forms a siloxane bond one or more silicon compounds containing a bonding group can be used, or two or more can be used in combination.
  • any one of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound is contained, or two or more of them can be used in combination.
  • carboxyl group-containing silicon compounds include 3-(trimethoxysilyl)propionic acid, 3-(triethoxysilyl)propionic acid, 2-, carboxyethylphenylbis(2-methoxyethoxy)silane, N- [3-(trimethoxysilyl)propyl]-N'-carboxymethylethylenediamine, N-[3-(trimethoxysilyl)propyl]phthalamide, N-[3-(trimethoxysilyl)propyl]ethylenediamine-N,N' , N′-triacetic acid and the like.
  • amino group-containing silicon compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldipropoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiiso Propoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyl Tripropoxysilane, N-(2-aminoethyl)
  • mercapto group-containing silicon compounds include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis(3,6,9,12,15-pentoxaoctacosane-1 -yloxy)silyl]-1-propanethiol and the like.
  • the silica layer can be formed by coordinating ligands such as oleic acid and 3-aminopropyltrimethoxysilane to the surface of the nanocrystals and further reacting with 3-aminopropyltrimethoxysilane. can.
  • the thickness of the silica layer is preferably 0.5-50 nm, more preferably 1.0-30 nm.
  • a luminescent particle having such a thick silica layer can sufficiently improve the stability of the nanocrystal against heat and light.
  • the thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
  • the luminescent particles having a silica layer are composed of a solution containing a raw material compound of nanocrystals, a compound having a bonding group that binds to cations contained in the nanocrystals, and Si to form a siloxane bond.
  • the reactive group in the compound containing Si coordinated to the surface of the precipitated nanocrystal and having a reactive group capable of forming a siloxane bond is condensed. It can be easily produced by At this time, there are a method of manufacturing with heating and a method of manufacturing without heating.
  • Solutions containing two kinds of raw material compounds for synthesizing semiconductor nanocrystals by reaction are prepared respectively.
  • a compound having a bonding group that binds to cations contained in the nanocrystals is added to one of the two solutions, and a compound containing Si and having a reactive group capable of forming a siloxane bond is added to the other.
  • Keep These are then mixed under an inert gas atmosphere and reacted at a temperature of 140 to 260°C.
  • a method of precipitating nanocrystals by cooling to ⁇ 20 to 30° C. and stirring may be used.
  • the precipitated nanocrystals have a silica layer having siloxane bonds formed on the surface of the nanocrystals, and the nanocrystals can be obtained by a conventional method such as centrifugation.
  • a solution containing a raw material compound for semiconductor nanocrystals and a compound having a bonding group that binds to a cation contained in the nanocrystal was added to the solution containing Si.
  • a method of precipitating nanocrystals by dropping and mixing a compound containing a reactive group capable of forming a siloxane bond in an organic solvent, which is a poor solvent for nanocrystals, in the atmosphere. mentioned.
  • the amount of the organic solvent used is preferably 10 to 1000 times the mass of the semiconductor nanocrystals.
  • the deposited nanocrystals have a silica layer having a siloxane bond formed on the surface of the nanocrystals, and can be obtained by a standard method such as centrifugation.
  • a silica layer may be additionally formed on the surface of the nanocrystal on which the shell layer having siloxane bonds is formed.
  • a silica layer is additionally formed, first, a silane compound is mixed with nanocrystals on which a silica layer having siloxane bonds is formed, and siloxane bonds are formed by hydrolysis to form a shell layer.
  • a reaction field is formed by adsorbing a polymer having a structural unit containing a basic group, and then a silane compound is mixed and hydrolyzed to form a siloxane bond to form a silica layer. good too.
  • the silane compound is preferably, for example, a compound represented by the following formula (C1).
  • R C1 and R C2 each independently represent an alkyl group
  • R C3 and R C4 each independently represent a hydrogen atom or an alkyl group
  • n represents 0 or 1
  • m is an integer of 1 or more represents m is preferably an integer of 10 or less.
  • Specific examples of the compound represented by formula (C1) include tetrabutoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyl trimethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, n-propyltrimethoxysilane, isopropyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-octyl trimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, n-dodecyltrimethoxysilane
  • a compound represented by the following formula (C2) and a compound represented by (C3) can be used in combination.
  • R C21 , R C22 and R C31 each independently represent an alkyl group
  • R C23 , R C24 , R C32 , R C33 and R C34 each independently have a hydrogen atom and a substituent.
  • the carbon atoms in the alkyl group may be substituted with an oxygen atom or a nitrogen atom
  • m2 represents an integer of 1 or more and 10 or less.
  • Specific examples of the compound represented by formula (C2) and the compound represented by formula (C3) include dimethyldiethoxysilane, diphenyldimethoxysilane, methylethyldimethoxysilane, and trimethylmethoxysilane.
  • the compounds represented by formula (C1) can be used singly or in combination of two or more.
  • the compound represented by formula (C2) and the compound represented by (C3) can be used alone or in combination with the compound represented by general formula (C1).
  • the total thickness of the silica layers is preferably 0.5-50 nm, more preferably 1.0-30 nm.
  • a luminescent nanocrystal having such a thickness of silica layer can sufficiently enhance the stability of the nanocrystal against heat and light.
  • the thickness can be measured, for example, with a high-resolution electron microscope.
  • the total thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
  • the content of the luminescent nanocrystalline particles in the ink composition is 0.00 parts per 100 parts by mass in total of the components other than the organic solvent contained in the ink composition. It is preferably 1 part by mass or more, 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more. From the viewpoint of further improving the coating properties, ejection stability, and external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles in the ink composition is It is preferably 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is It is preferably 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more with respect to a total of 100 parts by mass.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is 100% of the components other than the organic solvent. It is preferably 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, or 60 parts by mass or less.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is adjusted from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained therein. preferable.
  • the content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is the above organic solvent from the viewpoint of further improving the coatability and the external quantum efficiency of the light conversion layer. It is preferably 15 parts by mass or less, 12.5 parts by mass or less, 10 parts by mass or less, 7.5 parts by mass or less, or 5 parts by mass or less with respect to a total of 100 parts by mass of the other components.
  • the content of the luminescent nanocrystalline particles in the ink composition is the same as that of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is preferably 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, or 5 parts by mass or more with respect to a total of 100 parts by mass.
  • the content of the luminescent nanocrystalline particles in the ink composition is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the coatability, the ejection stability, and the external quantum efficiency of the light conversion layer. It is preferably 30 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less.
  • the term “components other than the organic solvent contained in the ink composition” may be replaced with components constituting the cured product of the ink composition.
  • the “total of components other than the organic solvent contained in the ink composition” can be, for example, the total of the luminescent nanocrystalline particles, the photopolymerizable compound, and the hindered amine compound.
  • the organic solvent is a component that is added as necessary for the purpose of adjusting the viscosity of the ink composition, and may not be added to the ink composition.
  • the content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 5% by mass or more, from the viewpoint of further improving the external quantum efficiency. % by mass or more, preferably 10% by mass or more.
  • the content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 36% by mass or less, 34% by mass or less, or 32% by mass or less from the viewpoint of improving the coating properties, ejection stability, and external quantum efficiency. , 30% by mass or less, preferably 28% by mass or less.
  • the ink composition of the present invention may contain, as luminescent nanocrystalline particles, two or more of red luminescent nanocrystalline particles, green luminescent nanocrystalline particles and blue luminescent nanocrystalline particles. It may contain seeds only.
  • the ink composition contains red-emitting nanocrystalline particles, the content of green-emitting nanocrystalline particles and the content of blue-emitting nanocrystalline particles are 0% by weight, based on the total weight of the luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
  • the content of red luminescent nanocrystalline particles and the content of blue luminescent nanocrystalline particles are 0% by weight, based on the total mass of luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
  • the photopolymerizable component has at least a Hansen solubility parameter ⁇ D of 16 to 17.5 MPa 0.5 , ⁇ P of 2.5 to 5 MPa 0.5 and ⁇ H of 3 to 6 MPa 0.5 It contains one photopolymerizable compound.
  • the Hansen solubility parameter is a parameter obtained by dividing the solubility parameter introduced by Hildebrand into three components ⁇ D, ⁇ P and ⁇ H and expressing them in a three-dimensional space.
  • ⁇ D indicates the effect of non-polar interaction
  • ⁇ P indicates the effect of dipole-dipole force
  • ⁇ H indicates the effect of hydrogen bonding force.
  • Hansen Solubility Parameter values for various compounds can be found, for example, in Charles M. et al. Hansen, "Hansen Solubility Parameters: A Users Handbook”. Hansen solubility parameter values for compounds not listed were also obtained using computer software (Hansen Solubility Parameters in Practice (HSPiP)).
  • ⁇ D is preferably 16 to 17.3 MPa 0.5 , more preferably 16.1 to 17.2 MPa 0.5 .
  • ⁇ P is preferably 2.7 to 4.5 MPa 0.5 , more preferably 3 to 4 MPa 0.5 .
  • ⁇ H is preferably 3 to 5.5 MPa 0.5 , more preferably 3.1 to 5.1 MPa 0.5 .
  • the photopolymerizable component may contain a photopolymerizable compound in which at least one of ⁇ D, ⁇ P and ⁇ H of the Hansen solubility parameters deviates from the above range.
  • a photopolymerizable compound is a compound that polymerizes by irradiation with light, and is, for example, a radical photopolymerizable compound or a cationic photopolymerizable compound.
  • the photopolymerizable compound may be either a photopolymerizable monomer or a photopolymerizable oligomer (hereinafter collectively referred to as "photopolymerizable monomer"). These photopolymerizable compounds are preferably used together with a photoinitiator.
  • a radical photopolymerizable compound is used together with a radical photopolymerization initiator, and a cationic photopolymerizable compound is used together with a cationic photopolymerization initiator.
  • the photopolymerizable component can contain a photopolymerizable compound and a photoinitiator.
  • a photopolymerizable compound a photoradical polymerizable compound and a photocationically polymerizable compound may be used in combination, or a compound having both photoradical polymerizability and photocationic polymerizability may be used.
  • a radical photopolymerization initiator and a cationic photopolymerization initiator may be used in combination.
  • Examples of photoradically polymerizable compounds include monomers having an ethylenically unsaturated group (hereinafter also referred to as “ethylenically unsaturated monomers”), monomers having an isocyanate group, and the like.
  • the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond).
  • Examples of ethylenically unsaturated monomers include monomers having ethylenically unsaturated groups such as vinyl groups, vinylene groups, and vinylidene groups. Monomers having these groups are sometimes referred to as "vinyl monomers”.
  • the number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in the ethylenically unsaturated monomer is preferably 1-3.
  • An ethylenically unsaturated monomer may be used individually by 1 type, or may use 2 or more types together.
  • the ethylenically unsaturated monomer is a monomer having one or two ethylenically unsaturated groups, and ethylene and monomers having two or three polyunsaturated groups.
  • the ethylenically unsaturated monomer is at least selected from the group consisting of a combination of a monofunctional monomer and a bifunctional monomer, a combination of a monofunctional monomer and a trifunctional monomer, and a combination of a bifunctional monomer and a trifunctional monomer. It can be a combination.
  • ethylenically unsaturated groups include vinyl, vinylene and vinylidene groups, as well as (meth)acryloyl groups.
  • a "(meth)acryloyl group” means an "acryloyl group” and a “methacryloyl group” corresponding thereto. The same applies to expressions such as "(meth)acrylate” and "(meth)acrylamide”.
  • the photopolymerizable compound preferably contains a compound having a (meth)acryloyl group as an ethylenically unsaturated group, more preferably (meth)acrylate and (meth)acrylamide, and a monofunctional or polyfunctional (meth)acrylate. It is even more preferable to have (Meth)acrylates are preferred because many compounds have Hansen solubility parameters in the above range.
  • monofunctional or polyfunctional (meth)acrylates include dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dipropylene glycol diacrylate (DPGDA), 1,6 -hexanediol dimethacrylate (HDDMA), 1,6-hexanediol diacrylate (HDDA), and the like.
  • the photopolymerizable compound is particularly preferably a bifunctional (meth)acrylate represented by the following formula (1).
  • R 1 represents an alkylene group having 4 to 8 carbon atoms, and two R 2 independently represent a hydrogen atom or a methyl group.
  • Part of the carbon atoms constituting R 1 may be substituted with an oxygen atom, a sulfur atom, a nitrogen atom, or the like.
  • photo-cationically polymerizable compounds examples include epoxy compounds, oxetane compounds, and vinyl ether compounds.
  • the photopolymerizable compound is preferably alkali-insoluble from the viewpoint of easily obtaining a highly reliable pixel portion (cured product of the ink composition).
  • the photopolymerizable compound being alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is based on the total mass of the photopolymerizable compound. As, it means that it is 30% by mass or less.
  • the dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
  • the content of the photopolymerizable compound in the ink composition is determined from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink, from the viewpoint of improving the curability of the ink composition, and from the viewpoint of the durability of the pixel portion (cured product of the ink composition). From the viewpoint of improving solvent resistance and abrasion resistance, it is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and 20 parts by mass with respect to the total 100 parts by mass of the components other than the organic solvent. More preferably, it is at least 1 part.
  • the content of the photopolymerizable compound is a total of 100 parts by mass of the components other than the organic solvent, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining better light emission characteristics (e.g., external quantum efficiency). is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 40 parts by mass or less.
  • the proportion of the photopolymerizable compound in the photopolymerizable component should be 30% by mass or more from the viewpoint of enhancing the dispersion stability of the luminescent nanocrystalline particles and facilitating the production of a pixel portion with excellent shape stability. is preferred, 45% by mass or more is more preferred, and 60% by mass or more is even more preferred.
  • the upper limit of the proportion of the photopolymerizable compound in the photopolymerizable component is not particularly limited, but is preferably less than 100% by mass, more preferably 90% by mass or less, and even more preferably 80% by mass or less. .
  • the photopolymerization initiator is, for example, a radical photopolymerization initiator or a cationic photopolymerization initiator.
  • a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
  • Molecular cleavage type photoradical polymerization initiators include, for example, benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-benzyl-2-dimethylamino -1-(4-morpholinophenyl)-butan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenyl Phosphine oxide and the like can be preferably used.
  • molecular cleavage type radical photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4 -isopropylphenyl)-2-hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination.
  • Hydrogen abstraction type photoradical polymerization initiators include, for example, benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenylsulfide and the like.
  • a photopolymerization initiator a molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
  • a commercial item can also be used for a photocationic polymerization initiator.
  • photocationic polymerization initiators include, for example, sulfonium salt photocationic polymerization initiators such as “CPI-100P” manufactured by San-Apro Co., Ltd., and “Lucirin” manufactured by BASF. TPO", "Irgacure 907", “Irgacure 819”, “Irgacure 379EG”, “Irgacure 184" and “Irgacure PAG290" manufactured by BASF.
  • the content of the photopolymerization initiator in the ink composition is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass, with respect to 100 parts by mass of the photopolymerizable compound. It is more preferably at least 1 part by mass, even more preferably at least 1 part by mass, particularly preferably at least 3 parts by mass, and most preferably at least 5 parts by mass.
  • the content of the photopolymerization initiator is preferably 40 parts by mass or less and 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). It is more preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less.
  • the hindered amine compound has a function of preventing deterioration of the luminescent nanocrystalline particles by trapping deterioration promoting substances such as ions, radicals, and peroxides generated in the ink composition by the action of ultraviolet rays or visible light. have.
  • the hindered amine compound preferably has a partial structure represented by the following formula (2). [In Formula (2), R 3 represents a hydrogen atom or a substituent, R 4 represents a linking group, and * represents a bond. ]
  • substituent R 3 examples include a hydroxyl group, —O., an alkyl group, an alkoxy group and the like, and an alkoxy group is preferred.
  • the number of carbon atoms in the alkyl group or alkoxy group is preferably 1-20.
  • one or more hydrogen atoms in R 3 may each independently be substituted with a fluorine atom, a chlorine atom or a cyano group
  • the hindered amine compound is preferably a compound represented by (3) below.
  • M represents an alkylene group having 1 to 15 carbon atoms. provided that one or more —CH 2 — present in M is —O—, —CH ⁇ CH—, —C ⁇ C—, —CO—, —OCO—, —COO—, trans-1,4 -Cyclohexylene group, 1,4-phenylene group and naphthalene-2,6-diyl group.
  • M represents an alkylene group having 1 to 15 carbon atoms. provided that one or more —CH 2 — present in M is —O—, —CH ⁇ CH—, —C ⁇ C—, —CO—, —OCO—, —COO—, trans-1,4 -Cyclohexylene group, 1,4-phenylene group and naphthalene-2,6-diyl group.
  • two R 3 are each independently preferably an alkoxy group having 1 to 15 carbon atoms, more preferably an alkoxy group having 1 to 8 carbon atoms.
  • M represents an alkylene group having 1 to 15 carbon atoms.
  • M is preferably an alkylene group having 2 to 10 carbon atoms, more preferably an alkylene group having 4 to 8 carbon atoms. It is more preferably an alkylene group of number 6 or 8.
  • the ink composition preferably further contains an antioxidant.
  • the antioxidant is a compound having a function of imparting excellent external quantum efficiency maintenance performance to the pixel portion.
  • the antioxidant is not particularly limited, and examples thereof include phenol antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among them, the antioxidant is preferably a phenol-based antioxidant or a phosphorus-based antioxidant. In addition, these antioxidants may be used individually by 1 type, or may use 2 or more types together.
  • Phenolic antioxidants are also commonly referred to as hindered phenolic compounds.
  • examples of such phenolic antioxidants include pentaerythritol tetrakis[3-[3,5-di(tert-butyl)-4-hydroxyphenyl]propionate], 2,6-di-t-butyl-p-cresol , 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-di-t-butyl-4-hydroxyphenyl)-propionate, distearyl (3,5-di-t-butyl-4-hydroxy benzyl)phosphonate, thiodiethylene glycol bis[(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,6-hexamethylenebis[(3,5-di-t-butyl-4-hydroxyphenyl) ) propionate], 1,6-hexamethylenebis[(3,5-di-t-
  • pentaerythritol tetrakis[3-[3,5-di(tert-butyl)-4-hydroxyphenyl]propionate] is preferable as the phenolic antioxidant because of its excellent solubility in the ink composition.
  • a phosphite triester compound is, for example, a compound represented by the formula: P(OR 5 ) 3 .
  • P(OR 5 ) 3 a compound represented by the formula: P(OR 5 ) 3 .
  • three R5's each independently represent a monovalent organic group.
  • two R5 's out of the three R5's may be bonded to each other to form a ring structure.
  • the monovalent organic group sufficiently satisfies performance such as affinity with other components (photopolymerizable compound, etc.) in the ink composition, and from the viewpoint of being able to maintain excellent external quantum efficiency of the pixel portion, A monovalent hydrocarbon group is preferred.
  • Examples of monovalent hydrocarbon groups include alkyl groups, aryl groups, and alkenyl groups.
  • the number of carbon atoms in the monovalent hydrocarbon group is preferably 1 to 30, more preferably 4 to 18 from the viewpoint of solubility in the ink composition.
  • Alkyl groups may be straight or branched.
  • alkyl groups include 2-ethylhexyl group, butyl group, octyl group, nonyl group, decyl group, isodecyl group, dodecyl group, hexadecyl group, octadecyl group and the like.
  • aryl groups include phenyl, naphthyl, tert-butylphenyl, di-tert-butylphenyl, octylphenyl, nonylphenyl, isodecylphenyl, isodecylphenyl, and isodecylnaphthyl groups. are mentioned.
  • the monovalent hydrocarbon group is preferably an alkyl group or an aryl group, more preferably an alkyl group or a phenyl group, from the viewpoint of maintaining excellent external quantum efficiency of the pixel portion.
  • At least two of the three R5's are identical to each other.
  • at least one of the three R5's is a phenyl group, more preferably at least two are phenyl groups. It is preferred that at least one of the three R5's is a phenyl group and one is an alkyl group (particularly a branched alkyl group). That is, the phosphite triester compound preferably has at least one phenyl group and one alkyl group.
  • the phosphite triester compound When the phosphite triester compound has the above functional group, it sufficiently satisfies performance such as affinity with other components (photopolymerizable compound, etc.) in the ink composition, and reduces the external quantum efficiency of the pixel portion. can be suppressed.
  • the compound represented by the above formula examples include triphenyl phosphite (triphenylphosphite), 2-ethylhexyldiphenylphosphite, diphenyloctylphosphite and the like.
  • the phosphite triester-based compound may be liquid or solid at room temperature (25° C.), but it may have a similar affinity with other components (photopolymerizable compound, etc.) in the ink composition. It is preferably liquid at room temperature (25° C.) from the viewpoint of sufficiently satisfying the above performance and suppressing a decrease in the external quantum efficiency of the pixel portion.
  • the melting point of the phosphite triester compound is preferably 20° C. or lower, more preferably 10° C. or lower.
  • the content of the antioxidant in the ink composition is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the photopolymerizable component, from the viewpoint of suppressing a decrease in the external quantum efficiency of the pixel portion. It is more preferably 0.1 parts by mass or more, further preferably 0.5 parts by mass or more, particularly preferably 1 part by mass or more, and most preferably 3 parts by mass or more. Even if the antioxidant is added in a small amount, it is possible to effectively suppress the deterioration of the external quantum efficiency of the pixel portion. Therefore, the content of the antioxidant is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and 5 parts by mass or less with respect to 100 parts by mass of the photopolymerizable component. is more preferred.
  • the ink composition may further contain light scattering particles.
  • Light-scattering particles are, for example, optically inactive inorganic particles.
  • the ink composition contains light-scattering particles, it is possible to scatter the light from the light source irradiated to the pixel portion, so excellent optical properties (eg, external quantum efficiency) can be obtained.
  • Materials constituting the light-scattering particles include, for example, simple elements such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold, silicon oxide, barium sulfate, barium carbonate, and carbonic acid.
  • Oxides such as calcium, talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide, magnesium carbonate, carbonate Carbonates such as barium, bismuth subcarbonate, calcium carbonate, hydroxides such as aluminum hydroxide, complex oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, Metal salts such as bismuth subnitrate and the like are included.
  • the light-scattering particles are titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, calcium carbonate, and barium sulfate, from the viewpoint of excellent dispersion stability and ejection stability of the ink composition, and from the viewpoint of improving the external quantum efficiency.
  • barium titanate and silicon oxide preferably at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide and barium titanate. preferable.
  • the shape of the light-scattering particles includes, for example, spherical, filamentary, and irregular shapes.
  • the shape of the light-scattering particles is preferably a shape with less directivity (for example, a spherical shape, a regular tetrahedral shape, etc.).
  • the average particle diameter (volume average diameter) of the light-scattering particles is preferably 0.05 ⁇ m or more, more preferably 0.2 ⁇ m, from the viewpoints of excellent dispersion stability and ejection stability and excellent effect of improving external quantum efficiency. It is more preferably 0.3 ⁇ m or more, and further preferably 0.3 ⁇ m or more. From the viewpoint of excellent dispersion stability and ejection stability, the average particle size of the light-scattering particles is preferably 1 ⁇ m or less, more preferably 0.6 ⁇ m or less, and further preferably 0.4 ⁇ m or less. preferable.
  • the average particle size of the light scattering particles is 0.05 to 1 ⁇ m, 0.05 to 0.6 ⁇ m, 0.05 to 0.4 ⁇ m, 0.2 to 1 ⁇ m, 0.2 to 0.6 ⁇ m, 0.2 to It is preferably 0.4 ⁇ m, 0.3-1 ⁇ m, 0.3-0.6 ⁇ m or 0.3-0.4 ⁇ m.
  • the average particle diameter of the light scattering particles is obtained by measuring with a dynamic light scattering Nanotrack particle size distribution meter and calculating the volume average diameter.
  • the average particle size of the light-scattering particles to be used can be obtained, for example, by measuring the particle size of each particle with a transmission electron microscope or scanning electron microscope and calculating the volume average size.
  • the content of the light-scattering particles in the ink composition is 0.00 parts per 100 parts by mass of the components other than the organic solvent contained in the ink composition. It is preferably 1 part by mass or more, more preferably 1 part by mass or more, and even more preferably 3 parts by mass or more.
  • the content of the light-scattering particles is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of excellent dispersion stability and ejection stability and from the viewpoint of improving the external quantum efficiency of the light conversion layer. It is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
  • the mass ratio of the content of the light-scattering particles to the content of the luminescent nanocrystalline particles (light-scattering particles/luminescent nanocrystalline particles) is 0.5 from the viewpoint of improving the external quantum efficiency of the light conversion layer. It is preferably 1 or more, more preferably 0.2 or more, and even more preferably 0.5 or more.
  • the above mass ratio (light-scattering particles/luminescent nanocrystalline particles) is 5 or less from the viewpoint of excellent effect of improving the external quantum efficiency of the light conversion layer, and particularly excellent continuous ejection property (ejection stability) in the inkjet method. is preferably , more preferably 2 or less, and even more preferably 1.5 or less.
  • the total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. On the other hand, it is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more.
  • the total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. On the other hand, it is preferably 75 parts by mass or less, more preferably 65 parts by mass or less, and even more preferably 55 parts by mass or less.
  • the ink composition may further contain a polymeric dispersant.
  • the polymeric dispersant is preferably a polymeric compound having a weight-average molecular weight of 750 or more and having a functional group having affinity for the light-scattering particles.
  • the polymeric dispersant has a function of stably dispersing the light-scattering particles in the ink composition.
  • the polymer dispersant adsorbs to the light-scattering particles via a functional group that has an affinity for the light-scattering particles, and electrostatic repulsion and/or steric repulsion between the polymer dispersants causes light-scattering properties.
  • the particles are dispersed in the ink composition.
  • the ink composition contains a polymer dispersant
  • the polymeric dispersant is preferably bound to the surface of the light-scattering particles.
  • the polymeric dispersant may be bound to the surface of the luminescent nanocrystalline particles or may be free in the ink composition.
  • Functional groups that have an affinity for light scattering particles include acidic functional groups, basic functional groups and nonionic functional groups. Acidic functional groups have dissociative protons and may be neutralized with bases such as amines and hydroxide ions, while basic functional groups are neutralized with acids such as organic acids and inorganic acids. It may be neutralized.
  • acidic functional groups include carboxyl group (--COOH), sulfo group (--SO 3 H), sulfate group (--OSO 3 H), phosphonic acid group (--PO(OH) 3 ), phosphoric acid group (--OPO ( OH) 3 ), phosphinic acid group (--PO(OH)--), mercapto group (--SH) and the like.
  • Basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
  • Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate group, amide group, Carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group, phosphine sulfide group and the like.
  • the polymeric dispersant may be a polymer (homopolymer) of a single monomer, or a copolymer (copolymer) of a plurality of types of monomers. Moreover, the polymeric dispersant may be any of random copolymers, block copolymers and graft copolymers. When the polymeric dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer.
  • polymer dispersants include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, epoxy resins, polyamines such as polyethyleneimine and polyallylamine, and polyimides. etc.
  • a commercial item can also be used for a polymeric dispersing agent.
  • Commercially available polymeric dispersants include, for example, Ajinomoto Fine-Techno Co., Inc.'s Ajisper PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series.
  • the ink composition may contain an organic solvent, if desired.
  • organic solvents include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether, diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, and succinic acid. diethyl, 1,4-butanediol diacetate, glyceryl triacetate and the like.
  • the boiling point of the organic solvent is preferably 150° C. or higher, more preferably 180° C. or higher, from the viewpoint of continuous ejection stability. Further, when forming the pixel portion, it is necessary to remove the solvent from the ink composition before the ink composition is cured. Therefore, from the viewpoint of easy removal of the organic solvent, the boiling point of the organic solvent is preferably 300° C. or less. preferable.
  • the organic solvent preferably contains an acetate compound having a boiling point of 150° C. or higher.
  • an acetate compound having a boiling point of 150° C. or higher In this case, the affinity between the luminescent nanocrystalline particles and the organic solvent is further improved, and the luminescent nanocrystalline particles can exhibit excellent luminous properties.
  • acetate compounds include monoacetate compounds such as diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, and propylene.
  • Diacetate compounds such as glycol diacetate, glyceryl triacetate, and the like are included.
  • the photopolymerizable compound since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse the light-scattering particles and the luminescent nanocrystalline particles without a solvent. In this case, there is an advantage that the step of removing the organic solvent by drying is not required when forming the pixel portion.
  • the ink composition may further contain components other than the components described above as long as the effects of the present invention are not impaired.
  • the ink composition may have a viscosity of 2 mPa ⁇ s or more, 5 mPa ⁇ s or more, or 7 mPa ⁇ s or more.
  • the viscosity during ejection may be 20 mPa ⁇ s or less, 15 mPa ⁇ s or less, or 12 mPa ⁇ s or less.
  • the viscosity of the ink composition during ejection is 2 to 20 mPa ⁇ s, 2 to 15 mPa ⁇ s, 2 to 12 mPa ⁇ s, 5 to 20 mPa ⁇ s, 5 to 15 mPa ⁇ s, 5 to 12 mPa ⁇ s, and 7 to 20 mPa ⁇ s. s, 7 to 15 mPa ⁇ s or 7 to 12 mPa ⁇ s.
  • the viscosity of the ink composition is a value measured at 25° C. using an E-type viscometer.
  • the viscosity of the ink composition during ejection is 2 mPa ⁇ s or more, the meniscus shape of the ink composition at the tip of the ink ejection hole of the ejection head is stabilized. timing control) becomes easier.
  • the ink composition has a viscosity of 20 mPa ⁇ s or less during ejection, the ink composition can be smoothly ejected from the ink ejection holes.
  • the surface tension of the ink composition is preferably a surface tension suitable for inkjet inks, specifically preferably 20 to 40 mN/m, more preferably 25 to 35 mN/m.
  • a surface tension suitable for inkjet inks specifically preferably 20 to 40 mN/m, more preferably 25 to 35 mN/m.
  • the surface tension is 40 mN/m or less, the meniscus shape of the ink composition at the tip of the ink ejection hole is stabilized, so that the ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy.
  • the surface tension is 20 mN/m or more, it is possible to prevent the periphery of the ink ejection hole from being contaminated with the ink composition, so it is possible to suppress the occurrence of flight deflection.
  • the ink composition does not land accurately in the formation region of the pixel portion to be landed, and a pixel portion is insufficiently filled with the ink composition, or a pixel portion formation region adjacent to the pixel portion formation region to be landed (or It is possible to prevent the ink composition from landing on the pixel portion) and lowering the color reproducibility.
  • the surface tension of the ink composition is a value measured at 23° C. using the ring method (also referred to as ring ring method).
  • the ink composition of the present embodiment When used as an inkjet ink, it is preferably applied to a piezo-type inkjet recording apparatus.
  • the ink composition In the piezo method, the ink composition is not instantaneously exposed to high temperatures during ejection. Therefore, the luminescent nanocrystalline particles are less likely to be degraded, and desired light emission characteristics can be easily obtained in the pixel portion (light conversion layer).
  • the ink composition of the embodiment described above can also be used in, for example, a photolithography method in addition to the inkjet method.
  • the ink composition preferably contains an alkali-soluble resin as a binder polymer.
  • the ink composition When the ink composition is used in photolithography, first, the ink composition is applied onto a substrate, and the ink composition is dried to form a coating film.
  • the resulting coating film is soluble in an alkaline developer, and is patterned by being treated with an alkaline developer.
  • an aqueous solution is preferably used as the alkaline developer from the viewpoint of ease of waste liquid treatment, the coating film of the ink composition is treated with an aqueous solution.
  • the luminescent nanocrystalline particles quantum dots, etc.
  • the luminescent nanocrystalline particles are unstable against water, and there is a risk that the luminescent properties (e.g., fluorescence properties) may be impaired by moisture.
  • the ink composition of the present invention contains a hindered amine-based compound, it is possible to reduce the occurrence of such inconveniences, but it is preferably used in an inkjet method that does not require treatment with an alkaline developer (aqueous solution).
  • the coating film of the ink composition is not treated with an alkaline developer, if the ink composition is alkali-soluble, the coating film of the ink composition easily absorbs moisture in the atmosphere. Luminescent nanocrystalline particles (such as quantum dots) may lose their luminescent properties (eg, fluorescence properties) over time. Since the ink composition of the present invention contains a hindered amine compound, it is possible to suitably reduce the occurrence of such inconveniences.
  • the coating film of the ink composition is preferably alkali-insoluble from the viewpoint of more reliably reducing the occurrence of problems due to water absorption. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film.
  • Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound as the photopolymerizable compound.
  • the fact that the coating film of the ink composition is alkali-insoluble means that the amount of dissolution of the coating film of the ink composition in a 1% by mass aqueous solution of potassium hydroxide at 25° C. is the total mass of the coating film of the ink composition. As a standard, it means 30% by mass or less.
  • the dissolved amount is preferably 10% by mass or less, more preferably 3% by mass or less.
  • the ink composition of the present embodiment includes, for example, the above-described components (luminescent nanocrystalline particles (e.g., organic ligand-modified luminescent nanocrystalline particles), photopolymerizable compounds, hindered amine compounds, and other optional component).
  • the method for producing the ink composition may further comprise a step of subjecting the mixture of the constituent components to dispersion treatment. As an example, a method for producing an ink composition containing light-scattering particles will be described below.
  • a method for producing an ink composition containing light-scattering particles includes, for example, a first step of preparing a dispersion of light-scattering particles, and a second step of mixing the dispersion of light-scattering particles and luminescent nanocrystalline particles. 2 steps.
  • the dispersion of light scattering particles may further contain a polymeric dispersant.
  • the dispersion of light-scattering particles may further contain a photopolymerizable compound, and the photopolymerizable compound may be further mixed in the second step.
  • the light-scattering particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
  • light-scattering particles may be mixed with, if necessary, a polymer dispersant, and a photopolymerizable compound, and subjected to dispersion treatment to prepare a dispersion of light-scattering particles. good.
  • Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
  • the light-scattering particles can be dispersed more sufficiently. Therefore, excellent ejection stability and excellent external quantum efficiency can be obtained more easily.
  • the method for producing an ink composition may further include, before the second step, a step of preparing a dispersion of luminescent nanocrystalline particles containing luminescent nanocrystalline particles and a photopolymerizable compound.
  • a dispersion of light-scattering particles and a dispersion of luminescent nanocrystalline particles are mixed.
  • the dispersion of luminescent nanocrystalline particles may be prepared by mixing luminescent nanocrystalline particles and a photopolymerizable compound and performing dispersion treatment.
  • luminescent nanocrystalline particles luminescent nanocrystalline particles having organic ligands on their surfaces may be used. That is, the dispersion of luminescent nanocrystalline particles may further comprise an organic ligand.
  • Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill, a paint conditioner, or a jet mill from the viewpoint of improving the dispersibility of the luminescent nanocrystalline particles and facilitating adjustment of the average particle size of the luminescent nanocrystalline particles to a desired range. According to such a method, the luminescent nanocrystalline particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
  • dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill, a paint conditioner, or a jet mill from the viewpoint of improving the dispersibility of the luminescent nanocrystalline particles and facilitating adjustment of the average particle size of the luminescent
  • the hindered amine compound may be mixed in the first step or the second step. That is, the first step may be a step of preparing a dispersion of light-scattering particles containing light-scattering particles and a hindered amine compound, and optionally a polymer dispersant and a photopolymerizable compound.
  • the second step may be a step of mixing the dispersion of light-scattering particles, the luminescent nanocrystalline particles, the hindered amine compound, and, if necessary, the photopolymerizable compound.
  • the hindered amine compound may be mixed with the dispersion of luminescent nanocrystalline particles prepared before the second step.
  • these components may be mixed with the dispersion of the luminescent nanocrystalline particles or the dispersion of the light-scattering particles.
  • it may be mixed in a mixed dispersion obtained by mixing a dispersion of luminescent nanocrystalline particles and a dispersion of light-scattering particles.
  • An ink composition set of one embodiment includes the ink composition of the embodiment described above.
  • the ink composition set may include an ink composition containing no luminescent nanocrystal particles (non-luminescent ink composition) in addition to the ink composition (luminescent ink composition) of the embodiment described above.
  • a non-luminescent ink composition is, for example, a curable ink composition.
  • the non-luminescent ink composition can have the same composition as the ink composition (luminescent ink composition) of the embodiment described above, except that it does not contain luminescent nanocrystalline particles.
  • a non-luminescent ink composition does not contain luminescent nanocrystalline particles. Therefore, when light is incident on a pixel portion formed of a non-luminous ink composition (a pixel portion containing a cured product of the non-luminous ink composition), the light emitted from the pixel portion is almost the same as the incident light. have the same wavelength. Therefore, the non-luminous ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, if the light from the light source has a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed with the non-luminous ink composition can be a blue pixel portion.
  • the non-luminescent ink composition preferably contains light-scattering particles.
  • incident light can be scattered in the pixel portions formed by the non-luminous ink composition. Thereby, the light intensity difference in the viewing angle of the light emitted from the pixel portion can be reduced.
  • FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment of the invention.
  • the upper side in FIG. 1 will also be referred to as “upper” or “upper”, and the lower side will also be referred to as “lower” or “lower”.
  • a color filter 100 shown in FIG. 1 has a substrate 40 and a light conversion layer 30 provided on the substrate 40 .
  • the light conversion layer 30 includes a plurality of pixel portions 10 and a light shielding portion 20 .
  • the light conversion layer 30 has, as the pixel portions 10, a first pixel portion 10a, a second pixel portion 10b, and a third pixel portion 10c.
  • the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a lattice so as to repeat this order.
  • the light shielding portion 20 is provided between the adjacent pixel portions 10, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion. 10c and the first pixel portion 10a.
  • adjacent pixel portions 10 are separated from each other by the light blocking portion 20 .
  • the first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (luminescent pixel portions) each containing a cured product of the ink composition described above.
  • the cured product contains luminescent nanocrystalline particles, a curing component, and light scattering particles.
  • the first pixel portion 10a includes a first curing component 13a, and first luminescent nanocrystalline particles 11a and first light scattering particles 12a dispersed in the first curing component 13a.
  • the second pixel portion 10b includes a second curing component 13b and second luminescent nanocrystalline particles 11b and second light scattering particles 12b dispersed in the second curing component 13b.
  • the cured component is a component obtained by polymerization of a photopolymerizable compound, and contains a polymer of the photopolymerizable compound and a hindered amine compound.
  • the curing component may include organic components (organic ligands, polymer dispersants, unreacted photopolymerizable compounds, etc.) in the ink composition in addition to the above polymers.
  • the first curing component 13a and the second curing component 13b may be the same or different.
  • the first light-scattering particles 12a and the second light-scattering particles 12b may be the same or different.
  • the first luminescent nanocrystalline particles 11a are red luminescent nanocrystalline particles that absorb light in the wavelength range of 420 to 480 nm and emit light having an emission peak in the wavelength range of 605 to 665 nm. That is, the first pixel section 10a can be said to be a red pixel section for converting blue light into red light.
  • the second luminescent nanocrystalline particles 11b are green luminescent nanocrystalline particles that absorb light in the wavelength range of 420 to 480 nm and emit light having an emission peak in the wavelength range of 500 to 560 nm. That is, the second pixel section 10b can be said to be a green pixel section for converting blue light into green light.
  • the content of the luminescent nanocrystalline particles in the luminescent pixel portion is based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent luminescence intensity and excellent effect of improving the external quantum efficiency, It is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, particularly preferably 20% by mass or more, and 30% by mass or more. is most preferred.
  • the content of the luminescent nanocrystalline particles is 80% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent reliability of the pixel portion and excellent emission intensity. is preferably 75% by mass or less, more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
  • the content of the light-scattering particles in the light-emitting pixel portion is preferably 0.1% by mass or more based on the total weight of the cured product of the light-emitting ink composition, from the viewpoint of improving the external quantum efficiency. It is preferably 1% by mass or more, more preferably 3% by mass or more.
  • the content of the light-scattering particles is 60% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency and the reliability of the pixel portion. is preferably 50% by mass or less, more preferably 40% by mass or less, 30% by mass or less, or 25% by mass or less, particularly preferably 20% by mass or less, and 15 % or less is most preferable.
  • the third pixel portion 10c is a non-luminous pixel portion (non-luminous pixel portion) containing a cured product of the non-luminous ink composition described above.
  • the cured product does not contain luminescent nanocrystalline particles, but contains light-scattering particles and a curing component.
  • the third pixel portion 10c includes a third curing component 13c and third light scattering particles 12c dispersed in the third curing component 13c.
  • the third curing component 13c is, for example, a component obtained by polymerization of a photopolymerizable compound, and includes a polymer of the photopolymerizable compound.
  • the third light scattering particles 12c may be the same as or different from the first light scattering particles 12a and the second light scattering particles 12b.
  • the third pixel portion 10c preferably has a transmittance of 30% or more for light with a wavelength of 420 to 480 nm, for example.
  • the third pixel section 10c can function as a blue pixel section by using a light source that emits light in the wavelength range of 420 to 480 nm.
  • the transmittance of the third pixel section 10c can be measured with a microscopic spectrometer.
  • the content of the light-scattering particles in the third pixel portion (non-luminous pixel portion) 10c is based on the total weight of the cured non-luminous ink composition, from the viewpoint of further reducing the difference in light intensity at the viewing angle. , preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more. From the viewpoint of further reducing light reflection, the content of the light-scattering particles is preferably 80% by mass or less, and 75% by mass or less, based on the total mass of the cured non-luminescent ink composition. is more preferably 70% by mass or less.
  • the thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, and further preferably 3 ⁇ m or more. preferable.
  • the thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the second pixel portion 10c) is preferably 30 ⁇ m or less, more preferably 20 ⁇ m or less, and further preferably 15 ⁇ m or less. preferable.
  • the light shielding portion 20 is a partition portion (black matrix) provided for the purpose of separating adjacent pixel portions to prevent color mixture (crosstalk) and for the purpose of preventing leakage of light from the light source.
  • the constituent material of the light shielding portion 20 is not particularly limited, but in addition to a metal such as chromium, a resin composition containing a binder resin and light shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments. are mentioned.
  • Binder resins include, for example, polyimide resins, acrylic resins, epoxy resins, polyacrylamides, polyvinyl alcohols, gelatin, casein, resins containing two or more of cellulose, photosensitive resins, O/W emulsion resins (e.g. , reactive silicone emulsion) and the like can be used.
  • the thickness of the light shielding portion 20 is preferably 1 to 30 ⁇ m.
  • the base material 40 is a transparent base material having optical transparency.
  • a transparent glass substrate made of quartz glass, Pyrex (registered trademark) glass, synthetic quartz, etc., a transparent resin film, a transparent flexible substrate such as an optical resin film, or the like is used. be able to.
  • a glass substrate made of alkali-free glass that does not contain an alkali component in the glass as the substrate 40 .
  • alkali-free glass include "7059 glass”, “1737 glass”, “Eagle 200" and “Eagle XG” manufactured by Corning, "AN100” manufactured by AGC, and "OA-10G” and "OA-11". These materials have a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
  • the color filter 100 including the light conversion layer 30 described above can be suitably used in combination with a light source that emits light in the wavelength range of 420-480 nm.
  • the color filter 100 is formed by forming the light shielding portions 20 in a pattern on the substrate 40 and then forming the pixel portions 10 in the pixel portion forming regions partitioned by the light shielding portions 20 on the substrate 40.
  • the pixel portion 10 is formed by a step of selectively applying an ink composition (inkjet ink) to a pixel portion forming region on the substrate 40 by an inkjet method, and applying an active energy ray (for example, ultraviolet rays) to the ink composition. irradiating and curing the ink composition.
  • an ink composition inkjet ink
  • an active energy ray for example, ultraviolet rays
  • the light-shielding portion 20 can be formed in a region that serves as a boundary between a plurality of pixel portions on one surface of the substrate 40 by patterning a thin film of a metal such as chromium or a thin film of a resin composition containing light-shielding particles.
  • a metal thin film can be formed by, for example, a sputtering method, a vacuum deposition method, or the like.
  • a thin film of a resin composition containing light-shielding particles can be formed by, for example, a method such as coating or printing. As a method for patterning, a photolithography method or the like can be used.
  • Examples of the ink jet method include a bubble jet (registered trademark) method using an electrothermal transducer as an energy generating element, and a piezo jet method using a piezoelectric element.
  • the ink composition contains an organic solvent, it is preferable to remove at least part of the organic solvent, more preferably all of the organic solvent is removed during drying.
  • the method for drying the ink composition is preferably drying under reduced pressure (reduced pressure drying). From the viewpoint of controlling the composition of the ink composition, the drying under reduced pressure is usually carried out under a pressure of 1.0 to 500 Pa at 20 to 30° C. for 3 to 30 minutes.
  • Curing of the ink composition can be performed using, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like.
  • the wavelength of light for irradiation is preferably 200 to 440 nm, and the exposure dose is preferably 10 to 4000 mJ/cm 2 .
  • the present invention is not limited to these.
  • the light conversion layer may include a pixel portion (blue pixel portion) containing a cured luminescent ink composition containing blue luminescent nanocrystalline particles instead of or in addition to the third pixel portion 10c. good.
  • the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing luminescent nanocrystalline particles that emit light of a color other than red, green, and blue. may be
  • each of the luminescent nanocrystalline particles contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength within the same wavelength range.
  • the pixel portion 10 of the light conversion layer 30 may include a cured product of a composition containing a pigment other than the luminescent nanocrystalline particles.
  • the color filter 100 may include an ink-repellent layer made of an ink-repellent material having a narrower width than the light-shielding portion 20 on the light-shielding portion 20 .
  • a photocatalyst-containing layer as a variable wettability layer is formed in a solid manner in a region including a pixel portion formation region, and then light is applied to the photocatalyst-containing layer through a photomask. By irradiating and exposing, the ink affinity (wettability) of the formation region of the pixel portion may be selectively increased.
  • photocatalysts include titanium oxide and zinc oxide.
  • the color filter 100 may have an ink-receiving layer containing hydroxypropylcellulose, polyvinyl alcohol, gelatin or the like between the substrate and the 40-pixel portion 10 .
  • the color filter may have a protective layer on the pixel section 10 . This protective layer is provided to planarize the color filter and prevent components contained in the pixel section 10 and components contained in the photocatalyst-containing layer from eluting into other layers.
  • the material used as the protective layer of the color filter 100 can be used as a constituent material of the protective layer.
  • the pixel portion may be formed by the photolithography method instead of the inkjet method.
  • the ink composition is applied in layers on the substrate 40 to form an ink composition layer.
  • the ink composition layer is exposed in a predetermined pattern, it is developed using a developer.
  • the pixel portion 10 made of the cured ink composition is formed.
  • the developer is usually alkaline, an alkali-soluble material is used as the material for the ink composition.
  • the inkjet method is superior to the photolithography method from the viewpoint of efficiency of material usage. This is because the photolithographic method, in principle, removes approximately two-thirds or more of the material, which wastes the material. Therefore, in the present embodiment, it is preferable to use the ink composition as an inkjet ink and form the pixel portion by an inkjet method.
  • the pixel portion 10 of the light conversion layer 30 of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystalline particles, in addition to the luminescent nanocrystalline particles described above.
  • the pigment may be mixed with the ink composition.
  • the portion may be a pixel portion that does not contain luminescent nanocrystalline particles and contains a coloring material.
  • usable coloring materials include, for example, a diketopyrrolopyrrole pigment and/or an anionic red organic dye for the red light-emitting pixel portion (R).
  • At least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine green dye, a mixture of a phthalocyanine blue dye and an azo yellow organic dye is used in the green light emitting pixel portion (G).
  • the blue light-emitting pixel portion (B) includes an ⁇ -type copper phthalocyanine pigment and/or a cationic blue organic dye.
  • the amount of these colorants used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) 10 from the viewpoint of preventing a decrease in transmittance when mixed in the light conversion layer 30. %.
  • the ink composition of the invention is also suitable for light conversion films.
  • methods for carrying the ink composition of the present invention on a substrate include spin coating, die coating, extrusion coating, roll coating, wire bar coating, gravure coating, spray coating, and dipping.
  • an organic solvent may be added to the ink composition during coating.
  • organic solvents include hydrocarbon solvents, halogenated hydrocarbon solvents, ether solvents, alcohol solvents, ketone solvents, ester solvents, and aprotic solvents. , hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents are preferable.
  • organic solvents include toluene, hexane, heptane, cyclohexane, and methylcyclohexane. These may be used alone or in combination, and may be appropriately selected in consideration of the vapor pressure and the solubility of the luminescent particle-containing composition.
  • a method for volatilizing the added organic solvent natural drying, drying by heating, drying under reduced pressure, and drying by heating under reduced pressure can be used.
  • the thickness of the film may be appropriately adjusted depending on the application, but is preferably, for example, 0.1 ⁇ m or more and 10 mm or less, and particularly preferably 1 ⁇ m or more and 1 mm or less.
  • the shape of the substrate when the ink composition of the present invention is carried on the substrate it may have a curved surface as a constituent part, in addition to the flat plate.
  • the material constituting the substrate can be used regardless of whether it is an organic material or an inorganic material.
  • organic materials for the substrate include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, and triacetyl.
  • Cellulose, cellulose, polyether ether ketone, etc., and inorganic materials include, for example, silicon, glass, calcite, and the like.
  • the temperature during irradiation is preferably within a temperature range in which the particle shape of the luminescent nanocrystalline particles is maintained.
  • the intensity of the active energy ray is preferably 0.1 mW/cm 2 or more and 2.0 W/cm 2 or less. If the intensity is less than 0.1 mW/ cm2 , a long time is required to complete the photopolymerization, resulting in poor productivity. There is a risk that the ink composition will deteriorate.
  • the light conversion film that uses the ink composition of the present invention obtained by polymerization as a forming material can be subjected to heat treatment for the purpose of reducing initial changes in properties and stably developing properties.
  • the heat treatment temperature is preferably in the range of 50 to 250° C.
  • the heat treatment time is preferably in the range of 30 seconds to 12 hours.
  • the light conversion film formed by the ink composition of the present invention produced by such a method may be used alone after peeling from the substrate, or may be used without peeling. Moreover, the obtained light conversion film may be laminated, or may be used by bonding to another substrate.
  • the laminated structure may have arbitrary layers such as a substrate, a barrier layer, and a light scattering layer.
  • the material constituting the substrate include those mentioned above.
  • the structure of the laminated structure include a structure in which a light conversion film having the ink composition of the present invention as a forming material is sandwiched between two substrates. In that case, in order to protect the light conversion film formed from the ink composition from moisture and oxygen in the air, the peripheral portion between the substrates may be sealed with a sealing material.
  • the barrier layer include polyethylene terephthalate and glass.
  • a light scattering layer may be provided to uniformly scatter light.
  • the light-scattering layer includes, for example, a layer containing the light-scattering particles and a light-scattering film.
  • FIG. 2 is a cross-sectional view schematically showing the configuration of the laminated structure of this embodiment. In FIG. 2, hatching indicating a cross section is omitted in order to avoid complication of the drawing.
  • the laminated structure 50 has a light conversion film 54 of the present embodiment sandwiched between a first substrate 51 and a second substrate 52 .
  • the light conversion film 54 is formed using an ink composition containing light scattering particles 541 and luminescent nanocrystalline particles 542 as a forming material. distributed over The light conversion film 54 is sealed with a sealing layer 53 made of a sealing material.
  • a laminated structure containing a light conversion film formed from the ink composition of the present invention is suitable for light emitting device applications.
  • Examples of the configuration of the light-emitting device include a structure having a prism sheet, a light guide plate, a laminated structure containing the light-emitting particles of the present invention, and a light source.
  • Light sources include, for example, light emitting diodes, lasers, and electroluminescent devices.
  • a laminated structure containing a light conversion film formed from the ink composition of the present invention is preferably used as a wavelength conversion member for displays.
  • a wavelength conversion member for example, a laminated structure in which a light conversion film containing the luminescent particle-containing composition of the present invention as a forming material is sealed between two barrier layers is attached to a light guide plate.
  • a structure to be installed on top is mentioned. In this case, the blue light from the light emitting diodes installed on the side surface of the light guide plate is converted into green light or red light by passing through the laminated structure, and the blue light, green light, and red light are mixed. Since white light can be obtained, it can be used as a backlight for displays.
  • Photopolymerization initiator 1 phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide
  • Photopolymerization initiator 2 phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide 1-3
  • Hindered amine compound Hindered amine compound 1 decanedicarboxylic acid bis (2,2,6,6-tetramethyl-1-(octyloxy)-4-piperidinyl) ester 1-4.
  • Antioxidant Antioxidant 1 Bis (decyl) pentaerythritol diphosphite
  • Antioxidant 2 pentaerythritol tetrakis [3-[3,5-di(tert-butyl)-4-hydroxyphenyl]propionate]
  • the hexane dispersion of the obtained InP nanocrystal particles and the indium laurate solution were charged into a reaction flask to obtain a mixture.
  • the amounts of the hexane dispersion of InP nanocrystal particles and the indium laurate solution were adjusted to 0.5 g (25 mg of InP nanocrystal particles) and 5 g (178 mg of indium laurate), respectively.
  • the inside of the flask was returned to normal pressure with nitrogen gas, the temperature of the mixture was raised to 230°C, and the temperature was maintained for 2 hours to remove hexane from the inside of the flask. .
  • InP nanocrystalline particles which are the cores of the green-emitting InP/ZnSeS/ZnS nanocrystalline particles.
  • the obtained InP nanocrystalline particles were dispersed in hexane to obtain a dispersion (hexane dispersion) containing 5% by mass of InP nanocrystalline particles (InP cores).
  • Green Luminescent Particle 2 (Silica-coated CsPbBr 3 ) First, 6.0 g of cesium carbonate, 250 mL of 1-octadecene, and 25 mL of oleic acid were mixed to obtain a mixture. Next, this mixed solution was dried under reduced pressure at 120° C. for 30 minutes, and then heated at 150° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
  • Green Light Emitting Particle 4 (Silica Multilayer Coated FAPbBr 3 ) 4 g of a block copolymer (S2VP, manufactured by PolymerSource.) having a structure represented by the following formula (B4) was added to 400 mL of toluene and dissolved by heating at 60°C. Luminescent particles 3 were added to a toluene solution in which the block copolymer was dissolved so that the concentration of the luminescent particles 3 was 0.16% by mass, stirred for 15 minutes, centrifuged, and the supernatant was collected. , luminescent particles 3 and a block copolymer were obtained.
  • Luminescent particles 4 were obtained by removing toluene from this dispersion.
  • the average particle size of the luminescent particles 4 was measured using a dynamic light scattering nanotrack particle size distribution meter and found to be 95 nm.
  • STEM-EDS energy dispersive X-ray analysis method
  • the thickness of the surface layer was measured, it was about 5 nm. Further, for the luminescent particles, weight reduction was confirmed in the range of 200 to 550 ° C. by thermogravimetric differential thermal analysis (TG-DTA; temperature increase rate 10 ° C./min, under nitrogen atmosphere) measurement. was suggested to contain On the other hand, the used block copolymer was identified as a component by pyrolysis gas chromatograph mass spectrometer (TD/Py-GC/MS) measurement.
  • TG-DTA thermogravimetric differential thermal analysis
  • TD/Py-GC/MS pyrolysis gas chromatograph mass spectrometer
  • Light-scattering particle dispersion (Light-scattering particle dispersion 1) In a container filled with argon gas, 5.23 g of titanium oxide (product name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (Ajisper 0.27 g of PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 4.5 g of photopolymerizable compound 3 were mixed.
  • titanium oxide product name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm
  • a polymer dispersant Align 0.27 g of PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.
  • zirconia beads (diameter: 1.25 mm) were added to the obtained mixture, the mixture was dispersed by shaking for 2 hours using a paint conditioner, and the zirconia beads were removed with a polyester mesh filter to remove light.
  • a scattering particle dispersion 1 titanium oxide content: 52.3% by mass was obtained.
  • Light-scattering particle dispersion 2 A light-scattering particle dispersion 2 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 5.
  • Light-scattering particle dispersion 3 A light-scattering particle dispersion 3 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 4.
  • Light-scattering particle dispersion 4 A light-scattering particle dispersion 4 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 6.
  • Light-scattering particle dispersion 5 A light-scattering particle dispersion 5 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 9.
  • Green light-emitting particles 1, light-scattering particle dispersion 1, photopolymerizable compound 3, photopolymerization initiator 1, photopolymerization initiator 2, and hindered amine compound 1, and the content of each component is shown in Table 2. (unit: parts by mass), and uniformly mixed in a container filled with argon gas. After that, the mixture was filtered through a filter with a pore size of 5 ⁇ m in a glove box. Furthermore, argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas. Next, the green ink composition 1 of Example 1 was obtained by removing the argon gas under reduced pressure.
  • Example 2 In the same manner as in Example 1, except that the photopolymerizable compound 5 was used instead of the photopolymerizable compound 3, and the light-scattering particle dispersion 2 was used instead of the light-scattering particle dispersion 1. A green ink composition 2 was obtained. (Example 3) Further, a green ink composition 3 was obtained in the same manner as in Example 2, except that Antioxidant 1 and Antioxidant 2 were used in the amounts shown in Table 2.
  • Example 4 Photopolymerizable compound 6 and photopolymerizable compound 4 were used in the amounts shown in Table 2 in place of photopolymerizable compound 5, and light-scattering particle dispersion 3 was used in place of light-scattering particle dispersion 2.
  • a green ink composition 4 was obtained in the same manner as in Example 2, except that it was used.
  • Example 5 Photopolymerizable compound 6, photopolymerizable compound 4, and photopolymerizable compound 9 are used in the amounts shown in Table 2 in place of photopolymerizable compound 5, and light scattering particles are used in place of light scattering particle dispersion 2.
  • a green ink composition 5 was obtained in the same manner as in Example 3, except that the organic particle dispersion 3 was used.
  • Example 6 Photopolymerizable compound 6, photopolymerizable compound 3, photopolymerizable compound 1, and photopolymerizable compound 4 were used in the amounts shown in Table 2 in place of photopolymerizable compound 5, and light-scattering particle dispersion 2 A green ink composition 6 was obtained in the same manner as in Example 3, except that the light-scattering particle dispersion 1 was used instead of .
  • Example 1 A green ink composition C1 was obtained in the same manner as in Example 1, except that the hindered amine compound 1 was omitted and the contents of the respective components were blended so as to be the amounts shown in Table 3.
  • Example 7 green luminescent particles 2, light scattering particle dispersion 1, photopolymerizable compound 5, photopolymerizable compound 12, photopolymerization initiator 1, photopolymerization initiator 2, and hindered amine compound 1,
  • the components were blended so that the amounts (unit: parts by mass) shown in Table 4 were obtained, and mixed uniformly in a vessel filled with argon gas. After that, the mixture was filtered through a filter with a pore size of 5 ⁇ m in a glove box. Furthermore, argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas. Next, the green ink composition 7 of Example 7 was obtained by removing the argon gas under reduced pressure.
  • Example 8 A green ink composition 8 was obtained in the same manner as in Example 7, except that the green luminescent particles 3 were used instead of the green luminescent particles 2.
  • Example 9 A green ink composition 9 was obtained in the same manner as in Example 7, except that the green luminescent particles 4 were used instead of the green luminescent particles 2.
  • Example 10 Green luminescent particles 2, light scattering particle dispersion 1, photopolymerizable compound 5, photopolymerizable compound 11, photopolymerizable compound 12, photopolymerization initiator 1, photopolymerization initiator 2, hindered amine System compound 1 was blended so that the content of each component was the amount (unit: parts by mass) shown in Table 5, and mixed uniformly in a vessel filled with argon gas. After that, the mixture was filtered through a filter with a pore size of 5 ⁇ m in a glove box. Furthermore, argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas. Next, the green ink composition 10 of Example 7 was obtained by removing the argon gas under reduced pressure.
  • Example 11 A green ink composition 11 was obtained in the same manner as in Example 10, except that the green light-emitting particles 3 were used instead of the green light-emitting particles 2.
  • Example 12 A green ink composition 12 was obtained in the same manner as in Example 10, except that the green luminescent particles 4 were used instead of the green luminescent particles 2.
  • Example 5 A green ink composition C5 was obtained in the same manner as in Example 10, except that the use of the hindered amine compound 1 was omitted and the contents of each component were blended so as to be the amounts shown in Table 5.
  • a blue LED (manufactured by CCS Co., Ltd.) that emits light having an emission peak at a wavelength of 450 nm was used as a surface emitting light source.
  • an integrating sphere was connected to a radiation spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "MCPD-9800"), and the integrating sphere was placed above the blue LED.
  • the produced evaluation sample was inserted between the blue LED and the integrating sphere, and the spectrum observed by lighting the blue LED and the illuminance at each wavelength were measured.
  • the external quantum efficiency was determined as follows from the spectrum and illuminance measured by the above measuring device.
  • the external quantum efficiency is a value indicating how much of the light (photons) incident on the light conversion layer is emitted to the observer side as fluorescence. Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
  • EQE (%) P1 (Green)/E (Blue) x 100
  • E (Blue) and P1 (Green) each represent the following values.
  • E (Blue) represents the total value of “illuminance ⁇ wavelength/hc” in the wavelength range of 380 to 490 nm.
  • P1 (Green) represents the total value of “illuminance ⁇ wavelength/hc” in the wavelength range of 500 to 650 nm. These values correspond to the number of photons observed.
  • h represents Planck's constant and c represents the speed of light.
  • the light conversion layers using the ink compositions 1 to 6 of the present invention are compared to the light conversion layers using the ink compositions C1 to C3 of Comparative Examples 1 to 3. Therefore, it can be seen that the EQE maintenance rate is good. It is believed that this is because the hindered amine compound acts effectively in the ink composition containing the photopolymerizable compound having the Hansen solubility parameter within the specific range. Further, as shown in Examples 3, 5 and 6, the light conversion layers using the ink compositions 3, 5 and 6 of the present invention are formed from ink compositions further containing an antioxidant and are very excellent. It can be seen that the EQE maintenance rate is
  • the light conversion layer using ink compositions 7 to 9 of the present invention had better EQE than the light conversion layer using ink composition C4 of Comparative Example 4. It can be seen that the retention rate is good. In particular, the light conversion layer of Example 7 has a better EQE retention rate than the light conversion layer of Comparative Example 4. Therefore, even in the durability imparting particles coated with silica, the durability is improved by the hindered amine compound. I know you do. Moreover, when Examples 7 to 9 are compared, it can be seen that the light conversion layer using ink composition 9 containing green light-emitting particles 4 is particularly excellent.
  • the light conversion films using the ink compositions 10 to 12 of the present invention had a higher EQE retention rate than the light conversion film using the ink composition C5 of Comparative Example 5. is good.
  • the light conversion film of Example 10 has a better EQE retention ratio than the light conversion film of Comparative Example 5, so even in the durability imparting particles coated with silica, the durability is improved by the hindered amine compound. I know you do.
  • the light conversion layer and the light conversion film obtained by the ink composition of the present invention have high stability against light and heat.
  • Light scattering part 10 pixel section 10a first pixel section 10b second pixel section 10c third pixel section 11a first luminescent nanocrystalline particles 11b second luminescent nanocrystalline particles 12a first light scattering particles 12b second light scattering particles 12c third 3 Light scattering particles 20 Light shielding part 30 Light conversion layer 40 Base material 100 Color filter 50 Laminated structure 51 First substrate 52 Second substrate 53 Sealing layer 54 Light conversion film 541 Light scattering particles 542 Light emitting particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is an ink composition that has exceptional dispersibility of luminescent nanocrystal particles and that is capable of preventing any reduction of luminescence. This ink composition is characterized by containing luminescent nanocrystal particles, a photopolymerizable component, and a hindered amine compound, and also is characterized in that the photopolymerizable component includes at least one photopolymerizable compound having a δD of 16-17.5 MPa0.5, a δP of 2.5-5 MPa0.5, and a δH of 3-6 MPa0.5 in the Hansen solubility parameters (HSP). The photopolymerizable compound is preferably a monofunctional or polyfunctional (meth)acrylate.

