JP2004346233A - Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer - Google Patents

Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer Download PDF

Info

Publication number
JP2004346233A
JP2004346233A JP2003146270A JP2003146270A JP2004346233A JP 2004346233 A JP2004346233 A JP 2004346233A JP 2003146270 A JP2003146270 A JP 2003146270A JP 2003146270 A JP2003146270 A JP 2003146270A JP 2004346233 A JP2004346233 A JP 2004346233A
Authority
JP
Japan
Prior art keywords
phosphor
light
fluorine
copolymer
fluorinated copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003146270A
Other languages
Japanese (ja)
Inventor
Kitsuzan Kin
吉 山 金
Takashi Enokida
田 貴 司 榎
Harumi Tatsu
春 美 達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unimatec Co Ltd
Original Assignee
Unimatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unimatec Co Ltd filed Critical Unimatec Co Ltd
Priority to JP2003146270A priority Critical patent/JP2004346233A/en
Publication of JP2004346233A publication Critical patent/JP2004346233A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phosphor-carrying, fluorine-containing copolymer composition which can be formed into a color conversion sheet and the like excellently balanced in emission luminance, transparency, heat resistance, and solvent resistance and which is suitably usable for manufacturing lightings, phosphor packages, light emitting diodes (LEDs), indicating devices, and the like, and to provide its manufacturing process, a manufacturing process of a molded product of the phosphor-carrying, fluorine-containing copolymer, and applications of the molded product. <P>SOLUTION: The phosphor-carrying, fluorine-containing copolymer composition contains a transparent fluorine-containing copolymer that transmits a light from the outside, particularly blue light and an inorganic and/or organic phosphor that absorbs at least part of the above light to emit the fluorescence longer in wavelength than this light. The phosphor is contained in an amount of 1.0 wt% or more in the total 100 wt% of the transparent fluorine-containing copolymer and the phosphor. The above inorganic phosphor can be any one of cerium-activated yttrium-aluminum-garnet phosphors (YAG phosphors), RGB phosphors, and AlGeAs phosphors, particularly is a YAG phosphor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の技術分野】
本発明は、蛍光体含有含フッ素共重合体組成物およびその製造方法並びに蛍光体含有含フッ素共重合体成形物の製造方法に関し、さらに詳しくは、照明、蛍光体パッケージ、発光ダイオード(LED)、表示装置の製造に好適に使用しうる蛍光体含有含フッ素共重合体組成物およびその製造方法並びに該組成物を用いた蛍光体含有含フッ素共重合体成形物の製造方法、該成形物の用途に関する。
【0002】
【発明の技術的背景】
液晶表示装置(Liquid Crystal Display、「LCD」ともいう。)やLEDの封止材など、光学用材料には薄いフィルム状、細いチューブ状などの形状のガラスが多く使用されている。しかし、従来使用されてきたガラスは強度的に脆い性質を有しているため、使用範囲に限界が生じてきている。
【0003】
強靭性の有る材料として、高分子材料が挙げられるが、耐熱性の高い熱可塑性樹脂は一般的に芳香環が導入されており、複屈折を有し、一般的には光学材料には不適当である。また、汎用の光学材用樹脂例えばポリメタクリル酸メチル(PMMA)などは、光学分野で使用しうる透明性を有するが、耐熱性が不十分であり、光学的性能と高い耐熱性の両立は困難である。
【0004】
特開平11−199781号公報(特許文献1)、特開2000−286455号公報(特許文献2)には、Y/Al/Gd/Ce蛍光体に加えて必要により紫外線劣化防止剤などを、ポリアリレート、ポリカーボネートなどの透明樹脂の中に含有した可視光変換シート、あるいは該樹脂の射出成形により発光素子の少なくとも一部を被覆した発光ダイオードが開示されており、このシートあるいは被覆用樹脂に、InGaN等の半導体発光素子からの青色光を吸収させて、より長波長の蛍光へ変換させ発光させ得ることが開示されている。
【0005】
特開平11−233831号公報(特許文献3)、特開2000−223750号公報(特許文献4)、特開2001−156336号公報(特許文献5)には、Y/Al/Gd/Ce蛍光体に加えて必要により紫外線劣化防止剤などを、エポキシ樹脂などの液状樹脂(特に、特開2000−223750号公報では、飽和脂環式構造のエポキシ樹脂)の中に分散させた発光ダイオード用封止樹脂にて発光素子を被覆(封止)した発光ダイオードが開示され、この発光ダイオード用封止樹脂にてInGaN等の半導体発光素子を封止し、発光素子からの青色光を該封止樹脂中の蛍光体に吸収させて、より長波長の蛍光へ変換させることが開示されている。
【0006】
しかしながら、一般に炭化水素系の樹脂は耐候性、耐熱性に劣り、使用中にその機能低下を起こす。またいわゆる炭化水素系透明樹脂は硬く、脆く耐衝撃性に劣る。また耐候性、耐薬品性にも劣るので、特に屋外用途には十分とは言えない。
【0007】
特開2000−154294号公報(特許文献6)には、無機りん光物質をフッ素樹脂中に分散させた蛍光フッ素樹脂が開示され、該蛍光フッ素樹脂は、UV照射でりん光物質固有の色及び緑色光を放射する旨記載されている。また、該公報には、該蛍光フッ素樹脂は、着色剤などを含まず、少なくとも300℃の高温で成形可能であり、蛍光能力を失わない旨記載されている。また、フッ素樹脂としては、PTFE(ポリテトラフルオロエチレンフルオロエチレン)、テトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体、TFE/PAVE(過フルオロ(プロピルビニルエーテル))共重合体等が挙げられている。
【0008】
しかしながら、該公報に記載の蛍光フッ素樹脂(蛍光体含有フッ素樹脂)は、蛍光体の含有率がフッ素樹脂重量に対して0.5〜450ppmと低く、液晶表示装置やLEDの封止材などへの応用は困難である。
【0009】
また、応用物理第71卷第12号(2002)(非特許文献1)には、蛍光体封止樹脂は青色光の照射により4000時間(hr)で略10%の(光)透過度の低下を引き起こす旨記載され(図−10)、また、黄変をきたす旨記載されている。
【0010】
このように、これまでに提案されている蛍光体含有樹脂は、色変換シートなどとして用いるには、発光輝度、透明性、耐熱性、耐溶剤性の何れかの点で十分でない。
【0011】
そのため、発光輝度、透明性、耐熱性、耐溶剤性などの特性にバランス良く優れた色変換シートなどを形成でき、照明、蛍光体パッケージ、発光ダイオード(LED)、表示装置などの製造に好適に使用しうる蛍光体含有含フッ素共重合体組成物およびその製造方法並びに蛍光体含有含フッ素共重合体成形物の製造方法の開発が求められている。
【0012】
【特許文献1】
特開平11−199781号公報
【特許文献2】
特開2000−286455号公報
【特許文献3】
特開平11−233831号公報
【特許文献4】
特開2000−223750号公報
【特許文献5】
特開2001−156336号公報
【特許文献6】
特開2000−154294号公報
【非特許文献1】
応用物理第71卷第12号(2002)
【0013】
【発明の目的】
