WO2008001693A1 - Fluorescent composition and fluorescence conversion substrate using the same - Google Patents

Fluorescent composition and fluorescence conversion substrate using the same Download PDF

Info

Publication number
WO2008001693A1
WO2008001693A1 PCT/JP2007/062605 JP2007062605W WO2008001693A1 WO 2008001693 A1 WO2008001693 A1 WO 2008001693A1 JP 2007062605 W JP2007062605 W JP 2007062605W WO 2008001693 A1 WO2008001693 A1 WO 2008001693A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorescence conversion
substrate
composition according
composition
Prior art date
Application number
PCT/JP2007/062605
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Hachiya
Mitsuru Eida
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/488,672 external-priority patent/US20080001124A1/en
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Publication of WO2008001693A1 publication Critical patent/WO2008001693A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7715Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing cerium
    • C09K11/7716Chalcogenides
    • C09K11/7717Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/773Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7743Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing terbium
    • C09K11/7744Chalcogenides
    • C09K11/7745Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7767Chalcogenides
    • C09K11/7769Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present invention relates to a composition containing a fluorescent inorganic nanocrystal, and more particularly to a fluorescent ink composition suitable for forming a fluorescent layer (fluorescent conversion film) on a substrate by an ink jet method or a nonoresid method.
  • the fluorescence conversion layer is usually formed on the substrate by a general-purpose photolithography method, a printing method, or the like.
  • a general-purpose photolithography method a printing method, or the like.
  • the use of fluorescent inorganic nanocrystals as fluorescent conversion materials has been studied.
  • the composition containing fluorescent inorganic nanocrystals has various reported forces.
  • this composition when used to form a fluorescent layer, it contains a large amount of solvent, so the difference between the wet film thickness and the dry film thickness. It was difficult to obtain a fluorescent layer (fluorescence conversion film) having a desired film thickness.
  • a fluorescent layer fluorescent conversion film
  • it when used as an ink for ink jet or nozure jet, in order to obtain a fluorescent film having a desired film thickness, it was necessary to apply several times or more, and the productivity was remarkably deteriorated. It was difficult to obtain a fluorescent layer (fluorescence conversion film) dispersed at a high concentration.
  • Patent Document 1 discloses a technique of forming a phosphor conversion film by an ink jet method using a composition containing an organic fluorescent dye.
  • the organic fluorescent dye has insufficient durability against light irradiation.
  • fluorescent inorganic nanocrystals when used in place of organic fluorescent dyes, it is necessary to disperse fluorescent inorganic nanocrystals at a higher concentration than organic fluorescent dyes in order to exhibit sufficient fluorescence conversion performance.
  • Patent Document 2 discloses a photopolymerizable resin composition for use in the production of a non-linear optical material optoelectronic device, comprising a fluorescent inorganic nanocrystal, a solvent, and a polymerizable monomer. It is disclosed.
  • the ink contains a large amount of solvent. In order to obtain a desired film thickness, it was necessary to repeat the coating, and the productivity was extremely poor.
  • Patent Documents 3 and 4 disclose an inkjet ink containing a fluorescent inorganic nanocrystal using an aqueous medium for use in printing on paper or an OHP film by an inkjet method.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-229260
  • Patent Document 2 Japanese Patent Laid-Open No. 10-186426
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2000-119575
  • Patent Document 4 Japanese Unexamined Patent Application Publication No. 2004-149765
  • An object of the present invention is to provide a composition that can be used when a fluorescent conversion film containing a fluorescent inorganic nanocrystal at a concentration capable of exhibiting sufficient fluorescent conversion performance is produced by a printing method, particularly, an inkjet ink. When used as, it is to provide a highly productive composition.
  • Another object of the present invention is to provide a method for producing a fluorescence conversion substrate using the composition.
  • Another object of the present invention is to provide a fluorescence conversion substrate and a light emitting device manufactured using the composition. Disclosure of the invention
  • a composition comprising the following components (A) to (C).
  • composition according to 1, wherein the ratio of the total of components (A) to (C) to the composition is 40% by weight or more.
  • Ingredient (B) is:! ⁇ 40% by weight
  • composition according to 1 or 2 comprising 1 to 40% by weight of component (C).
  • composition according to 5 wherein part or all of the surface treatment agent (D) for the fluorescent inorganic nanocrystal has a force S, and has a polymerizable or crosslinkable substituent.
  • composition according to 5 or 6 comprising 20% by weight or less of component (D).
  • Surface treatment agent (D) of fluorescent inorganic nanocrystal is selected from amino group, thiol group, phosphate ester group, phosphonic acid group, carboxyl group, olefin group, phosphine group, phosphine oxide group, epoxy group
  • a fluorescence conversion substrate comprising a fluorescence conversion film comprising the cured product according to 12 on the substrate.
  • a light emitting device comprising the fluorescence conversion substrate according to 13 or 14.
  • a composition that can be used when producing a fluorescent conversion film containing a fluorescent inorganic nanocrystal at a concentration capable of exhibiting sufficient fluorescence conversion performance by a printing method, in particular, an inkjet ink.
  • a highly productive composition can be provided.
  • substrate using the composition can be provided.
  • a fluorescence conversion substrate and a light-emitting device manufactured using the composition can be provided.
  • FIG. 1 is a view showing a light emitting device created in Example 3.
  • composition of the present invention includes the following components (A) to (C).
  • (C) A substituted or unsubstituted alkyl group having 4 to 20 carbon atoms, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and a substituted or unsubstituted arylene group
  • Examples of the fluorescent inorganic nanocrystal (component (A)) include the following substances.
  • Se-VI compound semiconductor nanocrystals such as ZnSe, ZnTe, CdSe, ⁇ -V compound semiconductor nanocrystals such as InP, chalcopyrite type semiconductor nanotalis such as CuInS, CuInSe
  • the semiconductor nanocrystal is a semiconductor crystal made into ultrafine particles of nanometer order, and preferably has a particle size of 20 nm or less, more preferably lOnm or less.
  • a metal canorecogenide such as ZnS, ZnSe, CdS, or CdSe doped with transition metal ions such as Eu 2+ , Eu 3+ , Ce 3+ , T b 3+ , or Cu 2+ .
  • Dopes doped with transition metal ions that absorb visible light such as + and Tb 3+ .
  • the nanocrystal phosphor of (i) and (ii) above may be oxidized on the surface of the nanocrystal.
  • the surface may be modified with a metal oxide such as silica or an organic substance such as a long chain alkyl group or phosphoric acid.
  • nanoparticles in which the surface of the nanoparticles is covered with another semiconductor called a shell are more preferable in terms of stability and fluorescence.
  • the surface of the shell may be further coated with a metal oxide such as silica or titania.
  • the fluorescent inorganic nanocrystals may be used alone or in combination of two or more.
  • polyfunctional curable compound polyfunctional crosslinkable compound, component (B)
  • a compound in which the cured product is translucent can be used.
  • Functional epoxy compounds, polyfunctional (meth) acrylate compounds, trialkoxysilanes are preferred Poxy compounds are more preferred.
  • Specific polyfunctional (meth) atalylate compounds include pentaerythritol triatalylate, pentaerythritol tetraatalylate, trimethylolpropane tritalylate, dipentaerythritol pentaatalylate, neopentylglycol dimetatalylate, 2-methacryloyl
  • pentaerythritol triatalylate pentaerythritol tetraatalylate
  • trimethylolpropane tritalylate dipentaerythritol pentaatalylate
  • neopentylglycol dimetatalylate 2-methacryloyl
  • 2-methacryloyl An example is ruoxymethyloctyl methacrylate.
  • Specific polyfunctional epoxy compounds include 1,7-octagen diepoxide, diglycidinol 1,2-cyclohexanecarboxylate, neopentyl glycol diglycidyl ether, triglycidyl isocyanurate, commercially available Examples include epoxy resins (for example, Dainippon Ink and Chemicals: trade name ECN, EPICL * N, Japan epoxy resin: trade name EP * N).
  • trialkoxysilane examples include hexyltrimethoxysilane, etyltriethoxysilane, dodecinoletriethoxysilane, and benzyltriethoxysilane.
  • the above polyfunctional curable compounds may be used alone or in combination of two or more.
  • polymerizable compound (component (C)) a compound in which the polymer is translucent can be used.
  • Various known polymerizable compounds can be used, but it is preferably a polymerizable group copolymerizable with the polyfunctional curable compound (component B).
  • (meth) atalylate compounds containing an addition polymerizable double bond in the molecule styrene derivatives, butyl ester compounds, epoxy compounds containing a ring-opening polymerizable cyclic group in the molecule, oxetane compounds, oxazole compounds, condensation polymerization
  • a dialkoxy silane compound containing a functional group in the molecule is preferred.
  • (meth) attalei toy compounds styrene derivatives, butyl ester compounds, epoxy compounds, dialkoxysilane compounds are particularly preferred.
  • One addition polymerizable double bond, ring-opening polymerizable cyclic group and dialkoxysilyl group are preferably contained in the molecule.
  • an alkyl group having 4 to 20 carbon atoms In order to improve the dispersibility of the fluorescent inorganic nanocrystal, an alkyl group having 4 to 20 carbon atoms, an alkylene group having 4 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, It preferably has a substituent selected from a len group.
  • Specific examples of the (meth) atalyte toy compound include 2-ethylhexyl acrylate, dodecyl acrylate, and benzyl methacrylate.
  • styrene derivative examples include styrene, 4-methylstyrene, 4-vinylbiphenol, and methyl 4-burbenzoate.
  • epoxy compound examples include benzyl glycidyl ether, styrene oxide, 1,2_epoxydecane, and glycidyl 4_tertiary butyl benzoate.
  • dialkoxysilane compounds include dimethoxyhexylmethylsilane, and examples of specific burester compounds include burhexanoate and burbenzoate.
  • the above polymerizable compounds may be used alone or in combination of two or more.
  • the sum of components (A) to (C) accounts for 40% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more of the composition.
  • Suitable blending amounts of components (A) to (C) are as follows.
  • Ingredient (A) ::! ⁇ 45 wt%, more preferably 10-45 wt%
  • Ingredient (B) ::!-40% by weight, more preferably 20-40% by weight
  • Ingredient (C) ::!-40% by weight, more preferably 10-30% by weight
  • the composition of the present invention preferably contains a surface treatment agent (component (D)).
  • a surface treating agent By adding a surface treating agent, the dispersion of the fluorescent inorganic nanocrystal in the composition can be further stabilized.
  • Force capable of using a known surface treating agent as the surface treating agent is selected so that the polyfunctional curable compound is not cured during storage of the composition.
  • the surface treatment agent is an amino group, a thiol group, a phosphate ester group, a phosphonic acid group, a phosphine group, a phosphine oxide group, a carboxyl group, It preferably contains an olefin group. More preferably, thiol group, phosphate group, phosphonic acid group, carboxyl group, olefin group, Preferably, it contains a thiol group, a phosphate ester group, and an olefin group.
  • the surface treatment agent preferably contains a phosphine group, a phosphine oxide group, an olefin group, and an epoxy group.
  • Specific examples of the compound containing an amino group include an amino-terminated PEG, octylamine, decinoreamin, and glycine tert butyl ester.