Description

インク組成物、光変換層、カラーフィルタおよび光変換フィルムInk composition, light conversion layer, color filter and light conversion film
 本発明は、インク組成物、光変換層、カラーフィルタおよび光変換フィルムに関する。 The present invention relates to an ink composition, a light conversion layer, a color filter and a light conversion film.
 液晶表示装置は、携帯端末、テレビ、モニター等の用途に広く用いられている。これらの液晶表示装置に使用されるカラーフィルタは、ブラックマトリクスと、赤色、緑色および青色の画素パターンとを形成するフォトリソグラフィ法によって製造されている。具体的には、フォトリソグラフィ法では、顔料や染料等の色材を含有する感光性樹脂組成物を基板上に塗布、乾燥後、UV照射でマスク露光し、アルカリ現像により未硬化部分を除去した後、焼成することが行われる。また、近年は、白色光を発光する有機EL素子とカラーフィルタとを組み合わせた自発光表示装置も、テレビ、モニター等の用途に広く用いられている。 Liquid crystal display devices are widely used for applications such as mobile terminals, televisions, and monitors. Color filters used in these liquid crystal display devices are manufactured by a photolithographic method that forms a black matrix and red, green and blue pixel patterns. Specifically, in the photolithography method, a photosensitive resin composition containing coloring materials such as pigments and dyes is coated on a substrate, dried, mask-exposed with UV irradiation, and uncured portions are removed by alkali development. Firing is then performed. Further, in recent years, self-luminous display devices in which an organic EL element that emits white light and a color filter are combined are also widely used for applications such as televisions and monitors.
 しかしながら、これらのカラーフィルタを使用した表示装置では、原理的に少なくとも67%の光がカラーフィルタで吸収されるため、カラーフィルタ自体の透過率の向上による低消費電力化には根本的な限界があった。 However, in display devices using these color filters, in principle, at least 67% of the light is absorbed by the color filters, so there is a fundamental limit to reducing power consumption by improving the transmittance of the color filters themselves. there were.
 この低消費電力化に対する課題を解決するため、近年、上記顔料や染料に代えて、例えば量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ粒子を用いて赤色光又は緑色光を取り出す光変換フィルムやカラーフィルタ画素部のような光変換層が活発に研究されている。 In order to solve the problem of low power consumption, in recent years, instead of the above pigments and dyes, for example, luminescent nanoparticles such as quantum dots, quantum rods, and other inorganic phosphor particles have been used to emit red or green light. Active research is being conducted on light conversion layers such as light conversion films to be taken out and color filter pixel portions.
 この光変換層は、画像表示装置のバックライトユニットに搭載される。例えば、赤色光を発光する量子ドット及び緑色光を発光する量子ドットを含む光変換フィルムに対して励起光として青色光を照射すると、量子ドットから発光された赤色光及び緑色光と、光変換フィルムを透過した青色光とにより白色光を得ることができる。 This light conversion layer is mounted on the backlight unit of the image display device. For example, when a light conversion film containing quantum dots that emit red light and quantum dots that emit green light is irradiated with blue light as excitation light, the red light and green light emitted from the quantum dots and the light conversion film White light can be obtained with the blue light that has passed through.
 また、この光変換層は、例えば、ブラックマトリクスを形成した基板上に、青色光により励起され、赤色の蛍光を発する赤色発光性量子ドット層と、青色光により励起され、緑色の蛍光を発する緑色発光性量子ドット層と、青色光を透過する青色光透過層とを形成してなる。かかる光変換層と、青色発光するLEDバックライトや青色発光する有機EL素子と組み合わせることにより、液晶表示装置や自発光表示装置が構成されている。 Further, the light conversion layer includes, for example, a red-emitting quantum dot layer that emits red fluorescence when excited by blue light and a green quantum dot layer that emits green fluorescence when excited by blue light on a substrate on which a black matrix is formed. It is formed by forming a luminescent quantum dot layer and a blue light transmission layer that transmits blue light. A liquid crystal display device or a self-luminous display device is configured by combining such a light conversion layer with an LED backlight that emits blue light or an organic EL element that emits blue light.
 このような光変換層を備える表示装置では、従来のカラーフィルタを備える表示装置よりも光利用効率を高めることができる。また、量子ドットから発せられる半値幅の小さいスペクトルを有する蛍光を、そのまま表示装置の色表示に利用できるため、色再現範囲の広い表示装置とすることができる。 A display device with such a light conversion layer can increase light utilization efficiency more than a display device with a conventional color filter. In addition, since fluorescence emitted from the quantum dots and having a spectrum with a small half-value width can be used as it is for color display of the display device, the display device can have a wide color reproduction range.
 例えば、量子ドットを含む感光性樹脂組成物を用いて、基板の一方の全面に塗布し紫外線照射により硬化させて光変換フィルムを製造する方法が知られている。 For example, a method is known in which a photosensitive resin composition containing quantum dots is applied to one entire surface of a substrate and cured by ultraviolet irradiation to produce a light conversion film.
 また、例えば、光変換層を、量子ドットを含む感光性樹脂組成物を用いて、基板の一方の面側に塗膜を形成し、フォトリソグラフィ法によりパターニングした後、得られた塗膜を加熱処理により硬化させて製造する方法が知られている(例えば、特許文献1参照)。
 しかしながら、フォトリソグラフィ法によれば、工程数が多く煩雑であり、また、アルカリ現像により除去される感光性樹脂組成物が発生することから、原材料の無駄が必然的に生じることになる。
Alternatively, for example, the light conversion layer is formed by forming a coating film on one side of the substrate using a photosensitive resin composition containing quantum dots, patterning the coating film by photolithography, and then heating the resulting coating film. A method of hardening by treatment is known (see, for example, Patent Document 1).
However, according to the photolithography method, the number of steps is large and complicated, and since the photosensitive resin composition is removed by alkali development, raw materials are inevitably wasted.
 原材料の無駄を低減できる手法として、インクジェット法による製造方法が知られている。インクジェット法によれば、光変換層における赤色発光性量子ドット層と緑色発光性量子ドット層とを同時に形成することができるため、製造効率を高められる。また、吐出されたインク(感光性樹脂組成物)の全てを使用することができるため、フォトリソグラフィ法のような原材料の無駄も生じ難い。
 例えば、量子ドットを分散させたインクジェットインクとしては、青色発光する有機EL素子との組み合わせで使用される光変換層のパターニングに使用する例が開示されている(例えば、特許文献2参照)。
A manufacturing method using an inkjet method is known as a method capable of reducing waste of raw materials. According to the inkjet method, the red light-emitting quantum dot layer and the green light-emitting quantum dot layer in the light conversion layer can be formed at the same time, so that the manufacturing efficiency can be improved. In addition, since all of the ejected ink (photosensitive resin composition) can be used, waste of raw materials such as in photolithography is less likely to occur.
For example, as an inkjet ink in which quantum dots are dispersed, an example of use for patterning a light conversion layer used in combination with an organic EL element emitting blue light is disclosed (see, for example, Patent Document 2).
特開2016-53716号公報JP 2016-53716 A 国際公開第2008/001693号WO2008/001693
 しかしながら、量子ドットを含有するインク組成物やその製膜品は、大気に含まれる酸素や水分が原因で劣化する問題があった。本発明者らの検討によれば、特に、量子ドットを含有するインク組成物に光重合性成分を混合して紫外線で硬化する場合や、量子ドットを含有する被膜を形成した後の工程で、大気中の酸素や水分の存在下に、紫外線や可視光を照射すると、量子ドットが劣化し易いことが判明した。 However, there is a problem that ink compositions containing quantum dots and their film products deteriorate due to oxygen and moisture contained in the atmosphere. According to the studies of the present inventors, in particular, when a photopolymerizable component is mixed with an ink composition containing quantum dots and cured with ultraviolet rays, or in a process after forming a film containing quantum dots, It was found that quantum dots tend to deteriorate when exposed to ultraviolet light or visible light in the presence of atmospheric oxygen or moisture.
 これらの問題は、量子ドットを酸素や水分から隔離してしまえば回避できるものの、量子ドットを含有するインク組成物を大面積の領域に供給して、塗布物や印刷物を製造する場合、塗布物や印刷物を完全に大気から隔離することは、産業応用上大きなデメリットがある。すなわち、塗布装置や印刷装置の大部分を高純度の不活性ガスで満たした空間に配置せざるを得ず、巨額の設備投資と高額なランニングコストとが必要となる。 These problems can be avoided by isolating the quantum dots from oxygen and moisture. Completely isolating the printed matter from the atmosphere has a big demerit in terms of industrial application. That is, most of the coating device and the printing device have to be placed in a space filled with a high-purity inert gas, which requires a huge capital investment and a high running cost.
 そこで、本発明の目的の一つは、ヒンダードアミン系化合物と、所定の特性を有する光重合性化合物とを併用することにより、発光性ナノ結晶粒子の分散性に優れ、かつ発光特性の低下を防止し得るインク組成物を提供することにある。さらに、本発明の目的は、当該インク組成物の硬化物を含む光変換層及びそれを備えたカラーフィルタを提供すること、当該インク組成物の硬化物を含む光変換フィルムを提供することにある。 Therefore, one of the objects of the present invention is to use a hindered amine compound and a photopolymerizable compound having predetermined properties in combination to achieve excellent dispersibility of luminescent nanocrystalline particles and prevent deterioration of luminescent properties. It is an object of the present invention to provide an ink composition capable of Further objects of the present invention are to provide a light conversion layer containing a cured product of the ink composition and a color filter having the same, and to provide a light conversion film containing the cured product of the ink composition. .
 本発明は、下記(1)~(13)に関する。
 (1) 本発明のインク組成物は、発光性ナノ結晶粒子と、
 光重合性成分と、
 ヒンダードアミン系化合物とを含有し、
 前記光重合性成分は、ハンセン溶解度パラメータ(HSP)におけるδDが16~17.5MPa0.5、δPが2.5~5MPa0.5、かつ、δHが3~6MPa0.5である少なくとも1種の光重合性化合物を含むことを特徴とする。
The present invention relates to the following (1) to (13).
(1) The ink composition of the present invention comprises luminescent nanocrystalline particles,
a photopolymerizable component;
containing a hindered amine compound,
The photopolymerizable component has at least one Hansen Solubility Parameter (HSP) δD of 16 to 17.5 MPa 0.5 , δP of 2.5 to 5 MPa 0.5 and δH of 3 to 6 MPa 0.5 It is characterized by containing a photopolymerizable compound of the type.
 (2) 本発明のインク組成物では、前記光重合性化合物は、単官能または多官能の(メタ)アクリレートであることが好ましい。
 (3) 本発明のインク組成物では、前記光重合性化合物は、下記式(1)で表される2官能の(メタ)アクリレートであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 [式(1)中、Rは、炭素数4~8のアルキレン基を示し、2つのRは、それぞれ独立して水素原子またはメチル基を示す。]
(2) In the ink composition of the invention, the photopolymerizable compound is preferably a monofunctional or polyfunctional (meth)acrylate.
(3) In the ink composition of the invention, the photopolymerizable compound is preferably a bifunctional (meth)acrylate represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000003
[In formula (1), R 1 represents an alkylene group having 4 to 8 carbon atoms, and two R 2 independently represent a hydrogen atom or a methyl group. ]
 (4) 本発明のインク組成物では、前記光重合性成分中に占める前記光重合性化合物の割合は、30質量%以上であることが好ましい。
 (5) 本発明のインク組成物では、前記ヒンダードアミン系化合物は、下記式(2)で表される部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000004
 [式(2)中、Rは、水素原子または置換基を示し、Rは、連結基を示し、*は、結合手を示す。]
(4) In the ink composition of the present invention, the proportion of the photopolymerizable compound in the photopolymerizable component is preferably 30% by mass or more.
(5) In the ink composition of the present invention, the hindered amine compound preferably has a partial structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000004
[In Formula (2), R 3 represents a hydrogen atom or a substituent, R 4 represents a linking group, and * represents a bond. ]
 (6) 本発明のインク組成物では、前記式(2)中のRは、アルコキシ基であることが好ましい。
 (7) 本発明のインク組成物は、さらに、酸化防止剤を含有することが好ましい。
 (8) 本発明のインク組成物は、インクジェット方式による液滴吐出法に用いられることが好ましい。
(6) In the ink composition of the present invention, R 3 in formula (2) is preferably an alkoxy group.
(7) The ink composition of the invention preferably further contains an antioxidant.
(8) The ink composition of the present invention is preferably used in a droplet ejection method using an inkjet system.
 (9) 本発明の光変換層は、複数の画素部と、隣り合う前記画素部同士の間に設けられた遮光部とを備え、
 前記複数の画素部は、上記インク組成物の硬化物を含む発光性画素部を有することを特徴とする。
(9) The light conversion layer of the present invention includes a plurality of pixel portions and a light shielding portion provided between the adjacent pixel portions,
The plurality of pixel portions have a luminescent pixel portion containing a cured product of the ink composition.
 (10) 本発明の光変換層では、前記複数の発光性画素部は、
 前記発光性ナノ結晶粒子として、波長420~480nmの範囲の光を吸収して、波長605~665nmの範囲に発光ピークを有する光を発する第1発光性ナノ結晶粒子を含有する第1発光性画素部と、
 前記発光性ナノ結晶粒子として、波長420~480nmの範囲の光を吸収して、波長500~560nmの範囲に発光ピークを有する光を発する第2発光性ナノ結晶粒子を含有する第2発光性画素部とを含むことが好ましい。
(10) In the light conversion layer of the present invention, the plurality of luminescent pixel portions are
A first luminescent pixel containing, as the luminescent nanocrystalline particles, first luminescent nanocrystalline particles that absorb light in a wavelength range of 420 to 480 nm and emit light having an emission peak in a wavelength range of 605 to 665 nm. Department and
A second luminescent pixel containing, as the luminescent nanocrystalline particles, second luminescent nanocrystalline particles that absorb light in a wavelength range of 420 to 480 nm and emit light having an emission peak in a wavelength range of 500 to 560 nm. It is preferable to include the part.
 (11) 本発明の光変換層では、前記複数の画素部は、さらに、光散乱性粒子を含有する非発光性画素部を有することが好ましい。
 (12) 本発明のカラーフィルタは、上記光変換層を備えることを特徴とする。
 (13) 本発明の光変換フィルムは、上記インク組成物の硬化物を含むことを特徴とする。
(11) In the light conversion layer of the present invention, it is preferable that the plurality of pixel portions further have non-luminous pixel portions containing light-scattering particles.
(12) A color filter of the present invention is characterized by comprising the light conversion layer described above.
(13) The light conversion film of the present invention is characterized by containing a cured product of the above ink composition.
 本発明によれば、発光性ナノ結晶粒子の分散性に優れ、かつ発光特性の低下を防止し得るインク組成物、発光特性に優れる光変換層、カラーフィルタ及び光変換フィルムを提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the ink composition which is excellent in the dispersibility of a luminescent nanocrystal particle, and can prevent the deterioration of a light emission characteristic, the light conversion layer which is excellent in a light emission characteristic, a color filter, and a light conversion film can be provided. .
図1は、本発明の一実施形態のカラーフィルタの一実施形態を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing one embodiment of a color filter according to one embodiment of the present invention. 図2は、本発明の一実施形態の光変換フィルムの一実施形態を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing one embodiment of the light conversion film of one embodiment of the present invention.
 以下、本発明の実施形態について詳細に説明する。なお、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 また、本明細書において、「インク組成物の硬化物」とは、インク組成物(インク組成物が溶剤成分を含む場合には、乾燥後のインク組成物)中の硬化性成分を硬化させて得られる硬化物である。なお、乾燥後のインク組成物の硬化物中には、溶剤成分が含まれなくてよい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail. In this specification, a numerical range indicated using "-" indicates a range including the numerical values before and after "-" as the minimum and maximum values, respectively.
Further, in this specification, the term “cured product of the ink composition” refers to a product obtained by curing the curable component in the ink composition (the ink composition after drying when the ink composition contains a solvent component). This is the resulting cured product. It should be noted that the cured product of the dried ink composition may not contain a solvent component.
 <インク組成物>
 本発明のインク組成物は、発光性ナノ結晶粒子と、光重合性成分と、ヒンダードアミン系化合物とを含有する。そして、光重合性成分は、ハンセン溶解度パラメータ(HSP)におけるδDが16~17.5MPa0.5、δPが2.5~5MPa0.5、かつ、δHが3~6MPa0.5である少なくとも1種の光重合性化合物を含んでいる。
<Ink composition>
The ink composition of the present invention contains luminescent nanocrystalline particles, a photopolymerizable component, and a hindered amine compound. The photopolymerizable component has a Hansen Solubility Parameter ( HSP ) of at least It contains one photopolymerizable compound.
 本発明のインク組成物は、例えば、カラーフィルタ等が有する光変換層の画素部を形成するために用いられる。すなわち、本発明のインク組成物は、光変換層形成用(例えば、カラーフィルタ画素部の形成用や光変換フィルムの形成用)のインク組成物に使用することが好ましい。
 かかるインク組成物によれば、発光性ナノ結晶粒子の分散性に優れ、かつ光学特性の低下を防止することができる。
 上記効果が得られる理由は、明らかではないが、本発明者らは、以下のように推察している。
The ink composition of the present invention is used, for example, to form the pixel portion of the light conversion layer of a color filter or the like. That is, the ink composition of the present invention is preferably used as an ink composition for forming a light conversion layer (for example, for forming a color filter pixel portion or for forming a light conversion film).
According to such an ink composition, the dispersibility of the luminescent nanocrystalline particles is excellent, and deterioration of optical properties can be prevented.
Although the reason why the above effects are obtained is not clear, the present inventors speculate as follows.
 ヒンダードアミン系化合物は、発光性ナノ結晶粒子の酸化による劣化を抑制する効果を有する。また、光重合性化合物として上記範囲のHSPを有する化合物を選択することにより、発光性ナノ結晶粒子およびヒンダードアミン系化合物の双方との親和性が高まり、これらがインク組成物中に均一に分布することができる。
 このため、インク組成物中において、発光性ナノ結晶粒子が均一に分散するとともに、均一に溶解したヒンダードアミン系化合物が発光性ナノ結晶粒子に良好に作用して、発光性ナノ結晶粒子の劣化を防止することができる。その結果、本発明のインク組成物によれば、発光性ナノ結晶粒子の分散性に優れ、かつ光学特性の低下を十分に防止することができるものと考えられる。かかる光学特性の低下防止効果は、インク組成物の保管時、画素部の作製時等において好適に発揮される。
The hindered amine compound has the effect of suppressing deterioration due to oxidation of the luminescent nanocrystalline particles. In addition, by selecting a compound having HSP within the above range as the photopolymerizable compound, affinity with both the luminescent nanocrystalline particles and the hindered amine compound is enhanced, and these are uniformly distributed in the ink composition. can be done.
Therefore, the luminescent nanocrystalline particles are uniformly dispersed in the ink composition, and the uniformly dissolved hindered amine compound acts favorably on the luminescent nanocrystalline particles to prevent deterioration of the luminescent nanocrystalline particles. can do. As a result, according to the ink composition of the present invention, it is considered that the dispersibility of the luminescent nanocrystalline particles is excellent, and deterioration of the optical properties can be sufficiently prevented. Such an effect of preventing deterioration of optical properties is suitably exhibited during storage of the ink composition, during fabrication of the pixel portion, and the like.
 また、本発明のインク組成物によれば、優れた外部量子効率を有する光変換層が得られる傾向がある。
 さらに、本発明のインク組成物によれば、発光性ナノ結晶粒子が均一に分散するため、インクジェット方式による液滴吐出法(以下、「インクジェット法」と記載する。)において優れた吐出安定性が得られ易い。すなわち、本発明のインク組成物は、インクジェット法に好適に使用することができる。
 さらに、本発明のインク組成物によれば、発光性ナノ結晶粒子が均一に分散するため、コーティング方式による印刷法(以下、「コーティング法」と記載する。)において優れた塗布性が得られ易い。すなわち、本発明のインク組成物は、コーティング法に好適に使用することができる。
Further, according to the ink composition of the present invention, there is a tendency to obtain a light conversion layer having excellent external quantum efficiency.
Furthermore, according to the ink composition of the present invention, since the luminescent nanocrystalline particles are uniformly dispersed, excellent ejection stability can be achieved in a droplet ejection method by an inkjet system (hereinafter referred to as an "inkjet method"). easy to obtain. That is, the ink composition of the invention can be suitably used in the inkjet method.
Furthermore, according to the ink composition of the present invention, since the luminescent nanocrystalline particles are uniformly dispersed, it is easy to obtain excellent applicability in a printing method using a coating method (hereinafter referred to as a “coating method”). . That is, the ink composition of the present invention can be suitably used in coating methods.
 ところで、画素部は、光に曝される環境で使用されるため、光によって外部量子効率が低下しないこと(光安定性)が求められるが、従来の発光性ナノ結晶粒子を含むインク組成物を使用した場合、必ずしも充分な光安定性を有する画素部が得られるとは言えない。
 一方、本発明のインク組成物によれば、ヒンダードアミン系化合物の存在により、光による外部量子効率の低下が抑制される傾向がある。すなわち、本発明のインク組成物によれば、光安定性に優れる光変換層を形成することができる。
By the way, since the pixel portion is used in an environment where it is exposed to light, it is required that the external quantum efficiency does not decrease due to light (light stability). When used, it cannot be said that a pixel portion having sufficient photostability is necessarily obtained.
On the other hand, according to the ink composition of the present invention, the existence of the hindered amine compound tends to suppress the decrease in the external quantum efficiency due to light. That is, according to the ink composition of the present invention, a light conversion layer having excellent light stability can be formed.
 一実施形態のインク組成物は、カラーフィルタの製造用のインクとして適用が可能であるが、比較的高額である発光性ナノ結晶粒子、溶剤等の材料を無駄に消費せずに、必要な箇所に必要な量を用いるだけで、画素部(光変換層)を形成できる点においても、フォトリソグラフィ法よりインクジェット法に適合するように適切に調製して用いることが好ましい。また、一実施形態のインク組成物は、バリアフィルム間に担持させ、波長変換フィルムとして用いることが好ましい。 The ink composition of one embodiment can be applied as an ink for manufacturing color filters. In view of the fact that the pixel portion (light conversion layer) can be formed only by using the amount necessary for the above, it is preferable to prepare and use it so as to be suitable for the inkjet method rather than the photolithographic method. Also, the ink composition of one embodiment is preferably carried between barrier films and used as a wavelength conversion film.
 かかるインク組成物は、発光性ナノ結晶粒子、光重合性成分およびヒンダードアミン系化合物に加えて、必要に応じて、有機リガンド(以下、「配位子」と記載することがある。)、光散乱性粒子、高分子分散剤、有機溶剤等の他の成分をさらに含有することができる。
 以下では、インクジェット法に用いられるインク組成物(インクジェットインク)を例に挙げて、一実施形態のインク組成物について説明する。
Such an ink composition contains, in addition to luminescent nanocrystalline particles, a photopolymerizable component and a hindered amine compound, if necessary, an organic ligand (hereinafter sometimes referred to as a “ligand”), a light scattering Other ingredients such as organic particles, polymeric dispersants, organic solvents, etc. may be further included.
An ink composition according to one embodiment will be described below, taking an ink composition (inkjet ink) used in an inkjet method as an example.
 [発光性ナノ結晶粒子]
 発光性ナノ結晶粒子は、励起光を吸収して蛍光または燐光を発するナノサイズの結晶体である。この発光性ナノ結晶粒子は、例えば、透過型電子顕微鏡または走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
[Luminescent nanocrystalline particles]
Luminescent nanocrystalline particles are nano-sized crystals that absorb excitation light and emit fluorescence or phosphorescence. The luminescent nanocrystalline particles are, for example, crystals having a maximum particle size of 100 nm or less as measured by a transmission electron microscope or scanning electron microscope.
 発光性ナノ結晶粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光または燐光)を発することができる。発光性ナノ結晶粒子は、波長605~665nmの範囲に発光ピークを有する光(赤色光)を発する、赤色発光性ナノ結晶粒子であってよく、波長500~560nmの範囲に発光ピークを有する光(緑色光)を発する、緑色発光性ナノ結晶粒子であってよく、波長420~480nmの範囲に発光ピークを有する光(青色光)を発する、青色発光性ナノ結晶粒子であってもよい。 Luminescent nanocrystalline particles can, for example, emit light (fluorescence or phosphorescence) of a wavelength different from the absorbed wavelength by absorbing light of a predetermined wavelength. The luminescent nanocrystalline particles may be red luminescent nanocrystalline particles that emit light having an emission peak in the wavelength range of 605-665 nm (red light), and light having an emission peak in the wavelength range of 500-560 nm ( green light), and blue light-emitting nanocrystalline particles that emit light having an emission peak in the wavelength range of 420-480 nm (blue light).
 本実施形態では、インク組成物がこれらの発光性ナノ結晶粒子のうちの少なくとも1種を含むことが好ましい。また、発光性ナノ結晶粒子が吸収する光は、例えば、波長400nm以上500nm未満(特に、波長420~480nm)の範囲の光(青色光)、または波長200nm~400nmの範囲の光(紫外光)であってよい。
 なお、発光性ナノ結晶粒子の発光ピークの波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトルまたは燐光スペクトルにおいて確認することができる。
In this embodiment, the ink composition preferably contains at least one of these luminescent nanocrystalline particles. Further, the light absorbed by the luminescent nanocrystalline particles is, for example, light with a wavelength of 400 nm or more and less than 500 nm (especially, wavelength of 420 to 480 nm) (blue light), or light with a wavelength of 200 nm to 400 nm (ultraviolet light). can be
The wavelength of the emission peak of the luminescent nanocrystalline particles can be confirmed, for example, in the fluorescence spectrum or phosphorescence spectrum measured using a spectrofluorometer.
 赤色発光性ナノ結晶粒子は、波長665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下または630nm以下の範囲に発光ピークを有することが好ましく、波長628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上または605nm以上の範囲に発光ピークを有することが好ましい。
 なお、これらの上限値および下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値および下限値は、任意に組み合わせ可能である。
The red-emitting nanocrystalline particles have a wavelength of 665 nm or less, 663 nm or less, 660 nm or less, 658 nm or less, 655 nm or less, 653 nm or less, 651 nm or less, 650 nm or less, 647 nm or less, 645 nm or less, 643 nm or less, 640 nm or less, 637 nm or less, 635 nm or less. , preferably has an emission peak in the range of 632 nm or less or 630 nm or less, and has an emission peak in the wavelength range of 628 nm or more, 625 nm or more, 623 nm or more, 620 nm or more, 615 nm or more, 610 nm or more, 607 nm or more, or 605 nm or more. preferable.
In addition, these upper limit and lower limit can be combined arbitrarily. In addition, in the following similar description, the upper limit and the lower limit individually described can be arbitrarily combined.
 緑色発光性ナノ結晶粒子は、波長560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下または530nm以下の範囲に発光ピークを有することが好ましく、波長528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上または500nm以上の範囲に発光ピークを有することが好ましい。 The green-emitting nanocrystalline particles have an emission peak in the wavelength range of 560 nm or less, 557 nm or less, 555 nm or less, 550 nm or less, 547 nm or less, 545 nm or less, 543 nm or less, 540 nm or less, 537 nm or less, 535 nm or less, 532 nm or less, or 530 nm or less. It preferably has an emission peak in the wavelength range of 528 nm or more, 525 nm or more, 523 nm or more, 520 nm or more, 515 nm or more, 510 nm or more, 507 nm or more, 505 nm or more, 503 nm or more, or 500 nm or more.
 青色発光性ナノ結晶粒子は、波長480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下または450nm以下の範囲に発光ピークを有することが好ましく、波長450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上または420nm以上の範囲に発光ピークを有することが好ましい。 The blue-emitting nanocrystalline particles have an emission peak in the wavelength range of 480 nm or less, 477 nm or less, 475 nm or less, 470 nm or less, 467 nm or less, 465 nm or less, 463 nm or less, 460 nm or less, 457 nm or less, 455 nm or less, 452 nm or less, or 450 nm or less. It preferably has an emission peak in the wavelength range of 450 nm or more, 445 nm or more, 440 nm or more, 435 nm or more, 430 nm or more, 428 nm or more, 425 nm or more, 422 nm or more, or 420 nm or more.
 発光性ナノ結晶粒子が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、発光性ナノ結晶粒子のサイズ(例えば、粒子径)に依存するが、発光性ナノ結晶粒子が有するエネルギーギャップにも依存する。そのため、使用する発光性ナノ結晶粒子の構成材料およびサイズを変更することにより、発光色を選択(調節)することができる。 According to the solution of the Schrödinger wave equation of the well-type potential model, the wavelength (emission color) of the light emitted by the luminescent nanocrystalline particles depends on the size (e.g., particle diameter) of the luminescent nanocrystalline particles. It also depends on the energy gap that the nanocrystalline particles have. Therefore, the emission color can be selected (adjusted) by changing the constituent material and size of the luminescent nanocrystalline particles used.
 発光性ナノ結晶粒子は、半導体材料を含む発光性ナノ結晶粒子(発光性半導体ナノ結晶粒子)であってよい。かかる発光性ナノ結晶粒子としては、量子ドット、量子ロッド等が挙げられる。これらの中でも、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、発光性ナノ結晶粒子としては、量子ドットが好ましい。 The luminescent nanocrystalline particles may be luminescent nanocrystalline particles containing a semiconductor material (luminescent semiconductor nanocrystalline particles). Examples of such luminescent nanocrystalline particles include quantum dots and quantum rods. Among these, quantum dots are preferred as the luminescent nanocrystalline particles from the viewpoint that the emission spectrum can be easily controlled, reliability can be ensured, production costs can be reduced, and mass productivity can be improved. .
 発光性ナノ結晶粒子は、第1半導体材料を含むコアのみからなっていてもよく、第1半導体材料を含むコアと、このコアの少なくとも一部を被覆し、第1半導体材料と異なる第2半導体材料を含むシェルとを有していてもよい。換言すれば、発光性ナノ結晶粒子の構造は、コアのみからなる構造(コア構造)であってもよく、コアとシェルとからなる構造(コア/シェル構造)であってもよい。 The luminescent nanocrystalline particles may consist only of a core comprising a first semiconductor material and a second semiconductor covering at least a portion of the core and different from the first semiconductor material. and a shell containing the material. In other words, the structure of the luminescent nanocrystalline particles may be a structure consisting of only a core (core structure) or a structure consisting of a core and a shell (core/shell structure).
 また、発光性ナノ結晶粒子は、第2半導体材料を含むシェル(第1シェル)の他に、このシェルの少なくとも一部を被覆し、第1および第2半導体材料と異なる第3半導体材料を含むシェル(第2シェル)をさらに有していてもよい。換言すれば、発光性ナノ結晶粒子の構造は、コアと第1シェルと第2シェルとからなる構造(コア/シェル/シェル構造)であってもよい。
 さらに。コアおよびシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)であってもよい。
The luminescent nanocrystalline particles also include a shell (first shell) containing a second semiconductor material, and a third semiconductor material covering at least a portion of this shell and different from the first and second semiconductor materials. It may further have a shell (second shell). In other words, the structure of the luminescent nanocrystalline particles may be a structure consisting of a core, a first shell and a second shell (core/shell/shell structure).
moreover. Each of the core and shell may be a mixed crystal containing two or more semiconductor materials (eg, CdSe+CdS, CIS+ZnS, etc.).
 発光性ナノ結晶粒子は、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体およびI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料を含むことが好ましい。 The luminescent nanocrystalline particles are at least one selected from the group consisting of II-VI group semiconductors, III-V group semiconductors, I-III-VI group semiconductors, IV group semiconductors and I-II-IV-VI group semiconductors. semiconductor material.
 具体的な半導体材料としては、例えば、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgInGaS、AgGaSe、AgGaS、C、SiおよびGe等が挙げられる。 Specific semiconductor materials include, for example, CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSTe, ZnSeS, ZnSeTe, ZnSTe, HgSeS, HgSeTe, HgSTe, CdZnS, CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、 InN, InP, InAs, InSb, GaNP, GaNAs, GaNSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInPSb, InAlNP, InAlNAs, InAlNSb, InAlPAs, InAlPSb; SnPbSeTe, SnPbSTe; Si, Ge, SiC, SiGe, AgInSe2, CuGaSe2 , CuInS2 , CuGaS2 , CuInSe2 , AgInS2 , AgInGaS , AgGaSe2 , AgGaS2 , C, Si and Ge.
 発光性ナノ結晶粒子は、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させ得る観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgInGaS、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、GeおよびCuZnSnSからなる群より選択される少なくとも1種の半導体材料を含むことが好ましい。 Luminescent nanocrystalline particles are CdS, CdSe, CdTe, ZnS, ZnSe, and ZnTe from the viewpoint that the emission spectrum can be easily controlled, reliability can be ensured, production costs can be reduced, and mass productivity can be improved. , ZnO, HgS, HgSe, HgTe, InP, InAs, InSb, GaP, GaAs, GaSb, AgInS2, AgInSe2 , AgInTe2 , AgInGaS , AgGaS2 , AgGaSe2 , AgGaTe2 , CuInS2 , CuInSe2 , CuInTe It preferably contains at least one semiconductor material selected from the group consisting of CuGaS 2 , CuGaSe 2 , CuGaTe 2 , Si, C, Ge and Cu 2 ZnSnS 4 .
 赤色発光性ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeのコアおよびCdSのシェルを備えるナノ結晶粒子、ZnSeのコアおよびCdSのシェルを備えるナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのナノ結晶粒子、InPのコアおよびZnSのシェルを備えるナノ結晶粒子、InPのコアおよびZnSとZnSeとの混晶のシェルを備えるナノ結晶粒子、CdSeとCdSとの混晶のナノ結晶粒子、ZnSeとCdSとの混晶のナノ結晶粒子、InPのコア、ZnSeの第1シェルおよびZnSの第2シェルを備えるナノ結晶粒子、InPのコア、ZnSとZnSeとの混晶の第1シェルおよびZnSの第2シェルを備えるナノ結晶粒子等が挙げられる。 Examples of red-emitting nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles with a core of CdSe and a shell of CdS, nanocrystalline particles with a core of ZnSe and a shell of CdS, mixed crystals of CdSe and ZnS. nanocrystalline particles of InP, nanocrystalline particles with a core of InP and a shell of ZnS, nanocrystalline particles with a core of InP and a shell of a mixed crystal of ZnS and ZnSe, mixed crystals of CdSe and CdS nanocrystalline particles of a mixed crystal of ZnSe and CdS, nanocrystalline particles comprising a core of InP, a first shell of ZnSe and a second shell of ZnS, a core of InP, a mixed crystal of ZnS and ZnSe Nanocrystalline particles with a first shell and a second shell of ZnS, and the like.
 緑色発光性ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのコアおよびZnSのシェルを備えるナノ結晶粒子、InPのコアおよびZnSとZnSeとの混晶のシェルを備えるナノ結晶粒子、InPのコア、ZnSeの第1シェルおよびZnSの第2シェルを備えるナノ結晶粒子、InPのコア、ZnSとZnSeとの混晶の第1シェルおよびZnSの第2シェルを備えるナノ結晶粒子等が挙げられる。 Examples of green-emitting nanocrystalline particles include nanocrystalline particles of CdSe, nanocrystalline particles of a mixed crystal of CdSe and ZnS, nanocrystalline particles having a core of InP and a shell of ZnS, a core of InP and ZnS and ZnSe. a core of InP, a first shell of ZnSe and a second shell of ZnS, a core of InP, a first shell of a mixed crystal of ZnS and ZnSe and ZnS Examples include nanocrystalline particles with a second shell.
 青色発光性ナノ結晶粒子としては、例えば、ZnSeのナノ結晶粒子、ZnSのナノ結晶粒子、ZnSのコアおよびZnSeのシェルを備えるナノ結晶粒子、CdSのナノ結晶粒子、InPのコアおよびZnSのシェルを備えるナノ結晶粒子、InPのコアおよびZnSとZnSeとの混晶のシェルを備えるナノ結晶粒子、InPのコア、ZnSeの第1シェルおよびZnSの第2シェルを備えるナノ結晶粒子、InPのコア、ZnSとZnSeとの混晶の第1シェルおよびZnSの第2シェルを備えるナノ結晶粒子等が挙げられる。 Blue-emitting nanocrystalline particles include, for example, nanocrystalline particles of ZnSe, nanocrystalline particles of ZnS, nanocrystalline particles with a core of ZnS and a shell of ZnSe, nanocrystalline particles of CdS, a core of InP and a shell of ZnS. Nanocrystalline particles comprising a core of InP and a shell of a mixed crystal of ZnS and ZnSe Nanocrystalline particles comprising a core of InP, a first shell of ZnSe and a second shell of ZnS, a core of InP, ZnS and ZnSe mixed crystal first shell and ZnS second shell.
 なお、ナノ結晶粒子は、同一の化学組成で、それ自体の平均粒子径を調整することにより、ナノ結晶粒子から発光させるべき色を赤色にも緑色にも変更することができる。
 また、ナノ結晶粒子は、それ自体として、人体等に対する悪影響が極力低いものを使用することが好ましい。したがって、カドミウム、セレン等が極力含まれないナノ結晶粒子を単独で使用するか、上記元素(カドミウム、セレン等)を含有するナノ結晶粒子を使用する場合、これらの元素が極力少なくなるように、その他のナノ結晶粒子と組み合わせることが好ましい。
By adjusting the average particle size of the nanocrystalline particles themselves with the same chemical composition, the color to be emitted from the nanocrystalline particles can be changed to either red or green.
In addition, it is preferable to use nanocrystalline particles that themselves have the least adverse effect on the human body or the like. Therefore, when using nanocrystalline particles that do not contain cadmium, selenium, etc. as much as possible, or using nanocrystalline particles containing the above elements (cadmium, selenium, etc.), Combination with other nanocrystalline particles is preferred.
 発光性ナノ結晶粒子は、より半値幅の狭い発光ピークを得ることができる観点から、メタルハライドからなるナノ結晶であってもよい。 The luminescent nanocrystalline particles may be nanocrystals made of metal halide from the viewpoint of obtaining an emission peak with a narrower half-width.
 メタルハライドからなるナノ結晶は、A、M及びXを含む化合物半導体であり、一般式:Aで表される化合物である。
 式中、Aは1価の陽イオンを表し、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 Mは金属イオンを表し、少なくとも1種の金属カチオンである。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 Xは、少なくとも1種のアニオンである。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等のハロゲン化物イオンが挙げられる。
 aは、1~7であり、bは、1~4であり、cは、3~16である。
 かかるナノ結晶は、その粒子サイズ、Xサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる。
A nanocrystal made of metal halide is a compound semiconductor containing A , M and X, and is a compound represented by the general formula : AaMbXc .
In the formula, A represents a monovalent cation and is at least one of an organic cation and a metal cation. Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
M represents a metal ion and is at least one metal cation. Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
X is at least one anion. Examples of anions include halide ions such as chloride ions, bromide ions, iodide ions, and cyanide ions.
a is 1-7, b is 1-4, and c is 3-16.
The emission wavelength (emission color) of such nanocrystals can be controlled by adjusting the particle size and the type and abundance of anions that constitute the X site.
 一般式Aで表される化合物は、具体的には、AMX、AMX、AMX、AMX、AMX、AM、AMX、AMX、AMX、A、AMX、AMX、AM、AMX、A、AMX、A、A、A10、A16で表される化合物が好ましい。
 式中、Aは、有機カチオンおよび金属カチオンのうちの少なくとも1種である。有機カチオンとしては、アンモニウム、ホルムアミジニウム、グアニジニウム、イミダゾリウム、ピリジニウム、ピロリジニウム、プロトン化チオウレア等が挙げられ、金属カチオンとしては、Cs、Rb、K、Na、Li等のカチオンが挙げられる。
 式中、Mは、少なくとも1種の金属カチオンである。具体的には、1種の金属カチオン(M)、2種の金属カチオン(M α β)、3種の金属カチオン(M α β γ)、4種の金属カチオン(M α β γ δ)などが挙げられる。ただし、α、β、γ、δは、それぞれ0~1の実数を表し、かつα+β+γ+δ=1を表す。金属カチオンとしては、1族、2族、3族、4族、5族、6族、7族、8族、9族、10族、11族、13族、14族、15族から選ばれる金属カチオンが挙げられる。より好ましくは、Ag、Au、Bi、Ca、Ce、Co、Cr、Cu、Eu、Fe、Ga、Ge、Hf、In、Ir、Mg、Mn、Mo、Na、Nb、Nd、Ni、Os、Pb、Pd、Pt、Re、Rh、Ru、Sb、Sc、Sm、Sn、Sr、Ta、Te、Ti、V、W、Zn、Zr等のカチオンが挙げられる。
 式中、Xは、少なくとも1種のハロゲンを含むアニオンである。具体的には、1種のハロゲンアニオン(X)、2種のハロゲンアニオン(X α β)などが挙げられる。アニオンとしては、塩化物イオン、臭化物イオン、ヨウ化物イオン、シアン化物イオン等が挙げられ、少なくとも1種のハロゲン化物イオンを含む。
Specifically, the compound represented by the general formula AaMmXx is AMX , A4MX , AMX2 , AMX3 , A2MX3 , AM2X3 , A2MX4 , A2MX 5 , A3MX5 , A3M2X5 , A3MX6 , A4MX6 , AM2X6 , A2MX6 , A4M2X6 , A3MX8 , A3M2 _ _ Compounds represented by X 9 , A 3 M 3 X 9 , A 2 M 2 X 10 and A 7 M 3 X 16 are preferred.
wherein A is at least one of an organic cation and a metal cation. Organic cations include ammonium, formamidinium, guanidinium, imidazolium, pyridinium, pyrrolidinium, protonated thiourea and the like, and metal cations include cations such as Cs, Rb, K, Na and Li.
wherein M is at least one metal cation. Specifically, one metal cation (M 1 ), two metal cations (M 1 α M 2 β ), three metal cations (M 1 α M 2 β M 3 γ ), four metal cations cations (M 1 α M 2 β M 3 γ M 4 δ ) and the like. However, α, β, γ, and δ each represent a real number between 0 and 1, and α+β+γ+δ=1. Metal cations selected from groups 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 cations. More preferably Ag, Au, Bi, Ca, Ce, Co, Cr, Cu, Eu, Fe, Ga, Ge, Hf, In, Ir, Mg, Mn, Mo, Na, Nb, Nd, Ni, Os, Cations such as Pb, Pd, Pt, Re, Rh, Ru, Sb, Sc, Sm, Sn, Sr, Ta, Te, Ti, V, W, Zn, and Zr are included.
In the formula, X is an anion containing at least one halogen. Specifically, one type of halogen anion (X 1 ), two types of halogen anions (X 1 α X 2 β ), and the like are included. Examples of anions include chloride ions, bromide ions, iodide ions, cyanide ions, and the like, including at least one halide ion.
 上記一般式Aで表されるメタルハライドからなる化合物は、発光特性をよくするために、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 The compound composed of the metal halide represented by the above general formula AaMmXx is doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb in order to improve light emission characteristics. may be
 上記一般式Aで表されるメタルハライドからなる化合物の中で、ペロブスカイト型結晶構造を有する化合物は、その粒子サイズ、Mサイトを構成する金属カチオンの種類および存在割合を調整し、さらにXサイトを構成するアニオンの種類および存在割合を調整することにより、発光波長(発光色)を制御することができる点で、半導体ナノ結晶として利用する上で特に好ましい。具体的には、AMX、AMX、AMX、AMX、AMXで表される化合物が好ましい。式中のA、M及びXは上記のとおりである。また、ペロブスカイト型結晶構造を有する化合物は、上述のように、Bi、Mn、Ca、Eu、Sb、Ybなどの金属イオンが添加(ドープ)されたものであってもよい。 Among the compounds composed of metal halides represented by the general formula AaMmXx , the compound having a perovskite-type crystal structure is adjusted by adjusting the particle size, the type and abundance of metal cations constituting the M site, Furthermore, it is particularly preferable for use as a semiconductor nanocrystal in that the emission wavelength (emission color) can be controlled by adjusting the type and abundance of anions that constitute the X site. Specifically, compounds represented by AMX 3 , A 3 MX 5 , A 3 MX 6 , A 4 MX 6 and A 2 MX 6 are preferred. A, M and X in the formula are as described above. Also, the compound having the perovskite crystal structure may be doped with metal ions such as Bi, Mn, Ca, Eu, Sb, and Yb, as described above.
 ペロブスカイト型結晶構造を示す化合物の中でも、さらに良好な発光特性を示すために、AはCs、Rb、K、Na、Liであり、Mは1種の金属カチオン(M)、または2種の金属カチオン(M α β)であり、Xは塩化物イオン、臭化物イオン、ヨウ化物イオンであることが好ましい。但し、αとβはそれぞれ0~1の実数を表し、α+β=1を表す。具体的には、Mは、Ag、Au、Bi、Cu、Eu、Fe、Ge、K、In、Na、Mn、Pb、Pd、Sb、Si、Sn、Yb、Zn、Zrから選ばれることが好ましい。 Among compounds exhibiting a perovskite crystal structure, A is Cs, Rb, K, Na, or Li, and M is one kind of metal cation (M 1 ), or two kinds of It is preferably a metal cation (M 1 α M 2 β ) and X is chloride, bromide or iodide. However, α and β each represent a real number between 0 and 1, and α+β=1. Specifically, M may be selected from Ag, Au, Bi, Cu, Eu, Fe, Ge, K, In, Na, Mn, Pb, Pd, Sb, Si, Sn, Yb, Zn, Zr. preferable.
 メタルハライドからなり、ペロブスカイト型結晶構造を有するナノ結晶の具体的な組成として、CsPbBr、CHNHPbBr、CHNPbBr等のMとしてPbを用いたナノ結晶911は、光強度に優れると共に量子効率に優れることから、好ましい。また、CsSnBr、CsSnCl、CsSnBr1.5l1.5、CsSbBr、(CHNHBiBr、(CNHAgBiBr、等のMとしてPb以外の金属カチオンを用いたナノ結晶は、低毒性であって環境への影響が少ないことから、好ましい。 Nanocrystals 911 using Pb as M such as CsPbBr 3 , CH 3 NH 3 PbBr 3 , CHN 2 H 4 PbBr 3 , etc., as specific compositions of nanocrystals made of metal halide and having a perovskite crystal structure, have a light intensity It is preferable because it is excellent in quantum efficiency as well as excellent in In addition, CsSnBr3 , CsSnCl3 , CsSnBr1.5Cl1.5 , Cs3Sb2Br9 , ( CH3NH3 ) 3Bi2Br9 , ( C4H9NH3 ) 2AgBiBr6 , etc. Nanocrystals using metal cations other than Pb as M are preferred due to their low toxicity and low environmental impact.
 発光性ナノ結晶粒子の形状は、特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。発光性ナノ結晶粒子の形状は、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等であってもよい。
 ただし、発光性ナノ結晶粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を使用することが、インク組成物の均一性および流動性をより高められる点で好ましい。
The shape of the luminescent nanocrystalline particles is not particularly limited and may be any geometric shape or any irregular shape. The shape of the luminescent nanocrystalline particles may be, for example, spherical, ellipsoidal, pyramidal, disk-like, branch-like, net-like, rod-like, and the like.
However, as the luminescent nanocrystalline particles, the uniformity and fluidity of the ink composition can be further enhanced by using particles with a less directional particle shape (e.g., spherical, regular tetrahedral particles, etc.). point is preferable.
 発光性ナノ結晶粒子の平均粒子径(体積平均径)は、所望の波長の発光が得られ易い観点、分散性および保存安定性に優れる観点から、1nm以上であることが好ましく、1.5nm以上であることがより好ましく、2nm以上であることがさらに好ましい。
 また、発光性ナノ結晶粒子の平均粒子径は、所望の波長の発光が得られ易い観点から、40nm以下であることが好ましく、30nm以下であることがより好ましく、20nm以下であることがさらに好ましい。
 なお、発光性ナノ結晶粒子の平均粒子径(一次粒子径)は、透過型電子顕微鏡(TEM)または走査型電子顕微鏡(SEM)により、任意の複数個の発光性ナノ結晶粒子を直接観察し、投影二次元映像よる長短径比からそれぞれの粒子径を算出し、その平均値を求められる。なお、発光性ナノ結晶粒子の大きさや形状は、その化学組成、構造、製造方法や製造条件等に依存すると考えられる。
The average particle diameter (volume average diameter) of the luminescent nanocrystalline particles is preferably 1 nm or more, and preferably 1.5 nm or more, from the viewpoints of easily obtaining light emission of a desired wavelength and excellent dispersibility and storage stability. and more preferably 2 nm or more.
In addition, the average particle size of the luminescent nanocrystalline particles is preferably 40 nm or less, more preferably 30 nm or less, and even more preferably 20 nm or less, from the viewpoint of easily obtaining light emission of a desired wavelength. .