本発明は、上記のような従来技術に伴う問題点を解決しようとするものであって、発光輝度、透明性、耐熱性、耐溶剤性にバランス良く優れた色変換シートなどを形成でき、照明、蛍光体パッケージ、発光ダイオード(LED)、表示装置などの製造に好適に使用しうる蛍光体含有含フッ素共重合体組成物およびその製造方法並びに蛍光体含有含フッ素共重合体成形物の製造方法、および該成形物の用途を提供することを目的としている。
【0014】
【発明の概要】
本発明に係る蛍光体含有含フッ素共重合体組成物は、
外部からの光を透過する透明性含フッ素共重合体と、
前記光の少なくとも一部を吸収してその光よりも長波長の蛍光を発する無機および/または有機蛍光体とを含有し、透明性含フッ素共重合体と、これら蛍光体との合計100重量%中に、これら蛍光体を1.0重量%以上の量で含有した含フッ素共重合体組成物であって、
前記無機蛍光体が、セリウムで活性化されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG系蛍光体)、赤色、緑色および青色蛍光体の混合物であるRGB系蛍光体、AlGeAs系蛍光体のうちの何れかであることを特徴としている。
【0015】
本発明の好ましい態様に係る蛍光体含有含フッ素共重合体組成物は、
外部からの青色光を透過する透明性含フッ素共重合体と、前記青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を発する無機蛍光体とを含有し、透明性含フッ素共重合体と無機蛍光体との合計100重量%中に、該無機蛍光体を1.0重量%以上の量で含有した含フッ素共重合体組成物であって、
前記無機蛍光体がセリウムで活性化されたイットリウム・アルミニウム・ガーネット系蛍光体であることを特徴としている。
【0016】
本発明においては、上記何れの態様においても、含フッ素共重合体が、パーフルオロ(アルキル(C1〜C3)ビニルエーテル)、パーフルオロ(アルケニル(C2〜C3)ビニルエーテル)、ヘキサフルオロプロペン、フッ化ビニリデンのうちから選択される少なくとも1種の単量体と、テトラフルオロエチレンとを共重合して得られたものであることが好ましい。
【0017】
本発明においては、上記何れの態様においても含フッ素共重合体が、テトラフルオロエチレン/パーフルオロ(アルキル(C1〜C2)ビニルエーテル)共重合体、
テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロペン三元共重合体、
テトラフルオロエチレン/パーフルオロ(アリルビニルエーテル)共重合体、テトラフルオロエチレン/パーフルオロ−3,3−ビス(トリフロロメチル)−2,4−ジオキシシクロペンテン−1共重合体のうちの何れか1種または2種以上であることが好ましい。
【0018】
本発明に係る上記蛍光体含有含フッ素共重合体組成物の製造方法は、
外部からの青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を発する無機蛍光体を、含フッ素共重合体の有機溶媒溶液もしくは分散液と混合した後、溶媒または分散媒を除去することにより、上記の蛍光体含有含フッ素共重合体組成物を得ることを特徴としている。
【0019】
本発明に係る蛍光体含有含フッ素共重合体成形物の製造方法は、上記の方法により得られ、外部からの青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を発する無機蛍光体と、含フッ素共重合体とを含有する蛍光体含有含フッ素共重合体組成物を、
該含フッ素共重合体の溶融温度以上〜280℃以下の温度で溶融成形することを特徴としている。
【0020】
本発明に係る蛍光体含有含フッ素共重合体成形物は、上記何れかの方法により製造されている。このような成形物は、色変換シートに好適である。
【0021】
本発明に係る光学装置は、色変換シート等の上記蛍光体含有含フッ素共重合体成形物を具備したことを特徴としている。
【0022】
本発明によれば、発光輝度、透明性、耐熱性、耐溶剤性にバランス良く優れた色変換シートなどを形成でき、耐候性、耐薬品性、耐熱性、光学的透明性などに優れた照明装置(例:紫外光LED照明装置)、蛍光体パッケージ、発光ダイオード(LED)、表示装置の製造に好適に使用しうる蛍光体含有含フッ素共重合体組成物および該組成物の安全で簡単な製造方法並びに上記特性を具備した蛍光体含有含フッ素共重合体成形物の安全で簡単な製造方法を提供することができる。
【0023】
【発明の具体的な説明】
以下、本発明に係る蛍光体含有含フッ素共重合体組成物、およびその組成物の製造方法並びに上記特性を具備した成形物の製造方法について具体的に説明する。
【0024】
<蛍光体含有含フッ素共重合体組成物>
本発明に係る蛍光体含有含フッ素共重合体組成物は、
外部からの光を透過する透明性含フッ素共重合体と、
前記光の少なくとも一部を吸収してその光よりも長波長の蛍光を発する無機および/または有機蛍光体とを含有し、透明性含フッ素共重合体と、これら蛍光体との合計100重量%中に、これら蛍光体を1.0重量%以上の量で含有した含フッ素共重合体組成物であって、
前記無機蛍光体が、セリウムで活性化されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG系蛍光体)、赤色、緑色および青色蛍光体の混合物であるRGB系蛍光体、AlGeAs系蛍光体のうちの何れか、好ましくはYAG系蛍光体である。
【0025】
RGB系蛍光体としては、特に限定されず、例えば、赤色(例えば、Y:Eu3+)、緑色(例えば、ZnS:Cu,Al)、青色(例えば、(Sr,Ca,Ba,Mg)10(POCl:Eu2+)蛍光体の混合物等が挙げられる。
【0026】
有機蛍光体としては、特開2000−353590号公報の「0043」〜「0045」欄(表1〜表3)に示す赤、緑、青系のもの、特開2002−260858号公報「0002」に記載のトリス(8−キノリノール)アルミニウム錯体(略称:ALq)、同公報「0036」に記載の緑、赤、青色系のもの、特開2000−103114号公報「0027」〜「0029」欄(表1〜表3)に記載の赤、緑、青系のものなど、従来より公知のものが広く使用でき、具体的には、例えば、赤色としてテオニルトリフルオロアセトン−1,10−フェナントロリン−ユーロピウム錯体(Eu(TTA)(phen))、緑色としてクマリン−6、青色としてペリレンなどが挙げられる。
【0027】
本発明の好ましい態様に係る蛍光体含有含フッ素共重合体組成物は、少なくとも、透明性含フッ素共重合体と無機蛍光体とを必須成分として含有し、この透明性含フッ素共重合体としては、外部からの青色光、例えば、青色発光素子や紫外線ランプなどの光源からの青色光を透過することができるものが用いられる。
【0028】
以下、この好ましい態様の蛍光体含有含フッ素共重合体組成物を中心に詳説する。
【0029】
この蛍光体含有含フッ素共重合体組成物は、該組成物中の透明性含フッ素共重合体と無機蛍光体との合計100重量%中に、上記無機蛍光体を1.0重量%以上、好ましくは5〜50重量%の量で含有していることが望ましい。また、この無機蛍光体は、該蛍光体含有含フッ素共重合体組成物中に含まれる溶剤量などにも依るが、該共重合体組成物100重量部中に、通常1.0重量部以上、好ましくは5〜50重量部の量で含まれていることが望ましい。
【0030】
このような量で無機蛍光体を含有する蛍光体含有含フッ素共重合体組成物は、発光輝度、透明性、耐熱性、耐溶剤性に優れる傾向がある。なお、この無機蛍光体含量が特に上記範囲より少ないと、発光輝度が低くなる傾向があり、また、特に50重量%より多いと、フッ素樹脂への均一分散ができなくなり、透明性劣る傾向がある。
以下、各成分についてはじめに詳説する。
【0031】
[透明性含フッ素共重合体]
含フッ素共重合体としては、テトラフルオロエチレン、パーフルオロ(アルキル(C1〜C3)ビニルエーテル)、パーフルオロ(アルケニル(C2〜C3)ビニルエーテル)、ヘキサフルオロプロペン、フッ化ビニリデンなどの含フッ素単量体を2種以上共重合して得られたものが挙げられる。
【0032】
これらモノマーを2種以上共重合してなる含フッ素共重合体のうちでは、パーフルオロ(アルキル(C1〜C3)ビニルエーテル)、パーフルオロ(アルケニル(C2〜C3)ビニルエーテル)、ヘキサフルオロプロペン、フッ化ビニリデンのうちから選択される少なくとも1種の単量体と、テトラフルオロエチレンとを共重合して得られたものが好ましい。
【0033】
本発明においてはこのような含フッ素共重合体のうちでも、テトラフルオロエチレン/パーフルオロ(アルキル(C1〜C2)ビニルエーテル)共重合体、
テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロペン三元共重合体、
テトラフルオロエチレン/パーフルオロ(アリルビニルエーテル)共重合体、
テトラフルオロエチレン/パーフルオロ−3,3−ビス(トリフロロメチル)−2,4−ジオキシシクロペンテン−1共重合体のうちの何れか1種または2種以上であることがより好ましい。
【0034】
特に、このような含フッ素共重合体の中でも、テトラフルオロエチレン(TFE)とパーフルオロアルキル(アルキル基炭素数:C1〜C3)ビニルエーテル(FVE)とを共重合してなる二元系含フッ素共重合体、特に含フッ素共重合体中の成分単位比(TFE成分単位/FVE成分単位)が90/10〜60/40(重量%)であるもの、および、
テトラフルオロエチレン(TFE)と弗化ビニリデン(VdF)とヘキサフルオロプロペン(HFP)とを共重合してなる三元系含フッ素共重合体、特に共重合体中の成分単位比が、テトラフルオロエチレン(TFP)成分単位:20〜60重量%、弗化ビニリデン(VdF)成分単位:20〜60重量%、ヘキサフルオロプロペン(HFP)成分単位:10〜40重量%(但し、共重合体中の各成分単位の合計を100重量%とする。)の三元系含フッ素共重合体は、光透過性が高く耐候性に優れ、かつ比較的低価格であり、成形性に優れ、工業的に汎用であり好ましい。
【0035】
またテトラフルオロエチレン(TFE)とパーフルオロアリルビニルエーテル(略号:PAVE)とを共重合した二元系含フッ素共重合体、テトラフルオロエチレン(TFE)とパーフルオロ−3,3ビス(トリフロロメチルトリフロロメチル)−2,4−ジオキシシクロペンテン−1とを共重合した二元系含フッ素共重合体も価格が高価である点以外は上記の好ましい特性を備えており、上記の含フッ素共重合体として好適に使用できる。