  • Specific compounds containing a thiol group include octanethiol, octylthiodarylate, 2_ethylhexyl 3_mercaptopropionate, thiol-terminated PEG, 3_menole.
  • the compound containing a phosphoric acid ester group examples include dibutyl phosphate, di_n_decyl phosphate, di (polyethylene glycol 4-noylphenyl) phosphate, and tributyl phosphate.
  • Specific examples of the compound containing a carboxyl group include decanoic acid, 2-ethylhexanoic acid, 4-monohexylbenzoic acid, and 4-bulubenzoic acid.
  • the compound containing a phosphonic acid group examples include octylphosphonic acid, tetradecanophosphonic acid, and jetylbenzyl phosphonate.
  • the compound containing a phosphine group examples include tributylphosphine and trioctylphosphine.
  • the compound containing a phosphine oxide group examples include tributylphosphine oxide and trioctylphosphine oxide.
  • the compound containing an olephine group examples include dodecene, methylundecenoate, buêtcenoate, and 1,2-epoxy-9-decene.
  • compounds containing an epoxy group include 1,2-epoxy-dodecane, 1,2-epoxy-9-decene, styrene oxide, hypopinene oxide, and 3-glycidyl oxide.
  • Part or all of the surface treatment agent (D) preferably has a polymerizable or crosslinkable substituent.
  • the polymerizable or crosslinkable substituent is a polymerizable group or a crosslinkable group copolymerizable with the polyfunctional curable compound (component B).
  • a (meth) acrylate group, a styryl group, or a vinyl ester group is preferable.
  • the preferred amount of component (D) is as follows.
  • Component (D) 20% by weight or less, more preferably 2 to: 10% by weight
  • composition of the present invention preferably contains a polymerization initiator in order to increase the curing rate and improve the productivity.
  • the polyfunctional curable compound (B) is a polyfunctional (meth) acrylate
  • a photopolymerization initiator or a thermal polymerization initiator can be added.
  • a specific example of the photopolymerization initiator is Inoregacure 907 (manufactured by Ciba Specialty Chemicals).
  • the polyfunctional curable compound (B) is a polyfunctional epoxy compound
  • a compound that generates an acid or an alkali by heating or light irradiation can be used as a polymerization initiator.
  • composition of the present invention preferably has a small decrease in film thickness when cured, that is, a small amount of volatile components, the content of components having a boiling point of 200 ° C or less is 0 to 60 wt%. % Is preferable.
  • the viscosity at 25 ° C is preferably in the range of 0.001-0.020 Pa's.
  • the method for measuring the viscosity is as described in the examples.
  • a polyfunctional curable compound (component (B)) is blended in order to maintain the strength of the fluorescence conversion film.
  • polyfunctional curable compounds contain many polar groups such as acrylic groups and epoxy groups, and therefore, there are many highly viscous substances. Therefore, in order to adjust the solution viscosity to a suitable range, it is necessary to add a medium for adjusting the viscosity.
  • the film thickness that can be formed by a single coating is reduced, and it is attempted to incorporate fluorescent inorganic nanocrystals that can exhibit sufficient fluorescence conversion performance into it. As a result, the concentration becomes too high, and the fluorescence conversion film may not have sufficient strength, and the fluorescent inorganic nanocrystals may aggregate and separate.
  • the concentration of the fluorescent inorganic nanocrystal is low, and it becomes necessary to apply the composition many times, resulting in a decrease in productivity.
  • the surface of the fluorescent inorganic nanocrystals is made polar. It is preferable to treat with a high substance.
  • the polarity of the fluorescent conversion film is increased, and as a result, the water absorption is increased, which is not preferable for combining a current-carrying device such as an organic EL element or LED as a light source.
  • the fluorescent inorganic nanocrystal itself may be altered by moisture.
  • the fluorescent inorganic nanocrystals are highly non-volatile (a sufficient film thickness can be obtained by one application) and are too polar (low water absorption).
  • Component (C) is selected as the viscosity adjusting medium.
  • Component (C) used in the present invention includes an alkyl group having 4 to 20 carbon atoms, an alkylene group having 4 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms.
  • component (C) is polymerizable, it is easy to prevent separation from the fluorescence conversion membrane and surface stickiness.
  • the boiling point of component (C) is preferably 200 ° C or higher.
  • a resin or a solvent may be added in order to adjust the viscosity of the composition within a range not impairing the strength and productivity of the film.
  • a resin such as polybenzyl metatalylate, polymethyl metatalylate, polystyrene, and silicone modified polycarbonate, and a solvent such as xylene, diglyme, and cyclohexanone can be used.
  • the composition of the present invention can be dried and Z or cured to obtain a cured product.
  • the composition contains a photopolymerization initiator, it is irradiated with actinic rays, and when it contains a thermal polymerization initiator, it is cured by heating.
  • a fluorescence conversion film made of a cured product of the composition of the present invention is formed on a substrate to form a fluorescence conversion group.
  • a board can be created.
  • the thickness of the fluorescent conversion film is not limited, but is usually 1 to 100 ⁇ m.
  • As the substrate a glass plate, a polymer plate or the like can be used. At this time, if a partition wall is provided on the substrate and the composition (ink) is allowed to flow into an area partitioned by the partition wall to form a fluorescence conversion film, it is easy to separately apply a plurality of types of ink.
  • the composition of the present invention is applied to a substrate and cured after being applied.
  • a fluorescent conversion film can be formed only on a necessary portion, and the use efficiency of the material is preferably improved.
  • As a printing method an inkjet method or a nozure jet method can be used.
  • the fluorescence conversion film produced using the composition of the present invention has a high concentration of fluorescent inorganic nanocrystals, and therefore can exhibit sufficient fluorescence conversion performance.
  • the composition of the present invention can be used as an ink jet ink, the productivity of the fluorescence conversion film and the fluorescence conversion substrate is increased.
  • a light emitting device can be manufactured by combining the light emitting element and the fluorescence conversion substrate.
  • the light-emitting element one that emits visible light can be used.
  • an organic EL element, an inorganic EL element, a semiconductor light-emitting diode, and a fluorescent display tube can be used.
  • organic EL elements and inorganic EL elements are preferred, and organic EL elements are particularly preferred because light-emitting elements with low voltage and high luminance can be obtained.
  • a solution of the phosphine compound was injected all at once from the septum cap portion of the four-necked flask. After 5 seconds, 40 ml of octadecene was added, and the reaction temperature was rapidly lowered to 180 ° C. 1 Stirring was continued at 80 ° C for 2 hours.
  • the temperature was lowered to 50 ° C., and the pressure was reduced by a vacuum pump for 1 hour.
  • the reaction solution was taken out by returning to atmospheric pressure with nitrogen gas and lowering the temperature to room temperature, and the precipitate was removed by centrifugation (3000 rpm, 10 minutes). The supernatant was once stored in the glove box.
  • the inside of the flask was evacuated to a vacuum and stirred at 80 ° C for 30 minutes.
  • the solution was returned to atmospheric pressure with nitrogen gas, and a solution of InP nanoparticles stored in the glove box was added. Stirring was continued under reduced pressure at 80 ° C for 1.5 hours.
  • the pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 140 ° C. 1. Stirring was continued for 5 hours. The temperature was lowered to room temperature, the reaction solution was taken out, and coarse particles and unreacted raw materials were removed by centrifugation (3000 rpm, 15 minutes).
  • the obtained nanoparticles had a fluorescence peak wavelength of 634 nm and a fluorescence quantum yield of 17%. These were measured using a quantum yield measuring apparatus (C9920-02 type) manufactured by Hamamatsu Photonicus.
  • the inside of the flask was evacuated to a vacuum and stirred at 120 ° C for 2 hours.
  • the pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 300 ° C.
  • the selenium solution was injected all at once from the septum cap portion of the four-necked flask. Stirring was continued for 1.5 hours at 290 ° C. The reaction temperature was then lowered to 180 ° C.
  • reaction temperature was raised to 230 ° C and stirring was continued for 1.5 hours.
  • the temperature was lowered to room temperature, the reaction solution was taken out, and the sediment was removed by centrifugation (3000 rpm, 10 minutes). The supernatant was stored in a glove box.
  • the obtained nanoparticles had a fluorescence peak wavelength of 528 nm and a fluorescence quantum yield of 13%.
  • dibutyl phosphate (component D) 34 mg
  • 2-ethyl hexyl acrylate (component C) 70 mg
  • Trimethylolpropane triacrylate (component B) 104 mg
  • polybenzylmethacrylate weight average molecular weight 15, 000) (14 mg) were added and ultrasonically dispersed.
  • Irgacure 907 manufactured by Ciba Specialty Chemicals (2 mg) was dissolved at a certain place to obtain an ink composition.
  • the viscosity of the ink composition at 25 ° C is measured using an automatic micro viscometer (AM manufactured by Anton Paar) As a result of measurement using a Vn type), it had a viscosity of 0.012 Pa's.
  • a black matrix (V259 BK (manufactured by Nippon Steel Chemical Co., Ltd.)) having a width of 20 / im and a thickness of 1 ⁇ 5 ⁇ was produced at intervals of 90 ⁇ m by a photolithography method.
  • a glass substrate on which a partition wall (VPA100ZP54-2 (manufactured by Nippon Steel Chemical Co., Ltd.)) with a width of 15 ⁇ m and a height of 10 ⁇ m was formed on a black matrix.
  • the ink composition was applied once to the area of the glass substrate separated by the partition walls, and cured by irradiating 300 mJ of ultraviolet light having a wavelength of 365 nm to produce a fluorescence conversion substrate.
  • the ink composition When measured in the same manner as in Example 1, the ink composition had a viscosity of 0. OlPa's at 25 ° C.
  • Example 2 In the same manner as in Example 1, the ink composition was applied once and xylene was evaporated, followed by heating to 160 ° C. to react and cure the epoxy compound, thereby producing a fluorescence conversion substrate.
  • the light emitting device 1 shown in FIG. 1 was produced as follows.
  • Example 2 In the same manner as in Example 1, a black matrix 12 was formed on a glass substrate 11, and a partition wall 13 was formed on the black matrix 12.
  • the composition used in Example 1 was applied once every 3 lines in the area separated by the partition wall 13. It is cured by irradiating 300mJ with 365nm wavelength ultraviolet rays. Then, a red fluorescence conversion film 15 was formed.
  • Example 2 the composition used in Example 2 was applied once next to one of the red fluorescence conversion films 15. After evaporating xylene, the epoxy compound was reacted and cured by heating to 160 ° C. to form a green fluorescent conversion film 17.
  • an electrode (not shown) processed in a matrix in accordance with the pitch of the partition walls 13 of the fluorescence conversion substrate 10 and a blue light-emitting organic EL element 23 were formed to produce an organic EL panel 20. .
  • the light emitting device 1 was manufactured by laminating the fluorescence conversion substrate 10 and the organic EL panel 20. When an image was displayed on the light emitting device 1, a full color image could be displayed.
  • the color display device using the color conversion substrate of the present invention is a consumer or industrial display, for example, a display for a portable display terminal, an in-vehicle display such as a car navigation system or an instrument panel, a personal computer for office automation (OA), Used for TV (TV receiver) or FA (factory automation) display devices.
  • OA personal computer for office automation
  • TV receiver Used for TV
  • FA factory automation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