The average particle size (primary particle size) of the luminescent nanocrystalline particles can be determined by directly observing any plurality of luminescent nanocrystalline particles using a transmission electron microscope (TEM) or a scanning electron microscope (SEM). Each particle diameter is calculated from the length and breadth ratio of the projected two-dimensional image, and the average value is obtained. The size and shape of the luminescent nanocrystalline particles are considered to depend on their chemical composition, structure, manufacturing method, manufacturing conditions, and the like.
 発光性ナノ結晶粒子は、その表面近傍に有機リガンドを有することが好ましい。
 この有機リガンドは、発光性ナノ結晶粒子を分散させる機能を有する。有機リガンドは、例えば、光重合性化合物、有機溶剤等との親和性を確保するための官能基(以下、単に「親和性基」とも言う。)と、発光性ナノ結晶粒子と結合可能な官能基(発光性ナノ結晶粒子への吸着性を確保するための官能基)とを有しており、発光性ナノ結晶粒子の表面に配位結合することができる。
Luminescent nanocrystalline particles preferably have organic ligands near their surfaces.
This organic ligand has the function of dispersing the luminescent nanocrystalline particles. The organic ligand includes, for example, a functional group (hereinafter simply referred to as "affinity group") for ensuring affinity with a photopolymerizable compound, an organic solvent, etc., and a functional group capable of binding to luminescent nanocrystalline particles. group (functional group for ensuring adsorptivity to the luminescent nanocrystalline particles) and can coordinately bond to the surface of the luminescent nanocrystalline particles.
 親和性基は、置換または無置換の脂肪族炭化水素基であってよい。脂肪族炭化水素基は、直鎖状であっても、分岐状であってもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。
 置換の脂肪族炭化水素は、脂肪族炭化水素基の一部の炭素原子が酸素原子で置換された基であってもよい。置換の脂肪族炭化水素基は、例えば、(ポリ)オキシアルキレン基を含んでいてよい。
 ここで、「(ポリ)オキシアルキレン基」とは、オキシアルキレン基、および2以上のアルキレン基がエーテル結合で連結したポリオキシアルキレン基の少なくとも1種を意味する。
Affinity groups may be substituted or unsubstituted aliphatic hydrocarbon groups. An aliphatic hydrocarbon group may be linear or branched. Moreover, the aliphatic hydrocarbon group may or may not have an unsaturated bond.
A substituted aliphatic hydrocarbon may be a group in which some carbon atoms of an aliphatic hydrocarbon group are substituted with oxygen atoms. Substituted aliphatic hydrocarbon groups may include, for example, (poly)oxyalkylene groups.
Here, the "(poly)oxyalkylene group" means at least one of an oxyalkylene group and a polyoxyalkylene group in which two or more alkylene groups are linked by an ether bond.
 発光性ナノ結晶粒子と結合可能な官能基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、リン酸基、ホスホン酸基、ホスフィン基、ホスフィンオキサイド基およびアルコキシシリル基が挙げられる。 Functional groups that can bind to luminescent nanocrystalline particles include, for example, hydroxyl groups, amino groups, carboxyl groups, thiol groups, phosphoric acid groups, phosphonic acid groups, phosphine groups, phosphine oxide groups and alkoxysilyl groups.
 有機リガンドとしては、例えば、TOP(トリオクチルホスフィン)、TOPO(トリオクチルホスフィンオキサイド)、オレイン酸、リノール酸、リノレン酸、リシノール酸、グルコン酸、16-ヒドロキシヘキサデカン酸、12-ヒドロキシステアリン酸、N-ラウロイルサルコシン、N-オレイルサルコシン、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、フェニルホスホン酸、およびオクチルホスフィン酸(OPA)が挙げられる。 Examples of organic ligands include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, linoleic acid, linolenic acid, ricinoleic acid, gluconic acid, 16-hydroxyhexadecanoic acid, 12-hydroxystearic acid, N - lauroylsarcosine, N-oleylsarcosine, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), tetradecylphosphonic acid (TDPA), phenylphosphonic acid, and octylphosphine acid (OPA).
 有機リガンドは、例えば、下記式(L1)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000005
 [式(L1)中、pは、0~50の整数を示し、qは、0~50の整数を示す。]
The organic ligand may be, for example, a compound represented by formula (L1) below.
Figure JPOXMLDOC01-appb-C000005
[In the formula (L1), p represents an integer of 0 to 50, and q represents an integer of 0 to 50. ]
 式(L1)で表される化合物において、pおよびqのうち少なくとも一方が1以上であることが好ましく、pおよびqの双方が1以上であることがより好ましい。 In the compound represented by formula (L1), at least one of p and q is preferably 1 or more, more preferably both p and q are 1 or more.
 有機リガンドは、例えば、下記式(L2)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000006
 [式(L2)中、Aは、カルボキシル基を含む1価の基を示し、Aは、ヒドロキシル基を含む1価の基を示し、Rは、水素原子、メチル基またはエチル基を示し、Lは、置換または無置換のアルキレン基を示し、rは、0以上の整数を示す。]
The organic ligand may be, for example, a compound represented by formula (L2) below.
Figure JPOXMLDOC01-appb-C000006
[In formula (L2), A 1 represents a monovalent group containing a carboxyl group, A 2 represents a monovalent group containing a hydroxyl group, and R represents a hydrogen atom, a methyl group, or an ethyl group. , L represents a substituted or unsubstituted alkylene group, and r represents an integer of 0 or more. ]
 カルボキシル基を含む1価の基におけるカルボキシル基の数は、2個以上であってもよく、2~4個であってもよく、2個であってもよい。
 Lで示されるアルキレン基の炭素数は、例えば、1~10であってよい。Lで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子および窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。
 rは、例えば、1~100の整数であってもよく、10~20の整数であってもよい。
The number of carboxyl groups in the monovalent group containing a carboxyl group may be 2 or more, 2 to 4, or 2.
The number of carbon atoms in the alkylene group represented by L may be, for example, 1-10. In the alkylene group represented by L, some of the carbon atoms may be substituted with hetero atoms, and at least one hetero atom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
r may be, for example, an integer of 1-100, or an integer of 10-20.
 有機リガンドは、画素部(インク組成物の硬化物)の外部量子効率に優れる観点から、例えば、下記式(L3)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000007
 [式(L3)中、rは、上記と同義である。]
The organic ligand may be, for example, a compound represented by the following formula (L3) from the viewpoint of excellent external quantum efficiency of the pixel portion (cured product of the ink composition).
Figure JPOXMLDOC01-appb-C000007
[In Formula (L3), r has the same definition as above. ]
 有機リガンドは、例えば、下記式(L4)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000008
 [式(L4)中、nは、0~50の整数を示し、mは、0~50の整数を示す。]
The organic ligand may be, for example, a compound represented by formula (L4) below.
Figure JPOXMLDOC01-appb-C000008
[In the formula (L4), n represents an integer of 0 to 50, and m represents an integer of 0 to 50. ]
 nは、好ましくは0~20であり、より好ましくは0~10である。mは、好ましくは0~20であり、より好ましくは0~10である。nおよびmのうち少なくとも一方は、1以上であることが好ましい。すなわち、n+mは、1以上であることが好ましい。n+mは、10以下であることが好ましい。
 Zは、置換または無置換のアルキレン基を示す。アルキレン基の炭素数は、例えば、1~10であってもよい。Zで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子および窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。
n is preferably 0-20, more preferably 0-10. m is preferably 0-20, more preferably 0-10. At least one of n and m is preferably 1 or more. That is, n+m is preferably 1 or more. n+m is preferably 10 or less.
Z represents a substituted or unsubstituted alkylene group. The number of carbon atoms in the alkylene group may be, for example, 1-10. In the alkylene group represented by Z, some of the carbon atoms may be substituted with heteroatoms, and substituted with at least one heteroatom selected from the group consisting of oxygen atoms, sulfur atoms and nitrogen atoms. good too.
 有機リガンドは、例えば、下記式(L5)で表される化合物であってもよい。
Figure JPOXMLDOC01-appb-C000009
 [式(L5)中、lは、1~50の整数を示す。]
The organic ligand may be, for example, a compound represented by formula (L5) below.
Figure JPOXMLDOC01-appb-C000009
[In the formula (L5), l represents an integer of 1 to 50. ]
 式(L5)で表される有機リガンドにおいて、lは、1~20であってもよく、3~15であってもよく、5~10であってもよく、7であってもよい。 In the organic ligand represented by formula (L5), l may be 1 to 20, 3 to 15, 5 to 10, or 7.
 インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子の分散安定性の観点および発光特性維持の観点から、発光性ナノ結晶粒子100質量部に対して、10質量部以上、20質量部以上、25質量部以上、30質量部以上、35質量部以上または40質量部以上であってよい。
 インク組成物における有機リガンドの含有量は、インク組成物の粘度を低く保ち易い観点から、発光性ナノ結晶粒子100質量部に対して、50質量部以下、45質量部以下、40質量部以下または30質量部以下であってよい。
 これらの観点から、インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子100質量部に対して、例えば、10~50質量部であってもよく、10~15質量部であってもよい。
The content of the organic ligand in the ink composition is 10 parts by mass or more and 20 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles, from the viewpoint of the dispersion stability of the luminescent nanocrystalline particles and the maintenance of the light emission properties. Above, it may be 25 parts by mass or more, 30 parts by mass or more, 35 parts by mass or more, or 40 parts by mass or more.
From the viewpoint of easily keeping the viscosity of the ink composition low, the content of the organic ligand in the ink composition is 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or It may be 30 parts by mass or less.
From these viewpoints, the content of the organic ligand in the ink composition may be, for example, 10 to 50 parts by mass, or even 10 to 15 parts by mass with respect to 100 parts by mass of the luminescent nanocrystalline particles. good.
 発光性ナノ結晶粒子は、有機溶剤、光重合性化合物等の中にコロイド形態で分散可能な粒子を好適に使用することができる。分散状態にある発光性ナノ結晶粒子の表面は、上記有機リガンドによってパッシベーション(修飾)されていることが好ましい。有機溶剤は、後述する通りである。
 発光性ナノ結晶粒子としては、市販品を用いることもできる。発光性ナノ結晶粒子の市販品としては、例えば、NN-ラボズ社製のインジウムリン/硫化亜鉛、D-ドット、CuInS/ZnS、アルドリッチ社製のInP/ZnS等が挙げられる。
Particles that can be dispersed in a colloidal form in an organic solvent, a photopolymerizable compound, or the like can be suitably used as the luminescent nanocrystalline particles. The surface of the luminescent nanocrystalline particles in the dispersed state is preferably passivated (modified) with the organic ligand. The organic solvent is as described below.
Commercially available products can also be used as the luminescent nanocrystalline particles. Commercially available luminescent nanocrystalline particles include, for example, indium phosphide/zinc sulfide, D-dot, CuInS/ZnS manufactured by NN-Labs, and InP/ZnS manufactured by Aldrich.
 また、ナノ結晶の表面にカチオンが存在する場合、そのカチオンに結合する結合性基を有する配位子を使用してもよく、該配位子によりナノ結晶の表面を安定化することができる。 In addition, when cations are present on the surface of the nanocrystal, a ligand having a binding group that binds to the cation may be used, and the ligand can stabilize the surface of the nanocrystal.
 前記結合性基としては、例えば、カルボキシル基、カルボン酸無水物基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基およびボロン酸基のうちの少なくとも1種であることが好ましく、カルボキシル基およびアミノ基のうちの少なくとも1種であることがより好ましい。かかる配位子としては、カルボキシル基またはアミノ基含有化合物等が挙げられ、これらの1種を単独で使用し、または2種以上を併用することができる。 Examples of the binding group include a carboxyl group, a carboxylic anhydride group, an amino group, an ammonium group, a mercapto group, a phosphine group, a phosphine oxide group, a phosphoric acid group, a phosphonic acid group, a phosphinic acid group, a sulfonic acid group and At least one of boronic acid groups is preferred, and at least one of carboxyl and amino groups is more preferred. Examples of such ligands include carboxyl group- or amino group-containing compounds and the like, and these ligands can be used singly or in combination of two or more.
 カルボキシル基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族カルボン酸が挙げられる。かかるカルボキシル基含有化合物の具体例としては、例えば、アラキドン酸、クロトン酸、trans-2-デセン酸、エルカ酸、3-デセン酸、cis-4,7,10,13,16,19-ドコサヘキサエン酸、4-デセン酸、all cis-5,8,11,14,17-エイコサペンタエン酸、all cis-8,11,14-エイコサトリエン酸、cis-9-ヘキサデセン酸、trans-3-ヘキセン酸、trans-2-ヘキセン酸、2-ヘプテン酸、3-ヘプテン酸、2-ヘキサデセン酸、リノレン酸、リノール酸、γ-リノレン酸、3-ノネン酸、2-ノネン酸、trans-2-オクテン酸、ペトロセリン酸、エライジン酸、オレイン酸、3-オクテン酸、trans-2-ペンテン酸、trans-3-ペンテン酸、リシノール酸、ソルビン酸、2-トリデセン酸、cis-15-テトラコセン酸、10-ウンデセン酸、2-ウンデセン酸、酢酸、酪酸、ベヘン酸、セロチン酸、デカン酸、アラキジン酸、ヘンエイコサン酸、ヘプタデカン酸、ヘプタン酸、ヘキサン酸、ヘプタコサン酸、ラウリン酸、ミリスチン酸、メリシン酸、オクタコサン酸、ノナデカン酸、ノナコサン酸、n-オクタン酸、パルミチン酸、イソパルミチン酸、ペンタデカン酸、プロピオン酸、ペンタコサン酸、ノナン酸、ステアリン酸、リグノセリン酸、トリコサン酸、トリデカン酸、ウンデカン酸、吉草酸等が挙げられる。 Examples of carboxyl group-containing compounds include linear or branched aliphatic carboxylic acids having 1 to 30 carbon atoms. Specific examples of such carboxyl group-containing compounds include arachidonic acid, crotonic acid, trans-2-decenoic acid, erucic acid, 3-decenoic acid, cis-4,7,10,13,16,19-docosahexaenoic acid. , 4-decenoic acid, all cis-5,8,11,14,17-eicosapentaenoic acid, all cis-8,11,14-eicosatrienoic acid, cis-9-hexadecenoic acid, trans-3-hexenoic acid , trans-2-hexenoic acid, 2-heptenoic acid, 3-heptenoic acid, 2-hexadecenoic acid, linolenic acid, linoleic acid, γ-linolenic acid, 3-nonenoic acid, 2-nonenoic acid, trans-2-octenoic acid , petroselinic acid, elaidic acid, oleic acid, 3-octenoic acid, trans-2-pentenoic acid, trans-3-pentenoic acid, ricinoleic acid, sorbic acid, 2-tridecenoic acid, cis-15-tetracosenoic acid, 10-undecene acid, 2-undecenoic acid, acetic acid, butyric acid, behenic acid, cerotic acid, decanoic acid, arachidic acid, heneicosanoic acid, heptadecanoic acid, heptanoic acid, hexanoic acid, heptacosanoic acid, lauric acid, myristic acid, melisic acid, octacosanoic acid, Nonadecanic acid, nonacosanoic acid, n-octanoic acid, palmitic acid, isopalmitic acid, pentadecanoic acid, propionic acid, pentacosanoic acid, nonanoic acid, stearic acid, lignoceric acid, tricosanoic acid, tridecanoic acid, undecanoic acid, valeric acid, etc. be done.
 アミノ基含有化合物としては、例えば、炭素原子数1~30の直鎖状または分岐状の脂肪族アミンが挙げられる。かかるアミノ基含有化合物の具体例としては、例えば、1-アミノヘプタデカン、1-アミノノナデカン、ヘプタデカン-9-アミン、ステアリルアミン、オレイルアミン、2-n-オクチル-1-ドデシルアミン、アリルアミン、アミルアミン、2-エトキシエチルアミン、3-エトキシプロピルアミン、イソブチルアミン、イソアミルアミン、3-メトキシプロピルアミン、2-メトキシエチルアミン、2-メチルブチルアミン、ネオペンチルアミン、プロピルアミン、メチルアミン、エチルアミン、ブチルアミン、ヘキシルアミン、ヘプチルアミン、n-オクチルアミン、1-アミノデカン、ノニルアミン、1-アミノウンデカン、ドデシルアミン、1-アミノペンタデカン、1-アミノトリデカン、ヘキサデシルアミン、テトラデシルアミン等が挙げられる。 Examples of amino group-containing compounds include linear or branched aliphatic amines having 1 to 30 carbon atoms. Specific examples of such amino group-containing compounds include 1-aminoheptadecane, 1-aminononadecane, heptadecane-9-amine, stearylamine, oleylamine, 2-n-octyl-1-dodecylamine, allylamine, and amylamine. , 2-ethoxyethylamine, 3-ethoxypropylamine, isobutylamine, isoamylamine, 3-methoxypropylamine, 2-methoxyethylamine, 2-methylbutylamine, neopentylamine, propylamine, methylamine, ethylamine, butylamine, hexylamine , heptylamine, n-octylamine, 1-aminodecane, nonylamine, 1-aminoundecane, dodecylamine, 1-aminopentadecane, 1-aminotridecane, hexadecylamine, tetradecylamine and the like.
 また、ナノ結晶表面のカチオンに結合する結合性基を有する配位子は、Siを含有し、加水分解によりシロキサン結合を形成する反応性基を有するシラン化合物であってもよく、該配位子によりナノ結晶表面をさらに安定化することができる。 In addition, the ligand having a bonding group that binds to the cation on the surface of the nanocrystal may be a silane compound containing Si and having a reactive group that forms a siloxane bond by hydrolysis. can further stabilize the nanocrystal surface.
 反応性基としては、シロキサン結合が容易に形成されることから、シラノール基、炭素原子数が1~6のアルコキシシリル基のような加水分解性シリル基が好ましい。 As the reactive group, a hydrolyzable silyl group such as a silanol group or an alkoxysilyl group having 1 to 6 carbon atoms is preferable because a siloxane bond is easily formed.
 結合性基としては、例えば、カルボキシル基、アミノ基、アンモニウム基、メルカプト基、ホスフィン基、ホスフィンオキシド基、リン酸基、ホスホン酸基、ホスフィン酸基、スルホン酸基、ボロン酸基等が挙げられる。中でも、結合性基としては、カルボキシル基、メルカプト基およびアミノ基のうちの少なくとも1種であることが好ましい。これらの結合性基は、上述の反応性基よりもナノ結晶に含まれるカチオンに対する親和性が高い。このため、配位子は、結合性基をナノ結晶側にして配位し、より容易かつ確実にシリカ層を形成することができる。 Examples of binding groups include carboxyl groups, amino groups, ammonium groups, mercapto groups, phosphine groups, phosphine oxide groups, phosphoric acid groups, phosphonic acid groups, phosphinic acid groups, sulfonic acid groups, boronic acid groups, and the like. . Among them, the binding group is preferably at least one of a carboxyl group, a mercapto group and an amino group. These binding groups have a higher affinity for the cations contained in the nanocrystals than the reactive groups described above. Therefore, the ligands are coordinated with the bonding groups on the nanocrystal side, and the silica layer can be formed more easily and reliably.
 Siを含有し、シロキサン結合を形成する反応性基を有するシラン化合物としては、結合性基を含有するケイ素化合物を1種以上含有し、または2種以上を併用することができる。
 好ましくは、カルボキシル基含有ケイ素化合物、アミノ基含有ケイ素化合物、メルカプト基含有ケイ素化合物の何れか1種を含有し、または2種以上を併用することができる。
As the silane compound containing Si and having a reactive group that forms a siloxane bond, one or more silicon compounds containing a bonding group can be used, or two or more can be used in combination.
Preferably, any one of a carboxyl group-containing silicon compound, an amino group-containing silicon compound, and a mercapto group-containing silicon compound is contained, or two or more of them can be used in combination.
 カルボキシル基含有ケイ素化合物の具体例としては、例えば、3-(トリメトキシシリル)プロピオン酸、3-(トリエトキシシリル)プロピオン酸、2-、カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-[3-(トリメトキシシリル)プロピル]-N’-カルボキシメチルエチレンジアミン、N-[3-(トリメトキシシリル)プロピル]フタルアミド、N-[3-(トリメトキシシリル)プロピル]エチレンジアミン-N,N’,N’-三酢酸等が挙げられる。 Specific examples of carboxyl group-containing silicon compounds include 3-(trimethoxysilyl)propionic acid, 3-(triethoxysilyl)propionic acid, 2-, carboxyethylphenylbis(2-methoxyethoxy)silane, N- [3-(trimethoxysilyl)propyl]-N'-carboxymethylethylenediamine, N-[3-(trimethoxysilyl)propyl]phthalamide, N-[3-(trimethoxysilyl)propyl]ethylenediamine-N,N' , N′-triacetic acid and the like.
 一方、アミノ基含有ケイ素化合物の具体例としては、例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジイソプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリプロポキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリイソプロポキシシラン、N-(2-アミノエチル)-3-アミノイソブチルジメチルメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-(2-アミノエチル)-11-アミノウンデシルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルシラントリオール、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェニルトリメトキシシラン、(アミノエチルアミノエチル)フェニルトリエトキシシラン、(アミノエチルアミノエチル)フェニルトリプロポキシシラン、(アミノエチルアミノエチル)フェニルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェニルトリメトキシシラン、(アミノエチルアミノメチル)フェニルトリエトキシシラン、(アミノエチルアミノメチル)フェニルトリプロポキシシラン、(アミノエチルアミノメチル)フェニルトリイソプロポキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルメチルジメトキシラン、N-β-(N-ビニルベンジルアミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(N-ジ(ビニルベンジル)アミノエチル)-N-γ-(N-ビニルベンジル)-γ-アミノプロピルトリメトキシシラン、メチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ジメチルベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリメトキシシラン、ベンジルアミノエチルアミノプロピルトリエトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、N,N-ビス[3-(トリメトキシシリル)プロピル]エチレンジアミン、(アミノエチルアミノエチル)フェネチルトリメトキシシラン、(アミノエチルアミノエチル)フェネチルトリエトキシシラン、(アミノエチルアミノエチル)フェネチルトリプロポキシシラン、(アミノエチルアミノエチル)フェネチルトリイソプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリメトキシシラン、(アミノエチルアミノメチル)フェネチルトリエトキシシラン、(アミノエチルアミノメチル)フェネチルトリプロポキシシラン、(アミノエチルアミノメチル)フェネチルトリイソプロポキシシラン、N-[2-[3-(トリメトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリエトキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン、N-[2-[3-(トリイソプロポキシシリル)プロピルアミノ]エチル]エチレンジアミン等が挙げられる。 On the other hand, specific examples of amino group-containing silicon compounds include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl)-3-aminopropylmethyldiethoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldipropoxysilane, N-(2-aminoethyl)-3-aminopropylmethyldiiso Propoxysilane, N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropyltriethoxysilane, N-(2-aminoethyl)-3-aminopropyl Tripropoxysilane, N-(2-aminoethyl)-3-aminopropyltriisopropoxysilane, N-(2-aminoethyl)-3-aminoisobutyldimethylmethoxysilane, N-(2-aminoethyl)-3- Aminoisobutylmethyldimethoxysilane, N-(2-aminoethyl)-11-aminoundecyltrimethoxysilane, N-(2-aminoethyl)-3-aminopropylsilanetriol, 3-triethoxysilyl-N-(1 ,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, N,N-bis[3-(trimethoxysilyl)propyl]ethylenediamine, (aminoethylaminoethyl)phenyltrimethoxysilane, (aminoethylaminoethyl)phenyltriethoxysilane, (aminoethylaminoethyl)phenyltripropoxysilane, (aminoethylaminoethyl)phenyltriisopropoxysilane, (aminoethylaminomethyl)phenyltrimethoxysilane, (aminoethylaminomethyl) ) phenyltriethoxysilane, (aminoethylaminomethyl)phenyltripropoxysilane, (aminoethylaminomethyl)phenyltriisopropoxysilane, N-(vinylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane, N -(vinylbenzyl)-2-aminoethyl-3-aminopropylmethyldimethoxysilane, N-β-(N-vinylbenzylaminoethyl)-N-γ-(N-vinylbenzyl)-γ-aminopropyltrimethoxysilane , N-β-(N-di(vinylbenzyl)aminoethyl)-γ-aminopropyltrimethoxysilane, N-β-(N-di(vinylbenzyl) Dyl)aminoethyl)-N-γ-(N-vinylbenzyl)-γ-aminopropyltrimethoxysilane, methylbenzylaminoethylaminopropyltrimethoxysilane, dimethylbenzylaminoethylaminopropyltrimethoxysilane, benzylaminoethylaminopropyl Trimethoxysilane, benzylaminoethylaminopropyltriethoxysilane, 3-ureidopropyltriethoxysilane, 3-(N-phenyl)aminopropyltrimethoxysilane, N,N-bis[3-(trimethoxysilyl)propyl]ethylenediamine , (aminoethylaminoethyl)phenethyltrimethoxysilane, (aminoethylaminoethyl)phenethyltriethoxysilane, (aminoethylaminoethyl)phenethyltripropoxysilane, (aminoethylaminoethyl)phenethyltriisopropoxysilane, (aminoethylamino methyl)phenethyltrimethoxysilane, (aminoethylaminomethyl)phenethyltriethoxysilane, (aminoethylaminomethyl)phenethyltripropoxysilane, (aminoethylaminomethyl)phenethyltriisopropoxysilane, N-[2-[3-( Trimethoxysilyl)propylamino]ethyl]ethylenediamine, N-[2-[3-(triethoxysilyl)propylamino]ethyl]ethylenediamine, N-[2-[3-(tripropoxysilyl)propylamino]ethyl]ethylenediamine , N-[2-[3-(triisopropoxysilyl)propylamino]ethyl]ethylenediamine and the like.
 メルカプト基含有ケイ素化合物の具体例としては、例えば、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、2-メルカプトエチルトリメトキシシラン、2-メルカプトエチルトリエトキシシラン、2-メルカプトエチルメチルジメトキシシラン、2-メルカプトエチルメチルジエトキシシラン、3-[エトキシビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シリル]-1-プロパンチオール等が挙げられる。 Specific examples of mercapto group-containing silicon compounds include 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, and 2-mercaptoethyl. trimethoxysilane, 2-mercaptoethyltriethoxysilane, 2-mercaptoethylmethyldimethoxysilane, 2-mercaptoethylmethyldiethoxysilane, 3-[ethoxybis(3,6,9,12,15-pentoxaoctacosane-1 -yloxy)silyl]-1-propanethiol and the like.
 シリカ層は、前記ナノ結晶の表面に、配位子として、例えば、オレイン酸、3-アミノプロピルトリメトキシシランを配位させ、さらに3-アミノプロピルトリメトキシシランを反応させることにより形成することができる。 The silica layer can be formed by coordinating ligands such as oleic acid and 3-aminopropyltrimethoxysilane to the surface of the nanocrystals and further reacting with 3-aminopropyltrimethoxysilane. can.
 シリカ層の厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さのシリカ層を有する発光粒子であれば、ナノ結晶の熱や光に対する安定性を十分に高めることができる。 The thickness of the silica layer is preferably 0.5-50 nm, more preferably 1.0-30 nm. A luminescent particle having such a thick silica layer can sufficiently improve the stability of the nanocrystal against heat and light.
 なお、シリカ層の厚さは、配位子の結合基と反応性基とを連結する連結構造の原子数(鎖長)を調整することで変更することができる。 The thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
 シリカ層を備えた発光粒子は、具体的には、ナノ結晶の原料化合物を含む溶液と、ナノ結晶に含まれるカチオンに結合する結合性基を有する化合物と、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物とを含む溶液とを混合した後に、析出したナノ結晶の表面に配位したSiを含有しシロキサン結合を形成し得る反応性基を有する化合物中の反応性基を縮合させることにより、容易に作製することができる。このとき、加熱を行って製造する方法と、加熱を行わずに製造する方法とがある。 Specifically, the luminescent particles having a silica layer are composed of a solution containing a raw material compound of nanocrystals, a compound having a bonding group that binds to cations contained in the nanocrystals, and Si to form a siloxane bond. After mixing with a solution containing a compound having a reactive group to be obtained, the reactive group in the compound containing Si coordinated to the surface of the precipitated nanocrystal and having a reactive group capable of forming a siloxane bond is condensed. It can be easily produced by At this time, there are a method of manufacturing with heating and a method of manufacturing without heating.
 まず、加熱を行ってシリカ層を有する発光粒子を製造する方法について説明する。半導体ナノ結晶を反応によって合成する2種の原料化合物を含む溶液をそれぞれ調製する。この際、2種の溶液の何れか一方にナノ結晶に含まれるカチオンに結合する結合性基を有する化合物を、もう一方にSiを含有しシロキサン結合を形成し得る反応性基を有する化合物を加えておく。次いで、これらを不活性ガス雰囲気下で混合、140~260℃の温度条件下に反応させる。次いで、-20~30℃に冷却し、攪拌することにより、ナノ結晶を析出させる方法が挙げられる。析出したナノ結晶はナノ結晶の表面にシロキサン結合を有するシリカ層が形成されたものとなり、遠心分離等の定法によりナノ結晶を得ることができる。 First, a method for producing luminescent particles having a silica layer by heating will be described. Solutions containing two kinds of raw material compounds for synthesizing semiconductor nanocrystals by reaction are prepared respectively. At this time, a compound having a bonding group that binds to cations contained in the nanocrystals is added to one of the two solutions, and a compound containing Si and having a reactive group capable of forming a siloxane bond is added to the other. Keep These are then mixed under an inert gas atmosphere and reacted at a temperature of 140 to 260°C. Next, a method of precipitating nanocrystals by cooling to −20 to 30° C. and stirring may be used. The precipitated nanocrystals have a silica layer having siloxane bonds formed on the surface of the nanocrystals, and the nanocrystals can be obtained by a conventional method such as centrifugation.
 次に、加熱を行わずにシリカ層を備えた発光粒子を製造する方法について説明する。半導体ナノ結晶の原料化合物及びナノ結晶に含まれるカチオンに結合する結合性基を有する化合物(Siを含有しシロキサン結合を形成し得る反応性基を有する化合物は含まない)を含む溶液を、Siを含有しシロキサン結合を形成し得る反応性基を有する化合物をナノ結晶に対して貧溶媒である有機溶剤に溶解した溶液中に大気下にて滴下・混合することにより、ナノ結晶を析出させる方法が挙げられる。有機溶剤の使用量は半導体ナノ結晶に対して質量基準で10~1000倍量であることが好ましい。また、析出したナノ結晶はナノ結晶の表面にシロキサン結合を有するシリカ層が形成されたものとなり、遠心分離等の定法によりナノ結晶を得ることができる。 Next, a method for producing luminescent particles having a silica layer without heating will be described. A solution containing a raw material compound for semiconductor nanocrystals and a compound having a bonding group that binds to a cation contained in the nanocrystal (excluding compounds containing Si and having a reactive group capable of forming a siloxane bond) was added to the solution containing Si. A method of precipitating nanocrystals by dropping and mixing a compound containing a reactive group capable of forming a siloxane bond in an organic solvent, which is a poor solvent for nanocrystals, in the atmosphere. mentioned. The amount of the organic solvent used is preferably 10 to 1000 times the mass of the semiconductor nanocrystals. In addition, the deposited nanocrystals have a silica layer having a siloxane bond formed on the surface of the nanocrystals, and can be obtained by a standard method such as centrifugation.
 シリカ層は、シロキサン結合を有するシェル層が形成されたナノ結晶の表面に追加的に形成してもよい。シリカ層を追加的に形成する場合、まずシロキサン結合を有するシリカ層が形成されたナノ結晶にシラン化合物を混合し、加水分解によりシロキサン結合を形成しシェル層を設けてもよい。また、シリカ層を追加的に形成する場合、塩基性基を含む構造単位を有するポリマーを吸着させ反応場を形成し、ついでシラン化合物を混合し加水分解によりシロキサン結合を形成しシリカ層を設けてもよい。 A silica layer may be additionally formed on the surface of the nanocrystal on which the shell layer having siloxane bonds is formed. When a silica layer is additionally formed, first, a silane compound is mixed with nanocrystals on which a silica layer having siloxane bonds is formed, and siloxane bonds are formed by hydrolysis to form a shell layer. In the case of additionally forming a silica layer, a reaction field is formed by adsorbing a polymer having a structural unit containing a basic group, and then a silane compound is mixed and hydrolyzed to form a siloxane bond to form a silica layer. good too.
 前記シラン化合物としては、例えば、下記式(C1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式中、RC1及びRC2は、それぞれ独立にアルキル基を表し、RC3及びRC4は、それぞれ独立に水素原子又はアルキル基を表し、nは0又は1を表し、mは1以上の整数を表す。mは、10以下の整数であることが好ましい。
The silane compound is preferably, for example, a compound represented by the following formula (C1).
Figure JPOXMLDOC01-appb-C000010
In the formula, R C1 and R C2 each independently represent an alkyl group, R C3 and R C4 each independently represent a hydrogen atom or an alkyl group, n represents 0 or 1, m is an integer of 1 or more represents m is preferably an integer of 10 or less.
 式(C1)で表される化合物は、具体的には、例えば、テトラブトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリメトキシシラン、ビニルトリエトキシシラン、n-プロピルトリメトキシシラン、イソプロピルトリメトキシシラン、n-ブチルトリエトキシシラン、n-ヘキシルトリメトキシシラン、n-ヘキシルトリエトキシシラン、n-オクチルトリメトキシシラン、n-オクチルトリエトキシシラン、n-デシルルトリメトキシシラン、n-ドデシルトリメトキシシラン、n-ドデシルトリエトキシシラン、n-ヘキサデシルトリメトキシシラン、n-ヘキサデシルトリエトキシシラン、n-オクタデシルトリメトキシシラン、トリメトキシ(3、3、3-トリフルオロプロピル)シラン、トリメトキシ(ペンタフルオロフェニル)シラン、トリメトキシ(11-ペンタフルオロフェノキシウンデシル)シラン、トリメトキシ(1H、1H、2H、2H-ノナフルオロヘキシル)シラン、テトラメトキシシランの部分加水分解オリゴマー(製品名:メチルシリケート51、メチルシリケート53A(以上、コルコート株式会社製))、テトラエトキシシランの部分加水分解オリゴマー(製品名:エチルシリケート40、エチルシリケート48(以上、コルコート株式会社製)、テトラメトキシシランとテトラエトキシシラン混合物の部分加水分解オリゴマー(製品名:EMS-485(コルコート株式会社製))等が挙げられる。 Specific examples of the compound represented by formula (C1) include tetrabutoxysilane, tetrapropoxysilane, tetraisopropoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyl trimethoxysilane, phenyltrimethoxysilane, vinyltriethoxysilane, n-propyltrimethoxysilane, isopropyltrimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, n-octyl trimethoxysilane, n-octyltriethoxysilane, n-decyltrimethoxysilane, n-dodecyltrimethoxysilane, n-dodecyltriethoxysilane, n-hexadecyltrimethoxysilane, n-hexadecyltriethoxysilane, n- Octadecyltrimethoxysilane, trimethoxy(3,3,3-trifluoropropyl)silane, trimethoxy(pentafluorophenyl)silane, trimethoxy(11-pentafluorophenoxyundecyl)silane, trimethoxy(1H,1H,2H,2H-nona) fluorohexyl)silane, partially hydrolyzed oligomers of tetramethoxysilane (product names: Methyl Silicate 51, Methyl Silicate 53A (manufactured by Colcoat Co., Ltd.)), partially hydrolyzed oligomers of tetraethoxysilane (product names: Ethyl Silicate 40, Examples include Ethyl Silicate 48 (manufactured by Colcoat Co., Ltd.), partially hydrolyzed oligomer of a mixture of tetramethoxysilane and tetraethoxysilane (product name: EMS-485 (manufactured by Colcoat Co., Ltd.)), and the like.
 シラン化合物として、上述の式(C1)で表される化合物に加えて、例えば、下記式(C2)で表される化合物及び(C3)で表される化合物を併用することも可能である。
Figure JPOXMLDOC01-appb-C000011
 式中、RC21、RC22、RC31は、それぞれ独立にアルキル基を表し、RC23、RC24、RC32、RC33、及びRC34は、それぞれ独立に水素原子、置換基を有してもよいアルキル基、フェニル基、シクロヘキシル基を表し、前記アルキル基中の炭素原子は酸素原子あるいは窒素原子に置換されていてもよく、m2は1以上10以下の整数を表す。
As the silane compound, in addition to the compound represented by the above formula (C1), for example, a compound represented by the following formula (C2) and a compound represented by (C3) can be used in combination.
Figure JPOXMLDOC01-appb-C000011
In the formula, R C21 , R C22 and R C31 each independently represent an alkyl group, and R C23 , R C24 , R C32 , R C33 and R C34 each independently have a hydrogen atom and a substituent. may be an alkyl group, a phenyl group or a cyclohexyl group, the carbon atoms in the alkyl group may be substituted with an oxygen atom or a nitrogen atom, and m2 represents an integer of 1 or more and 10 or less.
 式(C2)で表される化合物及び式(C3)で表される化合物としては、具体的には、例えば、ジメチルジエトキシシラン、ジフェニルジメトキシシラン、メチルエチルジメトキシシラン、トリメチルメトキシシランが挙げられる。式(C1)で表される化合物は、1種を単独で用いることができ、あるいは、2種以上を組み合わせて用いることもできる。式(C2)で表される化合物及び(C3)で表される化合物は、一般式(C1)で表される化合物と1種あるいは2種以上を組み合わせて用いることができる。 Specific examples of the compound represented by formula (C2) and the compound represented by formula (C3) include dimethyldiethoxysilane, diphenyldimethoxysilane, methylethyldimethoxysilane, and trimethylmethoxysilane. The compounds represented by formula (C1) can be used singly or in combination of two or more. The compound represented by formula (C2) and the compound represented by (C3) can be used alone or in combination with the compound represented by general formula (C1).
 シリカ層を合計した厚さは、0.5~50nmであることが好ましく、1.0~30nmであることがより好ましい。かかる厚さのシリカ層を有する発光ナノ結晶であれば、ナノ結晶の熱や光に対する安定性を十分に高めることができる。なお、上記厚さは、例えば高分解能電子顕微鏡により測定することができる。 The total thickness of the silica layers is preferably 0.5-50 nm, more preferably 1.0-30 nm. A luminescent nanocrystal having such a thickness of silica layer can sufficiently enhance the stability of the nanocrystal against heat and light. The thickness can be measured, for example, with a high-resolution electron microscope.
 なお、シリカ層を合計した厚さは、配位子の結合基と反応性基とを連結する連結構造の原子数(鎖長)を調整することで変更することができる。 The total thickness of the silica layer can be changed by adjusting the number of atoms (chain length) of the connecting structure that connects the binding group and the reactive group of the ligand.
 インク組成物における発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上、1質量部以上、5質量部以上、10質量部以上、20質量部以上または30質量部以上であることが好ましい。インク組成物における発光性ナノ結晶粒子の含有量は、塗布性、吐出安定性および光変換層の外部量子効率がより向上する観点から、上記有機溶剤以外の成分の合計100質量部に対して、80質量部以下、75質量部以下、70質量部以下、60質量部以下、50質量部以下または40質量部以下であることが好ましい。 From the viewpoint of further improving the external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles in the ink composition is 0.00 parts per 100 parts by mass in total of the components other than the organic solvent contained in the ink composition. It is preferably 1 part by mass or more, 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more. From the viewpoint of further improving the coating properties, ejection stability, and external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles in the ink composition is It is preferably 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, 60 parts by mass or less, 50 parts by mass or less, or 40 parts by mass or less.
 カラーフィルターの画素部として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、インク組成物中に含まれる有機溶剤以外の成分の合計100質量部に対して、5質量部以上、10質量部以上、15質量部以上、20質量部以上または30質量部以上であることが好ましい。カラーフィルターの画素部として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、吐出安定性および画素部の外部量子効率がより向上する観点から、上記有機溶剤以外の成分の合計100質量部に対して、80質量部以下、75質量部以下、70質量部以下または60質量部以下であることが好ましい。 From the viewpoint of further improving the external quantum efficiency of the light conversion layer, the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is It is preferably 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 30 parts by mass or more with respect to a total of 100 parts by mass. From the viewpoint of further improving the ejection stability and the external quantum efficiency of the pixel portion, the content of the luminescent nanocrystalline particles in the ink composition used as the pixel portion of the color filter is 100% of the components other than the organic solvent. It is preferably 80 parts by mass or less, 75 parts by mass or less, 70 parts by mass or less, or 60 parts by mass or less.
 また、シート状の光変換フィルム中の光変換層として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、該インク組成物中に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、2質量部以上または3質量部以上であることが好ましい。シート状の光変換フィルム中の光変換層として使用されるインク組成物中の発光性ナノ結晶粒子の含有量は、塗布性および光変換層の外部量子効率がより向上する観点から、上記有機溶剤以外の成分の合計100質量部に対して、15質量部以下、12.5質量部以下、10質量部以下、7.5質量部以下または5質量部以下であることが好ましい。 In addition, the content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is adjusted from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, 2 parts by mass or more, or 3 parts by mass or more with respect to the total 100 parts by mass of the components other than the organic solvent contained therein. preferable. The content of the luminescent nanocrystalline particles in the ink composition used as the light conversion layer in the sheet-like light conversion film is the above organic solvent from the viewpoint of further improving the coatability and the external quantum efficiency of the light conversion layer. It is preferably 15 parts by mass or less, 12.5 parts by mass or less, 10 parts by mass or less, 7.5 parts by mass or less, or 5 parts by mass or less with respect to a total of 100 parts by mass of the other components.
 発光性ナノ結晶粒子がメタルハライドを含む場合、インク組成物における発光性ナノ結晶粒子の含有量は、光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上、0.5質量部以上、1質量部以上、5質量部以上であることが好ましい。インク組成物における発光性ナノ結晶粒子の含有量は、塗布性、吐出安定性および光変換層の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、30質量部以下、20質量部以下、15質量部以下、10質量部以下であることが好ましい。 When the luminescent nanocrystalline particles contain a metal halide, the content of the luminescent nanocrystalline particles in the ink composition is the same as that of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the external quantum efficiency of the light conversion layer. It is preferably 0.1 parts by mass or more, 0.5 parts by mass or more, 1 part by mass or more, or 5 parts by mass or more with respect to a total of 100 parts by mass. The content of the luminescent nanocrystalline particles in the ink composition is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of further improving the coatability, the ejection stability, and the external quantum efficiency of the light conversion layer. It is preferably 30 parts by mass or less, 20 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less.
 なお、本明細書において、「インク組成物に含まれる有機溶剤以外の成分」とは、インク組成物の硬化物を構成する成分と言い換えてもよい。「インク組成物に含まれる有機溶剤以外の成分の合計」は、例えば、発光性ナノ結晶粒子と、光重合性化合物と、ヒンダードアミン系化合物との合計であることができる。
 また、有機溶剤は、インク組成物の粘度を調整すること等を目的として、必要に応じて添加される成分であり、インク組成物に添加されていなくてもよい。
In this specification, the term “components other than the organic solvent contained in the ink composition” may be replaced with components constituting the cured product of the ink composition. The “total of components other than the organic solvent contained in the ink composition” can be, for example, the total of the luminescent nanocrystalline particles, the photopolymerizable compound, and the hindered amine compound.
Also, the organic solvent is a component that is added as necessary for the purpose of adjusting the viscosity of the ink composition, and may not be added to the ink composition.
 インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、外部量子効率がより向上する観点から、0.1質量%以上、0.5質量%以上、1質量%以上、5質量%以上、10質量%以上であることが好ましい。インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、塗布性、吐出安定性および外部量子効率を向上させる観点から、36質量%以下、34質量%以下、32質量%以下、30質量%以下、28質量%以下であることが好ましい。 The content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 0.1% by mass or more, 0.5% by mass or more, 1% by mass or more, 5% by mass or more, from the viewpoint of further improving the external quantum efficiency. % by mass or more, preferably 10% by mass or more. The content of the luminescent nanocrystalline particles based on the total mass of the ink composition is 36% by mass or less, 34% by mass or less, or 32% by mass or less from the viewpoint of improving the coating properties, ejection stability, and external quantum efficiency. , 30% by mass or less, preferably 28% by mass or less.
 本発明のインク組成物は、発光性ナノ結晶粒子として、赤色発光性ナノ結晶粒子、緑色発光性ナノ結晶粒子および青色発光性ナノ結晶粒子のうちの2種以上を含んでいてもよいが、1種のみを含んでいてもよい。
 インク組成物が赤色発光性ナノ結晶粒子を含む場合、緑色発光性ナノ結晶粒子の含有量および青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、0質量%以上50質量%以下が好ましく、0質量%以上25質量%以下がより好ましく、0質量%以上10質量%以下が特に好ましい。
 インク組成物が緑色発光性ナノ結晶粒子を含む場合、赤色発光性ナノ結晶粒子の含有量および青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、0質量%以上50質量%以下が好ましく、0質量%以上25質量%以下がより好ましく、0質量%以上10質量%以下が特に好ましい。
The ink composition of the present invention may contain, as luminescent nanocrystalline particles, two or more of red luminescent nanocrystalline particles, green luminescent nanocrystalline particles and blue luminescent nanocrystalline particles. It may contain seeds only.
When the ink composition contains red-emitting nanocrystalline particles, the content of green-emitting nanocrystalline particles and the content of blue-emitting nanocrystalline particles are 0% by weight, based on the total weight of the luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
When the ink composition contains green luminescent nanocrystalline particles, the content of red luminescent nanocrystalline particles and the content of blue luminescent nanocrystalline particles are 0% by weight, based on the total mass of luminescent nanocrystalline particles. 50% by mass or less is preferable, 0% by mass or more and 25% by mass or less is more preferable, and 0% by mass or more and 10% by mass or less is particularly preferable.
 [光重合性成分]
 光重合性成分は、上述したように、ハンセン溶解度パラメータにおけるδDが16~17.5MPa0.5、δPが2.5~5MPa0.5、かつ、δHが3~6MPa0.5である少なくとも1種の光重合性化合物を含む。
 ここで、ハンセン溶解度パラメータは、ヒルデブランド(Hildebrand)によって導入された溶解度パラメータを、δD、δPおよびδHの3成分に分割し、3次元空間に表したパラメータである。
 δDは、無極性相互作用による効果を示し、δPは、双極子間力による効果を示し、δHは、水素結合力による効果を示す。
[Photopolymerizable component]
As described above, the photopolymerizable component has at least a Hansen solubility parameter δD of 16 to 17.5 MPa 0.5 , δP of 2.5 to 5 MPa 0.5 and δH of 3 to 6 MPa 0.5 It contains one photopolymerizable compound.
Here, the Hansen solubility parameter is a parameter obtained by dividing the solubility parameter introduced by Hildebrand into three components δD, δP and δH and expressing them in a three-dimensional space.
δD indicates the effect of non-polar interaction, δP indicates the effect of dipole-dipole force, and δH indicates the effect of hydrogen bonding force.
 各種の化合物についてのハンセン溶解度パラメータの値は、例えば、Charles M. Hansenによる「Hansen Solubility Parameters:A Users Handbook」等に記載されている。また、記載のない化合物についてのハンセン溶解度パラメータの値は、コンピュータソフトウェア(Hansen
 Solubility Parameters in Practice(HSPiP))を使用して推算することができる。
Hansen Solubility Parameter values for various compounds can be found, for example, in Charles M. et al. Hansen, "Hansen Solubility Parameters: A Users Handbook". Hansen solubility parameter values for compounds not listed were also obtained using computer software (Hansen
Solubility Parameters in Practice (HSPiP)).
 δDは、16~17.3MPa0.5であることが好ましく、16.1~17.2MPa0.5であることがより好ましい。δPは、2.7~4.5MPa0.5であることが好ましく、3~4MPa0.5であることがより好ましい。δHは、3~5.5MPa0.5であることが好ましく、3.1~5.1MPa0.5であることがより好ましい。
 かかるハンセン溶解度パラメータを有する光重合性化合物を使用することにより、発光性ナノ結晶粒子およびヒンダードアミン系化合物の双方との親和性をより高めることができる。
 なお、光重合性成分は、ハンセン溶解度パラメータのδD、δPおよびδHの少なくとも1つが上記範囲から逸脱する光重合性化合物を含んでもよい。
δD is preferably 16 to 17.3 MPa 0.5 , more preferably 16.1 to 17.2 MPa 0.5 . δP is preferably 2.7 to 4.5 MPa 0.5 , more preferably 3 to 4 MPa 0.5 . δH is preferably 3 to 5.5 MPa 0.5 , more preferably 3.1 to 5.1 MPa 0.5 .
By using a photopolymerizable compound having such a Hansen solubility parameter, affinity with both the luminescent nanocrystalline particles and the hindered amine compound can be enhanced.
The photopolymerizable component may contain a photopolymerizable compound in which at least one of δD, δP and δH of the Hansen solubility parameters deviates from the above range.
 光重合性化合物は、光の照射によって重合する化合物であり、例えば、光ラジカル重合性化合物または光カチオン重合性化合物である。光重合性化合物は、光重合性モノマーまたは光重合性オリゴマー(以下、これらを総称して「光重合性モノマー」とも記載する。)のいずれであってもよい。
 これらの光重合性化合物は、好ましくは光重合開始剤とともに使用される。光ラジカル重合性化合物は、光ラジカル重合開始剤とともに使用され、光カチオン重合性化合物は、光カチオン重合開始剤とともに使用される。換言すれば、光重合性成分は、光重合性化合物および光重合開始剤を含有することができる。
 なお、光重合性化合物には、光ラジカル重合性化合物と光カチオン重合性化合物とを併用してもよく、光ラジカル重合性と光カチオン重合性を具備した化合物を使用してもよい。また、光重合開始剤には、光ラジカル重合開始剤と光カチオン重合開始剤とを併用してもよい。
A photopolymerizable compound is a compound that polymerizes by irradiation with light, and is, for example, a radical photopolymerizable compound or a cationic photopolymerizable compound. The photopolymerizable compound may be either a photopolymerizable monomer or a photopolymerizable oligomer (hereinafter collectively referred to as "photopolymerizable monomer").
These photopolymerizable compounds are preferably used together with a photoinitiator. A radical photopolymerizable compound is used together with a radical photopolymerization initiator, and a cationic photopolymerizable compound is used together with a cationic photopolymerization initiator. In other words, the photopolymerizable component can contain a photopolymerizable compound and a photoinitiator.
As the photopolymerizable compound, a photoradical polymerizable compound and a photocationically polymerizable compound may be used in combination, or a compound having both photoradical polymerizability and photocationic polymerizability may be used. As the photopolymerization initiator, a radical photopolymerization initiator and a cationic photopolymerization initiator may be used in combination.
 光ラジカル重合性化合物としては、例えば、エチレン性不飽和基を有するモノマー(以下、「エチレン性不飽和モノマー」とも言う。)、イソシアネート基を有するモノマー等が挙げられる。
 ここで、エチレン性不飽和モノマーとは、エチレン性不飽和結合(炭素-炭素二重結合)を有するモノマーを意味する。エチレン性不飽和モノマーとしては、例えば、ビニル基、ビニレン基、ビニリデン基のようなエチレン性不飽和基を有するモノマーが挙げられる。なお、これらの基を有するモノマーは、「ビニルモノマー」と称される場合がある。