【0036】
このような含フッ素共重合体は、上記特性すなわち、透明性、耐熱性、耐溶剤性などをバランス良く有する限り、樹脂、ゴムの何れでもよい。
【0037】
このような含フッ素共重合体は、耐候性に優れ、透明性を有しており、複屈折が少ない。
【0038】
例えば、屈折率(アッベ屈折率計を用い、厚さ200μm(厚)で、無機蛍光体を含んでいない含フッ素共重合体シートあるいはフィルムについて、20℃で、波長589nmの光を照射して測定)が、1.5以下、好ましくは1.33〜1.40であることが望ましく、また、
上記含フッ素共重合体は、条件:厚み120μmの含フッ素共重合体シートあるいはフィルムに、測定装置:日本分光社製の紫外可視分光光度計にて測定される、400〜800nm光の透過率が通常80%以上、好ましくは85%以上、特に好ましくは90〜100%という量で波長400〜800nmの光を透過する性質を有していることが望ましい。
【0039】
なお、特開平11−199781号公報では、本発明と異なり、フッ素樹脂以外の樹脂を使用したため、劣化防止の点などから波長領域を限定しているが、本発明で用いられるフッ素は極めて耐光性に優れ、劣化防止が不要であり、また、励起波長が400〜500nmで、発光波長が500〜700nmであることから、波長領域として少なくとも400〜800nmに対応可能となっている。本発明によれば、更に、波長領域を広げることで、フッ素樹脂の特長を生かした成形物、例えば、発光ダイオードを提供することが期待できる。
【0040】
例えば、発光素子表面の少なくとも一部を、射出成形などにより、樹脂組成物で被覆してなる発光ダイオードでは、このように、上記含フッ素共重合体に発光チップ(発光素子)などの光源からの上記波長領域の強い光を長期間照射し、透過させても樹脂劣化が生じ難く、また、光源から照射された光(例:青色光)を樹脂中に配合される無機蛍光体が吸収して励起し、効率よく強い白色光などを放出できるため好ましい。
【0041】
[無機蛍光体]
無機蛍光体としては、従来より公知のものを広く用いることができ、例えば、セリウムで活性化(賦活)されたイットリウム・アルミニウム・ガーネット系蛍光体、ペリレン系誘導体、銅で活性化されたセレン化亜鉛、RGB系蛍光体[赤色(例えば、Y:Eu3+)、緑色(例えば、ZnS:Cu,Al)、青色(例えば、(Sr,Ca,Ba,Mg)10(POCl:Eu2+)蛍光体の混合物]、AlGeAs系蛍光体などを挙げることができる。本発明では、上記発光ダイオードを形成する上記無機蛍光体としては、青色光(波長:420〜490nm)を吸収し、セリウムで活性化(賦活)されたイットリウム・アルミニウム・ガーネット系蛍光体(Y/Al/Gd/Ce蛍光体、YAG蛍光体等ともいう。)は、励起されて黄色系発光し、視覚的には混色され白色発光ダイオード(LED)として使用することができ、発光素子として窒化物半導体を用いた場合における発光効率、耐光性などの点で好ましい。
【0042】
このイットリウム・アルミニウム・ガーネット系蛍光体は、例えば、(Y1−aGd(Al1−bGa12:Ce、但し、0≦a≦1、0≦b≦1)で表される蛍光体であり、特開平11−233831号公報(特許文献3)の「0028」欄にも記載されているように、ガーネット構造を有し、熱、光、水分に強く、励起スペクトルピークを450nm付近にさせることができ、発光ピークが530nm付近にあり、700nmまでブロードな裾をひく発光スペクトルを持たせることができる。本発明では、このイットリウム・アルミニウム・ガーネット系蛍光体は、イットリウム(Y)の一部がLu、Sc、La、Smなどで置換されていてもよい。
【0043】
本発明では、このようなY/Al/Gd/Ce蛍光体が、無機蛍光体総量を100重量%とするとき、主成分として、通常、80重量%以上、好ましくは95〜100重量%、特に好ましくは全量(100重量%)の量で蛍光体含有含フッ素共重合体組成物(溶剤、分散媒を除く。)中に含まれているものが発光輝度、透明性などのアップの点で好ましく用いられる。
【0044】
本発明で上記フッ素樹脂と組合わせて用いられる、好適に使用可能な無機蛍光体は、上記したように青色発光LED吸収タイプのYAG系のもの(青色光発光LED/YAG系)であるが、本発明では係る好ましい態様に限定されず、例えば紫色・紫外LED/RGB系、青色・緑色・黄色LED/Al・Ge・Asなどでも使用可能である。
【0045】
また、上述したような無機蛍光体の一部または全部に代えて、他の蛍光体、例えば、有機系のものを用いてもよい。
【0046】
[その他の成分]
この蛍光体含有含フッ素共重合体組成物には、上記透明性含フッ素共重合体、無機蛍光体以外に、必要により、溶剤、分散媒、紫外線吸収剤、連鎖開始阻害剤などが含まれていてもよい。
【0047】
<蛍光体含有含フッ素共重合体組成物の製造>
このような蛍光体含有含フッ素共重合体組成物を製造するには、例えば、上記透明性含フッ素共重合体、蛍光体好ましくは無機蛍光体をドライブレンドするか、あるいは、必要により、これら成分と共に、溶剤、分散媒、光安定剤(例:紫外線吸収剤、連鎖開始阻害剤)などを用いて、配合物の混合、攪拌等を行い、次いで、必要により、用いられた溶剤、分散媒を揮散、除去してもよい。
【0048】
本発明の好ましい態様においては、無機蛍光体を、含フッ素共重合体の有機溶媒溶液もしくは分散液と混合した後、溶媒または分散媒を除去することにより、上記の蛍光体含有含フッ素共重合体組成物を得ることが、安全かつ簡単に、無機蛍光体が均一に分散した蛍光体含有含フッ素共重合体組成物を効率的に得ることができるなどの点で望ましい。
【0049】
上記何れの態様においても、このような混合、攪拌の際には、例えば、二軸押出機、ペレタイザーなどを用いてもよい。また、上記混合、攪拌の際には、加熱、加圧等を行ってもよい。
【0050】
得られた蛍光体含有含フッ素共重合体組成物は、その用途、運搬、取り扱い等の便宜に応じて、材料の一般的、一時的形状である粉末状、ペレット、シート、フィルム、板、ブロック、繊維、棒状などの任意の形状を採ることができる。
【0051】
この蛍光体含有含フッ素共重合体組成物を用いれば、発光輝度、透明性、耐熱性、耐溶剤性にバランス良く優れた色変換シートなどを形成できる。この蛍光体含有含フッ素共重合体組成物は、照明、蛍光体パッケージ、発光ダイオード(LED)、表示装置の製造に好適に使用しうる。
【0052】
<蛍光体含有含フッ素共重合体成形物およびその製造>
本発明に係る蛍光体含有含フッ素共重合体成形物(単に、成形物ともいう)は、無機蛍光体と、含フッ素共重合体とを上記のような量で含有する上記蛍光体含有含フッ素共重合体組成物を、該含フッ素共重合体の溶融温度以上〜280℃以下の温度で溶融・成形することにより製造される。
【0053】
この溶融・成形の際には、従来より公知の手段を利用でき、例えば、二軸押出機、金型などが使用できる。
【0054】
より具体的には、成形物としての上記蛍光体含有含フッ素共重合体フィルムを得るには、例えば、上記含フッ素共重合体の溶液もしくは分散液に無機蛍光体等の蛍光体を添加、混合した後、混合液からフィルムキャスト(皮膜形成)する方法、或いは混合液から溶媒を蒸発させ除去した後、得られた混合物を溶融成形することにより、フィルム状など、無機蛍光体が前述したような量で均一に分散された所望形状の蛍光体含有含フッ素共重合体成形物が得られる。
【0055】
あるいは、含フッ素共重合体と蛍光体とを含フッ素共重合体の「溶融温度以上」〜280℃以下の温度で溶融混合すると共に、同温度(「溶融温度以上」〜280℃以下の温度)で所望形状に成形することにより、無機蛍光体が前述したような量で均一に分散され、透明性に優れたフィルム状、シート状などの成形物が得られる。なお、上記温度より高い温度で成形すると、成形体が変色する傾向があり、また、含フッ素共重合体の溶融温度未満では、成形困難である。
【0056】
本発明に係る上記成形物の製造方法によれば、無機蛍光体が一様(均一)に分散しており、耐候性に優れ、発光輝度、透明性、耐熱性、耐溶剤性にバランス良く優れた色変換シートなどの成形物を安全かつ簡単に、効率的に形成できる。
【0057】
この蛍光体含有含フッ素共重合体成形物は、その用途に応じて、シート、フィルム、袋状、箱状などの任意形状を有することができる。
【0058】
この成形物が、例えば、「色変換シート」として用いられる場合、この色変換シートは、電球などに比して長寿命で、消費電力の少ない青色発光素子などから発せられる青色光等の光の少なくとも一部を吸収して、青色光等の入射光よりも長波長の蛍光例えば補色関係にある黄色系の光を放出することができ、光源の青色光と蛍光の黄色系の光との混色の結果、白色光を発することができるなど、発光素子(特に青色発光素子)とこの色変換シートとを組合わせて用いると、ディスプレー、OA機器などの面状光源(発光装置)に使用する上で最適である。
【0059】
また、発光素子を型内にセットし、発光素子の少なくとも一部を被覆するように、溶融した蛍光体含有含フッ素共重合体組成物を流し込み、硬化させれば、この硬化物である成形物にて、発光素子の表面の少なくとも一部〜全部が被覆(封止)された、色むらがなく均一な発光を行う「光学装置」としての発光ダイオードが得られる。
【0060】
また、本発明の成形物(蛍光体含有含フッ素共重合体成形物)は携帯電話用バックライト、大型モニタ用高色再現性バックライト等としても用いられる。
【0061】
この蛍光体含有含フッ素共重合体成形物を、例えば、色変換シートとして用いると、発光輝度、透明性、耐熱性、耐溶剤性にバランス良く優れ、青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を、部位によらず均一に発する。
【0062】
また本発明に係る上記成形物は、長時間の使用に対しても当初の機能(照度)の低化が少なく、実用上問題のない良好な範囲にあり、かつ耐熱性にも優れるため、表示装置の大型化に伴って用いられる高発熱タイプの発光素子からの発熱による高温(例:200〜280℃程度)下でも変質を起こさない。
【0063】
そのため、この成形物を表示装置の作製に際し発光シートとして用いれば、大型で、長期継続して使用可能な光学装置の一種である表示装置が得られる。
【0064】