Disclosed is a composition containing the following components (A)-(C). (A) a fluorescent inorganic nanocrystal (B) a polyfunctional crosslinkable compound (C) a polymerizable compound having a group selected from substituted or unsubstituted alkyl groups having 4-20 carbon atoms, substituted or unsubstituted alkylene groups having 4-20 carbon atoms, substituted or unsubstituted aryl groups having 6-20 carbon atoms, and substituted or unsubstituted arylene groups having 6-20 carbon atoms

Description

明 細 書  Specification
蛍光性組成物及びそれを用いた蛍光変換基板  Fluorescent composition and fluorescent conversion substrate using the same
技術分野  Technical field
[0001] 本発明は蛍光性無機ナノクリスタルを含む組成物に関し、特に基体上に蛍光層(蛍 光変換膜)をインクジェット法又はノズノレジヱット法で形成するのに適する蛍光インキ 組成物に関する。  [0001] The present invention relates to a composition containing a fluorescent inorganic nanocrystal, and more particularly to a fluorescent ink composition suitable for forming a fluorescent layer (fluorescent conversion film) on a substrate by an ink jet method or a nonoresid method.
背景技術  Background art
[0002] 有機 EL (エレクト口ルミネッセンス)素子等の発光素子の光を、蛍光変換層にて、他 の波長の光に変換することにより、青、緑、赤の三原色の光を得て、フルカラーデイス プレイを得る技術が知られている。  [0002] Light from light-emitting elements such as organic EL (electric-mouth luminescence) elements is converted into light of other wavelengths in the fluorescence conversion layer, resulting in full-color light of blue, green, and red. Techniques for obtaining display play are known.
[0003] 蛍光変換層は、通常汎用のフォトリソグラフィ一法、印刷法等により基体上に形成 する。一方、蛍光変換材料として、蛍光性無機ナノクリスタルを使用することが研究さ れている。 [0003] The fluorescence conversion layer is usually formed on the substrate by a general-purpose photolithography method, a printing method, or the like. On the other hand, the use of fluorescent inorganic nanocrystals as fluorescent conversion materials has been studied.
[0004] し力 ながら、蛍光性無機ナノクリスタルを蛍光変換材料として配合したインクを用 いて、蛍光変換膜又は蛍光変換基板をインクジェット法により製造する技術は未完成 であった。  [0004] However, a technique for manufacturing a fluorescence conversion film or a fluorescence conversion substrate by an ink jet method using an ink containing a fluorescent inorganic nanocrystal as a fluorescence conversion material has not been completed.
即ち、蛍光性無機ナノクリスタルを含む組成物は、種々報告されている力 この組 成物を用いて蛍光層を形成する際に、溶媒を多量に含むため、ウエット膜厚とドライ 膜厚の差が大きぐ 目的とする膜厚の蛍光層(蛍光変換膜)を得ることは難しかった。 特に、インクジェット又はノズノレジェット用インキとして使用する場合、 目的とする膜 厚の蛍光膜を得るために、複数回以上の塗布が必要となり、生産性が著しく悪かった さらに、蛍光性無機ナノクリスタルを高濃度に分散した蛍光層(蛍光変換膜)を得る ことは、困難であった。  That is, the composition containing fluorescent inorganic nanocrystals has various reported forces. When this composition is used to form a fluorescent layer, it contains a large amount of solvent, so the difference between the wet film thickness and the dry film thickness. It was difficult to obtain a fluorescent layer (fluorescence conversion film) having a desired film thickness. In particular, when used as an ink for ink jet or nozure jet, in order to obtain a fluorescent film having a desired film thickness, it was necessary to apply several times or more, and the productivity was remarkably deteriorated. It was difficult to obtain a fluorescent layer (fluorescence conversion film) dispersed at a high concentration.
[0005] 特許文献 1には、有機蛍光色素を配合した組成物を用いてインクジェット法により蛍 光変換膜を形成する技術が開示されている。  [0005] Patent Document 1 discloses a technique of forming a phosphor conversion film by an ink jet method using a composition containing an organic fluorescent dye.
し力しながら、有機蛍光色素は光照射に対する耐久性が不十分であった。 また、有機蛍光色素のかわりに蛍光性無機ナノクリスタルを用いた場合、十分な蛍 光変換性能を発揮するためには蛍光性無機ナノクリスタルを有機蛍光色素と比較し て高濃度に分散させる必要があるが、蛍光性無機ナノクリスタルを安定して分散させ ることが難しかった。 However, the organic fluorescent dye has insufficient durability against light irradiation. In addition, when fluorescent inorganic nanocrystals are used in place of organic fluorescent dyes, it is necessary to disperse fluorescent inorganic nanocrystals at a higher concentration than organic fluorescent dyes in order to exhibit sufficient fluorescence conversion performance. However, it was difficult to stably disperse the fluorescent inorganic nanocrystals.
[0006] 特許文献 2には、蛍光性無機ナノクリスタル、溶剤及び重合可能なモノマーからな ることを特徴とする、非線形光学材料の光電子デバイスの製造に用いるための光重 合性樹脂組成物が開示されている。  [0006] Patent Document 2 discloses a photopolymerizable resin composition for use in the production of a non-linear optical material optoelectronic device, comprising a fluorescent inorganic nanocrystal, a solvent, and a polymerizable monomer. It is disclosed.
この組成物をインクとして用いてインクジェット法により基体上に厚膜の蛍光変換膜 を形成しょうとすると、インク中に多量の溶剤が含まれているため、塗布後乾燥させる と膜厚がかなり減少してしまレ、、所望の膜厚を得るためには、繰り返し塗布を行う必 要があり、生産性が著しく悪かった。  If an ink-jet method is used to form a thick fluorescent conversion film on a substrate using this composition, the ink contains a large amount of solvent. In order to obtain a desired film thickness, it was necessary to repeat the coating, and the productivity was extremely poor.
[0007] 特許文献 3及び 4には、紙や OHPフィルムへのインクジェット法による印刷に用いる ための、水性媒体を用いた蛍光性無機ナノクリスタル配合インクジェット用インクが開 示されている。 [0007] Patent Documents 3 and 4 disclose an inkjet ink containing a fluorescent inorganic nanocrystal using an aqueous medium for use in printing on paper or an OHP film by an inkjet method.
水性媒体を用いるため、蛍光変換膜のように/ mオーダーの膜厚を有するような用 途では、水分が残留してしまレ、、電子デバイスと組み合わせることが難しかった。 特許文献 1 :特開 2003— 229260号公報  Since an aqueous medium is used, in applications where the film thickness is on the order of / m, such as a fluorescence conversion film, moisture remains, making it difficult to combine with an electronic device. Patent Document 1: Japanese Unexamined Patent Publication No. 2003-229260
特許文献 2 :特開平 10— 186426号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-186426
特許文献 3:特開 2000— 119575号公報  Patent Document 3: Japanese Unexamined Patent Publication No. 2000-119575
特許文献 4:特開 2004— 149765号公報  Patent Document 4: Japanese Unexamined Patent Application Publication No. 2004-149765
[0008] 本発明の目的は、十分な蛍光変換性能を発揮できる濃度の蛍光性無機ナノクリス タルを含む蛍光変換膜を印刷法により製造するときに用いることができる組成物、特 に、インクジェット用インクとして使用する場合、生産性の高い組成物を提供すること である。 [0008] An object of the present invention is to provide a composition that can be used when a fluorescent conversion film containing a fluorescent inorganic nanocrystal at a concentration capable of exhibiting sufficient fluorescent conversion performance is produced by a printing method, particularly, an inkjet ink. When used as, it is to provide a highly productive composition.
本発明の他の目的は、その組成物を用いる蛍光変換基板の製造方法を提供する ことである。  Another object of the present invention is to provide a method for producing a fluorescence conversion substrate using the composition.
本発明の他の目的は、その組成物を用いて製造した蛍光変換基板及び発光装置 を提供することである。 発明の開示 Another object of the present invention is to provide a fluorescence conversion substrate and a light emitting device manufactured using the composition. Disclosure of the invention
本発明によれば、以下の組成物等が提供される。  According to the present invention, the following compositions and the like are provided.
1.下記成分 (A)〜(C)を含む組成物。  1. A composition comprising the following components (A) to (C).
(A)蛍光性無機ナノクリスタル  (A) Fluorescent inorganic nanocrystal
(B)多官能架橋性化合物  (B) Polyfunctional crosslinkable compound
(C)炭素数 4〜20の置換もしくは無置換のアルキル基、炭素数 4〜20の置換もしく は無置換のアルキレン基、炭素数 6〜20の置換もしくは無置換のァリール基、及び 炭素数 6〜20の置換もしくは無置換のァリーレン基から選ばれる基を有する重合性 化合物  (C) a substituted or unsubstituted alkyl group having 4 to 20 carbon atoms, a substituted or unsubstituted alkylene group having 4 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the number of carbon atoms A polymerizable compound having a group selected from 6 to 20 substituted or unsubstituted arylene groups
2.成分 (A)〜(C)の合計が組成物に占める割合が 40重量%以上である 1記載の組 成物。  2. The composition according to 1, wherein the ratio of the total of components (A) to (C) to the composition is 40% by weight or more.
3.成分 (A)が:!〜 45重量%、  3.Ingredient (A) is:! ~ 45wt%,
成分(B)が:!〜 40重量%、  Ingredient (B) is:! ~ 40% by weight,
成分 (C)が 1〜40重量%含まれる 1又は 2記載の組成物。  3. The composition according to 1 or 2, comprising 1 to 40% by weight of component (C).
4.多官能架橋性化合物(B)が、多官能 (メタ)アタリレート及び多官能エポキシ化合 物の少なくとも 1つからなる 1〜 3のいずれか記載の組成物。  4. The composition according to any one of 1 to 3, wherein the polyfunctional crosslinking compound (B) comprises at least one of a polyfunctional (meth) acrylate and a polyfunctional epoxy compound.
5.さらに、下記成分(D)を含む 1〜4のいずれか記載の組成物。  5. Furthermore, the composition in any one of 1-4 containing the following component (D).
(D)蛍光性無機ナノクリスタルの表面処理剤  (D) Surface treatment agent for fluorescent inorganic nanocrystals
6.蛍光性無機ナノクリスタルの表面処理剤(D)の一部もしくは全部力 S、重合性もしく は架橋性の置換基を有する 5記載の組成物。  6. The composition according to 5, wherein part or all of the surface treatment agent (D) for the fluorescent inorganic nanocrystal has a force S, and has a polymerizable or crosslinkable substituent.
7.成分 (D)が 20重量%以下含まれる 5又は 6記載の組成物。  7. The composition according to 5 or 6, comprising 20% by weight or less of component (D).
8.蛍光性無機ナノクリスタルの表面処理剤(D)が、アミノ基、チオール基、リン酸エス テノレ基、ホスホン酸基、カルボキシル基、ォレフィン基、ホスフィン基、ホスフィンォキ サイド基、エポキシ基から選ばれる少なくとも 1つの置換基を有する 5〜7のいずれか 記載の組成物。  8. Surface treatment agent (D) of fluorescent inorganic nanocrystal is selected from amino group, thiol group, phosphate ester group, phosphonic acid group, carboxyl group, olefin group, phosphine group, phosphine oxide group, epoxy group The composition according to any one of 5 to 7, which has at least one substituent.
9.さらに、重合開始剤を含む 1〜8のいずれか記載の組成物。  9. The composition according to any one of 1 to 8, further comprising a polymerization initiator.
10.沸点が 200°C以下である成分の含有率が 0〜60重量%である 1〜9のいずれか 記載の組成物。 11. 25。Cにおける米占度力 S、 0. 001〜0. 020Pa' sの範囲である:!〜 10のレヽずれ力 記載の組成物。 10. The composition according to any one of 1 to 9, wherein the content of a component having a boiling point of 200 ° C or lower is 0 to 60% by weight. 11. 25. Rice occupancy power in C S, in the range of 0.001 to 0.020 Pa's:!