Examples of photoradically polymerizable compounds include monomers having an ethylenically unsaturated group (hereinafter also referred to as "ethylenically unsaturated monomers"), monomers having an isocyanate group, and the like.
Here, the ethylenically unsaturated monomer means a monomer having an ethylenically unsaturated bond (carbon-carbon double bond). Examples of ethylenically unsaturated monomers include monomers having ethylenically unsaturated groups such as vinyl groups, vinylene groups, and vinylidene groups. Monomers having these groups are sometimes referred to as "vinyl monomers".
 エチレン性不飽和モノマーにおけるエチレン性不飽和結合の数(例えば、エチレン性不飽和基の数)は、1~3であることが好ましい。エチレン性不飽和モノマーは、1種を単独で使用しても、2種以上を併用してもよい。
 エチレン性不飽和モノマーは、優れた吐出安定性と優れた硬化性とを両立させる観点、および外部量子効率がより向上する観点から、エチレン性不飽和基を1つまたは2つ有するモノマーと、エチレン性不飽和基を2つまたは3つ有するモノマーとを含んでいてよい。すなわち、エチレン性不飽和モノマーは、単官能モノマーと2官能モノマーとの組み合わせ、単官能モノマーと3官能モノマーとの組み合わせ、および2官能モノマーと3官能モノマーとの組み合わせからなる群より選択される少なくとも1つの組み合わせとすることができる。
The number of ethylenically unsaturated bonds (for example, the number of ethylenically unsaturated groups) in the ethylenically unsaturated monomer is preferably 1-3. An ethylenically unsaturated monomer may be used individually by 1 type, or may use 2 or more types together.
The ethylenically unsaturated monomer is a monomer having one or two ethylenically unsaturated groups, and ethylene and monomers having two or three polyunsaturated groups. That is, the ethylenically unsaturated monomer is at least selected from the group consisting of a combination of a monofunctional monomer and a bifunctional monomer, a combination of a monofunctional monomer and a trifunctional monomer, and a combination of a bifunctional monomer and a trifunctional monomer. It can be a combination.
 エチレン性不飽和基としては、ビニル基、ビニレン基およびビニリデン基の他、(メタ)アクリロイル基等が挙げられる。
 なお、本明細書において、「(メタ)アクリロイル基」とは、「アクリロイル基」およびそれに対応する「メタクリロイル基」を意味する。また、「(メタ)アクリレート」、「(メタ)アクリルアミド」との表現についても同様である。
 光重合性化合物は、エチレン性不飽和基として(メタ)アクリロイル基を有する化合物を含むことが好ましく、(メタ)アクリレートおよび(メタ)アクリルアミドがより好ましく、単官能または多官能の(メタ)アクリレートであることがさらに好ましい。(メタ)アクリレートは、上記範囲のハンセン溶解度パラメータを有する化合物が多いことから好ましい。
Examples of ethylenically unsaturated groups include vinyl, vinylene and vinylidene groups, as well as (meth)acryloyl groups.
In addition, in this specification, a "(meth)acryloyl group" means an "acryloyl group" and a "methacryloyl group" corresponding thereto. The same applies to expressions such as "(meth)acrylate" and "(meth)acrylamide".
The photopolymerizable compound preferably contains a compound having a (meth)acryloyl group as an ethylenically unsaturated group, more preferably (meth)acrylate and (meth)acrylamide, and a monofunctional or polyfunctional (meth)acrylate. It is even more preferable to have (Meth)acrylates are preferred because many compounds have Hansen solubility parameters in the above range.
 単官能または多官能の(メタ)アクリレートの具体例としては、例えば、ジシクロペンテニルオキシエチルアクリレ-ト、ジシクロペンタニルアクリレ-ト、ジプロピレングリコールジアクリラート(DPGDA)、1,6-ヘキサンジオールジメタクリレート(HDDMA)、1,6-ヘキサンジオールジアクリレート(HDDA)等が挙げられる。
 中でも、光重合性化合物は、下記式(1)で表される2官能の(メタ)アクリレートであることが特に好ましい。
Figure JPOXMLDOC01-appb-C000012
 [式(1)中、Rは、炭素数4~8のアルキレン基を示し、2つのRは、それぞれ独立して水素原子またはメチル基を示す。]
 なお、Rを構成する炭素原子の一部は、酸素原子、硫黄原子、窒素原子等で置換されていてもよい。
Specific examples of monofunctional or polyfunctional (meth)acrylates include dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dipropylene glycol diacrylate (DPGDA), 1,6 -hexanediol dimethacrylate (HDDMA), 1,6-hexanediol diacrylate (HDDA), and the like.
Among them, the photopolymerizable compound is particularly preferably a bifunctional (meth)acrylate represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000012
[In formula (1), R 1 represents an alkylene group having 4 to 8 carbon atoms, and two R 2 independently represent a hydrogen atom or a methyl group. ]
Part of the carbon atoms constituting R 1 may be substituted with an oxygen atom, a sulfur atom, a nitrogen atom, or the like.
 光カチオン重合性化合物としては、例えば、エポキシ化合物、オキセタン化合物、ビニルエーテル化合物等が挙げられる。
 なお、光重合性化合物は、信頼性に優れる画素部(インク組成物の硬化物)が得られ易い観点から、アルカリ不溶性であることが好ましい。
 ここで、本明細書において、光重合性化合物がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃における光重合性化合物の溶解量が、光重合性化合物の全質量を基準として、30質量%以下であることを意味する。
 なお、光重合性化合物の溶解量は、好ましくは10質量%以下であり、より好ましくは3質量%以下である。
Examples of photo-cationically polymerizable compounds include epoxy compounds, oxetane compounds, and vinyl ether compounds.
The photopolymerizable compound is preferably alkali-insoluble from the viewpoint of easily obtaining a highly reliable pixel portion (cured product of the ink composition).
Here, in this specification, the photopolymerizable compound being alkali-insoluble means that the amount of the photopolymerizable compound dissolved in a 1% by mass aqueous potassium hydroxide solution at 25° C. is based on the total mass of the photopolymerizable compound. As, it means that it is 30% by mass or less.
The dissolved amount of the photopolymerizable compound is preferably 10% by mass or less, more preferably 3% by mass or less.
 インク組成物における光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られ易い観点、インク組成物の硬化性が良好となる観点、ならびに画素部(インク組成物の硬化物)の耐溶剤性および耐磨耗性が向上する観点から、有機溶剤以外の成分の合計100質量部に対して、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましい。
 光重合性化合物の含有量は、インクジェットインクとして適正な粘度が得られ易い観点、およびより優れた発光特性(例えば、外部量子効率)が得られる観点から、有機溶剤以外の成分の合計100質量部に対して、60質量部以下であることが好ましく、50質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。
The content of the photopolymerizable compound in the ink composition is determined from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink, from the viewpoint of improving the curability of the ink composition, and from the viewpoint of the durability of the pixel portion (cured product of the ink composition). From the viewpoint of improving solvent resistance and abrasion resistance, it is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and 20 parts by mass with respect to the total 100 parts by mass of the components other than the organic solvent. More preferably, it is at least 1 part.
The content of the photopolymerizable compound is a total of 100 parts by mass of the components other than the organic solvent, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink and from the viewpoint of obtaining better light emission characteristics (e.g., external quantum efficiency). is preferably 60 parts by mass or less, more preferably 50 parts by mass or less, and even more preferably 40 parts by mass or less.
 なお、光重合性成分中に占める光重合性化合物の割合は、発光性ナノ結晶粒子の分散安定性を高め、形状安定性に優れる画素部を作製し易い観点から、30質量%以上であることが好ましく、45質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。
 光重合性成分中に占める光重合性化合物の割合の上限は、特に限定されないが、100質量%未満が好ましく、90質量%以下であることがより好ましく、80質量%以下であることがさらに好ましい。
The proportion of the photopolymerizable compound in the photopolymerizable component should be 30% by mass or more from the viewpoint of enhancing the dispersion stability of the luminescent nanocrystalline particles and facilitating the production of a pixel portion with excellent shape stability. is preferred, 45% by mass or more is more preferred, and 60% by mass or more is even more preferred.
The upper limit of the proportion of the photopolymerizable compound in the photopolymerizable component is not particularly limited, but is preferably less than 100% by mass, more preferably 90% by mass or less, and even more preferably 80% by mass or less. .
 [光重合開始剤]
 光重合開始剤は、例えば、光ラジカル重合開始剤または光カチオン重合開始剤である。
 光ラジカル重合開始剤としては、分子開裂型または水素引き抜き型の光ラジカル重合開始剤が好適である。
[Photoinitiator]
The photopolymerization initiator is, for example, a radical photopolymerization initiator or a cationic photopolymerization initiator.
As the photoradical polymerization initiator, a molecular cleavage type or hydrogen abstraction type photoradical polymerization initiator is suitable.
 分子開裂型の光ラジカル重合開始剤としては、例えば、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド等が好適に使用可能である。
 これら以外の分子開裂型の光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オンおよび2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。
Molecular cleavage type photoradical polymerization initiators include, for example, benzoin isobutyl ether, 2,4-diethylthioxanthone, 2-isopropylthioxanthone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, 2-benzyl-2-dimethylamino -1-(4-morpholinophenyl)-butan-1-one, bis(2,6-dimethoxybenzoyl)-2,4,4-trimethylpentylphosphine oxide, (2,4,6-trimethylbenzoyl)ethoxyphenyl Phosphine oxide and the like can be preferably used.
Other molecular cleavage type radical photopolymerization initiators include 1-hydroxycyclohexylphenyl ketone, benzoin ethyl ether, benzyl dimethyl ketal, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4 -isopropylphenyl)-2-hydroxy-2-methylpropan-1-one and 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropan-1-one may be used in combination.
 水素引き抜き型の光ラジカル重合開始剤としては、例えば、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。
 なお、光重合開始剤としては、分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。
Hydrogen abstraction type photoradical polymerization initiators include, for example, benzophenone, 4-phenylbenzophenone, isophthalphenone, 4-benzoyl-4′-methyl-diphenylsulfide and the like.
As the photopolymerization initiator, a molecular cleavage type photoradical polymerization initiator and a hydrogen abstraction type photoradical polymerization initiator may be used in combination.
 光カチオン重合開始剤には、市販品を使用することもできる。
 光カチオン重合開始剤の市販品としては、例えば、サンアプロ社製の「CPI-100P」のようなスルホニウム塩系光カチオン重合開始剤、BASF社製の「Lucirin
 TPO」のようなアシルフォスフィンオキサイド化合物、BASF社製の「Irgacure 907」、「Irgacure 819」、「Irgacure 379EG」、「Irgacure 184」および「Irgacure PAG290」等が挙げられる。
A commercial item can also be used for a photocationic polymerization initiator.
Examples of commercially available photocationic polymerization initiators include, for example, sulfonium salt photocationic polymerization initiators such as “CPI-100P” manufactured by San-Apro Co., Ltd., and “Lucirin” manufactured by BASF.
TPO", "Irgacure 907", "Irgacure 819", "Irgacure 379EG", "Irgacure 184" and "Irgacure PAG290" manufactured by BASF.
 インク組成物における光重合開始剤の含有量は、インク組成物の硬化性の観点から、光重合性化合物100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、1質量部以上であることがさらに好ましく、3質量部以上であることが特に好ましく、5質量部以上であることが最も好ましい。
 光重合開始剤の含有量は、画素部(インク組成物の硬化物)の経時安定性の観点から、光重合性化合物100質量部に対して、40質量部以下であることが好ましく、30質量部以下であることがより好ましく、20質量部以下であることがさらに好ましく、10質量部以下であることが特に好ましい。
From the viewpoint of the curability of the ink composition, the content of the photopolymerization initiator in the ink composition is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass, with respect to 100 parts by mass of the photopolymerizable compound. It is more preferably at least 1 part by mass, even more preferably at least 1 part by mass, particularly preferably at least 3 parts by mass, and most preferably at least 5 parts by mass.
The content of the photopolymerization initiator is preferably 40 parts by mass or less and 30 parts by mass with respect to 100 parts by mass of the photopolymerizable compound, from the viewpoint of the temporal stability of the pixel portion (cured product of the ink composition). It is more preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less.
 [ヒンダードアミン系化合物]
 ヒンダードアミン系化合物は、例えば、紫外線や可視光の作用によりインク組成物中で発生するイオン、ラジカル、過酸化物等の劣化促進物質を捕捉して、発光性ナノ結晶粒子の劣化を防止する機能を有する。
 ヒンダードアミン系化合物は、下記式(2)で表される部分構造を有することが好ましい。
Figure JPOXMLDOC01-appb-C000013
 [式(2)中、Rは、水素原子または置換基を示し、Rは、連結基を示し、*は、結合手を示す。]
[Hindered amine compound]
The hindered amine compound has a function of preventing deterioration of the luminescent nanocrystalline particles by trapping deterioration promoting substances such as ions, radicals, and peroxides generated in the ink composition by the action of ultraviolet rays or visible light. have.
The hindered amine compound preferably has a partial structure represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000013
[In Formula (2), R 3 represents a hydrogen atom or a substituent, R 4 represents a linking group, and * represents a bond. ]
 置換基であるRとしては、例えば、水酸基、-O・、アルキル基、アルコキシ基等が挙げられ、アルコキシ基が好ましい。
 アルキル基またはアルコキシ基の炭素数は、1~20であることが好ましい。また、アルキル基またはアルコキシ基中に存在する1つまたは隣接していない2つ以上の-CH-は、それぞれ独立して-O-、-S-、-CO-、-CO-O-、-O-CO-、-CO-S-、-S-CO-、-O-CO-O-、-CO-NH-、-NH-CO-、-CH=CH-COO-、-CH=CH-OCO-、-COO-CH=CH-、-OCO-CH=CH-、-CH=CH-、-C≡C-、-Si(CH-、トランス1,4-シクロヘキシレン基、1,4-フェニレン基またはナフタレン-2,6-ジイル基に置換されてもよい。
 さらに、R中の1つまたは2つ以上の水素原子は、それぞれ独立してフッ素原子、塩素原子またはシアノ基で置換されていてもよい。
Examples of the substituent R 3 include a hydroxyl group, —O., an alkyl group, an alkoxy group and the like, and an alkoxy group is preferred.
The number of carbon atoms in the alkyl group or alkoxy group is preferably 1-20. In addition, one or two or more non-adjacent -CH 2 - present in an alkyl group or an alkoxy group each independently represent -O-, -S-, -CO-, -CO-O-, -O-CO-, -CO-S-, -S-CO-, -O-CO-O-, -CO-NH-, -NH-CO-, -CH=CH-COO-, -CH=CH -OCO-, -COO-CH=CH-, -OCO-CH=CH-, -CH=CH-, -C≡C-, -Si(CH 3 ) 2 -, trans 1,4-cyclohexylene group, It may be substituted with a 1,4-phenylene group or a naphthalene-2,6-diyl group.
Furthermore, one or more hydrogen atoms in R 3 may each independently be substituted with a fluorine atom, a chlorine atom or a cyano group.
 ヒンダードアミン系化合物は、下記(3)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000014
 [式(3)中、Mは、炭素数1~15のアルキレン基を示す。ただし、M中に存在する1つ以上の-CH-は、-O-、-CH=CH-、-C≡C-、-CO-、-OCO-、-COO-、トランス-1,4-シクロへキシレン基、1,4-フェニレン基、ナフタレン-2,6-ジイル基で置換されてもよい。]
The hindered amine compound is preferably a compound represented by (3) below.
Figure JPOXMLDOC01-appb-C000014
[In the formula (3), M represents an alkylene group having 1 to 15 carbon atoms. provided that one or more —CH 2 — present in M is —O—, —CH═CH—, —C≡C—, —CO—, —OCO—, —COO—, trans-1,4 -Cyclohexylene group, 1,4-phenylene group and naphthalene-2,6-diyl group. ]
 式(3)中、2つのRは、それぞれ独立して炭素数1~15のアルコキシ基が好ましく、炭素数1~8のアルコキシ基がより好ましい、
 式(3)中、Mは、炭素数1~15のアルキレン基を示す。ただし、インク組成物へ与える粘性や自身の揮発性を考慮すると、Mは、炭素数2~10のアルキレン基であることが好ましく、炭素数4~8のアルキレン基であることがより好ましく、炭素数6または8のアルキレン基であることがさらに好ましい。
In formula (3), two R 3 are each independently preferably an alkoxy group having 1 to 15 carbon atoms, more preferably an alkoxy group having 1 to 8 carbon atoms.
In formula (3), M represents an alkylene group having 1 to 15 carbon atoms. However, considering the viscosity imparted to the ink composition and its own volatility, M is preferably an alkylene group having 2 to 10 carbon atoms, more preferably an alkylene group having 4 to 8 carbon atoms. It is more preferably an alkylene group of number 6 or 8.
 [酸化防止剤]
 インク組成物は、さらに、酸化防止剤を含有することが好ましい。
 酸化防止剤は、画素部に優れた外部量子効率の維持性能を付与する機能を有する化合物である。
 酸化防止剤としては、特に限定されず、例えば、フェノール系酸化防止剤、アミン系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等が挙げられる。中でも、酸化防止剤としては、フェノール系酸化防止剤またはリン系酸化防止剤であることが好ましい。なお、これらの酸化防止剤は、1種を単独で使用しても、2種以上を併用してもよい。
[Antioxidant]
The ink composition preferably further contains an antioxidant.
The antioxidant is a compound having a function of imparting excellent external quantum efficiency maintenance performance to the pixel portion.
The antioxidant is not particularly limited, and examples thereof include phenol antioxidants, amine antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among them, the antioxidant is preferably a phenol-based antioxidant or a phosphorus-based antioxidant. In addition, these antioxidants may be used individually by 1 type, or may use 2 or more types together.
 フェノール系酸化防止剤は、一般的に、ヒンダードフェノール系化合物とも称される。
 かかるフェノール系酸化防止剤としては、例えば、ペンタエリスリトールテトラキス[3-[3,5-ジ(tert-ブチル)-4-ヒドロキシフェニル]プロピオナート]、2,6-ジ-t-ブチル-p-クレゾール、2,6-ジフェニル-4-オクタデシロキシフェノール、ステアリル(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)-プロピオネート、ジステアリル(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ホスホネート、チオジエチレングリコールビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサメチレンビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサメチレンビス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオン酸アミド]、4,4’-チオビス(6-t-ブチル-m-クレゾール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-t-ブチルフェノール)、ビス[3,3-ビス(4-ヒドロキシ-3-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、4,4’-ブチリデンビス(6-t-ブチル-m-クレゾール)、2,2’-エチリデンビス(4,6-ジ-t-ブチルフェノール)、2,2’-エチリデンビス(4-第二ブチル-6-t-ブチルフェノール)、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、ビス[2-t-ブチル-4-メチル-6-(2-ヒドロキシ-3-t-ブチル-5-メチルベンジル)フェニル]テレフタレート、1,3,5-トリス(2,6-ジメチル-3-ヒドロキシ-4-t-ブチルベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドルキシベンジル)イソシアヌレート、1,3,5-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2,4,6-トリメチルベンゼン、1,3,5-トリス[(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニルオキシエチル]イソシアヌレート、テトラキス[メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート]メタン、2-t-ブチル-4-メチル-6-(2-アクリロイルオキシ-3-t-ブチル-5-メチルベンジル)フェノール、3,9-ビス[1,1-ジメチル-2-{(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}エチル]-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、トリエチレングリコールビス[(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート]等が挙げられる。
 中でも、フェノール系酸化防止剤としては、インク組成物への溶解性に優れことから、ペンタエリスリトールテトラキス[3-[3,5-ジ(tert-ブチル)-4-ヒドロキシフェニル]プロピオナート]が好ましい。
Phenolic antioxidants are also commonly referred to as hindered phenolic compounds.
Examples of such phenolic antioxidants include pentaerythritol tetrakis[3-[3,5-di(tert-butyl)-4-hydroxyphenyl]propionate], 2,6-di-t-butyl-p-cresol , 2,6-diphenyl-4-octadecyloxyphenol, stearyl (3,5-di-t-butyl-4-hydroxyphenyl)-propionate, distearyl (3,5-di-t-butyl-4-hydroxy benzyl)phosphonate, thiodiethylene glycol bis[(3,5-di-t-butyl-4-hydroxyphenyl)propionate], 1,6-hexamethylenebis[(3,5-di-t-butyl-4-hydroxyphenyl) ) propionate], 1,6-hexamethylenebis[(3,5-di-t-butyl-4-hydroxyphenyl)propionamide], 4,4′-thiobis(6-t-butyl-m-cresol) , 2,2′-methylenebis(4-methyl-6-t-butylphenol), 2,2′-methylenebis(4-ethyl-6-t-butylphenol), bis[3,3-bis(4-hydroxy-3 -t-butylphenyl)butyric acid]glycol ester, 4,4′-butylidenebis(6-t-butyl-m-cresol), 2,2′-ethylidenebis(4,6-di-t-butylphenol), 2,2′-ethylidenebis(4-sec-butyl-6-t-butylphenol), 1,1,3-tris(2-methyl-4-hydroxy-5-t-butylphenyl)butane, bis[2- t-butyl-4-methyl-6-(2-hydroxy-3-t-butyl-5-methylbenzyl)phenyl]terephthalate, 1,3,5-tris(2,6-dimethyl-3-hydroxy-4- t-butylbenzyl)isocyanurate, 1,3,5-tris(3,5-di-t-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(3,5-di- t-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,3,5-tris[(3,5-di-t-butyl-4-hydroxyphenyl)propionyloxyethyl]isocyanurate, Tetrakis[methylene-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate]methane, 2-t-butyl-4-methyl-6-(2-acryloyloxy-3-t -butyl-5-methylbenzyl)phenol, 3,9-bis[1,1 -dimethyl-2-{(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy}ethyl]-2,4,8,10-tetraoxaspiro[5.5]undecane, triethylene glycol bis [(3-t-butyl-4-hydroxy-5-methylphenyl)propionate] and the like.
Among them, pentaerythritol tetrakis[3-[3,5-di(tert-butyl)-4-hydroxyphenyl]propionate] is preferable as the phenolic antioxidant because of its excellent solubility in the ink composition.
 リン系酸化防止剤としては、亜リン酸トリエステル化合物が好ましい。
 亜リン酸トリエステル化合物は、例えば、式:P(ORで表される化合物である。式中、3つのRは、それぞれ独立っして1価の有機基を示す。また、3つのRのうちの2つのRが、互いに結合して環構造を形成していてもよい。
 1価の有機基は、インク組成物中の他の成分(光重合性化合物等)との親和性のような性能を十分に満たし、画素部の優れた外部量子効率を維持し得る観点から、好ましくは1価の炭化水素基である。
 1価の炭化水素基としては、例えば、アルキル基、アリール基、アルケニル基等が挙げられる。1価の炭化水素基の炭素数は、1~30であることが好ましく、インク組成物への溶解性の観点から4~18であることがより好ましい。
As the phosphorus antioxidant, a phosphite triester compound is preferred.
A phosphite triester compound is, for example, a compound represented by the formula: P(OR 5 ) 3 . In the formula, three R5's each independently represent a monovalent organic group. Also, two R5 's out of the three R5's may be bonded to each other to form a ring structure.
The monovalent organic group sufficiently satisfies performance such as affinity with other components (photopolymerizable compound, etc.) in the ink composition, and from the viewpoint of being able to maintain excellent external quantum efficiency of the pixel portion, A monovalent hydrocarbon group is preferred.
Examples of monovalent hydrocarbon groups include alkyl groups, aryl groups, and alkenyl groups. The number of carbon atoms in the monovalent hydrocarbon group is preferably 1 to 30, more preferably 4 to 18 from the viewpoint of solubility in the ink composition.
 アルキル基は、直鎖状であっても、分岐状であってもよい。アルキル基としては、例えば、2-エチルヘキシル基、ブチル基、オクチル基、ノニル基、デシル基、イソデシル基、ドデシル基、ヘキサデシル基、オクタデシル基等が挙げられる。
 アリール基としては、例えば、フェニル基、ナフチル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、オクチルフェニル基、ノニルフェニル基、イソデシルフェニル基、イソデシルフェニル基、イソデシルナフチル基等が挙げられる。
 1価の炭化水素基は、画素部の優れた外部量子効率を維持し得る観点から、アルキル基またはアリール基であることが好ましく、アルキル基またはフェニル基であることがより好ましい。
Alkyl groups may be straight or branched. Examples of alkyl groups include 2-ethylhexyl group, butyl group, octyl group, nonyl group, decyl group, isodecyl group, dodecyl group, hexadecyl group, octadecyl group and the like.
Examples of aryl groups include phenyl, naphthyl, tert-butylphenyl, di-tert-butylphenyl, octylphenyl, nonylphenyl, isodecylphenyl, isodecylphenyl, and isodecylnaphthyl groups. are mentioned.
The monovalent hydrocarbon group is preferably an alkyl group or an aryl group, more preferably an alkyl group or a phenyl group, from the viewpoint of maintaining excellent external quantum efficiency of the pixel portion.
 3つのRのうちの少なくとも2つが互いに同一であることが好ましい。
 3つのRのうちの少なくとも1つがフェニル基であることが好ましく、少なくとも2つがフェニル基であることがより好ましい。
 3つのRのうちの少なくとも1つがフェニル基であり、1つがアルキル基(特に、分岐状のアルキル基)であることが好ましい。すなわち、亜リン酸トリエステル化合物は、少なくとも1つのフェニル基と1つのアルキル基とを有することが好ましい。
 亜リン酸トリエステル化合物が上記官能基を有する場合、インク組成物中の他の成分(光重合性化合物等)との親和性のような性能を十分に満たし、画素部の外部量子効率の低下を抑制することができる。
Preferably, at least two of the three R5's are identical to each other.
Preferably, at least one of the three R5's is a phenyl group, more preferably at least two are phenyl groups.
It is preferred that at least one of the three R5's is a phenyl group and one is an alkyl group (particularly a branched alkyl group). That is, the phosphite triester compound preferably has at least one phenyl group and one alkyl group.
When the phosphite triester compound has the above functional group, it sufficiently satisfies performance such as affinity with other components (photopolymerizable compound, etc.) in the ink composition, and reduces the external quantum efficiency of the pixel portion. can be suppressed.
 上記式で表される化合物としては、具体的に、亜リン酸トリフェニル(トリフェニルホスファイト)、2-エチルヘキシルジフェニルホスファイト、ジフェニルオクチルホスファイト等が挙げられる。
 亜リン酸トリエステル系化合物は、室温(25℃)で液体であっても、固体であってもよいが、インク組成物中の他の成分(光重合性化合物等)との親和性のような性能を十分に満たし、画素部の外部量子効率の低下を抑制し得る観点から、室温(25℃)で液体であることが好ましい。
 なお、亜リン酸トリエステル化合物の融点は、20℃以下であることが好ましく、10℃以下であることがより好ましい。
Specific examples of the compound represented by the above formula include triphenyl phosphite (triphenylphosphite), 2-ethylhexyldiphenylphosphite, diphenyloctylphosphite and the like.
The phosphite triester-based compound may be liquid or solid at room temperature (25° C.), but it may have a similar affinity with other components (photopolymerizable compound, etc.) in the ink composition. It is preferably liquid at room temperature (25° C.) from the viewpoint of sufficiently satisfying the above performance and suppressing a decrease in the external quantum efficiency of the pixel portion.
The melting point of the phosphite triester compound is preferably 20° C. or lower, more preferably 10° C. or lower.
 インク組成物における酸化防止剤の含有量は、画素部の外部量子効率の低下を抑制し得る観点から、光重合性成分100質量部に対して、0.01質量部以上であることが好ましく、0.1質量部以上であることがより好ましく、0.5質量部以上であることがさらに好ましく、1質量部以上であることが特に好ましく、3質量部以上であることが最も好ましい。
 酸化防止剤は、少量添加するだけでも、画素部の外部量子効率の低下を効果的に抑制することができる。このため、酸化防止剤の含有量は、光重合性成分100質量部に対して、10質量部以下であることが好ましく、7質量部以下であることがより好ましく、5質量部以下であることがさらに好ましい。
The content of the antioxidant in the ink composition is preferably 0.01 parts by mass or more with respect to 100 parts by mass of the photopolymerizable component, from the viewpoint of suppressing a decrease in the external quantum efficiency of the pixel portion. It is more preferably 0.1 parts by mass or more, further preferably 0.5 parts by mass or more, particularly preferably 1 part by mass or more, and most preferably 3 parts by mass or more.
Even if the antioxidant is added in a small amount, it is possible to effectively suppress the deterioration of the external quantum efficiency of the pixel portion. Therefore, the content of the antioxidant is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and 5 parts by mass or less with respect to 100 parts by mass of the photopolymerizable component. is more preferred.
 [光散乱性粒子]
 インク組成物は、さらに、光散乱性粒子を含有してもよい。
 光散乱性粒子は、例えば、光学的に不活性な無機粒子である。インク組成物が光散乱性粒子を含有する場合、画素部に照射された光源からの光を散乱させることができるため、優れた光学特性(例えば、外部量子効率)を得ることができる。
[Light scattering particles]
The ink composition may further contain light scattering particles.
Light-scattering particles are, for example, optically inactive inorganic particles. When the ink composition contains light-scattering particles, it is possible to scatter the light from the light source irradiated to the pixel portion, so excellent optical properties (eg, external quantum efficiency) can be obtained.
 光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金のような元素単体、酸化ケイ素、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛のような酸化物、炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウムのような炭酸塩、水酸化アルミニウムのような水酸化物、ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウムのような複合酸化物、次硝酸ビスマスのような金属塩等が挙げられる。 Materials constituting the light-scattering particles include, for example, simple elements such as tungsten, zirconium, titanium, platinum, bismuth, rhodium, palladium, silver, tin, platinum, and gold, silicon oxide, barium sulfate, barium carbonate, and carbonic acid. Oxides such as calcium, talc, clay, kaolin, barium sulfate, barium carbonate, calcium carbonate, alumina white, titanium oxide, magnesium oxide, barium oxide, aluminum oxide, bismuth oxide, zirconium oxide, zinc oxide, magnesium carbonate, carbonate Carbonates such as barium, bismuth subcarbonate, calcium carbonate, hydroxides such as aluminum hydroxide, complex oxides such as barium zirconate, calcium zirconate, calcium titanate, barium titanate, strontium titanate, Metal salts such as bismuth subnitrate and the like are included.
 光散乱性粒子は、インク組成物の分散安定性、吐出安定性に優れる観点、および外部量子効率の向上効果により優れる観点から、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム、チタン酸バリウムおよび酸化ケイ素からなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、酸化ジルコニウム、酸化亜鉛およびチタン酸バリウムからなる群より選択される少なくとも1種を含むことがより好ましい。 The light-scattering particles are titanium oxide, aluminum oxide, zirconium oxide, zinc oxide, calcium carbonate, and barium sulfate, from the viewpoint of excellent dispersion stability and ejection stability of the ink composition, and from the viewpoint of improving the external quantum efficiency. , barium titanate and silicon oxide, preferably at least one selected from the group consisting of titanium oxide, zirconium oxide, zinc oxide and barium titanate. preferable.
 光散乱性粒子の形状としては、例えば、球状、フィラメント状、不定形状等が挙げられる。ただし、光散乱性粒子の形状としては、方向性の少ない形状(例えば、球状、正四面体状等)であることが好ましい。かかる形状の光散乱性粒子を使用することにより、インク組成物の均一性、流動性および光散乱性をより高めることができ、優れた分散安定性、吐出安定性を確保することができる。 The shape of the light-scattering particles includes, for example, spherical, filamentary, and irregular shapes. However, the shape of the light-scattering particles is preferably a shape with less directivity (for example, a spherical shape, a regular tetrahedral shape, etc.). By using light-scattering particles having such a shape, the uniformity, fluidity and light-scattering properties of the ink composition can be further improved, and excellent dispersion stability and ejection stability can be ensured.
 光散乱性粒子の平均粒子径(体積平均径)は、分散安定性、吐出安定性に優れる観点および外部量子効率の向上効果により優れる観点から、0.05μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.3μm以上であることがさらに好ましい。
 光散乱性粒子の平均粒子径は、分散安定性、吐出安定性に優れる観点から、1μm以下であることが好ましく、0.6μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。
The average particle diameter (volume average diameter) of the light-scattering particles is preferably 0.05 μm or more, more preferably 0.2 μm, from the viewpoints of excellent dispersion stability and ejection stability and excellent effect of improving external quantum efficiency. It is more preferably 0.3 μm or more, and further preferably 0.3 μm or more.
From the viewpoint of excellent dispersion stability and ejection stability, the average particle size of the light-scattering particles is preferably 1 μm or less, more preferably 0.6 μm or less, and further preferably 0.4 μm or less. preferable.
 光散乱性粒子の平均粒子径は、0.05~1μm、0.05~0.6μm、0.05~0.4μm、0.2~1μm、0.2~0.6μm、0.2~0.4μm、0.3~1μm、0.3~0.6μmまたは0.3~0.4μmであることが好ましい。
 本明細書において、光散乱性粒子の平均粒子径は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。
 また、使用する光散乱性粒子の平均粒子径は、例えば、透過型電子顕微鏡または走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。
The average particle size of the light scattering particles is 0.05 to 1 μm, 0.05 to 0.6 μm, 0.05 to 0.4 μm, 0.2 to 1 μm, 0.2 to 0.6 μm, 0.2 to It is preferably 0.4 μm, 0.3-1 μm, 0.3-0.6 μm or 0.3-0.4 μm.
In the present specification, the average particle diameter of the light scattering particles is obtained by measuring with a dynamic light scattering Nanotrack particle size distribution meter and calculating the volume average diameter.
The average particle size of the light-scattering particles to be used can be obtained, for example, by measuring the particle size of each particle with a transmission electron microscope or scanning electron microscope and calculating the volume average size.
 インク組成物における光散乱性粒子の含有量は、光変換層の外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上であることが好ましく、1質量部以上であることがより好ましく、3質量部以上であることがさらに好ましい。
 光散乱性粒子の含有量は、分散安定性、吐出安定性に優れる観点および光変換層の外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、25質量部以下であることが好ましく、20質量部以下であることがより好ましく、15質量部以下であることがさらに好ましい。
From the viewpoint of improving the external quantum efficiency of the light conversion layer, the content of the light-scattering particles in the ink composition is 0.00 parts per 100 parts by mass of the components other than the organic solvent contained in the ink composition. It is preferably 1 part by mass or more, more preferably 1 part by mass or more, and even more preferably 3 parts by mass or more.
The content of the light-scattering particles is 100 mass in total of the components other than the organic solvent contained in the ink composition, from the viewpoint of excellent dispersion stability and ejection stability and from the viewpoint of improving the external quantum efficiency of the light conversion layer. It is preferably 25 parts by mass or less, more preferably 20 parts by mass or less, and even more preferably 15 parts by mass or less.
 発光性ナノ結晶粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶粒子)は、光変換層の外部量子効率の向上効果に優れる観点から、0.1以上であることが好ましく、0.2以上であることがより好ましく、0.5以上であることがさらに好ましい。
 上記質量比(光散乱性粒子/発光性ナノ結晶粒子)は、光変換層の外部量子効率の向上効果により優れ、特にインクジェット法での連続吐出性(吐出安定性)に優れる観点から、5以下であることが好ましく、2以下であることがより好ましく、1.5以下であることがさらに好ましい。
The mass ratio of the content of the light-scattering particles to the content of the luminescent nanocrystalline particles (light-scattering particles/luminescent nanocrystalline particles) is 0.5 from the viewpoint of improving the external quantum efficiency of the light conversion layer. It is preferably 1 or more, more preferably 0.2 or more, and even more preferably 0.5 or more.
The above mass ratio (light-scattering particles/luminescent nanocrystalline particles) is 5 or less from the viewpoint of excellent effect of improving the external quantum efficiency of the light conversion layer, and particularly excellent continuous ejection property (ejection stability) in the inkjet method. is preferably , more preferably 2 or less, and even more preferably 1.5 or less.
 インク組成物における発光性ナノ結晶粒子と光散乱性粒子との合計量は、インクジェットインクとして適正な粘度が得られ易い観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、20質量部以上であることが好ましく、25質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
 インク組成物における発光性ナノ結晶粒子と光散乱性粒子との合計量は、インクジェットインクとして適正な粘度が得られ易い観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、75質量部以下であることが好ましく、65質量部以下であることがより好ましく、55質量部以下であることがさらに好ましい。
The total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. On the other hand, it is preferably 20 parts by mass or more, more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more.
The total amount of the luminescent nanocrystalline particles and the light-scattering particles in the ink composition is 100 parts by mass of the components other than the organic solvent contained in the ink composition, from the viewpoint of easily obtaining an appropriate viscosity as an inkjet ink. On the other hand, it is preferably 75 parts by mass or less, more preferably 65 parts by mass or less, and even more preferably 55 parts by mass or less.
 [高分子分散剤]
 インク組成物は、さらに、高分子分散剤を含有してもよい。
 高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対して親和性を有する官能基を有する高分子化合物であることが好ましい。
 高分子分散剤は、光散乱性粒子をインク組成物中で安定的に分散させる機能を有する。この高分子分散剤は、光散乱性粒子に対して親和性を有する官能基を介して光散乱性粒子に吸着し、高分子分散剤同士の静電反発および/または立体反発により、光散乱性粒子をインク組成物中に分散させる。
[Polymer dispersant]
The ink composition may further contain a polymeric dispersant.
The polymeric dispersant is preferably a polymeric compound having a weight-average molecular weight of 750 or more and having a functional group having affinity for the light-scattering particles.
The polymeric dispersant has a function of stably dispersing the light-scattering particles in the ink composition. The polymer dispersant adsorbs to the light-scattering particles via a functional group that has an affinity for the light-scattering particles, and electrostatic repulsion and/or steric repulsion between the polymer dispersants causes light-scattering properties. The particles are dispersed in the ink composition.
 インク組成物が高分子分散剤を含む場合、光散乱性粒子の含有量を比較的多くした場合(例えば、60質量%程度とした場合)であっても、光散乱性粒子を良好に分散させることができる。
 高分子分散剤は、光散乱性粒子の表面に結合していることが好ましい。ただし、高分子分散剤は、発光性ナノ結晶粒子の表面に結合していてもよく、インク組成物中に遊離していてもよい。
 光散乱性粒子に対して親和性を有する官能基としては、酸性官能基、塩基性官能基および非イオン性官能基が挙げられる。酸性官能基は、解離性のプロトンを有しており、アミン、水酸化物イオンのような塩基により中和されていてもよく、塩基性官能基は、有機酸、無機酸のような酸により中和されていてもよい。
When the ink composition contains a polymer dispersant, even when the content of the light-scattering particles is relatively large (for example, about 60% by mass), the light-scattering particles are well dispersed. be able to.
The polymeric dispersant is preferably bound to the surface of the light-scattering particles. However, the polymeric dispersant may be bound to the surface of the luminescent nanocrystalline particles or may be free in the ink composition.
Functional groups that have an affinity for light scattering particles include acidic functional groups, basic functional groups and nonionic functional groups. Acidic functional groups have dissociative protons and may be neutralized with bases such as amines and hydroxide ions, while basic functional groups are neutralized with acids such as organic acids and inorganic acids. It may be neutralized.
 酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)等が挙げられる。
 塩基性官能基としては、一級、二級および三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。
 非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基等が挙げられる。
Examples of acidic functional groups include carboxyl group (--COOH), sulfo group (--SO 3 H), sulfate group (--OSO 3 H), phosphonic acid group (--PO(OH) 3 ), phosphoric acid group (--OPO ( OH) 3 ), phosphinic acid group (--PO(OH)--), mercapto group (--SH) and the like.
Basic functional groups include primary, secondary and tertiary amino groups, ammonium groups, imino groups, and nitrogen-containing heterocyclic groups such as pyridine, pyrimidine, pyrazine, imidazole and triazole.
Nonionic functional groups include hydroxy group, ether group, thioether group, sulfinyl group (-SO-), sulfonyl group ( -SO2- ), carbonyl group, formyl group, ester group, carbonate group, amide group, Carbamoyl group, ureido group, thioamide group, thioureido group, sulfamoyl group, cyano group, alkenyl group, alkynyl group, phosphine oxide group, phosphine sulfide group and the like.
 高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。
 また、高分子分散剤は、ランダム共重合体、ブロック共重合体またはグラフト共重合体のいずれであってもよい。高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。
 高分子分散剤としては、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレンイミン、ポリアリルアミンのようなポリアミン、ポリイミド等が挙げられる。
The polymeric dispersant may be a polymer (homopolymer) of a single monomer, or a copolymer (copolymer) of a plurality of types of monomers.
Moreover, the polymeric dispersant may be any of random copolymers, block copolymers and graft copolymers. When the polymeric dispersant is a graft copolymer, it may be a comb-shaped graft copolymer or a star-shaped graft copolymer.
Examples of polymer dispersants include acrylic resins, polyester resins, polyurethane resins, polyamide resins, polyethers, phenol resins, silicone resins, polyurea resins, amino resins, epoxy resins, polyamines such as polyethyleneimine and polyallylamine, and polyimides. etc.
 高分子分散剤には、市販品を使用することもできる。
 高分子分散剤の市販品としては、例えば、味の素ファインテクノ株式会社製のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズおよびBYK-シリーズ、BASF社製のEfkaシリーズ等が挙げられる。
A commercial item can also be used for a polymeric dispersing agent.
Commercially available polymeric dispersants include, for example, Ajinomoto Fine-Techno Co., Inc.'s Ajisper PB series, BYK's DISPERBYK series and BYK-series, and BASF's Efka series.
 [有機溶剤]
 インク組成物は、必要に応じて、有機溶剤を含有してよい。
 有機溶剤としては、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジブチルエーテル、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、1,4-ブタンジオールジアセテート、グリセリルトリアセテート等が挙げられる。
[Organic solvent]
The ink composition may contain an organic solvent, if desired.
Examples of organic solvents include ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol dibutyl ether, diethyl adipate, dibutyl oxalate, dimethyl malonate, diethyl malonate, dimethyl succinate, and succinic acid. diethyl, 1,4-butanediol diacetate, glyceryl triacetate and the like.
 有機溶剤の沸点は、インクジェットインクに使用する場合には、連続吐出安定性の観点から、150℃以上であることが好ましく、180℃以上であることがより好ましい。
 また、画素部の形成時には、インク組成物の硬化前にインク組成物から溶剤を除去する必要があるため、有機溶剤を除去しやすい観点から、有機溶剤の沸点は、300℃以下であることが好ましい。
When used for inkjet ink, the boiling point of the organic solvent is preferably 150° C. or higher, more preferably 180° C. or higher, from the viewpoint of continuous ejection stability.
Further, when forming the pixel portion, it is necessary to remove the solvent from the ink composition before the ink composition is cured. Therefore, from the viewpoint of easy removal of the organic solvent, the boiling point of the organic solvent is preferably 300° C. or less. preferable.
 有機溶剤は、沸点が150℃以上のアセテート化合物を含むことが好ましい。この場合、発光性ナノ結晶粒子と有機溶剤との間の親和性がより向上し、発光性ナノ結晶粒子が優れた発光特性を発揮し得る。
 かかるアセテート化合物の具体例としては、例えば、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート等のモノアセテート化合物、1,4-ブタンジオールジアセテート、プロピレングリコールジアセテート等のジアセテート化合物、グリセリルトリアセテート等が挙げられる。
The organic solvent preferably contains an acetate compound having a boiling point of 150° C. or higher. In this case, the affinity between the luminescent nanocrystalline particles and the organic solvent is further improved, and the luminescent nanocrystalline particles can exhibit excellent luminous properties.
Specific examples of such acetate compounds include monoacetate compounds such as diethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol methyl ether acetate, 1,4-butanediol diacetate, and propylene. Diacetate compounds such as glycol diacetate, glyceryl triacetate, and the like are included.
 本実施形態のインク組成物では、光重合性化合物が分散媒としても機能するため、無溶剤で、光散乱性粒子および発光性ナノ結晶粒子を分散させることが可能である。この場合、画素部を形成する際に有機溶剤を乾燥により除去する工程が不要となる利点を有する。
 インク組成物は、本発明の効果を阻害しない範囲で、上述した成分以外の成分をさらに含有していてもよい。
In the ink composition of the present embodiment, since the photopolymerizable compound also functions as a dispersion medium, it is possible to disperse the light-scattering particles and the luminescent nanocrystalline particles without a solvent. In this case, there is an advantage that the step of removing the organic solvent by drying is not required when forming the pixel portion.
The ink composition may further contain components other than the components described above as long as the effects of the present invention are not impaired.
 インク組成物の吐出時の粘度は、例えば吐出安定性の観点から、2mPa・s以上、5mPa・s以上または7mPa・s以上であってもよい。吐出時の粘度は、20mPa・s以下、15mPa・s以下、12mPa・s以下であってもよい。
 インク組成物の吐出時の粘度は、2~20mPa・s、2~15mPa・s、2~12mPa・s、5~20mPa・s、5~15mPa・s、5~12mPa・s、7~20mPa・s、7~15mPa・sまたは7~12mPa・sであることが好ましい。
 本明細書において、インク組成物の粘度は、E型粘度計を使用して25℃で測定された値である。
From the viewpoint of ejection stability, the ink composition may have a viscosity of 2 mPa·s or more, 5 mPa·s or more, or 7 mPa·s or more. The viscosity during ejection may be 20 mPa·s or less, 15 mPa·s or less, or 12 mPa·s or less.
The viscosity of the ink composition during ejection is 2 to 20 mPa·s, 2 to 15 mPa·s, 2 to 12 mPa·s, 5 to 20 mPa·s, 5 to 15 mPa·s, 5 to 12 mPa·s, and 7 to 20 mPa·s. s, 7 to 15 mPa·s or 7 to 12 mPa·s.
As used herein, the viscosity of the ink composition is a value measured at 25° C. using an E-type viscometer.
 インク組成物の吐出時の粘度が2mPa・s以上である場合、吐出ヘッドのインク吐出孔の先端におけるインク組成物のメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量および吐出のタイミングの制御)が容易となる。
 一方、インク組成物の吐出時の粘度が20mPa・s以下である場合、インク吐出孔からインク組成物を円滑に吐出させることができる。
When the viscosity of the ink composition during ejection is 2 mPa·s or more, the meniscus shape of the ink composition at the tip of the ink ejection hole of the ejection head is stabilized. timing control) becomes easier.
On the other hand, when the ink composition has a viscosity of 20 mPa·s or less during ejection, the ink composition can be smoothly ejected from the ink ejection holes.
 インク組成物の表面張力は、インクジェットインクに適した表面張力であることが好ましく、具体的には、20~40mN/mであることが好ましく、25~35mN/mであることがより好ましい。かかる範囲に表面張力を調整することにより、インク組成物の吐出制御(例えば、吐出量および吐出のタイミングの制御)が容易になるとともに、飛行曲がりの発生を抑制することができる。
 なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のズレを生じることをいう。
The surface tension of the ink composition is preferably a surface tension suitable for inkjet inks, specifically preferably 20 to 40 mN/m, more preferably 25 to 35 mN/m. By adjusting the surface tension to such a range, it is possible to facilitate ejection control of the ink composition (for example, control of the ejection amount and ejection timing) and to suppress the occurrence of flight deflection.
The term "flight deflection" means that when the ink composition is ejected from the ink ejection holes, the landing position of the ink composition deviates from the target position by 30 μm or more.
 表面張力が40mN/m以下である場合、インク吐出孔の先端におけるインク組成物のメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量および吐出のタイミングの制御)が容易となる。
 一方、表面張力が20mN/m以上である場合、インク吐出孔の周辺がインク組成物で汚染されるのを防止することができるため、飛行曲がりの発生を抑制することができる。すなわち、着弾すべき画素部の形成領域に正確に着弾されず、インク組成物の充填が不充分な画素部が生じたり、着弾すべき画素部の形成領域に隣接する画素部の形成領域(または画素部)にインク組成物が着弾し、色再現性が低下したりするのを防止することができる。
 本願明細書において、インク組成物の表面張力は、リング法(輪環法とも言う。)を使用して23℃で測定された値である。
When the surface tension is 40 mN/m or less, the meniscus shape of the ink composition at the tip of the ink ejection hole is stabilized, so that the ejection control of the ink composition (for example, control of ejection amount and ejection timing) becomes easy. .