またこの成形物は、非粘着性、化学的安定性、透湿性などにも優れるため、屋外照明用発光部材として用いた場合でも、前記特開2000−286455号公報(特許文献2)の図2に示すようなケーシングを省略することが可能であり、その結果、例えば、光学装置の一つである屋外照明の製造コストの削減が可能である。
【0065】
【発明の効果】
本発明によれば、発光輝度、透明性、耐熱性、耐溶剤性にバランス良く優れた色変換シートなどを形成でき、耐熱性、光学的透明性に優れ、耐候性、耐薬品性にも優れた照明(特に紫外光LED照明装置)、蛍光体パッケージ、発光ダイオード(LED)、表示装置などに代表される光学装置の製造に好適に使用しうる蛍光体含有含フッ素共重合体組成物およびその組成物の安全で簡単な製造方法並びに上記特性を具備した蛍光体含有含フッ素共重合体成形物の安全で簡単な製造方法を提供することができる。
【0066】
特に、本発明に係る蛍光体含有含フッ素共重合体成形物は、上記したような優れた特性を具備しており、例えば、色変換シート、照明(特に紫外光LED照明装置)のシート状発光部材、蛍光体パッケージ、発光ダイオード(LED)用の封止材あるいは被覆材、表示装置のシート等に好適である。
【0067】
また本発明に係る上記成形物は、長時間の使用に対しても当初の機能(照度)の低化が少なく、実用上問題のない良好な範囲にあり、かつ耐熱性にも優れるため、表示装置の大型化に伴い用いられる発光素子からの発熱による高温(例:200〜280℃程度)下でも変質を起こさない。
【0068】
またこの成形物は、非粘着性、化学的安定性、透湿性などにも優れるため、屋外照明に用いる場合にも、前記特開2000−286455号公報(特許文献2)の図2に示すようなケーシングを省略することが可能であり、屋外照明の製造コストを削減できる、などの優れた点を有する。
本発明の発光装置は、上記特性例えば、耐候性、耐熱性、耐薬品性などを有する発光部材である蛍光体含有含フッ素共重合体成形物を具備しているため、屋外照明装置、携帯電話用バックライト、大型モニタ用高色再現性バックライトなどに好適である。
【0069】
【実施例】
以下、本発明について実施例によりさらに具体的に説明するが、本発明は、係る実施例により何ら限定されるものではない。
【0070】
なお、以下の実施例、比較例で「部」は、その趣旨に反しない限り、「重量部」の意味である。
【0071】
<測定法、評価基準等>
以下の実施例、比較例で用いた測定法、評価基準等は、以下の通り。
(1)発光輝度:
条件(励起波長:460nm、温度:25℃にて)発光スペクトル測定した。
【0072】
なお、各実施例、比較例の値は、比較例2の発光輝度を100とした場合の相対値で示す。
(2)透明性:
視覚的に、部位によらず均一で透明性を有するものを良好(○)、透明性に劣る部位があると認められたものを(×)とした。
(3)耐熱性:
色変換シートを、200℃の温度のオーブン中で30分間加熱した後でも変色がないものを良好(○)、変色が認められたものを(×)とした。
(4)耐溶剤性:
色変換シートを、有機溶剤のトルエンに25℃で150時間浸漬した後、重量変化率が1%未満であるものを良好(○)、重量変化率が1以上〜5%未満のものをやや難あり(△)、5%を超えるものを不良(×)とした。
【0073】
同様に四塩化炭素に対しても同様の判定基準で判定した。
(5)総合評価:
総合的にみて、極めて商品価値が優れていると判断できるものを極めて良好(◎)、商品価値が良好なものを(○)、商品価値に劣り、問題があると判断できるものを(×)と判定した。
【0074】
【実施例1】
<色変換シートの作製>
を48重量部、Gdを20重量部、Alを48重量部、Ceを1重量部、およびAlFを0.5重量部をボールミルにより混合粉砕し、これを坩堝に入れ1500℃で10時間(hr)焼成し(Y0.6Gd0.4Al12:Ce蛍光体(YAG蛍光体、Y/Al/Gd/Ce蛍光体などともいう。)を得た。
【0075】
この蛍光体をクラッシャーにより破砕しビーズミルにより粉砕した。この粉砕品100重量部と、HNOを5重量部と、イオン交換水200重量部とを配合して、1時間(hr)攪拌し、脱水洗浄した後、蛍光体パウダー(YAG蛍光体粉末などともいう。)を得た。
【0076】
含フッ素共重合体として、特開2002−293953号公報に記載の方法で製造した、共重合体中の成分単位比が、テトラフルオロエチレン成分単位/パーフルオロ(エチルビニルエーテル)成分単位=70/30(重量%)の共重合体を用い、この共重合体のパーフルオロベンゼン分散液(固形分濃度:10重量%)100重量部に、上記「YAG蛍光体粉末」2.5重量部を添加して混合攪拌し、溶剤(または分散媒)をエバポレートし、その後120℃で減圧乾燥した。
【0077】
得られたこの蛍光体含有樹脂粉末を用いて、二軸押出機とペレタイザーを組合わせて用いて260℃で成形用ペレットを成形した。
【0078】
このペレットをT−ダイ押出法により、260℃の温度でシート状(厚み:120μm)に押出して、色変換シートを得た。
【0079】
<色変換用の励起光源>
色変換用の励起光源として、青色(主発光ピーク460nm)のLEDチップを利用した。
【0080】
この発光素子であるLEDチップは、MOCVD法によりサファイア基板上にGaNよりなるバッファー層、GaNよりなるn型アンドープ層、SiドープされたGaNよりなるn型電極が接するn型コンタクト層、GaNよりなるn型アンドープ層、量子効果が生ずる厚さ3nmでアンドープのInGaNよりなる活性層、AlGaNよりなるp型クラッド層、GaNよりなりp型電極が接するp型コンタクト層が積層されて構成されている。
【0081】
<発光装置の作製>
図2に示すように、青色発光源としてのLEDチップ(図示せず)がモールドされた発光ダイオード4を導光版3の端部に配置させ、蛍光体1を含むフッ素樹脂2製の色変換シート5を導光版3の側面(紙面に向かって、導光版3の上側表面3a)に配置させ、その他方の面(反射層6)を(他の)導光板(図示せず)と接して配置させた。LEDチップを発光させることにより色変換シート5中の前記YAG系蛍光体1は黄色発光し、視覚的には、LED光源の青色と色変換シート5の黄色発光との混色の結果、色変換シート5を介して白色光を得た。
【0082】
得られた発光装置の発光輝度は、条件(励起波長:460nm、温度:25℃にて)発光スペクトル測定したところ、下記比較例2の発光輝度を100とすると、105に相当した。
【0083】
また、色変換シートの透明性は、部位によらず均一で良好(○)、耐熱性は、200℃の温度のオーブン中で30分間加熱した後でも変色がなく良好(○)、耐溶剤性は有機溶剤のトルエンに25℃で150時間浸漬した後、重量変化が1%未満であり良好(○)、同様に四塩化炭素に対しても良好(○)となり、総合評価は極めて良好(◎)であった。
【0084】
結果を、併せて表1に示す。
【0085】
【実施例2】
実施例1において、下記のようにして作製した色変換シートを用いた以外は、実施例1と同様にして発光装置を作製し、実施例1と同様に得られた発光装置の発光輝度、透明性、耐熱性、耐溶剤性を求め、総合評価を行った。
【0086】
結果を、表1に示す。
【0087】
<色変換シートの作製>
含フッ素重合体として、TFE−VdF−HFPの含フッ素三元系共重合体(ダイネオン株式会社製、「THV200G」、共重合体中の各成分単位量比:TFE/VDF/HFP=約40/40/20重量%)を用い、この含フッ素共重合体80部と、実施例1の蛍光体粉末を20部とをヘンシェルミキサーでドライブレンドした後、230℃にて二軸押出機で分散混合し、ペレット化した。
【0088】
更に得られたペレットをT−ダイ押し出し法で230℃にて120μmの厚みにシート状で押出して、色変換シートを得た。
【0089】
【実施例3】
実施例1において、下記のようにして作製した色変換シートを用いた以外は、実施例1と同様にして発光装置を作製し、実施例1と同様に得られた発光装置の発光輝度、透明性、耐熱性、耐溶剤性を求め、総合評価を行った。
【0090】
結果を、表1に示す。
【0091】
<色変換シートの作製>
実施例1において、含フッ素重合体として、共重合体中の各成分単位量比:TFE/FMVE=約53/47重量%のフッ素ゴムを用いた。
【0092】
そして、実施例1に記載の蛍光体粉末30部と、このフッ素ゴム70部とをオープンロールで分散混合し、それを180℃で圧縮成形し、厚み120μmの色変換シートを得た。
【0093】
【実施例4】
リード端子と接続されたLEDチップを金型内に入れ固定し、ここに射出温度260℃で実施例1で得られた成形用ペレットを射出成形した。蛍光物質含有含フッ素共重合体組成物からなる封止材で被覆された発光ダイオードを得た。
【0094】
実施例1と同様に、得られた発光装置の発光輝度、透明性、耐熱性、耐溶剤性を求め、総合評価を行った。
【0095】
結果を、表1に示す。
【0096】
【参考例1】
実施例1において、下記のようにして作製した色変換シートを用いた以外は、実施例1と同様にして発光装置を作製し、実施例1と同様に得られた発光装置の発光輝度、透明性、耐熱性、耐溶剤性を求め、総合評価を行った。
【0097】
結果を、表1に示す。
【0098】
<色変換シートの作製>
含フッ素重合体として、TFE/HFP共重合体(共重合体中の成分単位量比:TFE/HFP=80/20重量%)を用い、この含フッ素共重合体80部と、実施例1に記載の蛍光体粉末20部とを、ヘンシェルミキサーでドライブレンドした後、330℃ にて二軸押出機で分散混合し、ペレット化した物を用いた。
【0099】
更に得られたペレットをT−ダイ押出法で330℃にて120μmの厚みにシート状で押出して、色変換シートを得た。
【0100】
【参考例2】
実施例1において、下記のようにして作製した色変換シートを用いた以外は、実施例1と同様にして発光装置を作製し、実施例1と同様に得られた発光装置の発光輝度、透明性、耐熱性、耐溶剤性を求め、総合評価を行った。
【0101】
結果を、表1に示す。
【0102】
<色変換シートの作製>
重合体として、ポリメチルメタクリレート(PMMA)を用い、PMMAを80部と、実施例1に記載の蛍光体粉末20部とを、ヘンシェルミキサーでドライブレンドした後150℃にて二軸押出機で分散混合し、ペレット化した物を用いた。
【0103】
更に得られたペレットをT−ダイ押し出し法で150℃にて120μmの厚みにシート状で押出して、色変換シートを得た。
【0104】
【表1】