12·:!〜 11のレ、ずれか記載の組成物を硬化させた硬化物。  12 :! A cured product obtained by curing the composition according to 11-11.
13.基体と、  13. the substrate,
前記基体上に、 12記載の硬化物からなる蛍光変換膜を含む蛍光変換基板。 A fluorescence conversion substrate comprising a fluorescence conversion film comprising the cured product according to 12 on the substrate.
14.前記基体上に隔壁が設けられ、隔壁により区切られた区域に前記蛍光変換膜 力ある 13記載の蛍光変換基板。 14. The fluorescence conversion substrate according to 13, wherein a partition wall is provided on the substrate, and the fluorescence conversion film has a strength in an area partitioned by the partition wall.
15. 1〜: 11のいずれか記載の組成物を、基体上で硬化させることにより蛍光変換膜 を形成する蛍光変換基板の製造方法。  15. A method for producing a fluorescence conversion substrate, wherein a fluorescence conversion film is formed by curing the composition according to any one of 11 to 11 on a substrate.
16. 1〜: 11のいずれか記載の組成物を、印刷法によって基体上に塗布することによ り蛍光変換膜を形成する 15記載の蛍光変換基板の製造方法。  16. The method for producing a fluorescence conversion substrate according to 15, wherein a fluorescence conversion film is formed by applying the composition according to any one of 1 to 11 on a substrate by a printing method.
17.前記印刷法が、インクジェット法又はノズノレジヱット法である 16記載の蛍光変換 基板の製造方法。  17. The method for producing a fluorescence conversion substrate according to 16, wherein the printing method is an ink-jet method or a nozzo resist method.
18.隔壁により区切られた基体上の区域に組成物を塗布することにより、蛍光変換 膜を形成する 15〜: 17のいずれか記載の蛍光変換基板の製造方法。  18. The method for producing a fluorescence conversion substrate according to any one of 15 to 17: wherein a fluorescence conversion film is formed by applying a composition to an area on a substrate separated by a partition wall.
19.発光素子と、  19. Light emitting element,
13又は 14記載の蛍光変換基板を含む発光装置。  A light emitting device comprising the fluorescence conversion substrate according to 13 or 14.
[0010] 本発明によれば、十分な蛍光変換性能を発揮できる濃度の蛍光性無機ナノクリスタ ルを含む蛍光変換膜を印刷法により製造するときに用いることができる組成物、特に 、インクジェット用インクとして使用する場合、生産性の高い組成物が提供できる。 本発明によれば、その組成物を用いる蛍光変換基板の製造方法が提供できる。 本発明によれば、その組成物を用いて製造した蛍光変換基板及び発光装置が提 供できる。 [0010] According to the present invention, a composition that can be used when producing a fluorescent conversion film containing a fluorescent inorganic nanocrystal at a concentration capable of exhibiting sufficient fluorescence conversion performance by a printing method, in particular, an inkjet ink. When used as a composition, a highly productive composition can be provided. ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the fluorescence conversion board | substrate using the composition can be provided. According to the present invention, a fluorescence conversion substrate and a light-emitting device manufactured using the composition can be provided.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]実施例 3で作成した発光装置を示す図である。 FIG. 1 is a view showing a light emitting device created in Example 3.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の組成物は、下記成分 (A)〜(C)を含む。 [0012] The composition of the present invention includes the following components (A) to (C).
(A)蛍光性無機ナノクリスタル (B)多官能架橋性化合物 (A) Fluorescent inorganic nanocrystal (B) Polyfunctional crosslinkable compound
(C)炭素数 4〜20の置換もしくは無置換のアルキル基、置換もしくは無置換のアルキ レン基、炭素数 6〜20の置換もしくは無置換のァリール基、及び置換もしくは無置換 のァリーレン基から選ばれる基を有する重合性化合物  (C) A substituted or unsubstituted alkyl group having 4 to 20 carbon atoms, a substituted or unsubstituted alkylene group, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and a substituted or unsubstituted arylene group Polymerizable compound having a group
[0013] 蛍光性無機ナノクリスタル (成分 (A) )として、以下の物質を例示できる。  [0013] Examples of the fluorescent inorganic nanocrystal (component (A)) include the following substances.
(i)半導体ナノクリスタル蛍光体  (i) Semiconductor nanocrystal phosphor
ZnSe、 ZnTe、 CdSe等の Π—VI化合物半導体ナノクリスタル、 InP等の ΠΙ—V族化 合物半導体ナノクリスタル、 CuInS 、 CuInSe等のカルコパイライト型半導体ナノタリ  Se-VI compound semiconductor nanocrystals such as ZnSe, ZnTe, CdSe, ΠΙ-V compound semiconductor nanocrystals such as InP, chalcopyrite type semiconductor nanotalis such as CuInS, CuInSe
2 2  twenty two
スタノレ。  Stanole.
半導体ナノクリスタルは、半導体結晶をナノメートルオーダーまで超微粒子化したも のであり、好ましくは粒径が 20nm以下、より好ましくは lOnm以下である。  The semiconductor nanocrystal is a semiconductor crystal made into ultrafine particles of nanometer order, and preferably has a particle size of 20 nm or less, more preferably lOnm or less.
(ii)金属カルコゲナイド物に遷移金属イオンをドープしたナノクリスタル蛍光体  (ii) Nanocrystal phosphors doped with transition metal ions in metal chalcogenides
ZnS、 ZnSe、 CdS、 CdSe等の金属カノレコゲナイドィ匕物に、 Eu2+、 Eu3+、 Ce3+、 T b3+、 Cu2+等の遷移金属イオンをドープしたもの。 A metal canorecogenide such as ZnS, ZnSe, CdS, or CdSe doped with transition metal ions such as Eu 2+ , Eu 3+ , Ce 3+ , T b 3+ , or Cu 2+ .
(iii)金属酸化物に遷移金属イオンをドープしたナノクリスタル蛍光体  (iii) Nanocrystal phosphors doped with transition metal ions in metal oxides
Y O 、 Gd O 、 ZnO、 Y Al O 、 Zn Si〇等の金属酸化物に、 Eu2+、 Eu3+、 Ce3 YO, Gd O, ZnO, Y Al O, a metal oxide such as Zn Si_〇, Eu 2+, Eu 3+, Ce 3
2 3 2 3 3 5 12 2 4 2 3 2 3 3 5 12 2 4
+、 Tb3+等の、可視光を吸収する遷移金属イオンをドープしたもの。 Dopes doped with transition metal ions that absorb visible light, such as + and Tb 3+ .
[0014] 上記(i) (ii)のナノクリスタル蛍光体にぉレ、ては、ナノクリスタル表面が酸化されたり[0014] The nanocrystal phosphor of (i) and (ii) above may be oxidized on the surface of the nanocrystal.
、 Sや Se等が引き抜かれることを防止するため、シリカ等の金属酸化物や長鎖アルキ ル基ゃ燐酸等の有機物等で表面修飾してもよレ、。 In order to prevent the extraction of S, Se, etc., the surface may be modified with a metal oxide such as silica or an organic substance such as a long chain alkyl group or phosphoric acid.
さらに、上記ナノ粒子表面をシェルと呼ばれる別の半導体で覆ったナノ粒子が安定 性、及び蛍光性の点でより好ましい。シェルの表面をさらにシリカ、チタニア等の金属 酸化物で被覆してもよい。  Furthermore, nanoparticles in which the surface of the nanoparticles is covered with another semiconductor called a shell are more preferable in terms of stability and fluorescence. The surface of the shell may be further coated with a metal oxide such as silica or titania.
[0015] 上記の蛍光性無機ナノクリスタルは、一種単独で使用してもよぐまた、二種以上を 組み合わせて使用してもよい。 [0015] The fluorescent inorganic nanocrystals may be used alone or in combination of two or more.
[0016] 多官能硬化性化合物(多官能架橋性化合物、成分 (B) )として、硬化物が透光性 である化合物を用いることができ、多官能 (メタ)アタリレートイ匕合物、多官能エポキシ 化合物、トリアルコキシシランが好ましぐ多官能 (メタ)アタリレート化合物、多官能ェ ポキシ化合物がより好ましい。 [0016] As the polyfunctional curable compound (polyfunctional crosslinkable compound, component (B)), a compound in which the cured product is translucent can be used. Functional epoxy compounds, polyfunctional (meth) acrylate compounds, trialkoxysilanes are preferred Poxy compounds are more preferred.
具体的な多官能 (メタ)アタリレート化合物として、ペンタエリスリトールトリアタリレート 、ペンタエリスリトールテトラアタリレート、トリメチロールプロパントリアタリレート、ジペン タエリスリトールペンタアタリレート、ネオペンチルグリコールジメタタリレート、 2—メタク リロイルォキシメチルォクチルメタタリレートを例示できる。  Specific polyfunctional (meth) atalylate compounds include pentaerythritol triatalylate, pentaerythritol tetraatalylate, trimethylolpropane tritalylate, dipentaerythritol pentaatalylate, neopentylglycol dimetatalylate, 2-methacryloyl An example is ruoxymethyloctyl methacrylate.
具体的な多官能エポキシィ匕合物として、 1 , 7—ォクタジェンジエポキシド、ジグリシ ジノレ 1 , 2—シクロへキサンカルボキシレート、ネオペンチルグリコールジグリシジルェ 一テル、トリグリシジルイソシァヌレート、市販のエポキシ樹脂(例えば、大日本インキ 化学工業:商品名 ECN、 EPICL〇N、ジャパンエポキシレジン:商品名 EP〇N)を例 示できる。  Specific polyfunctional epoxy compounds include 1,7-octagen diepoxide, diglycidinol 1,2-cyclohexanecarboxylate, neopentyl glycol diglycidyl ether, triglycidyl isocyanurate, commercially available Examples include epoxy resins (for example, Dainippon Ink and Chemicals: trade name ECN, EPICL * N, Japan epoxy resin: trade name EP * N).
具体的なトリアルコキシシランとして、へキシルトリメトキシシラン、ェチルトリエトキシ シラン、ドデシノレトリエトキシシラン、ベンジルトリエトキシシランを例示できる。  Specific examples of trialkoxysilane include hexyltrimethoxysilane, etyltriethoxysilane, dodecinoletriethoxysilane, and benzyltriethoxysilane.
上記の多官能硬化性化合物は、一種単独で使用してもよぐまた、二種以上を組 み合わせて使用してもよい。  The above polyfunctional curable compounds may be used alone or in combination of two or more.
重合性化合物(成分 (C) )として、重合物が透光性である化合物を用いることができ る。公知の各種重合性化合物を使用可能であるが、多官能硬化性化合物(B成分)と 共重合可能な重合性基であることが好ましレ、。  As the polymerizable compound (component (C)), a compound in which the polymer is translucent can be used. Various known polymerizable compounds can be used, but it is preferably a polymerizable group copolymerizable with the polyfunctional curable compound (component B).
即ち、付加重合性二重結合を分子内に含む (メタ)アタリレート化合物、スチレン誘 導体、ビュルエステル化合物、開環重合性環状基を分子内に含むエポキシ化合物、 ォキセタン化合物、ォキサゾール化合物、縮重合性基を分子内に含むジアルコキシ シラン化合物が好ましい。  That is, (meth) atalylate compounds containing an addition polymerizable double bond in the molecule, styrene derivatives, butyl ester compounds, epoxy compounds containing a ring-opening polymerizable cyclic group in the molecule, oxetane compounds, oxazole compounds, condensation polymerization A dialkoxy silane compound containing a functional group in the molecule is preferred.
これらの中でも(メタ)アタリレートイ匕合物、スチレン誘導体、ビュルエステル化合物、 エポキシィ匕合物、ジアルコキシシランィ匕合物が特に好ましレ、。  Of these, (meth) attalei toy compounds, styrene derivatives, butyl ester compounds, epoxy compounds, dialkoxysilane compounds are particularly preferred.
付加重合性二重結合、開環重合性環状基及びジアルコキシシリル基は分子中に 1 個含まれることが好ましい。  One addition polymerizable double bond, ring-opening polymerizable cyclic group and dialkoxysilyl group are preferably contained in the molecule.
蛍光性無機ナノクリスタルの分散性を向上させるために、炭素数 4〜20のアルキル 基、炭素数 4〜20のアルキレン基、炭素数 6〜20のァリール基、炭素数 6〜20のァリ 一レン基から選ばれた置換基を有することが好ましい。 [0018] 具体的な(メタ)アタリレートイ匕合物として、 2—ェチルへキシルアタリレート、ドデシル アタリレート、ベンジルメタタリレートを例示できる。 In order to improve the dispersibility of the fluorescent inorganic nanocrystal, an alkyl group having 4 to 20 carbon atoms, an alkylene group having 4 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, It preferably has a substituent selected from a len group. [0018] Specific examples of the (meth) atalyte toy compound include 2-ethylhexyl acrylate, dodecyl acrylate, and benzyl methacrylate.