On the other hand, when the surface tension is 20 mN/m or more, it is possible to prevent the periphery of the ink ejection hole from being contaminated with the ink composition, so it is possible to suppress the occurrence of flight deflection. That is, the ink composition does not land accurately in the formation region of the pixel portion to be landed, and a pixel portion is insufficiently filled with the ink composition, or a pixel portion formation region adjacent to the pixel portion formation region to be landed (or It is possible to prevent the ink composition from landing on the pixel portion) and lowering the color reproducibility.
In the specification of the present application, the surface tension of the ink composition is a value measured at 23° C. using the ring method (also referred to as ring ring method).
 本実施形態のインク組成物をインクジェットインクとして使用する場合、ピエゾ方式のインクジェット記録装置に適用することが好ましい。ピエゾ方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがない。そのため、発光性ナノ結晶粒子の変質が起こり難く、画素部(光変換層)において、所望の発光特性がより容易に得られ易い。
 以上、インク組成物の一実施形態について説明したが、上述した実施形態のインク組成物は、インクジェット法の他に、例えば、フォトリソグラフィ法で使用することもできる。この場合、インク組成物は、バインダーポリマーとしてアルカリ可溶性樹脂を含有することが好ましい。
When the ink composition of the present embodiment is used as an inkjet ink, it is preferably applied to a piezo-type inkjet recording apparatus. In the piezo method, the ink composition is not instantaneously exposed to high temperatures during ejection. Therefore, the luminescent nanocrystalline particles are less likely to be degraded, and desired light emission characteristics can be easily obtained in the pixel portion (light conversion layer).
Although one embodiment of the ink composition has been described above, the ink composition of the embodiment described above can also be used in, for example, a photolithography method in addition to the inkjet method. In this case, the ink composition preferably contains an alkali-soluble resin as a binder polymer.
 インク組成物をフォトリソグラフィ法で使用する場合、まず、インク組成物を基材上に塗布し、さらにインク組成物を乾燥させて塗布膜を形成する。得られた塗布膜は、アルカリ現像液に可溶性であり、アルカリ現像液で処理されることによりパターニングされる。この際、アルカリ現像液には、廃液処理の容易さ等の観点から、好適には水溶液が使用されるため、インク組成物の塗布膜は、水溶液で処理されることとなる。
 一方、発光性ナノ結晶粒子(量子ドット等)を使用したインク組成物の場合、発光性ナノ結晶粒子が水に対して不安定であり、発光特性(例えば、蛍光特性)が水分により損なわれるおそれがある。本発明のインク組成物は、ヒンダードアミン系化合物を含有するため、かかる不都合の発生を低減することができるが、アルカリ現像液(水溶液)で処理する必要のない、インクジェット法での使用が好ましい。
When the ink composition is used in photolithography, first, the ink composition is applied onto a substrate, and the ink composition is dried to form a coating film. The resulting coating film is soluble in an alkaline developer, and is patterned by being treated with an alkaline developer. At this time, since an aqueous solution is preferably used as the alkaline developer from the viewpoint of ease of waste liquid treatment, the coating film of the ink composition is treated with an aqueous solution.
On the other hand, in the case of an ink composition using luminescent nanocrystalline particles (quantum dots, etc.), the luminescent nanocrystalline particles are unstable against water, and there is a risk that the luminescent properties (e.g., fluorescence properties) may be impaired by moisture. There is Since the ink composition of the present invention contains a hindered amine-based compound, it is possible to reduce the occurrence of such inconveniences, but it is preferably used in an inkjet method that does not require treatment with an alkaline developer (aqueous solution).
 また、インク組成物の塗布膜に対してアルカリ現像液による処理を行わない場合でも、インク組成物がアルカリ可溶性である場合、インク組成物の塗布膜が大気中の水分を吸収し易くなるため、経時的に発光性ナノ結晶粒子(量子ドット等)の発光特性(例えば、蛍光特性)が損なわれる恐れがある。本発明のインク組成物では、ヒンダードアミン系化合物を含有するため、かかる不都合の発生も好適に低減することができる。
 吸水による不都合の発生をより確実に低減する観点から、本実施形態においては、インク組成物の塗布膜は、アルカリ不溶性であることが好ましい。すなわち、本実施形態のインク組成物は、アルカリ不溶性の塗布膜を形成可能なインク組成物であることが好ましい。
Further, even when the coating film of the ink composition is not treated with an alkaline developer, if the ink composition is alkali-soluble, the coating film of the ink composition easily absorbs moisture in the atmosphere. Luminescent nanocrystalline particles (such as quantum dots) may lose their luminescent properties (eg, fluorescence properties) over time. Since the ink composition of the present invention contains a hindered amine compound, it is possible to suitably reduce the occurrence of such inconveniences.
In the present embodiment, the coating film of the ink composition is preferably alkali-insoluble from the viewpoint of more reliably reducing the occurrence of problems due to water absorption. That is, the ink composition of the present embodiment is preferably an ink composition capable of forming an alkali-insoluble coating film.
 このようなインク組成物は、光重合性化合物として、アルカリ不溶性の光重合性化合物を使用することにより得ることができる。
 ここで、インク組成物の塗布膜がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃におけるインク組成物の塗布膜の溶解量が、インク組成物の塗布膜の全質量を基準として、30質量%以下であることを意味する。上記溶解量は、10質量%以下であることが好ましく、3質量%以下であることがより好ましい。
 なお、インク組成物がアルカリ不溶性の塗布膜を形成可能なインク組成物であることは、インク組成物を基材上に塗布した後、80℃、3分の条件で乾燥して得られる厚さ1μmの塗布膜の、上記溶解量を測定することにより確認することできる。
Such an ink composition can be obtained by using an alkali-insoluble photopolymerizable compound as the photopolymerizable compound.
Here, the fact that the coating film of the ink composition is alkali-insoluble means that the amount of dissolution of the coating film of the ink composition in a 1% by mass aqueous solution of potassium hydroxide at 25° C. is the total mass of the coating film of the ink composition. As a standard, it means 30% by mass or less. The dissolved amount is preferably 10% by mass or less, more preferably 3% by mass or less.
It should be noted that the fact that the ink composition is an ink composition capable of forming an alkali-insoluble coating film means that the thickness obtained by applying the ink composition on a substrate and then drying it under the conditions of 80 ° C. and 3 minutes It can be confirmed by measuring the amount of dissolution of the coating film of 1 μm.
 <インク組成物の製造方法>
 本実施形態のインク組成物は、例えば、上述した構成成分(発光性ナノ結晶粒子(例えば、有機リガンドで修飾された発光性ナノ結晶粒子)と、光重合性化合物と、ヒンダードアミン系化合物と、その他の任意成分)を混合する工程を備える。
 インク組成物の製造方法は、上記構成成分の混合物の分散処理を行う工程をさらに備えてもよい。
 以下では、一例として、光散乱性粒子を含有するインク組成物の製造方法を説明する。
<Method for producing ink composition>
The ink composition of the present embodiment includes, for example, the above-described components (luminescent nanocrystalline particles (e.g., organic ligand-modified luminescent nanocrystalline particles), photopolymerizable compounds, hindered amine compounds, and other optional component).
The method for producing the ink composition may further comprise a step of subjecting the mixture of the constituent components to dispersion treatment.
As an example, a method for producing an ink composition containing light-scattering particles will be described below.
 光散乱性粒子を含有するインク組成物の製造方法は、例えば、光散乱性粒子の分散体を準備する第1工程と、光散乱性粒子の分散体と発光性ナノ結晶粒子とを混合する第2工程とを備える。
 光散乱性粒子の分散体は、さらに、高分子分散剤を含有してもよい。この方法では、光散乱性粒子の分散体が、さらに、光重合性化合物を含有してよく、第2工程において、さらに、光重合性化合物を混合してもよい。
 上記方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば、外部量子効率)を向上させることができるとともに、吐出安定性に優れるインク組成物を容易に得ることができる。
A method for producing an ink composition containing light-scattering particles includes, for example, a first step of preparing a dispersion of light-scattering particles, and a second step of mixing the dispersion of light-scattering particles and luminescent nanocrystalline particles. 2 steps.
The dispersion of light scattering particles may further contain a polymeric dispersant. In this method, the dispersion of light-scattering particles may further contain a photopolymerizable compound, and the photopolymerizable compound may be further mixed in the second step.
According to the above method, the light-scattering particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
 第1工程では、光散乱性粒子と、必要に応じて、高分子分散剤と、光重合性化合物とを混合し、分散処理を行うことにより、光散乱性粒子の分散体を調製してもよい。
 混合および分散処理は、例えば、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミルのような分散装置等を使用して行うことができる。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整し易い観点から、ビーズミルまたはペイントコンディショナーを使用することが好ましい。
 また、発光性ナノ結晶粒子と光散乱性粒子とを混合する前に、光散乱性粒子と高分子分散剤とを混合することにより、光散乱性粒子をより十分に分散させることができる。そのため、優れた吐出安定性および優れた外部量子効率をより一層容易に得ることができる。
In the first step, light-scattering particles may be mixed with, if necessary, a polymer dispersant, and a photopolymerizable compound, and subjected to dispersion treatment to prepare a dispersion of light-scattering particles. good.
Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill or a paint conditioner from the viewpoint of improving the dispersibility of the light-scattering particles and facilitating adjustment of the average particle size of the light-scattering particles to a desired range.
Further, by mixing the light-scattering particles and the polymer dispersant before mixing the light-emitting nanocrystalline particles and the light-scattering particles, the light-scattering particles can be dispersed more sufficiently. Therefore, excellent ejection stability and excellent external quantum efficiency can be obtained more easily.
 インク組成物の製造方法では、第2工程の前に、さらに、発光性ナノ結晶粒子と光重合性化合物とを含有する発光性ナノ結晶粒子の分散体を準備する工程を備えていてもよい。この場合、第2工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体とを混合する。
 発光性ナノ結晶粒子の分散体を準備する工程では、発光性ナノ結晶粒子と光重合性化合物とを混合し、分散処理を行うことにより、発光性ナノ結晶粒子の分散体を調製してよい。
 発光性ナノ結晶粒子としては、その表面に有機リガンドを有する発光性ナノ結晶粒子を使用してもよい。すなわち、発光性ナノ結晶粒子の分散体は、さらに、有機リガンドを含んでいてもよい。
The method for producing an ink composition may further include, before the second step, a step of preparing a dispersion of luminescent nanocrystalline particles containing luminescent nanocrystalline particles and a photopolymerizable compound. In this case, in the second step, a dispersion of light-scattering particles and a dispersion of luminescent nanocrystalline particles are mixed.
In the step of preparing a dispersion of luminescent nanocrystalline particles, the dispersion of luminescent nanocrystalline particles may be prepared by mixing luminescent nanocrystalline particles and a photopolymerizable compound and performing dispersion treatment.
As luminescent nanocrystalline particles, luminescent nanocrystalline particles having organic ligands on their surfaces may be used. That is, the dispersion of luminescent nanocrystalline particles may further comprise an organic ligand.
 混合および分散処理は、例えば、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミルのような分散装置等を使用して行うことができる。発光性ナノ結晶粒子の分散性が良好となり、発光性ナノ結晶粒子の平均粒子径を所望の範囲に調整し易い観点から、ビーズミル、ペイントコンディショナーまたはジェットミルを使用することが好ましい。
 かかる方法によれば、発光性ナノ結晶粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば、外部量子効率)を向上させることができるとともに、吐出安定性に優れるインク組成物を容易に得ることができる。
Mixing and dispersing treatments can be performed using, for example, dispersing devices such as bead mills, paint conditioners, planetary stirrers, jet mills, and the like. It is preferable to use a bead mill, a paint conditioner, or a jet mill from the viewpoint of improving the dispersibility of the luminescent nanocrystalline particles and facilitating adjustment of the average particle size of the luminescent nanocrystalline particles to a desired range.
According to such a method, the luminescent nanocrystalline particles can be sufficiently dispersed. Therefore, it is possible to improve the optical properties (for example, external quantum efficiency) of the pixel portion, and to easily obtain an ink composition having excellent ejection stability.
 上記製造方法において、ヒンダードアミン系化合物は、第1工程で混合しても、第2工程で混合してもよい。すなわち、第1工程は、光散乱性粒子およびヒンダードアミン系化合物と、必要に応じて、高分子分散剤および光重合性化合物とを含有する光散乱性粒子の分散体を準備する工程であってもよく、第2工程は、光散乱性粒子の分散体と、発光性ナノ結晶粒子およびヒンダードアミン系化合物と、必要に応じて、光重合性化合物とを混合する工程であってもよい。
 なお、ヒンダードアミン系化合物は、第2工程の前に調製される発光性ナノ結晶粒子の分散体に混合してもよい。
In the above production method, the hindered amine compound may be mixed in the first step or the second step. That is, the first step may be a step of preparing a dispersion of light-scattering particles containing light-scattering particles and a hindered amine compound, and optionally a polymer dispersant and a photopolymerizable compound. The second step may be a step of mixing the dispersion of light-scattering particles, the luminescent nanocrystalline particles, the hindered amine compound, and, if necessary, the photopolymerizable compound.
The hindered amine compound may be mixed with the dispersion of luminescent nanocrystalline particles prepared before the second step.
 上記製造方法において、酸化防止剤、有機溶媒等の他の成分を使用する場合、これらの成分は、発光性ナノ結晶粒子の分散体に混合してもよく、光散乱性粒子の分散体に混合してもよく、発光性ナノ結晶粒子の分散体と光散乱性粒子の分散体とを混合して得られる混合分散体に混合してもよい。 In the above production method, when other components such as antioxidants and organic solvents are used, these components may be mixed with the dispersion of the luminescent nanocrystalline particles or the dispersion of the light-scattering particles. Alternatively, it may be mixed in a mixed dispersion obtained by mixing a dispersion of luminescent nanocrystalline particles and a dispersion of light-scattering particles.
 <インク組成物セット>
 一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性ナノ結晶粒子を含有しないインク組成物(非発光性インク組成物)を備えていてもよい。
 非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、発光性ナノ結晶粒子を含まない以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成とすることができる。
<Ink composition set>
An ink composition set of one embodiment includes the ink composition of the embodiment described above. The ink composition set may include an ink composition containing no luminescent nanocrystal particles (non-luminescent ink composition) in addition to the ink composition (luminescent ink composition) of the embodiment described above. .
A non-luminescent ink composition is, for example, a curable ink composition. The non-luminescent ink composition can have the same composition as the ink composition (luminescent ink composition) of the embodiment described above, except that it does not contain luminescent nanocrystalline particles.
 非発光性インク組成物は、発光性ナノ結晶粒子を含有しない。このため、非発光性インク組成物により形成された画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合、画素部から出射する光は、入射光とほぼ同一の波長を有する。
 したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に使用される。例えば、光源からの光が波長420~480nmの範囲の光(青色光)であれば、非発光性インク組成物により形成される画素部は、青色画素部となり得る。
A non-luminescent ink composition does not contain luminescent nanocrystalline particles. Therefore, when light is incident on a pixel portion formed of a non-luminous ink composition (a pixel portion containing a cured product of the non-luminous ink composition), the light emitted from the pixel portion is almost the same as the incident light. have the same wavelength.
Therefore, the non-luminous ink composition is preferably used to form a pixel portion having the same color as the light from the light source. For example, if the light from the light source has a wavelength in the range of 420 to 480 nm (blue light), the pixel portion formed with the non-luminous ink composition can be a blue pixel portion.
 非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、非発光性インク組成物により形成される画素部では、入射した光を散乱させることができる。これにより、画素部からの出射光の視野角における光強度差を低減することができる。 The non-luminescent ink composition preferably contains light-scattering particles. When the non-luminous ink composition contains light-scattering particles, incident light can be scattered in the pixel portions formed by the non-luminous ink composition. Thereby, the light intensity difference in the viewing angle of the light emitted from the pixel portion can be reduced.
 <光変換層およびカラーフィルタ>
 次に、上述した実施形態のインク組成物セットを使用して得られる光変換層およびカラーフィルタの詳細について、図面を参照しつつ説明する。なお、以下の説明において、同一または相当要素には、同一符号を用い、重複する説明は省略する。
 図1は、本発明の一実施形態のカラーフィルタの模式断面図である。以下、説明の都合上、図1中の上側を「上」または「上方」とも言い、下側を「下」または「下方」とも言う。
 図1に示すカラーフィルタ100は、基材40と、基材40上に設けられた光変換層30とを有している。光変換層30は、複数の画素部10と、遮光部20とを備えている。
<Light conversion layer and color filter>
Next, the details of the light conversion layer and the color filter obtained by using the ink composition set of the embodiment described above will be described with reference to the drawings. In the following description, the same reference numerals are used for the same or corresponding elements, and overlapping descriptions are omitted.
FIG. 1 is a schematic cross-sectional view of a color filter according to one embodiment of the invention. Hereinafter, for convenience of explanation, the upper side in FIG. 1 will also be referred to as "upper" or "upper", and the lower side will also be referred to as "lower" or "lower".
A color filter 100 shown in FIG. 1 has a substrate 40 and a light conversion layer 30 provided on the substrate 40 . The light conversion layer 30 includes a plurality of pixel portions 10 and a light shielding portion 20 .
 光変換層30は、画素部10として、第1画素部10aと、第2画素部10bと、第3画素部10cとを有している。第1画素部10aと、第2画素部10bと、第3画素部10cとは、この順に繰り返すように格子状に配列されている。
 遮光部20は、隣り合う画素部10同士の間、すなわち、第1画素部10aと第2画素部10bとの間、第2画素部10bと第3画素部10cとの間、第3画素部10cと第1画素部10aとの間に設けられている。換言すれば、隣り合う画素部10同士は、遮光部20によって隔てられている。
The light conversion layer 30 has, as the pixel portions 10, a first pixel portion 10a, a second pixel portion 10b, and a third pixel portion 10c. The first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c are arranged in a lattice so as to repeat this order.
The light shielding portion 20 is provided between the adjacent pixel portions 10, that is, between the first pixel portion 10a and the second pixel portion 10b, between the second pixel portion 10b and the third pixel portion 10c, and between the third pixel portion. 10c and the first pixel portion 10a. In other words, adjacent pixel portions 10 are separated from each other by the light blocking portion 20 .
 第1画素部10aおよび第2画素部10bは、それぞれ上述したインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。硬化物は、発光性ナノ結晶粒子と、硬化成分と、光散乱性粒子とを含有する。
 図1に示すように、第1画素部10aは、第1硬化成分13aと、第1硬化成分13a中に分散された第1発光性ナノ結晶粒子11aおよび第1光散乱性粒子12aとを含む。同様に、第2画素部10bは、第2硬化成分13bと、第2硬化成分13b中に分散された第2発光性ナノ結晶粒子11bおよび第2光散乱性粒子12bとを含む。
The first pixel portion 10a and the second pixel portion 10b are luminescent pixel portions (luminescent pixel portions) each containing a cured product of the ink composition described above. The cured product contains luminescent nanocrystalline particles, a curing component, and light scattering particles.
As shown in FIG. 1, the first pixel portion 10a includes a first curing component 13a, and first luminescent nanocrystalline particles 11a and first light scattering particles 12a dispersed in the first curing component 13a. . Similarly, the second pixel portion 10b includes a second curing component 13b and second luminescent nanocrystalline particles 11b and second light scattering particles 12b dispersed in the second curing component 13b.
 硬化成分は、光重合性化合物の重合によって得られた成分であり、光重合性化合物の重合体とヒンダードアミン系化合物とを含む。
 硬化成分には、上記重合体の他、インク組成物中の有機成分(有機リガンド、高分子分散剤、未反応の光重合性化合物等)が含まれていてもよい。
 第1画素部10aおよび第2画素部10bにおいて、第1硬化成分13aと第2硬化成分13bとは、同一であっても、異なっていてもよい。また、第1光散乱性粒子12aと第2光散乱性粒子12bとは、同一であっても、異なっていてもよい。
The cured component is a component obtained by polymerization of a photopolymerizable compound, and contains a polymer of the photopolymerizable compound and a hindered amine compound.
The curing component may include organic components (organic ligands, polymer dispersants, unreacted photopolymerizable compounds, etc.) in the ink composition in addition to the above polymers.
In the first pixel portion 10a and the second pixel portion 10b, the first curing component 13a and the second curing component 13b may be the same or different. Moreover, the first light-scattering particles 12a and the second light-scattering particles 12b may be the same or different.
 第1発光性ナノ結晶粒子11aは、波長420~480nmの範囲の光を吸収して、波長605~665nmの範囲に発光ピークを有する光を発する赤色発光性ナノ結晶粒子である。すなわち、第1画素部10aは、青色光を赤色光に変換するための赤色画素部と言うことができる。
 また、第2発光性ナノ結晶粒子11bは、波長420~480nmの範囲の光を吸収して、波長500~560nmの範囲に発光ピークを有する光を発する緑色発光性ナノ結晶粒子である。すなわち、第2画素部10bは、青色光を緑色光に変換するための緑色画素部と言うことができる。
The first luminescent nanocrystalline particles 11a are red luminescent nanocrystalline particles that absorb light in the wavelength range of 420 to 480 nm and emit light having an emission peak in the wavelength range of 605 to 665 nm. That is, the first pixel section 10a can be said to be a red pixel section for converting blue light into red light.
The second luminescent nanocrystalline particles 11b are green luminescent nanocrystalline particles that absorb light in the wavelength range of 420 to 480 nm and emit light having an emission peak in the wavelength range of 500 to 560 nm. That is, the second pixel section 10b can be said to be a green pixel section for converting blue light into green light.
 発光性画素部における発光性ナノ結晶粒子の含有量は、外部量子効率の向上効果により優れる観点および優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、15質量%以上であることがさらに好ましく、20質量%以上であることが特に好ましく、30質量%以上であることが最も好ましい。
 発光性ナノ結晶粒子の含有量は、画素部の信頼性に優れる観点および優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることがさらに好ましく、60質量%以下であることが特に好ましい。
The content of the luminescent nanocrystalline particles in the luminescent pixel portion is based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent luminescence intensity and excellent effect of improving the external quantum efficiency, It is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, particularly preferably 20% by mass or more, and 30% by mass or more. is most preferred.
The content of the luminescent nanocrystalline particles is 80% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of obtaining excellent reliability of the pixel portion and excellent emission intensity. is preferably 75% by mass or less, more preferably 70% by mass or less, and particularly preferably 60% by mass or less.
 発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、0.1質量%以上であることが好ましく、1質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。
 光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点および画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下、30質量%以下または25質量部%以下であることがさらに好ましく、20質量部%以下であることが特に好ましく、15質量%以下であることが最も好ましい。
The content of the light-scattering particles in the light-emitting pixel portion is preferably 0.1% by mass or more based on the total weight of the cured product of the light-emitting ink composition, from the viewpoint of improving the external quantum efficiency. It is preferably 1% by mass or more, more preferably 3% by mass or more.
The content of the light-scattering particles is 60% by mass or less based on the total mass of the cured luminescent ink composition, from the viewpoint of improving the external quantum efficiency and the reliability of the pixel portion. is preferably 50% by mass or less, more preferably 40% by mass or less, 30% by mass or less, or 25% by mass or less, particularly preferably 20% by mass or less, and 15 % or less is most preferable.
 第3画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性ナノ結晶粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。
 図1に示すように、第3画素部10cは、第3硬化成分13cと、第3硬化成分13c中に分散された第3光散乱性粒子12cとを含む。
 第3硬化成分13cは、例えば、光重合性化合物の重合によって得られる成分であり、光重合性化合物の重合体を含む。
 第3光散乱性粒子12cは、第1光散乱性粒子12aおよび第2光散乱性粒子12bと同一であっても、異なっていてもよい。
The third pixel portion 10c is a non-luminous pixel portion (non-luminous pixel portion) containing a cured product of the non-luminous ink composition described above. The cured product does not contain luminescent nanocrystalline particles, but contains light-scattering particles and a curing component.
As shown in FIG. 1, the third pixel portion 10c includes a third curing component 13c and third light scattering particles 12c dispersed in the third curing component 13c.
The third curing component 13c is, for example, a component obtained by polymerization of a photopolymerizable compound, and includes a polymer of the photopolymerizable compound.
The third light scattering particles 12c may be the same as or different from the first light scattering particles 12a and the second light scattering particles 12b.
 第3画素部10cは、例えば、波長420~480nmの範囲の光に対して、30%以上の透過率を有することが好ましい。この場合、第3画素部10cは、波長420~480nmの範囲の光を発する光源を使用すれば、青色画素部として機能することができる。
 なお、第3画素部10cの透過率は、顕微分光装置により測定することができる。
The third pixel portion 10c preferably has a transmittance of 30% or more for light with a wavelength of 420 to 480 nm, for example. In this case, the third pixel section 10c can function as a blue pixel section by using a light source that emits light in the wavelength range of 420 to 480 nm.
The transmittance of the third pixel section 10c can be measured with a microscopic spectrometer.
 第3画素部(非発光性画素部)10cにおける光散乱性粒子の含有量は、視野角における光強度差をより低減する観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。
 光散乱性粒子の含有量は、光反射をより低減する観点から、非発光性インク組成物の硬化物の全質量を基準として、80質量%以下であることが好ましく、75質量%以下であることがより好ましく、70質量%以下であることがさらに好ましい。
The content of the light-scattering particles in the third pixel portion (non-luminous pixel portion) 10c is based on the total weight of the cured non-luminous ink composition, from the viewpoint of further reducing the difference in light intensity at the viewing angle. , preferably 1% by mass or more, more preferably 5% by mass or more, and even more preferably 10% by mass or more.
From the viewpoint of further reducing light reflection, the content of the light-scattering particles is preferably 80% by mass or less, and 75% by mass or less, based on the total mass of the cured non-luminescent ink composition. is more preferably 70% by mass or less.
 画素部(第1画素部10a、第2画素部10bおよび第3画素部10c)の厚さは、1μm以上であることが好ましく、2μm以上であることがより好ましく、3μm以上であることがさらに好ましい。
 画素部(第1画素部10a、第2画素部10bおよび第の画素部10c)の厚さは、30μm以下であることが好ましく、20μm以下であることがより好ましく、15μm以下であることがさらに好ましい。
The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the third pixel portion 10c) is preferably 1 μm or more, more preferably 2 μm or more, and further preferably 3 μm or more. preferable.
The thickness of the pixel portion (the first pixel portion 10a, the second pixel portion 10b, and the second pixel portion 10c) is preferably 30 μm or less, more preferably 20 μm or less, and further preferably 15 μm or less. preferable.
 遮光部20は、隣り合う画素部同士を隔てて混色(クロストーク)を防ぐ目的および光源からの光の漏れを防ぐ目的で設けられる隔壁部(ブラックマトリックス)である。
 遮光部20の構成材料としては、特に限定されないが、クロム等の金属の他、バインダー樹脂と、カーボン微粒子、金属酸化物、無機顔料、有機顔料のような遮光性粒子とを含む樹脂組成物等が挙げられる。
 バインダー樹脂には、例えば、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の1種または2種以上を含む樹脂、感光性樹脂、O/Wエマルジョン樹脂(例えば、反応性シリコーンエマルジョン)等を使用することができる。
 遮光部20の厚さは、1~30μmであることが好ましい。
The light shielding portion 20 is a partition portion (black matrix) provided for the purpose of separating adjacent pixel portions to prevent color mixture (crosstalk) and for the purpose of preventing leakage of light from the light source.
The constituent material of the light shielding portion 20 is not particularly limited, but in addition to a metal such as chromium, a resin composition containing a binder resin and light shielding particles such as carbon fine particles, metal oxides, inorganic pigments, and organic pigments. are mentioned.
Binder resins include, for example, polyimide resins, acrylic resins, epoxy resins, polyacrylamides, polyvinyl alcohols, gelatin, casein, resins containing two or more of cellulose, photosensitive resins, O/W emulsion resins (e.g. , reactive silicone emulsion) and the like can be used.
The thickness of the light shielding portion 20 is preferably 1 to 30 μm.
 基材40は、光透過性を有する透明基材である。基材40には、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英等で構成される透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルムのような透明なフレキシブル基材等を使用することができる。中でも、基材40には、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を使用することが好ましい。
 無アルカリガラスの具体例としては、例えば、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」および「イーグルXG」、AGC社製の「AN100」、日本電気硝子社製の「OA-10G」および「OA-11」が挙げられる。これらは、熱膨脹率の小さい素材であり、寸法安定性および高温加熱処理における作業性に優れる。
The base material 40 is a transparent base material having optical transparency. For the substrate 40, for example, a transparent glass substrate made of quartz glass, Pyrex (registered trademark) glass, synthetic quartz, etc., a transparent resin film, a transparent flexible substrate such as an optical resin film, or the like is used. be able to. Above all, it is preferable to use a glass substrate made of alkali-free glass that does not contain an alkali component in the glass as the substrate 40 .
Specific examples of alkali-free glass include "7059 glass", "1737 glass", "Eagle 200" and "Eagle XG" manufactured by Corning, "AN100" manufactured by AGC, and "OA-10G" and "OA-11". These materials have a small coefficient of thermal expansion and are excellent in dimensional stability and workability in high-temperature heat treatment.
 以上の光変換層30を備えるカラーフィルタ100は、波長420~480nmの範囲の光を発する光源と組み合わせて好適に使用することができる。 The color filter 100 including the light conversion layer 30 described above can be suitably used in combination with a light source that emits light in the wavelength range of 420-480 nm.
 カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20で区画された画素部の形成領域に、画素部10を形成することにより製造することができる。
 画素部10は、インク組成物(インクジェットインク)をインクジェット法により基材40上の画素部の形成領域に選択的に付着させる工程と、インク組成物に対して活性エネルギー線(例えば、紫外線)を照射し、インク組成物を硬化させる工程とを備える方法により形成することができる。
 インク組成物として、上述した発光性インク組成物を使用すれば、発光性画素部が得られ、非発光性インク組成物を使用すれば、非発光性画素部が得られる。
For example, the color filter 100 is formed by forming the light shielding portions 20 in a pattern on the substrate 40 and then forming the pixel portions 10 in the pixel portion forming regions partitioned by the light shielding portions 20 on the substrate 40. can be manufactured.
The pixel portion 10 is formed by a step of selectively applying an ink composition (inkjet ink) to a pixel portion forming region on the substrate 40 by an inkjet method, and applying an active energy ray (for example, ultraviolet rays) to the ink composition. irradiating and curing the ink composition.
A luminescent pixel portion can be obtained by using the luminescent ink composition described above as the ink composition, and a non-luminescent pixel portion can be obtained by using a non-luminescent ink composition.
 遮光部20は、クロム等の金属薄膜または遮光性粒子を含む樹脂組成物の薄膜をパターニングすることにより、基材40の一方の面の複数の画素部同士の境界となる領域に形成することができる。
 金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができる。また、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。
 パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。
The light-shielding portion 20 can be formed in a region that serves as a boundary between a plurality of pixel portions on one surface of the substrate 40 by patterning a thin film of a metal such as chromium or a thin film of a resin composition containing light-shielding particles. can.
A metal thin film can be formed by, for example, a sputtering method, a vacuum deposition method, or the like. A thin film of a resin composition containing light-shielding particles can be formed by, for example, a method such as coating or printing.
As a method for patterning, a photolithography method or the like can be used.
 インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、または圧電素子を用いたピエゾジェット方式等が挙げられる。
 インク組成物が有機溶剤を含む場合、その乾燥においては、有機溶剤の少なくとも一部を除去することが好ましく、有機溶剤の全てが除去することがより好ましい。
 インク組成物の乾燥方法は、減圧による乾燥(減圧乾燥)であることが好ましい。減圧乾燥は、通常、インク組成物の組成を制御する観点から、1.0~500Paの圧力下、20~30℃で3~30分間で行われる。
Examples of the ink jet method include a bubble jet (registered trademark) method using an electrothermal transducer as an energy generating element, and a piezo jet method using a piezoelectric element.
When the ink composition contains an organic solvent, it is preferable to remove at least part of the organic solvent, more preferably all of the organic solvent is removed during drying.
The method for drying the ink composition is preferably drying under reduced pressure (reduced pressure drying). From the viewpoint of controlling the composition of the ink composition, the drying under reduced pressure is usually carried out under a pressure of 1.0 to 500 Pa at 20 to 30° C. for 3 to 30 minutes.
 インク組成物の硬化は、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を使用して行うことができる。
 照射する光の波長は、200~440nmであることが好ましく、露光量は、10~4000mJ/cmであることが好ましい。
 以上、光変換層およびカラーフィルタ、ならびに、これらの製造方法の一実施形態について説明したが、本発明は、これらに限定されるものではない。
Curing of the ink composition can be performed using, for example, a mercury lamp, a metal halide lamp, a xenon lamp, an LED, or the like.
The wavelength of light for irradiation is preferably 200 to 440 nm, and the exposure dose is preferably 10 to 4000 mJ/cm 2 .
Although one embodiment of the light conversion layer, the color filter, and the manufacturing method thereof has been described above, the present invention is not limited to these.
 例えば、光変換層は、第3画素部10cに代えてまたは加えて、青色発光性ナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。
 また、光変換層は、赤色、緑色、青色以外の他の色の光を発する発光性ナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば、黄色画素部)を備えていてもよい。この場合、光変換層の各画素部に含有される発光性ナノ結晶粒子のそれぞれは、同一の波長の範囲に吸収極大波長を有することが好ましい。
For example, the light conversion layer may include a pixel portion (blue pixel portion) containing a cured luminescent ink composition containing blue luminescent nanocrystalline particles instead of or in addition to the third pixel portion 10c. good.
In addition, the light conversion layer includes a pixel portion (for example, a yellow pixel portion) containing a cured product of a luminescent ink composition containing luminescent nanocrystalline particles that emit light of a color other than red, green, and blue. may be In this case, each of the luminescent nanocrystalline particles contained in each pixel portion of the light conversion layer preferably has a maximum absorption wavelength within the same wavelength range.
 また、光変換層30の画素部10の少なくとも一部は、発光性ナノ結晶粒子以外の顔料を含有する組成物の硬化物を含んで構成されてもよい。
 また、カラーフィルタ100は、遮光部20上に、遮光部20よりも幅の狭い撥インク性を有する材料からなる撥インク層を備えていてもよい。
 さらに、撥インク層を設けるのではなく、画素部の形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部の形成領域の親インク性(濡れ性)を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。
Moreover, at least part of the pixel portion 10 of the light conversion layer 30 may include a cured product of a composition containing a pigment other than the luminescent nanocrystalline particles.
Further, the color filter 100 may include an ink-repellent layer made of an ink-repellent material having a narrower width than the light-shielding portion 20 on the light-shielding portion 20 .
Furthermore, instead of providing an ink-repellent layer, a photocatalyst-containing layer as a variable wettability layer is formed in a solid manner in a region including a pixel portion formation region, and then light is applied to the photocatalyst-containing layer through a photomask. By irradiating and exposing, the ink affinity (wettability) of the formation region of the pixel portion may be selectively increased. Examples of photocatalysts include titanium oxide and zinc oxide.
 カラーフィルタ100は、基材と40画素部10との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。
 また、カラーフィルタは、画素部10上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化するとともに、画素部10に含まれる成分および光触媒含有層に含まれる成分の他の層への溶出を防止するために設けられる。
 保護層の構成材料としては、カラーフィルタ100の保護層として使用されている材料を使用することができる。
The color filter 100 may have an ink-receiving layer containing hydroxypropylcellulose, polyvinyl alcohol, gelatin or the like between the substrate and the 40-pixel portion 10 .
Also, the color filter may have a protective layer on the pixel section 10 . This protective layer is provided to planarize the color filter and prevent components contained in the pixel section 10 and components contained in the photocatalyst-containing layer from eluting into other layers.
As a constituent material of the protective layer, the material used as the protective layer of the color filter 100 can be used.
 また、光変換層30およびカラーフィルタ100の製造では、インクジェット法ではなく、フォトリソグラフィ法で画素部を形成してもよい。
 この場合、まず、基材40上にインク組成物を層状に塗工し、インク組成物層を形成する。次いで、インク組成物層に所定のパターンで露光した後、現像液を用いて現像する。これにより、インク組成物の硬化物からなる画素部10が形成される。
 現像液は、通常、アルカリ性であるため、インク組成物の材料としてはアルカリ可溶性の材料が用いられる。ただし、材料の使用効率の観点では、インクジェット法がフォトリソグラフィ法よりも優れている。これは、フォトリソグラフィ法では、その原理上、材料のほぼ2/3以上を除去することとなり、材料が無駄になるからである。このため、本実施形態では、インク組成物をインクジェットインクとして用いて、インクジェット法により画素部を形成することが好ましい。
Further, in manufacturing the light conversion layer 30 and the color filter 100, the pixel portion may be formed by the photolithography method instead of the inkjet method.
In this case, first, the ink composition is applied in layers on the substrate 40 to form an ink composition layer. Next, after the ink composition layer is exposed in a predetermined pattern, it is developed using a developer. As a result, the pixel portion 10 made of the cured ink composition is formed.
Since the developer is usually alkaline, an alkali-soluble material is used as the material for the ink composition. However, the inkjet method is superior to the photolithography method from the viewpoint of efficiency of material usage. This is because the photolithographic method, in principle, removes approximately two-thirds or more of the material, which wastes the material. Therefore, in the present embodiment, it is preferable to use the ink composition as an inkjet ink and form the pixel portion by an inkjet method.
 また、本実施形態の光変換層30の画素部10は、上記した発光性ナノ結晶粒子に加えて、発光性ナノ結晶粒子の発光色と概ね同色の顔料をさらに含有してもよい。顔料を画素部10に含めるため、インク組成物に顔料を混合してもよい。 Further, the pixel portion 10 of the light conversion layer 30 of the present embodiment may further contain a pigment having substantially the same color as the luminescent color of the luminescent nanocrystalline particles, in addition to the luminescent nanocrystalline particles described above. In order to include the pigment in the pixel portion 10, the pigment may be mixed with the ink composition.
 また、本実施形態の光変換層30中の赤色発光性画素部(R)、緑色発光性画素部(G)および青色発光性画素部(B)のうちの1種または2種の発光性画素部は、発光性ナノ結晶粒子を含まず、色材を含む画素部としてもよい。
 ここで、使用可能な色材としては、例えば、赤色発光性画素部(R)にはジケトピロロピロール顔料および/またはアニオン性赤色有機染料が挙げられる。緑色発光性画素部(G)には、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色発光性画素部(B)には、ε型銅フタロシアニン顔料および/またはカチオン性青色有機染料が挙げられる。
 これらの色材の使用量は、光変換層30に混合する場合、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)10の全質量を基準として、1~5質量%であることが好ましい。
In addition, one or two of the red light-emitting pixel portion (R), the green light-emitting pixel portion (G), and the blue light-emitting pixel portion (B) in the light conversion layer 30 of the present embodiment The portion may be a pixel portion that does not contain luminescent nanocrystalline particles and contains a coloring material.
Here, usable coloring materials include, for example, a diketopyrrolopyrrole pigment and/or an anionic red organic dye for the red light-emitting pixel portion (R). At least one selected from the group consisting of a halogenated copper phthalocyanine pigment, a phthalocyanine green dye, a mixture of a phthalocyanine blue dye and an azo yellow organic dye is used in the green light emitting pixel portion (G). The blue light-emitting pixel portion (B) includes an ε-type copper phthalocyanine pigment and/or a cationic blue organic dye.
The amount of these colorants used is 1 to 5 masses based on the total mass of the pixel portion (cured product of the ink composition) 10 from the viewpoint of preventing a decrease in transmittance when mixed in the light conversion layer 30. %.
 また、本発明のインク組成物は、光変換フィルムにも好適である。本発明のインク組成物を基板上に担持させる際の方法としては、スピンコーティング、ダイコーティング、エクストルージョンコーティング、ロールコーティング、ワイヤーバーコーティング、グラビアコーティング、スプレーコーティング、ディッピング等を挙げることができる。またコーティングの際、インク組成物に有機溶媒を添加しても良い。有機溶媒としては、炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エーテル系溶媒、アルコール系溶媒、ケトン系溶媒、エステル系溶媒、非プロトン性溶媒が挙げられるが、発光粒子の安定性の観点から、炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒が好ましい。有機溶媒として具体的には、トルエン、ヘキサン、ヘプタン、シクロヘキサン、メチルシクロヘキサンが挙げられる。これらは単独でも、組み合わせて用いても良く、その蒸気圧と発光粒子含有組成物の溶解性を考慮し、適宜選択すれば良い。添加した有機溶媒を揮発させる方法としては、自然乾燥、加熱乾燥、減圧乾燥、減圧加熱乾燥を用いることができる。フィルムの膜厚は、用途に応じて適宜調整して良いが、例えば0.1μm以上、10mm以下であることが好ましく、1μm以上、1mm以下であることが特に好ましい。 The ink composition of the invention is also suitable for light conversion films. Examples of methods for carrying the ink composition of the present invention on a substrate include spin coating, die coating, extrusion coating, roll coating, wire bar coating, gravure coating, spray coating, and dipping. Further, an organic solvent may be added to the ink composition during coating. Examples of organic solvents include hydrocarbon solvents, halogenated hydrocarbon solvents, ether solvents, alcohol solvents, ketone solvents, ester solvents, and aprotic solvents. , hydrocarbon solvents, halogenated hydrocarbon solvents, and ester solvents are preferable. Specific examples of organic solvents include toluene, hexane, heptane, cyclohexane, and methylcyclohexane. These may be used alone or in combination, and may be appropriately selected in consideration of the vapor pressure and the solubility of the luminescent particle-containing composition. As a method for volatilizing the added organic solvent, natural drying, drying by heating, drying under reduced pressure, and drying by heating under reduced pressure can be used. The thickness of the film may be appropriately adjusted depending on the application, but is preferably, for example, 0.1 μm or more and 10 mm or less, and particularly preferably 1 μm or more and 1 mm or less.
 本発明のインク組成物を基板上に担持させる際の基板の形状としては、平板の他に、曲面を構成部分として有していても良い。基板を構成する材料は、有機材料、無機材料を問わずに用いることができる。基板の材料となる有機材料としては、例えば、ポリエチレンテレフタレート、ポリカーボネート、ポリイミド、ポリアミド、ポリメタクリル酸メチル、ポリスチレン、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリアリレート、ポリスルホン、トリアセチルセルロース、セルロース、ポリエーテルエーテルケトン等が挙げられ、また、無機材料としては、例えば、シリコン、ガラス、方解石等が挙げられる。 As for the shape of the substrate when the ink composition of the present invention is carried on the substrate, it may have a curved surface as a constituent part, in addition to the flat plate. The material constituting the substrate can be used regardless of whether it is an organic material or an inorganic material. Examples of organic materials for the substrate include polyethylene terephthalate, polycarbonate, polyimide, polyamide, polymethyl methacrylate, polystyrene, polyvinyl chloride, polytetrafluoroethylene, polychlorotrifluoroethylene, polyarylate, polysulfone, and triacetyl. Cellulose, cellulose, polyether ether ketone, etc., and inorganic materials include, for example, silicon, glass, calcite, and the like.
 本発明のインク組成物を基板上に担持させ重合させる際、迅速に重合が進行することが望ましいため、紫外線又は電子線等の活性エネルギー線を照射することにより重合させる方法が好ましい。照射時の温度は、発光性ナノ結晶粒子の粒子形状が保持される温度範囲内であることが好ましい。光重合によってフィルムを製造しようとする場合には、意図しない熱重合の誘起を避ける意味からも可能な限り室温に近い温度、即ち、典型的には25℃での温度で重合させることが好ましい。活性エネルギー線の強度は、0.1mW/cm以上、2.0W/cm以下であることが好ましい。強度が0.1mW/cm未満の場合、光重合を完了させるのに多大な時間が必要になり生産性が悪化してしまい、2.0W/cm2よりも高い場合、発光性ナノ結晶粒子又はインク組成物が劣化してしまう危険がある。 When the ink composition of the present invention is carried on a substrate and polymerized, it is desirable that the polymerization progresses rapidly. The temperature during irradiation is preferably within a temperature range in which the particle shape of the luminescent nanocrystalline particles is maintained. When a film is to be produced by photopolymerization, it is preferable to polymerize at a temperature as close to room temperature as possible, typically at 25° C., in order to avoid unintended induction of thermal polymerization. The intensity of the active energy ray is preferably 0.1 mW/cm 2 or more and 2.0 W/cm 2 or less. If the intensity is less than 0.1 mW/ cm2 , a long time is required to complete the photopolymerization, resulting in poor productivity. There is a risk that the ink composition will deteriorate.