Figure 2004346233

【図面の簡単な説明】
【図1】図1は、図2に示す本発明の好ましい態様に係る発光装置の製造方法の一実施例で用いられる色変換シートのA部を拡大して示す模式断面図である。
【図2】図2は、本発明の好ましい態様に係る発光装置の模式断面図である。
【符号の説明】
1:蛍光体
2:含フッ素共重合体
3:導光版
4:発光ダイオード
5:色変換シート
6:反射層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a phosphor-containing fluorinated copolymer composition and a method for producing the same, and a method for producing a phosphor-containing fluorinated copolymer molded article, and more specifically, to lighting, a phosphor package, a light emitting diode (LED), Phosphor-containing fluorinated copolymer composition which can be suitably used for production of a display device, a method for producing the same, a method for producing a phosphor-containing fluorinated copolymer molded article using the composition, and uses of the molded article About.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
2. Description of the Related Art For optical materials such as a liquid crystal display device (Liquid Crystal Display, also referred to as "LCD") and an LED sealing material, glass having a thin film shape or a thin tube shape is often used. However, conventionally used glass has a brittle property in terms of strength, and thus the range of use has been limited.
[0003]
As a material having toughness, a polymer material can be cited, but a thermoplastic resin having high heat resistance generally has an aromatic ring introduced therein, has birefringence, and is generally unsuitable for an optical material. It is. In addition, general-purpose resins for optical materials such as polymethyl methacrylate (PMMA) have transparency that can be used in the optical field, but have insufficient heat resistance, and it is difficult to achieve both optical performance and high heat resistance. It is.
[0004]
JP-A-11-199781 (Patent Literature 1) and JP-A-2000-286455 (Patent Literature 2) disclose, in addition to a Y / Al / Gd / Ce phosphor, an ultraviolet-ray degradation inhibitor and the like, if necessary. A visible light conversion sheet contained in a transparent resin such as arylate or polycarbonate, or a light emitting diode in which at least a part of a light emitting element is coated by injection molding of the resin, is disclosed. It is disclosed that blue light from a semiconductor light emitting element such as described above can be absorbed and converted into longer wavelength fluorescence to emit light.
[0005]
JP / A-11-233331 (Patent Document 3), JP-A-2000-223750 (Patent Document 4), and JP-A-2001-156336 (Patent Document 5) disclose Y / Al / Gd / Ce phosphors. In addition to the above, a sealing agent for a light emitting diode in which an ultraviolet ray deterioration inhibitor and the like are dispersed in a liquid resin such as an epoxy resin as needed (in particular, in JP-A-2000-223750, an epoxy resin having a saturated alicyclic structure). A light-emitting diode in which a light-emitting element is covered (sealed) with a resin is disclosed. A semiconductor light-emitting element such as InGaN is sealed with the light-emitting diode sealing resin, and blue light from the light-emitting element is passed through the sealing resin. It is disclosed that the light is absorbed by the phosphor of the present invention and converted into fluorescence having a longer wavelength.
[0006]
However, hydrocarbon resins are generally inferior in weather resistance and heat resistance, and their functions deteriorate during use. Further, so-called hydrocarbon-based transparent resins are hard, brittle, and inferior in impact resistance. In addition, since it is inferior in weather resistance and chemical resistance, it cannot be said that it is particularly sufficient for outdoor use.
[0007]
Japanese Patent Application Laid-Open No. 2000-154294 (Patent Document 6) discloses a fluorescent fluororesin in which an inorganic phosphorescent substance is dispersed in a fluororesin. It states that green light is emitted. Further, the publication states that the fluorescent fluororesin does not contain a coloring agent or the like, can be molded at a high temperature of at least 300 ° C., and does not lose its fluorescent ability. Examples of the fluororesin include PTFE (polytetrafluoroethylene fluoroethylene), tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) copolymer, and TFE / PAVE (perfluoro (propyl vinyl ether)) copolymer. Are listed.
[0008]
However, the fluorescent fluororesin (fluorescent resin-containing fluororesin) described in the publication has a low phosphor content of 0.5 to 450 ppm with respect to the weight of the fluororesin, and is used for sealing materials for liquid crystal display devices and LEDs. Is difficult to apply.
[0009]
Also, Applied Physics Vol. 71, No. 12 (2002) (Non-Patent Document 1) states that the phosphor sealing resin has a (light) transmittance reduction of about 10% in 4000 hours (hr) by irradiation of blue light. (Fig. 10), and that yellowing is caused.
[0010]
As described above, the phosphor-containing resins proposed so far are not sufficient in light emission luminance, transparency, heat resistance, and solvent resistance for use as a color conversion sheet or the like.
[0011]
Therefore, it is possible to form a color conversion sheet or the like that is excellent in characteristics such as light emission luminance, transparency, heat resistance, and solvent resistance in a well-balanced manner, and is suitable for manufacturing lighting, phosphor packages, light emitting diodes (LEDs), display devices, and the like. There is a need for the development of a phosphor-containing fluorocopolymer composition that can be used, a method for producing the same, and a method for producing a phosphor-containing fluorocopolymer molded article.
[0012]
[Patent Document 1]
JP-A-11-199781
[Patent Document 2]
JP 2000-286455 A
[Patent Document 3]
JP-A-11-233831
[Patent Document 4]
JP 2000-223750 A
[Patent Document 5]
JP 2001-156336 A
[Patent Document 6]
JP 2000-154294 A
[Non-patent document 1]
Applied Physics Vol. 71, No. 12 (2002)
[0013]
[Object of the invention]
The present invention is intended to solve the problems associated with the prior art as described above, and can form a color conversion sheet excellent in light emission luminance, transparency, heat resistance, and solvent resistance in a well-balanced manner. -Containing fluorine-containing copolymer composition suitable for use in the manufacture of phosphor packages, light-emitting diodes (LEDs), display devices, etc., a method for producing the same, and a method for producing a phosphor-containing fluorine-containing copolymer molded article And the use of the molded article.
[0014]
Summary of the Invention
The phosphor-containing fluorinated copolymer composition according to the present invention,
A transparent fluorinated copolymer that transmits external light,
An inorganic and / or organic phosphor that absorbs at least a part of the light and emits fluorescence having a longer wavelength than the light, and a total of 100% by weight of a transparent fluorocopolymer and these phosphors A fluorine-containing copolymer composition containing these phosphors in an amount of 1.0% by weight or more,
The inorganic phosphor may be a yttrium-aluminum-garnet-based phosphor (YAG-based phosphor) activated with cerium, an RGB-based phosphor that is a mixture of red, green, and blue phosphors, or an AlGeAs-based phosphor. It is one of the features.
[0015]
The phosphor-containing fluorine-containing copolymer composition according to a preferred embodiment of the present invention,
A transparent fluorine-containing copolymer that transmits blue light from the outside, and an inorganic phosphor that absorbs at least a part of the blue light and emits fluorescence having a wavelength longer than that of the blue light. A fluorine-containing copolymer composition containing 1.0% by weight or more of the inorganic phosphor in a total of 100% by weight of the copolymer and the inorganic phosphor,
The inorganic phosphor is a yttrium-aluminum-garnet-based phosphor activated with cerium.
[0016]
In the present invention, in any of the above-mentioned embodiments, the fluorinated copolymer is selected from the group consisting of perfluoro (alkyl (C1 to C3) vinyl ether), perfluoro (alkenyl (C2 to C3) vinyl ether), hexafluoropropene and vinylidene fluoride. It is preferably obtained by copolymerizing at least one monomer selected from the above and tetrafluoroethylene.
[0017]
In the present invention, in any of the above embodiments, the fluorinated copolymer is a tetrafluoroethylene / perfluoro (alkyl (C1 to C2) vinyl ether) copolymer,
Tetrafluoroethylene / vinylidene fluoride / hexafluoropropene terpolymer,
Any one of a tetrafluoroethylene / perfluoro (allyl vinyl ether) copolymer and a tetrafluoroethylene / perfluoro-3,3-bis (trifluoromethyl) -2,4-dioxycyclopentene-1 copolymer It is preferable that the number of species is two or more.
[0018]
The method for producing the phosphor-containing fluorocopolymer composition according to the present invention,
After mixing at least a part of external blue light and emitting an inorganic phosphor emitting fluorescence having a wavelength longer than that of the blue light with an organic solvent solution or dispersion of a fluorinated copolymer, the solvent or the dispersion medium is The removal is characterized in that the above-mentioned phosphor-containing fluorine-containing copolymer composition is obtained.
[0019]
The method for producing a phosphor-containing fluorocopolymer molded article according to the present invention is obtained by the above method, and absorbs at least a portion of external blue light to emit an inorganic light having a longer wavelength than blue light. Phosphor, a phosphor-containing fluorine-containing copolymer composition containing a fluorine-containing copolymer,
It is characterized in that the fluorinated copolymer is melt-molded at a temperature not lower than the melting temperature and not higher than 280 ° C.
[0020]
The phosphor-containing fluorinated copolymer molded article according to the present invention is produced by any of the above methods. Such a molded product is suitable for a color conversion sheet.
[0021]
The optical device according to the present invention is characterized by including the above-mentioned phosphor-containing fluorocopolymer molded article such as a color conversion sheet.
[0022]
According to the present invention, a color conversion sheet excellent in light emission luminance, transparency, heat resistance, and solvent resistance can be formed in a well-balanced manner, and illumination excellent in weather resistance, chemical resistance, heat resistance, optical transparency, and the like. Apparatus (e.g., ultraviolet LED lighting apparatus), phosphor package, light emitting diode (LED), phosphor-containing fluorocopolymer composition suitable for use in the production of a display device, and safe and simple composition of the composition It is possible to provide a safe and simple method for producing a phosphor-containing fluorinated copolymer molded article having the above-mentioned characteristics and the above-mentioned properties.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the phosphor-containing fluorinated copolymer composition according to the present invention, a method for producing the composition, and a method for producing a molded article having the above characteristics will be specifically described.
[0024]
<Phosphor-containing fluorinated copolymer composition>
The phosphor-containing fluorinated copolymer composition according to the present invention,
A transparent fluorinated copolymer that transmits external light,
An inorganic and / or organic phosphor that absorbs at least a part of the light and emits fluorescence having a longer wavelength than the light, and a total of 100% by weight of a transparent fluorocopolymer and these phosphors A fluorine-containing copolymer composition containing these phosphors in an amount of 1.0% by weight or more,
The inorganic phosphor may be a yttrium-aluminum-garnet-based phosphor (YAG-based phosphor) activated with cerium, an RGB-based phosphor that is a mixture of red, green, and blue phosphors, or an AlGeAs-based phosphor. Any one, preferably a YAG-based phosphor.
[0025]
The RGB phosphor is not particularly limited, and may be, for example, red (for example, Y2O2: Eu3+), Green (for example, ZnS: Cu, Al), blue (for example, (Sr, Ca, Ba, Mg))10(PO4)6Cl2: Eu2+And a) a mixture of phosphors.
[0026]
As organic phosphors, those of red, green and blue shown in columns “0043” to “0045” (Tables 1 to 3) of JP-A-2000-353590, and “0002” of JP-A-2002-260858 (8-quinolinol) aluminum complex (abbreviation: ALq), green, red, and blue based substances described in the publication “0036”, columns “0027” to “0029” of JP-A-2000-103114 ( Conventionally known ones such as red, green and blue series shown in Tables 1 to 3) can be widely used. Specifically, for example, theonyl trifluoroacetone-1,10-phenanthroline-europium is used as red. Complex (Eu (TTA)3(Phen)), coumarin-6 as green, and perylene as blue.
[0027]
The phosphor-containing fluorinated copolymer composition according to a preferred embodiment of the present invention contains at least a transparent fluorinated copolymer and an inorganic phosphor as essential components, and as the transparent fluorinated copolymer, A material that can transmit blue light from the outside, for example, blue light from a light source such as a blue light emitting element or an ultraviolet lamp is used.
[0028]
Hereinafter, the phosphor-containing fluorinated copolymer composition of this preferred embodiment will be mainly described in detail.
[0029]
This phosphor-containing fluorinated copolymer composition contains 1.0% by weight or more of the inorganic phosphor in a total of 100% by weight of the transparent fluorinated copolymer and the inorganic phosphor in the composition, Preferably, it is contained in an amount of 5 to 50% by weight. In addition, this inorganic phosphor is usually 1.0 part by weight or more in 100 parts by weight of the copolymer composition, depending on the amount of a solvent contained in the phosphor-containing fluorocopolymer composition. , Preferably in an amount of 5 to 50 parts by weight.