具体的なスチレン誘導体として、スチレン、 4—メチルスチレン、 4—ビニルビフエ二 ノレ、メチル 4—ビュルべンゾエートを例示できる。  Specific examples of the styrene derivative include styrene, 4-methylstyrene, 4-vinylbiphenol, and methyl 4-burbenzoate.
具体的なエポキシ化合物として、ベンジルグリシジルエーテル、スチレンオキサイド 、 1 , 2_エポキシデカン、グリシジル 4_ターシャリーブチルベンゾエートを例示でき る。  Specific examples of the epoxy compound include benzyl glycidyl ether, styrene oxide, 1,2_epoxydecane, and glycidyl 4_tertiary butyl benzoate.
具体的なジアルコキシシラン化合物として、ジメトキシへキシルメチルシラン、ジエト 具体的なビュルエステル化合物として、ビュルへキサノエート、ビュルべンゾエート を例示できる。  Specific examples of dialkoxysilane compounds include dimethoxyhexylmethylsilane, and examples of specific burester compounds include burhexanoate and burbenzoate.
上記の重合性化合物は、一種単独で使用してもよぐまた、二種以上を組み合わせ て使用してもよい。  The above polymerizable compounds may be used alone or in combination of two or more.
[0019] 本発明の組成物において、成分 (A)〜(C)の合計は、組成物の 40重量%以上、 好ましくは 60重量%以上、より好ましくは 70重量%以上を占める。  In the composition of the present invention, the sum of components (A) to (C) accounts for 40% by weight or more, preferably 60% by weight or more, more preferably 70% by weight or more of the composition.
成分 (A)〜(C)の好適な配合量は以下の通りである。  Suitable blending amounts of components (A) to (C) are as follows.
成分 (A)::!〜 45重量%、より好ましくは 10〜45重量%  Ingredient (A) ::! ~ 45 wt%, more preferably 10-45 wt%
成分(B)::!〜 40重量%、より好ましくは 20〜40重量%  Ingredient (B) ::!-40% by weight, more preferably 20-40% by weight
成分(C)::!〜 40重量%、より好ましくは 10〜30重量%  Ingredient (C) ::!-40% by weight, more preferably 10-30% by weight
[0020] さらに、本発明の組成物は、表面処理剤(成分 (D) )を含むことが好ましい。表面処 理剤を添加することにより、蛍光性無機ナノクリスタルの組成物中での分散をより安定 化できる。表面処理剤として公知の表面処理剤を使用することができる力 好ましくは 、組成物の保管中に多官能硬化性化合物が硬化してしまわなレ、ように表面処理剤を 選定する。 [0020] Furthermore, the composition of the present invention preferably contains a surface treatment agent (component (D)). By adding a surface treating agent, the dispersion of the fluorescent inorganic nanocrystal in the composition can be further stabilized. Force capable of using a known surface treating agent as the surface treating agent Preferably, the surface treating agent is selected so that the polyfunctional curable compound is not cured during storage of the composition.
多官能硬化性化合物が多官能 (メタ)アタリレー H匕合物である場合、表面処理剤 は、アミノ基、チオール基、リン酸エステル基、ホスホン酸基、ホスフィン基、ホスフィン オキサイド基、カルボキシル基、ォレフィン基を含むことが好ましい。より好ましくは、 チオール基、リン酸エステル基、ホスホン酸基、カルボキシル基、ォレフィン基、特に 好ましくは、チオール基、リン酸エステル基、ォレフィン基を含むことが好ましい。 多官能硬化性化合物が多官能エポキシ化合物である場合、表面処理剤は、ホスフ イン基、ホスフィンオキサイド基、ォレフィン基、エポキシ基を含むことが好ましい。 When the polyfunctional curable compound is a polyfunctional (meth) atalyl H compound, the surface treatment agent is an amino group, a thiol group, a phosphate ester group, a phosphonic acid group, a phosphine group, a phosphine oxide group, a carboxyl group, It preferably contains an olefin group. More preferably, thiol group, phosphate group, phosphonic acid group, carboxyl group, olefin group, Preferably, it contains a thiol group, a phosphate ester group, and an olefin group. When the polyfunctional curable compound is a polyfunctional epoxy compound, the surface treatment agent preferably contains a phosphine group, a phosphine oxide group, an olefin group, and an epoxy group.
[0021] 具体的なアミノ基を含む化合物として、ァミノ末端 PEG、ォクチルァミン、デシノレアミ ン、グリシン tert ブチルエステルを例示できる。 [0021] Specific examples of the compound containing an amino group include an amino-terminated PEG, octylamine, decinoreamin, and glycine tert butyl ester.
具体的なチオール基を含む化合物として、オクタンチオール、ォクチルチオダリコレ ート、 2_ェチルへキシル 3 _メルカプトプロピオネート、チオール末端 PEG、 3 _メノレ 示できる。  Specific compounds containing a thiol group include octanethiol, octylthiodarylate, 2_ethylhexyl 3_mercaptopropionate, thiol-terminated PEG, 3_menole.
具体的なリン酸エステル基を含む化合物として、ジブチルフォスフェート、ジ _n_ デシルフォスフェート、ジ(ポリエチレングリコール 4—ノユルフェニル)フォスフェート、 トリブチルフォスフェートを例示できる。  Specific examples of the compound containing a phosphoric acid ester group include dibutyl phosphate, di_n_decyl phosphate, di (polyethylene glycol 4-noylphenyl) phosphate, and tributyl phosphate.
[0022] 具体的なカルボキシル基を含む化合物の例として、デカン酸、 2ェチルへキサン酸 、 4一へキシル安息香酸、 4 ビュル安息香酸を例示できる。 [0022] Specific examples of the compound containing a carboxyl group include decanoic acid, 2-ethylhexanoic acid, 4-monohexylbenzoic acid, and 4-bulubenzoic acid.
具体的なホスホン酸基を含む化合物として、ォクチルホスホン酸、テトラデカンホス ホン酸、ジェチルベンジルフォスフォネートを例示できる。  Specific examples of the compound containing a phosphonic acid group include octylphosphonic acid, tetradecanophosphonic acid, and jetylbenzyl phosphonate.
具体的なホスフィン基を含む化合物の例として、トリブチルホスフィン、トリオクチル ホスフィンを例示できる。  Specific examples of the compound containing a phosphine group include tributylphosphine and trioctylphosphine.
具体的なホスフィンオキサイド基を含む化合物の例として、トリブチルホスフィンォキ サイド、トリオクチルホスフィンオキサイドを例示できる。  Specific examples of the compound containing a phosphine oxide group include tributylphosphine oxide and trioctylphosphine oxide.
具体的なォレフィン基を含む化合物の例として、ドデセン、メチルゥンデセノエート、 ビュルゥンデセノエート、 1 , 2 -エポキシ一 9—デセンを例示できる。  Specific examples of the compound containing an olephine group include dodecene, methylundecenoate, burundecenoate, and 1,2-epoxy-9-decene.
具体的なエポキシ基を含む化合物の例として、 1 , 2_エポキシ—ドデカン、 1, 2- エポキシ一 9—デセン、スチレンオキサイド、 ひピネンオキサイド、 3—グリシジルォキ  Specific examples of compounds containing an epoxy group include 1,2-epoxy-dodecane, 1,2-epoxy-9-decene, styrene oxide, hypopinene oxide, and 3-glycidyl oxide.
[0023] 表面処理剤 (D)の一部もしくは全部は、重合性もしくは架橋性の置換基を有するこ とが好ましい。このような置換基を有することにより、硬化物中にナノクリスタルが強固 に固定され、膜中でのナノクリスタルの分散安定性を向上できる。 重合性もしくは架橋性の置換基は多官能硬化性化合物 (B成分)と共重合可能な 重合性基もしくは架橋性基であることが好ましぐ(メタ)アタリレート基、スチリル基、ビ ニルエステル基、エポキシ基、ジアルコキシシリル基、トリアルコキシシリル基を例示で きる。 [0023] Part or all of the surface treatment agent (D) preferably has a polymerizable or crosslinkable substituent. By having such a substituent, the nanocrystal is firmly fixed in the cured product, and the dispersion stability of the nanocrystal in the film can be improved. It is preferable that the polymerizable or crosslinkable substituent is a polymerizable group or a crosslinkable group copolymerizable with the polyfunctional curable compound (component B). A (meth) acrylate group, a styryl group, or a vinyl ester group is preferable. And epoxy group, dialkoxysilyl group, trialkoxysilyl group.
[0024] 成分 (D)の好適な配合量は以下の通りである。  [0024] The preferred amount of component (D) is as follows.
成分(D) : 20重量%以下、より好ましくは 2〜: 10重量%  Component (D): 20% by weight or less, more preferably 2 to: 10% by weight
[0025] 本発明の組成物は、硬化速度を高めて生産性を改善するために、好ましくは重合 開始剤を含む。 [0025] The composition of the present invention preferably contains a polymerization initiator in order to increase the curing rate and improve the productivity.
例えば、多官能硬化性化合物(B)が多官能 (メタ)アタリレートである場合、光重合 開始剤や熱重合開始剤を添加することができる。尚、光重合開始剤の具体例として は、イノレガキュア 907 (チバスペシャルティケミカルズ社製)が挙げられる。  For example, when the polyfunctional curable compound (B) is a polyfunctional (meth) acrylate, a photopolymerization initiator or a thermal polymerization initiator can be added. A specific example of the photopolymerization initiator is Inoregacure 907 (manufactured by Ciba Specialty Chemicals).
多官能硬化性化合物(B)が多官能エポキシィヒ合物である場合、加熱や光照射に より酸もしくはアルカリを発生する化合物を、重合開始剤としてカ卩えることができる。  When the polyfunctional curable compound (B) is a polyfunctional epoxy compound, a compound that generates an acid or an alkali by heating or light irradiation can be used as a polymerization initiator.
[0026] 本発明の組成物は、硬化させたとき膜厚の減少が少ないこと、即ち揮発成分が少 ないことが好ましいため、沸点が 200°C以下である成分の含有率が 0〜60重量%で あることが好ましい。 [0026] Since the composition of the present invention preferably has a small decrease in film thickness when cured, that is, a small amount of volatile components, the content of components having a boiling point of 200 ° C or less is 0 to 60 wt%. % Is preferable.
[0027] 本発明の組成物を、インクジェット用インクとして使用するとき、 25°Cにおける粘度 が 0. 001-0. 020Pa' sの範囲であることが好ましい。尚、粘度の測定方法は実施 例に記載の通りである。  [0027] When the composition of the present invention is used as an inkjet ink, the viscosity at 25 ° C is preferably in the range of 0.001-0.020 Pa's. The method for measuring the viscosity is as described in the examples.
[0028] 本発明では、蛍光変換膜の強度を保っために、多官能硬化性化合物 (成分 (B) ) を配合している。  In the present invention, a polyfunctional curable compound (component (B)) is blended in order to maintain the strength of the fluorescence conversion film.
一般に多官能硬化性化合物はアクリル基やエポキシ基のような極性基を多く含む ため、高粘度の物質が多い。よって、溶液粘度を好適な範囲に調節するためには、 粘度を調整する媒体を加えることが必要である。  In general, polyfunctional curable compounds contain many polar groups such as acrylic groups and epoxy groups, and therefore, there are many highly viscous substances. Therefore, in order to adjust the solution viscosity to a suitable range, it is necessary to add a medium for adjusting the viscosity.
通常のインクジェット用インクでは、溶媒を加えて溶液粘度を調節することが一般的 である。  In ordinary inkjet inks, it is common to adjust the solution viscosity by adding a solvent.
し力、しながら、溶媒を加えると 1回の塗布で形成できる膜厚が薄くなり、その中に、 十分な蛍光変換性能を発揮できるだけの蛍光性無機ナノクリスタルを配合しようとす ると、濃度が高くなりすぎ、蛍光変換膜が十分な強度を保てない恐れや、蛍光性無 機ナノクリスタルが凝集 ·分離する恐れがある。 However, when a solvent is added, the film thickness that can be formed by a single coating is reduced, and it is attempted to incorporate fluorescent inorganic nanocrystals that can exhibit sufficient fluorescence conversion performance into it. As a result, the concentration becomes too high, and the fluorescence conversion film may not have sufficient strength, and the fluorescent inorganic nanocrystals may aggregate and separate.
蛍光変換膜の強度を保つには、蛍光性無機ナノクリスタル濃度の低レ、組成物を何 回も塗布する必要を生じてしまレ、、生産性が低下する。  In order to maintain the strength of the fluorescent conversion film, the concentration of the fluorescent inorganic nanocrystal is low, and it becomes necessary to apply the composition many times, resulting in a decrease in productivity.