 重合によって得られた本発明のインク組成物を形成材料とする光変換フィルムは、初期の特性変化を軽減し、安定的な特性発現を図ることを目的として熱処理を施すこともできる。熱処理の温度は50~250℃の範囲であることが好ましく、熱処理時間は30秒~12時間の範囲であることが好ましい。 The light conversion film that uses the ink composition of the present invention obtained by polymerization as a forming material can be subjected to heat treatment for the purpose of reducing initial changes in properties and stably developing properties. The heat treatment temperature is preferably in the range of 50 to 250° C., and the heat treatment time is preferably in the range of 30 seconds to 12 hours.
 このような方法によって製造された本発明のインク組成物を形成材料とする光変換フィルムは、基板から剥離して単体で用いても良く、剥離せずに用いても良い。また、得られた光変換フィルムを積層しても良く、他の基板に貼り合わせて用いても良い。 The light conversion film formed by the ink composition of the present invention produced by such a method may be used alone after peeling from the substrate, or may be used without peeling. Moreover, the obtained light conversion film may be laminated, or may be used by bonding to another substrate.
 本発明のインク組成物を形成材料とする光変換フィルムを積層構造体に用いる場合、積層構造体は、例えば基板、バリア層、光散乱層等の任意の層を有していても良い。基板を構成する材料としては例えば前記のものが挙げられる。積層構造体の構成例としては、例えば、2枚の基板間に本発明のインク組成物を形成材料とする光変換フィルムを挟持した構造が挙げられる。その場合、空気中の水分や酸素からインク組成物を形成材料とする光変換フィルムを保護するために、基板間の外周部を封止材によって封止しても良い。また、バリア層としては、例えば、ポリエチレンテレフタレート、ガラスが挙げられる。光を均一に散乱させるために、光散乱層を有しても良い。光散乱層としては、例えば、前記光散乱粒子を含有する層及び光散乱フィルムが挙げられる。図2は、本実施形態の積層構造体の構成を模式的に示す断面図である。図2では、図面が煩雑になることを避けるため、断面を示すハッチングの記載を省略している。積層構造体50は、第1の基板51及び第2の基板52の間に、本実施形態の光変換フィルム54が挟持されている。光変換フィルム54は、光散乱粒子541と発光性ナノ結晶粒子542とを含有するインク組成物を形成材料として形成され、光散乱粒子541及び発光性ナノ結晶粒子542は、光変換フィルム中に均一に分散している。光変換フィルム54は、封止材によって形成された封止層53によって封止されている。 When the light conversion film using the ink composition of the present invention as a forming material is used in a laminated structure, the laminated structure may have arbitrary layers such as a substrate, a barrier layer, and a light scattering layer. Examples of the material constituting the substrate include those mentioned above. Examples of the structure of the laminated structure include a structure in which a light conversion film having the ink composition of the present invention as a forming material is sandwiched between two substrates. In that case, in order to protect the light conversion film formed from the ink composition from moisture and oxygen in the air, the peripheral portion between the substrates may be sealed with a sealing material. Examples of the barrier layer include polyethylene terephthalate and glass. A light scattering layer may be provided to uniformly scatter light. The light-scattering layer includes, for example, a layer containing the light-scattering particles and a light-scattering film. FIG. 2 is a cross-sectional view schematically showing the configuration of the laminated structure of this embodiment. In FIG. 2, hatching indicating a cross section is omitted in order to avoid complication of the drawing. The laminated structure 50 has a light conversion film 54 of the present embodiment sandwiched between a first substrate 51 and a second substrate 52 . The light conversion film 54 is formed using an ink composition containing light scattering particles 541 and luminescent nanocrystalline particles 542 as a forming material. distributed over The light conversion film 54 is sealed with a sealing layer 53 made of a sealing material.
 本発明のインク組成物から形成される光変換フィルムを含む積層構造体は、発光デバイス用途に好適である。発光デバイスの構成例としては、例えば、プリズムシート、導光板、本発明の発光粒子を含む積層構造体及び光源を有する構造が挙げられる。光源としては、例えば、発光ダイオード、レーザー、電界発光デバイスが挙げられる。 A laminated structure containing a light conversion film formed from the ink composition of the present invention is suitable for light emitting device applications. Examples of the configuration of the light-emitting device include a structure having a prism sheet, a light guide plate, a laminated structure containing the light-emitting particles of the present invention, and a light source. Light sources include, for example, light emitting diodes, lasers, and electroluminescent devices.
 本発明のインク組成物から形成される光変換フィルムを含む積層構造体は、ディスプレイ用の波長変換部材として使用されることが好ましい。波長変換部材として使用する場合の構成例としては、例えば、2枚のバリア層の間に本発明の発光粒子含有組成物を形成材料とする光変換フィルムを封止した積層構造体を、導光板上に設置する構造が挙げられる。この場合、導光板の側面に設置された発光ダイオードからの青色光を、前記積層構造体を通すことによって、緑色光や赤色光へと変換し、青色光、緑色光及び赤色光が混色されて白色光を得ることができることから、ディスプレイ用のバックライトとして使用することができる。 A laminated structure containing a light conversion film formed from the ink composition of the present invention is preferably used as a wavelength conversion member for displays. As an example of the structure when used as a wavelength conversion member, for example, a laminated structure in which a light conversion film containing the luminescent particle-containing composition of the present invention as a forming material is sealed between two barrier layers is attached to a light guide plate. A structure to be installed on top is mentioned. In this case, the blue light from the light emitting diodes installed on the side surface of the light guide plate is converted into green light or red light by passing through the laminated structure, and the blue light, green light, and red light are mixed. Since white light can be obtained, it can be used as a backlight for displays.
 以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。
 1.各成分の準備
 1-1.光重合性化合物
 以下の表1に示す光重合性化合物を準備した。なお、表1には、光重合性化合物のハンセン溶解度パラメータ(δD、δPおよびδH)を併せて示す。
EXAMPLES The present invention will be specifically described below with reference to Examples. However, the present invention is not limited only to the following examples.
1. Preparation of each component 1-1. Photopolymerizable Compound Photopolymerizable compounds shown in Table 1 below were prepared. Table 1 also shows the Hansen solubility parameters (δD, δP and δH) of the photopolymerizable compound.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 1-2.光重合開始剤
 ・光重合開始剤1:フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド
 ・光重合開始剤2:フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド
 1-3.ヒンダードアミン系化合物
 ・ヒンダードアミン系化合物1:デカンジカルボン酸 ビス(2,2,6,6-テトラメチル-1-(オクチロキシ)-4-ピペリジニル)エステル
 1-4.酸化防止剤
 ・酸化防止剤1:ビス(デシル)ペンタエリスリトールジホスファイト
 ・酸化防止剤2:ペンタエリスリトールテトラキス[3-[3,5-ジ(tert-ブチル)-4-ヒドロキシフェニル]プロピオナート]
1-2. Photopolymerization initiator Photopolymerization initiator 1: phenyl (2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide Photopolymerization initiator 2: phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide 1-3 Hindered amine compound Hindered amine compound 1: decanedicarboxylic acid bis (2,2,6,6-tetramethyl-1-(octyloxy)-4-piperidinyl) ester 1-4.Antioxidant Antioxidant 1: Bis (decyl) pentaerythritol diphosphite Antioxidant 2: pentaerythritol tetrakis [3-[3,5-di(tert-butyl)-4-hydroxyphenyl]propionate]
 1-5.緑色発光粒子1の調整(有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)
 [ラウリン酸インジウム溶液の調製]
 1-オクタデセン(ODE)10g、酢酸インジウム146mg(0.5mmol)およびラウリン酸300mg(1.5mmol)を反応フラスコに添加して混合物を得た。真空下において混合物を140℃にて2時間加熱することで透明な溶液(ラウリン酸インジウム溶液)を得た。
 この溶液は、必要になるまで室温でグローブボックス中に維持した。なお、ラウリン酸インジウムは、室温では溶解性が低く沈殿し易いため、ラウリン酸インジウム溶液を使用する際は、この溶液(ODE混合物)中の沈殿したラウリン酸インジウムを約90℃に加熱して透明な溶液を形成した後、所望量を計量して使用した。
1-5. Preparation of Green Luminescent Particle 1 (InP/ZnSeS/ZnS Nanocrystalline Particles Modified with Organic Ligand)
[Preparation of indium laurate solution]
10 g of 1-octadecene (ODE), 146 mg (0.5 mmol) of indium acetate and 300 mg (1.5 mmol) of lauric acid were added to the reaction flask to obtain a mixture. A clear solution (indium laurate solution) was obtained by heating the mixture at 140° C. for 2 hours under vacuum.
This solution was kept in the glove box at room temperature until needed. Since indium laurate has low solubility at room temperature and tends to precipitate, when using an indium laurate solution, the precipitated indium laurate in this solution (ODE mixture) is heated to about 90° C. to obtain a transparent solution. After forming a fine solution, the desired amount was weighed out and used.
 [緑色発光性ナノ結晶粒子のコア(InPコア)の作製]
 トリオクチルホスフィンオキサイド(TOPO)5g、酢酸インジウム1.46g(5mmol)およびラウリン酸3.16g(15.8mmol)を反応フラスコに添加して混合物を得た。窒素(N)環境下において混合物を160℃にて40分間加熱した後、真空下で250℃にて20分間加熱した。
 次いで、反応温度(混合物の温度)を窒素(N)環境の下で300℃に昇温した。この温度で、1-オクタデセン(ODE)3gとトリス(トリメチルシリル)ホスフィン0.25g(1mmol)との混合物を反応フラスコに迅速に導入し、反応温度を260℃に維持した。
[Preparation of core (InP core) of green-emitting nanocrystalline particles]
5 g trioctylphosphine oxide (TOPO), 1.46 g (5 mmol) indium acetate and 3.16 g (15.8 mmol) lauric acid were added to the reaction flask to give a mixture. The mixture was heated at 160° C. for 40 minutes under a nitrogen (N 2 ) environment and then at 250° C. for 20 minutes under vacuum.
The reaction temperature (temperature of the mixture) was then raised to 300° C. under a nitrogen (N 2 ) environment. At this temperature, a mixture of 3 g of 1-octadecene (ODE) and 0.25 g (1 mmol) of tris(trimethylsilyl)phosphine was rapidly introduced into the reaction flask and the reaction temperature was maintained at 260°C.
 5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。
 次いで、トルエン8mLおよびエタノール20mLをグローブボックス中の反応溶液に添加した。
 続いて、遠心分離を行ってInPナノ結晶粒子を沈殿させた後、上澄みの傾瀉によってInPナノ結晶粒子を得た。
 次いで、得られたInPナノ結晶粒子をヘキサンに分散させた。これにより、InPナノ結晶粒子を5質量%含有する分散液(ヘキサン分散液)を得た。
After 5 minutes, the reaction was stopped by removing the heater and the resulting reaction solution was cooled to room temperature.
8 mL of toluene and 20 mL of ethanol were then added to the reaction solution in the glove box.
Subsequently, centrifugation was performed to precipitate InP nanocrystalline particles, and the supernatant was decanted to obtain InP nanocrystalline particles.
The resulting InP nanocrystal particles were then dispersed in hexane. As a result, a dispersion (hexane dispersion) containing 5% by mass of InP nanocrystal particles was obtained.
 得られたInPナノ結晶粒子のヘキサン分散液、およびラウリン酸インジウム溶液を反応フラスコに仕込み、混合物を得た。なお、InPナノ結晶粒子のヘキサン分散液およびラウリン酸インジウム溶液の仕込量は、それぞれ、0.5g(InPナノ結晶粒子が25mg)、5g(ラウリン酸インジウムが178mg)となるように調整した。
 真空下、室温にて混合物を10分間静置した後、窒素ガスでフラスコ内を常圧に戻し、混合物の温度を230℃に上げ、その温度で2時間保持してヘキサンをフラスコ内部から除去した。
 次いで、フラスコ内温を250℃まで昇温し、1-オクタデセン(ODE)3gおよびトリス(トリメチルシリル)ホスフィン0.03g(0.125mmol)の混合物を反応フラスコに迅速に導入し、反応温度を230℃に維持した。
The hexane dispersion of the obtained InP nanocrystal particles and the indium laurate solution were charged into a reaction flask to obtain a mixture. The amounts of the hexane dispersion of InP nanocrystal particles and the indium laurate solution were adjusted to 0.5 g (25 mg of InP nanocrystal particles) and 5 g (178 mg of indium laurate), respectively.
After allowing the mixture to stand at room temperature under vacuum for 10 minutes, the inside of the flask was returned to normal pressure with nitrogen gas, the temperature of the mixture was raised to 230°C, and the temperature was maintained for 2 hours to remove hexane from the inside of the flask. .
Next, the temperature inside the flask was raised to 250°C, and a mixture of 3 g of 1-octadecene (ODE) and 0.03 g (0.125 mmol) of tris(trimethylsilyl)phosphine was rapidly introduced into the reaction flask, and the reaction temperature was raised to 230°C. maintained at
 5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。
 次いで、トルエン8mLおよびエタノール20mLをグローブボックス中の反応溶液に添加した。
 続いて、遠心分離を行い、緑色発光性InP/ZnSeS/ZnSナノ結晶粒子のコアとなる、InPナノ結晶粒子(InPコア)を沈殿させた後、上澄みの傾瀉によって、InPナノ結晶粒子(InPコア)を得た。
 次いで、得られたInPナノ結晶粒子(InPコア)をヘキサンに分散させて、InPナノ結晶粒子(InPコア)を5質量%含有する分散液(ヘキサン分散液)を得た。
After 5 minutes, the reaction was stopped by removing the heater and the resulting reaction solution was cooled to room temperature.
8 mL of toluene and 20 mL of ethanol were then added to the reaction solution in the glovebox.
Subsequently, centrifugation is performed to precipitate the InP nanocrystalline particles (InP cores), which are the cores of the green-emitting InP/ZnSeS/ZnS nanocrystalline particles. ).
Next, the obtained InP nanocrystalline particles (InP cores) were dispersed in hexane to obtain a dispersion (hexane dispersion) containing 5% by mass of InP nanocrystalline particles (InP cores).
 [緑色発光性ナノ結晶粒子のシェル(ZnSeS/ZnSシェル)の形成]
 得られたInPナノ結晶粒子(InPコア)のヘキサン分散液を反応フラスコに2.5g加えた後、室温にて、オレイン酸0.7gを反応フラスコに添加し、温度を80℃に上げて2時間保持した。
 次いで、この反応混合物中に、ODE1mLに溶解したジエチル亜鉛14mg、ビス(トリメチルシリル)セレニド8mgおよびヘキサメチルジシラチアン7mg(ZnSeS前駆体溶液)を滴下し、200℃に昇温して10分保持することによって、厚さが0.5モノレイヤーのZnSeSシェルを形成させた。
[Formation of green-emitting nanocrystalline particle shell (ZnSeS/ZnS shell)]
After adding 2.5 g of the hexane dispersion of the obtained InP nanocrystalline particles (InP cores) to the reaction flask, 0.7 g of oleic acid was added to the reaction flask at room temperature, and the temperature was raised to 80° C. for 2 hours. held for time.
Then, 14 mg of diethylzinc dissolved in 1 mL of ODE, 8 mg of bis(trimethylsilyl)selenide and 7 mg of hexamethyldisilathiane (ZnSeS precursor solution) are added dropwise to this reaction mixture, heated to 200° C. and held for 10 minutes. This formed a ZnSeS shell with a thickness of 0.5 monolayer.
 次いで、温度を140℃に上げ、30分間保持した。
 次に、この反応混合物中に、ODE2mLにジエチル亜鉛69mgおよびヘキサメチルジシラチアン66mgを溶解させて得られたZnS前駆体溶液を滴下し、温度を200℃に上げて30分保持することにより、厚さ2モノレイヤーのZnSシェルを形成させた。
 ZnS前駆体溶液の滴下の10分後に、ヒーターの除去により反応を停止させた。
 次いで、反応混合物を室温に冷却し、得られた白色沈殿物を遠心分離によって除去することにより、緑色発光性InP/ZnSeS/ZnSナノ結晶粒子が分散した透明なナノ結晶粒子分散液(InP/ZnSeS/ZnSナノ結晶粒子のODE分散液)を得た。
The temperature was then raised to 140° C. and held for 30 minutes.
Next, a ZnS precursor solution obtained by dissolving 69 mg of diethyl zinc and 66 mg of hexamethyldisilathiane in 2 mL of ODE was added dropwise to this reaction mixture, and the temperature was raised to 200° C. and maintained for 30 minutes to obtain A ZnS shell with a thickness of 2 monolayers was formed.
Ten minutes after the addition of the ZnS precursor solution, the reaction was stopped by removing the heater.
The reaction mixture was then cooled to room temperature and the resulting white precipitate was removed by centrifugation to yield a transparent nanocrystalline particle dispersion (InP/ZnSeS) with green-emitting InP/ZnSeS/ZnS nanocrystalline particles dispersed therein. /ODE dispersion of ZnS nanocrystalline particles) was obtained.
 [有機リガンドの合成]
 数平均分子量(Mn)400のポリエチレングリコール(Sigma-Aldrich社製)をフラスコに投入した後、窒素ガス環境にて攪拌しながら、ポリエチレングリコールと等モル量の無水コハク酸(Sigma-Aldrich社製)を添加した。
 フラスコの内温を80℃に昇温し、8時間攪拌することにより、淡い黄色の粘稠な油状物として下記式(A)で表される有機リガンドを得た。
[Synthesis of organic ligand]
After putting polyethylene glycol (manufactured by Sigma-Aldrich) having a number average molecular weight (Mn) of 400 into the flask, an equimolar amount of succinic anhydride (manufactured by Sigma-Aldrich) was added to the polyethylene glycol while stirring in a nitrogen gas environment. was added.
The internal temperature of the flask was raised to 80° C. and stirred for 8 hours to obtain an organic ligand represented by the following formula (A) as a pale yellow viscous oil.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 [リガンド交換による緑色発光性InP/ZnSeS/ZnSナノ結晶粒子の調製]
 上記有機リガンド30mgをInP/ZnSeS/ZnSナノ結晶粒子のODE分散液1mLに添加した。
 次いで、90℃で5時間加熱することによりリガンド交換を行った。リガンド交換の進行に伴い、ナノ結晶粒子の凝集が見られた。
 リガンド交換終了後、上澄みの傾瀉を行ってナノ結晶粒子を得た。
[Preparation of green-emitting InP/ZnSeS/ZnS nanocrystalline particles by ligand exchange]
30 mg of the above organic ligand was added to 1 mL of ODE dispersion of InP/ZnSeS/ZnS nanocrystalline particles.
Ligand exchange was then performed by heating at 90° C. for 5 hours. Aggregation of nanocrystalline particles was observed as the ligand exchange progressed.
After completion of ligand exchange, the supernatant was decanted to obtain nanocrystalline particles.
 次いで、得られたナノ結晶粒子にエタノール3mLを加え、超音波処理して再分散させた。ナノ結晶粒子のエタノール分散液3mLにn-ヘキサン10mLを添加した。
 続いて、遠心分離を行ってナノ結晶粒子を沈殿させた後、上澄みの傾瀉および真空下での乾燥によって緑色発光粒子1(有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)を得た。なお、有機リガンドで修飾されたナノ結晶粒子全量に占める有機リガンドの含有量は35質量%であった。
Then, 3 mL of ethanol was added to the resulting nanocrystalline particles, and ultrasonically treated to redisperse them. 10 mL of n-hexane was added to 3 mL of the ethanol dispersion of nanocrystalline particles.
Subsequently, centrifugation was performed to precipitate the nanocrystalline particles, followed by decanting the supernatant and drying under vacuum to obtain green luminescent particles 1 (InP/ZnSeS/ZnS nanocrystalline particles modified with organic ligands). . The content of organic ligands in the total amount of nanocrystalline particles modified with organic ligands was 35% by mass.
1-6.緑色発光粒子2の調整(シリカ被覆CsPbBr
 まず、6.0gの炭酸セシウムと、250mLの1-オクタデセンと、25mLのオレイン酸とを混合して混合液を得た。次に、この混合液を120℃で30分間、減圧乾燥した後、アルゴン雰囲気下に150℃で加熱した。これにより、セシウム-オレイン酸溶液を得た。
1-6. Preparation of Green Luminescent Particle 2 (Silica-coated CsPbBr 3 )
First, 6.0 g of cesium carbonate, 250 mL of 1-octadecene, and 25 mL of oleic acid were mixed to obtain a mixture. Next, this mixed solution was dried under reduced pressure at 120° C. for 30 minutes, and then heated at 150° C. under an argon atmosphere. This gave a cesium-oleic acid solution.
 一方、5.0gの臭化鉛(II)と375mLの1-オクタデセンと、37.5mLのオレイン酸とを混合して混合液を得た。次に、この混合液を90℃で10分間、減圧乾燥した後、アルゴン雰囲気下に混合液に37.5mLの3-アミノプロピルトリエトキシシラン(APTES)を添加した。その後さらに20分間減圧乾燥を行った後、アルゴン雰囲気下に140℃で加熱した。 On the other hand, 5.0 g of lead (II) bromide, 375 mL of 1-octadecene, and 37.5 mL of oleic acid were mixed to obtain a mixed solution. Next, this mixed solution was dried under reduced pressure at 90° C. for 10 minutes, and then 37.5 mL of 3-aminopropyltriethoxysilane (APTES) was added to the mixed solution under an argon atmosphere. After drying under reduced pressure for another 20 minutes, it was heated at 140° C. under an argon atmosphere.
 その後、上記臭化鉛(II)を含む混合液に150℃で37.5mLの前記セシウム-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。次いで、3Lの酢酸メチルを添加した。得られた懸濁液を遠心分離(10,000回転/分、1分間)した後、上澄み液を除去しトルエンを混合し2時間攪拌した。その後、トルエンを除去することによりシリカ被覆緑色発光粒子2を得た。発光粒子2を構成するナノ結晶はペロブスカイト型の三臭化鉛セシウム結晶であり、走査透過電子顕微鏡観察により分析したところその平均粒子径は10nmであった。 After that, 37.5 mL of the cesium-oleic acid solution was added to the mixed solution containing lead (II) bromide at 150°C, and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath. 3 L of methyl acetate was then added. After centrifuging the resulting suspension (10,000 rpm, 1 minute), the supernatant was removed, mixed with toluene, and stirred for 2 hours. Thereafter, silica-coated green light-emitting particles 2 were obtained by removing toluene. The nanocrystals constituting the luminescent particles 2 were perovskite-type lead tribromide cesium crystals, and their average particle diameter was 10 nm when analyzed by scanning transmission electron microscopy.
1-7.緑色発光粒子3の調整(シリカ被覆FAPbBr
 アルゴン雰囲気下、3口フラスコにホルムアミジン酢酸塩0.4g、オレイン酸12.5mlを加えた。真空ポンプで減圧しながら、室温で18時間攪拌減圧脱気したのち、120℃で30分間加熱攪拌した。アルゴン雰囲気のまま減圧を解除しホルムアミジン-オレイン酸溶液を得た。
1-7. Preparation of green luminescent particles 3 (silica-coated FAPbBr 3 )
In an argon atmosphere, 0.4 g of formamidine acetate and 12.5 ml of oleic acid were added to a three-necked flask. After degassing under reduced pressure with stirring at room temperature for 18 hours while reducing the pressure with a vacuum pump, the mixture was heated and stirred at 120° C. for 30 minutes. The vacuum was released in the argon atmosphere to obtain a formamidine-oleic acid solution.
 一方、アルゴン雰囲気下、3口フラスコに臭化鉛(II)1.0g、オレイン酸7.5mL、1-オクタデセン75mLを加えた。真空ポンプで減圧しながら、90℃で10分間加熱撹拌した。アルゴン雰囲気のまま減圧を解除し、3-アミノプロピルトリエトキシシラン(APTES)7.5mLを加えた。90℃のまま均一な溶液となるまで撹拌した。 Meanwhile, 1.0 g of lead bromide (II), 7.5 mL of oleic acid, and 75 mL of 1-octadecene were added to a three-necked flask under an argon atmosphere. The mixture was heated and stirred at 90° C. for 10 minutes while reducing the pressure with a vacuum pump. The vacuum was released while the argon atmosphere was maintained, and 7.5 mL of 3-aminopropyltriethoxysilane (APTES) was added. The mixture was stirred at 90° C. until a uniform solution was obtained.
 その後、上記臭化鉛(II)を含む混合液に140℃で11.6mLの前記ホルムアミジン-オレイン酸溶液を添加し、5秒間加熱撹拌することにより反応させた後、氷浴で冷却した。次いで、3Lの酢酸メチルを添加した。得られた懸濁液を遠心分離(10,000回転/分、1分間)した後、上澄み液を除去しトルエンを混合し2時間攪拌した。その後、トルエンを除去することによりシリカ被覆緑色発光粒子3を得た。発光粒子3を構成するナノ結晶はペロブスカイト型のホルムアミジウム臭化鉛結晶であり、走査透過電子顕微鏡観察により分析したところその平均粒子径は10nmであった。 After that, 11.6 mL of the formamidine-oleic acid solution was added to the mixture containing lead (II) bromide at 140°C, and the mixture was reacted by heating and stirring for 5 seconds, and then cooled in an ice bath. 3 L of methyl acetate was then added. After centrifuging the resulting suspension (10,000 rpm, 1 minute), the supernatant was removed, mixed with toluene, and stirred for 2 hours. Thereafter, silica-coated green light-emitting particles 3 were obtained by removing toluene. The nanocrystals constituting the luminescent particles 3 were perovskite-type formamidium lead bromide crystals, and the average particle diameter thereof was 10 nm when analyzed by scanning transmission electron microscope observation.
1-8.緑色発光粒子4の調整(シリカ多層被覆FAPbBr
 下記式(B4)で表される構造を有するブロックコポリマー(S2VP、PolymerSource.社製)4gをトルエン400mLに添加し、60℃で加熱溶解させた。上記発光粒子3の濃度が0.16質量%となるように、ブロックコポリマーが溶解したトルエン溶液に発光粒子3を添加し、15分間撹拌した後、遠心分離して、上澄み液を回収することにより、発光粒子3及びブロックコポリマーを含むトルエン分散液を得た。
Figure JPOXMLDOC01-appb-C000017
1-8. Preparation of Green Light Emitting Particle 4 (Silica Multilayer Coated FAPbBr 3 )
4 g of a block copolymer (S2VP, manufactured by PolymerSource.) having a structure represented by the following formula (B4) was added to 400 mL of toluene and dissolved by heating at 60°C. Luminescent particles 3 were added to a toluene solution in which the block copolymer was dissolved so that the concentration of the luminescent particles 3 was 0.16% by mass, stirred for 15 minutes, centrifuged, and the supernatant was collected. , luminescent particles 3 and a block copolymer were obtained.
Figure JPOXMLDOC01-appb-C000017
 上記トルエン分散液100mLに対して、下記式(C4)で表される化合物(MS-51、コルコート株式会社製、式(C4)中のmの平均値は4)5mLを添加し、5分間撹拌し、次いで、イオン交換水0.25mLを更に添加して2時間撹拌した。
Figure JPOXMLDOC01-appb-C000018
To 100 mL of the toluene dispersion, 5 mL of a compound represented by the following formula (C4) (MS-51, manufactured by Colcoat Co., Ltd., the average value of m in formula (C4) is 4) was added and stirred for 5 minutes. Then, 0.25 mL of ion-exchanged water was further added and stirred for 2 hours.
Figure JPOXMLDOC01-appb-C000018
 得られた溶液を、9,000回転/分、5分間の条件で遠心分離した後、上澄み液100mLを回収することにより、発光粒子3がさらにシリカ被覆された発光粒子4のトルエン分散液を得た。この分散液中からトルエンを除去することにより発光粒子4を得た。動的光散乱式ナノトラック粒度分布計を用いて発光粒子4の平均粒子径を測定したところ、95nmであった。また、発光粒子4について、走査透過電子顕微鏡を用いたエネルギー分散型X線分析法(STEM-EDS)によって元素分布を評価したところ、発光粒子の表面層にSiが含まれていることを確認した。当該表面層の厚さを測定したところ、約5nmであった。また、前記発光粒子について、熱重量示差熱分析(TG-DTA;昇温速度10℃/分、窒素雰囲気下)測定により、200~550℃の範囲で重量減少が確認されたことから、有機成分が含まれていることが示唆された。一方、熱分解ガスクロマトグラフ質量分析計(TD/Py-GC/MS)測定により、使用したブロックコポリマーが成分として同定された。 After centrifuging the resulting solution at 9,000 rpm for 5 minutes, 100 mL of the supernatant was recovered to obtain a toluene dispersion of luminescent particles 4 in which the luminescent particles 3 were further coated with silica. rice field. Luminescent particles 4 were obtained by removing toluene from this dispersion. The average particle size of the luminescent particles 4 was measured using a dynamic light scattering nanotrack particle size distribution meter and found to be 95 nm. In addition, when the element distribution of the luminescent particles 4 was evaluated by an energy dispersive X-ray analysis method (STEM-EDS) using a scanning transmission electron microscope, it was confirmed that the surface layer of the luminescent particles contained Si. . When the thickness of the surface layer was measured, it was about 5 nm. Further, for the luminescent particles, weight reduction was confirmed in the range of 200 to 550 ° C. by thermogravimetric differential thermal analysis (TG-DTA; temperature increase rate 10 ° C./min, under nitrogen atmosphere) measurement. was suggested to contain On the other hand, the used block copolymer was identified as a component by pyrolysis gas chromatograph mass spectrometer (TD/Py-GC/MS) measurement.
 1-6.光散乱性粒子分散体
 (光散乱性粒子分散体1)
 アルゴンガスで満たした容器内で、酸化チタン(製品名:CR-60-2、石原産業株式会社製、平均粒子径(体積平均径):210nm)を5.23gと、高分子分散剤(アジスパーPB-821、味の素ファインテクノ株式会社製)を0.27gと、光重合性化合物3を4.5gとを混合した。
 その後、得られた混合物にジルコニアビーズ(直径:1.25mm)を加え、ペイントコンディショナーを用いて2時間振とうさせることで混合物を分散処理し、ポリエステルメッシュフィルターにてジルコニアビーズを除去することで光散乱性粒子分散体1(酸化チタン含有量:52.3質量%)を得た。
1-6. Light-scattering particle dispersion (Light-scattering particle dispersion 1)
In a container filled with argon gas, 5.23 g of titanium oxide (product name: CR-60-2, manufactured by Ishihara Sangyo Co., Ltd., average particle diameter (volume average diameter): 210 nm) and a polymer dispersant (Ajisper 0.27 g of PB-821, manufactured by Ajinomoto Fine-Techno Co., Ltd.) and 4.5 g of photopolymerizable compound 3 were mixed.
After that, zirconia beads (diameter: 1.25 mm) were added to the obtained mixture, the mixture was dispersed by shaking for 2 hours using a paint conditioner, and the zirconia beads were removed with a polyester mesh filter to remove light. A scattering particle dispersion 1 (titanium oxide content: 52.3% by mass) was obtained.
 (光散乱性粒子分散体2)
 光重合性化合物3を、光重合性化合物5に変更した以外は、上記と同様にして、光散散乱性粒子分散体2を得た。
 (光散乱性粒子分散体3)
 光重合性化合物3を、光重合性化合物4に変更した以外は、上記と同様にして、光散散乱性粒子分散体3を得た。
(Light-scattering particle dispersion 2)
A light-scattering particle dispersion 2 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 5.
(Light-scattering particle dispersion 3)
A light-scattering particle dispersion 3 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 4.
 (光散乱性粒子分散体4)
 光重合性化合物3を、光重合性化合物6に変更した以外は、上記と同様にして、光散散乱性粒子分散体4を得た。
 (光散乱性粒子分散体5)
 光重合性化合物3を、光重合性化合物9に変更した以外は、上記と同様にして、光散散乱性粒子分散体5を得た。
(Light-scattering particle dispersion 4)
A light-scattering particle dispersion 4 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 6.
(Light-scattering particle dispersion 5)
A light-scattering particle dispersion 5 was obtained in the same manner as described above, except that the photopolymerizable compound 3 was changed to the photopolymerizable compound 9.
 2.緑色インク組成物の調製
 (実施例1)
 緑色発光粒子1と、光散乱性粒子分散体1と、光重合性化合物3と、光重合開始剤1、光重合開始剤2と、ヒンダードアミン系化合物1とを、各成分の含有量が表2に示す量(単位:質量部)となるように配合し、アルゴンガスで満たした容器内で均一に混合した。
 その後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。
 さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。
 次いで、減圧してアルゴンガスを除去することにより、実施例1の緑色インク組成物1を得た。
2. Preparation of green ink composition (Example 1)
Green light-emitting particles 1, light-scattering particle dispersion 1, photopolymerizable compound 3, photopolymerization initiator 1, photopolymerization initiator 2, and hindered amine compound 1, and the content of each component is shown in Table 2. (unit: parts by mass), and uniformly mixed in a container filled with argon gas.
After that, the mixture was filtered through a filter with a pore size of 5 μm in a glove box.
Furthermore, argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas.
Next, the green ink composition 1 of Example 1 was obtained by removing the argon gas under reduced pressure.
 (実施例2)
 光重合性化合物3に代えて、光重合性化合物5を使用し、光散乱性粒子分散体1に代えて、光散乱性粒子分散体2を使用した以外は、実施例1と同様にして、緑色インク組成物2を得た。
 (実施例3)
 さらに、表2に示す量で、酸化防止剤1および酸化防止剤2を使用した以外は、実施例2と同様にして、緑色インク組成物3を得た。
(Example 2)
In the same manner as in Example 1, except that the photopolymerizable compound 5 was used instead of the photopolymerizable compound 3, and the light-scattering particle dispersion 2 was used instead of the light-scattering particle dispersion 1. A green ink composition 2 was obtained.
(Example 3)
Further, a green ink composition 3 was obtained in the same manner as in Example 2, except that Antioxidant 1 and Antioxidant 2 were used in the amounts shown in Table 2.
 (実施例4)
 光重合性化合物5に代えて、表2に示す量で、光重合性化合物6および光重合性化合物4を使用し、光散乱性粒子分散体2に代えて、光散乱性粒子分散体3を使用した以外は、実施例2と同様にして、緑色インク組成物4を得た。
 (実施例5)
 光重合性化合物5に代えて、表2に示す量で、光重合性化合物6、光重合性化合物4および光重合性化合物9を使用し、光散乱性粒子分散体2に代えて、光散乱性粒子分散体3を使用した以外は、実施例3と同様にして、緑色インク組成物5を得た。
(Example 4)
Photopolymerizable compound 6 and photopolymerizable compound 4 were used in the amounts shown in Table 2 in place of photopolymerizable compound 5, and light-scattering particle dispersion 3 was used in place of light-scattering particle dispersion 2. A green ink composition 4 was obtained in the same manner as in Example 2, except that it was used.
(Example 5)
Photopolymerizable compound 6, photopolymerizable compound 4, and photopolymerizable compound 9 are used in the amounts shown in Table 2 in place of photopolymerizable compound 5, and light scattering particles are used in place of light scattering particle dispersion 2. A green ink composition 5 was obtained in the same manner as in Example 3, except that the organic particle dispersion 3 was used.
 (実施例6)
 光重合性化合物5に代えて、表2に示す量で、光重合性化合物6、光重合性化合物3、光重合性化合物1および光重合性化合物4を使用し、光散乱性粒子分散体2に代えて、光散乱性粒子分散体1を使用した以外は、実施例3と同様にして、緑色インク組成物6を得た。
(Example 6)
Photopolymerizable compound 6, photopolymerizable compound 3, photopolymerizable compound 1, and photopolymerizable compound 4 were used in the amounts shown in Table 2 in place of photopolymerizable compound 5, and light-scattering particle dispersion 2 A green ink composition 6 was obtained in the same manner as in Example 3, except that the light-scattering particle dispersion 1 was used instead of .
 (比較例1)
 ヒンダードアミン系化合物1の使用を省略し、各成分の含有量が表3に示す量となるように配合した以外は、実施例1と同様にして、緑色インク組成物C1を得た。
(Comparative example 1)
A green ink composition C1 was obtained in the same manner as in Example 1, except that the hindered amine compound 1 was omitted and the contents of the respective components were blended so as to be the amounts shown in Table 3.
 (比較例2)
 光重合性化合物3に代えて、光重合性化合物6を使用し、光散乱性粒子分散体1に代えて、光散乱性粒子分散体4を使用した以外は、実施例1と同様にして、緑色インク組成物C2を得た。
(Comparative example 2)
In the same manner as in Example 1, except that the photopolymerizable compound 6 was used instead of the photopolymerizable compound 3, and the light-scattering particle dispersion 4 was used instead of the light-scattering particle dispersion 1. A green ink composition C2 was obtained.
 (比較例3)
 光重合性化合物3に代えて、表3に示す量で、光重合性化合物9および光重合性化合物10を使用し、光散乱性粒子分散体1に代えて、光散乱性粒子分散体5を使用した以外は、実施例1と同様にして、緑色インク組成物C3を得た。
(Comparative Example 3)
Photopolymerizable compound 9 and photopolymerizable compound 10 were used in the amounts shown in Table 3 in place of photopolymerizable compound 3, and light-scattering particle dispersion 5 was used in place of light-scattering particle dispersion 1. A green ink composition C3 was obtained in the same manner as in Example 1, except that it was used.
 (実施例7)
 緑色発光粒子2と、光散乱性粒子分散体1と、光重合性化合物5と、光重合性化合物12と、光重合開始剤1、光重合開始剤2と、ヒンダードアミン系化合物1とを、各成分の含有量が表4に示す量(単位:質量部)となるように配合し、アルゴンガスで満たした容器内で均一に混合した。
 その後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。
 さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。
 次いで、減圧してアルゴンガスを除去することにより、実施例7の緑色インク組成物7を得た。
(Example 7)
green luminescent particles 2, light scattering particle dispersion 1, photopolymerizable compound 5, photopolymerizable compound 12, photopolymerization initiator 1, photopolymerization initiator 2, and hindered amine compound 1, The components were blended so that the amounts (unit: parts by mass) shown in Table 4 were obtained, and mixed uniformly in a vessel filled with argon gas.
After that, the mixture was filtered through a filter with a pore size of 5 μm in a glove box.
Furthermore, argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas.
Next, the green ink composition 7 of Example 7 was obtained by removing the argon gas under reduced pressure.
 (実施例8)
 緑色発光粒子2に代えて、緑色発光粒子3を使用した以外は、実施例7と同様にして、緑色インク組成物8を得た。
(Example 8)
A green ink composition 8 was obtained in the same manner as in Example 7, except that the green luminescent particles 3 were used instead of the green luminescent particles 2.
 (実施例9)
 緑色発光粒子2に代えて、緑色発光粒子4を使用した以外は、実施例7と同様にして、緑色インク組成物9を得た。
(Example 9)
A green ink composition 9 was obtained in the same manner as in Example 7, except that the green luminescent particles 4 were used instead of the green luminescent particles 2.
 (比較例4)
 ヒンダードアミン系化合物1の使用を省略し、各成分の含有量が表4に示す量となるように配合した以外は、実施例7と同様にして、緑色インク組成物C4を得た。
(Comparative Example 4)
A green ink composition C4 was obtained in the same manner as in Example 7, except that the hindered amine compound 1 was omitted and the contents of the respective components were blended so as to be the amounts shown in Table 4.
 (実施例10)
 緑色発光粒子2と、光散乱性粒子分散体1と、光重合性化合物5と、光重合性化合物11と、光重合性化合物12と、光重合開始剤1、光重合開始剤2と、ヒンダードアミン系化合物1とを、各成分の含有量が表5に示す量(単位:質量部)となるように配合し、アルゴンガスで満たした容器内で均一に混合した。
 その後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。
 さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。
 次いで、減圧してアルゴンガスを除去することにより、実施例7の緑色インク組成物10を得た。
(Example 10)
Green luminescent particles 2, light scattering particle dispersion 1, photopolymerizable compound 5, photopolymerizable compound 11, photopolymerizable compound 12, photopolymerization initiator 1, photopolymerization initiator 2, hindered amine System compound 1 was blended so that the content of each component was the amount (unit: parts by mass) shown in Table 5, and mixed uniformly in a vessel filled with argon gas.
After that, the mixture was filtered through a filter with a pore size of 5 μm in a glove box.
Furthermore, argon gas was introduced into the container containing the obtained filtrate, and the inside of the container was saturated with argon gas.
Next, the green ink composition 10 of Example 7 was obtained by removing the argon gas under reduced pressure.
 (実施例11)
 緑色発光粒子2に代えて、緑色発光粒子3を使用した以外は、実施例10と同様にして、緑色インク組成物11を得た。
(Example 11)
A green ink composition 11 was obtained in the same manner as in Example 10, except that the green light-emitting particles 3 were used instead of the green light-emitting particles 2.
 (実施例12)
 緑色発光粒子2に代えて、緑色発光粒子4を使用した以外は、実施例10と同様にして、緑色インク組成物12を得た。
(Example 12)
A green ink composition 12 was obtained in the same manner as in Example 10, except that the green luminescent particles 4 were used instead of the green luminescent particles 2.
 (比較例5)
 ヒンダードアミン系化合物1の使用を省略し、各成分の含有量が表5に示す量となるように配合した以外は、実施例10と同様にして、緑色インク組成物C5を得た。
(Comparative Example 5)
A green ink composition C5 was obtained in the same manner as in Example 10, except that the use of the hindered amine compound 1 was omitted and the contents of each component were blended so as to be the amounts shown in Table 5.
 3.評価
 3-1.外部量子効率(EQE)の評価
 [外部量子効率評価用試料の作製]
 実施例1~9および比較例1~4で得られたインク組成物を、ガラス基板上に、膜厚が10μmとなるように、スピンコーターにて大気中で塗布した。
 塗布膜を窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUVを照射して硬化させた。
 これにより、ガラス基板上にインク組成物の硬化物からなる層(光変換層)を形成して、評価用試料を得た。
3. Evaluation 3-1. Evaluation of external quantum efficiency (EQE) [Preparation of sample for evaluation of external quantum efficiency]
The ink compositions obtained in Examples 1 to 9 and Comparative Examples 1 to 4 were applied to a glass substrate in the air by a spin coater so as to give a film thickness of 10 μm.
The coating film was cured by irradiating UV light in a nitrogen atmosphere with a UV irradiation device using an LED lamp having a dominant wavelength of 395 nm so that the integrated light amount was 1500 mJ/cm 2 .
As a result, a layer (light conversion layer) composed of a cured product of the ink composition was formed on the glass substrate to obtain an evaluation sample.
 [EQEの測定]
 面発光光源として、波長450nmに発光ピークを有する光を発する青色LED(シーシーエス株式会社製)を用いた。
 測定装置は、放射分光光度計(大塚電子株式会社製、「MCPD-9800」)に積分球を接続し、青色LEDの上側に積分球を設置した。
 青色LEDと積分球との間に、作製した評価用試料を挿入し、青色LEDを点灯させて観測されるスペクトル、各波長における照度を測定した。
[Measurement of EQE]
A blue LED (manufactured by CCS Co., Ltd.) that emits light having an emission peak at a wavelength of 450 nm was used as a surface emitting light source.
As a measuring device, an integrating sphere was connected to a radiation spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., "MCPD-9800"), and the integrating sphere was placed above the blue LED.
The produced evaluation sample was inserted between the blue LED and the integrating sphere, and the spectrum observed by lighting the blue LED and the illuminance at each wavelength were measured.
 上記測定装置で測定されるスペクトルおよび照度より、以下のようにして外部量子効率を求めた。
 外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。
 したがって、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。
 EQE(%)=P1(Green)/E(Blue)×100
The external quantum efficiency was determined as follows from the spectrum and illuminance measured by the above measuring device.
The external quantum efficiency is a value indicating how much of the light (photons) incident on the light conversion layer is emitted to the observer side as fluorescence.
Therefore, if this value is large, it indicates that the light conversion layer is excellent in light emission characteristics, which is an important evaluation index.
EQE (%) = P1 (Green)/E (Blue) x 100
 ここで、E(Blue)およびP1(Green)は、それぞれ以下の値を表す。
 E(Blue)は、波長380~490nmの範囲における「照度×波長÷hc」の合計値を表す。
 P1(Green)は、波長500~650nmの範囲における「照度×波長÷hc」の合計値を表す。
 これらの値は、観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
Here, E (Blue) and P1 (Green) each represent the following values.
E (Blue) represents the total value of “illuminance×wavelength/hc” in the wavelength range of 380 to 490 nm.
P1 (Green) represents the total value of “illuminance×wavelength/hc” in the wavelength range of 500 to 650 nm.
These values correspond to the number of photons observed. In addition, h represents Planck's constant and c represents the speed of light.
 3-2.発光性ナノ結晶粒子の劣化挙動評価(EQE維持率)
 各評価用試料に対して、大気中で白色光を1時間照射した。その後、3-1と同様にして、外部量子効率(EQE)の評価を行った。
 そして、白色光の照射前のEQEに対する照射後のEQEの維持率(%)を求め、以下の基準に従って、発光性ナノ結晶粒子の劣化挙動評価を行った。
 [評価基準]
 ◎:95%以上
 〇:90%以上、95%未満
 △:80%以上、90%未満
 ×:80%未満
 この結果を表2および表4に併せて示す。
3-2. Evaluation of deterioration behavior of luminescent nanocrystalline particles (EQE retention rate)
Each evaluation sample was irradiated with white light for 1 hour in the atmosphere. After that, the external quantum efficiency (EQE) was evaluated in the same manner as in 3-1.
Then, the maintenance rate (%) of the EQE after irradiation with respect to the EQE before irradiation with white light was determined, and the degradation behavior of the luminescent nanocrystalline particles was evaluated according to the following criteria.
[Evaluation criteria]
◎: 95% or more ○: 90% or more and less than 95% △: 80% or more and less than 90% ×: less than 80% These results are also shown in Table 2 and Table 4.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 実施例1から実施例6に示したように、本発明のインク組成物1から6を用いた光変換層は、比較例1~3のインク組成物C1からC3を用いた光変換層と比較して、EQE維持率が良好であることがわかる。これは、ヒンダードアミン系化合物が、特定範囲のハンセン溶解度パラメータを有する光重合性化合物を含むインク組成物において、効果的に作用することによるものと考えられる。また、実施例3、5および6に示したように、本発明のインク組成物3、5および6を用いた光変換層は、さらに酸化防止剤を含むインク組成物から形成され、非常に優れたEQE維持率を示すことがわかる。 As shown in Examples 1 to 6, the light conversion layers using the ink compositions 1 to 6 of the present invention are compared to the light conversion layers using the ink compositions C1 to C3 of Comparative Examples 1 to 3. Therefore, it can be seen that the EQE maintenance rate is good. It is believed that this is because the hindered amine compound acts effectively in the ink composition containing the photopolymerizable compound having the Hansen solubility parameter within the specific range. Further, as shown in Examples 3, 5 and 6, the light conversion layers using the ink compositions 3, 5 and 6 of the present invention are formed from ink compositions further containing an antioxidant and are very excellent. It can be seen that the EQE maintenance rate is
 実施例7から実施例9に示したように、本発明のインク組成物7から9を用いた光変換層は、比較例4のインク組成物C4を用いた光変換層と比較して、EQE維持率が良好であることがわかる。特に、実施例7の光変換層は、比較例4の光変換層と比較してEQE維持率が良好であることから、シリカ被覆による耐久性付与粒子においても、ヒンダードアミン系化合物により耐久性が向上することがわかる。また、実施例7から9を比較した場合、緑色発光粒子4を含むインク組成物9を用いた光変換層が特に優れていることがわかる。 As shown in Examples 7 to 9, the light conversion layer using ink compositions 7 to 9 of the present invention had better EQE than the light conversion layer using ink composition C4 of Comparative Example 4. It can be seen that the retention rate is good. In particular, the light conversion layer of Example 7 has a better EQE retention rate than the light conversion layer of Comparative Example 4. Therefore, even in the durability imparting particles coated with silica, the durability is improved by the hindered amine compound. I know you do. Moreover, when Examples 7 to 9 are compared, it can be seen that the light conversion layer using ink composition 9 containing green light-emitting particles 4 is particularly excellent.
  4-1.光変換フィルムの評価
 実施例10~12および比較例5で得られたインク組成物を、ガラス基材上に膜厚が100μmとなるように塗布し、さらにもう一枚のガラス基材を貼り合わせた。この塗布ガラスを窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量1J/cmになるようにUVを照射して硬化させ、光変換フィルムを得た。
4-1. Evaluation of Light Conversion Film The ink compositions obtained in Examples 10 to 12 and Comparative Example 5 were coated on a glass substrate to a thickness of 100 μm, and another glass substrate was attached. rice field. This coated glass was cured by irradiating UV light in a nitrogen atmosphere with a UV irradiation device using an LED lamp having a main wavelength of 395 nm so that the cumulative light amount was 1 J/cm 2 to obtain a light conversion film.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 実施例10から12に示したように、本発明のインク組成物10から12を用いた光変換フィルムは、比較例5のインク組成物C5を用いた光変換フィルムと比較して、EQE維持率が良好であることがわかる。特に、実施例10の光変換フィルムは、比較例5の光変換フィルムと比較してEQE維持率が良好であることから、シリカ被覆による耐久性付与粒子においても、ヒンダードアミン系化合物により耐久性が向上することがわかる。 As shown in Examples 10 to 12, the light conversion films using the ink compositions 10 to 12 of the present invention had a higher EQE retention rate than the light conversion film using the ink composition C5 of Comparative Example 5. is good. In particular, the light conversion film of Example 10 has a better EQE retention ratio than the light conversion film of Comparative Example 5, so even in the durability imparting particles coated with silica, the durability is improved by the hindered amine compound. I know you do.
 以上の結果から、本発明のインク組成物によれば、得られる光変換層および光変換フィルムは、光や熱に対する高い安定性を有することが明らかである。 From the above results, it is clear that the light conversion layer and the light conversion film obtained by the ink composition of the present invention have high stability against light and heat.
 10    画素部
 10a   第1画素部
 10b   第2画素部
 10c   第3画素部
 11a   第1発光性ナノ結晶粒子
 11b   第2発光性ナノ結晶粒子
 12a   第1光散乱性粒子
 12b   第2光散乱性粒子
 12c   第3光散乱性粒子
 20    遮光部
 30    光変換層
 40    基材
 100   カラーフィルタ
 50  積層構造体
 51  第1の基板
 52  第2の基板
 53  封止層
 54  光変換フィルム
 541 光散乱粒子
 542 発光粒子
10 pixel section 10a first pixel section 10b second pixel section 10c third pixel section 11a first luminescent nanocrystalline particles 11b second luminescent nanocrystalline particles 12a first light scattering particles 12b second light scattering particles 12c third 3 Light scattering particles 20 Light shielding part 30 Light conversion layer 40 Base material 100 Color filter 50 Laminated structure 51 First substrate 52 Second substrate 53 Sealing layer 54 Light conversion film 541 Light scattering particles 542 Light emitting particles