[0030]
The phosphor-containing fluorocopolymer composition containing the inorganic phosphor in such an amount tends to have excellent emission luminance, transparency, heat resistance, and solvent resistance. If the content of the inorganic phosphor is less than the above range, the emission luminance tends to be low. If the content is more than 50% by weight, uniform dispersion in the fluororesin cannot be performed, and the transparency tends to be poor. .
Hereinafter, each component is described in detail first.
[0031]
[Transparent fluorinated copolymer]
Examples of the fluorinated copolymer include fluorinated monomers such as tetrafluoroethylene, perfluoro (alkyl (C1 to C3) vinyl ether), perfluoro (alkenyl (C2 to C3) vinyl ether), hexafluoropropene, and vinylidene fluoride And those obtained by copolymerizing two or more of the above.
[0032]
Among the fluorinated copolymers obtained by copolymerizing two or more of these monomers, perfluoro (alkyl (C1 to C3) vinyl ether), perfluoro (alkenyl (C2 to C3) vinyl ether), hexafluoropropene, fluorinated Those obtained by copolymerizing at least one monomer selected from vinylidene and tetrafluoroethylene are preferred.
[0033]
In the present invention, among such fluorinated copolymers, tetrafluoroethylene / perfluoro (alkyl (C1 to C2) vinyl ether) copolymer,
Tetrafluoroethylene / vinylidene fluoride / hexafluoropropene terpolymer,
Tetrafluoroethylene / perfluoro (allyl vinyl ether) copolymer,
More preferably, it is one or more of tetrafluoroethylene / perfluoro-3,3-bis (trifluoromethyl) -2,4-dioxycyclopentene-1 copolymer.
[0034]
In particular, among such fluorinated copolymers, binary fluorinated copolymers obtained by copolymerizing tetrafluoroethylene (TFE) and perfluoroalkyl (alkyl group carbon number: C1 to C3) vinyl ether (FVE). A polymer, in particular, a component unit ratio (TFE component unit / FVE component unit) in the fluorocopolymer of 90/10 to 60/40 (% by weight); and
Ternary fluorinated copolymers obtained by copolymerizing tetrafluoroethylene (TFE), vinylidene fluoride (VdF), and hexafluoropropene (HFP), in particular, when the component unit ratio in the copolymer is tetrafluoroethylene (TFP) component unit: 20 to 60% by weight, vinylidene fluoride (VdF) component unit: 20 to 60% by weight, hexafluoropropene (HFP) component unit: 10 to 40% by weight (however, each component in the copolymer) The total of the component units is 100% by weight.) The tertiary fluorine-containing copolymer has high light transmittance, is excellent in weather resistance, is relatively inexpensive, has excellent moldability, and is industrially versatile. Is preferable.
[0035]
Further, a binary fluorinated copolymer obtained by copolymerizing tetrafluoroethylene (TFE) and perfluoroallyl vinyl ether (abbreviation: PAVE), tetrafluoroethylene (TFE) and perfluoro-3,3bis (trifluoromethyl tri A binary fluorine-containing copolymer obtained by copolymerizing (fluoromethyl) -2,4-dioxycyclopentene-1 also has the above-mentioned preferable characteristics except that the price is high, and the above-mentioned fluorine-containing copolymer is also provided. It can be suitably used as a combination.
[0036]
Such a fluorinated copolymer may be either a resin or a rubber as long as it has the above properties, that is, transparency, heat resistance, solvent resistance and the like in a well-balanced manner.
[0037]
Such a fluorocopolymer has excellent weather resistance, transparency, and low birefringence.
[0038]
For example, the refractive index is measured by irradiating light having a wavelength of 589 nm at 20 ° C. to a fluorocopolymer sheet or film having a thickness of 200 μm (thickness) and not containing an inorganic phosphor using an Abbe refractometer. ) Is 1.5 or less, preferably 1.33 to 1.40.
The fluorocopolymer has a condition: a fluorocopolymer sheet or film having a thickness of 120 μm, a measuring device having a transmittance of 400 to 800 nm light measured with an ultraviolet-visible spectrophotometer manufactured by JASCO Corporation. It is desirable to have a property of transmitting light having a wavelength of 400 to 800 nm in an amount of usually 80% or more, preferably 85% or more, particularly preferably 90 to 100%.
[0039]
In addition, in JP-A-11-197781, unlike the present invention, since a resin other than a fluororesin is used, the wavelength region is limited in terms of prevention of deterioration and the like. However, fluorine used in the present invention is extremely light-resistant. It does not require deterioration prevention, and has an excitation wavelength of 400 to 500 nm and an emission wavelength of 500 to 700 nm, so that it can correspond to at least 400 to 800 nm as a wavelength region. According to the present invention, it is expected that a molded product, for example, a light-emitting diode, which makes use of the features of the fluororesin, can be provided by further expanding the wavelength region.
[0040]
For example, in a light-emitting diode in which at least a part of the surface of the light-emitting element is coated with a resin composition by injection molding or the like, a light-emitting chip (light-emitting element) or the like emits the fluorine-containing copolymer as described above. The resin is hardly deteriorated even when the strong light in the above wavelength range is irradiated and transmitted for a long time, and the light (eg, blue light) irradiated from the light source is absorbed by the inorganic phosphor compounded in the resin. It is preferable because it can be excited to efficiently emit strong white light and the like.
[0041]
[Inorganic phosphor]
As the inorganic phosphor, conventionally known inorganic phosphors can be widely used. For example, yttrium aluminum garnet phosphor activated by cerium (activated), perylene derivative, selenization activated by copper Zinc, RGB phosphor [red (for example, Y2O2: Eu3+), Green (for example, ZnS: Cu, Al), blue (for example, (Sr, Ca, Ba, Mg))10(PO4)6Cl2: Eu2+) Mixture of phosphors], AlGeAs-based phosphors, and the like. In the present invention, the inorganic phosphor forming the light emitting diode includes an yttrium aluminum garnet phosphor (Y / Y) which absorbs blue light (wavelength: 420 to 490 nm) and is activated (activated) by cerium. Al / Gd / Ce phosphors, YAG phosphors, etc.) are excited to emit yellow-based light, are visually mixed, and can be used as white light emitting diodes (LEDs). It is preferable in terms of luminous efficiency and light resistance when a semiconductor is used.
[0042]
This yttrium / aluminum / garnet-based phosphor is, for example, (Y1-aGda)3(Al1-bGab)5O12: Ce, provided that 0 ≦ a ≦ 1, 0 ≦ b ≦ 1), as described in the column “0028” of JP-A-11-233381 (Patent Document 3). It has a garnet structure, is resistant to heat, light, and moisture, can have an excitation spectrum peak near 450 nm, has an emission peak near 530 nm, and has an emission spectrum with a broad tail up to 700 nm. it can. In the present invention, in the yttrium-aluminum-garnet-based phosphor, part of yttrium (Y) may be replaced with Lu, Sc, La, Sm, or the like.
[0043]
In the present invention, when the total amount of the inorganic phosphor is 100% by weight, such a Y / Al / Gd / Ce phosphor is usually 80% by weight or more, preferably 95 to 100% by weight, and particularly preferably 95 to 100% by weight as a main component. Preferably, the total amount (100% by weight) contained in the phosphor-containing fluorocopolymer composition (excluding the solvent and the dispersion medium) is preferable in terms of improvement in emission luminance, transparency and the like. Used.
[0044]
The inorganic phosphor preferably used in combination with the fluororesin in the present invention is a YAG-based one of a blue light-emitting LED absorption type (blue light-emitting LED / YAG-based) as described above. In the present invention, the present invention is not limited to the preferred embodiment, and for example, purple / ultraviolet LED / RGB system, blue / green / yellow LED / Al / Ge / As, etc. can be used.
[0045]
Further, instead of part or all of the inorganic phosphor as described above, another phosphor, for example, an organic phosphor may be used.
[0046]
[Other ingredients]
This phosphor-containing fluorinated copolymer composition contains, in addition to the transparent fluorinated copolymer and the inorganic phosphor, if necessary, a solvent, a dispersion medium, an ultraviolet absorber, a chain initiation inhibitor, and the like. You may.
[0047]
<Production of phosphor-containing fluorocopolymer composition>
In order to produce such a phosphor-containing fluorocopolymer composition, for example, the transparent fluorocopolymer, a phosphor, preferably an inorganic phosphor is dry-blended, or, if necessary, these components are used. At the same time, using a solvent, a dispersion medium, a light stabilizer (eg, an ultraviolet absorber, a chain initiation inhibitor) and the like, mix and stir the mixture, and then, if necessary, remove the used solvent and dispersion medium. It may be volatilized or removed.
[0048]
In a preferred embodiment of the present invention, after mixing the inorganic phosphor with an organic solvent solution or dispersion of the fluorine-containing copolymer, and then removing the solvent or the dispersion medium, the above-mentioned phosphor-containing fluorine-containing copolymer It is desirable to obtain a composition from the viewpoint that a phosphor-containing fluorocopolymer composition in which inorganic phosphors are uniformly dispersed can be efficiently and safely obtained.
[0049]
In any of the above embodiments, for such mixing and stirring, for example, a twin-screw extruder, a pelletizer, or the like may be used. During the mixing and stirring, heating, pressurization, and the like may be performed.
[0050]
The obtained phosphor-containing fluorinated copolymer composition is used in accordance with the purpose of use, transportation, handling, and the like, and is generally in the form of a powder, which is a temporary form, pellets, sheets, films, plates, and blocks. , Fibers, rods and the like.
[0051]
Use of this phosphor-containing fluorocopolymer composition makes it possible to form a color conversion sheet or the like that is excellent in light emission luminance, transparency, heat resistance, and solvent resistance in a well-balanced manner. This phosphor-containing fluorine-containing copolymer composition can be suitably used for manufacturing lighting, phosphor packages, light emitting diodes (LEDs), and display devices.
[0052]
<Phosphor-containing fluorinated copolymer molded article and production thereof>
The phosphor-containing fluorinated copolymer molded article according to the present invention (also simply referred to as molded article) is the above-mentioned phosphor-containing fluorinated copolymer containing the inorganic phosphor and the fluorinated copolymer in the above amounts. It is manufactured by melting and molding the copolymer composition at a temperature not lower than the melting temperature of the fluorine-containing copolymer and not higher than 280 ° C.
[0053]
For the melting and molding, conventionally known means can be used, and for example, a twin-screw extruder, a mold and the like can be used.
[0054]
More specifically, in order to obtain the phosphor-containing fluorocopolymer film as a molded product, for example, a phosphor such as an inorganic phosphor is added to a solution or dispersion of the fluorocopolymer and mixed. After that, a method of film casting (film formation) from the mixed solution, or after evaporating and removing the solvent from the mixed solution, and then melting and molding the obtained mixture, the inorganic phosphor such as a film is formed as described above. Thus, a phosphor-containing fluorinated copolymer molded article of a desired shape uniformly dispersed in an amount can be obtained.
[0055]
Alternatively, the fluorinated copolymer and the fluorescent material are melted and mixed at a temperature of “above the melting temperature” to 280 ° C. or less of the fluorinated copolymer, and at the same temperature (a temperature of “above the melting temperature” to 280 ° C. or less) By molding into a desired shape, the inorganic phosphor is uniformly dispersed in the amount described above, and a molded product such as a film or a sheet having excellent transparency can be obtained. In addition, when molded at a temperature higher than the above temperature, the molded article tends to be discolored, and when the temperature is lower than the melting temperature of the fluorocopolymer, molding is difficult.
[0056]
According to the method for producing a molded article according to the present invention, the inorganic phosphor is uniformly (uniformly) dispersed, has excellent weather resistance, and has a well-balanced emission luminance, transparency, heat resistance, and solvent resistance. A molded article such as a color conversion sheet can be formed safely, easily, and efficiently.
[0057]
The phosphor-containing fluorinated copolymer molded article can have an arbitrary shape such as a sheet, a film, a bag, or a box, depending on its use.
[0058]
When this molded product is used as, for example, a “color conversion sheet”, the color conversion sheet has a longer life than a light bulb or the like, and emits light such as blue light emitted from a blue light emitting element or the like that consumes less power. By absorbing at least a part of the light, it is possible to emit fluorescent light having a longer wavelength than the incident light such as blue light, for example, yellow light having a complementary color relationship, and to mix the blue light of the light source with the fluorescent yellow light. As a result, when a light-emitting element (particularly, a blue light-emitting element) and this color conversion sheet are used in combination, the light-emitting element can be used for a planar light source (light-emitting device) such as a display and OA equipment. Is optimal.
[0059]