[0029] また、アクリル基やエポキシ基のような極性基を多く含む多官能硬化性化合物に対 する、蛍光性無機ナノクリスタルの分散性を高めるには、蛍光性無機ナノクリスタルの 表面を極性の高い物質で処理することが好ましい。  [0029] In order to increase the dispersibility of the fluorescent inorganic nanocrystals for polyfunctional curable compounds containing a large number of polar groups such as acrylic groups and epoxy groups, the surface of the fluorescent inorganic nanocrystals is made polar. It is preferable to treat with a high substance.
し力、しながらこの場合、蛍光変換膜の極性が高くなり、結果として、吸水性が高くな つてしまい、光源として有機 EL素子や LEDのような通電デバイスを組み合わせるに は好ましくない。さらに、蛍光性無機ナノクリスタル自身が水分により変質する恐れも ある。  However, in this case, the polarity of the fluorescent conversion film is increased, and as a result, the water absorption is increased, which is not preferable for combining a current-carrying device such as an organic EL element or LED as a light source. In addition, the fluorescent inorganic nanocrystal itself may be altered by moisture.
[0030] 従って、本発明では、蛍光性無機ナノクリスタルの分散性が高ぐ不揮発性(1回の 塗布で十分な膜厚を得られる)で、極性が高すぎなレ、(吸水性が低レ、)粘度調整媒体 として、成分 (C)を選択している。  [0030] Therefore, in the present invention, the fluorescent inorganic nanocrystals are highly non-volatile (a sufficient film thickness can be obtained by one application) and are too polar (low water absorption). (B) Component (C) is selected as the viscosity adjusting medium.
[0031] 本発明で使用する成分(C)は、炭素数 4〜20のアルキル基、炭素数 4〜20のアル キレン基、炭素数 6〜20のァリール基及び炭素数 6〜20のァリーレン基から選ばれ る基、即ち、炭化水素基を有する。 [0031] Component (C) used in the present invention includes an alkyl group having 4 to 20 carbon atoms, an alkylene group having 4 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an arylene group having 6 to 20 carbon atoms. A group selected from: a hydrocarbon group.
成分 (C)は重合性であるため、蛍光変換膜からの分離、表面のベタツキを防ぎや すい。  Since component (C) is polymerizable, it is easy to prevent separation from the fluorescence conversion membrane and surface stickiness.
尚、不揮発性という面で、成分 (C)の沸点は 200°C以上であることが好ましい。  In terms of non-volatility, the boiling point of component (C) is preferably 200 ° C or higher.
[0032] 本発明の組成物は、膜の強度、生産性を損なわない範囲において、組成物の粘度 を調整するために、樹脂、溶剤を加えてもよレ、。例えば、ポリベンジルメタタリレート、 ポリメチルメタタリレート、ポリスチレン、シリコーン変成ポリカーボネート等の樹脂、キ シレン、ジグライム、シクロへキサノン等の溶媒をカ卩えることができる。 [0032] In the composition of the present invention, a resin or a solvent may be added in order to adjust the viscosity of the composition within a range not impairing the strength and productivity of the film. For example, a resin such as polybenzyl metatalylate, polymethyl metatalylate, polystyrene, and silicone modified polycarbonate, and a solvent such as xylene, diglyme, and cyclohexanone can be used.
[0033] 本発明の組成物を、乾燥及び Z又は硬化させて、硬化物を得ることができる。例え ば、組成物が光重合開始剤を含むときは、活性光線を照射し、熱重合開始剤を含む ときは、加熱して硬化させる。 [0033] The composition of the present invention can be dried and Z or cured to obtain a cured product. For example, when the composition contains a photopolymerization initiator, it is irradiated with actinic rays, and when it contains a thermal polymerization initiator, it is cured by heating.
[0034] 基体上に、本発明の組成物の硬化物からなる蛍光変換膜を形成して、蛍光変換基 板を作成することができる。蛍光変換膜の膜厚は限定はされないが通常 1〜100 μ mである。基体として、ガラス板、ポリマー板等を用いることができる。このとき、基体上 に隔壁を設け、隔壁により区切られた区域に組成物 (インク)を流入して蛍光変換膜 を形成すると、複数種のインクを塗り分けやすい。 [0034] A fluorescence conversion film made of a cured product of the composition of the present invention is formed on a substrate to form a fluorescence conversion group. A board can be created. The thickness of the fluorescent conversion film is not limited, but is usually 1 to 100 μm. As the substrate, a glass plate, a polymer plate or the like can be used. At this time, if a partition wall is provided on the substrate and the composition (ink) is allowed to flow into an area partitioned by the partition wall to form a fluorescence conversion film, it is easy to separately apply a plurality of types of ink.
[0035] 本発明の組成物は基体上に塗布後硬化させるが、印刷法によって基体上に塗布 すると、必要な部分のみに蛍光変換膜を形成でき、材料の利用効率が向上し好まし レ、。印刷法として、インクジェット法、ノズノレジェット法を用いることができる。  [0035] The composition of the present invention is applied to a substrate and cured after being applied. However, when applied to a substrate by a printing method, a fluorescent conversion film can be formed only on a necessary portion, and the use efficiency of the material is preferably improved. . As a printing method, an inkjet method or a nozure jet method can be used.
隔壁により区切られた区域に蛍光変換膜を形成するときは、該当する区域に組成 物を塗布して蛍光変換膜を形成すればょレ、。  When forming a fluorescence conversion film in the area delimited by the barrier ribs, apply the composition to the corresponding area to form the fluorescence conversion film.
[0036] 本発明の組成物を用いて製造した蛍光変換膜は、蛍光性無機ナノクリスタルの濃 度が高いため、十分な蛍光変換性能を発揮できる。また、本発明の組成物はインク ジェット用インクとして使用できるので、蛍光変換膜及び蛍光変換基板の生産性は高 くなる。  [0036] The fluorescence conversion film produced using the composition of the present invention has a high concentration of fluorescent inorganic nanocrystals, and therefore can exhibit sufficient fluorescence conversion performance. In addition, since the composition of the present invention can be used as an ink jet ink, the productivity of the fluorescence conversion film and the fluorescence conversion substrate is increased.
[0037] さらに、発光素子と、この蛍光変換基板を組み合わせて発光装置を製造することが できる。発光素子としては、可視光を発光するものが使用でき、例えば、有機 EL素子 、無機 EL素子、半導体発光ダイオード、蛍光表示管が使用できる。これら中で、有 機 EL素子及び無機 EL素子が好ましぐ特に、有機 EL素子は、低電圧で、高輝度の 発光素子が得られるので好ましい。  Furthermore, a light emitting device can be manufactured by combining the light emitting element and the fluorescence conversion substrate. As the light-emitting element, one that emits visible light can be used. For example, an organic EL element, an inorganic EL element, a semiconductor light-emitting diode, and a fluorescent display tube can be used. Of these, organic EL elements and inorganic EL elements are preferred, and organic EL elements are particularly preferred because light-emitting elements with low voltage and high luminance can be obtained.
[実施例]  [Example]
[0038] 合成例 1  [0038] Synthesis Example 1
[InP/ZnSナノ粒子の合成]  [Synthesis of InP / ZnS nanoparticles]
J. Am. Chem. So , 2005、 127、 11364を参考にして表記ナノ粒子を合成し た。以下に概要を記す。  The indicated nanoparticles were synthesized with reference to J. Am. Chem. So, 2005, 127, 11364. The following is an overview.
(1) ΙηΡコアの合成  (1) Synthesis of ΙηΡ core
200ml4つ口フラスコに酢酸インジウム 0. 29g、ミリスチン酸 0. 69g、ォクタデセン 4 Omlを量り取った。フラスコをマントルヒータにセットした。フラスコの主管にはガラス製 撹拌軸とテフロン (登録商標)製撹拌羽根を取り付けたメカニカルスターラをセットした 。枝管の 1つに 3方コックを取り付け、窒素ラインおよび真空ラインに接続した。別の 枝管にはゴム製のセプタムキャップを取り付けた。残りの枝管には熱電対をセットした フラスコ内を真空に減圧し、 120°Cで 2時間撹拌した。窒素ガスで大気圧に戻し、 2 80°Cまで温度を上げた。 In a 200 ml four-necked flask, 0.29 g of indium acetate, 0.69 g of myristic acid and 4 Oml of octadecene 4 were weighed. The flask was set on a mantle heater. A mechanical stirrer equipped with a glass stirring shaft and a Teflon (registered trademark) stirring blade was set on the main tube of the flask. A three-way cock was attached to one of the branch pipes and connected to a nitrogen line and a vacuum line. another A rubber septum cap was attached to the branch pipe. A thermocouple was set in the remaining branch pipe. The inside of the flask was evacuated to a vacuum and stirred at 120 ° C for 2 hours. The pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 2 80 ° C.
窒素置換したグローブボックス内で、サンプルビンにトリストリメチルシリルホスフィン の 10%へキサン溶液 1. 4g、ォクタデセン lmlを量り取り、ガスタイトシリンジで吸い取 つた。  In a nitrogen-substituted glove box, 1.4 g of a 10% hexane solution of tristrimethylsilylphosphine and lml of octadecene were weighed into a sample bottle and sucked with a gas tight syringe.
4つ口フラスコのセプタムキャップ部分からホスフィンィ匕合物の溶液を一気に注入し た。 5秒後にォクタデセン 40mlを加え、反応温度を 180°Cまで急激に低下させた。 1 80°Cにて 2時間撹拌を続けた。  A solution of the phosphine compound was injected all at once from the septum cap portion of the four-necked flask. After 5 seconds, 40 ml of octadecene was added, and the reaction temperature was rapidly lowered to 180 ° C. 1 Stirring was continued at 80 ° C for 2 hours.
50°Cに温度を下げ、 1時間真空ポンプにより減圧にした。  The temperature was lowered to 50 ° C., and the pressure was reduced by a vacuum pump for 1 hour.
窒素ガスにより大気圧に戻し室温まで温度を下げて反応溶液を取り出し、遠心分離 (3000rpm、 10分)により沈殿物を除いた。上澄みを一旦グローブボックス内に保管 した。  The reaction solution was taken out by returning to atmospheric pressure with nitrogen gas and lowering the temperature to room temperature, and the precipitate was removed by centrifugation (3000 rpm, 10 minutes). The supernatant was once stored in the glove box.
[0039] (2) InP/ZnSコアシェルナノ粒子の合成  [0039] (2) Synthesis of InP / ZnS core-shell nanoparticles
200ml4つ口フラスコにラウリン酸亜鉛 1 · 48g、硫黄 0· l lg、ォクタデセン 10mlを 量り取った。フラスコには(1)と同様な器具を取り付けた。  In a 200 ml four-necked flask, 1 · 48 g of zinc laurate, 0 · l lg of sulfur, and 10 ml of octadecene were weighed. The same apparatus as (1) was attached to the flask.
フラスコ内を真空に減圧し、 80°Cで 30分間撹拌した。窒素ガスで大気圧に戻し、グ ローブボックスに保管しておいた InPナノ粒子の溶液を加えた。さらに 80°Cで 1. 5時 間減圧下で撹拌を続けた。  The inside of the flask was evacuated to a vacuum and stirred at 80 ° C for 30 minutes. The solution was returned to atmospheric pressure with nitrogen gas, and a solution of InP nanoparticles stored in the glove box was added. Stirring was continued under reduced pressure at 80 ° C for 1.5 hours.
窒素ガスにより大気圧に戻し、 140°Cまで温度を上げた。 1. 5時間撹拌を続けた。 室温まで温度を下げて反応溶液を取り出し、遠心分離(3000rpm、 15分)により粗 大な粒子および未反応の原料を除レ、た。  The pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 140 ° C. 1. Stirring was continued for 5 hours. The temperature was lowered to room temperature, the reaction solution was taken out, and coarse particles and unreacted raw materials were removed by centrifugation (3000 rpm, 15 minutes).
得られたナノ粒子は蛍光ピーク波長 634nm、蛍光量子収率 17%であった。これら は浜松ホトニタス社製量子収率測定装置(C9920-02型)を用いて測定した。  The obtained nanoparticles had a fluorescence peak wavelength of 634 nm and a fluorescence quantum yield of 17%. These were measured using a quantum yield measuring apparatus (C9920-02 type) manufactured by Hamamatsu Photonicus.
[0040] 合成例 2 [0040] Synthesis Example 2