Claims (13)

  1.  発光性ナノ結晶粒子と、
     光重合性成分と、
     ヒンダードアミン系化合物とを含有し、
     前記光重合性成分は、ハンセン溶解度パラメータ(HSP)におけるδDが16~17.5MPa0.5、δPが2.5~5MPa0.5、かつ、δHが3~6MPa0.5である少なくとも1種の光重合性化合物を含むことを特徴とするインク組成物。
    luminescent nanocrystalline particles;
    a photopolymerizable component;
    containing a hindered amine compound,
    The photopolymerizable component has at least one Hansen Solubility Parameter (HSP) δD of 16 to 17.5 MPa 0.5 , δP of 2.5 to 5 MPa 0.5 and δH of 3 to 6 MPa 0.5 An ink composition comprising: a photopolymerizable compound of the type:
  2.  前記光重合性化合物は、単官能または多官能の(メタ)アクリレートである請求項1に記載のインク組成物。 The ink composition according to claim 1, wherein the photopolymerizable compound is a monofunctional or polyfunctional (meth)acrylate.
  3.  前記光重合性化合物は、下記式(1)で表される2官能の(メタ)アクリレートである請求項2に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000001
     [式(1)中、Rは、炭素数4~8のアルキレン基を示し、2つのRは、それぞれ独立して水素原子またはメチル基を示す。]
    3. The ink composition according to claim 2, wherein the photopolymerizable compound is a bifunctional (meth)acrylate represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    [In formula (1), R 1 represents an alkylene group having 4 to 8 carbon atoms, and two R 2 independently represent a hydrogen atom or a methyl group. ]
  4.  前記光重合性成分中に占める前記光重合性化合物の割合は、30質量%以上である請求項1又は請求項2に記載のインク組成物。 The ink composition according to claim 1 or 2, wherein the proportion of the photopolymerizable compound in the photopolymerizable component is 30% by mass or more.
  5.  前記ヒンダードアミン系化合物は、下記式(2)で表される部分構造を有する請求項1又は請求項2に記載のインク組成物。
    Figure JPOXMLDOC01-appb-C000002
     [式(2)中、Rは、水素原子または置換基を示し、Rは、連結基を示し、*は、結合手を示す。]
    3. The ink composition according to claim 1, wherein the hindered amine compound has a partial structure represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
    [In formula (2), R 3 represents a hydrogen atom or a substituent, R 4 represents a linking group, and * represents a bond. ]
  6.  前記式(2)中のRは、アルコキシ基である請求項5に記載のインク組成物。 6. The ink composition according to claim 5, wherein R3 in formula ( 2 ) is an alkoxy group.
  7.  さらに、酸化防止剤を含有する請求項1又は請求項2に記載のインク組成物。 The ink composition according to claim 1 or claim 2, further comprising an antioxidant.
  8.  インクジェット方式による液滴吐出法に用いられる請求項1又は請求項2に記載のインク組成物。 The ink composition according to claim 1 or 2, which is used in a droplet ejection method by an inkjet system.
  9.  複数の画素部と、隣り合う前記画素部同士の間に設けられた遮光部とを備え、
     前記複数の画素部は、請求項1又は請求項2に記載のインク組成物の硬化物を含む発光性画素部を有することを特徴とする光変換層。
    A plurality of pixel units and a light shielding unit provided between the adjacent pixel units,
    3. A light conversion layer, wherein the plurality of pixel portions have luminescent pixel portions containing a cured product of the ink composition according to claim 1 or 2.
  10.  前記複数の発光性画素部は、
     前記発光性ナノ結晶粒子として、波長420~480nmの範囲の光を吸収して、波長605~665nmの範囲に発光ピークを有する光を発する第1発光性ナノ結晶粒子を含有する第1発光性画素部と、
     前記発光性ナノ結晶粒子として、波長420~480nmの範囲の光を吸収して、波長500~560nmの範囲に発光ピークを有する光を発する第2発光性ナノ結晶粒子を含有する第2発光性画素部とを含む請求項9に記載の光変換層。
    The plurality of luminescent pixel units are
    A first luminescent pixel containing, as the luminescent nanocrystalline particles, first luminescent nanocrystalline particles that absorb light in a wavelength range of 420 to 480 nm and emit light having an emission peak in a wavelength range of 605 to 665 nm. Department and
    A second luminescent pixel containing, as the luminescent nanocrystalline particles, second luminescent nanocrystalline particles that absorb light in a wavelength range of 420 to 480 nm and emit light having an emission peak in a wavelength range of 500 to 560 nm. 10. The light conversion layer of claim 9, comprising:
  11.  前記複数の画素部は、さらに、光散乱性粒子を含有する非発光性画素部を有する請求項9に記載の光変換層。 The light conversion layer according to claim 9, wherein the plurality of pixel portions further have non-luminous pixel portions containing light scattering particles.
  12.  請求項9に記載の光変換層を備えることを特徴とするカラーフィルタ。 A color filter comprising the light conversion layer according to claim 9.
  13.  請求項1又は請求項2に記載のインク組成物の硬化物を含む光変換フィルム。 A light conversion film comprising a cured product of the ink composition according to claim 1 or claim 2.
PCT/JP2022/020035 2021-05-21 2022-05-12 Ink composition, light conversion layer, color filter, and light conversion film WO2022244668A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237034720A KR20240011666A (en) 2021-05-21 2022-05-12 Ink composition, light conversion layer, color filter, and light conversion film
JP2023522619A JP7367894B2 (en) 2021-05-21 2022-05-12 Ink compositions, light conversion layers, color filters and light conversion films
CN202280028064.5A CN117178035A (en) 2021-05-21 2022-05-12 Ink composition, light conversion layer, color filter, and light conversion film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021085935 2021-05-21
JP2021-085935 2021-05-21