Further, the light-emitting element is set in a mold, and a molten phosphor-containing fluorinated copolymer composition is poured and cured so as to cover at least a part of the light-emitting element. Thus, a light-emitting diode as an “optical device” that performs uniform light emission without color unevenness, in which at least a part of the entire surface of the light-emitting element is entirely covered (sealed), can be obtained.
[0060]
Further, the molded article of the present invention (a phosphor-containing fluorocopolymer molded article) is also used as a backlight for a mobile phone, a high color reproducibility backlight for a large monitor, and the like.
[0061]
When the phosphor-containing fluorocopolymer molded article is used as, for example, a color conversion sheet, the emission luminance, transparency, heat resistance, and solvent resistance are well-balanced and absorb at least a part of the blue light to obtain a blue color. Fluorescent light having a longer wavelength than light is emitted uniformly regardless of the location.
[0062]
In addition, the molded article according to the present invention has a reduced initial function (illuminance) even when used for a long time, is in a good range where there is no practical problem, and has excellent heat resistance. Deterioration does not occur even under a high temperature (eg, about 200 to 280 ° C.) due to heat generated from a light emitting element of a high heat generation type used with an increase in the size of the device.
[0063]
Therefore, if this molded article is used as a light-emitting sheet when manufacturing a display device, a display device which is a type of an optical device which is large and can be used for a long time can be obtained.
[0064]
Further, since this molded product is excellent in non-adhesiveness, chemical stability, moisture permeability and the like, even when used as a light emitting member for outdoor lighting, FIG. 2 of JP-A-2000-286455 (Patent Document 2). Can be omitted, as a result, for example, it is possible to reduce the manufacturing cost of outdoor lighting which is one of the optical devices.
[0065]
【The invention's effect】
According to the present invention, it is possible to form a color conversion sheet excellent in light emission luminance, transparency, heat resistance and solvent resistance in a well-balanced manner, and is excellent in heat resistance, optical transparency, weather resistance and chemical resistance. Phosphor-containing copolymer composition which can be suitably used for the production of optical devices typified by light (especially ultraviolet LED lighting devices), phosphor packages, light emitting diodes (LEDs), display devices, etc. A safe and simple method for producing a composition and a safe and simple method for producing a phosphor-containing fluorocopolymer molded article having the above characteristics can be provided.
[0066]
In particular, the phosphor-containing fluorocopolymer molded article according to the present invention has the above-described excellent properties, and is, for example, a color conversion sheet, a sheet-like light-emitting device for lighting (particularly, an ultraviolet LED lighting device). It is suitable for a member, a phosphor package, a sealing material or a covering material for a light emitting diode (LED), a sheet of a display device, and the like.
[0067]
In addition, the molded article according to the present invention has a reduced initial function (illuminance) even when used for a long time, is in a good range where there is no practical problem, and has excellent heat resistance. Deterioration does not occur even under a high temperature (eg, about 200 to 280 ° C.) due to heat generated from a light emitting element used in accordance with an increase in the size of the device.
[0068]
Further, since this molded product is excellent in non-adhesiveness, chemical stability, moisture permeability and the like, even when used for outdoor lighting, as shown in FIG. 2 of JP-A-2000-286455 (Patent Document 2). It is advantageous in that a simple casing can be omitted, and the manufacturing cost of outdoor lighting can be reduced.
Since the light-emitting device of the present invention includes a phosphor-containing fluorocopolymer molded article which is a light-emitting member having the above-mentioned characteristics, for example, weather resistance, heat resistance, chemical resistance, etc. And a high-color reproducibility backlight for large monitors.
[0069]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
[0070]
In the following examples and comparative examples, “parts” means “parts by weight” unless they violate the purpose.
[0071]
<Measurement methods, evaluation criteria, etc.>
The measuring methods and evaluation criteria used in the following examples and comparative examples are as follows.
(1) Luminance:
The emission spectrum was measured under the conditions (excitation wavelength: 460 nm, temperature: 25 ° C.).
[0072]
Note that the values of the respective examples and comparative examples are shown as relative values when the emission luminance of comparative example 2 is set to 100.
(2) Transparency:
Visually, a sample having uniform transparency regardless of the site was evaluated as good ()), and a sample recognized as having poor transparency was evaluated as (x).
(3) Heat resistance:
A sheet having no discoloration even after the color conversion sheet was heated in an oven at a temperature of 200 ° C. for 30 minutes was evaluated as good (○), and a sheet with discoloration was evaluated as (x).
(4) Solvent resistance:
After immersing the color conversion sheet in toluene of an organic solvent at 25 ° C. for 150 hours, those having a weight change rate of less than 1% are good (○), and those having a weight change rate of 1 or more to less than 5% are somewhat difficult. Yes (△), if more than 5%, poor (x).
[0073]
Similarly, carbon tetrachloride was determined according to the same criteria.
(5) Overall evaluation:
Comprehensively, those that can be judged to have extremely good commercial value are extremely good (◎), those that have good commercial value ((), those that have poor commercial value and can be judged to be problematic (×). It was determined.
[0074]
Embodiment 1
<Preparation of color conversion sheet>
Y2O348 parts by weight, Gd2O320 parts by weight, Al2O348 parts by weight, Ce2O31 part by weight, and AlF3Was mixed and pulverized with a ball mill at 0.5 part by weight, and the mixture was put in a crucible and calcined at 1500 ° C. for 10 hours (hr) (Y0.6Gd0.4)3Al5O12: Ce phosphor (also referred to as YAG phosphor, Y / Al / Gd / Ce phosphor).
[0075]
This phosphor was crushed by a crusher and crushed by a bead mill. 100 parts by weight of this ground product and HNO3Was mixed with 200 parts by weight of ion-exchanged water, stirred for 1 hour (hr), and dehydrated and washed to obtain a phosphor powder (also referred to as a YAG phosphor powder or the like).
[0076]
As the fluorinated copolymer, the component unit ratio in the copolymer produced by the method described in JP-A-2002-293953 is such that the ratio of tetrafluoroethylene component units / perfluoro (ethyl vinyl ether) component units is 70/30. (% By weight) of a copolymer, and 2.5 parts by weight of the above “YAG phosphor powder” were added to 100 parts by weight of a perfluorobenzene dispersion (solid content: 10% by weight) of the copolymer. The mixture was stirred with stirring to evaporate the solvent (or dispersion medium), and then dried at 120 ° C. under reduced pressure.
[0077]
Using the obtained phosphor-containing resin powder, a molding pellet was formed at 260 ° C. using a combination of a twin screw extruder and a pelletizer.
[0078]
The pellet was extruded into a sheet (thickness: 120 μm) at a temperature of 260 ° C. by a T-die extrusion method to obtain a color conversion sheet.
[0079]
<Excitation light source for color conversion>
A blue (main emission peak 460 nm) LED chip was used as an excitation light source for color conversion.
[0080]
The LED chip, which is a light-emitting element, is composed of a buffer layer made of GaN, an n-type undoped layer made of GaN, an n-type contact layer contacted with an n-type electrode made of GaN doped with Si, and GaN by a MOCVD method. An n-type undoped layer, an active layer of undoped InGaN having a thickness of 3 nm in which a quantum effect occurs, a p-type cladding layer of AlGaN, and a p-type contact layer of GaN in contact with a p-type electrode are laminated.
[0081]
<Production of light emitting device>
As shown in FIG. 2, a light emitting diode 4 on which an LED chip (not shown) as a blue light emitting source is molded is disposed at an end of the light guide plate 3, and a color conversion made of a fluororesin 2 including a phosphor 1 is performed. The sheet 5 is arranged on the side surface of the light guide plate 3 (upper surface 3a of the light guide plate 3 toward the paper surface), and the other surface (reflection layer 6) is connected to a (other) light guide plate (not shown). They were placed in contact. By causing the LED chips to emit light, the YAG-based phosphor 1 in the color conversion sheet 5 emits yellow light, and visually, as a result of a color mixture of the blue color of the LED light source and the yellow light emission of the color conversion sheet 5, the color conversion sheet White light was obtained via 5.
[0082]
The emission luminance of the obtained light-emitting device was measured under the conditions (excitation wavelength: 460 nm, temperature: 25 ° C.).
[0083]
In addition, the transparency of the color conversion sheet is uniform and good irrespective of the part (耐熱), and the heat resistance is good without discoloration even after heating in an oven at a temperature of 200 ° C. for 30 minutes (○), solvent resistance Was immersed in toluene of an organic solvent at 25 ° C. for 150 hours, and the change in weight was less than 1%, which was good ()), and also good for carbon tetrachloride (○), and the overall evaluation was extremely good (◎). )Met.
[0084]
The results are shown in Table 1.
[0085]
Embodiment 2
In Example 1, a light-emitting device was manufactured in the same manner as in Example 1 except that a color conversion sheet manufactured as described below was used. The properties, heat resistance, and solvent resistance were determined, and a comprehensive evaluation was performed.
[0086]
Table 1 shows the results.
[0087]
<Preparation of color conversion sheet>
As the fluorinated polymer, a fluorinated terpolymer of TFE-VdF-HFP ("THV200G" manufactured by Dyneon Co., Ltd., unit ratio of each component in the copolymer: TFE / VDF / HFP = about 40 / 40/20% by weight), 80 parts of this fluorinated copolymer and 20 parts of the phosphor powder of Example 1 were dry-blended with a Henschel mixer, and then dispersed and mixed at 230 ° C. with a twin-screw extruder. And pelletized.
[0088]
Further, the obtained pellet was extruded in a sheet shape at 230 ° C. to a thickness of 120 μm by a T-die extrusion method to obtain a color conversion sheet.
[0089]
Embodiment 3
In Example 1, a light-emitting device was manufactured in the same manner as in Example 1 except that a color conversion sheet manufactured as described below was used. The properties, heat resistance, and solvent resistance were determined, and a comprehensive evaluation was performed.
[0090]
Table 1 shows the results.
[0091]
<Preparation of color conversion sheet>
In Example 1, as the fluorine-containing polymer, a fluorine rubber having a unit amount ratio of each component in the copolymer: TFE / FMVE = about 53/47% by weight was used.
[0092]
Then, 30 parts of the phosphor powder described in Example 1 and 70 parts of the fluororubber were dispersed and mixed by an open roll, and were compression-molded at 180 ° C. to obtain a color conversion sheet having a thickness of 120 μm.
[0093]
Embodiment 4
The LED chip connected to the lead terminal was placed in a mold and fixed, and the molding pellet obtained in Example 1 was injection-molded at an injection temperature of 260 ° C. A light-emitting diode covered with a sealing material comprising the fluorescent substance-containing fluorocopolymer composition was obtained.
[0094]
In the same manner as in Example 1, the obtained light-emitting device was evaluated for light emission luminance, transparency, heat resistance, and solvent resistance, and comprehensively evaluated.
[0095]
Table 1 shows the results.
[0096]
[Reference Example 1]
In Example 1, a light-emitting device was manufactured in the same manner as in Example 1 except that a color conversion sheet manufactured as described below was used. The properties, heat resistance, and solvent resistance were determined, and a comprehensive evaluation was performed.
[0097]
Table 1 shows the results.
[0098]
<Preparation of color conversion sheet>
As the fluorinated polymer, a TFE / HFP copolymer (component unit ratio in the copolymer: TFE / HFP = 80/20% by weight) was used, and 80 parts of the fluorinated copolymer and Example 1 were used. After 20 parts of the phosphor powder described above was dry-blended with a Henschel mixer, the mixture was dispersed and mixed at 330 ° C. with a twin-screw extruder and pelletized.
[0099]
Further, the obtained pellets were extruded in a sheet form into a thickness of 120 μm at 330 ° C. by a T-die extrusion method to obtain a color conversion sheet.
[0100]
[Reference Example 2]
In Example 1, a light-emitting device was manufactured in the same manner as in Example 1 except that a color conversion sheet manufactured as described below was used. The properties, heat resistance, and solvent resistance were determined, and a comprehensive evaluation was performed.
[0101]
Table 1 shows the results.
[0102]
<Preparation of color conversion sheet>
Using polymethyl methacrylate (PMMA) as the polymer, 80 parts of PMMA and 20 parts of the phosphor powder described in Example 1 were dry-blended with a Henschel mixer and then dispersed at 150 ° C. with a twin-screw extruder. The mixed and pelletized material was used.
[0103]
Further, the obtained pellets were extruded into a sheet having a thickness of 120 μm at 150 ° C. by a T-die extrusion method to obtain a color conversion sheet.
[0104]
[Table 1]
Figure 2004346233