[Cuドープされた ZnSeナノ粒子の合成]  [Synthesis of Cu-doped ZnSe nanoparticles]
J. Am. Chem. So , 2005、 127、 17586を参考にして表記ナノ粒子を合成し た。以下に概要を記す。 J. Am. Chem. So, 2005, 127, 17586 It was. The following is an overview.
200ml4つ口フラスコにラウリン酸亜鉛 0· 20g、ォクタデセン 50mlを量り取った。合 成例 1と同様の器具をセットした。  In a 200 ml four-necked flask, 0 · 20 g of zinc laurate and 50 ml of octadecene were weighed. The same instrument as in Synthesis Example 1 was set.
フラスコ内を真空に減圧し、 120°Cで 2時間撹拌した。窒素ガスで大気圧に戻し、 3 00°Cまで温度を上げた。  The inside of the flask was evacuated to a vacuum and stirred at 120 ° C for 2 hours. The pressure was returned to atmospheric pressure with nitrogen gas, and the temperature was increased to 300 ° C.
窒素置換したグローブボックス内で、サンプルビンにセレン 0. 02g、へキサデシノレ ァミン 0. 5g、トリブチルホスフィン 7gを量り取り、セレンを溶解させた。  In a nitrogen-substituted glove box, 0.02 g of selenium, 0.5 g of hexadenoleamine and 7 g of tributylphosphine were weighed in a sample bottle to dissolve selenium.
4つ口フラスコのセプタムキャップ部分からセレン溶液を一気に注入した。 290°Cに て 1. 5時間撹拌を続けた。次いで、 180°Cに反応温度を下げた。  The selenium solution was injected all at once from the septum cap portion of the four-necked flask. Stirring was continued for 1.5 hours at 290 ° C. The reaction temperature was then lowered to 180 ° C.
窒素置換したグローブボックス内で、サンプルビンに酢酸銅 0. 031g、トリブチルホ スフイン 10mlを量り取り、酢酸銅を溶解させた。このうちの 0. 1mlをシリンジに吸い取 り、反応溶液に注入した。  In a nitrogen-substituted glove box, 0.031 g of copper acetate and 10 ml of tributyl phosphate were weighed into a sample bottle to dissolve the copper acetate. Of this, 0.1 ml was sucked into a syringe and injected into the reaction solution.
10分後、酢酸亜鉛 0. lg、トリブチルホスフィン 5mlを含む溶液を反応溶液に滴下 した。滴下には 30分を要した。  After 10 minutes, a solution containing 0.1 lg zinc acetate and 5 ml tributylphosphine was added dropwise to the reaction solution. The dripping took 30 minutes.
滴下終了後、 230°Cまで反応温度を上げ、 1. 5時間撹拌を続けた。  After completion of the dropwise addition, the reaction temperature was raised to 230 ° C and stirring was continued for 1.5 hours.
室温まで温度を下げて反応溶液を取り出し、遠心分離(3000rpm、 10分)により沈 殿物を除いた。上澄みをー且グローブボックス内に保管した。  The temperature was lowered to room temperature, the reaction solution was taken out, and the sediment was removed by centrifugation (3000 rpm, 10 minutes). The supernatant was stored in a glove box.
得られたナノ粒子は蛍光ピーク波長 528nm、蛍光量子収率 13%であった。  The obtained nanoparticles had a fluorescence peak wavelength of 528 nm and a fluorescence quantum yield of 13%.
実施例 1 Example 1
合成例 1で得られた InP/ZnSナノ粒子のォクタデカン溶液をエタノールに注ぎ、 ナノ粒子を再沈殿させた。溶媒をデカンテーシヨンにより除いた後、真空乾燥し、ナノ 粒子 (A成分)(140mg)を得た。  The Octadecane solution of InP / ZnS nanoparticles obtained in Synthesis Example 1 was poured into ethanol to reprecipitate the nanoparticles. The solvent was removed by decantation, followed by vacuum drying to obtain nanoparticles (component A) (140 mg).
窒素雰囲気下でジブチルフォスフェート(D成分)(34mg)、アクリル酸 2ェチルへキ シル(C成分)(70mg)を加えてナノ粒子を分散させた。トリメチロールプロパントリァク リレート(B成分)(104mg)、ポリベンジルメタタリレート(重量平均分子量 15、 000) ( 14mg)を加え超音波分散させた。最後にィルガキュア 907 (チバスペシャルティケミ カルズ社製) (2mg)を喑所にて溶解させてインク組成物とした。  In a nitrogen atmosphere, dibutyl phosphate (component D) (34 mg) and 2-ethyl hexyl acrylate (component C) (70 mg) were added to disperse the nanoparticles. Trimethylolpropane triacrylate (component B) (104 mg) and polybenzylmethacrylate (weight average molecular weight 15, 000) (14 mg) were added and ultrasonically dispersed. Finally, Irgacure 907 (manufactured by Ciba Specialty Chemicals) (2 mg) was dissolved at a certain place to obtain an ink composition.
インク組成物の 25°Cにおける粘度を自動マイクロ粘度計(アントンパール社製 AM Vn型)を用いて測定した結果、 0. 012Pa' sの粘度を有していた。 The viscosity of the ink composition at 25 ° C is measured using an automatic micro viscometer (AM manufactured by Anton Paar) As a result of measurement using a Vn type), it had a viscosity of 0.012 Pa's.
フォトリソグラフィ一法によって、幅 20 /i m,厚さ 1 · 5 μ ΐηのブラックマトリクス(V259 BK (新日鉄化学社製) )を 90 μ mの間隔で作製した。さらにブラックマトリクス上に幅 15 μ m,高さ 10 μ mの隔壁 (VPA100ZP54— 2 (新日鉄化学社製) )を形成したガ ラス基板を準備した。  A black matrix (V259 BK (manufactured by Nippon Steel Chemical Co., Ltd.)) having a width of 20 / im and a thickness of 1 · 5 μΐη was produced at intervals of 90 μm by a photolithography method. We also prepared a glass substrate on which a partition wall (VPA100ZP54-2 (manufactured by Nippon Steel Chemical Co., Ltd.)) with a width of 15 μm and a height of 10 μm was formed on a black matrix.
上記のガラス基板の隔壁で区切られた区域にインク組成物を 1回塗布し、波長 365 nmの紫外線を 300mJ照射して硬化させ、蛍光変換基板を作製した。  The ink composition was applied once to the area of the glass substrate separated by the partition walls, and cured by irradiating 300 mJ of ultraviolet light having a wavelength of 365 nm to produce a fluorescence conversion substrate.
青色発光有機 EL素子を貼り重ねて発光させたところ、有機 EL素子の青色光がピ ーク波長 634nmの赤色に変換された。  When a blue light emitting organic EL device was attached to emit light, the blue light of the organic EL device was converted to red with a peak wavelength of 634 nm.
[0042] 実施例 2 [0042] Example 2
合成例 2で得られた Cuドープされた ZnSeナノ粒子のォクタデカン溶液をエタノー ルに注ぎ、ナノ粒子を再沈殿させた。溶媒をデカンテーシヨンにより除いた後、真空 乾燥し、 Cuドープされた ZnSeナノ粒子 (A成分)(103mg)を得た。  The octadecane solution of Cu-doped ZnSe nanoparticles obtained in Synthesis Example 2 was poured into ethanol to reprecipitate the nanoparticles. The solvent was removed by decantation, followed by vacuum drying to obtain Cu-doped ZnSe nanoparticles (component A) (103 mg).
窒素雰囲気下でキシレン(20mg)、トリオクチルホスフィンオキサイド(D成分)(25 mg)を加えてナノ粒子を分散させた。エポキシ樹脂(EPON825、ジャパンエポキシ レジン社)(B成分)(80mg)、ベンジルグリシジルエーテル(C成分)(60mg)、トリメリ ット酸トリス(1 プロポキシェチルエステル)(2mg)を加え超音波分散させた。  Under a nitrogen atmosphere, xylene (20 mg) and trioctylphosphine oxide (component D) (25 mg) were added to disperse the nanoparticles. Add an epoxy resin (EPON825, Japan Epoxy Resin Co., Ltd.) (component B) (80 mg), benzylglycidyl ether (component C) (60 mg), trimellitic acid tris (1 propoxychetyl ester) (2 mg) and ultrasonically disperse. It was.
実施例 1と同様に測定したところ、インク組成物は 25°Cにて 0. Ol lPa' sの粘度を 有していた。  When measured in the same manner as in Example 1, the ink composition had a viscosity of 0. OlPa's at 25 ° C.
実施例 1と同様にインク組成物を 1回塗布し、キシレンを蒸発させた後、 160°Cに加 熱してエポキシ化合物を反応 ·硬化させ、蛍光変換基板を作製した。  In the same manner as in Example 1, the ink composition was applied once and xylene was evaporated, followed by heating to 160 ° C. to react and cure the epoxy compound, thereby producing a fluorescence conversion substrate.
上記ガラス基板に青色発光有機 EL素子を貼り重ねて発光させたところ、有機 EL素 子の青色光がピーク波長 528nmの緑色に変換された。  When a blue light-emitting organic EL device was laminated on the glass substrate to emit light, the blue light of the organic EL device was converted to green with a peak wavelength of 528 nm.
[0043] 実施例 3 [0043] Example 3
図 1に示す発光装置 1を以下のようにして作製した。  The light emitting device 1 shown in FIG. 1 was produced as follows.
実施例 1と同様にガラス基板 11上にブラックマトリクス 12を形成し、さらにブラックマ トリタス 12上に隔壁 13を形成した。実施例 1で用いた組成物を、隔壁 13で区切られ た区域 3ライン毎に 1回塗布した。波長 365nmの紫外線を 300mJ照射して硬化させ 、赤色蛍光変換膜 15を形成した。 In the same manner as in Example 1, a black matrix 12 was formed on a glass substrate 11, and a partition wall 13 was formed on the black matrix 12. The composition used in Example 1 was applied once every 3 lines in the area separated by the partition wall 13. It is cured by irradiating 300mJ with 365nm wavelength ultraviolet rays. Then, a red fluorescence conversion film 15 was formed.
次レヽで、実施例 2で用いた組成物を赤色蛍光変換膜 15の一方の隣に 1回塗布した 。キシレンを蒸発させた後、 160°Cに加熱してエポキシ化合物を反応 '硬化させ、緑 色蛍光変換膜 17を形成した。  In the next step, the composition used in Example 2 was applied once next to one of the red fluorescence conversion films 15. After evaporating xylene, the epoxy compound was reacted and cured by heating to 160 ° C. to form a green fluorescent conversion film 17.
最後に、メタクリル酸メチル 'メタクリル酸共重合体 (Mw= 13、 000) (27重量%)、 ペンタエリスリトールトリアタリレート(19重量0 /0)、ィルガキュア 907 (0. 4重量0 /0)、 2 —ァセトキシ一 1—メトキシプロパン(53. 6重量%)からなる光硬化性インク 19をスピ ンコート法により基板の全面に塗布した。 120°Cで溶媒を乾燥させた後、波長 365η mの紫外線を 300mJ照射して硬化させた。 Finally, methyl methacrylate 'methacrylic acid copolymer (Mw = 13, 000) (27 wt%), pentaerythritol tri Atari rate (19 wt 0/0), Irugakyua 907 (0.4 wt 0/0), Photo-curable ink 19 composed of 2-acetoxy 1-methoxypropane (53.6% by weight) was applied to the entire surface of the substrate by a spin coating method. After drying the solvent at 120 ° C., it was cured by irradiation with 300 mJ of ultraviolet light having a wavelength of 365 ηm.
これにより蛍光変換基板 10が完成した。  Thereby, the fluorescence conversion substrate 10 was completed.
基板 21上に、蛍光変換基板 10の隔壁 13のピッチに合わせてマトリクス状に加工し た電極(図示せず)と、青色発光有機 EL素子 23を形成して、有機 ELパネル 20を作 製した。  On the substrate 21, an electrode (not shown) processed in a matrix in accordance with the pitch of the partition walls 13 of the fluorescence conversion substrate 10 and a blue light-emitting organic EL element 23 were formed to produce an organic EL panel 20. .
蛍光変換基板 10と有機 ELパネル 20を貼り重ねて、発光装置 1を製造した。この発 光装置 1に画像を表示させたところ、フルカラーの画像を表示できた。  The light emitting device 1 was manufactured by laminating the fluorescence conversion substrate 10 and the organic EL panel 20. When an image was displayed on the light emitting device 1, a full color image could be displayed.
産業上の利用可能性 Industrial applicability
本発明の色変換基板を用いたカラー表示装置は、民生用又は産業用ディスプレイ 、例えば、携帯表示端末用ディスプレイ、カーナビゲーシヨンやインパネ等の車載デ イスプレイ、 OA (オフィス 'オートメーション)用パーソナルコンピュータ、 TV (テレビ受 像器)、又は FA (ファクトリー ·オートメーション)用表示機器等に用レ、られる。特に、薄 型、平面のモノカラー、マルチカラー又はフルカラーディスプレイ等に用いられる。  The color display device using the color conversion substrate of the present invention is a consumer or industrial display, for example, a display for a portable display terminal, an in-vehicle display such as a car navigation system or an instrument panel, a personal computer for office automation (OA), Used for TV (TV receiver) or FA (factory automation) display devices. In particular, it is used for thin, flat monocolor, multicolor or full color displays.