Publications (1)

Publication Number Publication Date
WO2022244668A1 true WO2022244668A1 (en) 2022-11-24

Family

ID=84140661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020035 WO2022244668A1 (en) 2021-05-21 2022-05-12 Ink composition, light conversion layer, color filter, and light conversion film

Country Status (4)

Country Link
JP (1) JP7367894B2 (en)
KR (1) KR20240011666A (en)
CN (1) CN117178035A (en)
WO (1) WO2022244668A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157561A1 (en) * 2022-02-21 2023-08-24 住友化学株式会社 Curable composition, curable film, and display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001693A1 (en) * 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
US20120256134A1 (en) * 2009-09-09 2012-10-11 Nick Robert J Formulations including nanoparticles
WO2016194351A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Wavelength conversion member and backlight unit provided with same, and liquid crystal display device
JP2017117770A (en) * 2015-12-22 2017-06-29 富士フイルム株式会社 Luminaire
WO2019186734A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, curable composition and cured product
JP2020015895A (en) * 2018-07-13 2020-01-30 Dic株式会社 Ink composition, photoconversion layer and color filter
JP2020070374A (en) * 2018-10-31 2020-05-07 住友化学株式会社 Curable composition, film, laminate and display device
JP2020129034A (en) * 2019-02-07 2020-08-27 Dic株式会社 Inkjet ink for color filter, optical conversion layer, and color filter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902324B1 (en) 2006-06-20 2009-04-03 Oreal USE OF ELLAGIC ACID FOR THE TREATMENT OF CANITIA
KR102028583B1 (en) 2014-09-03 2019-10-04 동우 화인켐 주식회사 Photosensitive resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001693A1 (en) * 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
US20120256134A1 (en) * 2009-09-09 2012-10-11 Nick Robert J Formulations including nanoparticles
WO2016194351A1 (en) * 2015-05-29 2016-12-08 富士フイルム株式会社 Wavelength conversion member and backlight unit provided with same, and liquid crystal display device
JP2017117770A (en) * 2015-12-22 2017-06-29 富士フイルム株式会社 Luminaire
WO2019186734A1 (en) * 2018-03-27 2019-10-03 日立化成株式会社 Wavelength conversion member, backlight unit, image display device, curable composition and cured product
JP2020015895A (en) * 2018-07-13 2020-01-30 Dic株式会社 Ink composition, photoconversion layer and color filter
JP2020070374A (en) * 2018-10-31 2020-05-07 住友化学株式会社 Curable composition, film, laminate and display device
JP2020129034A (en) * 2019-02-07 2020-08-27 Dic株式会社 Inkjet ink for color filter, optical conversion layer, and color filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157561A1 (en) * 2022-02-21 2023-08-24 住友化学株式会社 Curable composition, curable film, and display device

Also Published As

Publication number Publication date
JPWO2022244668A1 (en) 2022-11-24
CN117178035A (en) 2023-12-05
KR20240011666A (en) 2024-01-26
JP7367894B2 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
JP6973500B2 (en) Ink composition and its manufacturing method, as well as optical conversion layer and color filter
JP6927305B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP7294864B2 (en) Ink composition, light conversion layer and color filter
JP7024383B2 (en) Ink composition, light conversion layer and color filter
JP6838691B2 (en) Ink composition, light conversion layer, and color filter
JP7024336B2 (en) Ink composition, light conversion layer and color filter
WO2022244669A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
JP7180795B2 (en) Ink composition for forming light conversion layer, light conversion layer and color filter
WO2022244668A1 (en) Ink composition, light conversion layer, color filter, and light conversion film
JP7087797B2 (en) Ink composition, light conversion layer and color filter
JP7331452B2 (en) Curable ink composition, light conversion layer and color filter
WO2022181430A1 (en) Color filter inkjet ink composition, cured material, phototransformation layer, and color filter
JP7238445B2 (en) Ink composition, light conversion layer, color filter, and method for forming luminescent pixel portion
TWI839429B (en) Ink composition, light conversion layer and color filter
JP7180798B2 (en) Ink composition, cured product, light conversion layer, and color filter
JP7243073B2 (en) Ink composition and cured product thereof, light conversion layer, and color filter
JP7020014B2 (en) Ink composition, light conversion layer and color filter
JP2023036187A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2023036307A (en) Light-emitting nanoparticle composite, ink composition, optical conversion layer, and color filter
JP2024072245A (en) Luminescent particles, curable resin composition and light conversion layer
JP6981082B2 (en) Ink composition and its manufacturing method, light conversion layer and color filter
JP2022044970A (en) Ink composition, cured material, light conversion layer, and color filter
TW202235517A (en) White ink composition, cured article, light scattering layer and color filter
JP2023092096A (en) Printing method of ink composition for forming phototransformation layer, and color philter
JP2022000687A (en) Composition containing semiconductor nanoparticles, color filter, and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023522619

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22804581

Country of ref document: EP

Kind code of ref document: A1