[Brief description of the drawings]
FIG. 1 is an enlarged schematic cross-sectional view showing a portion A of a color conversion sheet used in one embodiment of a method for manufacturing a light emitting device according to a preferred embodiment of the present invention shown in FIG.
FIG. 2 is a schematic sectional view of a light emitting device according to a preferred embodiment of the present invention.
[Explanation of symbols]
1: phosphor
2: Fluorine-containing copolymer
3: Light guide plate
4: Light emitting diode
5: Color conversion sheet
6: reflective layer

Claims (9)

外部からの光を透過する透明性含フッ素共重合体と、
前記光の少なくとも一部を吸収してその光よりも長波長の蛍光を発する無機および/または有機蛍光体とを含有し、透明性含フッ素共重合体と、これら蛍光体との合計100重量%中に、これら蛍光体を1.0重量%以上の量で含有した含フッ素共重合体組成物であって、
前記無機蛍光体が、セリウムで活性化されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG系蛍光体)、赤色、緑色および青色蛍光体の混合物であるRGB系蛍光体、AlGeAs系蛍光体のうちの何れかであることを特徴とする蛍光体含有含フッ素共重合体組成物。
A transparent fluorinated copolymer that transmits external light,
An inorganic and / or organic phosphor that absorbs at least a part of the light and emits fluorescence having a longer wavelength than the light, and a total of 100% by weight of a transparent fluorocopolymer and these phosphors A fluorine-containing copolymer composition containing these phosphors in an amount of 1.0% by weight or more,
The inorganic phosphor is selected from the group consisting of a yttrium-aluminum-garnet phosphor activated by cerium (YAG phosphor), an RGB phosphor, and a mixture of red, green, and blue phosphors, among AlGeAs phosphors. A phosphor-containing fluorine-containing copolymer composition, which is any one of the above.
外部からの青色光を透過する透明性含フッ素共重合体と、
前記青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を発する無機蛍光体とを含有し、透明性含フッ素共重合体と無機蛍光体との合計100重量%中に、該無機蛍光体を1.0重量%以上の量で含有した含フッ素共重合体組成物であって、
前記無機蛍光体がセリウムで活性化されたイットリウム・アルミニウム・ガーネット系蛍光体であることを特徴とする蛍光体含有含フッ素共重合体組成物。
A transparent fluorinated copolymer that transmits blue light from the outside,
An inorganic phosphor that absorbs at least a part of the blue light and emits fluorescence having a wavelength longer than that of the blue light, wherein the total amount of the transparent fluorocopolymer and the inorganic phosphor is 100 wt%. A fluorine-containing copolymer composition containing an inorganic phosphor in an amount of 1.0% by weight or more,
A phosphor-containing fluorine-containing copolymer composition, wherein the inorganic phosphor is a yttrium-aluminum-garnet-based phosphor activated with cerium.
上記含フッ素共重合体が、パーフルオロ(アルキル(C1〜C3)ビニルエーテル)、パーフルオロ(アルケニル(C2〜C3)ビニルエーテル)、ヘキサフルオロプロペン、フッ化ビニリデンのうちから選択される少なくとも1種の単量体と、テトラフルオロエチレンとを共重合して得られたものであることを特徴とする請求項1〜2の何れかに記載の蛍光体含有含フッ素共重合体組成物。The fluorinated copolymer is at least one selected from the group consisting of perfluoro (alkyl (C1 to C3) vinyl ether), perfluoro (alkenyl (C2 to C3) vinyl ether), hexafluoropropene, and vinylidene fluoride. The phosphor-containing fluorinated copolymer composition according to any one of claims 1 to 2, which is obtained by copolymerizing a monomer and tetrafluoroethylene. 上記含フッ素共重合体が、テトラフルオロエチレン/パーフルオロ(アルキル(C1〜C3)ビニルエーテル)共重合体、
テトラフルオロエチレン/フッ化ビニリデン/ヘキサフルオロプロペン三元共重合体、
テトラフルオロエチレン/パーフルオロ(アリルビニルエーテル)共重合体、
テトラフルオロエチレン/パーフルオロ−3,3−ビス(トリフロロメチル)−2,4−ジオキシシクロペンテン−1共重合体のうちの何れか1種または2種以上である請求項1〜2に記載の蛍光体含有含フッ素共重合体組成物。
The fluorinated copolymer is a tetrafluoroethylene / perfluoro (alkyl (C1 to C3) vinyl ether) copolymer,
Tetrafluoroethylene / vinylidene fluoride / hexafluoropropene terpolymer,
Tetrafluoroethylene / perfluoro (allyl vinyl ether) copolymer,
The polymer is one or more of tetrafluoroethylene / perfluoro-3,3-bis (trifluoromethyl) -2,4-dioxycyclopentene-1 copolymer. Phosphor-containing fluorinated copolymer composition.
外部からの青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を発する無機蛍光体を、含フッ素共重合体の有機溶媒溶液もしくは分散液と混合した後、溶媒または分散媒を除去することを特徴とする請求項1〜4の何れかに記載の蛍光体含有含フッ素共重合体組成物の製造方法。After mixing at least a part of the external blue light and emitting an inorganic phosphor that emits fluorescence with a wavelength longer than that of the blue light with an organic solvent solution or dispersion of the fluorinated copolymer, the solvent or the dispersion medium is removed. The method for producing a phosphor-containing fluorinated copolymer composition according to any one of claims 1 to 4, wherein the composition is removed. 請求項5に記載の方法により得られ、外部からの青色光の少なくとも一部を吸収して青色光よりも長波長の蛍光を発する無機蛍光体と、含フッ素共重合体とを含有する蛍光体含有含フッ素共重合体組成物を、
該含フッ素共重合体の溶融温度以上〜280℃以下の温度で溶融成形することを特徴とする蛍光体含有含フッ素共重合体成形物の製造方法。
A phosphor containing the inorganic phosphor obtained by the method according to claim 5 and absorbing at least a part of external blue light to emit fluorescence having a longer wavelength than the blue light, and a fluorinated copolymer. Containing fluorine-containing copolymer composition,
A method for producing a phosphor-containing fluoropolymer molded article, which is melt-molded at a temperature from the melting temperature of the fluorocopolymer to 280 ° C.
請求項6に記載の方法により得られた蛍光体含有含フッ素共重合体成形物。A phosphor-containing fluorocopolymer molded article obtained by the method according to claim 6. 上記成形物が色変換シートである請求項7に記載の蛍光体含有含フッ素共重合体成形物。The phosphor-containing fluorinated copolymer molded article according to claim 7, wherein the molded article is a color conversion sheet. 請求項7〜8の何れかに記載の成形物を具備した光学装置。An optical device comprising the molded product according to claim 7.
JP2003146270A 2003-05-23 2003-05-23 Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer Pending JP2004346233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146270A JP2004346233A (en) 2003-05-23 2003-05-23 Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146270A JP2004346233A (en) 2003-05-23 2003-05-23 Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer

Publications (1)

Publication Number Publication Date
JP2004346233A true JP2004346233A (en) 2004-12-09

Family

ID=33533178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146270A Pending JP2004346233A (en) 2003-05-23 2003-05-23 Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer

Country Status (1)

Country Link
JP (1) JP2004346233A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237191A (en) * 2005-02-24 2006-09-07 Asahi Rubber:Kk Lens for light emitting diode and light emitting diode light source
WO2006134982A1 (en) * 2005-06-14 2006-12-21 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
WO2007010712A1 (en) * 2005-07-15 2007-01-25 Daikin Industries, Ltd. Photofunctional composition
WO2008001693A1 (en) * 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
JP2021520632A (en) * 2018-11-19 2021-08-19 泉州三安半導体科技有限公司 Ultraviolet package element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237191A (en) * 2005-02-24 2006-09-07 Asahi Rubber:Kk Lens for light emitting diode and light emitting diode light source
WO2006134982A1 (en) * 2005-06-14 2006-12-21 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
US8497623B2 (en) 2005-06-14 2013-07-30 Denki Kagaku Kogyo Kabushiki Kaisha Phosphor-containing resin composition and sheet, and light emitting devices employing them
WO2007010712A1 (en) * 2005-07-15 2007-01-25 Daikin Industries, Ltd. Photofunctional composition
WO2008001693A1 (en) * 2006-06-29 2008-01-03 Idemitsu Kosan Co., Ltd. Fluorescent composition and fluorescence conversion substrate using the same
JP2021520632A (en) * 2018-11-19 2021-08-19 泉州三安半導体科技有限公司 Ultraviolet package element
JP7165203B2 (en) 2018-11-19 2022-11-02 泉州三安半導体科技有限公司 UV package element

Similar Documents

Publication Publication Date Title
JP6197933B2 (en) Electron beam curable resin composition, resin frame for reflector, reflector, semiconductor light emitting device, and method for producing molded article
KR101201266B1 (en) Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
US20060099449A1 (en) Light-emitting device
JP5020480B2 (en) Phosphor composition and use thereof
JP3956457B2 (en) Color conversion sheet and light emitting device using the same
TW201140890A (en) Lighting device with light source and wavelength converting element
EP3959289A1 (en) Luminescent component
TWI644957B (en) Resin composition, reflector, lead frame with reflector, and semiconductor light emitting device
KR20150099843A (en) Wavelength conversion member and light-emitting device
JP4892380B2 (en) Reflective material for optical semiconductors
JP5080114B2 (en) Reflective material for optical semiconductors
WO2005100011A1 (en) Optical functional laminate
JP2004346233A (en) Phosphor-carrying, fluorine-containing copolymer composition, its manufacturing process, and manufacturing process of molded article of phosphor-carrying, fluorine-containing copolymer
CN103703577A (en) Reflector for light-emitting diode and housing
EP2372799A2 (en) Highly reflective white material and led package
JP4453008B2 (en) Thermosetting resin composition for optical semiconductor encapsulation, cured product thereof and optical semiconductor
JP2020143246A (en) Resin composition for wafer-level optical semiconductor device and optical semiconductor device
JP2013058744A (en) Reflector for light-emitting diode, and housing
JP2018162378A (en) Emitter composition, and emitter resin molding
KR20150111939A (en) Electron beam curable resin composition, reflector resin frame, reflector, semiconductor light-emitting device, and molded article production method
TW201936762A (en) Curable composition, method for producing cured product of curable composition, and light-emitting device having light-emitting element sealed with said cured product