Claims

請求の範囲 The scope of the claims
[I] 下記成分 (A)〜(C)を含む組成物。  [I] A composition comprising the following components (A) to (C).
(A)蛍光性無機ナノクリスタル  (A) Fluorescent inorganic nanocrystal
(B)多官能架橋性化合物  (B) Polyfunctional crosslinkable compound
(C)炭素数 4〜20の置換もしくは無置換のアルキル基、炭素数 4〜20の置換もしく は無置換のアルキレン基、炭素数 6〜20の置換もしくは無置換のァリール基、及び 炭素数 6〜20の置換もしくは無置換のァリーレン基から選ばれる基を有する重合性 化合物  (C) a substituted or unsubstituted alkyl group having 4 to 20 carbon atoms, a substituted or unsubstituted alkylene group having 4 to 20 carbon atoms, a substituted or unsubstituted aryl group having 6 to 20 carbon atoms, and the number of carbon atoms A polymerizable compound having a group selected from 6 to 20 substituted or unsubstituted arylene groups
[2] 成分 (A)〜(C)の合計が組成物に占める割合が 40重量%以上である請求項 1記 載の組成物。  [2] The composition according to claim 1, wherein the total proportion of components (A) to (C) is 40% by weight or more.
[3] 成分 (A)が:!〜 45重量%、 [3] Ingredient (A) :: ~ 45% by weight,
成分(B)が:!〜 40重量%、  Ingredient (B) is:! ~ 40% by weight,
成分 (C)が:!〜 40重量%含まれる請求項 1又は 2に記載の組成物。  The composition according to claim 1 or 2, wherein the component (C) is contained: from 40 to 40% by weight.
[4] 多官能架橋性化合物(B)が、多官能 (メタ)アタリレート及び多官能エポキシ化合物 の少なくとも 1つからなる請求項 1〜3のいずれかに記載の糸且成物。 [4] The yarn according to any one of claims 1 to 3, wherein the polyfunctional crosslinkable compound (B) comprises at least one of a polyfunctional (meth) acrylate and a polyfunctional epoxy compound.
[5] さらに、下記成分 (D)を含む請求項 1〜4のいずれかに記載の組成物。 [5] The composition according to any one of claims 1 to 4, further comprising the following component (D):
(D)蛍光性無機ナノクリスタルの表面処理剤  (D) Surface treatment agent for fluorescent inorganic nanocrystals
[6] 蛍光性無機ナノクリスタルの表面処理剤 (D)の一部もしくは全部力 重合性もしくは 架橋性の置換基を有する請求項 5に記載の組成物。  [6] The composition according to claim 5, wherein the surface treatment agent (D) of the fluorescent inorganic nanocrystal has a partially polymerizable or crosslinkable substituent.
[7] 成分 (D)が 20重量%以下含まれる請求項 5又は 6に記載の組成物。 7. The composition according to claim 5 or 6, wherein component (D) is contained in an amount of 20% by weight or less.
[8] 蛍光性無機ナノクリスタルの表面処理剤 (D)力 アミノ基、チオール基、リン酸エス テノレ基、ホスホン酸基、カルボキシル基、ォレフィン基、ホスフィン基、ホスフィンォキ サイド基、エポキシ基から選ばれる少なくとも 1つの置換基を有する請求項 5〜7のい ずれかに記載の組成物。 [8] Surface treatment agent for fluorescent inorganic nanocrystals (D) force Selected from amino group, thiol group, phosphate ester group, phosphonic acid group, carboxyl group, olefin group, phosphine group, phosphine oxide group, epoxy group The composition according to any one of claims 5 to 7, which has at least one substituent.
[9] さらに、重合開始剤を含む請求項:!〜 8のいずれかに記載の組成物。 [9] The composition according to any one of claims 8 to 8, further comprising a polymerization initiator.
[10] 沸点が 200°C以下である成分の含有率が 0〜60重量%である請求項 1〜9のいず れかに記載の組成物。 10. The composition according to any one of claims 1 to 9, wherein the content of a component having a boiling point of 200 ° C or lower is 0 to 60% by weight.
[II] 25°Cにおける粘度力 0. 001〜0. 020Pa' sの範囲である請求項 1〜10のいず れかに記載の組成物。 [II] Viscosity at 25 ° C Any of claims 1 to 10 in the range of 0.001 to 0.020 Pa's A composition according to any of the above.
[12] 請求項:!〜 11のいずれかに記載の,組成物を硬化させた硬化物。  [12] Claims: A cured product obtained by curing the composition according to any one of! To 11.
[13] 基体と、 [13] a substrate;
前記基体上に、請求項 12に記載の硬化物からなる蛍光変換膜を含む蛍光変換基 板。  13. A fluorescence conversion substrate comprising a fluorescence conversion film comprising the cured product according to claim 12 on the substrate.
[14] 前記基体上に隔壁が設けられ、隔壁により区切られた区域に前記蛍光変換膜があ る請求項 13に記載の蛍光変換基板。  14. The fluorescence conversion substrate according to claim 13, wherein a partition wall is provided on the substrate, and the fluorescence conversion film is in an area partitioned by the partition wall.
[15] 請求項 1〜: 11のいずれかに記載の組成物を、基体上で硬化させることにより蛍光 変換膜を形成する蛍光変換基板の製造方法。 [15] A method for producing a fluorescence conversion substrate, wherein a fluorescence conversion film is formed by curing the composition according to any one of claims 1 to 11 on a substrate.
[16] 請求項 1〜: 11のいずれかに記載の組成物を、印刷法によって基体上に塗布するこ とにより蛍光変換膜を形成する請求項 15記載の蛍光変換基板の製造方法。 16. The method for producing a fluorescence conversion substrate according to claim 15, wherein the fluorescence conversion film is formed by applying the composition according to any one of claims 1 to 11 on a substrate by a printing method.
[17] 前記印刷法力 インクジェット法又はノズノレジェット法である請求項 16に記載の蛍 光変換基板の製造方法。 17. The method for producing a phosphor conversion substrate according to claim 16, wherein the printing method is an inkjet method or a nozure jet method.
[18] 隔壁により区切られた基体上の区域に組成物を塗布することにより、蛍光変換膜を 形成する請求項 15〜: 17のいずれかに記載の蛍光変換基板の製造方法。 [18] The method for producing a fluorescence conversion substrate according to any one of [15] to [17], wherein the fluorescence conversion film is formed by applying the composition to the area on the substrate delimited by the partition walls.
[19] 発光素子と、 [19] a light emitting device;
請求項 13又は 14に記載の蛍光変換基板を含む発光装置。  A light-emitting device comprising the fluorescence conversion substrate according to claim 13 or 14.
PCT/JP2007/062605 2006-06-29 2007-06-22 Fluorescent composition and fluorescence conversion substrate using the same WO2008001693A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-179675 2006-06-29
JP2006179675 2006-06-29
US11/488,672 2006-07-19
US11/488,672 US20080001124A1 (en) 2006-06-29 2006-07-19 Fluorescent composition and fluorescence conversion substrate using the same

Publications (1)

Publication Number Publication Date
WO2008001693A1 true WO2008001693A1 (en) 2008-01-03

Family

ID=38845459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062605 WO2008001693A1 (en) 2006-06-29 2007-06-22 Fluorescent composition and fluorescence conversion substrate using the same

Country Status (1)

Country Link
WO (1) WO2008001693A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099536A1 (en) 2003-05-12 2004-11-18 Breakout Barrier Release Systems Pty Ltd Barrier release mechanism
KR20150133137A (en) * 2014-05-19 2015-11-27 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit, and liquid crystal display device and method for manufacturing wavelength conversion member and polymerizable composition containing quantum dot
WO2016052627A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition and method for producing wavelength conversion member
JP2016146460A (en) * 2014-09-30 2016-08-12 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition, and method for producing wavelength conversion member
JP2019116394A (en) * 2017-12-26 2019-07-18 東洋インキScホールディングス株式会社 Semiconductor fine particle composition and quantum dot, coating liquid and ink composition containing them, inkjet ink, coated matter and printed matter using them, wave length conversion film, color filter, and light emitting device
JP2019131758A (en) * 2018-02-02 2019-08-08 Dic株式会社 Ink composition, photoconversion layer and color filter
KR20200084328A (en) 2017-11-10 2020-07-10 디아이씨 가부시끼가이샤 Ink composition and manufacturing method thereof, and light conversion layer and color filter
US10947403B2 (en) 2016-12-28 2021-03-16 Dic Corporation Dispersion and inkjet ink composition, light conversion layer, and liquid crystal display element using the dispersion
KR20210105349A (en) 2018-12-26 2021-08-26 디아이씨 가부시끼가이샤 Ink composition, light conversion layer, and color filter
WO2022244668A1 (en) * 2021-05-21 2022-11-24 Dic株式会社 Ink composition, light conversion layer, color filter, and light conversion film
KR20230021166A (en) 2020-09-10 2023-02-13 디아이씨 가부시끼가이샤 Ink composition containing light emitting particles, light conversion layer and light emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186426A (en) * 1996-10-24 1998-07-14 Mitsui Chem Inc Photopolymerizable resin composition
JPH11199781A (en) * 1998-01-08 1999-07-27 Nichia Chem Ind Ltd Color conversion sheet and luminescent device using sane
JP2004346233A (en) * 2003-05-23 2004-12-09 Yunimatekku Kk Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer
WO2005037925A1 (en) * 2003-10-22 2005-04-28 Studiengesellschaft Kohle Mbh Luminescent, transparent composite materials
WO2005097939A1 (en) * 2004-03-30 2005-10-20 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
JP2005336498A (en) * 2002-09-12 2005-12-08 Rohm & Haas Co Polymer particle having selected pendant group and composition produced therefrom
JP2006139936A (en) * 2004-11-10 2006-06-01 Jsr Corp Inorganic powder-containing resin composition for plasma display panel, transfer film for plasma display panel and manufacturing method of plasma display panel
WO2007010712A1 (en) * 2005-07-15 2007-01-25 Daikin Industries, Ltd. Photofunctional composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186426A (en) * 1996-10-24 1998-07-14 Mitsui Chem Inc Photopolymerizable resin composition
JPH11199781A (en) * 1998-01-08 1999-07-27 Nichia Chem Ind Ltd Color conversion sheet and luminescent device using sane
JP2005336498A (en) * 2002-09-12 2005-12-08 Rohm & Haas Co Polymer particle having selected pendant group and composition produced therefrom
JP2004346233A (en) * 2003-05-23 2004-12-09 Yunimatekku Kk Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer
WO2005037925A1 (en) * 2003-10-22 2005-04-28 Studiengesellschaft Kohle Mbh Luminescent, transparent composite materials
WO2005097939A1 (en) * 2004-03-30 2005-10-20 Idemitsu Kosan Co., Ltd. Fluorescent conversion medium and color light emitting device
JP2006139936A (en) * 2004-11-10 2006-06-01 Jsr Corp Inorganic powder-containing resin composition for plasma display panel, transfer film for plasma display panel and manufacturing method of plasma display panel
WO2007010712A1 (en) * 2005-07-15 2007-01-25 Daikin Industries, Ltd. Photofunctional composition

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004099536A1 (en) 2003-05-12 2004-11-18 Breakout Barrier Release Systems Pty Ltd Barrier release mechanism
KR20150133137A (en) * 2014-05-19 2015-11-27 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit, and liquid crystal display device and method for manufacturing wavelength conversion member and polymerizable composition containing quantum dot
KR102156138B1 (en) 2014-05-19 2020-09-16 후지필름 가부시키가이샤 Wavelength conversion member, backlight unit, and liquid crystal display device and method for manufacturing wavelength conversion member
JP2016066041A (en) * 2014-05-19 2016-04-28 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, method for manufacturing wavelength conversion member, and quantum dot-containing polymerizable composition
JP2016146460A (en) * 2014-09-30 2016-08-12 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition, and method for producing wavelength conversion member
WO2016052627A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Wavelength conversion member, backlight unit, liquid crystal display device, quantum dot-containing polymerizable composition and method for producing wavelength conversion member
US10947403B2 (en) 2016-12-28 2021-03-16 Dic Corporation Dispersion and inkjet ink composition, light conversion layer, and liquid crystal display element using the dispersion
KR20200084328A (en) 2017-11-10 2020-07-10 디아이씨 가부시끼가이샤 Ink composition and manufacturing method thereof, and light conversion layer and color filter
US11926750B2 (en) 2017-11-10 2024-03-12 Dic Corporation Ink composition and method for producing the same, light conversion layer, and color filter
JP2019116394A (en) * 2017-12-26 2019-07-18 東洋インキScホールディングス株式会社 Semiconductor fine particle composition and quantum dot, coating liquid and ink composition containing them, inkjet ink, coated matter and printed matter using them, wave length conversion film, color filter, and light emitting device
JP7030276B2 (en) 2017-12-26 2022-03-07 東洋インキScホールディングス株式会社 Semiconductor fine particle compositions and quantum dots, coating liquids and ink compositions containing them, inkjet inks, and coatings and printed materials using them, wavelength conversion films, color filters, light emitting elements
JP2019131758A (en) * 2018-02-02 2019-08-08 Dic株式会社 Ink composition, photoconversion layer and color filter
JP7040072B2 (en) 2018-02-02 2022-03-23 Dic株式会社 Ink composition, light conversion layer and color filter
KR20210105349A (en) 2018-12-26 2021-08-26 디아이씨 가부시끼가이샤 Ink composition, light conversion layer, and color filter
KR20230021166A (en) 2020-09-10 2023-02-13 디아이씨 가부시끼가이샤 Ink composition containing light emitting particles, light conversion layer and light emitting device
WO2022244668A1 (en) * 2021-05-21 2022-11-24 Dic株式会社 Ink composition, light conversion layer, color filter, and light conversion film
JP7367894B2 (en) 2021-05-21 2023-10-24 Dic株式会社 Ink compositions, light conversion layers, color filters and light conversion films

Similar Documents

Publication Publication Date Title
WO2008001693A1 (en) Fluorescent composition and fluorescence conversion substrate using the same
US7393618B2 (en) Composition for color converting member and production method of color conversion substrate using the same
US20080001124A1 (en) Fluorescent composition and fluorescence conversion substrate using the same
WO2008029633A1 (en) Color conversion substrate and method for producing the same
KR102102560B1 (en) Quantum Dot Film and Wavelength Converting sheet for Display comprising Quantum Dot complex
KR102652514B1 (en) Compositions Comprising Semiconductor Light-Emitting Nanoparticles Having Thiol-Functional Surface Ligands
US10829687B2 (en) Additive stabilized composite nanoparticles
US20200407635A1 (en) Cadmium free quantum dots, and composite and display device including the same
WO2006120895A1 (en) Color converting material composition and color converting medium including same
US11352558B2 (en) Quantum dots, a composition or composite including the same, and an electronic device including the same
KR20190110935A (en) A light converting resin composition, a light converting laminated substrate and a display device using the same
US10759991B2 (en) Copolymeric stabilizing carrier fluid for nanoparticles
JP2009108126A (en) Luminescent medium-forming composition, luminescent medium, organic el device, display device, and method for forming luminescent medium film
CN108026444B (en) Additive stabilized composite nanoparticles
WO2019167751A1 (en) Semiconductor-nanoparticle-containing composition, wavelength conversion film, light-emitting display element, and method for forming wavelength conversion film
JP2009091429A (en) Composition for forming light emitting medium, light emitting medium, organic el element, display device, and light emitting medium film forming method
US11345849B2 (en) Stabilizing styrenic polymer for quantum dots
US11149194B2 (en) Stabilizing styrenic polymer for quantum dots
JP2021504544A (en) Compositions containing semi-conducting luminescent nanoparticles
WO2021161860A1 (en) Composition containing semiconductor nanoparticles, color filter, and image display device
JP7487134B2 (en) Light conversion ink composition, color filter, and image display device
US20200115630A1 (en) Additive stabilized composite nanoparticles
KR20190110925A (en) A light converting resin composition, a light converting glass unit and a display device using the same
CN115820036A (en) Ink composition and electronic device including film formed using ink composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP